WO2007114192A1 - ガス検知素子及びその製造方法 - Google Patents

ガス検知素子及びその製造方法 Download PDF

Info

Publication number
WO2007114192A1
WO2007114192A1 PCT/JP2007/056728 JP2007056728W WO2007114192A1 WO 2007114192 A1 WO2007114192 A1 WO 2007114192A1 JP 2007056728 W JP2007056728 W JP 2007056728W WO 2007114192 A1 WO2007114192 A1 WO 2007114192A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
adsorption layer
metal oxide
organic adsorption
Prior art date
Application number
PCT/JP2007/056728
Other languages
English (en)
French (fr)
Inventor
Seung-Woo Lee
Naoki Takahara
Toyoki Kunitake
Original Assignee
Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation For The Advancement Of Industry, Science And Technology filed Critical Kitakyushu Foundation For The Advancement Of Industry, Science And Technology
Priority to JP2008508577A priority Critical patent/JP4565092B2/ja
Publication of WO2007114192A1 publication Critical patent/WO2007114192A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • G01N2291/0257Adsorption, desorption, surface mass change, e.g. on biosensors with a layer containing at least one organic compound

Definitions

  • Patent Document 2 states that "a sensor base having a heater and an electrode formed of platinum or a platinum alloy and a gas sensitive body containing tin oxide and gold and covering the sensor base. Your gas sensor is disclosed!
  • Patent Document 3 includes a “pair of electrodes and a sensitive portion provided in contact with the electrodes, and the sensitive portions are WO / ZrO, SO 2 ′′ / ZrO, PO 3 ′′ / ZrO, SO 2 "/ TiO force
  • ammonia sensor that is at least one selected is disclosed!
  • Patent Document 2 The technologies disclosed in (Patent Document 2) and (Patent Document 3) are tin oxide semiconductors and WO / ZrO.
  • Patent Document 5 Although the technology disclosed in (Patent Document 5) can detect a low concentration gas of about 0.5 ppm with a short response time, a thin film formed with a lipid that selectively adsorbs volatile organochlorine compounds and When the thin film is easily peeled off due to repeated use due to weak bonding force with the electrode surface, it has a problem in that it lacks durability.
  • the present invention can form a light-weight thin organic adsorption layer with a small layer thickness in a short time with high accuracy, which is excellent in productivity, excellent in production stability, and gas detection accuracy is remarkably improved. It aims at providing the manufacturing method of a sensing element.
  • the gas detection element according to claim 1 of the present invention includes a substrate, a surface treatment layer having a functional group formed on the substrate, and an organic adsorption layer formed on the surface of the surface treatment layer. It has a configuration.
  • the organic adsorption layer Since it has a surface treatment layer having a functional group formed on the substrate and an organic adsorption layer formed on the surface of the surface treatment layer, the organic adsorption layer is firmly bonded to the substrate by the surface treatment layer. Even when used repeatedly, the organic adsorption layer is difficult to peel off from the substrate and has excellent durability.
  • the target gas molecule After detecting the gas, the target gas molecule is not included! / When the gas or liquid is brought into contact with the organic adsorption layer, the gas molecule is desorbed, so the gas detection element can be easily regenerated. Excellent repeated use.
  • the natural frequency of the substrate changes according to the mass of gas molecules adsorbed on the organic adsorption layer formed on the substrate. Measures the amount of molecules adsorbed and detects the gas concentration in the atmosphere.
  • An electrode can be formed on the substrate as needed.
  • electrodes carbon electrodes such as platinum, gold, silver, copper, etc., indium stannate (ITO), graphite, etc. are used. Or a comb-like shape on one side of a substrate such as piezoelectric crystal or piezoelectric ceramic.
  • the surface treatment layer can be formed on the substrate, the electrode, or both the substrate and the electrode. The surface treatment layer can be formed on one side or both sides of the substrate.
  • the thickness per layer of the organic adsorption layer can be calculated by measuring the change in the natural frequency of the QCM (quartz balance) when the organic adsorption layer is laminated. Specifically, the relationship between the frequency change amount and mass change amount of the QCM is obtained, and the organic adsorption layer per layer is considered in consideration of the area, number of layers, density, etc. of the formed organic adsorption layer. Can calculate the thickness of the QCM (quartz balance) when the organic adsorption layer is laminated. Specifically, the relationship between the frequency change amount and mass change amount of the QCM is obtained, and the organic adsorption layer per layer is considered in consideration of the area, number of layers, density, etc. of the formed organic adsorption layer. Can calculate the thickness of
  • the substrate As the substrate, the surface treatment layer, and the first organic adsorption layer, the substrate described in claim 1 and the surface Since it is the same as a surface treatment layer and an organic adsorption layer, description is abbreviate
  • the first bonding layer has functional groups such as hydroxyl groups, carboxyl groups, amino groups, aldehyde groups, carbonyl groups, -tro groups, carbon-carbon double bonds, and aromatic rings that are adsorbed on the surface treatment layer and organic adsorption layer.
  • a thin film made of a polymer such as a polypeptide or polymer, or a metal oxide such as titanium oxide, zirconium oxide or silica is used.
  • the second coupling layer the same one as the first coupling layer is used, and thus the description thereof is omitted.
  • the second organic adsorption layer is the same as the organic adsorption layer and will not be described.
  • the organic adsorption layer, the first organic adsorption layer, and the second organic adsorption layer can be formed of the same kind or different kinds of high molecular compounds for each layer.
  • a single element can detect a plurality of types of gases according to the type of polymer compound, and is excellent in applicability.
  • the detection point tends to increase because the reaction point of gas molecules increases almost in proportion to the number of laminations.
  • the number of alternate laminations can be appropriately selected from about 1 to 30 times in consideration of detection sensitivity and manufacturing steps.
  • the invention according to claim 4 of the present invention is the gas detection element according to claim 2 or 3, wherein the first coupling layer and the second coupling layer are formed to a thickness of less than 3 nm.
  • the gas molecules diffuse through the first bonding layer and the second bonding layer to form the lower organic adsorption layer and the first organic layer. Since the time to reach the adsorption layer can be shortened, regeneration with a fast gas detection response can be performed in a short time, and the handling is excellent.
  • the thickness of each of the first bonding layer and the second bonding layer can be calculated by measuring a change in the natural frequency of a QCM (quartz balance) when the first bonding layer or the like is laminated. it can. Specifically, the relationship between the amount of change in the frequency of the QCM and the amount of change in mass is obtained, and the first bond per layer is taken into account by considering the area, number of layers, density, etc. of the formed first bond layer, etc. The thickness of the layer can be calculated.
  • QCM quartz balance
  • each of the first bonding layer and the second bonding layer is preferably not less than 3 nm, preferably not less than 0.1 nm and not more than 2 nm, not less than the detection sensitivity of QCM.
  • the thickness of the first bonding layer and the second bonding layer becomes thinner than 0.1 nm, the amount of adsorption of the first organic adsorption layer and the second organic adsorption layer formed on the upper surface decreases, and the gas detection ability decreases.
  • the thickness becomes thicker than 2 nm the diffusion time of gas molecules in the first bonding layer and the second bonding layer becomes longer, the response time becomes longer, and the detection sensitivity tends to decrease.
  • the amount of gas molecules adsorbed on the first organic adsorption layer etc. is small, the gas cannot be detected and the detection sensitivity decreases. There is a trend. In particular, when the thickness is less than 0.1 nm or 3 nm or more, these tendencies are remarkable, and neither is preferable.
  • a method for producing a gas detection element according to claim 6 of the present invention includes an organic adsorption layer forming step of forming an organic adsorption layer on the surface of a surface treatment layer having a functional group formed on a substrate. have.
  • the substrate, the surface treatment layer, and the organic adsorption layer are the same as those described in claim 1, their descriptions are omitted.
  • a plasma CVD method in which a polymer compound is reacted and deposited on a substrate using plasma excitation, and the substrate is immersed in a solution of a polymer compound.
  • a method of dropping or coating a solution of a polymer compound on a substrate, a polymer epitaxy method using a crystal structure of the substrate, a substrate deposition method using polymer solubility during a polymerization reaction, and the like are used.
  • a metal oxide precursor in a vapor state is brought into contact with a surface treatment layer having a functional group formed on a substrate, and metal oxidation is performed on the substrate.
  • any compound can be used as long as it has a group capable of bonding to the surface of the substrate and becomes a metal oxide by hydrolysis.
  • Metal alkoxy having two or more alkoxyl groups such as Toxisilane (Et Si (O-Et))
  • a alkoxide compound that forms a metal alkoxide by dissolving in an appropriate solvent eg, TiCl
  • an appropriate solvent eg, TiCl
  • a compound that causes a sol-gel reaction in a solvent e.g, TiCl
  • Metal complexes that chemically adsorb with hydroxyl groups on the surface of the substrate and generate new hydroxyl groups on the surface by hydrolysis or the like can also be used as the metal oxide precursor.
  • metal halides metal carbo-Louis compounds such as pentacarbo iron (Fe (CO)), and multinuclear clusters thereof can be used.
  • the metal oxide precursor is a metal alkoxide
  • the metal alkoxide forms a functional group such as a hydroxyl group by hydrolysis that easily bonds with a functional group on the surface of the substrate.
  • a thin metal oxide layer having a thickness of 1 to several nm can be easily formed, and can be easily multi-layered, and is excellent in operability.
  • the inert gas examples include nitrogen gas, argon gas, and helium.
  • Metal acid The amount of inert gas blown into the metal precursor depends strongly on the boiling point of the metal oxide precursor, and if the boiling point is low, the temperature of the inert gas or metal oxide precursor is increased, or the inert gas is By increasing the amount of gas, a vapor-state metal oxide precursor can be generated.
  • the time and temperature at which the metal oxide precursor in the vapor state is brought into contact with the substrate can be appropriately determined according to the adsorption activity of the metal oxide precursor used, for example, time 1 to 60 minutes.
  • the temperature may be determined within a range of 18 to 30 ° C.
  • the flow rate of the medium at this time is preferably 1 to 5 LZ.
  • the water used for the hydrolysis is preferably ion-exchanged water in order to prevent contamination with impurities and form a high-purity metal oxide layer. Further, among metal oxide precursors, those having high reactivity with water can be hydrolyzed by reacting with water vapor in the air.
  • the surface of the substrate may be dried using a dry gas such as nitrogen gas. Furthermore, the time required for these steps can be shortened by using a catalyst such as a condensation catalyst such as a base.
  • the invention according to claim 8 of the present invention is the method of manufacturing a gas detection element according to claim 6 or 7, wherein the metal adsorption layer or the first organic adsorption layer is in a vapor state metal oxidation.
  • a precursor adsorbing layer forming step in which a precursor is contacted to form a precursor adsorbing layer, and a second bonding layer forming in which the precursor adsorbing layer is hydrolyzed to form a second bonding layer of a metal oxide layer
  • the organic adsorbing layer is firmly bonded to the substrate by the surface treatment layer, and the organic adsorbing layer is hardly peeled off from the substrate even after repeated use, and a gas detection element having excellent durability can be provided.
  • the organic adsorption layer is chemically bonded to the substrate by the surface treatment layer having a functional group, and a thin and lightweight thin organic adsorption layer can be formed, even if a small amount of gas molecules are adsorbed. Therefore, it is possible to provide a gas detection element with high detection sensitivity.
  • the target gas molecule is not included! /
  • the gas molecule is desorbed, so the gas detection element can be easily regenerated. It is possible to provide a gas detection element with excellent usability.
  • the choice of the first organic adsorption layer can be expanded to increase the number of detectable gas species, and this can be achieved by controlling the three-dimensional structure of the first bonding layer.
  • the gas diffusivity of the detection gas in the first organic adsorption layer formed on the substrate can be improved, the detection time can be shortened, and a gas detection element with excellent response can be provided.
  • the first bonding layer and the second bonding layer are formed to a thickness of less than 3 nm, the gas molecules flow through the first bonding layer and the second bonding layer, and the lower organic adsorption layer and the first organic layer. Since the time required to reach the adsorption layer and the like can be shortened, regeneration with a fast gas detection response can be performed in a short time, and a gas detection element with excellent handling properties can be provided.
  • the organic adsorption layer is chemically bonded to the substrate by the surface treatment layer having a functional group, and a thin, lightweight thin organic adsorption layer can be formed with high accuracy in a short period of time. It is possible to provide a method for manufacturing a gas detection element excellent in production stability. [0040] According to the invention of claim 7, in addition to the effect of claim 6,
  • the metal oxide precursor as a starting material is dissolved in an organic solvent. Since no operation is required, it is possible to provide a method for producing a gas detection element that is free from problems such as solubility and stability of the metal oxide precursor in an organic solvent and excellent in quality stability.
