WO2007119706A1 - 含Crニッケル基合金管の製造方法および含Crニッケル基合金管 - Google Patents

含Crニッケル基合金管の製造方法および含Crニッケル基合金管 Download PDF

Info

Publication number
WO2007119706A1
WO2007119706A1 PCT/JP2007/057833 JP2007057833W WO2007119706A1 WO 2007119706 A1 WO2007119706 A1 WO 2007119706A1 JP 2007057833 W JP2007057833 W JP 2007057833W WO 2007119706 A1 WO2007119706 A1 WO 2007119706A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
gas
containing nickel
less
base alloy
Prior art date
Application number
PCT/JP2007/057833
Other languages
English (en)
French (fr)
Inventor
Manabu Kanzaki
Kazukiyo Kitamura
Noriaki Hirohata
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CN2007800130855A priority Critical patent/CN101421431B/zh
Priority to CA2648711A priority patent/CA2648711C/en
Priority to EP07741269A priority patent/EP2009133A4/en
Publication of WO2007119706A1 publication Critical patent/WO2007119706A1/ja
Priority to US12/285,644 priority patent/US20090123775A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]

Definitions

  • the present invention relates to a method for producing a Cr-Neckel-based alloy tube and a Cr-Nickel-based alloy tube with little Ni elution even when used for a long period of time in a high-temperature water environment.
  • the present invention relates to a Cr-containing nickel-base alloy tube that is suitable for applications such as structural members.
  • Nickel-based alloys are excellent in mechanical properties and are therefore used as various members.
  • nickel-based alloys with excellent corrosion resistance are used.
  • 60% Ni-30% Cr-10% Fe alloy is used for the members of steam generators in pressurized water reactors (PWR).
  • Nickel-based alloys have excellent corrosion resistance and a slow corrosion rate, but trace amounts of Ni elute even when used for a long time.
  • Ni is transported to the core in the process of circulating the reactor water and is irradiated with neutrons in the vicinity of the fuel.
  • Ni is irradiated with neutron, it is converted to radioactive Co by nuclear reaction. Since this radioactive Co has a very long half-life, it continues to emit radiation for a long time. Therefore, if the amount of Ni elution increases, the exposure dose for workers performing periodic inspections will increase.
  • Patent Document 2 discloses a heat treatment that serves as at least a part of an age hardening treatment and an oxide film formation treatment in an oxidizing atmosphere of 10 _3 Torr to atmospheric pressure air after solution treatment of a nickel-based precipitation strengthened alloy.
  • the manufacturing method of the member for nuclear power plants which gives is disclosed.
  • Patent Document 3 discloses a method for producing a nickel-based alloy product in which a nickel-based alloy product is heat-treated in a mixed atmosphere of hydrogen or hydrogen having a dew point of -60 ° C to + 20 ° C. Yes.
  • Patent Document 4 discloses a method of forming a chromium-enriched layer by exposing an alloy workpiece containing Ni and Cr to a gas mixture of water vapor and at least one non-oxidizing gas. It has been done.
  • Patent Document 5 describes a continuous heat treatment method as a heat treatment method that reliably and efficiently generates a two-layer oxide film that suppresses elution of Ni in a high-temperature water environment on the inner surface of a nickel-based alloy tube.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 64-55366
  • Patent Document 2 JP-A-8-29571
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-121630
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-322553
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-239060
  • Patent Document 1 The film formed by the method disclosed in Patent Document 1 has an insufficient thickness, so that the elution prevention effect is lost due to damage of the film due to long-term use. There's a problem.
  • Patent Document 2 has a problem in that oxidized Ni is taken into the film and eluted immediately during use.
  • a method for forming an oxide film by controlling the amount of water vapor (dew point) and as in the method disclosed in Patent Document 5, the dew point is used as an atmospheric gas.
  • the heat treatment method using hydrogen gas or hydrogen and argon gas with controlled gas it is difficult to form a uniform acid film on the inlet side and the outlet side of water vapor. This is due to the following reasons.
  • the thickness of the oxide film to be generated passes through the boundary layer of the oxygen-containing gas concentration on the surface of the material to be treated, which is not only the oxygen potential. It is rate-limited by all diffusivity.
  • the concentration boundary layer refers to the boundary layer of the gas concentration distribution at the surface of the material to be processed and at a location away from the surface (for example, near the central axis inside the tube).
  • This diffusivity is affected by physical properties such as gas diffusion coefficient and kinematic viscosity coefficient, and oxidation treatment conditions such as gas concentration and flow velocity. Water vapor (H 2 O) has the above diffusivity.
  • the thickness of the oxide film is too thin, the effect of Ni elution resistance cannot be obtained, but if it is too thick, it becomes easy to peel off, and conversely the Ni elution resistance deteriorates. According to the study by the present inventors, the thickness of the oxide film needs to be adjusted within the range of micron order force and submicron order.
  • the composition of the oxide film formed on the inner surface of the tube can be adjusted.
  • the film thickness can be adjusted by controlling the heat treatment conditions such as heating temperature and time, but fine adjustment is difficult even with this method.
  • heat treatment conditions such as heating temperature and time, but fine adjustment is difficult even with this method.
  • heat treatment for other purposes such as annealing, it is difficult to change these heat treatment conditions in terms of film thickness.
  • the inventors of the present invention have conducted extensive research and found that the thickness of the coating film can be controlled by controlling the relationship between the acidic gas concentration and the atmospheric gas flow rate. Was completed.
  • the present invention provides a method for producing a Cr-containing nickel-base alloy tube and a Cr-containing nickel-base alloy tube in which chromate oxide is uniformly formed on the surface of the Cr-nickel base alloy tube at a low cost. You The porpose is to do.
  • the gist of the present invention is a method for producing a Cr-containing nickel-base alloy tube shown in the following (A) to (G) and a Cr-containing nickel-base alloy tube shown in (H) below.
  • a Cr nickel-containing alloy tube is heated in a gas atmosphere including a diacid-containing carbon gas and a non-acidic gas gas. Thickness consisting of 0.2-1
  • a method for producing a Cr-containing nickel-base alloy tube characterized by forming a 5 ⁇ m-acid oxide film.
  • (E) The above-mentioned (A) force characterized by forming a chromic coating satisfying the relationship defined by the following formula (2) in a Cr-containing nickel-base alloy tube.
  • tl and t2 are the chromate coating thicknesses m) at each end of the tube.
  • (F) The method for producing a Cr-containing nickel-base alloy tube according to any one of (A) to (E) above, wherein the continuous heat treatment furnace is disposed so as to penetrate the furnace.
  • Gas introduction pipe and A Cr-containing nickel base characterized in that a chromate soot coating is formed on the inner surface of the tube by the following steps (1) to (3) using a gas supply device movably provided in the direction of travel of the tube. Alloy tube manufacturing method.
  • (G) The method for producing a Cr-containing nickel-base alloy tube according to any one of (A) to (E) above, wherein the continuous heat treatment furnace is disposed so as to penetrate the furnace.
  • a chromate soot coating is formed on the inner surface of the pipe by the following steps (1) to (3) using a gas introduction pipe and a gas supply device that is movable in the direction of travel of the pipe.
  • the atmospheric gas is supplied from the entrance side of the furnace by a gas supply device and a gas introduction pipe.
  • a chromium oxide film having a thickness of 0.2 to 1.5 ⁇ m and satisfying the relationship defined by the following equation (2) is formed on the inner surface of the Cr-containing nickel-base alloy tube.
  • Cr-containing nickel-base alloy tube is, by mass%, C: 0.15% or less, Si: 1.00% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0 030% or less, Cr: 10.0-40.0%, Fe: 15.0% or less, Ti: 0.5% or less, Cu: 0.50% or less, and Al: 2.00% or less
  • the balance should be Ni and impurities. Further, instead of a part of Ni, it may contain at least one element selected from the following group forces.
  • the Cr-containing nickel-base alloy tube can be used, for example, as a member for a nuclear power plant.
  • Chromate film means an oxide film mainly composed of Cr 2 O, other than Cr 2 O
  • oxides for example, oxides such as MnCr 2 O, TiO, Al 2 O, and SiO
  • the surface of the Cr-containing nickel-base alloy has an acid coating that also has chromic acid strength, it can be added to the upper layer (outer layer) and Z or lower layer (inner layer) of the chromium oxide layer. An oxide layer is formed.
  • the present invention it is possible to form a chromic oxide film uniformly and inexpensively on the inner surface of a Cr-containing nickel-based alloy tube.
  • the Cr-containing nickel-base alloy tube produced by the method of the present invention has a very low elution of Ni even when used for a long time in a high-temperature water environment, for example, a high-temperature water environment in a nuclear power plant. (Steam Generator tubing) and other components used in high-temperature water, especially for nuclear power plant components.
  • the Cr-containing nickel-base alloy pipe is replaced with an atmosphere gas composed of carbon dioxide gas and non-oxidizing gas, or a part of the carbon dioxide gas.
  • an atmosphere gas composed of carbon dioxide gas and non-oxidizing gas, or a part of the carbon dioxide gas.
  • the upper limit of the concentration of carbon dioxide gas is not particularly limited, but from the viewpoint of reducing the manufacturing cost, it is more preferably 10 vol% or less, preferably 50 vol% or less.
  • Carbon dioxide gas has the effect of forming a chromium oxide film on the inner surface of the Cr-containing nickel-base alloy tube in a high temperature environment. That is, in an atmosphere consisting of carbon dioxide gas, as shown in the following reaction formula, CO is adsorbed on the Cr-containing nickel-based alloy tube (M) and directly from the CO (acid
  • the thickness of the chromium oxide film to be formed is affected by the conditions of acid treatment such as gas concentration and flow rate to be supplied. Hateful. For this reason, a more uniform acid film can be formed on the inner surface of the tube than the conventional acid process performed in a water vapor atmosphere.
  • An advantage of using carbon dioxide gas is that a desired oxidation treatment atmosphere can be created at a lower cost than the method of controlling the water concentration with a conventional dew point generator.
  • Oxygen gas may also be included in the atmospheric gas instead of part of the carbon dioxide gas in order to form a chromium oxide, as in the case of the carbon dioxide gas.
  • Oxygen gas may also be included in the atmospheric gas instead of part of the carbon dioxide gas in order to form a chromium oxide, as in the case of the carbon dioxide gas.
  • the concentration should be 5 vol% or less. If oxygen is contained even in a trace amount, the above-described effect is obtained, so the lower limit is not particularly limited. However, the effect is significant when it is contained in an amount of 0.0001 vol% or more.
  • water vapor may also be included in the atmospheric gas instead of part of the carbon dioxide gas in order to form chromium oxide.
  • concentration shall be 7.5 vol% or less.
  • a more preferred upper limit is 2.5 vol%.
  • the lower limit of the water vapor concentration is not particularly limited. However, in order to sufficiently form a chromate salt coating effective in suppressing Ni elution, it is preferably set to 0.01 vol% or more. A more preferred lower limit is 0.1 V ol%.
  • non-oxidizing gas examples include hydrogen gas, rare gas (Ar, He, etc.), carbon monoxide gas, nitrogen gas, hydrocarbon gas, and the like.
  • these non-oxidizing gases when carbon monoxide gas, nitrogen gas, or hydrocarbon gas is used, there is a concern of carburizing or nitriding, so at least one of hydrogen gas and rare gas is included. Is preferred.
  • By adjusting the gas concentration of these non-oxidizing gases it is possible to appropriately adjust the concentration of dioxide carbon gas, or further oxygen gas and Z or water vapor.
  • Hydrogen gas is often used industrially as an atmospheric gas for heat treatment, and if it is used for diluting diacid-carbon gas, the manufacturing cost can be reduced. Therefore, it is most preferable to perform the heat treatment with the atmosphere gas as a gas atmosphere composed of carbon dioxide and hydrogen gas.
  • the concentration of atmospheric gas in the case of containing water vapor can be controlled by adjusting the water vapor concentration by dew point management after adjusting the concentration of carbon dioxide gas and non-oxidizing gas, or oxygen gas.
  • carbon dioxide gas or further oxygen gas may be added after adjusting the dew point using a non-oxidizing gas.
  • Ni elution resistance depends on the thickness of the coating, so it is necessary to control the film thickness. If the film thickness is less than 0.2 m, the Ni elution resistance is insufficient. The relationship between the film thickness and the Ni elution property was examined by a notch elution test. As a result, the Ni elution suppression effect was confirmed at 0.2 m or more, and when the film thickness became 0.3 / zm or more, the Ni elution resistance was further improved. Improves.
  • the upper limit of the film thickness is preferably 0.95 / z m, but more preferably 0.8 m.
  • the supply of oxidizing gas is considered to limit the oxidation reaction.
  • an atmospheric gas is supplied into the pipe, a concentration gradient occurs.
  • the gas diffusivity at this time is considered to depend on the oxidizing gas concentration and the atmospheric gas flow rate. Since the supply of the oxidizing gas depends on the gas diffusivity, it can be considered that it also depends on the oxidizing gas concentration and the flow rate of the atmospheric gas.
  • the present inventors conducted various experiments with such viewpoint power, and by supplying the atmospheric gas under conditions satisfying the relationship defined by the following equation (1), It has been found that the formed chromate coating can have a desired thickness.
  • the lower limit of the equation (1) is preferably 1.0, and the upper limit is preferably 4.0.
  • the heat treatment temperature and the heat treatment time are not particularly limited, but for example, the heat temperature can be in the range of 500 to 1250 ° C., and the heat time can be in the range of 10 seconds to 35 hours.
  • the reasons for limitation are as follows.
  • Heating temperature 500-1250 ° C
  • the heating temperature should provide the appropriate thickness and composition of the oxidic coating and the strength properties of the alloy. It may be in a range where Specifically, if the heating temperature is less than 500 ° C, the oxidation of chromium may be insufficient, but if it exceeds 1250 ° C, the strength of the Cr-containing nickel-based alloy material may not be secured. is there. Therefore, the heating temperature should be in the range of 500-1250 ° C.
  • Heating time 10 seconds to 35 hours
  • the heating time may be set within a range in which an appropriate thickness and composition of the oxide film can be obtained. That is, in order to form an oxide film mainly composed of chromium oxide, it is desirable to heat for 10 seconds or more. However, even if it is heated for more than 35 hours, the acid film is hardly formed. Therefore, the heating time should be in the range of 10 seconds to 35 hours.
  • the film forming process is performed in a continuous heat treatment furnace, it is necessary to shorten the heating time to improve the productivity.
  • the higher the heating temperature the shorter the heating time. Therefore, if the heating temperature is in the range of 1000 to 1200 ° C, the heating time is in the range of 10 seconds to 60 minutes, more preferably in the range of 1 to 20 minutes.
  • the film of the thickness of the present invention can be formed.
  • tl and t2 are the chromate coating thicknesses m) at each end of the tube.
  • the right side of the above equation (2) is preferably 0.3 m.
  • the film thickness varies greatly. Therefore, in the present invention, a mixed gas with carbon dioxide gas and a non-acidic gas having a low diffusibility, or a mixed gas with another acidic gas is used. Thereby, the variation in film thickness can be reduced.
  • Ni base alloy tube is formed by heat treatment with the length of the tube shipped as a product, after the heat treatment, specimens of both ends of the tube are cut out and the film thickness is measured. [0058] 4. Chemical composition of element tube of Cr-containing nickel-base alloy
