WO2007115443A1 - A continuous pyrolyzing process for waste rubber or plastics - Google Patents

A continuous pyrolyzing process for waste rubber or plastics Download PDF

Info

Publication number
WO2007115443A1
WO2007115443A1 PCT/CN2006/001282 CN2006001282W WO2007115443A1 WO 2007115443 A1 WO2007115443 A1 WO 2007115443A1 CN 2006001282 W CN2006001282 W CN 2006001282W WO 2007115443 A1 WO2007115443 A1 WO 2007115443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cracking
plastic
chamber
waste rubber
continuous
Prior art date
Application number
PCT/CN2006/001282
Other languages
English (en)
French (fr)
Inventor
Bin Niu
Original Assignee
Bin Niu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bin Niu filed Critical Bin Niu
Priority to JP2009503390A priority Critical patent/JP5187976B2/ja
Priority to CA 2648504 priority patent/CA2648504C/en
Priority to AU2006341751A priority patent/AU2006341751B2/en
Priority to CN2006800523991A priority patent/CN101484551B/zh
Priority to US12/296,181 priority patent/US8168839B2/en
Priority to KR20087027247A priority patent/KR101183094B1/ko
Priority to EP06752931A priority patent/EP2006355A4/en
Publication of WO2007115443A1 publication Critical patent/WO2007115443A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention is a continuous cracking process for waste rubber or plastic and a device for realizing the process, and is a key technology for producing oil and the like from waste rubber or plastic. Background technique
  • the present invention provides a continuous cracking process and equipment for waste rubber, which ensures the safety and production cost of the production, and realizes continuous production, so that the waste rubber or plastic oil technology Industrial production has become a reality.
  • the catalyst and the rubber or plastic are extruded and transported to separate the air or oxygen feed material and the raw material enters the sealed cracking chamber, that is, during the process of feeding the raw material into the cracking chamber, the raw materials are simultaneously
  • the gas in the raw material is discharged and isolated outside the sealed cracking chamber to achieve the feeding and to ensure the isolation of the cracking chamber from the outside air.
  • the material is moved from the feed port to the discharge port by a corresponding mechanism, the cracking is completed in the process, and finally, it is automatically led out by a discharge mechanism capable of isolating the outside air.
  • the isolated air or oxidized feed can be realized by a spiral variable pitch extrusion structure.
  • the gap between the raw materials is gradually reduced to gradually discharge this part of the gas.
  • the gas in the raw material is extruded. Therefore, when the raw material arrives at the cracking warehouse, the gas is not contained therein, and because it is relatively dense, the isolation of the cracking chamber from the outside air is also realized, the sealing effect of the cracking chamber is ensured, and the cracking process is safely carried out.
  • the rubber or the plastic In order to sufficiently discharge the gas contained in the raw material, it is preferable to heat the rubber or the plastic after the raw material is subjected to air or oxidative feeding, and the raw material is fully discharged after being softened by heat, in particular, if It is heated while being squeezed, and it also forces the raw material to discharge the contained gas to achieve the best exhaust gas barrier effect.
  • an external force should be applied, for example, by using a blade screw, etc., of course, a rotating drum having a tilt angle greater than 0 degrees, less than or equal to 10 degrees, and sealed with surrounding components may also be used.
  • the feed port is set at a higher position, and the discharge port of the solid product is set at the lower end.
  • the raw material has a tendency or movement to move toward the discharge port under the action of gravity, and at the same time, when the cylinder rotates, the raw material undergoes a spiral forward movement, thereby ensuring the smooth progress of the continuous cracking, in this way, It can be beneficial to achieve the required reaction time length in a small volume cylinder, and achieve the effect of small occupied space and low equipment cost.
  • the heating method of the cracking chamber can be adopted by means of two sets of different lumens to transport the heat medium from both ends of the cracking chamber, that is, the two groups of tubes are respectively A method of inputting heat medium at both ends of the cracking chamber and outputting from the other end of each.
  • the specific implementation of this method can use only the inner heating tube, that is, the inner heating tube that penetrates the inner cavity of the chamber in the cracking chamber, so that the heating tubes are divided into two groups, which are respectively input from different ends of the cracking chamber, and the other end is Output.
  • an inner heating tube and an outer heating chamber can be simultaneously adopted to move the heat medium phase in the inner and outer tubes to achieve temperature equalization.
  • the outside of the outer heating chamber should be designed with a thermal insulation mechanism to avoid heat loss as much as possible.
  • the cracking temperature of the process can be selected from a cracking temperature of 350 to 550 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 to 60 minutes, under which conditions sufficient cracking of the raw material can be achieved. .
  • the apparatus comprises a sealed cracking chamber with a feed opening and a discharge opening, and a feeding mechanism for separating air or oxidizing by extrusion conveying is connected with a feeding port, and the cracking chamber is provided with a raw material capable of importing the raw material therein
  • the air or oxidizing feed mechanism can employ a spiral continuous or intermittent variable pitch extrusion mechanism. If the material is to be heated during transport and the best gas barrier is achieved in the final stage of its transport, the air or oxidation should be isolated.
  • the present invention provides a gap between the end of the feed tube of the helical variable pitch pressing mechanism and the end of the screw, and forms a cavity at the end of the feed tube, thereby achieving a sufficient seal by a simple structure.
  • the principle can naturally be introduced into the gas isolation seal of the discharge port, that is, the discharge mechanism is also realized by connecting the spiral propulsion mechanism with the solid product outlet of the cracking bin.
  • the screw propulsion mechanism should be designed as a structure with a low front end and a high rear end, with a gap between the rear end of the spiral blade portion and the discharge pipe and the rear end, in the discharge pipe. The rear forms a cavity.
  • the conveying or moving structure of the raw material in the cracking chamber of the present invention can be realized by the prior art, or a sealing drum with a heating mechanism can be used, so that the axis of the rotating drum and the horizontal line are at an angle greater than 0 degrees and less than or equal to 10 degrees.
  • the two ends of the drum are connected to the two end cap portions fixed on the bracket by a sealing mechanism, and the feeding port and the discharging port of the cracking chamber are respectively disposed on the upper end cover portion and the lower end cover portion.
  • the heating system of the cracking chamber of the present invention may include only the inner heating tubes which are mounted on both end cap portions and penetrate the inner chamber of the cracking chamber. It is also possible to additionally provide an external heating mechanism with a heat insulating mechanism around the drum.
  • the external heating mechanism is designed to include an outer cylinder that is sleeved around the outer periphery of the drum, the outer cylinder is provided with a heat insulating layer, and a heat medium cavity is formed between the rotating drum and the outer cylinder, and the liquid inlet and the inner heating pipe of the cavity
  • the liquid outlet is located at the same end of the cracking chamber, and the liquid inlet of the liquid inlet and the inlet of the inner heating tube are located at the same end of the cracking chamber to ensure the equilibrium temperature in the cracking chamber, thereby achieving the best cracking effect.
  • the present invention completely avoids the safety hazard caused by the entry of oxygen into the cracking chamber by isolating the air and oxygen from the feed port and the discharge port of the cracking silo, thereby realizing the industrial production of continuous feeding.
  • the equipment of the invention can realize the cooperation of internal heating and external heating, so that the cracking chamber can be uniformly heated at a high temperature, and the oil quality is greatly improved.
  • the oil ratio can be increased from 19% to 45% to 48% in the prior art, and the production equipment loss can be reduced, thereby reducing production costs, improving safety measures, and realizing efficient and continuous production.
  • FIG. 1 is a schematic structural view of a specific embodiment of the present invention.
  • feed hopper 2, feed pipe, 3, catalyst inlet, 4, safety valve port, 5, end cap part, 6, turntable, 7, sprocket, 8, import, 9, import, 10 , screw, 11, heat medium cavity, 12, cavity, 13, cavity, 14, outer cylinder, 15, outlet, 16, outlet, 17, observation hole, 18, gas outlet, 19, end cover , 20, safety valve port, 21, import, 22, out Feed pipe, 23, rolling load bearing wheel, 24, pulley, 25, support, 26, pulley, 27, support, 28, inner heating tube, 29, insulation layer, 30, drum, 31, motor, 32, Reduction mechanism, 33, frame, 34, motor, 35, outlet, 36, reducer, 37, chain drive, 38, working part with screw with rotating blades, 39, screw connection, 40, solid outlet , 41, bracket, 42, reducer, 43, motor, 44, support.