  • the first bonding layer can be formed, and the first bonding layer is difficult to adsorb gas molecules. Therefore, even when the gas concentration is low, even a small amount of mass change due to adsorption of gas molecules can be detected, thereby providing a high detection sensitivity and a method for manufacturing a gas detection element.
  • the choice of the first organic adsorption layer can be expanded to increase the number of detectable gas species, and by controlling the three-dimensional structure of the first bonding layer, this can be achieved. It is possible to provide a method of manufacturing a gas detection element that can improve the diffusibility of the detection gas in the first organic adsorption layer formed on the substrate, shorten the detection time, and provide a gas detection element with excellent responsiveness.
  • the metal oxide precursor and impurities can be separated by adjusting the vaporization conditions of the metal oxide precursor, the adsorption of the metal oxide precursor is controlled at the molecular level so that there are no impurities or
  • a metal oxide layer can be formed with extremely few metal oxides, a metal oxide network can be precisely formed along the structure of the organic adsorption layer, and gas molecules can easily flow and have excellent diffusibility.
  • gas molecules can be adsorbed not only in the second organic adsorption layer but also in the organic adsorption layer and the first organic adsorption layer, increasing the adsorption amount of gas molecules and increasing the detection sensitivity.
  • FIG. 2 is a schematic cross-sectional view of a gas detection element according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a gas detection element according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a gas detection element according to Embodiment 5 of the present invention.
  • FIG. 7 A graph showing the relationship between the change in frequency and the ammonia concentration 20 seconds after ammonia gas was allowed to flow into the flow cell in the gas detection element of Experimental Example 3 (40 seconds after the test starting force was also applied). ] Shows the relationship between the change in frequency and ammonia concentration 20 seconds after ammonia gas was introduced into the flow cell (after 40 seconds of test starting force) in the gas detection elements of Experimental Examples 1 to 3.
  • FIG. 14 A plot of the time response characteristics of the frequency change of the gas sensing element of Experimental Example 3 for each pyridine gas concentration.
  • FIG. 15 A graph showing the relationship between the change in frequency and the pyridine concentration 20 seconds after the pyridine gas was allowed to flow into the flow cell (40 seconds after the test starting force) in the gas detection element of Experimental Example 3.
  • FIG. 16 A plot of the time response characteristics of the frequency change of the gas detection element in Experimental Example 3 for each ethanol gas concentration.
  • FIG. 17 is a graph plotting the time response characteristics of the frequency change of the gas detection element of Experimental Example 3 for each chloroform gas concentration.
  • FIG. 18 A plot of the time response characteristics of the frequency change of the gas detector in Experimental Example 3 for each toluene gas concentration.
  • FIG. 20 Changes in the frequency of the gas sensing element when air (blank gas) is flowed after flowing 3 ppm of ammonia gas (1L Z) for 30 seconds through the flow cell in which the gas sensing element of Example 5 is placed. Plot of time response characteristics
  • FIG. 21 Flow rate change of the gas detector when 3 ppm formaldehyde gas (1LZ) was allowed to flow for 30 seconds in the flow cell in which the gas detector of Experiment Example 5 was placed and then air (blank gas) was allowed to flow. Plot of time response characteristics
  • FIG. 22 Diagram showing the relationship between the change in frequency and ammonia concentration 20 seconds after ammonia gas was introduced into the flow cell in the gas detection elements of Experimental Examples 6-9.
  • FIG. 23 is a graph showing the relationship between the change in frequency and ammonia concentration 20 seconds after ammonia gas was introduced into the flow cell in the gas detection elements of Experimental Examples 10 and 11.
  • FIG. 24 Diagram showing the relationship between the change in frequency and formaldehyde concentration 20 seconds after formaldehyde gas was allowed to flow into the flow cell in the gas detection elements of Experimental Examples 10 and 11.
  • FIG. 1 is a schematic cross-sectional view of a gas detection element according to Embodiment 1 of the present invention.
  • 1 is a gas detection element according to the first embodiment
  • 2 is a substrate formed of any one of single crystal silicon, silicon nitride, piezoelectric crystal, piezoelectric ceramic, and piezoelectric thin film
  • 3 is a substrate 2
  • 4 is polyacrylic acid, polyglutamic acid , Polyallylamine hydrochloride, polyethyleneimine, polyline, polyimide, polyamide, polysulfone, polyacetate butyl, polypropylene, polyethylene, ferrolanine, polychlorinated trifluoroethylene, etc. It is an organic adsorption layer formed on the surface.
  • the substrate 2 After the functional group is introduced to the surface of the substrate 2 by means such as immersing the substrate 2 in 2-aminoethanethiol or the like to form the surface treatment layer 3, the substrate 2 is made of polyacrylic acid or the like in the organic adsorption layer forming step.
  • the organic adsorption layer 4 is formed on the surface of the surface treatment layer 3 by means such as dipping in a solution of the polymer compound.
  • the functional group of the surface treatment layer 3 is provided.
  • the organic adsorbing layer 4 is firmly bonded to the substrate 2, and the organic adsorbing layer 4 is not easily peeled off from the substrate even if it is repeatedly used.
  • the substrate 2 Since the substrate 2 is one of single crystal silicon, silicon nitride, piezoelectric crystal, piezoelectric ceramic, and piezoelectric thin film, the substrate 2 is made of QCM (quartz balance), surface acoustic wave device, micro When applied to a cantilever, etc., gas molecules are adsorbed on the organic adsorption layer 4 and its mass increases, so the natural frequency and resonance frequency of the substrate 2 change.By measuring this change, high accuracy and high resolution can be achieved. Gas detection is possible.
  • QCM quadratz balance
  • the organic treatment layer 4 is chemically bonded to the substrate 2 by the surface treatment layer 3 having a functional group, and the thin and light organic adsorption layer 4 can be formed, and a small amount of gas molecules are adsorbed. Even so, changes in the frequency due to mass changes can be detected, and the detection sensitivity can be increased.
  • the organic adsorption layer 4 can form functional groups that selectively adsorb gas molecules, the response time is shortened compared to gas sensing element materials such as oxide semiconductors and metal oxides. High precision and gas discrimination can be realized.
  • the organic adsorption layer 4 is chemically bonded to the substrate 2 by the surface treatment layer 3 having a functional group, and the thin organic thin adsorption layer 4 can be formed in a short time with high accuracy. Excellent production stability as well.
  • FIG. 2 is a schematic cross-sectional view of a gas detection element according to Embodiment 2 of the present invention. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
  • la is a gas detection element in Embodiment 2
  • 5 is a functional group such as a hydroxyl group, a carboxyl group, an amino group, an aldehyde group, a carbo group, a nitro group, a carbon-carbon double bond, and an aromatic ring.
  • a first bonding layer formed of a metal oxide such as titanium oxide or zirconium oxide, and bonded to the surface treatment layer 3, 6 is polyacrylic acid, polyglutamic acid, polyallylamine
  • the surface of the first bonding layer 5 with a high molecular weight compound such as hydrochloride, polyethyleneimine, polyaniline, polyimide, polyamide, polysulfone, polyacetate butyl, polypropylene, polyethylene, phenolalanine, and polychloroethylene. In It is the formed 1st organic adsorption layer.
  • the metal oxide precursor adsorption layer forming step vaporized titanium butoxide, zirconium propoxide, aluminum butoxide, methyl A metal oxide precursor such as trimethoxysilane is brought into contact with the surface treatment layer 3 to form a metal oxide precursor adsorption layer that is an adsorption layer for the metal oxide precursor.
  • the metal oxide precursor adsorption layer is hydrolyzed to form the first bonding layer 5 of the metal oxide layer on the surface of the surface treatment layer 3.
  • the first organic adsorption layer 6 is formed on the surface of the first bonding layer 5 by means such as immersing the substrate 2 in a solution of a high molecular compound such as polyacrylic acid. .
  • the first organic adsorption layer 6 Since the first organic adsorption layer 6 is formed on the surface of the first bonding layer 5 formed on the surface of the surface treatment layer 3, the first organic adsorption layer 6 depends on the type of the first bonding layer 5.
  • the number of gas species that can be detected can be increased by expanding the options for layer 6, and by controlling the three-dimensional structure of the first bonding layer 5, the detection gas in the first organic adsorption layer 6 formed there can be controlled. Diffusivity can be improved and detection time can be shortened.
  • the metal oxide precursor as a starting material is dissolved in an organic solvent. Therefore, there is no problem such as solubility and stability in the organic solvent of the metal oxide precursor, and the quality stability is excellent.
  • the first bonding layer 5 that can form the first bonding layer 5 and is difficult to adsorb gas molecules. It is possible to detect a small amount of mass change due to adsorption of gas molecules even when the gas concentration is low. Detection sensitivity can be increased.
  • a metal oxide precursor adsorbed layer is formed by bringing a metal oxide precursor in a vapor state into contact with the surface treatment layer 3, and then hydrolyzed to form a metal oxide layer (
  • the first bonding layer 5 may be formed of a polymer such as a polypeptide or a polymer.
  • the first bonding layer 5 can be formed by bonding a polymer such as a polypeptide or a polymer to the surface treatment layer 3 by a hydrogen bond or electrostatic interaction.
  • a liquid film is formed by spin coating or bar coating to form a metal oxide precursor adsorption layer, which is then hydrolyzed to form a metal oxide layer.
  • the first bonding layer 5 may be formed.
  • lb is a gas detection element in Embodiment 3
  • 7 is a functional group such as a hydroxyl group, a carboxyl group, an amino group, an aldehyde group, a carbo group, a nitro group, a carbon-carbon double bond, and an aromatic ring.
  • a second binding layer formed of a metal oxide such as titanium oxide or acid zirconium, and bonded to the organic adsorption layer 4, 8 is polyacrylic acid, polyglutamic acid,
  • the second bonding layer is made of a polymer compound such as polyallylamine hydrochloride, polyethyleneimine, polyaniline, polyimide, polyamide, polysulfone, polyacetate butyl, polypropylene, polyethylene, phenolalanine, polychloroethylene trifluoroethylene, etc. 7
  • the precursor adsorption layer formation step After the surface treatment layer 3 and the organic adsorption layer 4 are formed on the substrate 2 in the same manner as described in Embodiment 1, in the precursor adsorption layer formation step, vaporized titanium butoxide, zirconium propoxide, and aluminum butoxide are formed. Then, a metal oxide precursor such as methyltrimethoxysilane is brought into contact with the organic adsorption layer 4 to form a precursor adsorption layer which is an adsorption layer of a metal oxide precursor. Next, in the second bonding layer forming step, the precursor adsorption layer is hydrolyzed to form the second bonding layer 7 of the metal oxide layer on the surface of the organic adsorption layer 4.
  • a metal oxide precursor such as methyltrimethoxysilane
  • the second organic adsorption layer 8 is formed on the surface of the second bonding layer 7 by means such as immersing the substrate 2 in a solution of a polymer compound such as polyacrylic acid.
  • the gas molecules flowing through the second bonding layer 7 are organically adsorbed in the lower layer. It can also be adsorbed on layer 4, and there are many reactive sites for gas molecules, so that the amount of gas molecules adsorbed can be increased, and a large mass change due to gas molecule adsorption can be obtained, so that the detection sensitivity can be increased.
  • the metal oxide precursor and impurities can be separated by adjusting the vaporization conditions of the metal oxide precursor, the adsorption of the metal oxide precursor is controlled at the molecular level so that there are no impurities or A metal oxide layer can be formed with extremely few metal oxides, a metal oxide network can be precisely formed along the structure of the organic adsorption layer, and gas molecules can easily flow and have excellent diffusibility. Since a physical layer can be formed, gas molecules can be adsorbed not only in the second organic adsorption layer 8 but also in the organic adsorption layer 4, increasing the amount of gas molecules adsorbed and increasing the detection sensitivity, and adsorbing. Gas molecules can be desorbed and regenerated easily with a simple operation.
  • FIG. 4 is a schematic cross-sectional view of a gas detection element according to Embodiment 4 of the present invention. Note that the same components as those in Embodiment 2 are denoted by the same reference numerals and description thereof is omitted.