  • the chemical composition of the elemental tube of the Cr-containing nickel-based alloy used in the production method of the present invention is, for example, by mass%, C: 0.15% or less, Si: 100% or less, Mn: 2. 0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 10.0 to 40.0%, Fe: 15.0% or less, Ti: 0.5% or less, Cu: It is preferable to contain less than 50% and Al: 2.00% or less, with the balance being Ni and impurities.
  • % in the content means “% by mass”.
  • the content is preferably 0.15% or less. More desirable is 0.06% or less.
  • C has the effect of increasing the grain boundary strength of the alloy. In order to obtain this effect, the C content is desirably 0.01% or more.
  • Si 1.00% or less
  • Si is used as a deoxidizing material during iron making and remains as an impurity in the alloy. At this time, it should be limited to 1.00% or less. If its content exceeds 0.50%, the cleanliness of the alloy may decrease, so it is desirable to limit the Si content to 0.50% or less.
  • Mn 2. 0% or less
  • Mn exceeds 2.0%, the corrosion resistance of the alloy is lowered, so it is desirable to make it 2.0% or less.
  • Mn is produced by Calo heat, which has lower free energy of formation of oxide than Cr.
  • MnCr 2 O is preferentially produced in this layer, and MnCr 2 O is formed as an upper layer on the outside.
  • the Cr 2 O layer is protected in the usage environment, and what is the Cr 2 O layer
  • the desirable Mn content is 0.1 to 2.0%, and more desirably 0.1 to 1.0%.
  • P is an element present as an impurity in the alloy. If its content exceeds 0.030%, corrosion resistance may be adversely affected. Therefore, the P content is limited to 0.030% or less. Is desirable.
  • S is an element present as an impurity in the alloy. If its content exceeds 0.030%, corrosion resistance may be adversely affected. Therefore, it is desirable to limit the S content to 0.030% or less.
  • Cr is an element necessary for producing an acid film that also has chromic acid properties.
  • it is desirable to contain 10.0% or more.
  • the Cr content is desirably 10.0 to 40.0%.
  • it when it contains 14.0 to 17.0% of Cr, it is excellent in corrosion resistance in an environment containing chloride, and when it contains 27.0 to 31.0% of Cr, it is further purified water at a high temperature. Excellent corrosion resistance in alkaline environments.
  • Fe exceeds 15.0%, the corrosion resistance of the Cr-containing nickel-base alloy may be impaired. Therefore, it should be 15.0% or less. In addition, since it is an element that can be used in place of a part of expensive Ni dissolved in Ni, it is desirable to contain 4.0% or more.
  • the Fe content should be determined by the balance between Ni and Cr. If the Cr content is 14.0-17.0%, the content is 6.0-10% and the Cr content is 27.0-31.0. If% is included, 7.0-11.0.
  • the Ti content exceeds 0.5%, the cleanliness of the alloy may be deteriorated, so the content is desirably 0.5% or less. More desirable is 0.4% or less. However, from the viewpoint of improving the workability of the alloy and suppressing grain growth during welding, it is desirable to contain 0.1% or more.
  • Cu is an element present as an impurity in the alloy. If its content exceeds 0.50%, the corrosion resistance of the alloy may decrease. Therefore, it is desirable to limit the Cu content to 0.50% or less. [0068] Al: 2.00% or less
  • Al is used as a deoxidizer during steelmaking and remains as an impurity in the alloy.
  • the remaining A 1 becomes an oxide inclusion in the alloy, which may deteriorate the cleanliness of the alloy and adversely affect the corrosion resistance and mechanical properties of the alloy. Therefore, it is desirable to limit the A1 content to 2.00% or less.
  • the above-mentioned Cr-containing nickel-base alloy may contain any of the above-mentioned elements, and the balance may be made of Ni and impurities. However, for the purpose of improving performances such as corrosion resistance and strength, Nb, Ta, Mo An appropriate amount may be added.
  • Nb and Z or Ta Either single or total 3.15-4.15%
  • Nb and Ta are effective in improving the strength of the alloy because they easily form carbides.
  • fixing C in the alloy has the effect of suppressing Cr deficiency at the grain boundaries and improving the corrosion resistance at the grain boundaries. Accordingly, one or both of these elements may be contained. The above effects become significant when the content of one of the elements is contained when one of the elements is contained, and when the total content is 3.15% or more when both elements are contained.
  • the content of Nb and Z or Ta is excessive, hot workability and cold workability may be impaired, and the sensitivity to heat embrittlement may be increased. Therefore, when one of the elements is contained, the content of the single element is desirable. When both elements are contained, the total content is desirably 4.15% or less. Therefore, the content in the case where one or both of Nb and Ta are contained is desirably 3.15 to 4.15% as a single substance or in total.
  • Mo has an effect of improving pitting corrosion resistance, and may be contained as necessary.
  • the above effect becomes significant at 8% or more, but when it exceeds 10%, an intermetallic compound may be precipitated to deteriorate the corrosion resistance. Therefore, the content when Mo is contained is preferably 8 to 10%.
  • the alloy (a) is an alloy having excellent corrosion resistance in an environment containing chloride because it contains 14.0 to 17.0% of Cr and about 75% of Ni. In this alloy, it is desirable to make the Fe content 6.0 to 10.0% from the viewpoint of the balance between the Ni content and the Cr content.
  • the alloy (b) contains 27.0 to 31.0% of Cr and about 60% of Ni. Therefore, in addition to chloride-containing environments, the alloy is resistant to corrosion in pure water and alkaline environments at high temperatures. Is an excellent alloy. Even in this alloy, it is desirable that the content of Fe is 7.0 to 10.0% in view of the balance between the Ni content and the Cr content.
  • FIG. 1 is a schematic view showing an example of an embodiment of a method for producing a Cr-containing nickel-base alloy tube according to the present invention.
  • Fig. 1 (a) shows the supply mode of the atmospheric gas when the preceding tube group la is undergoing heat treatment and the subsequent tube group lb is before heat treatment.
  • Fig. 1 (b) shows the supply mode of the atmospheric gas when the leading tube group la and the succeeding tube group lb are both undergoing heat treatment.
  • Figure 1 (c) shows the supply mode of the atmospheric gas when the succeeding tube group lb is undergoing heat treatment.
  • FIG. 2 is an enlarged plan view showing the gas introduction pipe 3 and the header 2 in FIG.
  • a continuous heat treatment furnace (hereinafter simply referred to as a heat treatment furnace) 5 includes, for example, a heating zone 5a and a cooling zone 5b. Tube groups la and lb are transported in the right direction in the figure.
  • the furnace atmosphere of the heat treatment furnace 5 is a hydrogen gas atmosphere.
  • the furnace pressure is set slightly higher than the atmospheric pressure to prevent air from flowing in.
  • gas supply devices 4a and 4b are provided on the exit side (right side of the figure) of the heat treatment furnace 5.
  • the gas supply devices 4a and 4b are both movably provided in the same direction as the tube groups la and lb. It should be noted that the gas supply devices 4a and 4b in the illustrated example should not interfere with each other. Therefore, the position is shifted in the direction perpendicular to the paper surface!
  • both the preceding tube group la and the succeeding tube group lb are inserted into the tapered nozzle 2 a of the header 2.
  • the header 2 is provided with a gas introduction pipe 3 in parallel. Note that the header 2 for the tube group la and the gas introduction pipe 3 attached thereto are not connected.
  • the gas introduction pipe 3 is connected to the header 2 for the subsequent pipe group lb and used for introducing atmospheric gas into the subsequent pipe group lb. That is, in this example, the atmospheric gas is supplied from the outlet side of the heat treatment furnace 5.
  • the ambient gas is supplied from the gas supply device 4a to the preceding tube group la during the heat treatment, and the preceding tube group lb before the heat treatment is preceded by the preceding tube group la.
  • the atmospheric gas is supplied from the gas supply device 4b through the gas introduction pipe 3 provided in the header 2 of the pipe group la. At this time, the atmospheric gas is supplied into the pipe toward the rear end of the pipe.
  • the gas supply device 4b is put on standby to be connected to the gas introduction pipe 3 of the tube group lb in order to supply atmospheric gas to the inside of the pipe of the subsequent tube group lc (see (c) in the figure).
  • FIG. 3 shows another example of an embodiment of a method for producing a Cr-containing nickel-base alloy tube according to the present invention. It is a schematic diagram shown.
  • Fig. 3 (a) shows how the atmospheric gas is supplied to the preceding tube group la before heat treatment.
  • Fig. 3 (b) shows the supply of atmospheric gas to the preceding tube group la during heat treatment.
  • Fig. 3 (c) shows how the atmospheric gas is supplied to the preceding tube group la and the subsequent tube group lb during the heat treatment.
  • FIG. 4 is an enlarged plan view showing the gas introduction pipe 3 and the header 2 in FIG.
  • the heat treatment furnace 5 shown in FIG. 3 is the same as that in FIG.
  • gas supply devices 4a and 4b are provided on the entry side (left side in the figure) and the exit side (right side in the figure) of the heat treatment furnace 5, respectively.
  • Tube groups la and lb are transported to the right in the figure.
  • the gas supply devices 4a and 4b are both movably provided in the same direction as the tube groups la and lb.
  • the preceding tube group la and the subsequent tube group lb before the heat treatment are both inserted into the tapered nozzle 2 a of the header 2.
  • the header 2 is provided at the center in the longitudinal direction, and has a protrusion 2c to which a plug 2b that can be opened and closed is attached at the right end.
  • the gas introduction pipe 3 is inserted into a tapered nozzle 2 a located at the center in the longitudinal direction of the header 2.
  • An atmospheric gas is supplied to the gas introduction pipe 3 from the inlet side of the heat treatment furnace 5.
  • the gas introduction pipe 3 is desirably provided with a check valve that allows only the atmospheric gas flow in the right direction of the figure.
  • the atmospheric gas is supplied through a gas supply pipe 3 and a header 2 closed by a plug 2b (a gas provided on the inlet side of the heat treatment furnace).
  • (Supply device) 4a is supplied to the tube of the preceding tube group la before heat treatment.
  • the atmospheric gas is supplied into the pipe from the leading end to the trailing end of the tube group la.
  • the preceding tube group la is conveyed in the right direction in the figure while being in the above state, and is charged into the heat treatment furnace 5. Then, after the tip of the tube group la reaches the outlet side of the heating zone 5a of the heat treatment furnace 5, the atmospheric gas supply is switched from the inlet side gas supply device 4a to the outlet side gas supply device 4b.
  • the gas supply device 4a on the inlet side stands by for supplying atmospheric gas to the subsequent tube group lb. At this time, the plug 2b is opened.
  • the preceding tube group la supplied with the atmospheric gas from the outlet gas supply device 4b and the atmospheric gas from the inlet gas supply device 4a are supplied. Subsequent tube The group lb is heat treated at the same time.
  • the present invention is not limited to such a configuration. That is, the following operation may be performed using one gas supply device.
  • the shape of the header 2 may be such that the atmosphere gas of the gas supply device force flows into each tube through a plurality of tubes branched as shown in FIGS. 1 to 4, or more uniformly to each tube. Make header 2 BOX-shaped so that gas can be supplied at a flow rate!
  • the air inside the pipe is purged by flowing the atmospheric gas into the pipe before being charged into the heat treatment furnace. Therefore, a predetermined chromate film is formed on the inner surface of the tube during the heat treatment. Since the atmospheric gas is always supplied from the front end to the rear end in the tube traveling direction, it flows in the tube in the direction opposite to the tube traveling direction even in the heat treatment furnace. As a result, the pipe inner surface residue after the cleaning and before the heat treatment is vaporized at the high temperature part of the heat treatment and discharged outside the tube.
  • a Cr-containing nickel-base alloy having a predetermined chemical composition is melted into an ingot, and then usually hot working-annealing. It is manufactured by a process or a process of hot working, cold working, and annealing. Further, in order to improve the corrosion resistance of the base material, a special heat treatment called TT treatment (Thermal Treatment) may be performed.
  • TT treatment Thermal Treatment
  • the heat treatment method of the present invention may be performed after the above-mentioned annealing or may be performed also as annealing. If annealing is performed, it is not necessary to add a heat treatment step for forming an acid coating in addition to the conventional manufacturing step, and the manufacturing cost is not increased. Further, as described above, when the TT treatment is performed after annealing, this may be performed in combination with the heat treatment for forming the oxide film. Sarakuko may use both annealing and TT treatment as oxide film formation treatment.
  • each tube was washed with an alkaline degreasing solution and rinsing water, and the inner surface was further washed with acetone.
  • the raw tube thus obtained was subjected to heat treatment under the conditions shown in Table 2.
  • a chromate film was formed by heating while supplying an atmospheric gas corresponding to 33.3 liters Z to the raw tube through the gas supply device power header.
  • a raw pipe was connected to each of the 21 nozzles provided in the header, and an atmosphere gas of 7 Nm 3 Zh was supplied from the gas supply device via the header (per pipe) 5. 6 Tuttle z minutes).
  • Table 3 shows ⁇ for cases where it is less than 0.30 / zm, ⁇ ⁇ '' for cases where it is greater than 0.30 / zm and less than 0.50 / zm, and cases where it exceeds 0.50 m. Indicated as "X”.
  • the thickness of the oxide film was measured at both ends of each tube after the heat treatment, and a thin side force test piece with a small film thickness was collected and subjected to an elution test.
  • autoclave was used to measure the amount of Ni ions eluted in pressurized water reactor primary system simulated water.
  • the reactor primary system simulated water was contained to prevent the test solution from being contaminated by ions that were eluted from the jig.
  • the test temperature is 320 ° C
  • the reactor primary system simulated water for 1000 hours is 500ppmB + 2ppmLi + 30ccH / kgH
  • the thickness of the chromate coating formed on the inner surface of the tube was determined according to the present invention. The range is satisfied, and the variation of the acid film thickness in the longitudinal direction of the pipe is small. The Ni elution amount is small in the range of 0.30 ppm or less.
  • a Cr-containing nickel-base alloy tube in which a chromium oxide film is uniformly formed on the inner surface of the tube at a low cost, and can be used in a high-temperature water environment such as a nuclear power plant. Even when used in a high temperature water environment for a long time, the elution of Ni is extremely small, so it is ideal for components used in high temperature water such as steam generator tubing, especially for nuclear power plants. .
  • FIG. 1 is a schematic view showing an example of an embodiment of a method for producing a Cr-containing nickel-base alloy tube according to the present invention.
  • Fig. 1 (a) shows the supply mode of the atmospheric gas when the preceding tube group la is under heat treatment and the subsequent tube group lb is before heat treatment.
  • Fig. 1 (b) shows the atmospheric gas supply mode when both the preceding tube group la and the succeeding tube group lb are undergoing heat treatment.
  • Figure 1 (c) shows the supply mode of the atmospheric gas when the succeeding tube group lb is undergoing heat treatment.
  • FIG. 2 is an enlarged plan view showing a gas introduction pipe 3 and a header 2 in FIG.
  • FIG. 3 is a schematic diagram showing another example of an embodiment of a method for producing a Cr-containing nickel-base alloy tube according to the present invention.
  • Fig. 3 (a) shows how the atmospheric gas is supplied to the preceding tube group la before heat treatment.
  • Fig. 3 (b) shows the supply of atmospheric gas to the preceding tube group la during heat treatment.
  • Fig. 3 (c) shows how the atmospheric gas is supplied to the preceding tube group la and the subsequent tube group lb during the heat treatment.
  • FIG. 4 is an enlarged plan view showing a gas introduction pipe 3 and a header 2 in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 含Crニッケル基合金管の内面に安価で、均一にクロム酸化被膜を形成させるため、含Crニッケル基合金管を二酸化炭素ガスおよび非酸化性ガスからなる雰囲気ガス中で加熱し、含Crニッケル基合金管内面に、クロム酸化物からなる厚さ0.2~1.5μmの酸化被膜を形成する。雰囲気ガスは、二酸化炭素ガスの一部に代えて、5vol%以下の酸素ガスおよび/または7.5vol%以下の水蒸気を含むものでもよい。