  • the process of this embodiment is: transporting the block or pellets with catalyst rubber or plastic to the sealed cracking chamber while being extruded, removing the gas between the raw material blocks or the particles, and simultaneously applying pressure to the inside of the raw material, Extrusion removes gases that may be present in its space and feeds the material into a sealed cracking chamber.
  • the catalyst used in this example is a catalyst well known in the cracking of rubber and plastic.
  • the raw material is moved to the discharge port by the external force or self-gravity of the feed port of the cracking chamber, and the cracking reaction is carried out during the movement.
  • the cracking temperature can be determined by the prior art. When it reaches the end of the cracking chamber, the formed gas is discharged through the water sealing mechanism, and the solid product is introduced into the apparatus of the next process through its discharge port.
  • the equipment for realizing the process of the embodiment can be directly extruded, peripherally exhausted, and finally conveyed into the cracking chamber through a sealed pipe to realize the extrusion gas transmission.
  • the cracking chamber can adopt a vertical structure, so that the internal raw materials can be directly driven by gravity, or an external force such as rotation can be used to ensure the movement of the raw materials, so that they are cracked in the process.
  • the reaction is completed and reaches the end of the cracking chamber, the solid product can be led out by gravity, and the accumulated solid product can also simultaneously close the discharge port.
  • the process of the embodiment is as follows: the block or the pellet of the rubber or plastic to which the catalyst is added is transported to the sealed cracking chamber while performing the spiral pitch pressing, and the other parts adopt the same technique as that of the embodiment 1, and will not be described again here. .
  • the equipment for realizing the above process only replaces the gas-tight feeding mechanism in the first embodiment with the spiral variable-distance extrusion feeding, so that the raw material reaches a dense effect when reaching the cracking chamber, and the dense portion simultaneously isolates the external air to ensure cracking.
  • the seal of the bin at the feed port only replaces the gas-tight feeding mechanism in the first embodiment with the spiral variable-distance extrusion feeding, so that the raw material reaches a dense effect when reaching the cracking chamber, and the dense portion simultaneously isolates the external air to ensure cracking.
  • the embodiment can realize continuous feeding, and the process and the big help are completed, but the problems in the first embodiment still exist in other parts.
  • the process of the present embodiment is based on the first embodiment or the second embodiment, and the raw material is heated while the rubber or plastic with the catalyst is separated by air or oxidation.
  • the discharge of the contained gas is ensured to ensure the optimal sealing effect of the cracking chamber.
  • the effect can be achieved by adding a heating mechanism in the conveying mechanism or the periphery of the conveying mechanism.
  • the corresponding equipment is in the embodiments 1 and 2.
  • Corresponding improvements can be made on the basis of, for example, adding a heating mechanism in the screw shaft of the feeding or the periphery of the feeding pipe, that is, the process requirements of the embodiment can be realized.
  • the other portions are the same as those of Embodiment 1 or 2.
  • the process of this embodiment is as follows:
  • the isolated air or oxidized feeding process as in Embodiments 1 and 2 is directly connected to the feed port of the cracking chamber, and during the feeding process, the raw material is approached and cracked.
  • the high temperature in the chamber heats the raw material or heats the raw material through the heat transfer of the feeding pipe. This heating is beneficial to the discharge of the gas contained in the raw material, thereby enhancing the gas barrier effect of the cracking chamber.
  • the other parts of this embodiment adopt the technology of Embodiment 1 or Embodiment 2, and are not described again.
  • the apparatus of this embodiment can be directly connected to the injection port of the cracking chamber in addition to the outlet of the extrusion feed section, and the techniques of Embodiment 1 or Embodiment 2 can be used separately.
  • the process of this embodiment is as follows: The raw material is fed into the cracking chamber according to the process described in Embodiment 1 or 2 or 3 or 4, and the conveying process is advanced in the cracking chamber for a distance during the process.
  • the gas therein is sufficiently excluded, and a plug-like sealing structure is naturally formed here.
  • Other portions may directly adopt the same processes as those used in the foregoing embodiments.
  • the input and cracking process of the raw material in this embodiment adopts any one of the foregoing embodiments, but the solid material discharge port directly discharges the solid product into the external space, which requires the discharge port and the outside world.
  • the seal is required to seal the solid product during its export process.
  • This structure can be realized by a spiral propulsion structure with an outlet end higher than the inlet end. Due to the weight of the solid product itself and the internal pressure, it can be made denser at the discharge port of the cracking chamber to achieve sealing and gas barrier.
  • a slanted screw propulsion mechanism connected to the discharge port of the cracking chamber which comprises a discharge pipe connected to the discharge port of the solid product of the cracking bin and a screw therein, the position of the screw passing through the discharge pipe It is connected to the drive mechanism after the outlet of the outlet of the discharge pipe.
  • the process of this embodiment is based on the process of the embodiment 6, and a cavity without a screw push is provided at the end of the discharge pipe.
  • the other parts are the same as in the sixth embodiment.
  • the equipment for realizing the requirements of the process is based on the apparatus of Embodiment 6, and the screw pushing machine is
  • the end position of the material discharge pipe is extended from the working portion of the screw, and only the portion of the polished rod connected to the driving portion passes through the portion of the discharge pipe, so that the solid product accumulated therein is further subjected to the cracking chamber. Isolation of air or oxidized seals.
  • the process of this embodiment is an improvement over the foregoing various embodiments. It uses a new type of cracking chamber to replace the various cracking chambers mentioned above.
  • the cracking chamber includes a tilting drum.
  • the drum is sealed with the surrounding fixed structure by the existing sealing method. For example, Steel ring, asbestos and other structural seals.
  • the angle of inclination of the drum can be any angle greater than 0° and less than or equal to 10°, such as 0 ⁇ 0, 0.05°, ⁇ . ⁇ , 0.3°, 0.5°, 0.8°, 1.0°, 1. 5°, 2.5, 3 0 , 3.5° > 4. , 4.5. , 5. , 5 ⁇ 5 0 , 6. , 6.5. , 7 0 , 7.5. , 8 0 , 8.5. , 9. , 9.5. , 10. .
  • the equipment for realizing the above process requires the drum to be mounted on the two fixed end cap portions at both ends thereof, and the joints thereof are sealed by dynamics under the existing conditions such as steel rings and asbestos to form a seal.
  • the cracking chamber, the feeding port and the discharging port of the cracking chamber are arranged on the two end cap portions, and the feeding port is located on the upper end cap portion, and the discharging port is located in the lower end cap portion In this way, it is advantageous to realize the movement of the raw material from the feed port to the discharge port.
  • the drive of the drum is controlled by the prior art, such as by using a support roller below it, or by fixing the sprocket outside the drum, using a chain connected to the drive mechanism to drive the rotation.
  • the process of this embodiment can employ various forms in the foregoing embodiments. Only in the cracking process of this embodiment, a new heating method is employed.
  • the specific content is as follows: Two sets of heat source input lumens are used, and the two ends of the cracking chamber are opposite to the input heat medium.
  • the specific implementation manner of this embodiment is to provide a heating tube fixed at both ends of the cracking chamber body, wherein a part of the heating tube sends heat from the discharge port end to the feed port end, and the other part is from the feed port end to the discharge port. Send heat at the end.
  • the apparatus used in this embodiment can be further implemented on the apparatus of the foregoing embodiments.
  • the specific structure is that the inner heating tubes fixed at the two ends of the cartridge body are respectively installed in the cracking chamber of the device described in the foregoing embodiments, and the inner heating tubes are divided into two groups, and the different ends are respectively used as heat.
  • the media inlet is at the other end and the other end is the heat medium discharge port.
  • the process of this embodiment can be in any of the forms described in the foregoing embodiments, and only a new heating mode is employed in the cracking process of the present embodiment.
  • the specific content is as follows: Two sets of heat source are used to input the lumen, and the two ends of the cracking chamber are opposite to the input of the heat medium.
  • the specific implementation manner of this embodiment is that an external heating tube or two heating chambers fixed at both ends of the chamber are disposed outside the chamber of the cracking chamber, and a part of the heating tubes or one heating chamber is heated from the outlet end to the feeding end, and the other portion The heating tube or another heating chamber supplies heat from the feed port end to the discharge port end.