  • lc is a gas detection element in Embodiment 4
  • 7a is a polypeptide having a functional group such as a hydroxyl group, a carboxyl group, an amino group, an aldehyde group, a carbonyl group, a nitro group, a carbon-carbon double bond, and an aromatic ring.
  • a second bonding layer formed of a polymer such as a polymer, a metal oxide such as titanium oxide or acid zirconium, and bonded to the first organic adsorption layer 6, 8a is polyacrylic acid, polyglutamic acid, polyallylamine Polymeric compounds such as hydrochloride, polyethyleneimine, polyarin, polyimide, polyamide, polysulfone, polyacetate butyl, polypropylene, polyethylene, ferrolanine, polychloroethylene, etc. are used for the second bonding layer 7a. It is the 2nd organic adsorption layer formed in the surface.
  • the average frequency of 19Hz per layer is obtained in the metal oxide layer.
  • the organic adsorption layer showed an average frequency change of 28 Hz per layer.
  • the thickness of the metal oxide layer per layer was calculated to be lnm or less, and the thickness of the organic adsorption layer was calculated to be about lnm.
  • Fig. 6 is a graph plotting the time response characteristics of the frequency change of the gas detection element of Experimental Example 3 for each ammonia gas concentration.
  • the plotted points are, in order from the smallest frequency change, air (water vapor) passed through water, ammonia gas concentration 300ppb, 600ppb, 90 Oppb, 1.2ppm, 1.5ppm, 3ppm, 4.5ppm, It indicates 6ppm, 7.5ppm, 9ppm, 10.5ppm, 15ppm.
  • the frequency change due to gas molecule adsorption of the gas detection element in Experimental Example 4 is approximately the same as the frequency change of the gas detection element in Experimental Example 3. Should be 34 times.
  • Fig. 11 shows the number of vibrations of the gas sensing element when 3 ppm ammonia gas (1 LZ) was allowed to flow through the flow cell in which the gas sensing element of Experimental Example 3 was placed for 30 seconds and then air (blank gas) was allowed to flow. It is the figure which plotted the time response characteristic of change.
  • the frequency of the crystal unit can be restored to the initial state by allowing air (blank gas) to flow for about 300 seconds after the gas is detected, and it can be easily regenerated. This is because gas molecules easily flow through the metal oxide layer and the organic adsorption layer, and is excellent in diffusibility. In addition, the adsorption of ammonia gas in the organic adsorption layer is weak, and the intermolecular interaction is used. It is assumed that the time until desorption was short and it could be easily regenerated.
  • FIG. 13 is a graph showing the relationship between the change in frequency and the ptylamine concentration 20 seconds after the butylamine gas flowed into the flow cell in the gas detection element of Experimental Example 3 (40 seconds after the test starting force).
  • the gas detection element of Experimental Example 3 has a frequency change in a short time of 5 seconds or less (test start force is 25 seconds or less) even in the case of pyridine gas, and can detect gas in a short time. Is shown. In addition, frequency changes occur even with a low concentration of 600 ppb pyridine gas, indicating that it is possible to detect dilute pyridine gas in the order of ppb.
  • the gas detector can determine the gas concentration by relating it to the change in frequency. It was revealed.
  • the natural frequency of the crystal unit was returned to the initial state by sufficiently flowing air (blank gas) through the flow cell.
  • the gas detection elements of Examples 1 to 4 in which the organic adsorption layer of polyacrylic acid is formed have high discrimination and high detection sensitivity with respect to amine gases such as ammonia, butylamine, and pyridine. It has become clear that it can be detected with a strong response time.
  • the substrate and the electrode were modified with a hydroxyl group by dipping in an ethanol solution (10 mmol ZL) for 12 hours. After thoroughly washing with ethanol and ion-exchanged water, blow dry with nitrogen gas, A surface treatment layer having a hydroxyl group was formed on the substrate and the electrodes on both sides.
  • the metal oxide precursor adsorption layer was hydrolyzed with ion-exchanged water to form the first bonded layer of the metal oxide layer, and then dried by blowing nitrogen gas (first bonded layer forming step).
  • the substrate is immersed in ion-exchanged water for 1 minute to remove excess adsorbed components, dried with nitrogen gas, and the second organic layer of polyallylamine hydrochloride on the surface of the second bonding layer (metal oxide layer).
  • An adsorption layer was formed.
  • the second bonding layer metal oxide layer
  • the second organic adsorption layer polyacrylic acid
  • the second bonding layer metal oxide layer
  • the second organic adsorption layer polyallylamine hydrochloride
  • FIG. 19 is a graph plotting the time response characteristics of the frequency change of the gas detection element of Experimental Example 5.
  • Fig. 20 shows the change in frequency of the gas detector when 3 ppm ammonia gas (1 LZ) was allowed to flow for 30 seconds in the flow cell in which the gas detector of Experimental Example 5 was placed, and then air (blank gas) was allowed to flow.
  • Fig. 21 is a plot of time response characteristics. Fig. 21 shows the flow of 3 ppm formaldehyde gas (1 LZ) for 30 seconds and then air (blank gas) in the flow cell in which the gas detection element of Experimental Example 5 is placed.
  • FIG. 6 is a graph plotting the time response characteristics of the frequency change of the gas detection element.
  • the gas detection element of Experimental Example 5 can return the frequency of the crystal unit to its initial state by flowing air (blank gas) for about 20 seconds after detecting the gas. It became clear that it could be easily replayed.
  • ImM toluene Z ethanol solution of titanium butoxide (Ti (O-nBu) (made by Kishida Chemical)
  • a gas detection element of Experimental Example 7 was obtained in the same manner as in Experimental Example 6 except that the metal oxide layer was formed by hydrolysis after the substrate was immersed.
  • the thickness of the metal oxide layer per layer was lnm.
  • the thickness of the organic adsorption layer was calculated to be 0.7 nm.
  • a gas detection element of Experimental Example 8 was obtained in the same manner as in Experimental Example 6, except that the substrate was immersed in a 4 Z ethanol solution and then hydrolyzed to form a metal oxide layer.
  • the thickness of the metal oxide layer per layer was 2 nm.
  • the thickness of the organic adsorption layer was calculated to be lnm.
  • a gas detection element of Experimental Example 9 was obtained in the same manner as in Experimental Example 6, except that the substrate was immersed in a 4 Z ethanol solution and then hydrolyzed to form a metal oxide layer.
  • the gas responsiveness of the gas detection elements of Experimental Examples 6 to 9 was measured.
  • the gas detection element After being placed in the flow cell, air (blank gas) was flowed through the flow cell at a rate of 1LZ, and the change in the natural frequency of the quartz crystal was measured. This was used as the baseline for the gas sensing element.
  • each concentration (up to 3 Oppm) of ammonia gas flows through the flow cell at 1 LZ, and the change in the natural frequency of the crystal resonator (baseline) Difference). This measurement was performed with the flow cell kept at 25 ° C.
  • Fig. 22 is a graph showing the relationship between the change in frequency and ammonia concentration 20 seconds after ammonia gas was allowed to flow into the flow cell in the gas detection elements of Experimental Examples 6 to 9 (40 seconds after the test start force).
  • the frequency change of the gas sensing element tends to increase, and the thickness of the metal oxide layer increases.
  • the gas detection element of Example 9 with a 3 nm was found to have a relatively small frequency change. This is probably because the diffusion time of gas molecules in the metal oxide layer becomes longer as the metal oxide layer becomes thicker, and as a result, the response time tends to increase and the detection sensitivity tends to decrease. is doing. For this reason, it is presumed that the thickness of the metal oxide layer per layer is less than 3 nm, preferably 0.1 nm or more and 2 nm or less.
  • the thickness of the metal oxide layer per layer was 0.
  • the thickness of the organic adsorption layer (polyacrylic acid) was 2 nm, and the thickness of the organic adsorption layer (polyallylamine hydrochloride) was calculated to be 6 nm.
  • the substrate and the electrode were modified with a hydroxyl group by dipping in an ethanol solution (10 mmol ZL) for 12 hours. After thoroughly washing with ethanol and ion-exchanged water, nitrogen gas was blown and dried to form a surface treatment layer having hydroxyl groups on the substrate and the electrodes on both sides.
  • the substrate on which the surface treatment layer was formed was immersed in a 0.005 wt% aqueous solution (30 ° C.) of polyacrylic acid (manufactured by Sigma-Aldrich, weight average molecular weight 400000) for 20 minutes.
  • the substrate was immersed in ion-exchanged water for 1 minute to wash the excess adsorbed portion, and dried with nitrogen gas to form a polyacrylic acid organic adsorption layer.
  • the substrate on which the organic adsorption layer (polyacrylic acid) was formed was immersed in a 0.01 wt% aqueous solution (30 ° C.) of polyallylamine hydrochloride (manufactured by Sigma-Aldrich, weight average molecular weight 70000) for 20 minutes.
  • the substrate was immersed in ion-exchanged water for 1 minute to wash the excess adsorbed portion and dried with nitrogen gas to form an organic adsorption layer of polyallylamine hydrochloride on the surface of the organic adsorption layer (polyacrylic acid).
  • organic adsorption layer polyacrylic acid
  • organic adsorption layer polyallylamine hydrochloride
  • the natural frequency of the crystal unit was measured with a QCM (quartz balance) every time the organic adsorption layer was formed.
  • the organic adsorption layer (polyacrylic acid) was 7 nm per layer, and the organic adsorption layer (polyallylamine hydrochloride) ) was calculated to be 7 nm thick per layer.
  • Fig. 23 is a graph showing the relationship between the change in frequency and the ammonia concentration 20 seconds after ammonia gas was flowed into the flow cell (40 seconds after the test start force) in the gas detection elements of Experimental Examples 10 and 11.
  • Figure 24 shows the relationship between the change in frequency and the formaldehyde concentration 20 seconds after the formaldehyde gas was allowed to flow into the flow cell in the gas detection elements of Experimental Examples 10 and 11 (the test starting force was also 40 seconds later). It is.
  • the gas detection element of Experimental Example 10 in which a metal oxide layer is interposed between the organic adsorption layers can determine the gas concentration by correlating with the inherent frequency change, and the quantitative performance is improved. It became clear that it was excellent.
  • a crystal unit with a reference frequency of 9 MHz a crystal unit with a reference frequency of 30 MHz with gold electrodes formed on both sides was used as the substrate in the same way as in Experimental Example 1. Then, a gas detection element of Experimental Example 12 was obtained in which five metal oxide layers and five organic adsorption layers were laminated on the surface treatment layer.
  • the frequency change of the gas detection element in Experimental Example 12 was 2 Hz at 50 ppb, 10 Hz at 100 ppb, force S26 Hz at 500 ppb, and 52 Hz at lppm, whereas Experimental Example 1
  • the change in the frequency of the gas detection element was 0.559Hz at 500ppb, and the force O.96Hz at lppm, and the 50ppb and 100ppb heights were unseen.
  • the gas detection element of Experimental Example 12 using a quartz resonator with a reference frequency of 30 MHz as the substrate has only 5 layers of metal oxide layers and organic adsorption layers, Gas detection sensitivity was high. It was found that it was possible to detect dilute ammonia gas in the order of ppb, and it was excellent in productivity.
  • the present invention relates to a gas detection element for various gases such as amine gases such as ammonia and pyridine, and sulfur-containing gases such as hydrogen sulfide and methyl mercaptan, and a method for producing the same.