Description

明 細 書
含 Crニッケル基合金管の製造方法および含 Crニッケル基合金管 技術分野
[0001] 本発明は、高温水環境で長期間にわたり使用しても、 Niの溶出が少ない含 Cr-ッ ケル基合金管の製造方法および含 Crニッケル基合金管に係り、特に、原子力プラン ト用部材等の用途に好適な含 Crニッケル基合金管に関する。
背景技術
[0002] ニッケル基合金は、機械的性質に優れて 、るので種々の部材として使用されて ヽ る。特に原子炉の部材は高温水に曝されるので、耐食性に優れたニッケル基合金が 使用されている。例えば、加圧水型原子炉 (PWR)の蒸気発生器の部材には 60%N i- 30%Cr- 10%Fe合金などが使用される。
[0003] これらの部材は、数年から数 10年の間、原子炉の炉水環境である 300°C前後の高 温水の環境で用いられることになる。ニッケル基合金は、耐食性に優れており腐食速 度は遅いものの、長期間の使用により微量の Niが母材力も溶出する。
[0004] 溶出した Niは、炉水が循環する過程で、炉心部に運ばれ燃料の近傍で中性子の 照射を受ける。 Niが中性子照射を受けると核反応により放射性 Coに変換する。この 放射性 Coは、半減期が非常に長いため、放射線を長期間放出し続ける。従って、 Ni の溶出量が多くなると、定期検査などをおこなう作業者の被曝線量が増大する。
[0005] 被曝線量を少なくすることは、軽水炉を長期にわたり使用していく上で非常に重要 な課題である。従って、これまでにも材料側の耐食性の改善や原子炉水の水質を制 御することによりニッケル基合金中の Niの溶出を防止する対策が採られてきた。
[0006] 特許文献 1にはニッケル基合金伝熱管を 10_2〜: L0_4 Torrという真空度の雰囲気 で、 400〜750°Cの温度域で焼鈍してクロム酸化物を主体とする酸化被膜を形成さ せ、耐全面腐食性を改善する方法が開示されている。
[0007] 特許文献 2にはニッケル基析出強化型合金の溶体化処理後に、 10_3Torr〜大気 圧空気下の酸化雰囲気で時効硬化処理及び酸化被膜形成処理の少なくとも一部を 兼ねて行なう加熱処理を施す原子力プラント用部材の製造方法が開示されている。 [0008] 特許文献 3にはニッケル基合金製品を露点が― 60°C〜 + 20°Cである水素または 水素とアルゴンの混合雰囲気中で熱処理するニッケル基合金製品の製造方法が開 示されている。
[0009] 特許文献 4には Niと Crとを含有する合金ワークピースを、水蒸気と少なくとも 1種の 非酸ィ匕性ガスとのガス混合物に曝して、クロム富化層を形成させる方法が開示されて いる。
[0010] 特許文献 5には、ニッケル基合金管の内表面に、高温水環境で Niの溶出を抑制す る 2層構造の酸化被膜を確実かつ高能率に生成させる熱処理方法として、連続式熱 処理炉の出側に少なくとも 2基のガス供給装置を設けるか、出側および入側にそれ ぞれ 1基のガス供給装置を設け、これらのガス供給装置のうちの 1基と炉内を貫通す るガス導入管とを用いて、熱処理炉に装入する前の管の内部に、その進行方向の先 端側から露点が 60°Cから + 20°Cまでの範囲内にある水素または水素とアルゴン の混合ガス力もなる雰囲気ガスを供給しつつ管を炉に装入して 650〜1200°Cで 1〜 1200分保持する際、管の先端が炉の出側に到達した後に、管の内部への雰囲気ガ スの供給を他のガス供給装置からの供給に切り替える操作を繰り返す熱処理方法が 開示されている。
[0011] 特許文献 1 :特開昭 64— 55366号公報
特許文献 2 :特開平 8— 29571号公報
特許文献 3 :特開 2002— 121630号公報
特許文献 4:特開 2002— 322553号公報
特許文献 5:特開 2003 - 239060号公報
発明の開示
発明が解決しょうとする課題
[0012] 特許文献 1に開示の方法によって形成される被膜は、その厚さが不十分であるため 、長期間の使用により被膜が損傷するなどして、溶出防止効果が失われてしまうとい う問題がある。
[0013] 特許文献 2に開示の方法には、酸化した Niが被膜中に取り込まれやすぐ使用中 にこの Niが溶出するという問題がある。 [0014] そして、特許文献 3および 4に開示の方法のように、水蒸気量 (露点)を制御して酸 化被膜を形成させる方法、特許文献 5に開示の方法のように、雰囲気ガスとして露点 を制御した水素ガスまたは水素とアルゴンガスを用いる熱処理方法では、水蒸気の 入側と出側とで均一な酸ィ匕被膜を形成することが困難である。これは下記の理由に よる。
[0015] 例えば、長尺管の酸化被膜の様な連続処理の場合、生成する酸化被膜の厚さは、 酸素ポテンシャルだけでなぐ被処理材の表面における酸ィ匕性ガスの濃度境界層を 通しての拡散性に律速される。ここで、濃度境界層とは、被処理材の表面と表面から 離れた箇所 (例えば、管内側の中心軸付近)とにおけるガスの濃度分布の境界層を いう。この拡散性は、ガスの拡散係数、動粘性係数等の物理的性質およびガスの濃 度、流速等の酸化処理条件による影響を受ける。水蒸気 (H O)は、上記の拡散性が
2
CO等の他の酸化性ガスに対して大きいので、水蒸気以外に酸化性ガスが存在しな
2
Vヽ雰囲気下での酸化処理を施す場合、水蒸気の入側と出側とで均一な酸化被膜を 形成することが困難となる。
[0016] 酸化被膜の厚さは、薄すぎると耐 Ni溶出性の効果が得られないが、厚すぎると剥 離しやすくなり、逆に、耐 Ni溶出性が劣化する。本発明者らの研究によれば、酸ィ匕被 膜の厚さは、ミクロンオーダー力 サブミクロンオーダーの範囲で調整する必要がある
[0017] 例えば、酸化性ガス濃度を制御すれば、管内面に形成される酸化被膜の組成の調 整を行うことができる。しかし、この方法により被膜厚さの調整は困難である。一方、加 熱温度、時間等の熱処理条件を制御することにより、被膜厚さを調整できるが、この 方法でも微調整が難しい。また、焼きなまし等他の目的を兼ねた熱処理の場合、被 膜厚さの観点力 これらの熱処理条件を変えることは難しい。
[0018] 本発明者らは、鋭意研究を行い、酸ィ匕性ガス濃度および雰囲気ガス流量の関係を 制御することより、被膜の厚さを制御することが可能であることを見出し、本発明を完 成させた。
[0019] 本発明は、安価で、かつ均一にクロム酸ィ匕物を含 Crニッケル基合金管の表面に形 成させた含 Crニッケル基合金管の製造方法および含 Crニッケル基合金管を提供す ることを目的とする。
課題を解決するための手段
[0020] 本発明は、下記の (A)〜(G)に示す含 Crニッケル基合金管の製造方法および下 記の (H)に示す含 Crニッケル基合金管を要旨とする。
[0021] (A)含 Crニッケル基合金管を二酸ィ匕炭素ガスおよび非酸ィ匕性ガスカゝらなる雰囲気 ガス中で加熱し、含 Crニッケル基合金管内面に、クロム酸ィ匕物からなる厚さ 0. 2〜1
. 5 μ mの酸ィ匕被膜を形成することを特徴とする含 Crニッケル基合金管の製造方法。
[0022] (B)雰囲気ガス力 二酸化炭素ガスの一部に代えて、 5vol%以下の酸素ガスおよ び Zまたは 7. 5vol%以下の水蒸気を含むことを特徴とする上記 (A)に記載の含 Cr ニッケル基合金管の製造方法。
[0023] (C)酸ィ匕性ガス濃度および含 Crニッケル基合金管内への雰囲気ガス流量を制御 することを特徴とする上記 (A)または (B)に記載の含 Crニッケル基合金管の製造方 法。
[0024] (D)下記( 1)式で規定される関係を満足する条件で、雰囲気ガスを含 Crニッケル 基合金管内に導入することを特徴とする上記 (C)に記載の含 Crニッケル基合金管の 製造方法。
0. 5≤C X Q1/2≤7. 0 · · · (1)
但し、式中の記号の意味は下記の通りである。
C :酸ィ匕性ガス濃度 (vol%)
Q :雰囲気ガスの流量 (リットル Z分)
[0025] (E)含 Crニッケル基合金管内に下記(2)式で規定される関係を満足するクロム酸 化被膜を形成させることを特徴とする上記 (A)力も (D)までの 、ずれかに記載の含 C rニッケル基合金管の製造方法。
I tl -t2 I ≤0. 5 m · · · (2)
但し、 tlおよび t2は、管の両端それぞれにおけるクロム酸ィ匕被膜の厚さ m)で ある。
[0026] (F)上記の (A)〜 (E)の 、ずれかに記載の含 Crニッケル基合金管の製造方法で あって、連続式熱処理炉、その炉内を貫通するように配置されたガス導入管および 管の進行方向に移動自在に設けたガス供給装置を用いて、下記の(1)〜(3)の工程 により管の内面にクロム酸ィ匕被膜を形成させることを特徴とする含 Crニッケル基合金 管の製造方法。
(1)管を連続式熱処理炉に装入する前に、管の先端力 後端に向けて雰囲気ガスを 供給する工程 (ただし、雰囲気ガスは、ガス供給装置およびガス導入管により炉の出 側から供給される。)、
(2)管の先端力 後端に向けて雰囲気ガスを供給しつつ、管を連続式熱処理炉内に 装入する工程、
(3)管の先端が連続式熱処理炉の加熱帯の出側に到達した後に、雰囲気ガスの供 給を他のガス供給装置に切り替える工程。
[0027] (G)上記の (A)〜 (E)の 、ずれかに記載の含 Crニッケル基合金管の製造方法で あって、連続式熱処理炉、その炉内を貫通するように配置されたガス導入管および 管の進行方向に移動自在に設けたガス供給装置を用いて、下記の(1)〜(3)の工程 により管の内面にクロム酸ィ匕被膜を形成させることを特徴とする含 Crニッケル基合金 管の製造方法。
(1)管を連続式熱処理炉に装入する前に、管の先端力 後端に向けて雰囲気ガスを 供給する工程
(ただし、雰囲気ガスは、ガス供給装置およびガス導入管により炉の入側から供給さ れる。)、
(2)管の先端力 後端に向けて雰囲気ガスを供給しつつ、管を連続式熱処理炉内に 装入する工程、
(3)管の先端が連続式熱処理炉の加熱帯の出側に到達した後に、雰囲気ガスを炉 の出側力 の供給に切り替える工程。
(注:上記 (F)および (G)については、請求項の注意書き参照のこと。 )
[0028] (H)含 Crニッケル基合金管の内表面に、厚さが 0. 2〜1. 5 μ mであり、かつ下記( 2)式で規定される関係を満足するクロム酸化被膜を形成したことを特徴とする含 Cr ニッケル基合金管。
I tl -t2 I ≤0. 5 m · · · (2) 但し、 tlおよび t2は、管の両端それぞれにおけるクロム酸ィ匕被膜の厚さ m)で ある。
[0029] 含 Crニッケル基合金管は、質量%で、 C : 0. 15%以下、 Si: 1. 00%以下、 Mn: 2 . 0%以下、 P : 0. 030%以下、 S : 0. 030%以下、 Cr: 10. 0〜40. 0%, Fe : 15. 0 %以下、 Ti: 0. 5%以下、 Cu: 0. 50%以下および Al: 2. 00%以下を含有し、残部 が Niおよび不純物力もなるものがよい。また、 Niの一部に代えて、下記群力も選ばれ た少なくとも 1つの元素を含有するものでもよい。
1群:質量%で、 Nbおよび Zまたは Taをいずれか単体または合計で 3. 15〜4. 15%
2群:質量%で、 Moを 8〜10%
[0030] 含 Crニッケル基合金管は、例えば、原子力プラント用部材として用いることができる