  • the apparatus used in this embodiment can be further implemented on the apparatus of the foregoing embodiments. Its The specific structure is that the two ends of the silo wall of the device outside the cracking chamber of the foregoing embodiments are respectively fixed on the outer heating tube or the two outer heating chambers at the two ends of the cartridge body, and the outer heating tubes are divided into two groups, and respectively The different end is used as the heat medium feed port, and the other end is the heat medium discharge port.
  • the process of this embodiment can adopt any one of the embodiments 1-8, and only a new heating mode is employed in the cracking process of the present embodiment.
  • the specific content is as follows: Two parts of the heat source are used to input the lumen, and the two ends of the cracking chamber are opposite to the input of the heat medium.
  • the specific implementation manner of this embodiment is as follows: a heating tube fixed at both ends of the cracking chamber is arranged, and the outer chamber is heated outside the cracking chamber to make the heat medium in the inner and outer heating mechanisms transport in opposite directions.
  • the specific realization device is based on any one of the embodiments 1-8, the inner heating tube is installed in the cracking chamber, the outer heating chamber is arranged on the cracking chamber wall, and the heat medium is made therein during production.
  • the flow direction is opposite, so that the temperature in the chamber is balanced.
  • the method of screw extrusion is firstly used to realize gas barrier feeding, and the raw material is directly sent into the cracking chamber for a certain distance, and the end of the working portion of the screw extrusion conveyance is shorter than the end position of the feeding tube where it is located.
  • a cavity without a screw is formed at the end of the feed tube.
  • the cracking process is carried out in a drum with a temperature of 350 ° C.
  • the average residence time of each part of the material in the drum in the cracking chamber is 20 to 60 minutes.
  • the two adopt the method of inputting the heat medium to achieve the balance of the temperature inside the drum.
  • the gas generated by the cracking at the end of the drum is discharged through a liquid-tight outlet, and the solid product discharge port is connected to a tilting screw propulsion mechanism which adopts a pitch-like structure or a structure in which the pitch is gradually increased.
  • the outlet of the screw propulsion mechanism is directly connected to the outlet of the solids discharge port of the cracking chamber below its outlet.
  • the end of the discharge pipe is extended by a distance from the end of the working portion of the screw, and a cavity is formed at the end of the discharge pipe, thereby realizing automatic discharge.
  • the structure of the apparatus for realizing the process of the present embodiment is as follows - it includes a frame on which the axis and the horizontal plane are inclined at an inclination of more than 0° and less than or equal to 10° (for example, 0.01°, 0.05., 0.1, 0.3, 0.5). 0.8, 1.0, 1. 5., 2.5, 3., 3.5 °, 4 °, 4.5, 5, 5.5, 6, 6. 6.5, 7 0 , 7.5, 8, 8. 8.5, 9
  • the outer cylinder 14 is fixed to the frame 33, and the outer cylinder 14 is sleeved with a drum 30 coaxial therewith.
  • Both ends of the drum 30 are mounted on the two end cap portions 5, 19 fixed to the bracket 33, and are sealingly fitted with the end cap portions 5, 19, wherein the sealing method adopts the prior art.
  • the motor 31 drives the sprocket 7 fixed outside the drum 30 by the speed reduction mechanism 32 to effect the rotation of the drum 30.
  • a rolling load bearing wheel 23 that cooperates with a turntable 6 fixed to the upper and lower portions of the drum 30.
  • the drum 30 of the present embodiment has an inner heating tube 28 fixed at both ends to the end cap portions 5, 19 for circulating a heat transfer medium.
  • the outer cylinder 14 is provided with a heat insulating layer 29 between the outer cylinder 14 and the drum 30 2
  • the sealed cavity is a heat medium cavity 11, the inlets and outlets 8, 9 and 15, 16 are respectively located at two ends of the outer cylinder 14, the flow direction of the heat medium in the heat medium cavity 11 and the heating medium of the inner heating pipe 28 The flow direction is reversed.
  • the feed port of the drum 30 is disposed on the upper end cap portion and has a gas barrier feeding mechanism connected thereto.
  • the gas-storing feeding mechanism comprises a screw 10 in the feeding tube 2 and the feeding tube 2 connected to the motor 34 with a continuous or intermittent pitch.
  • the feeding tube 2 is inserted into the inner cavity of the rotating barrel 30, and a sealing connection is adopted at the joint.
  • the lower portion of the drum 30 has a gas discharge port 18 and a solid discharge port 40, and the gas discharge port 18 communicates with the outside of the drum 30 by a conventional seal (e.g., liquid seal).
  • the solid discharge port 40 is connected to the inclined discharge pipe 22, and the end of the discharge pipe 22 is higher than the discharge port 40.
  • a thermal expansion mechanism may also be disposed on the drum 30 and the outer cylinder 14.
  • the thermal expansion mechanism provided in the outer cylinder 14 includes at least two supports 25, 27, 44 fixedly coupled to the outer cylinder 14, the support 44 of the feed end is fixed to the frame 33, and the lower portions of the other supports 25, 27 are provided.
  • the pulleys 24, 26 and the frame 33 are provided with pulley guides;
  • the thermal expansion mechanism provided by the drum 30 includes a telescopic mechanism mounted at both ends of the drum, and the telescopic mechanism can secure the seal while being telescopic. This technique can be realized by the prior art.
  • the cracking temperature of this example is 355 ° C, and the average residence time of each part of the raw material in the drum in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45. Or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 360 ° C, and the average residence time of each portion of the raw material in the drum in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45. Or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 365 ° C, the average residence time per ton of raw material in the cracking chamber It is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 370 ° C, and the average residence time per ton of raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 375 ° C, and the average residence time per ton of raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 380 ° C, and the average residence time per ton of raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 385 ° C, and the average residence time per ton of raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 390 ° C, and the average residence time per ton of raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 395 ° C, and the average residence time of each part of the raw material in the cracking chamber The interval is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 400 ° C, and the average residence time of each portion of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 405 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 410 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 415 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 420 ° C, and the average residence time of each portion of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 425 ° C, and the average residence time of each part of the raw material in the cracking chamber The interval is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 430 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 435 ° C, and the average residence time of each portion of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 440 ° C, and the average residence time of each portion of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 445 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 450 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 455 ° C
  • the average residence time of each part of the raw material in the cracking chamber N2006/001282 is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 460 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 465 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 470 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cleavage temperature of this example is 475 ⁇ , and the average residence time of each part of the raw material in the cleavage chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 480 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 485 ° C, and the average retention time of each part of the raw material in the cracking chamber The interval is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 490 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 495 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 500 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 505 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 510 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 515 ° C, and the average residence time of each part of the raw material in the cracking chamber The interval is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cleavage temperature of this example is 520 ° C, and the average residence time of each part of the raw material in the cleavage chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 525 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 3 ⁇ 4 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 530 ° C, and the average residence time of each portion of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 535 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the pyrolysis temperature of this example is 540 ° C, and the average residence time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 545 ° C, and the average residence time of each part of the raw material in the cracking chamber The interval is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.
  • the cracking temperature of this example is 550 ° C, and the average retention time of each part of the raw material in the cracking chamber is 20 or 23 or 25 or 28 or 30 or 32 or 35 or 37 or 40 or 43 or 45 or 47 or 50 or 53 or 55 or 58 or 60 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