  • gases such as amine gases such as ammonia and pyridine, and sulfur-containing gases such as hydrogen sulfide and methyl mercaptan
  • the bonding force between the organic adsorbing film and the substrate is strong and durable, and various organic adsorbing layers can be easily fixed to the substrate. It is also possible to combine various organic adsorption layers, provide gas detectors that are responsive to many types of gases and have excellent versatility, and form thin, lightweight thin organic adsorption layers with high accuracy in a short time. High productivity C that it is possible to provide a manufacturing method excellent gas sensing element Rutotomoni production stability

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

 アンモニア,ピリジン等のアミン系ガス、硫化水素,メチルメルカプタン等の含硫ガス、ホルムアルデヒド等のアルデヒド系ガス等のppbオーダーの低濃度の各種ガスを短い応答時間で検知することができるとともに、有機吸着膜と基板との結合力が強く耐久性に優れ、また種々の有機吸着層を基板に容易に固定化できるので有機吸着層の選択肢が広く、複数種の有機吸着層を組み合わせることもでき多くのガス種に応答を示し汎用性に優れるガス検知素子を提供することを目的とする。  本発明のガス検知素子1は、基板2と、基板2に形成された官能基を有する表面処理層3と、表面処理層3の表面に形成された有機吸着層4と、を備える。

Description

ガス検知素子及びその製造方法
技術分野
[0001] 本発明は、アンモニア,ピリジン等のアミン系ガス、硫化水素,メチルメルカプタン等 の含硫ガス、ホルムアルデヒド等のアルデヒド系ガス等の各種ガスのガス検知素子及 びその製造方法に関するものである。
背景技術
[0002] 従来より、アンモニア,ピリジン等のアミン系ガス、硫化水素,メチルメルカプタン等 の含硫ガス等の各種ガスのガス検知素子が、民生用から産業用、さらには分析計測 機器に至る様々な分野で使用されて 、る。
このようなガス検知素子に関する従来の技術としては、例えば、(特許文献 1)に「陰 イオン交換膜の両面をガス検知電極と対向電極で挟み込んだ一酸ィ匕炭素やアンモ ユアガス等のガスセンサ」が開示されている。
(特許文献 2)には「白金や白金合金で形成されたヒータと電極とを有するセンサ基 体と、酸化スズと金とを含有し前記センサ基体を被覆した感ガス体と、を備えたアンモ ユアガスセンサ」が開示されて!、る。
(特許文献 3)には「一対の電極と、前記電極に接して設けられた感応部と、を備え 、前記感応部が、 WO /ZrO、 SO 2"/ZrO、 PO 3"/ZrO、 SO 2"/TiO力ら
3 2 4 2 4 2 4 2 選ばれる少なくとも 1種であるアンモニアセンサ」が開示されて!、る。
(特許文献 4)には「絶縁基板上に形成された一対の電極と、スルホン酸基を有する 側鎖が主鎖に結合した高分子を主体とし前記電極間に形成されたアンモニア感応 膜と、を備えたアンモニアガスセンサ」が開示されている。
(特許文献 5)には「揮発性有機塩素化合物を選択吸着する特定の脂質を塗布して 作成した薄膜を電極表面に有する水晶振動子 Aを含む発振器 Aと、気体非吸着性 膜で表面を気密に包囲した水晶振動子 Bを含む発振器 Bと、を備え、発振器 Bからの 発振周波数で発振器 Aの発振周波数を補償する揮発性有機塩素化合物の検出装 置」が開示されている。 特許文献 1 :特開 2005— 147790号公報
特許文献 2 :特開 2005— 127743号公報
特許文献 3:特開 2005 - 114355号公報
特許文献 4:特開 2003— 161715号公報
特許文献 5:特開平 11—44625号公報
発明の開示
発明が解決しょうとする課題
し力しながら上記従来の技術においては、以下のような課題を有していた。
(1) (特許文献 1)に開示の技術は陰イオン交換膜における電気化学反応を利用して 対象ガスの検知を行うので、イオンが陰イオン交換膜を通過するのに必要な 100秒 程度の応答時間を要し、また対象ガスは 50ppm程度の濃度が必要で ppbオーダー の低濃度のガスの検知が困難であると 、う課題を有して 、た。
(2) (特許文献 2)や (特許文献 3)に開示の技術は、酸化スズ半導体や WO /ZrO
3 2 等の金属酸化物を加熱して、酸化スズ半導体や金属酸化物にアンモニアガス分子を 吸脱着させてガス濃度を測定するものなので、計測時には酸化スズ半導体や金属酸 化物を加熱しておく必要があり省エネルギー性に欠けると 、う課題を有して ヽた。
(3)また、アンモニアガス分子の吸脱着に必要な 100秒程度の応答時間を要し、また 対象ガスは 50ppm程度の濃度が必要で ppbオーダーの低濃度のガスの検知が困難 であると 、う課題を有して 、た。
(4) (特許文献 4)に開示の技術は濃度が lppm程度のアンモニアガスの検出が可能 だが、応答時間が長く 20分程度も保持する必要があるという課題を有していた。また 、 ppbオーダーの低濃度のガスを検知する場合は、さらに保持時間が長くなるという 課題を有していた。
(5) (特許文献 5)に開示の技術は短い応答時間で 0. 5ppm程度の低濃度のガスを 検知することができるが、揮発性有機塩素化合物を選択吸着する脂質で形成された 薄膜と電極表面との結合力が弱ぐ繰り返し使用により薄膜が電極表面力 剥離し易 く耐久性に欠けると 、う課題を有して 、た。
(6)対象ガスの種類に応じた脂質の合成が煩雑であり生産性に欠けるという課題を 有していた。
[0004] 本発明は上記従来の課題を解決するもので、短い応答時間で ppbオーダーの低濃 度のガスを検知することができるとともに、有機吸着膜と基板との結合力が強く耐久 性に優れ、また種々の有機吸着層を基板に容易に固定ィ匕できるので有機吸着層の 選択肢が広ぐ複数種の有機吸着層を組み合わせることもでき多くのガス種に応答を 示し汎用性に優れるガス検知素子を提供することを目的とする。
また、本発明は、層厚の薄い軽量の薄膜の有機吸着層を短時間で精度良く形成す ることができ、生産性に優れるとともに生産安定性に優れ、ガス検知精度が著しく向 上したガス検知素子の製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記従来の課題を解決するために本発明のガス検知素子及びその製造方法は、 以下の構成を有している。
本発明の請求項 1に記載のガス検知素子は、基板と、前記基板に形成された官能 基を有する表面処理層と、前記表面処理層の表面に形成された有機吸着層と、を備 えた構成を有している。
この構成により、以下のような作用が得られる。
(1)基板に形成された官能基を有する表面処理層と、表面処理層の表面に形成され た有機吸着層と、を備えているので、表面処理層によって有機吸着層が基板に強固 に結合され、繰り返し使用しても有機吸着層が基板から剥離し難く耐久性に優れる。
(2)官能基を有する表面処理層によって有機吸着層が基板に化学結合し、層厚の 薄 、軽量の薄膜の有機吸着層を形成することができ、微量のガス分子を吸着しても 検知することができ検知感度を高めることができる。
(3)有機吸着層はガス分子が選択的に吸着する官能基を有するので、酸化スズ半導 体や金属酸化物等のガス検知素子材料と比較して、応答時間の短縮化と精度の高
Vヽガス識別性を実現することができる。
(4)ガスを検知した後は、対象ガス分子が含まれな!/ヽ気体や液体を有機吸着層に接 触させるとガス分子が脱着するので、ガス検知素子を容易に再生することができ繰り 返し使用性に優れる。 (5)表面処理層を有しているので、種々の有機吸着層を基板に容易に固定ィ匕でき有 機吸着層の選択肢が広ぐまた複数種の有機吸着層を組み合わせることもでき、有 機吸着層の種類に応じたガス種に応答を示し汎用性に優れる。
[0006] ここで、基板としては、単結晶シリコン、窒化シリコン、水晶(SiO ) , Bi GeO , Lil
2 12 20
Ο , LiNbO , LiTaO , BaTiO等の圧電性結晶、 Pb (Zr, Ti) 0系, PbTiO系, P
3 3 3 3 3 3 bNb O等の圧電セラミックス、 ZnO薄膜, Bi GeO , CdS等の圧電性薄膜等の無
2 6 12 20
機材料製やポリフッ化ビニリデン (PVDF)等の圧電性高分子等の高分子製が用いら れ、固有の振動数や共振周波数を有する基板を QCM (水晶天秤)、弾性表面波素 子、マイクロカンチレバー等に適用することによって、基板に形成された有機吸着層 に吸着したガス分子の質量に応じて基板の固有振動数等が変化するので、この変化 を計測することによって有機吸着層へのガス分子の吸着量を計測し雰囲気中のガス 濃度を検知できる。
基板には、必要に応じて電極を形成することができる。電極としては、白金、金、銀 、銅等の金属製、インジウムスズ酸ィ匕物 (ITO)、グラフアイト等の炭素系電極等が用 いられ、水晶等の圧電性結晶等の基板の両面に対向して形成したり、圧電性結晶, 圧電セラミックス等の基板の片面に櫛形等にして形成することができる。電極の有無 によって、表面処理層は、基板、電極、基板と電極の双方に形成することができる。ま た、表面処理層は、基板の片面又は両面に形成することができる。
[0007] 表面処理層としては、基板や電極をケィ素化剤で処理する、炭素系電極の表面に 空気酸化又は湿式酸化によって水酸基を導入する、金等の電極の表面にメルカプト エタノール等の吸着により水酸基を導入する、 ITO等の電極の表面に過酸ィ匕水素を 接触させることにより水酸基を導入する等の手段によって、水酸基,カルボキシル基 ,アミノ基,アルデヒド基,カルボニル基,ニトロ基,炭素炭素二重結合,芳香族環等 の官能基を基板又は電極の表面に導入されたものが用いられる。
[0008] 有機吸着層としては、ポリグルタミン酸等のペプチド系ポリマー、ポリアクリル酸、ポ リアリルアミン塩酸塩、ポリエチレンィミン、ポリア二リン、ポリイミド、ポリアミド、ポリスル ホン、ポリ酢酸ビュル、ポリプロピレン、ポリエチレン、フエ-ルァラニン、ポリクロ口トリ フルォロエチレン等のガス分子が吸着する官能基を有する高分子化合物が用いられ る。高分子化合物の種類は検知対象となるガスの種類に応じて適宜選択して用いら れる。例えば、アンモニア,ピリジン等のアミン系ガスを検知対象とする場合には、ポリ アクリル酸,ポリグルタミン酸が好適に用いられ、硫化水素,メチルメルカブタン等の 含硫ガスを検知対象とする場合には、ポリエチレン、フエ二ルァラニン、ポリクロ口トリ フルォロエチレンが好適に用いられ、ホルムアルデヒド等のアルデヒド系ガスを検知 対象とする場合には、ポリアリルアミン塩酸塩,ポリエチレンィミン,ポリア二リンが好適 に用いられる。
[0009] 有機吸着層の 1層当たりの厚さとしては 0. 1〜: LOnmが好適に用いられる。有機吸 着層の厚さが 0. lnmより薄くなると、ガス分子が吸着する官能基の量が少なくガスの 検知能が低下し、 lOnmより厚くなると有機吸着層が有する官能基同士が結合する など官能基がガス分子の吸着に有効に使われず検知時間が長くなり、また湿度等の 物理的な影響を受け易くなり雰囲気によってガス検知の精度が低下することがあるた めいずれも好ましくない。