[0031] なお、「クロム酸ィ匕被膜」とは、 Cr Oを主体とする酸化被膜を意味し、 Cr O以外
2 3 2 3 の酸化物、例えば、 MnCr O、 TiO、 Al O、 SiOなどの酸化物が含まれていても
2 4 2 2 3 2
よい。また、含 Crニッケル基合金の表面にクロム酸ィ匕物力もなる酸ィ匕被膜を有するの であれば、クロム酸化物層の上層(外側の層)および Zまたは下層(内側の層)に他 の酸化物層が形成されて 、てもよ 、。
発明の効果
[0032] 本発明によれば、含 Crニッケル基合金管の内面に、安価で、かつ均一にクロム酸 化被膜を形成させることができる。本発明方法により製造された含 Crニッケル基合金 管は、高温水環境、例えば、原子力発電プラントにおける高温水環境で長時間にわ たり使用しても Niの溶出が極めて少ないから、蒸気発生器管(Steam Generator tubing)等の高温水中で使用される部材、特に原子力プラント用部材に最適である 発明を実施するための最良の形態
[0033] 1.管内に供給する雰囲気ガスについて
本発明の含 Crニッケル基合金管の製造方法では、含 Crニッケル基合金管を、二 酸化炭素ガスおよび非酸化性ガスからなる雰囲気ガス、二酸ィヒ炭素ガスの一部に代 えて 5vol%以下の酸素ガスおよび Zまたは 7. 5vol%以下の水蒸気を含む雰囲気 ガスで加熱することにより、含 Crニッケル基合金管内面にクロム酸ィ匕被膜を形成させ ることを最大の特徴とする。
[0034] 二酸ィ匕炭素は、微量でも含まれておれば、クロム酸化物を形成するため、特に下限 を定めないが、 0. O001vol%以上含まれる場合にその効果が顕著となる。二酸化炭 素ガスの濃度の上限については、特に限定しないが、製造コストを低減させる観点か らは、 50vol%以下とするのが好ましぐ 10vol%以下とするのが更に好ましい。
[0035] 二酸化炭素ガスは、高温環境下で含 Crニッケル基合金管の内面にクロム酸化被膜 を形成させる作用を有する。即ち、二酸化炭素ガスからなる雰囲気下では、下記の反 応式に示すように、含 Crニッケル基合金管(M)に COが吸着し、 COから直接 0 (酸
2 2
素)が Ni基合金に取り込まれ、クロム酸ィ匕物が生成するのである。
CO + M → CO + MO
2
[0036] ここで、二酸ィ匕炭素は水蒸気よりも拡散性が小さいため、形成されるクロム酸化被 膜の厚さが供給されるガス濃度、流量等の酸ィヒ処理条件による影響を受けにくい。こ のため、従来の水蒸気雰囲気下で行なう酸ィ匕処理よりも均一な酸ィ匕被膜を管内面に 形成させることができるのである。二酸ィ匕炭素ガスを用いるメリットとしては、従来の露 点発生装置で水分濃度を制御していた方法よりも安価に所望の酸化処理雰囲気を 作ることができる点ち挙げられる。
[0037] 酸素ガスも二酸ィ匕炭素ガスと同様に、クロム酸化物を形成するため、二酸化炭素ガ スの一部に代えて、雰囲気ガスに含まれていても良い。しかし、酸素ガスを多量に含 有させると、クロム酸ィ匕被膜の形成を促進して母材中の Cr濃度を低下させ、耐食性 を劣化させる。このため、酸素ガスを含有させる場合には、その濃度を 5vol%以下と するのがよい。酸素は、微量でも含まれておれば、上記の効果を有するため、特に下 限を定めないが、その効果が顕著となるのは、 0. 0001vol%以上含まれる場合であ る。
[0038] 水蒸気も二酸ィ匕炭素ガスと同様に、クロム酸化物を形成するため、二酸化炭素ガス の一部に代えて、雰囲気ガスに含まれていても良い。しかし、水蒸気を多量に含有さ せると、 Niの酸ィ匕が起こりやすくなり、被膜中の Ni濃度が増加し、使用環境中におい て Niが溶出するおそれがある。このため、水蒸気を含有させる場合は、その濃度を 7 . 5vol%以下とするのが好ましい。より好ましい上限は 2. 5vol%である。一方、水蒸 気濃度の下限は特に制限はないが、 Ni溶出の抑制に有効なクロム酸ィ匕被膜を十分 に形成するためには、 0. 01vol%以上とするのがよい。より好ましい下限は、 0. 1 V ol%である。
[0039] このように、本発明にお 、ては、二酸ィ匕炭素ガスおよび非酸ィ匕性ガス力もなる雰囲 気ガス、または、二酸化炭素ガスの一部に代えて 5vol%以下の酸素ガスおよび Zも しくは 7. 5vol%以下の水蒸気を含む雰囲気ガスを供給して、含 Crニッケル基合金 管内面の酸ィ匕処理を行なう。
[0040] 非酸ィ匕性ガスとしては、例えば、水素ガス、希ガス (Ar、 He等)、一酸化炭素ガス、 窒素ガス、炭化水素ガスなどが挙げられる。これらの非酸ィ匕性ガスのうち、一酸化炭 素ガス、窒素ガス、炭化水素ガスを用いた場合は、浸炭ゃ窒化の懸念があるため、 水素ガスおよび希ガスの少なくとも 1種が含まれるのが好ましい。これらの非酸化性ガ スのガス濃度を調整することで、二酸ィ匕炭素ガス、または更に酸素ガスおよび Zもし くは水蒸気の濃度を適宜調整できる。
[0041] なお、水素ガスは、工業的に熱処理の雰囲気ガスとしてよく利用されており、これを 二酸ィ匕炭素ガスの希釈に用いれば、製造コストを下げることができる。よって、雰囲気 ガスを二酸ィ匕炭素ガスおよび水素ガス力 なるガス雰囲気として熱処理をすることが 最も好ましい。
[0042] 水蒸気を含有させる場合の雰囲気ガスの濃度は、二酸化炭素ガスおよび非酸化性 ガス、または更に、酸素ガスの濃度を調整した後、露点管理により水蒸気濃度を調整 することにより管理できる。また、非酸化性ガスを用いて露点を調整した後、二酸化炭 素ガスまたは更に酸素ガスを添加してもよ ヽ。
[0043] なお、雰囲気ガスは、酸素ガスを水素ガスまたは炭化水素ガスと混合する場合は、 安全上の観点から、爆発が起きないように配慮する必要がある。そのため、水素ガス または炭化水素ガスを用いる場合は、二酸ィ匕炭素ガスおよび非酸ィ匕性ガス、または 更に水蒸気の混合ガス雰囲気下で加熱処理を行なう。
[0044] 2.管内面に形成する被膜厚さについて 耐 Ni溶出性は、被膜の厚さに依存するので、被膜厚さを制御する必要がある。被 膜厚さは、 0. 2 m未満では耐 Ni溶出性は不十分である。ノ ツチ溶出試験により、 被膜厚さと Ni溶出性の関係を調べたところ、 0. 2 m以上で Ni溶出抑制効果が認 められ、被膜厚さが 0. 3 /z m以上になると更に耐 Ni溶出性が向上する。
[0045] しかし、被膜厚さが厚くなるほど、剥離が発生しやすくなり、被膜の剥離は、厚さが 1 . 5 /z mを超えると顕著となる。被膜厚さの上限は 0. 95 /z mとするのが望ましぐより 望ましい上限は 0. 8 mである。
[0046] 3.管内面に供給する雰囲気ガスの流量について
管内面に存在する Crのみを酸ィ匕させるためには、管内を低酸素ポテンシャル環境 にする必要がある。このような環境下では、酸化性ガスの供給が酸化反応を律速して いると考えられる。一方、雰囲気ガスを管内に供給すると濃度勾配が生じるが、このと きのガス拡散性は、酸化性ガス濃度および雰囲気ガスの流量に依存すると考えられ る。酸化性ガスの供給は、ガス拡散性に依存するので、酸化性ガス濃度および雰囲 気ガスの流量にも依存すると考えることができるのである。
[0047] そこで、本発明者らは、このような観点力も種々の実験を行い、下記の(1)式で規 定される関係を満足する条件で雰囲気ガスを供給することにより、管内面に形成され るクロム酸ィ匕被膜を所望の厚さにすることができることを見出した。
0. 5≤C X Q1/2≤7. 0 · · · (1)
但し、式中の記号の意味は下記の通りである。
C :酸ィ匕性ガス濃度 (vol%)
Q :雰囲気ガスの流量 (リットル Z分)
[0048] 上記(1)式の下限は、 1. 0とするのが望ましぐ上限は 4. 0とするのが望ましい。
[0049] 4.加熱処理温度および加熱処理時間について
加熱処理温度および加熱処理時間については特に制限はないが、例えば、加熱 温度は 500〜1250°Cの範囲、加熱時間は 10秒〜 35時間の範囲とすることができる 。それぞれの限定理由は下記の通りである。
[0050] 加熱温度: 500〜1250°C
加熱温度は、適切な酸ィヒ被膜の厚さおよび組成ならびに合金の強度特性を得るこ とができる範囲であればよい。具体的には、加熱温度が 500°C未満の場合、クロムの 酸化が不十分となる場合があるが、 1250°Cを超えると、含 Crニッケル基合金材の強 度を確保できなくなるおそれがある。従って、加熱温度は 500〜1250°Cの範囲とす るのがよい。
[0051] 加熱時間: 10秒〜 35時間
加熱時間は、適切な酸ィ匕被膜の厚さと組成を得ることができる範囲で設定すればよ い。即ち、クロム酸化物を主体とする酸化被膜を形成するためには、 10秒以上加熱 することが望ましいが、 35時間を超えて加熱しても、酸ィ匕被膜はほとんど生成しなく なる。従って、加熱時間は 10秒〜 35時間の範囲とするのがよい。
[0052] なお、連続式熱処理炉で被膜形成処理を行う場合は、加熱時間を短くして生産性 を向上させる必要がある。加熱温度が高いほど加熱時間を短くできるため、加熱温度 は 1000〜1200°Cの範囲とすれば、加熱時間は 10秒〜 60分の範囲、更に好ましく は 1〜20分の範囲とすることで、本発明の厚さの被膜を形成することができる。
[0053] 5.被膜厚さのばらつきについて
管の長手方向における被膜厚さのバラツキが大きぐ局部的に厚さの薄い被膜が 形成されると、その部分で Ni溶出量が多くなる。そのため、被膜厚さのバラツキは小 さい方がよい。即ち、クロム酸ィ匕被膜の厚さは、下記 (2)式で規定される関係を満足 するのが望ましい。
[0054] I tl— 2 I ≤0. 5 m · · · (2)
但し、 tlおよび t2は、管の両端それぞれにおけるクロム酸ィ匕被膜の厚さ m)で ある。
[0055] なお、上記(2)式の右辺は、 0. 3 mとするのが好ましい。
[0056] 雰囲気ガスが拡散性の大き!/、水蒸気と非酸化性ガスの混合ガスでは、被膜厚さの ノ ラツキが大きい。このため、本発明では、拡散性の小さい二酸化炭素ガスおよび非 酸ィ匕性ガスとの混合ガス、または更に他の酸ィ匕性ガスとの混合ガスを用いることとし た。これにより、被膜厚さのバラツキを少なくすることができる。
[0057] Ni基合金管の被膜形成処理は、製品として出荷される管長さで熱処理されるため 、その熱処理をした後、管の両端部力 の試片を切り出し、被膜厚さを測定する。 [0058] 4.含 Crニッケル基合金の素管の化学組成について
本発明の製造方法に供される含 Crニッケル基合金の素管の化学組成としては、例 えば、質量%で、 C : 0. 15%以下、 Si: l. 00%以下、 Mn: 2. 0%以下、 P : 0. 030 %以下、 S : 0. 030%以下、 Cr: 10. 0〜40. 0%、Fe : 15. 0%以下、 Ti: 0. 5%以 下、 Cu: 0. 50%以下および Al: 2. 00%以下を含有し、残部が Niおよび不純物から なるものがよい。各元素の限定理由は下記のとおりである。なお、以下の説明におい て含有量にっ 、ての「%」は、「質量%」を意味する。
[0059] C : 0. 15%以下