一种废 f日橡胶或塑料连续裂解工艺及其设备 技术领域
本发明为废旧橡胶或塑料连续裂解工艺以及实现该工艺的设备,它是利 用废旧橡胶或塑料生产油等产品的关键技术。 背景技术
众所周知,将废旧橡胶或塑料裂解后能够通过进一步加工生产出汽油、 柴油等产品, 这不仅为现代社会大量产生的废旧轮胎等橡胶、 塑料等工业 垃圾的处理找到了良好的解决方法, 而且对资源减少、 能源紧张的改善提 供了新的方案。 但是, 目前几乎所有的已有技术均不能实现连续生产, 而 且, 现有的技术的成本极高, 由于无法解决原料中留存气体以及在原料输 送及产品导出过程中与空气的隔离的问题而使其存在极高的危险性, 导致 利用废旧轮胎等橡胶、 塑料生产油这一技术无法实现工业化连续生产。 发明内容
针对现有技术存在的诸多不足之处, 本发明提供了一种废旧橡胶连续 裂解工艺及其设备, 保证其生产的安全性和生产成本, 并实现连续生产, 使废旧橡胶或塑料制油技术的工业化生产成为现实。
本发明中的裂解过程, 是将催化剂及橡胶或塑料进行挤压输送而实现 隔离空气或氧气送的料并使原料进入密封裂解仓, 即在将原料送入裂解仓 过程中同时将原料之间以及原料中的气体排出, 并隔离在密封的裂解仓 外, 既实现送料, 又保证裂解仓与外部气体的隔绝。 在裂解仓内, 由相应 的机构使原料由进料口向出料口运动, 在此过程中完成裂解, 最后由与能 将外界气体隔离的出料机构自动导出。 通过这样的工艺过程, 保证裂解仓 内的安全性, 而且, 能够实现连续生产, 实现该技术的工业化连续生产。
在具体生产时, 隔离空气或氧化的送料可以采用螺旋变距挤压的结构 实现。 随着挤压过程的进行, 原料之间的间隙逐渐缩小而将这一部分气体 逐渐排出, 当原料受压到一定程度时, 不仅这一部分气体被挤出, 原料中 的气体也会被挤出, 从而保证原料在到达裂解仓时, 其中不含气体, 而且 由于其较为密实, 也实现了裂解仓与外部空气的隔离, 保证裂解仓的密封 效果, 实现裂解过程的安全进行。 为使原料内所含气体的充分排出, 最好 在将原料进行隔离空气或氧化的送料之后或同时对橡胶或塑料进行加热, 原料在受热软化后, 其中的气体会充分排出, 特别是, 若在挤压的同时使 其受热, 还会强制原料排出内含的气体, 达到最佳的排气隔气效果。 事实 上,如果在挤压的同时将原料直接送至裂解仓, 由于裂解仓内的温度较高, 在将原料输送至裂解仓的过程中, 随着原料的接近, 由于热辐射和输送设 备的热传导, 自然会实现原料同时受热, 并且减小原料输送过程中的磨擦 阻力, 使隔离空气或氧化的送料顺利进行。 为保证排气效果, 最好使隔离 空气或氧化的送料过程的后期阶段在密封裂解仓中进行。
对于裂解产生的气态产物可以采用通行的做法, 如通过液体后排出的 方法实现密封, 而对于固态产物的排出, 同样可以采取将其螺旋推进的方 式实现, 即使裂解仓的固态产物出料口连接前端低、 末端高的螺旋推进机 构, 在重力的作用下, 出料口处的固态产生较为密实, 从而产生密封效果。 在此基础上, 将其带有螺旋叶片的工作部分的末端与出料管和后端之间有 一间距, 在出料管后部形成腔体则密封效果更好。
本发明中, 为保证密封裂解仓中原料的运动, 应当施加外力, 例如利 用叶片螺旋推动等, 当然, 也可以采用倾斜角度大于 0度、 小于等于 10度 并与周围部件之间密封的转筒, 进料口设置在较高部位, 固态产物的出料 口设置在低端。 这样, 一方面原料在重力的作用下有向出料口运动的趋势 或运动, 同时, 在筒体转动时, 原料进行螺旋向前运动, 由此保证连续裂 解的顺利进行, 这种方式, 还能有利于实现在较小体积的筒体达到需要的 反应时间长度, 达到占用空间小、 设备成本低的效果。
此外, 为使转筒内的温度均衡, 保证裂解效果, 对裂解仓的加热方式 可以采用自裂解仓两端由两组不同的管腔相对输送热介质的方式, 即两组 管腔分别由自裂解仓两端输入热介质、 并由各自的另一端输出的方法。 这 种方法的具体实现可以只利用内加热管, 即在裂解仓内设置贯通仓体内腔 的内加热管, 使这些加热管分为两组, 分别由裂解仓的不同端输入, 而由 另一端输出。 或者只利用外加热方式, 利用相同的送热手段实现裂解仓内 的温度均衡。 此外, 还可以同时采有内加热管和外加热腔, 使内外两部分 管腔内的热介质相以运动, 实现温度均衡。 当然, 外加热腔外部应设计保 温机构以尽量避免热量的损失。
在上述情况下, 该工艺的裂解温度可选用裂解温度为 350〜550°C, 每 部分原料在裂解仓内的平均留滞时间为 20〜60分钟, 在此条件下即能实现 原料的充分裂解。
针对上述工艺要求, 本发明还设计了对应的生产设备。 该设备包括带 有进料口和出料口的密封裂解仓, 有通过挤压输送而实现隔离空气或氧化 的送料机构与其进料口连接, 裂解仓中设置有能将其中的原料由其入口送 至其出口并在运动期间进行裂解反应的机构, 出料口与能将外界气体隔离 的出料机构连接。 正如工艺中所述, 隔离空气或氧化的送料机构可以采用 螺旋连续变距或间断变距的挤压机构。 如果要在输送时对原料进行加热, 并在其输送的最后阶段达到最好的隔气效果, 应当使隔离空气或氧化的送 料机构中的送料管的末端探入裂解仓中。、在采用了上述结构后, 如果能够 使螺旋机构的最后间距达到足够小, 便能够充分保证隔离空气或氧化的效 果, 但这可能影响送料速度, 而直接导致整个设备的运行时间的加长, 而 且, 设备的成本也较高。 对此, 本发明将螺旋变距挤压机构的进料管末端 与螺杆的末端之间有一间距, 在进料管末端构成空腔, 由此简单的结构实 现充分的密封。
在进料口的隔离空气或氧化的密封问题解决后, 自然能将其原理引入 到出料口的气体隔离密封, 即出料机构也采用与裂解仓固态产物出料口连 接螺旋推进机构实现。 同样在欲达到最佳的密封效果时, 应将螺旋推进机 构设计为前端低、 后端高的结构, 其螺旋叶片部分的后端与出料管和后端 之间有一间距, 在出料管后部形成腔体。
本发明的裂解仓中原料的输送或运动结构, 可以采用现有技术实现, 也可以采用带有加热机构的密封转筒, 使转筒轴线与水平线成大于 0度、 小于等于 10度的夹角;转筒两端通过密封机构与固定在支架上的两个端盖 部分连接, 裂解仓的进料口和出料口分别设置在上端盖部分和下端盖部分 上。
正如对工艺的描述中所述, 本发明裂解仓的加热系统可以仅包括两端 安装在两端盖部分上并贯穿裂解仓内腔的内加热管。 也可以另外在转筒外 围设置带有保温机构的外加热机构。 而且最好将外加热机构设计为包括套 装在转筒外围的外筒,外筒带有保温层,转筒与外筒之间构成热介质腔体, 该腔体的进液口与内加热管的出液口位于裂解仓的同一端, 其出液口与内 加热管的进液口位于裂解仓的同一端, 以保证裂解仓内温度的均衡, 从而 实现最佳的裂解效果。
综上所述,本发明通过对裂解仓进料口和出料口对空气和氧气的隔离, 完全避免了氧气进入裂解仓而导致的安全隐患, 从而实现了连续送料的工 业化生产。 通过本发明的设备可以实现内加热和外加热的配合, 使裂解仓 实现均匀高温加热, 大大提高了出油品质。 油品比率能由现有技术的 19% 提高到 45%〜48%, 并且能够降低生产设备损耗, 从而降低了生产成本, 提 高了安全措施, 真正实现了高效连续化生产。 附图说明
图 1为本发明具体实施方式的结构示意图。
图中, 1、 进料斗, 2、 进料管, 3、 催化剂进口, 4、 安全阀口, 5、 端 盖部分, 6、 转盘, 7、 链轮, 8、 进口, 9、 进口, 10、 螺杆, 11、 热介质 腔体, 12、 空腔, 13、 腔体, 14、 外筒, 15、 出口, 16、 出口, 17、 观察 孔, 18、 气体出料口, 19、 端盖部分, 20、 安全阀口, 21、 进口, 22、 出 料管, 23、 滚动式承重轮, 24、 滑轮, 25、 支座, 26、 滑轮, 27、 支座, 28、 内加热管, 29、 保温层, 30、 转筒, 31、 电机, 32、 减速机构, 33、 机架, 34、 电机, 35、 出口, 36、 减速机, 37、 链传动装置, 38、 螺杆带 有旋转叶片的工作部分, 39、 螺杆连接部分, 40、 固体出料口, 41、支架, 42、 减速机, 43、 电机, 44、 支座。 具体实施方式
实施例 1:
本实施例的工艺过程为: 将加有催化剂橡胶或塑料的块或粒在进行挤 压的同时向密封裂解仓输送, 去除原料块或粒之间的气体, 并对原料内部 同时施加压力, 将挤压排除其部空间可能存在的气体, 再将这些原料送入 密封的裂解仓内。 本实施例所采用的催化剂为在橡胶和塑料裂解时公知的 催化剂。 在裂解仓内, 原料由裂解仓的进料口处在外力或自身重力的作用 下向出料口运动, 并在该运动过程中进行裂解反应, 裂解温度可以采用现 有技术。 当其到达裂解仓末端时, 形成的气体通过水密封机构排出, 而固 态产物通过其出料口导入下一个工序的设备中。
实现本实施例工艺的设备可以采用直接挤压、 周边排气, 最后通过密 封管道输送进入裂解仓的设备, 实现挤压隔气输送。 裂解仓可以采用立式 结构, 使内原料在重力的作用下直接, 或者使用转动等外力保证原料的运 动, 使其在此过程中裂解。 当反应完成后到达裂解仓末端时, 通过重力可 使固体产物导出,而且,堆积的固体产物也能够同时实现对出料口的封闭。
这种方法虽能自动完成生产过程, 但其送料一般为间断送料, 另外存 在工艺可靠性差、 设备较为简陋或体积庞大的问题, 在实际使用中有一定 的缺陷。
实施例 2:
本实施例的工艺过程为: 将加有催化剂的橡胶或塑料的块或粒在进行 螺旋变距挤压的同时向密封裂解仓输送, 其它部分采用与实施例 1相同的 技术, 这里不再赘述。
实现上述工艺的设备仅是将实施例 1中的隔气送料机构更换为螺旋变 距挤压送料, 使原料在到达裂解仓时达到密实的效果, 该密实部分同时将 外部的空气隔离, 保证裂解仓在进料口处的密封。
与实施例 1相比, 本实施例能够实现连续送料, 对完成工艺过程及较 大的帮助, 但其它部分仍存在实施例 1中的问题。
实施例 3:
本实施例的工艺过程是在实施例 1或实施例 2的基础上, 在将加有催 化剂的橡胶或塑料进行隔离空气或氧化的送料的同时对原料进行加热, 保 证其内含气体的排出, 从而保证裂解仓实现最佳密封效果, 该效果的实现 可以通过在输送机构中或输送机构外围加装加热机构的方式实现, 相应的 设备在实施例 1和 2的基础上做相应改进, 例如在送料的螺杆轴中或送料 管道的外围加装加热机构, 即能实现该实施例的工艺要求。 其它部分与实 施例 1或 2相同。