なお、有機吸着層の 1層当たりの厚さは、有機吸着層の積層時に、 QCM (水晶天 秤)の固有振動数の変化を測定することにより算出することができる。具体的には、 Q CMの振動数変化量と質量変化量との関係を求めておき、形成した有機吸着層の面 積、層数、密度等を考慮して、 1層当たりの有機吸着層の厚さを算出することができる
[0010] 本発明の請求項 2に記載のガス検知素子は、基板と、前記基板に形成された官能 基を有する表面処理層と、前記表面処理層の表面に形成された第 1結合層と、前記 第 1結合層の表面に形成された第 1有機吸着層と、を備えた構成を有している。 この構成により、請求項 1で得られる作用に加え、以下のような作用が得られる。 (1)第 1有機吸着層が、表面処理層の表面に形成された第 1結合層の表面に形成さ れているので、第 1結合層の種類に応じて第 1有機吸着層の選択肢を広げ検知可能 なガス種を増やすことができるとともに、第 1結合層の立体的な構造を制御することに よって、そこに形成された第 1有機吸着層における検知ガスの拡散性を改善すること ができ検知時間を短縮できる。
[0011] ここで、基板、表面処理層、第 1有機吸着層としては、請求項 1で説明した基板、表 面処理層、有機吸着層と同様なので説明を省略する。
第 1結合層としては、表面処理層や有機吸着層に吸着する水酸基,カルボキシル 基,アミノ基,アルデヒド基,カルボニル基, -トロ基,炭素炭素二重結合,芳香族環 等の官能基を有するポリペプチド,ポリマー等の重合体、酸化チタン,酸化ジルコ二 ゥム,シリカ等の金属酸ィ匕物等で薄膜状に形成されたものが用いられる。
[0012] 本発明の請求項 3に記載の発明は、請求項 1又は 2に記載のガス検知素子であつ て、前記有機吸着層又は前記第 1有機吸着層の表面に、第 2結合層と第 2有機吸着 層の交互積層が 1乃至複数回行われた構成を有している。
この構成により、請求項 1又は 2で得られる作用に加え、以下のような作用が得られ る。
(1)有機吸着層又は第 1有機吸着層の表面に、第 2結合層と第 2有機吸着層の交互 積層が 1乃至複数回行われているので、第 2有機吸着層に捕捉されずに第 2結合層 も拡散したガス分子を下層の有機吸着層や第 1有機吸着層等にも吸着させることが でき、ガス分子の反応点が多くガス分子の吸着量を増やすことができ、ガス分子の吸 着による大きな質量変化が得られるので検知感度を高めることができる。
(2)有機吸着層や第 1有機吸着層と第 2有機吸着層を、第 2結合層を介さないで直 接積層すると、ガス分子を選択的に吸着させる有機吸着層等の官能基が層間の結 合に用いられてしまうため、ガス分子の反応点を増やすことができず検知感度を高め ることができないが、有機吸着層や第 1有機吸着層と第 2有機吸着層との間に第 2結 合層を結合させているので、積層数にほぼ比例してガス分子の反応点が増え検知感 度を高めることができる。
[0013] ここで、第 2結合層としては、第 1結合層と同様のものが用いられるので説明を省略 する。また、第 2有機吸着層としては、有機吸着層と同様のものが用いられるので説 明を省略する。
有機吸着層や第 1有機吸着層、第 2有機吸着層は、同種又は層ごとに異種の高分 子化合物で形成することができる。層ごとに異種の高分子化合物で形成した場合は 、ひとつの素子で高分子化合物の種類に応じた複数種のガスの検知ができ応用性 に優れる。 なお、第 2結合層と第 2有機吸着層の交互積層の回数が多くなるにつれ、ガス分子 の反応点が積層回数にほぼ比例して増加するため、検知感度が増加する傾向がみ られる。しかし、製造工数も増加するため、交互積層回数は、検知感度と製造工数を 考慮して、 1〜30回程度の中から適宜選択することができる。
[0014] 本発明の請求項 4に記載の発明は、請求項 2又は 3に記載のガス検知素子であつ て、前記第 1結合層,前記第 2結合層が、 3nm未満の厚さに形成された構成を有し ている
この構成により、請求項 2又は 3で得られる作用に加え、以下のような作用が得られ る。
(1)第 1結合層,第 2結合層が 3nm未満の厚さに形成されているので、ガス分子が第 1結合層や第 2結合層を拡散して下層の有機吸着層や第 1有機吸着層等に到達す るまでの時間を短縮できるため、ガス検知の応答が速ぐ再生も短時間で行うことが でき取扱性に優れる。
(2)ガス分子が吸着し難い第 1結合層や第 2結合層の重量を小さくできるため、第 1 有機吸着層等へのガス分子の吸着量が少ないときでも検知することができ、検知感 度を高めることができる。
[0015] 第 1結合層や第 2結合層の 1層当たりの厚さは、第 1結合層等の積層時に、 QCM ( 水晶天秤)の固有振動数の変化を測定することにより算出することができる。具体的 には、 QCMの振動数変化量と質量変化量との関係を求めておき、形成した第 1結合 層等の面積、層数、密度等を考慮して、 1層当たりの第 1結合層等の厚さを算出する ことができる。
第 1結合層や第 2結合層の 1層当たりの厚さは、 QCMの検知感度以上で 3nm未満 、好ましくは 0. lnm以上 2nm以下が好適である。第 1結合層や第 2結合層の厚さが 0. lnmより薄くなるにつれ、その上面に形成される第 1有機吸着層や第 2有機吸着 層の吸着量が少なくなり、ガス検知能が低下する傾向がみられ、 2nmより厚くなるに つれ第 1結合層内や第 2結合層内のガス分子の拡散時間が長くなり、応答時間が長 くなり検知感度が低下する傾向や、第 1結合層等の重量が増すため第 1有機吸着層 等へのガス分子の吸着量が少ないときはガスの検知ができず検知感度が低下する 傾向がみられる。特に、 0. lnm未満、 3nm以上になると、これらの傾向が著しいため いずれも好ましくない。
[0016] 本発明の請求項 5に記載の発明は、請求項 1乃至 4の内いずれか 1に記載のガス 検知素子であって、前記基板が、単結晶シリコン、窒化シリコン、圧電性結晶、圧電 セラミックス、圧電性薄膜の内 、ずれか 1種である構成を有して 、る。
この構成により、請求項 1乃至 4の内いずれか 1で得られる作用にカ卩え、以下のよう な作用が得られる。
(1)基板が単結晶シリコン、窒化シリコン、圧電性結晶、圧電セラミックス、圧電性薄 膜の内いずれか 1種なので、圧電性結晶、圧電セラミックス、圧電性薄膜を用いること により QCM (水晶天秤)、弾性表面波素子等として、単結晶シリコン、窒化シリコンを 用いることによりマイクロカンチレバー等として、固有振動数の変化や共振周波数の 変化等を利用してガス吸着量を計測することができ高精度 ·高分解能のガス検知が できる。
[0017] 本発明の請求項 6に記載のガス検知素子の製造方法は、基板に形成された官能 基を有する表面処理層の表面に有機吸着層を形成する有機吸着層形成工程を備え た構成を有している。
この構成により、以下のような作用が得られる。
(1)官能基を有する表面処理層によって有機吸着層が基板に化学結合し、層厚の 薄い軽量の薄膜の有機吸着層を形成することができ、層厚の薄い軽量の薄膜の有 機吸着層を短時間で精度良く形成することができ生産性に優れるとともに生産安定 性に優れる。
[0018] ここで、基板、表面処理層、有機吸着層としては、請求項 1で説明したものと同様な ので説明を省略する。
[0019] 表面処理層の表面に有機吸着層を形成する手段としては、プラズマ励起を利用し て基板上で高分子化合物を反応 '堆積させるプラズマ CVD法、基板を高分子化合 物の溶液に浸漬したり、基板に高分子化合物の溶液を滴下若しくは塗布したりする 方法、基板の結晶構造を利用したポリマーェピタキシャル成長法、重合反応時のポリ マー溶解度を利用した基板析出法等が用いられる。 [0020] 本発明の請求項 7に記載のガス検知素子の製造方法は、基板に形成された官能 基を有する表面処理層に蒸気状態の金属酸化物前駆体を接触させ前記基板に金 属酸化物前駆体吸着層を形成する金属酸化物前駆体吸着層形成工程と、前記金 属酸ィヒ物前駆体吸着層を加水分解して金属酸ィヒ物層の第 1結合層を形成する第 1 結合層形成工程と、前記第 1結合層の表面に第 1有機吸着層を形成する第 1有機吸 着層形成工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)金属酸ィ匕物前駆体吸着層形成工程において基板に蒸気状態の金属酸ィ匕物前 駆体を接触させるため、出発原料である金属酸化物前駆体を有機溶媒に溶解したり する操作が不要なため、金属酸化物前駆体の有機溶媒中における溶解性や安定性 等の問題がなく品質の安定性に優れる。
(2)有機溶媒に溶解した金属酸化物前駆体を接触させる場合と比較して膜厚の薄!ヽ 第 1結合層を形成することができ、ガス分子が吸着し難い第 1結合層を軽量ィ匕し、ガ ス濃度が低 、ときでもガス分子の吸着による微量の質量変化を検知できるようにして 検知感度を高めることができる。
(3)表面処理層の表面に形成された第 1結合層の表面に第 1有機吸着層を形成する ので、第 1結合層の種類に応じて第 1有機吸着層の選択肢を広げ検知可能なガス種 を増やすことができるとともに、第 1結合層の立体的な構造を制御することによって表 面に形成された第 1有機吸着層における検知ガスの拡散性を改善することができ検 知時間を短縮できる。
[0021] ここで、金属酸化物前駆体としては、基板の表面と結合できる基を有し、加水分解 することによって金属酸ィ匕物となる化合物であれば、特に制限なく用いることができる 具体的には、チタンブトキシド (Ti (0—nBu) )、ジルコニウムプロポキシド(Zr (0
4
— nPr) )、アルミニウムブトキシド (Al(O-nBu) )、ニオブブトキシド(Nb (O— nBu
4 3
) )等の金属アルコキシド;メチルトリメトキシシラン(MeSi (0— Me) )、ジェチルジェ
5 3
トキシシラン (Et Si (O-Et) )等、 2個以上のアルコキシル基を有する金属アルコキ
2 2
シド;ァセチルアセトン等の配位子を有し 2個以上のアルコキシル基を有する金属ァ ルコキシド; BaTi (OR) 等のダブルアルコキシド化合物等の金属アルコキシドが挙
X
げられる。
また、これらの金属アルコキシドに少量の水を添加し、部分的に加水分解、縮合さ せて得られるアルコキシドゲルの微粒子、チタンブトキシドテトラマー(C H 0〔Ti(0
4 9
C H ) 0〕 C H )等、複数個或いは複数種の金属元素を有する二核或いはクラス
4 9 2 4 4 9
ター型のアルコキシドィ匕合物、適当な溶媒に溶解することにより金属アルコキシドを 形成するもの(例えば TiCl等)や、溶媒中でゾルゲル反応を起こすィ匕合物であって
4
金属及び酸素を含有する化合物(例えば Si (OCN) 等)を使用することも可能である
4 また、基板の表面の水酸基と化学吸着し、加水分解等によって表面に新たな水酸 基を生じるような金属錯体も金属酸化物前駆体として使用することができる。このよう な金属錯体としては、具体的には、金属ハロゲン化物、ペンタカルボ-ル鉄 (Fe (CO ) )等の金属カルボ-ルイ匕合物、並びにこれらの多核クラスターも使用することができ
5
る。
[0022] 特に、金属酸化物前駆体が金属アルコキシドの場合、金属アルコキシドは基板の 表面の官能基と化学結合し易ぐ加水分解によって水酸基等の官能基を生成するの で、 1層あたり lnm以下或 、は 1〜数 nmの厚さの薄 ヽ金属酸化物層を容易に形成 することができるとともに容易に多層化でき操作性に優れ好ましい。
[0023] 金属酸化物前駆体は、必要に応じて、 2種以上を組み合わせて使用することにより 、基板の表面に複合酸化物層を形成することもできる。金属酸化物前駆体の蒸気化 条件を詳細に調整できるため、 2種以上の金属酸化物前駆体を用いる場合も、純度 の高い金属酸ィ匕物層を形成できる。
[0024] 金属酸化物前駆体を蒸気状態にする方法は、特に定めるものではなぐ公知の方 法を採用できる。例えば、金属酸化物前駆体を沸点以下の温度で保持し、不活性ガ スを吹き込むことにより蒸気状態の金属酸ィ匕物前駆体を発生させることができる。この 場合の沸点以下の温度としては、金属酸化物前駆体の種類によって異なるが、室温 (例えば 18°C)〜120°Cが好適に用いられる。