Cは、 0. 15%を超えて含有させると、耐応力腐食割れ性が劣化するおそれがある 。従って、 Cを含有させる場合には、その含有量を 0. 15%以下にするのが望ましい。 更に望ましいのは、 0. 06%以下である。なお、 Cは、合金の粒界強度を高める効果 を有する。この効果を得るためには Cの含有量は 0. 01%以上とするのが望ましい。
[0060] Si : 1. 00%以下
Siは製鍊時の脱酸材として使用され、合金中に不純物として残存する。このとき、 1 . 00%以下に制限するのがよい。その含有量が 0. 50%を超えると合金の清浄度が 低下することがあるため、 Si含有量は 0. 50%以下に制限するのが望ましい。
[0061] Mn: 2. 0%以下
Mnは、 2. 0%を超えると合金の耐食性を低下させるので、 2. 0%以下とするのが 望ましい。 Mnは、 Crと比べ酸化物の生成自由エネルギーが低ぐカロ熱により MnCr
2 oとして析出する。また、拡散速度も比較的早いため、通常は、加熱により母材近傍
4
に Cr Oが優先的に生成し、その外側に上層として MnCr Oが形成される。 MnCr
2 3 2 4 2
O層が存在すれば、使用環境中において Cr O層が保護され、また、 Cr O層が何
4 2 3 2 3 らかの理由で破壊された場合でも MnCr O〖こより Cr Oの修復が促進される。この
2 4 2 3
ような効果が顕著となるのは、 0. 1%以上含有させた場合である。従って、望ましい Mn含有量は 0. 1〜2. 0%であり、更に望ましいのは、 0. 1〜1. 0%である。
[0062] P : 0. 030%以下
Pは合金中に不純物として存在する元素である。その含有量が 0. 030%を超えると 耐食性に悪影響を及ぼすことがある。従って、 P含有量は 0. 030%以下に制限する のが望ましい。
[0063] S : 0. 030%以下
Sは合金中に不純物として存在する元素である。その含有量が 0. 030%を超えると 耐食性に悪影響を及ぼすことがある。従って、 S含有量は 0. 030%以下に制限する のが望ましい。
[0064] Cr: 10. 0〜40. 0%
Crは、クロム酸ィ匕物力もなる酸ィ匕被膜を生成させるために必要な元素である。合金 表面にそのような酸ィ匕被膜を生成させるためには、 10. 0%以上含有させるのが望ま しい。しかし、 40. 0%を超えると相対的に Ni含有量が少なくなり、合金の耐食性が 低下するおそれがある。従って、 Crの含有量は 10. 0〜40. 0%が望ましい。特に、 Crを 14. 0〜17. 0%含む場合には、塩化物を含む環境での耐食性に優れ、 Crを 2 7. 0〜31. 0%含む場合には、更に、高温における純水やアルカリ環境での耐食性 にも優れる。
[0065] Fe : 15. 0%以下
Feは、 15. 0%超えると含 Crニッケル基合金の耐食性が損なわれるおそれがある。 そのため、 15. 0%以下とする。また、 Niに固溶し高価な Niの一部に替えて使用でき る元素であるので、 4. 0%以上含有させることが望ましい。 Feの含有量は、 Niと Crの バランス力も決めればよぐ Crを 14. 0-17. 0%含む場合には、 6. 0-10. 0%とし 、 Crを 27. 0-31. 0%含む場合には、 7. 0-11. 0%とするの力望まし!/、。
[0066] Ti: 0. 5%以下
Tiは、その含有量が 0. 5%を超えると、合金の清浄性を劣化させるおそれがあるの で、その含有量は 0. 5%以下とするのが望ましい。更に望ましいのは、 0. 4%以下で ある。但し、合金の加工性向上および溶接時における粒成長の抑制の観点からは、 0. 1%以上の含有させることが望ましい。
[0067] Cu: 0. 50%以下
Cuは合金中に不純物として存在する元素である。その含有量が 0. 50%を超える と合金の耐食性が低下することがある。従って、 Cu含有量は 0. 50%以下に制限す るのが望ましい。 [0068] Al: 2. 00%以下
Alは製鋼時の脱酸材として使用され、合金中に不純物として残存する。残存した A 1は、合金中で酸ィ匕物系介在物となり、合金の清浄度を劣化させ、合金の耐食性およ び機械的性質に悪影響を及ぼすおそれがある。従って、 A1含有量は 2. 00%以下に 制限するのが望ましい。
[0069] 上記の含 Crニッケル基合金は、上記の元素を含み、残部は Niおよび不純物からな るものであればよいが、耐食性、強度などの性能の向上を目的として、 Nb、 Ta、 Mo を適量添カ卩してもよい。
[0070] Nbおよび Zまたは Ta :いずれか単体または合計で 3. 15〜4. 15%
Nbおよび Taは、炭化物を形成しやすいので、合金の強度を向上させるのに有効 である。また、合金中の Cを固定するので、粒界の Cr欠乏を抑制し、粒界の耐食性を 向上させる効果もある。従って、これらの元素の一方または両方を含有させてもよい。 上記の効果は、いずれか一方の元素を含有させる場合にはその単体の含有量、両 方の元素を含有させる場合にはその合計の含有量が 3. 15%以上で顕著となる。
[0071] しかし、 Nbおよび Zまたは Taの含有量が過剰な場合には、熱間加工性および冷 間加工性を損なうとともに、加熱脆ィ匕に対する感受性が高くなるおそれがある。従つ て、いずれか一方の元素を含有させる場合にはその単体の含有量、両方の元素を 含有させる場合にはその合計の含有量が 4. 15%以下とするのが望ましい。従って、 Nbおよび Taの一方または両方を含有させる場合の含有量は、単体または合計で 3 . 15〜4. 15%とするのが望ましい。
[0072] Mo : 8〜10%
Moは、耐孔食性を向上させる効果があり、必要に応じて含有させてもよい。上記の 効果は 8%以上で顕著となるが、 10%を超えると、金属間化合物が析出して耐食性 を劣化させるおそれがある。従って、 Moを含有させる場合の含有量は 8〜10%とす るのが望ましい。
[0073] 上記含 Crニッケル基合金の素管の組成として代表的なものは、以下の二種類であ る。
[0074] (a) C : 0. 15%以下、 Si: l. 00%以下、 Mn: 2. 0%以下、 P : 0. 030%以下、 S : 0. 030%以下、 Cr: 14. 0〜17. 0%、Fe : 6. 0〜: L0. 0%、Ti: 0. 5%以下、 Cu: 0 . 50%以下および Al: 2. 00%以下を含有し、残部が Niおよび不純物からなる含 Cr ニッケル基合金。
[0075] (b) C : 0. 06%以下、 Si: l. 00%以下、 Mn: 2. 0%以下、 P : 0. 030%以下、 S :
0. 030%以下、 Cr: 27. 0〜31. 0%、Fe : 7. 0〜: L I. 0%、Ti: 0. 5%以下、 Cu: 0 . 50%以下および Al: 2. 00%以下を含有し、残部が Niおよび不純物からなる含 Cr ニッケル基合金。
[0076] 上記(a)の合金は、 Crを 14. 0-17. 0%含み、 Niを 75%程度含むため塩化物を 含む環境での耐食性に優れる合金である。この合金においては、 Ni含有量と Cr含 有量のバランスの観点力 Feの含有量は 6. 0-10. 0%とするのが望ましい。
[0077] 上記(b)の合金は、 Crを 27. 0-31. 0%含み、 Niを 60%程度含むため、塩化物 を含む環境のほか、高温における純水やアルカリ環境での耐食性にも優れる合金で ある。この合金にぉ 、ても Ni含有量と Cr含有量のバランスの観点力 Feの含有量は 7. 0-11. 0%とするのが望ましい。
[0078] 6.雰囲気ガスの供給方法について
図 1は、本発明に係る含 Crニッケル基合金管の製造方法の実施態様の例を示す 模式図である。図 1 (a)は、先行管群 laが熱処理中であり、後続管群 lbが熱処理前 である時の雰囲気ガスの供給態様を示す。図 1 (b)は、先行管群 laおよび後続管群 lbが共に熱処理中である時の雰囲気ガスの供給態様を示す。図 1 (c)は、後続管群 lbが熱処理中である時の雰囲気ガスの供給態様を示す。図 2は、図 1におけるガス 導入管 3およびヘッダー 2を示す拡大平面図である。
[0079] 図 1に示すように、連続式熱処理炉(以下、単に熱処理炉という) 5は、例えば、加熱 帯 5aと冷却帯 5bとを備えている。管群 la、 lbは、図右方向に搬送される。この熱処 理炉 5の炉内雰囲気は、水素ガス雰囲気である。また、炉圧は、大気が流入しないよ うにするため、大気圧よりも若干高く設定されている。
[0080] 熱処理炉 5の出側(図の右方)には、例えば、 2基のガス供給装置 4a、 4bが設けら れている。このガス供給装置 4a、 4bは、いずれも管群 la、 lbと同じ方向へ移動自在 に設けられている。なお、図示例のガス供給装置 4aおよび 4bは、干渉しないようにす るため、紙面に対して垂直な方向に位置をずらして配置されて!、る。
[0081] 図 2の拡大平面図に示すように、先行の管群 laおよび後続の管群 lbは、いずれも ヘッダー 2の先細のノズル 2aに差し込まれている。ヘッダー 2にはガス導入管 3が並 設されている。なお、管群 laのためのヘッダー 2とそれに併設されたガス導入管 3と は導通していない。ガス導入管 3は、後続の管群 lbのためのヘッダー 2に接続されて 後続の管群 lbへの雰囲気ガス導入に用いられる。即ち、この例では、雰囲気ガスは 、熱処理炉 5の出側から供給される。
[0082] 図 1 (a)に示すように、熱処理中の先行の管群 laには、ガス供給装置 4aから雰囲 気ガスが供給され、熱処理前の後続の管群 lbには、先行の管群 laのヘッダー 2に 併設されたガス導入管 3を介してガス供給装置 4bから雰囲気ガスが供給される。この とき、雰囲気ガスは管の先端力 後端に向けて管内に供給される。
[0083] 次 、で、図 2 (b)に示すように、上記の状態のまま、先行の管群 laおよび後続の管 群 lbは、図中右方向に搬送され、熱処理炉 5に装入される。
[0084] 後続の管群 lbの先端が熱処理炉 5の加熱帯 5aの出側に到達した後、雰囲気ガス の供給を他のガス供給装置 4aに切り替える。図 1 (b)から(c)への操作は、次の(1) 〜(5)に示すとおりである。
[0085] (1) 先行の管群 laのヘッダー 2およびガス供給装置 4aの接続を解除する。
(2) 先行の管群 laのガス導入管 3および後続の管群 lbのヘッダー 2の接続を解 除する。
(3) 後続の管群 lbのヘッダー 2にガス供給装置 4aを直接接続する。即ち、後続 の管群 lbの雰囲気ガスの供給をガス供給装置 4bからガス供給装置 4aに切り替える
(4) 先行の管群 laのガス導入管 3およびガス供給装置 4bの接続を解除する。
(5) ガス供給装置 4bを後続の管群 lcの管内部へ雰囲気ガスを供給するために、 管群 lbのガス導入管 3に接続すべく待機させる(同図 (c)参照)。
[0086] なお、図 1に示す例では、ガス供給装置は少なくとも 2基あればよぐ 3基以上のガ ス供給装置を用いても良い。
[0087] 図 3は、本発明に係る含 Crニッケル基合金管の製造方法の実施態様の他の例を 示す模式図である。図 3 (a)は、熱処理前の先行管群 laへの雰囲気ガスの供給態様 を示す。図 3 (b)は熱処理中の先行管群 laへの雰囲気ガスの供給態様を示す。図 3 (c)は熱処理中の先行の管群 laおよび後続の管群 lbへの雰囲気ガスの供給態様 を示す。図 4は、図 3におけるガス導入管 3およびヘッダー 2を示す拡大平面図である 。なお、図 3に示す熱処理炉 5は、図 1のものと同じである。