实施例 4:
本实施例的工艺过程如下: 将如实施例 1和实施例 2中的隔离空气或 氧化的送料工艺过程直接与裂解仓的进料口连接, 在送料的过程中, 随着 原料的接近, 裂解仓内的高温会对原料产生热辐射或通过送料管道的热传 导对原料进行加热, 这种加热有利于原料内含的气体的排出, 从而增强裂 解仓的隔气效果。 本实施例的其它部分采用实施例 1或实施例 2的技术, 不再赘述。
本实施例的设备除挤压送料部分的出口与裂解仓进料口直接连接外, 其它可以分别釆用实施例 1或实施例 2的技术。
实施例 5:
本实施例的工艺过程如下: 按照实施例 1或 2或 3或 4中所述的工艺 将原料送入裂解仓中, 并使该输送过程在裂解仓中推进一段距离, 使原料 在此过程中充分排除其中的气体, 并在此处自然形成塞柱状的密封构造。 其它部分可直接采用与前述实施例所使用的方式相同的工艺。
具体实现的方式, 是在实施例 1或 2或 3或 4的设备的基础上, 将其 送料的管道探入裂解仓中一段距离。 当然, 在实施例 4中的结构的基础上 直接使用这一方案则更为简单、 方便。
实施例 6:
本实施例中原料的输入、 裂解过程采用前述几个实施例中的任何一种 实施方式, 但其固态出料口是将固态产物直接排入外部空间, 这便需要对 出料口与外界的密封加以要求, 即既要将固态产物导出的过程中进行密封 处理, 这一结构可以通过出口端高于入口端的螺旋推进结构实现。 由于固 态产物自身的重量以及内部压力的作用, 可以使其在裂解仓的出料口处较 为密实, 实现密封隔气作用。
在设备中, 于裂解仓的出料口安装与其连接的倾斜的螺旋推进机构, 它包括与裂解仓固态产物的出料口连接的出料管和其中的螺杆, 螺杆穿出 出料管的位置高于出料管入口的出口后与驱动机构连接。
实施例 7:
本实施例的工艺方法, 是在实施例 6工艺的基础上, 于出料管的末端 设置没有螺旋推动的腔体。 其它部分与实施例 6相同。
实现该工艺要求的设备是在实施例 6的设备的基础上, 使螺旋推动机 构出料管的末端位置长出螺杆上工作部分的位置, 而仅有螺杆与驱动部分 连接的光杆部分穿过出料管长出的部分, 使堆积在此处的固态产物进一步 对裂解仓进行隔离空气或氧化的密封。 本实施例的工艺方法, 是对前述各个实施例的改进。 它采用了一种新 式的裂解仓替代前述各种裂解仓, 该裂解仓中包括了一个倾斜的转筒, 转 筒与其周围的固定结构之间釆用现有的密封方式进行密封, 例如, 采用钢 圈、 石棉等结构密封。 转筒的倾斜角度可以釆用大于 0°度、 小于等于 10° 的任何角度, 如 0·0 、 0.05°、 Ο.Γ、 0.3°、 0.5°、 0.8°、 1.0°、 1. 5°、 2.5、 30、 3.5° > 4。、 4.5。、 5。、 5·50、 6。、 6.5。、 70、 7.5。、 80、 8.5。、 9。、 9.5。、 10。。
实现上述工艺要求的设备, 则需要将转筒安装在其两端的两个固定的 端盖部分上, 并使其连接处通过钢圈、 石棉等现有技术实现在动态情况下 的密封而构成密封的裂解仓, 将裂解仓的进料口和出料口设置在两个端盖 部分上, 且进料口位于位置较高的端盖部分上, 而出料口位于位置较低的 端盖部分上, 这样有利于实现原料由进料口向出料口的运动。 转筒的驱动 采用现有技术, 如利用其下方的支撑滚轮实现其转动, 也可以采用在转筒 外固定链轮的方法, 使用与驱动机构连接的链条带动其转动。
实施例 9:
本实施例的工艺过程可以釆用前述各实施例中的各种形式。 仅是在本 实施例的裂解过程中采用了新式的加热方式。 其具体内容为: 采用两组热 源输入管腔, 由裂解仓的两端相对输入热介质的方式。 本实施例的具体实 现方式是在裂解仓腔体内设置固定在其两端的加热管, 其中一部分加热管 由出料口端向进料口端送热, 另一部分由进料口端向出料口端送热。
本实施例所使用的设备可以在前述各实施例的设备上进一步实现。 其 具体结构为, 在前述各实施例所述的设备的裂解仓腔体内安装两端分别固 定在仓体两端的内加热管, 这些内加热管分为两组, 并分别以不同的一端 作为热介质进料口, 而以另一端为热介质出料口。
实施例 10:
本实施例的工艺过程可以采用前述各实施例中所描述的任何一种形 式,仅是在本实施例的裂解过程中采用了新式的加热方式。其具体内容为: 采用两组热源输入管腔, 由裂解仓的两端相对输入热介质的方式。 本实施 例的具体实现方式是在裂解仓腔体外设置固定在其两端的外加热管或两个 加热腔, 其中一部分加热管或一个加热腔由出料口端向进料口端送热, 另 一部分加热管或另一个加热腔由进料口端向出料口端送热。
本实施例所使用的设备可以在前述各实施例的设备上进一步实现。 其 具体结构为, 在前述各实施例所述的设备的裂解仓腔体外的仓壁安装两端 分别固定在仓体两端的外加热管或两个外加热腔,这些外加热管分为两组, 并分别以不同的一端作为热介质进料口, 而以另一端为热介质出料口。
实施例 11 :
本实施例的工艺可以采用实施例 1-8 中的任意一种方式, 仅是在本实 施例的裂解过程中采用了新式的加热方式。 其具体内容为: 采用两部分热 源输入管腔, 由裂解仓的两端相对输入热介质的方式。 本实施例的具体实 现方式是: 在裂解仓腔体内设置固定在其两端的加热管, 并在裂解仓外设 置外加热腔, 使内外加热机构中的热介质的输送方向相反。
其具体实现的设备, 是在实施例 1-8 中任意一种设备的基础上, 在裂 解仓内安装内加热管, 在裂解仓壁上设置外加热腔, 并在生产时使其中的 热介质的流动方向相对, 从而实现仓内温度的均衡。
实施例 12:
本实施例的工艺过程如下:
. 本实施例首先采用螺旋挤压输送的方法实现隔气送料, 并将原料直接 送入裂解仓内一段距离, 且螺旋挤压输送的工作部分的末端短于其所在的 送料管的末端位置, 在送料管末端形成一段没有螺杆的空腔。 裂解过程在 一转筒中进行, 转筒内温度为 350°C , 在转筒内的每部分原料在裂解仓内 的平均留滞时间为 20〜60分钟。 转筒内腔中有采用内加热方式, 转筒外有 外加热结构, 两者采用相对输入热介质的方式达到转筒内温度的均衡。 在 转筒的末端裂解生成的气体通过有液体密封的出口排出, 其固态产物出料 口连接倾斜的螺旋推进机构, 该螺旋推进机构的采用等螺距式的结构或螺 距渐大的结构。 而且, 螺旋推进机构的出料管与裂解仓固态出料口直接连 接的入口低于其出口。 出料管末端的长出螺杆工作部分末端一段距离, 而 在出料管末端形成一腔体, 由此实现自动出料。
实现本实施例工艺的设备结构如下- 它包括机架, 机架 33上安装有轴线与水平面倾角大于 0°、 小于等于 10° (如 0.01°、 0.05。、 0.1。、 0.3。、 0.5。、 0.8。、 1.0。、 1. 5。、 2.5、 3。、 3.5 °、 4°、 4.5。、 5。、 5.5。、 6。、 6.5。、 70、 7.5。、 8。、 8.5。、 9。、 9.5。、 10。。) 的并固定在机架 33上的外筒 14,外筒 14内套有与其同轴的转筒 30。转筒 30的两端安装在固定于支架 33上的两个端盖部分 5、 19上, 并与两端盖 部分 5、 19之间密封动配合, 其中的密封方式采用现有技术。 电机 31通过 减速机构 32驱动固定在转筒 30外的链轮 7实现转筒 30的转动。 机架 33 上还安装有与固定在转筒 30的上下部的转盘 6配合的滚动式承重轮 23。
本实施例的转筒 30内有两端固定在端盖部分 5、 19上的内加热管 28, 用于使导热介质流通。 外筒 14带有保温层 29, 外筒 14与转筒 30之间的 2 密封空腔为热介质腔体 11, 其进出口 8、 9及 15、 16分别位于外筒 14的 两端, 该热介质腔体 11内的热介质的流动方向与内加热管 28加热介质的 流动方向相反。
转筒 30的加料口设置在位于上方的端盖部分上,并有隔气送料机构与 其连接。该隔气送料机构包括送料管 2和送料管 2内与电机 34连接的螺距 连续或间断变小的螺杆 10, 送料管 2探入转筒 30内腔中, 且在连接处采 用密封连接,其末端与螺杆 10带有螺旋叶片的工作部分的末端之间有一间 距, 在送料管后端形成空腔 12。
转筒 30的下部带有气体出料口 18和固体出料口 40, 气体出料口 18 通过常规的密封 (如液体密封)方式与转筒 30外部相通。 固体出料口 40 与倾斜的出料管 22连接, 出料管 22的末端高于出料口 40的位置。在出料 管 22中有与电机 43连接的螺杆,螺杆上带有螺旋叶片的工作部分 38的末 端与出料管 22末端之间有一间距, 从而在出料管 22后端形成腔体 13。
转筒 30和外筒 14上还可设置有热膨胀机构。外筒 14设置的热膨胀机 构包括与外筒 14固定连接的至少两个支座 25、 27、 44, 进料端的支座 44 固定在机架 33上, 其它的支座 25、 27的下部设置有滑轮 24、 26, 机架 33 上设置有滑轮导轨;转筒 30设置的热膨胀机构包括安装在转筒两端的伸缩 机构, 伸缩机构在伸缩的同时能够保证密封, 此技术能够通过现有技术实 现。
上述的未进行描述技术特征能够通过现有技术实现, 在此不再赘述。 实施例 13 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 355 °C, 在转筒内的每部分原料在裂解仓内的 平均留滞时间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
. 实施例 14:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 360°C, 在转筒内的每部分原料在裂解仓内的 平均留滞时间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 15:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 365°C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 16:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 370 °C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 17: '