不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウム等が挙げられる。金属酸ィ匕 物前駆体に吹き込む不活性ガスの量は、金属酸ィ匕物前駆体の沸点に強く依存し、 沸点が低い場合は、不活性ガスや金属酸化物前駆体の温度を上げるか、不活性ガ スの量を多くすることで、蒸気状態の金属酸化物前駆体を発生させることができる。
[0025] 基板に蒸気状態の金属酸化物前駆体を接触させるのは、発生した蒸気状態の金 属酸化物前駆体を、移動媒体を用いて基板の表面に移動させ接触させるものが好 適に用いられる。移動媒体としては、窒素ガス、アルゴンガス、ヘリウム等の不活性ガ スが用いられる。蒸気状態のままで金属酸化物前駆体を移動させるためである。 また、蒸気状態の金属酸化物前駆体を基板の表面に接触させる工程は、金属酸化 物前駆体を蒸気状態にする工程とは別の空間で行うのが好ましい。別の空間とは、 例えば、互いに隔てられた空間であって、何らかの操作を施さない限り、蒸気状態の 金属酸化物前駆体を基板が存在して 、る空間に移動させることができな 、ことを 、う 。これにより、金属酸化物前駆体の基板への吸着、基板に吸着していない非吸着金 属酸化物前駆体の除去、加水分解等の一連の操作を、金属酸化物前駆体を蒸気状 態にする工程とは別に連続的に行うことができ、飽和吸着までの時間を短縮させ吸 着量も増やすことができ生産性に優れるからである。
[0026] 基板に蒸気状態の金属酸化物前駆体を接触させる時間及び温度は、用いる金属 酸ィ匕物前駆体の吸着活性等に応じて適宜定めることができる力 例えば、時間 1〜6 0分、温度 18〜30°Cの範囲内で決定すればよい。また、このときの媒体の流量として は 1〜 5LZ分が好適に用いられる。
[0027] 金属酸化物前駆体吸着層形成工程において基板の表面に金属酸化物前駆体吸 着層を形成するが、金属酸化物前駆体吸着層は、金属酸化物前駆体を基板に接触 させることで形成してもよ ヽし、金属酸化物前駆体を接触させた後何らかの処理を行 うこと〖こよって形成するものでもよい。また金属酸ィ匕物前駆体吸着層は、基板の表面 に物理吸着するものでもよいしィ匕学吸着するものでもよい。好ましくは、基板の表面 に導入された官能基と蒸気状態の金属酸化物前駆体とを化学吸着させ結合させるも のが好適に用いられる。膜厚の非常に薄い軽量の薄膜を形成することができ、ガス 分子が第 1有機吸着層に吸着することによるわず力な質量変化を検知できるようにし て検知感度を高めることができるからである。 [0028] 金属酸化物前駆体吸着層形成工程において基板の表面に金属酸化物前駆体吸 着層を形成させた後、過剰の金属酸化物前駆体である弱 、物理吸着種を除去する ことができる。これにより、基板の表面と化学結合するのみならず弱い物理吸着種とし て過剰に吸着した金属酸ィ匕物前駆体の内、弱い物理吸着種を除去して、基板の表 面に化学結合したオングストローム乃至はナノメートル単位の厚さの超薄膜の金属酸 化物前駆体吸着層を形成することができ検知感度を高めることができる。具体的には 、蒸気状態の金属酸化物前駆体を基板の表面に接触させた後、不活性ガスのみを 流して過剰の金属酸ィ匕物前駆体を除去することができる。不活性ガスとしては、窒素 ガス、アルゴンガス、ヘリウム等が挙げられる。
[0029] 第 1結合層形成工程において、金属酸化物前駆体吸着層を加水分解して金属酸 化物層の第 1結合層を形成できる。加水分解としては、金属酸化物前駆体を金属酸 化物にすることができるものであれば、特に定めることなぐ公知の方法を採用できる 。例えば、金属酸化物前駆体吸着層が形成された基板を所定温度の水に所定時間 浸漬する方法、金属酸化物前駆体吸着層が形成された基板を水蒸気を含んだ空気 中に曝す方法、金属酸化物前駆体吸着層が形成された基板に熱風を吹き付ける熱 風乾燥法等を用いることができる。これにより、基板の表面に吸着した金属アルコキ シド等の金属酸化物前駆体を加水分解し重縮合することで、薄膜の金属酸化物層を 形成することができる。
加水分解に用いる水は、不純物等の混入を防止し高純度の金属酸化物層を形成 するため、イオン交換水を用いるのが好ましい。また、金属酸化物前駆体のうち、水と の反応性が高いものは、空気中の水蒸気と反応させることにより加水分解を行うこと ができる。
加水分解後、必要により、窒素ガス等の乾燥ガスを用いて基板の表面を乾燥させ てもよい。さらに、塩基等の縮合触媒等の触媒を用いることで、これらの工程に必要 な時間を短縮することも可能である。
[0030] 第 1結合層形成工程において形成される金属酸化物層の第 1結合層は、一回の操 作によって、例えば 0. 1〜: LOnm好ましくは 0. lnm以上 3nm未満の厚さに形成する ことができる。 なお、第 1有機吸着層形成工程としては、請求項 5で説明した有機吸着層形成ェ 程と同様なので説明を省略する。
[0031] 本発明の請求項 8に記載の発明は、請求項 6又は 7に記載のガス検知素子の製造 方法であって、前記有機吸着層又は前記第 1有機吸着層に蒸気状態の金属酸化物 前駆体を接触させ前駆体吸着層を形成する前駆体吸着層形成工程と、前記前駆体 吸着層を加水分解して金属酸ィ匕物層の第 2結合層を形成する第 2結合層形成工程 と、前記第 2結合層の表面に第 2有機吸着層を形成する第 2有機吸着層形成工程と 、を備えた構成を有している。
この構成により、請求項 6又は 7で得られる作用に加え、以下のような作用が得られ る。
(1)金属酸化物前駆体の気化の条件を整えることにより金属酸化物前駆体と不純物 とを分離できるため、金属酸ィ匕物前駆体の吸着を分子レベルで制御して不純物がな い又は著しく少ない金属酸化物層を形成することができ、有機吸着層の構造に沿つ て金属酸ィ匕物のネットワークを精密に形成でき、ガス分子が流通し易く拡散性に優れ た金属酸ィ匕物層を形成できるため、第 2有機吸着層だけでなく有機吸着層や第 1有 機吸着層にもガス分子を吸着させることができ、ガス分子の吸着量を増やし検知感 度を高めることができるとともに、吸着したガス分子を簡単な操作で脱着させることが でき容易〖こ再生させることができる。
[0032] ここで、前駆体吸着層、前駆体吸着層形成工程、第 2結合層形成工程としては、そ れぞれ請求項 7で説明した金属酸化物前駆体吸着層、金属酸化物前駆体吸着層形 成工程、第 1結合層形成工程と同様なので説明を省略する。
[0033] 本発明の請求項 9に記載の発明は、請求項 8に記載のガス検知素子の製造方法で あって、 前記前駆体吸着工程と前記第 2結合層形成工程と前記第 2有機吸着層形 成工程との一群が繰り返し行われる繰り返し工程を備えた構成を有している。
この構成により、請求項 8で得られる作用に加え、以下のような作用が得られる。 (1)第 2有機吸着層の表面に、さらに蒸気状態の金属酸化物前駆体を接触させ金属 酸化物前駆体の吸着層を形成した後、加水分解して金属酸化物層 (第 2結合層)を 形成し、金属酸化物層 (第 2結合層)の表面へ第 2有機吸着層を形成する交互積層 を 1乃至複数回行う繰り返し工程を備えているので、第 2有機吸着層が第 2結合層を 介して複数積層されるため、第 2有機吸着層の層数が増しガス分子の吸着量が増え 検知感度をより高めることができる。
発明の効果
[0034] 以上のように、本発明のガス検知素子及びその製造方法によれば、以下のような有 利な効果が得られる。
請求項 1に記載の発明によれば、
(1)表面処理層によって有機吸着層が基板に強固に結合され、繰り返し使用しても 有機吸着層が基板カゝら剥離し難く耐久性に優れたガス検知素子を提供できる。
(2)官能基を有する表面処理層によって有機吸着層が基板に化学結合し、層厚の 薄 、軽量の薄膜の有機吸着層を形成することができ、微量のガス分子を吸着しても 検知することができ検知感度の高いガス検知素子を提供できる。
(3)有機吸着層はガス分子が選択的に吸着する官能基を有するので、酸化スズ半導 体や金属酸化物等のガス検知素子材料と比較して、応答時間の短縮化と精度の高
V、ガス識別性が得られるガス検知素子を提供できる。
(4)ガスを検知した後は、対象ガス分子が含まれな!/ヽ気体や液体を有機吸着層に接 触させるとガス分子が脱着するので、ガス検知素子を容易に再生することができ繰り 返し使用性に優れたガス検知素子を提供できる。
(5)表面処理層を有しているので、種々の有機吸着層を基板に容易に固定ィ匕でき有 機吸着層の選択肢が広ぐまた複数種の有機吸着層を組み合わせることもでき、有 機吸着層の種類に応じたガス種に応答を示し汎用性に優れたガス検知素子を提供 できる。
[0035] 請求項 2に記載の発明によれば、請求項 1の効果に加え、
(1)第 1結合層の種類に応じて第 1有機吸着層の選択肢を広げ検知可能なガス種を 増やすことができるとともに、第 1結合層の立体的な構造を制御することによって、そ こに形成された第 1有機吸着層における検知ガスの拡散性を改善することができ検 知時間を短縮でき応答性に優れたガス検知素子を提供できる。
[0036] 請求項 3に記載の発明によれば、請求項 1又は 2の効果に加え、 (1)有機吸着層又は第 1有機吸着層の表面に、第 2結合層と第 2有機吸着層の交互 積層が 1乃至複数回行われているので、第 2有機吸着層に捕捉されずに第 2結合層 も流通したガス分子を下層の有機吸着層や第 1有機吸着層等にも吸着させることが でき、ガス分子の反応点が多くガス分子の吸着量を増やすことができ、ガス分子の吸 着による大きな質量変化が得られるので検知感度の高いガス検知素子を提供できる
(2)有機吸着層や第 1有機吸着層と第 2有機吸着層を直接積層すると、ガス分子を 選択的に吸着させる有機吸着層等の官能基が層間の結合に用いられてしまうため、 ガス分子の反応点を増やすことができず検知感度を高めることができな 、が、有機吸 着層や第 1有機吸着層と第 2有機吸着層との間に第 2結合層を結合させているので
、積層数にほぼ比例してガス分子の反応点が増えるため、検知感度の高いガス検知 素子を提供できる。
[0037] 請求項 4に記載の発明によれば、請求項 2又は 3の効果に加え、
(1)第 1結合層,第 2結合層が 3nm未満の厚さに形成されているので、ガス分子が第 1結合層や第 2結合層を流通して下層の有機吸着層や第 1有機吸着層等に到達す るまでの時間を短縮できるため、ガス検知の応答が速ぐ再生も短時間で行うことが でき取扱性に優れたガス検知素子を提供できる。
(2)ガス分子が吸着し難い第 1結合層や第 2結合層の重量を小さくできるため、第 1 有機吸着層等へのガス分子の吸着量が少ないときでも検知することができ、検知感 度の高 、ガス検知素子を提供できる。
[0038] 請求項 5に記載の発明によれば、請求項 1乃至 4の内いずれか 1の効果にカロえ、
(l) QCM (水晶天秤)、弾性表面波素子、マイクロカンチレバー等を利用して固有振 動数や共振周波数の変化等を計測することによってガス吸着量を計測することがで き、高精度 ·高分解能のガス検知が可能なガス検知素子を提供できる。
[0039] 請求項 6に記載の発明によれば、
(1)官能基を有する表面処理層によって有機吸着層が基板に化学結合し、層厚の 薄い軽量の薄膜の有機吸着層を短時間で精度良く形成することができ、生産性に優 れるとともに生産安定性に優れたガス検知素子の製造方法を提供できる。 [0040] 請求項 7に記載の発明によれば、請求項 6の効果に加え、
(1)金属酸ィ匕物前駆体吸着層形成工程において基板に蒸気状態の金属酸ィ匕物前 駆体を接触させるため、出発原料である金属酸化物前駆体を有機溶媒に溶解したり する操作が不要なため、金属酸化物前駆体の有機溶媒中における溶解性や安定性 等の問題がなく品質の安定性に優れたガス検知素子の製造方法を提供できる。
(2)有機溶媒に溶解した金属酸化物前駆体を接触させる場合と比較して膜厚の薄!ヽ 第 1結合層を形成することができ、ガス分子が吸着し難い第 1結合層を軽量ィ匕し、ガ ス濃度が低 、ときでもガス分子の吸着による微量の質量変化を検知できるようにして 検知感度の高!、ガス検知素子の製造方法を提供できる。
(3)第 1結合層の種類に応じて第 1有機吸着層の選択肢を広げ検知可能なガス種を 増やすことができるとともに、第 1結合層の立体的な構造を制御することによって、そ こに形成された第 1有機吸着層における検知ガスの拡散性を改善することができ検 知時間を短縮でき応答性に優れたガス検知素子が得られるガス検知素子の製造方 法を提供できる。