[0088] 図 3に示す例では、例えば、熱処理炉 5の入側(図の左方)および出側(図の右方) に、それぞれガス供給装置 4aおよび 4bが設けられている。管群 la、 lbは、図右方向 に搬送される。このガス供給装置 4a、 4bは、いずれも管群 la、 lbと同じ方向へ移動 自在に設けられている。
[0089] 図 4に示すように、熱処理前の先行の管群 laおよび後続の管群 lbは、いずれもへ ッダー 2の先細のノズル 2aに差し込まれている。ヘッダー 2は、長手方向の中央部に 設けられ、その右端に開閉可能な栓体 2bが装着された突起部 2cを有する。ガス導 入管 3は、ヘッダー 2の長手方向の中央に位置する先細のノズル 2aに差し込まれて いる。ガス導入管 3には、熱処理炉 5の入側から雰囲気ガスが供給される。ガス導入 管 3には、図示しないが、図右方向への雰囲気ガス流れのみを許容する逆止弁が装 着されているのが望ましい。
[0090] 図 3 (a)に示すように、例えば、雰囲気ガスは、ガス導入管 3と栓体 2bで閉じられた ヘッダー 2を介してガス供給装置 (熱処理炉の入側に設けられたガス供給装置) 4aか ら熱処理前の先行の管群 laの管に供給される。このとき、雰囲気ガスは管群 laの先 端から後端に向けて管内に供給される。
[0091] 図 3 (b)に示すように、先行の管群 laは、上記の状態のまま、図右方向に搬送され 、熱処理炉 5に装入される。そして、管群 laの先端が熱処理炉 5の加熱帯 5aの出側 に到達した後、雰囲気ガス供給を入側のガス供給装置 4aから出側のガス供給装置 4 bに切り替える。入側のガス供給装置 4aは、後続の管群 lbへの雰囲気ガス供給のた めに待機させる。この時、栓体 2bは、開いた状態とされる。
[0092] 図 3の(c)に示すように、出側のガス供給装置 4bからの雰囲気ガスが供給された先 行の管群 laおよび入側のガス供給装置 4aからの雰囲気ガスが供給された後続の管 群 lbとは、同時に熱処理される。
[0093] 図 3に示す例では、熱処理炉 5の入側および出側にガス供給装置 4aと 4bをそれぞ れ設けた場合を示したが、このような構成には限定されない。すなわち、 1基のガス供 給装置を用いて、下記のように操作しても良い。
(a)管群 laの先端が熱処理炉 5の加熱帯 5aの出側に到達した後、雰囲気ガス供給 を停止する。
(b)ガス供給装置とガス導入管との接続を解除し、栓体 2bを開ける。
(c)熱処理炉の出側から同じガス供給装置を突起部 2cに再接続し、管群 laに雰囲 気ガスを供給する。
[0094] ただし、この場合、熱処理炉内に管群を一群ずつしか装入できないため、処理能 力が低下する。そのため、入側と出側それぞれにガス供給装置を用いる図 3に示す 構成が好ましい。
[0095] なお、管の長さが極端に短い場合には、 2本以上の管をその管端部が内嵌する継 手部材を用いて接続し、その長さを長くして管群 la (lb、 lc)を構成する各管としても よい。
[0096] 上記図 1および図 3に示す方法においては、ヘッダー 2とガス導入管 3のセットは、 これを循環使用することはいうまでもない。また、ヘッダー 2の形状は、図 1〜4に示す ような、ガス供給装置力 の雰囲気ガスを分岐した複数の管を通して各管の内部に 流す形状にしてもよいし、各管へより均一な流量でガスを供給できるように、ヘッダー 2を BOX形状にしてもよ!、。
[0097] 上記のように、熱処理炉に装入される前の管の内部に雰囲気ガスを流すことにより 、管内部の空気がパージされる。従って、熱処理中に管の内表面に所定のクロム酸 化被膜が形成される。雰囲気ガスは、常に管の進行方向の先端カゝら後端に向けて供 給されるので、熱処理炉内でも管の進行方向とは逆方向に管内を流れる。これにより 、洗浄後で熱処理前の管内面残留物は、熱処理の高温部で気化し、管外に放出さ れる。
[0098] なお、気化した管内面残留物は、管内のガス流れで移動して未加熱部に達した所 で再凝縮し、管内表面に再付着することもあるが、その後昇温され再気化するので、 最終的には全て管内から排出される。その結果、 EP管のように事前の電解研磨等を 行わなくても、その内表面に所望の性能を有する均一な酸化被膜が形成される。
[0099] 7.含 Crニッケル基合金の素管の製造方法
本発明が対象とする含 Crニッケル基合金の素管の製造方法としては、所定の化学 組成の含 Crニッケル基合金を溶製してインゴットとした後、通常、熱間加工—焼きな ましの工程、または、熱間加工一冷間加工一焼きなましの工程で製造される。さらに 、母材の耐食性を向上させるため、 TT処理 (Thermal Treatment)と呼ばれる特 殊熱処理が施されることもある。
[0100] 本発明の熱処理方法は、上記の焼きなましの後に行ってもよぐまた焼きなましを兼 ねて行ってもよい。焼きなましを兼ねて行えば、従来の製造工程に加えて酸ィ匕被膜 形成のための熱処理工程を追加する必要がなくなり、製造コストが嵩まない。また、 前述したように、焼きなまし後に TT処理を行う場合は、これを酸化被膜形成の熱処 理と兼ねて行ってもよい。さら〖こは、焼きなましと TT処理の両者を酸化被膜形成の処 理としてもよい。
実施例 1
[0101] 実験に供する素管は、下記の製造方法により製造した。まず、表 1に示す化学組成 の合金を真空中で溶解、铸造し、インゴットを得た。このインゴットを熱間鍛造してビレ ットにした後、熱間押出製管法により管に成形した。このようにして得た管をコールド ピルガーミルによる冷間圧延により、外径 23. Omm、肉厚 1. 4mmとした。次いで、こ の冷間圧延後の管を 1100°Cの水素雰囲気中で焼きなました後、冷間抽伸法により 製品寸法が外径 16. Omm、肉厚 1. Omm、長さ 18000mm (断面減少率 = 50%) の管に仕上げた。その後、各管の内外面をアルカリ性脱脂液およびリンス水で洗い、 さらに内面をアセトン洗浄した。このようにして得た素管に対し、表 2に示す条件の熱 処理を実施した。
[0102] [表 1] 表 1
Figure imgf000021_0001
[0103] [表 2]
表 2
Figure imgf000021_0002
C:酸化性ガス濃度 (V0I%)
Q :雰囲気ガスの流量(リットル Z分)
[0104] なお、 No. 1 3では、ガス供給装置力 ヘッダーを介して素管に 33. 3リットル Z 分の雰囲気ガスを供給しつつ、加熱してクロム酸ィ匕被膜を形成させた。また、 No. 4 13では、ヘッダーに設けた 21ケのノズルにそれぞれ素管を接続し、ヘッダーを介 してガス供給装置から 7Nm3Zhの量の雰囲気ガスを供給した (管 1本当たりで 5. 6リ ットル z分)。
[0105] 熱処理後の管の両端を切り出し、 EDX (Energy Dispersive X—ray micro - analyzer)にて被膜組成を調査したところ、クロム酸化物からなる酸化被膜が形成さ れていることが判明した。その横断面を走査型電子顕微鏡(SEM ; Scanning Ele ctron Microscope)で観察して管の両端における酸ィ匕被膜の厚さを測定し、それ ぞれの管端での厚さを tl、 t2とし、両厚さのバラツキを I tl— 2 Iとして評価した。 そして、表 3に ίま、 0. 30 /z m以下の場合を「©」、 0. 30 /z mより大きく 0. 50 /z m以 下の場合を「〇」、 0. 50 mを超える場合を「 X」として示した。
[0106] また、上記の熱処理後の各管の両端で酸ィ匕被膜厚さを測定して被膜厚さの薄かつ た側力 試験片を採取して溶出試験に供した。溶出試験では、オートクレープを使用 し、加圧水型原子炉一次系模擬水中で Niイオンの溶出量を測定した。その際、試験 片の内表面に Ti製ロックを用いて原子炉一次系模擬水を封じ込めることにより、冶具 等力 溶出してくるイオンにより試験液が汚染するのを防いだ。試験温度は 320°Cと し、 1000時間原子炉一次系模擬水である 500ppmB + 2ppmLi+ 30ccH /kgH
2 2
O (STP)中に潰漬した。試験終了後、直ちに溶液を高周波プラズマ溶解法 (ICP)に より分析し、 Niイオンの溶出量を調べた。以上の結果を、表 3に併せて示す。 0. 05p pm以下の場合を「◎」、 0. 05ppmより大きく 0. 30ppm以下の場合を「〇」、 0. 30p pmを超える場合を「 X」として示した。
[0107] [表 3]
表 3
Figure imgf000023_0001
[0108] 表 3に示すように、本発明で規定される条件を満足する方法で熱処理を行った No . 1〜11では、管内面に形成されたクロム酸ィ匕被膜の厚さは本発明範囲を満足し、さ らに管長手方向での酸ィ匕被膜厚さのバラツキは小さぐ Ni溶出量は 0. 30ppm以下 の範囲で少ない。
[0109] これに対し、酸ィ匕性ガスとして水蒸気のみを用いた No. 12では、管長手方向にお ける酸ィ匕被膜厚さのノ ラツキが大きい。このため、酸ィ匕被膜厚さが薄くて Ni溶出量が 増加する部位が生じるおそれがある。また、雰囲気ガスは本発明で規定される条件を 満たすものの、酸ィ匕性ガス濃度および雰囲気ガスの流量との関係が本発明範囲を外 れる No. 13では、被膜厚さが薄ぐ Ni溶出量も 0. 30ppmを超えていた。
産業上の利用可能性
[0110] 本発明によれば、管の内面に安価で、かつ均一にクロム酸化被膜を形成させた含 Crニッケル基合金管を得ることができ、高温水環境、例えば、原子力発電プラントに おける高温水環境で長時間にわたり使用しても Niの溶出が極めて少ないから、蒸気 発生器管(Steam Generator tubing)等の高温水中で使用される部材、特に原 子力プラント用部材に最適である。
図面の簡単な説明
[0111] [図 1]本発明に係る含 Crニッケル基合金管の製造方法の実施態様の例を示す模式 図である。図 1 (a)は、先行管群 laが熱処理中であり、後続管群 lbが熱処理前であ る時の雰囲気ガスの供給態様を示す。図 1 (b)は、先行管群 laおよび後続管群 lbが 共に熱処理中である時の雰囲気ガスの供給態様を示す。図 1 (c)は、後続管群 lbが 熱処理中である時の雰囲気ガスの供給態様を示す。
[図 2]図 1におけるガス導入管 3およびヘッダー 2を示す拡大平面図である。
[図 3]本発明に係る含 Crニッケル基合金管の製造方法の実施態様の他の例を示す 模式図である。図 3 (a)は、熱処理前の先行管群 laへの雰囲気ガスの供給態様を示 す。図 3 (b)は熱処理中の先行管群 laへの雰囲気ガスの供給態様を示す。図 3 (c) は熱処理中の先行の管群 laおよび後続の管群 lbへの雰囲気ガスの供給態様を示 す。
[図 4]図 3におけるガス導入管 3およびヘッダー 2を示す拡大平面図である。
符号の説明
[0112] la、 lb、 lc :管 (含 Crニッケル基合金管)群、
2 :へッタ一、
2a :ノズル、
2b :栓体、
2c :突起部、
3 :ガス導入管、
4a、 4b :ガス供給装置、
5 :連続式熱処理炉、
5a :加熱帯、
5b :冷却帯、