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 375 °C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 18:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 380°C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 19:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 385°C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 20:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 390 °C, 每吨原料在裂解仓内的平均留滞时间 为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50 或 53或 55或 58或 60分钟。
实施例 21 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 395 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 22:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 400°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 23 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 405°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 24:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 410°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 25:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 415°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 26:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 420°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 27:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 425°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 28:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 430°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 29:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 435°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 30:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 440°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 31 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 445 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 32:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 450°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 33 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 455°C, 每部分原料在裂解仓内的平均留滞时 N2006/001282 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 34:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设各也相同。
本实施例的裂解温度为 460 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 35 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 465 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 36:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 470°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 37:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 475Ό, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 38:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。'
本实施例的裂解温度为 480°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 39:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 485°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 40:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。 ·
本实施例的裂解温度为 490°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 41 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 495°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 42:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 500 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 43 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 505°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 44:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 510°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 45:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 515°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 46:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 520°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 47:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 525°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23 ¾ 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 48:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 530°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 49:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 535 °C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 50:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 540°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 51 :
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 545°C, 每部分原料在裂解仓内的平均留滞时 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。
实施例 52:
除裂解温度和裂解时间外,本实施例的工艺过程与实施例 12相同。其 所用的设备也相同。
本实施例的裂解温度为 550°C, 每部分原料在裂解仓内的平均留滞时. 间为 20或 23或 25或 28或 30或 32或 35或 37或 40或 43或 45或 47或 50或 53或 55或 58或 60分钟。