[0041] 請求項 8に記載の発明によれば、請求項 6又は 7の効果に加え、
(1)金属酸化物前駆体の気化の条件を整えることにより金属酸化物前駆体と不純物 とを分離できるため、金属酸ィ匕物前駆体の吸着を分子レベルで制御して不純物がな い又は著しく少ない金属酸化物層を形成することができ、有機吸着層の構造に沿つ て金属酸ィ匕物のネットワークを精密に形成でき、ガス分子が流通し易く拡散性に優れ た金属酸ィ匕物層を形成できるため、第 2有機吸着層だけでなく有機吸着層や第 1有 機吸着層にもガス分子を吸着させることができ、ガス分子の吸着量を増やし検知感 度を高めることができるとともに、吸着したガス分子を簡単な操作で脱着させることが でき容易に再生させることができるガス検知素子の製造方法を提供できる。
[0042] 請求項 9に記載の発明によれば、請求項 8の効果に加え、
(1)第 2有機吸着層が第 2結合層を介して複数積層されるため、第 2有機吸着層の 層数が増しガス分子の吸着量が増え、より高い検知感度を実現できるガス検知素子 の製造方法を提供できる。
図面の簡単な説明 [図 1]本発明の実施の形態 1におけるガス検知素子の模式断面図
[図 2]本発明の実施の形態 2におけるガス検知素子の模式断面図
[図 3]本発明の実施の形態 3におけるガス検知素子の模式断面図
[図 4]本発明の実施の形態 4におけるガス検知素子の模式断面図
[図 5]本発明の実施の形態 5におけるガス検知素子の模式断面図
[図 6]実験例 3のガス検知素子の振動数変化の時間応答特性を、アンモニアガス濃 度毎にプロットした図
[図 7]実験例 3のガス検知素子において、フローセルにアンモニアガスを流入させて 2 0秒後 (試験開始力も 40秒後)の振動数変化とアンモニア濃度との関係を示した図 [図 8]は実験例 1〜3のガス検知素子において、フローセルにアンモニアガスを流入さ せて 20秒後 (試験開始力 40秒後)の振動数変化とアンモニア濃度との関係を示し た図
[図 9]実験例 3と比較例 1のガス検知素子のフローセルにアンモニアガスを流入させ て 20秒後 (試験開始力も 40秒後)の振動数変化とアンモニア濃度との関係を示した 図
[図 10]実験例 3と実験例 4のガス検知素子のガス検知素子を配置したフローセルに 3 ppmのアンモニアガス(1LZ分)を流したときのガス検知素子の振動数変化の時間 応答特性を示した図
[図 11]実験例 3のガス検知素子を配置したフローセルに 3ppmのアンモニアガス(1L Z分)を 30秒間流した後、空気 (ブランクガス)を流したときのガス検知素子の振動数 変化の時間応答特性をプロットした図
[図 12]実験例 3のガス検知素子の振動数変化の時間応答特性を、プチルァミンガス 濃度毎にプロットした図
[図 13]実験例 3のガス検知素子において、フローセルにブチルァミンガスを流入させ て 20秒後 (試験開始力も 40秒後)の振動数変化とプチルァミン濃度との関係を示し た図
[図 14]実験例 3のガス検知素子の振動数変化の時間応答特性を、ピリジンガス濃度 毎にプロットした図 [図 15]実験例 3のガス検知素子において、フローセルにピリジンガスを流入させて 20 秒後 (試験開始力も 40秒後)の振動数変化とピリジン濃度との関係を示した図
[図 16]実験例 3のガス検知素子の振動数変化の時間応答特性を、エタノールガス濃 度毎にプロットした図
[図 17]実験例 3のガス検知素子の振動数変化の時間応答特性を、クロ口ホルムガス 濃度毎にプロットした図
[図 18]実験例 3のガス検知素子の振動数変化の時間応答特性を、トルエンガス濃度 毎にプロットした図
[図 19]実験例 5のガス検知素子の振動数変化の時間応答特性をプロットした図
[図 20]実験例 5のガス検知素子を配置したフローセルに 3ppmのアンモニアガス(1L Z分)を 30秒間流した後、空気 (ブランクガス)を流したときのガス検知素子の振動数 変化の時間応答特性をプロットした図
[図 21]実験例 5のガス検知素子を配置したフローセルに 3ppmのホルムアルデヒドガ ス(1LZ分)を 30秒間流した後、空気 (ブランクガス)を流したときのガス検知素子の 振動数変化の時間応答特性をプロットした図
[図 22]実験例 6〜9のガス検知素子において、フローセルにアンモニアガスを流入さ せて 20秒後の振動数変化とアンモニア濃度との関係を示した図
[図 23]実験例 10、 11のガス検知素子において、フローセルにアンモニアガスを流入 させて 20秒後の振動数変化とアンモニア濃度との関係を示した図
[図 24]実験例 10、 11のガス検知素子において、フローセルにホルムアルデヒドガス を流入させて 20秒後の振動数変化とホルムアルデヒド濃度との関係を示した図 符号の説明
1, la, lb, lc, Id ガス検知素子
2 基板
3 表面処理層
4 有機吸着層
5 第 1結合層
6 第 1有機吸着層 7, 7a, 9 第 2結合層
8, 8a 第 2有機吸着層
発明を実施するための最良の形態
[0045] 以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態 1)
図 1は本発明の実施の形態 1におけるガス検知素子の模式断面図である。 図中、 1は実施の形態 1におけるガス検知素子、 2は単結晶シリコン、窒化シリコン、 圧電性結晶、圧電セラミックス、圧電性薄膜の内いずれか 1種で形成された基板、 3 は基板 2の表面に導入された水酸基,カルボキシル基,アミノ基,アルデヒド基,カル ボニル基,ニトロ基,炭素炭素二重結合,芳香族環等の官能基を有する表面処理層 、 4はポリアクリル酸,ポリグルタミン酸,ポリアリルアミン塩酸塩,ポリエチレンイミ,ポリ ァ-リン,ポリイミド,ポリアミド,ポリスルホン,ポリ酢酸ビュル,ポリプロピレン,ポリエ チレン,フエ-ルァラニン,ポリクロ口トリフルォロエチレン等の高分子化合物で表面 処理層 3の表面に形成された有機吸着層である。
[0046] 以上のように構成された実施の形態 1におけるガス検知素子について、以下その製 造方法を説明する。
基板 2を 2—アミノエタンチオール等に浸漬する等の手段により基板 2の表面に官 能基を導入し表面処理層 3を形成した後、有機吸着層形成工程において、基板 2を ポリアクリル酸等の高分子化合物の溶液に浸漬する等の手段により、表面処理層 3の 表面に有機吸着層 4を形成する。
[0047] 以上のように構成された実施の形態 1におけるガス検知素子によれば、以下のよう な作用が得られる。
(1)基板 2に形成された官能基を有する表面処理層 3と、表面処理層 3の表面に形 成された有機吸着層 4と、を備えているので、表面処理層 3の官能基を介して有機吸 着層 4が基板 2に強固に結合され、繰り返し使用しても有機吸着層 4が基板から剥離 し難く耐久性に優れる。
(2)基板 2が単結晶シリコン、窒化シリコン、圧電性結晶、圧電セラミックス、圧電性薄 膜の内いずれか 1種なので、基板 2を QCM (水晶天秤)、弾性表面波素子、マイクロ カンチレバー等に適用することによって、有機吸着層 4にガス分子が吸着して質量が 増すと基板 2の固有振動数や共振周波数が変化するので、この変化を測定すること で高精度 ·高分解能のガス検知ができる。
(3)官能基を有する表面処理層 3によって有機吸着層 4が基板 2に化学結合し、層 厚の薄 、軽量の薄膜の有機吸着層 4を形成することができ、微量のガス分子が吸着 しても質量変化による振動数等の変化を検知することができ検知感度を高めることが できる。
(4)有機吸着層 4はガス分子が選択的に吸着する官能基を形成できるので、酸化ス ズ半導体や金属酸ィ匕物等のガス検知素子材料と比較して、応答時間の短縮化と精 度の高 、ガス識別性を実現することができる。
(5)ガスを検知した後は、対象ガス分子が含まれない気体や液体を有機吸着層 4〖こ 接触させるとガス分子が脱着するので、ガス検知素子 1を容易に再生することができ 繰り返し使用性に優れる。
[0048] また、実施の形態 1におけるガス検知素子の製造方法によれば、以下のような作用 が得られる。
(1)官能基を有する表面処理層 3によって有機吸着層 4が基板 2に化学結合し、層 厚の薄い軽量の薄膜の有機吸着層 4を短時間で精度良く形成することができ生産性 に優れるとともに生産安定性に優れる。
[0049] (実施の形態 2)
図 2は本発明の実施の形態 2におけるガス検知素子の模式断面図である。なお、 実施の形態 1と同様のものは、同じ符号を付して説明を省略する。
図中、 laは実施の形態 2におけるガス検知素子、 5は水酸基,カルボキシル基,ァ ミノ基,アルデヒド基,カルボ-ル基,ニトロ基,炭素炭素二重結合,芳香族環等の官 能基を有するポリペプチド,ポリマー等の重合体、酸化チタン,酸ィ匕ジルコニウム等 の金属酸化物等で形成され表面処理層 3に結合した第 1結合層、 6はポリアクリル酸 ,ポリグルタミン酸,ポリアリルアミン塩酸塩,ポリエチレンィミン,ポリア二リン,ポリイミ ド,ポリアミド,ポリスルホン,ポリ酢酸ビュル,ポリプロピレン,ポリエチレン,フエ-ル ァラニン,ポリクロ口トリフルォロエチレン等の高分子化合物で第 1結合層 5の表面に 形成された第 1有機吸着層である。
[0050] 以上のように構成された実施の形態 2におけるガス検知素子について、以下その製 造方法を説明する。
実施の形態 1で説明したのと同様にして基板 2に表面処理層 3を形成した後、金属 酸ィ匕物前駆体吸着層形成工程において、蒸気状態のチタンブトキシド,ジルコユウ ムプロポキシド,アルミニウムブトキシド,メチルトリメトキシシラン等の金属酸ィ匕物前駆 体を接触させ、表面処理層 3の表面に金属酸ィヒ物前駆体の吸着層である金属酸ィ匕 物前駆体吸着層を形成する。次いで、第 1結合層形成工程において、金属酸化物前 駆体吸着層を加水分解して、表面処理層 3の表面に金属酸化物層の第 1結合層 5を 形成する。次に、第 1有機吸着層形成工程において、基板 2をポリアクリル酸等の高 分子化合物の溶液に浸漬する等の手段により、第 1結合層 5の表面に第 1有機吸着 層 6を形成する。
[0051] 以上のように構成された実施の形態 2におけるガス検知素子によれば、実施の形態 1に記載した作用に加え、以下のような作用が得られる。
(1)第 1有機吸着層 6が、表面処理層 3の表面に形成された第 1結合層 5の表面に形 成されているので、第 1結合層 5の種類に応じて第 1有機吸着層 6の選択肢を広げ検 知可能なガス種を増やすことができるとともに、第 1結合層 5の立体的な構造を制御 することによって、そこに形成された第 1有機吸着層 6における検知ガスの拡散性を 改善することができ検知時間を短縮できる。
[0052] また、実施の形態 2におけるガス検知素子の製造方法によれば、実施の形態 1に記 載した作用に加え、以下のような作用が得られる。
(1)金属酸ィ匕物前駆体吸着層形成工程において基板 2に蒸気状態の金属酸ィ匕物前 駆体を接触させるため、出発原料である金属酸化物前駆体を有機溶媒に溶解したり する操作が不要なため、金属酸化物前駆体の有機溶媒中における溶解性や安定性 等の問題がなく品質の安定性に優れる。
(2)有機溶媒に溶解した金属酸化物前駆体を接触させる場合と比較して膜厚の薄!ヽ 第 1結合層 5を形成することができ、ガス分子が吸着し難い第 1結合層 5を軽量ィ匕し、 ガス濃度が低いときでもガス分子の吸着による微量の質量変化を検知できるようにし て検知感度の高めることができる。
[0053] なお、本実施の形態においては、表面処理層 3に蒸気状態の金属酸化物前駆体 を接触させて金属酸化物前駆体吸着層を形成した後、加水分解して金属酸化物層( 第 1結合層 5)を形成した場合について説明したが、ポリペプチド,ポリマー等の重合 体等で第 1結合層 5を形成する場合もある。この場合は、水素結合ゃ静電相互作用 によってポリペプチド,ポリマー等の重合体等を表面処理層 3に結合させて第 1結合 層 5を形成することができる。また、溶液状態の金属酸化物前駆体を滴下した後、ス ピンコートやバーコート等で液膜を形成し金属酸化物前駆体吸着層を形成し、次 ヽ で加水分解して金属酸化物層の第 1結合層 5を形成する場合もある。