Claims

請求の範囲
[1] 含 Crニッケル基合金管を二酸化炭素ガスおよび非酸化性ガスからなる雰囲気ガス 中で加熱し、含 Crニッケル基合金管内面に、クロム酸化物からなる厚さ 0.2〜1.5 mの酸ィ匕被膜を形成することを特徴とする含 Crニッケル基合金管の製造方法。
[2] 雰囲気ガスが、二酸ィ匕炭素ガスの一部に代えて、 5vol%以下の酸素ガスおよび Z または 7.5vol%以下の水蒸気を含むことを特徴とする請求項 1に記載の含 Cr-ッケ ル基合金管の製造方法。
[3] 酸ィ匕性ガス濃度および含 Crニッケル基合金管内への雰囲気ガス流量を制御する ことを特徴とする請求項 1または請求項 2に記載の含 Crニッケル基合金管の製造方 法。
[4] 下記(1)式で規定される関係を満足する条件で、雰囲気ガスを含 Crニッケル基合 金管内に導入することを特徴とする請求項 3に記載の含 Crニッケル基合金管の製造 方法。
0.5≤CXQ1/2≤7.0 ··· (1)
但し、式中の記号の意味は下記の通りである。
C:酸ィ匕性ガス濃度 (vol%)
Q:雰囲気ガスの流量 (リットル Z分)
[5] 含 Crニッケル基合金管内に下記 (2)式で規定される関係を満足するクロム酸化被 膜を形成させることを特徴とする請求項 1から請求項 4のいずれかに記載の含 Cr-ッ ケル基合金管の製造方法。
I tl-t2 I≤0.5 m ··· (2)
但し、 tlおよび t2は、管の両端それぞれにおけるクロム酸ィ匕被膜の厚さ m)で ある。
[6] 含 Crニッケル基合金管力 質量0 /0で、 C:0.15%以下、 Si: 1.00%以下、 Mn:2 .0%以下、 P:0.030%以下、 S:0.030%以下、 Cr:10.0〜40.0%, Fe:15.0 %以下、 Ti:0.5%以下、 Cu:0.50%以下および Al:2.00%以下を含有し、残部 が Niおよび不純物力もなることを特徴とする請求項 1から請求項 5までのいずれかに 記載の含 Crニッケル基合金管の製造方法。
[7] 含 Crニッケル基合金管力 Niの一部に代えて、下記群力も選ばれた少なくとも 1つ の元素を含有することを特徴とする請求項 6に記載の含 Crニッケル基合金管の製造 方法。
1群:質量%で、 Nbおよび Zまたは Taをいずれか単体または合計で 3. 15〜4. 15%
2群:質量%で、 Moを 8〜10%
[8] 含 Crニッケル基合金管が原子力プラント用部材として用いられることを特徴とする 請求項 1から請求項 7までのいずれかに記載の含 Crニッケル基合金管の製造方法。
[9] 請求項 1から 8までの 、ずれかに記載の含 Crニッケル基合金管の製造方法であつ て、連続式熱処理炉、その炉内を貫通するように配置されたガス導入管および管の 進行方向に移動自在に設けたガス供給装置を用いて、下記の(1)〜(3)の工程によ り管の内面にクロム酸ィ匕被膜を形成させることを特徴とする含 Crニッケル基合金管の 製造方法。
(1)管を連続式熱処理炉に装入する前に、管の先端力 後端に向けて雰囲気ガスを 供給する工程 (ただし、雰囲気ガスは、ガス供給装置およびガス導入管により炉の出 側から供給される。)、
(2)管の先端力 後端に向けて雰囲気ガスを供給しつつ、管を連続式熱処理炉内に 装入する工程、
(3)管の先端が連続式熱処理炉の加熱帯の出側に到達した後に、雰囲気ガスの供 給を他のガス供給装置に切り替える工程。
[10] 請求項 1から 8までの 、ずれかに記載の含 Crニッケル基合金管の製造方法であつ て、連続式熱処理炉、その炉内を貫通するように配置されたガス導入管および管の 進行方向に移動自在に設けたガス供給装置を用いて、下記の(1)〜(3)の工程によ り管の内面にクロム酸ィ匕被膜を形成させることを特徴とする含 Crニッケル基合金管の 製造方法。
(1)管を連続式熱処理炉に装入する前に、管の先端力 後端に向けて雰囲気ガスを 供給する工程
(ただし、雰囲気ガスは、ガス供給装置およびガス導入管により炉の入側から供給さ れる。)、
(2)管の先端力 後端に向けて雰囲気ガスを供給しつつ、管を連続式熱処理炉内に 装入する工程、
(3)管の先端が連続式熱処理炉の加熱帯の出側に到達した後に、雰囲気ガスを炉 の出側力 の供給に切り替える工程。
[11] 含 Crニッケル基合金管の内表面に、厚さが 0. 2〜1. 5 μ mであり、かつ下記(2) 式で規定される関係を満足するクロム酸化被膜を形成したことを特徴とする含 Crニッ ケル基合金管。
I tl -t2 I ≤0. 5 m · · · (2)
但し、 tlおよび t2は、管の両端それぞれにおけるクロム酸ィ匕被膜の厚さ m)で ある。
[12] 含 Crニッケル基合金管力 質量0 /0で、 C : 0. 15%以下、 Si: 1. 00%以下、 Mn: 2 . 0%以下、 P : 0. 030%以下、 S : 0. 030%以下、 Cr: 10. 0〜40. 0%, Fe : 15. 0 %以下、 Ti: 0. 5%以下、 Cu: 0. 50%以下および Al: 2. 00%以下を含有し、残部 が Niおよび不純物力もなることを特徴とする請求項 11に記載の含 Crニッケル基合金 管。
[13] 含 Crニッケル基合金管力 Niの一部に代えて、下記群カゝら選ばれた少なくとも 1つ の元素を含有することを特徴とする請求項 12に記載の含 Crニッケル基合金管。
1群:質量%で、 Nbおよび Zまたは Taをいずれか単体または合計で 3. 15〜4. 15%
2群:質量%で、 Moを 8〜10%
[14] 含 Crニッケル基合金管が原子力プラント用部材として用いられることを特徴とする 請求項 11から請求項 13までの 、ずれかに記載の含 Crニッケル基合金管。
PCT/JP2007/057833 2006-04-12 2007-04-09 含Crニッケル基合金管の製造方法および含Crニッケル基合金管 WO2007119706A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800130855A CN101421431B (zh) 2006-04-12 2007-04-09 含Cr镍基合金管的制造方法和含Cr镍基合金管
CA2648711A CA2648711C (en) 2006-04-12 2007-04-09 Method for producing cr containing nickel-base alloy tube and cr containing nickel-base alloy tube
EP07741269A EP2009133A4 (en) 2006-04-12 2007-04-09 PROCESS FOR PRODUCING NICKEL-BASED ALLOY PIPE CONTAINING CR AND NICKEL-BASED ALLOY PIPE CONTAINING CRYSTAL
US12/285,644 US20090123775A1 (en) 2006-04-12 2008-10-10 Method for producing Cr containing nickel-base alloy tube and Cr containing nickel-base alloy tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006109629A JP4720590B2 (ja) 2006-04-12 2006-04-12 含Crニッケル基合金管の製造方法
JP2006-109629 2006-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/285,644 Continuation US20090123775A1 (en) 2006-04-12 2008-10-10 Method for producing Cr containing nickel-base alloy tube and Cr containing nickel-base alloy tube