Claims

权利要求
1、 一种废旧橡胶或塑料连续裂解工艺, 包括裂解过程, 其特征是: 将 催化剂及橡胶或塑料进行挤压输送而实现隔离空气或氧化的送料, 使上述 原料进入密封裂解仓, 使原料由进料口向出料口运动, 并在此过程中完成 裂解, 最后由与能将外界气体隔离的出料机构自动导出。
2、 根据权利要求 1所述的废旧橡胶或塑料连续裂解工艺, 其特征是: 所述的隔离空气或氧化的送料釆用螺旋变距挤压的结构实现。
3、根据权利要求 1或 2所述的废旧橡胶或塑料连续裂解工艺, 其特征 是: 在将橡胶或塑料进行隔离空气或氧化的送料之后或同时对橡胶或塑料 进行加热。
4、 根据权利要求 3所述的废旧橡胶或塑料连续裂解工艺, 其特征是: 对橡胶或塑料的加热在橡胶向裂解仓输送的过程由裂解仓内的温度对其热 辐射及 /或热传导实现。
5、根据权利要求 3或 4所述的废旧橡胶或塑料连续裂解工艺,其特征 是: 隔气送料过程的后期阶段在密封裂解仓中进行。
6、根据权利要求 1或 2或 3或 4或 5所述的废旧橡胶或塑料连续裂解 工艺, 其特征是: 能将空气隔离的出料机构包括与密封裂解仓的固态产物 出料口连接的出口端位置高于入口端的螺旋推进机构。
7、根据权利要求 1或 2或 3或 4或 5或 6所述的废旧橡胶或塑料连续 裂解工艺, 其特征是: 密封裂解仓包括倾斜角度大于 0度、小于等于 10度 并与周围部件之间密封的转筒, 进料口设置在较高部位, 固态产物的出料 口设置在低端。
8、根据权利要求 1或 2或 3或 4或 5或 6或 7所述的废旧橡胶或塑料 连续裂解工艺, 其特征是: 对裂解仓的加热采用自裂解仓两端由两组不同 的管腔相对输送热介质的方式。
9、根据权利要求 1或 2或 3或 4或 5或 6或 7或 8所述的废旧橡胶或 塑料连续裂解工艺, 其特征是: 裂解仓内设置贯通仓体内腔的内加热管。
10、 根据权利要求 1或 2或 3或 4或 5或 6或 7或 8或 9所述的废旧 橡胶或塑料连续裂解工艺, 其特征是: 裂解仓外包围有保温机构和 /或外加 热机构。
11、根据权利要求 1或 2或 3或 4或 5或 6或 7或 8或 9或 10所述的 废旧橡胶或塑料连续裂解工艺, 其特征是: 裂解温度为 350〜550°C, 每部 分原料在裂解仓内的平均留滞时间为 20〜60分钟。
12、一种实施权利要求 1所述工艺的废旧橡胶或塑料连续裂解的设备, 其特征是: 它包括带有进料口和出料口的密封裂解仓, 有进行挤压输送的 隔离空气或氧化的送料机构与其进料口连接, 解仓中设置有能将其中的 橡胶或塑料块 /粒由其入口送至其出口并在运动期间进行裂解反应的机构, 出料口与能将外界气体隔离的出料机构连接。
13、根据权利要求 12所述的废旧橡胶或塑料连续裂解设备,其特征是: 所述的隔离空气或氧化的送料机构为螺旋变距挤压机构。
14、根据权利要求 13所述的废旧橡胶或塑料连续裂解设备,其特征是: 隔离空气或氧化的送料机构的送料管后端部探入裂解仓中。
15、 根据权利要求 13或 14所述的废旧橡胶或塑料连续裂解设备, 其 特征是: 螺旋变距挤压机构的进料管末端与螺杆的末端之间有一间距, 在 进料管末端构成空腔。 '
16、 根据权利要求 12或 13或 14或 15所述的废旧橡胶或塑料连续裂 解设备, 其特征是: 能将外界气体隔离的出料机构为与裂解仓固态产物出 料口连接前端低、 末端高的螺旋推进机构。
17、根据权利要求 16所述的废旧橡胶或塑料连续裂解设备,其特征是: 所述的螺旋推进机构其带有螺旋叶片的工作部分的末端与出料管和后端之 间有一间距, 在出料管后部形成腔体。
18、 根据权利要求 12或 13或 14或 15或 16或 17所述的废旧橡胶或 塑料连续裂解设备, 其特征是: 所述的能将其中的橡胶或塑料块 /粒由其入 口送至其出口并在运动期间进行裂解反应的机构包括带有加热机构的转 筒, 转筒轴线与水平线成大于 0度、小于等于 10度的夹角; 转筒两端通过 密封机构与固定在支架上的两个端盖部分连接, 裂解仓的进料口和出料口 分别设置在上端盖部分和下端盖部分上。
19、根据权利要求 18所述的废旧橡胶或塑料连续裂解设备,其特征是: 裂解仓内的加热机构包括两端安装在两端盖部分上并贯穿裂解仓内腔的内 加热管。
,
20、 根据权利要求 12或 13或 14或 15或 16或 17或 18或 19所述的 废旧橡胶或塑料连续裂解设备, 其特征是: 在转筒外围设置带有保温机构 的外加热机构。
21、根据权利要求 20所述的废旧橡胶或塑料连续裂解设备,其特征是: 所述的外加热机构包括套装在转筒外围的外筒, 外筒带有保温层, 转筒与 外筒之间构成热介质腔体, 该腔体的进液口与内加热管的出液口位于裂解 仓的同一端, 其出液口与内加热管的进液口位于裂解仓的同一端。
PCT/CN2006/001282 2006-04-07 2006-06-12 A continuous pyrolyzing process for waste rubber or plastics WO2007115443A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009503390A JP5187976B2 (ja) 2006-04-07 2006-06-12 廃ゴムやプラスチックの連続熱分解プロセス及び設備
CA 2648504 CA2648504C (en) 2006-04-07 2006-06-12 A continuously cracking technology of waste rubber or plastics and its equipment
AU2006341751A AU2006341751B2 (en) 2006-04-07 2006-06-12 A continuous pyrolyzing process for waste rubber or plastics
CN2006800523991A CN101484551B (zh) 2006-04-07 2006-06-12 一种废旧橡胶或塑料连续裂解工艺及其设备
US12/296,181 US8168839B2 (en) 2006-04-07 2006-06-12 Continuously cracking technology of waste rubber or plastics and its equipment
KR20087027247A KR101183094B1 (ko) 2006-04-07 2006-06-12 고무 또는 플라스틱 폐기물 연속 분해 기술 및 장치
EP06752931A EP2006355A4 (en) 2006-04-07 2006-06-12 CONTINUOUS PYROLYSIS PROCESS FOR RUBBER OR PLASTIC WASTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNU2006200827316U CN2878390Y (zh) 2006-04-07 2006-04-07 多功能全自动远程恒温供热废旧轮胎裂化装置
CN200620082731.6 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007115443A1 true WO2007115443A1 (en) 2007-10-18

Family

ID=37860807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001282 WO2007115443A1 (en) 2006-04-07 2006-06-12 A continuous pyrolyzing process for waste rubber or plastics

Country Status (8)

Country Link
US (1) US8168839B2 (zh)
EP (1) EP2006355A4 (zh)
JP (1) JP5187976B2 (zh)
KR (1) KR101183094B1 (zh)
CN (2) CN2878390Y (zh)
AU (1) AU2006341751B2 (zh)
CA (1) CA2648504C (zh)
WO (1) WO2007115443A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017856A1 (zh) * 2009-08-13 2011-02-17 Niu Bin 连续除氯工艺及设备
WO2011038546A1 (zh) * 2009-09-29 2011-04-07 Niu Bin 柔性材料密封输送方法及进料机
CN101469081B (zh) * 2007-12-29 2012-07-04 牛斌 工业连续化橡胶裂解器
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074384B (zh) * 2007-04-28 2010-10-13 牛斌 回转式自动裂解工艺及裂解器
DE102009007768B4 (de) * 2009-02-05 2015-07-16 Hartwig Streitenberger Vorrichtung in Form eines Thermolysereaktors und Verfahren zum Betreiben eines solchen in einer Anordnung zur thermischen Zersetzung von Abprodukten und Abfällen
CN101531912B (zh) * 2009-04-08 2012-01-04 朱伟荣 废旧橡胶处理装置
CN102061185B (zh) * 2009-11-13 2013-10-09 环拓科技股份有限公司 连续式裂解系统及其应用
ES2362781B2 (es) * 2009-12-30 2012-09-28 Pirorec, S.L Procedimiento e instalación para el reciclado íntegro mediante despolimerización.
US8664458B2 (en) * 2010-07-15 2014-03-04 Greenmantra Recycling Technologies Ltd. Method for producing waxes and grease base stocks through catalytic depolymerisation of waste plastics
SK288338B6 (en) * 2012-02-06 2016-03-01 Laszlo Farkas Method of thermal decomposition of organic material and device for implementing this method
CN103045283B (zh) * 2012-10-31 2015-06-24 牛晓璐 一种废旧橡胶连续裂解工艺及其设备
CA2898257C (en) 2013-01-17 2021-10-05 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
KR102078594B1 (ko) 2014-03-19 2020-02-18 동우 화인켐 주식회사 착색감광성 수지 조성물, 컬러필터 및 이를 구비한 액정표시장치
CN104974375A (zh) * 2014-04-12 2015-10-14 中科安捷驰环保科技股份有限公司 往复式丁基胶再生循环机械支架
US9624439B2 (en) * 2014-08-10 2017-04-18 PK Clean Technologies Conversion of polymer containing materials to petroleum products
MY186393A (en) 2014-12-17 2021-07-22 Pilkington Group Ltd Furnace
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
CN108779398B (zh) 2016-02-13 2022-03-01 绿色颂歌再生科技有限公司 具有蜡添加剂的聚合物改性沥青
MX2018011492A (es) 2016-03-24 2019-02-20 Greenmantra Recycling Tech Ltd Cera como modificador de flujo de fusion y adyuvante de procesamiento para polimeros.
CN107663002A (zh) * 2016-07-28 2018-02-06 华云新能源科技(深圳)有限公司 一种污泥裂解处理方法及设备
JP7071346B2 (ja) 2016-09-29 2022-05-18 グリーンマントラ リサイクリング テクノロジーズ リミテッド ポリスチレン材料を処理するための反応器
CN106520173B (zh) * 2016-09-30 2018-08-31 济南恒誉环保科技股份有限公司 一种连续化裂解工艺及设备
CN107011930B (zh) * 2017-05-25 2022-09-23 郑仲新 一种有机垃圾处理系统
CN107384453A (zh) * 2017-08-01 2017-11-24 昆明理工大学 一种实验室用生物质热解装置
ES2668818A1 (es) * 2017-12-11 2018-05-22 Recuperaciones Emro, S.L Sistema y procedimiento para la síntesis de hidrocarburos por descomposición catalítica a presión atmosférica y en ausencia de oxigeno
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
CN108913174A (zh) * 2018-09-21 2018-11-30 商丘瑞新通用设备制造股份有限公司 一种防治结焦粘壁的裂解装置及裂解设备
CN109158408B (zh) * 2018-09-28 2023-11-21 济南恒誉环保科技股份有限公司 一种固体危废裂解工艺及成套设备
CN109852414A (zh) * 2019-04-18 2019-06-07 广核(大连)能源科技有限公司 连续裂解设备
KR20210070009A (ko) 2019-12-04 2021-06-14 김태훈 폐합성수지 및 폐고무가 함유된 폐기물 연료화장치
CN113122293A (zh) * 2019-12-31 2021-07-16 抚顺市望花演武化工厂 一种多组合绞龙催化裂化再生废固化有机物系统
CN114672336B (zh) * 2022-04-08 2024-09-24 魏培明 一种分级式废旧轮胎炼油设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256768A (ja) * 1993-03-02 1994-09-13 Hitachi Zosen Corp 廃プラスチックの油化装置
CN2219778Y (zh) * 1995-03-30 1996-02-14 北京大康技术发展公司 废塑料连续催化裂化装置
JPH1190387A (ja) * 1997-09-25 1999-04-06 Kubota Corp 廃プラスチックの脱塩素方法および脱塩素装置
JP2001200272A (ja) * 2000-01-21 2001-07-24 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置用の熱分解反応器
WO2003062351A2 (en) * 2002-01-25 2003-07-31 Tihomir Culjak Apparatus for continuous production of derivates from oil shales and plastic waste by thermal cracking
WO2003104354A1 (en) * 2002-06-05 2003-12-18 Izabella Bogacka Indirectly heated waste plastic pyrolysis device
JP2004323620A (ja) * 2003-04-23 2004-11-18 Mitsubishi Rayon Eng Co Ltd 廃プラスチックの油化方法及び油化装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686008A (en) * 1985-10-08 1987-08-11 Gibson Harry T Pyrolytic decomposition apparatus
DE4332865A1 (de) * 1993-09-27 1995-03-30 Siemens Ag Einrichtung zum Transport von Abfall in einem Pyrolysereaktor
US5738745A (en) * 1995-11-27 1998-04-14 Kimberly-Clark Worldwide, Inc. Method of improving the photostability of polypropylene compositions
JP3377359B2 (ja) * 1996-03-14 2003-02-17 三井造船株式会社 廃棄物処理装置
JP3585637B2 (ja) * 1996-03-29 2004-11-04 三井化学株式会社 合成重合体の接触分解装置及びそれを用いる油状物の製造方法
JPH1047644A (ja) * 1996-07-31 1998-02-20 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置における排出装置のシール機構
JPH10122536A (ja) * 1996-10-14 1998-05-15 Mitsui Eng & Shipbuild Co Ltd 熱分解反応器の排出装置
JP3537968B2 (ja) * 1996-10-25 2004-06-14 三井造船株式会社 廃棄物処理装置
JPH11189773A (ja) * 1997-12-26 1999-07-13 Shinei Seisakusho:Kk 廃棄物の炭化処理装置
US6423878B2 (en) * 1998-03-20 2002-07-23 Riccardo Reverso Process and apparatus for the controlled pyrolysis of plastic materials
JP2000001677A (ja) * 1998-06-17 2000-01-07 Yoichi Wada 高分子系廃棄物の熱分解装置
US6172272B1 (en) * 1998-08-21 2001-01-09 The University Of Utah Process for conversion of lignin to reformulated, partially oxygenated gasoline
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
AU2001281198B2 (en) * 2000-08-10 2006-08-17 Delta Energy Holdings Llc Low energy method of pyrolysis of hydrocarbon materials such as rubber
JP2003320359A (ja) * 2002-04-30 2003-11-11 Advanced:Kk 有機性廃棄物の熱分解方法及び装置
JP3836112B2 (ja) * 2004-03-23 2006-10-18 株式会社御池鐵工所 廃棄プラスチックの油化設備
JP2005336307A (ja) * 2004-05-26 2005-12-08 Mitsubishi Rayon Eng Co Ltd 油化装置、及びこれを用いた油化方法
US7375255B2 (en) * 2005-03-18 2008-05-20 Ernest Lee Rubber tire to energy pyrolysis system and method thereof
EP1931722A1 (en) * 2005-10-06 2008-06-18 RAMESH, Swaminathan Method of recycling a plastic
HK1077163A2 (en) * 2005-10-06 2006-01-27 Green Pluslink Company Ltd Total solution for scrap tire recycling
US7925387B2 (en) * 2009-07-14 2011-04-12 General Electric Company Method and systems for utilizing excess energy generated by a renewable power generation system to treat organic waste material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256768A (ja) * 1993-03-02 1994-09-13 Hitachi Zosen Corp 廃プラスチックの油化装置
CN2219778Y (zh) * 1995-03-30 1996-02-14 北京大康技术发展公司 废塑料连续催化裂化装置
JPH1190387A (ja) * 1997-09-25 1999-04-06 Kubota Corp 廃プラスチックの脱塩素方法および脱塩素装置
JP2001200272A (ja) * 2000-01-21 2001-07-24 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置用の熱分解反応器
WO2003062351A2 (en) * 2002-01-25 2003-07-31 Tihomir Culjak Apparatus for continuous production of derivates from oil shales and plastic waste by thermal cracking
WO2003104354A1 (en) * 2002-06-05 2003-12-18 Izabella Bogacka Indirectly heated waste plastic pyrolysis device
JP2004323620A (ja) * 2003-04-23 2004-11-18 Mitsubishi Rayon Eng Co Ltd 廃プラスチックの油化方法及び油化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469081B (zh) * 2007-12-29 2012-07-04 牛斌 工业连续化橡胶裂解器
WO2011017856A1 (zh) * 2009-08-13 2011-02-17 Niu Bin 连续除氯工艺及设备
US20120145527A1 (en) * 2009-08-13 2012-06-14 Bin Niu Continuous dechlorination process and equipment
JP2013501826A (ja) * 2009-08-13 2013-01-17 斌 牛 連続的に脱塩素するプロセス及び装置
WO2011038546A1 (zh) * 2009-09-29 2011-04-07 Niu Bin 柔性材料密封输送方法及进料机
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Also Published As

Publication number Publication date
CN101484551A (zh) 2009-07-15
CN2878390Y (zh) 2007-03-14
CA2648504A1 (en) 2007-10-18
AU2006341751B2 (en) 2011-12-01
US8168839B2 (en) 2012-05-01
JP2009532535A (ja) 2009-09-10
EP2006355A4 (en) 2012-01-11
CN101484551B (zh) 2012-05-09
US20100121121A1 (en) 2010-05-13
CA2648504C (en) 2014-05-27
AU2006341751A1 (en) 2007-10-18
KR20090013780A (ko) 2009-02-05
EP2006355A1 (en) 2008-12-24
KR101183094B1 (ko) 2012-09-20
JP5187976B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2007115443A1 (en) A continuous pyrolyzing process for waste rubber or plastics
CA2728566C (en) An industrial continuous cracking device of plastics
CN108203093B (zh) 炭化和活化设备及炭化和活化工艺
JP5819607B2 (ja) 減圧熱分解処理装置及び連続油化炭化設備
CN102102022B (zh) 一种中温干馏的移动床反应器
CN110578923B (zh) 一种裂解设备
CN1898017A (zh) 热解反应器及方法
CN112029524B (zh) 一种废旧有机高分子材料低温工业连续化催化裂解方法及装备
CN105384167B (zh) 一种粉末状石墨连续高温热处理生产线
CN115038775A (zh) 用于热解塑料材料的方法及其系统
CN211570562U (zh) 一种废旧塑料分段式连续热裂解装置
EP3347436B1 (en) Flash pyrolysis reactor
CN110846063B (zh) 一种废旧轮胎胶粒高效处理系统
CN112299416B (zh) 回转活化炉、活性炭生产系统及活性炭生产方法
US9006505B2 (en) Method and device for processing plastic waste, especially polyolefins
CN115637160A (zh) 一种生物质热解装置
JP2023548389A (ja) 廃棄プラスチック材料を有用な生成物に変換するためのシステム及び方法、並びに固形物圧縮ユニット
CN213172203U (zh) 一种废旧有机高分子材料低温工业连续化催化裂解装备
CN107033925B (zh) 多线螺旋抄板式生物质回转热解反应器
CN103937518B (zh) 一种生物质热解装置及热解方法
WO2008131600A1 (fr) Procédé et dispositif pour le craquage continu de déchets plastiques
CN110791304A (zh) 连续式微波裂解设备及方法
CN108623121B (zh) 大吨位污泥脱水处理装置及污泥处理方法
CN221776839U (zh) 活性炭生产用输送装置
CN218642679U (zh) 非等温加热桨叶推进裂解炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680052399.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06752931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2648504

Country of ref document: CA

Ref document number: 12296181

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009503390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006752931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2365/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087027247

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006341751

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006341751

Country of ref document: AU

Date of ref document: 20060612

Kind code of ref document: A