Publications (1)

Publication Number Publication Date
WO2007119706A1 true WO2007119706A1 (ja) 2007-10-25

Family

ID=38609466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057833 WO2007119706A1 (ja) 2006-04-12 2007-04-09 含Crニッケル基合金管の製造方法および含Crニッケル基合金管

Country Status (7)

Country Link
US (1) US20090123775A1 (ja)
EP (1) EP2009133A4 (ja)
JP (1) JP4720590B2 (ja)
KR (1) KR101065519B1 (ja)
CN (1) CN101421431B (ja)
CA (1) CA2648711C (ja)
WO (1) WO2007119706A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110151143A1 (en) * 2008-08-18 2011-06-23 Alvatec Alkali Vacuum Technologies Gmbh Method for producing a getter device
WO2012026344A1 (ja) 2010-08-26 2012-03-01 住友金属工業株式会社 含Crオーステナイト合金管およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401964B2 (ja) * 2008-12-15 2014-01-29 新日鐵住金株式会社 金属管の製造方法
CA2750014C (en) * 2009-02-16 2014-12-02 Sumitomo Metal Industries, Ltd. Method for manufacturing metal pipe
JP5550374B2 (ja) * 2010-02-05 2014-07-16 Mmcスーパーアロイ株式会社 Ni基合金およびNi基合金の製造方法
CN104220631B (zh) 2012-03-28 2016-10-26 新日铁住金株式会社 含Cr奥氏体合金及其制造方法
ES2721668T3 (es) * 2012-04-04 2019-08-02 Nippon Steel Corp Aleación austenítica que contiene cromo
US9859026B2 (en) 2012-06-20 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Austenitic alloy tube
JP6292311B2 (ja) 2014-09-29 2018-03-14 新日鐵住金株式会社 Ni基合金管
EP3368616A4 (en) * 2015-10-29 2019-03-13 Electric Power Research Institute, Inc. METHODS FOR CREATING A ZINC-METAL OXIDE LAYER IN METALLIC ELEMENTS FOR CORROSION RESISTANCE
CN106637048A (zh) * 2016-12-29 2017-05-10 常州大学 一种低露点下选择性氧化薄膜的制备方法
JP7521174B2 (ja) * 2019-03-04 2024-07-24 株式会社プロテリアル 積層造形体および積層造形体の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177445A (ja) * 1982-04-12 1983-10-18 Sumitomo Metal Ind Ltd Ni−Cr合金の熱処理法
JPS6455366A (en) 1987-08-26 1989-03-02 Sumitomo Metal Ind Heat treatment for heat-transfer pipe
JPH01159362A (ja) * 1987-12-15 1989-06-22 Sumitomo Metal Ind Ltd Ni基合金伝熱管の熱処理方法
JPH0829571A (ja) 1994-07-11 1996-02-02 Toshiba Corp 原子力プラント用部材の製造方法
JPH0987786A (ja) * 1995-09-27 1997-03-31 Sumitomo Metal Ind Ltd 高Moニッケル基合金および合金管
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2002322553A (ja) 2001-03-30 2002-11-08 Babcock & Wilcox Canada Ltd オーステナイト合金の不動態化のための高温ガス状酸化
JP2003239060A (ja) 2002-02-13 2003-08-27 Sumitomo Metal Ind Ltd Ni基合金管の熱処理方法
JP2004218076A (ja) * 2002-12-25 2004-08-05 Sumitomo Metal Ind Ltd ニッケル基合金およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3A (en) * 1836-08-11 Thomas blanchard
US9A (en) * 1836-08-10 Thomas blanchard
US1A (en) * 1836-07-13 John Ruggles Locomotive steam-engine for rail and other roads
US11A (ja) * 1836-08-10
US8A (en) * 1836-08-10 T Blanchard Machine for cutting scores around ships' tackle blocks and dead eyes
US5A (en) * 1836-08-10 Thomas blancharjq
US2004A (en) * 1841-03-12 Improvement in the manner of constructing and propelling steam-vessels
US2002A (en) * 1841-03-12 Tor and planter for plowing
US58A (en) * 1836-10-19
US64A (en) * 1836-10-20 John blaokmab
US10A (en) * 1836-08-10 Gtttlslto andi
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US2159542A (en) * 1936-11-16 1939-05-23 Soc Of Chemical Ind Azo dyestuffs
DE3419638C2 (de) * 1984-05-25 1987-02-26 MAN Technologie GmbH, 8000 München Verfahren zur oxidativen Erzeugung von Schutzschichten auf einer Legierung
US5413642A (en) * 1992-11-27 1995-05-09 Alger; Donald L. Processing for forming corrosion and permeation barriers
JPH1129822A (ja) * 1997-07-09 1999-02-02 Hitachi Ltd 酸化抑制前処理
JP4304499B2 (ja) * 2004-10-13 2009-07-29 住友金属工業株式会社 原子力プラント用Ni基合金材の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177445A (ja) * 1982-04-12 1983-10-18 Sumitomo Metal Ind Ltd Ni−Cr合金の熱処理法
JPS6455366A (en) 1987-08-26 1989-03-02 Sumitomo Metal Ind Heat treatment for heat-transfer pipe
JPH01159362A (ja) * 1987-12-15 1989-06-22 Sumitomo Metal Ind Ltd Ni基合金伝熱管の熱処理方法
JPH0829571A (ja) 1994-07-11 1996-02-02 Toshiba Corp 原子力プラント用部材の製造方法
JPH0987786A (ja) * 1995-09-27 1997-03-31 Sumitomo Metal Ind Ltd 高Moニッケル基合金および合金管
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2002322553A (ja) 2001-03-30 2002-11-08 Babcock & Wilcox Canada Ltd オーステナイト合金の不動態化のための高温ガス状酸化
JP2003239060A (ja) 2002-02-13 2003-08-27 Sumitomo Metal Ind Ltd Ni基合金管の熱処理方法
JP2004218076A (ja) * 2002-12-25 2004-08-05 Sumitomo Metal Ind Ltd ニッケル基合金およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009133A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110151143A1 (en) * 2008-08-18 2011-06-23 Alvatec Alkali Vacuum Technologies Gmbh Method for producing a getter device
US8609190B2 (en) * 2008-08-18 2013-12-17 Alvatec Alkali Vacuum Technologies Gmbh Method for producing a getter device
WO2012026344A1 (ja) 2010-08-26 2012-03-01 住友金属工業株式会社 含Crオーステナイト合金管およびその製造方法
KR20150036820A (ko) 2010-08-26 2015-04-07 신닛테츠스미킨 카부시키카이샤 Cr함유 오스테나이트 합금관 및 그 제조 방법
KR20160013254A (ko) 2010-08-26 2016-02-03 신닛테츠스미킨 카부시키카이샤 Cr함유 오스테나이트 합금관 및 그 제조 방법
US9255319B2 (en) 2010-08-26 2016-02-09 Nippon Steel & Sumitomo Metal Corporation Cr-containing austenitic alloy tube and method for producing the same

Also Published As

Publication number Publication date
CN101421431B (zh) 2011-04-06
CA2648711C (en) 2012-07-10
JP2007284704A (ja) 2007-11-01
EP2009133A1 (en) 2008-12-31
CA2648711A1 (en) 2007-10-25
US20090123775A1 (en) 2009-05-14
EP2009133A4 (en) 2011-08-10
KR101065519B1 (ko) 2011-09-19
KR20080109925A (ko) 2008-12-17
CN101421431A (zh) 2009-04-29
JP4720590B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2007119706A1 (ja) 含Crニッケル基合金管の製造方法および含Crニッケル基合金管
JP3960069B2 (ja) Ni基合金管の熱処理方法
CA2520700C (en) A method of producing a ni based alloy
JP4978755B2 (ja) 含Crオーステナイト合金管およびその製造方法
JP4042362B2 (ja) Ni基合金製品とその製造方法
JP4702096B2 (ja) 含Crニッケル基合金管の製造方法
JPH0625389B2 (ja) 高耐食低水素吸収性ジルコニウム基合金及びその製造法
JP4702095B2 (ja) 含Crニッケル基合金管の製造方法
JP2010270400A (ja) 原子力プラント用蒸気発生器管
JP4556740B2 (ja) Ni基合金の製造方法
US20060177679A1 (en) Method for manufacturing a Ni-based alloy article and product therefrom
US20100032061A1 (en) METHOD FOR MANUFACTURING A Ni-BASED ALLOY ARTICLE AND PRODUCT THEREFROM
JP4529761B2 (ja) Ni基合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2648711

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780013085.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007741269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087027694

Country of ref document: KR