[0054] (実施の形態 3)
図 3は本発明の実施の形態 3におけるガス検知素子の模式断面図である。なお、 実施の形態 1と同様のものは、同じ符号を付して説明を省略する。
図中、 lbは実施の形態 3におけるガス検知素子、 7は水酸基,カルボキシル基,ァ ミノ基,アルデヒド基,カルボ-ル基,ニトロ基,炭素炭素二重結合,芳香族環等の官 能基を有するポリペプチド,ポリマー等の重合体、酸化チタン,酸ィ匕ジルコニウム等 の金属酸ィ匕物等で形成され有機吸着層 4に結合した第 2結合層、 8はポリアクリル酸 ,ポリグルタミン酸,ポリアリルアミン塩酸塩,ポリエチレンィミン,ポリア二リン,ポリイミ ド,ポリアミド,ポリスルホン,ポリ酢酸ビュル,ポリプロピレン,ポリエチレン,フエ-ル ァラニン,ポリクロ口トリフルォロエチレン等の高分子化合物で第 2結合層 7の表面に 形成された第 2有機吸着層である。
[0055] 以上のように構成された実施の形態 3におけるガス検知素子について、以下その製 造方法を説明する。
実施の形態 1で説明したのと同様にして基板 2に表面処理層 3、有機吸着層 4を形 成した後、前駆体吸着層形成工程において、蒸気状態のチタンブトキシド,ジルコ二 ゥムプロポキシド,アルミニウムブトキシド,メチルトリメトキシシラン等の金属酸化物前 駆体を接触させ、有機吸着層 4の表面に金属酸ィヒ物前駆体の吸着層である前駆体 吸着層を形成する。次いで、第 2結合層形成工程において、前駆体吸着層を加水分 解して、有機吸着層 4の表面に金属酸ィ匕物層の第 2結合層 7を形成する。次に、第 2 有機吸着層形成工程にぉ ヽて、基板 2をポリアクリル酸等の高分子化合物の溶液に 浸漬する等の手段により、第 2結合層 7の表面に第 2有機吸着層 8を形成する。
[0056] 以上のように構成された実施の形態 3におけるガス検知素子によれば、実施の形態 1に記載した作用に加え、以下のような作用が得られる。
(1)有機吸着層 4の表面に形成された第 2結合層 7の表面に第 2有機吸着層 8が形 成されているので、第 2結合層 7を流通したガス分子を下層の有機吸着層 4にも吸着 させることができガス分子の反応点が多くガス分子の吸着量を増やすことができ、ガ ス分子の吸着による大きな質量変化が得られるので検知感度を高めることができる。
[0057] また、実施の形態 3におけるガス検知素子の製造方法によれば、実施の形態 1に記 載した作用に加え、以下のような作用が得られる。
(1)金属酸化物前駆体の気化の条件を整えることにより金属酸化物前駆体と不純物 とを分離できるため、金属酸ィ匕物前駆体の吸着を分子レベルで制御して不純物がな い又は著しく少ない金属酸化物層を形成することができ、有機吸着層の構造に沿つ て金属酸ィ匕物のネットワークを精密に形成でき、ガス分子が流通し易く拡散性に優れ た金属酸ィ匕物層を形成できるため、第 2有機吸着層 8だけでなく有機吸着層 4にもガ ス分子を吸着させることができ、ガス分子の吸着量を増やし検知感度を高めることが できるとともに、吸着したガス分子を簡単な操作で脱着させることができ容易に再生さ せることができる。
[0058] (実施の形態 4)
図 4は本発明の実施の形態 4におけるガス検知素子の模式断面図である。なお、 実施の形態 2と同様のものは、同じ符号を付して説明を省略する。
図中、 lcは実施の形態 4におけるガス検知素子、 7aは水酸基,カルボキシル基, アミノ基,アルデヒド基,カルボニル基,ニトロ基,炭素炭素二重結合,芳香族環等の 官能基を有するポリペプチド,ポリマー等の重合体、酸化チタン,酸ィ匕ジルコニウム 等の金属酸ィ匕物等で形成され第 1有機吸着層 6に結合した第 2結合層、 8aはポリア クリル酸,ポリグルタミン酸,ポリアリルアミン塩酸塩,ポリエチレンィミン,ポリア-リン, ポリイミド,ポリアミド,ポリスルホン,ポリ酢酸ビュル,ポリプロピレン,ポリエチレン,フ ェ-ルァラニン,ポリクロ口トリフルォロエチレン等の高分子化合物で第 2結合層 7aの 表面に形成された第 2有機吸着層である。
[0059] 以上のように構成された実施の形態 4におけるガス検知素子について、以下その製 造方法を説明する。
実施の形態 2で説明したのと同様にして基板 2に表面処理層 3、第 1結合層 5,第 1 有機吸着層 6を形成した後、前駆体吸着層形成工程において、蒸気状態のチタンブ トキシド,ジルコニウムプロポキシド,アルミニウムブトキシド,メチルトリメトキシシラン等 の金属酸化物前駆体を接触させ、第 1有機吸着層 6の表面に金属酸化物前駆体の 吸着層である前駆体吸着層を形成する。次いで、第 2結合層形成工程において、前 駆体吸着層を加水分解して、第 1有機吸着層 6の表面に金属酸ィ匕物層の第 2結合層 7aを形成する。次に、第 2有機吸着層形成工程において、基板 2をポリアクリル酸等 の高分子化合物の溶液に浸漬する等の手段により、第 2結合層 7aの表面に第 2有機 吸着層 8aを形成する。
[0060] 以上のように構成された実施の形態 4におけるガス検知素子によれば、実施の形態 1に記載した作用に加え、以下のような作用が得られる。
(1)第 1有機吸着層 6の表面に形成された第 2結合層 7aの表面に第 2有機吸着層 8a が形成されているので、第 2結合層 7aを流通したガス分子を下層の第 1有機吸着層 6にも吸着させることができガス分子の反応点が多くガス分子の吸着量を増やすこと ができ、ガス分子の吸着による大きな質量変化が得られるので検知感度を高めること ができる。
[0061] また、実施の形態 4におけるガス検知素子の製造方法によれば、実施の形態 3に記 載したのと同様の作用が得られる。
[0062] (実施の形態 5)
図 5は本発明の実施の形態 5におけるガス検知素子の模式断面図である。なお、 実施の形態 2又は 4と同様のものは、同じ符号を付して説明を省略する。
図中、 Idは実施の形態 5におけるガス検知素子、 9は水酸基,カルボキシル基,ァ ミノ基,アルデヒド基,カルボ-ル基,ニトロ基,炭素炭素二重結合,芳香族環等の官 能基を有するポリペプチド,ポリマー等の重合体、酸化チタン,酸ィ匕ジルコニウム等 の金属酸ィ匕物等で形成され第 2有機吸着層 8aに結合した第 2結合層である。第 2結 合層 9と第 2有機吸着層 8aの交互積層は複数回行われている。
[0063] 以上のように構成された実施の形態 5におけるガス検知素子について、以下その製 造方法を説明する。
実施の形態 2又は 4で説明したのと同様にして基板 2に表面処理層 3、第 1結合層 5 ,第 1有機吸着層 6、第 2結合層 7a、第 2有機吸着層 8aを形成する。次いで、蒸気状 態のチタンブトキシド,ジルコニウムプロポキシド,アルミニウムブトキシド,メチルトリメ トキシシラン等の金属酸化物前駆体を接触させ、第 2有機吸着層 8aの表面に金属酸 化物前駆体の吸着層を形成し、吸着層を加水分解して第 2有機吸着層 8aの表面に 金属酸ィ匕物層の第 2結合層 9を形成する。次に、基板 2をポリアクリル酸等の高分子 化合物の溶液に浸漬する等の手段により第 2結合層 9の表面へ第 2有機吸着層 8aを 形成する。第 2結合層 9と第 2有機吸着層 8aの交互積層を繰り返し行って、第 2結合 層 9を介して第 2有機吸着層 8aを複数積層する (以上、交互積層工程)。
[0064] 以上のように構成された実施の形態 5におけるガス検知素子によれば、実施の形態 2又は 4に記載した作用に加え、以下のような作用が得られる。
(1)第 2有機吸着層 8aが第 2結合層 9を介して複数積層されているので、第 2有機吸 着層 8aの層数が増すためガス分子の吸着量が増え検知感度をより高めることができ る。
[0065] また、実施の形態 5におけるガス検知素子の製造方法によれば、実施の形態 3に記 載したのと同様の作用が得られる。
[0066] なお、本実施の形態においては、 2層の第 2結合層 9と 2層の第 2有機吸着層 8aが 形成された場合について説明したが、さらに交互積層数を増やすことができる。 また、基板 2に表面処理層 3、第 1結合層 5、第 1有機吸着層 6、第 2結合層 7a、第 2 有機吸着層 8aを順に積層し、その上に第 2結合層 9を積層した場合について説明し たが、実施の形態 3のように、基板 2に表面処理層 3、有機吸着層 4、第 2結合層 7、 第 2有機吸着層 8を順に積層し、その上に第 2結合層 9を積層する場合もある。この 場合も、実施の形態 5と同様の作用が得られる。
実施例
[0067] 以下、本発明を実験例により具体的に説明する。なお、本発明はこれらの実験例に 限定されるものではない。
(実験例 1)
両面に金製の電極が形成された基準振動数 9MHzの水晶振動子を基板として用 いた。この基板をピラナ(H SO : H O =3 : 1)処理した後、メルカプトエタノールの
2 4 2 2
エタノール溶液(lOmmolZL)に 12時間浸漬して基板の電極表面を水酸基修飾し た。エタノール及びイオン交換水で十分洗浄した後、窒素ガスを吹き付けて乾燥させ 、基板及び両面の電極に水酸基を有する表面処理層を形成した。
次いで、金属酸ィ匕物前駆体のチタンブトキシド (Ti(O-nBu) ) (キシダ化学製) 10〜
4
20mLを攪拌装置付き恒温槽の中で 85°Cに保持し、流量 3LZ分の窒素ガスを吹き 込んでチタンブトキシドの蒸気を発生させ、発生したチタンブトキシドの蒸気を、窒素 ガス (移動媒体)を用いて基板の表面に移動させ 10分間接触させ、表面処理層の表 面に金属酸化物前駆体吸着層を形成した。その後、さらに窒素ガス (移動媒体)のみ を金属酸化物前駆体吸着層に十分吹き込み、過剰の金属酸化物前駆体である弱 ヽ 物理吸着種を除去した (金属酸化物前駆体吸着層形成工程)。
次いで、イオン交換水によって金属酸化物前駆体吸着層を加水分解して金属酸化 物層の第 1結合層を形成した後、窒素ガスを吹き付けて乾燥させた (第 1結合層形成 工程)。
続いて、ポリアクリル酸 (シグマアルドリッチ製、重量平均分子量 400000、密度 1. 4g/cm3)の 0. lwt%水溶液(30。C)に、第 1結合層(金属酸化物層)が形成された 基板を 20分間浸潰した。次いで、基板をイオン交換水に 1分間浸潰して過剰吸着分 を洗浄し窒素ガスで乾燥して、第 1結合層(金属酸ィ匕物層)の表面にポリアクリル酸の 第 1有機吸着層を形成した。
次に、チタンブトキシドの蒸気を、窒素ガス (移動媒体)を用いて第 1有機吸着層に 接触させ、第 1有機吸着層の表面に金属酸ィ匕物前駆体の吸着層である前駆体吸着 層を形成した。その後、さらに窒素ガス (移動媒体)のみを前駆体吸着層に十分吹き 込み、過剰の金属酸化物前駆体である弱!、物理吸着種を除去した (前駆体吸着層 形成工程)。
次いで、イオン交換水によって前駆体吸着層を加水分解して金属酸ィ匕物層の第 2 結合層を形成した後、窒素ガスを吹き付けて乾燥させた (第 2結合層形成工程)。 続いて、ポリアクリル酸の 30°Cの水溶液に、第 2結合層(金属酸化物層)が形成さ れた基板を 20分間浸潰した。次いで、基板をイオン交換水に 1分間浸潰して過剰吸 着分を洗浄し窒素ガスで乾燥して、第 2結合層(金属酸化物層)の表面にポリアクリル 酸の第 2有機吸着層を形成した。
次に、同様の方法で、第 2有機吸着層の表面に金属酸化物前駆体の吸着層を形 成し加水分解を行!、金属酸化物層 (第 2結合層)を形成し、金属酸化物層 (第 2結合 層)の表面への第 2有機吸着層の形成を繰り返し行 ヽ (交互積層工程)、表面処理層 の上に、金属酸化物層、有機吸着層が各々 5層ずつ積層された実験例 1のガス検知 素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定した結果、金属酸ィ匕物層では 1層当たり平均 19Hzの振 動数変化がみられ、有機吸着層では 1層当たり平均 28Hzの振動数変化がみられた ここで、本システムでは 1Hzの振動数変化は約 0. 9ngの質量変化を示していること に基づくと、 1層当たりの金属酸ィヒ物層の厚さは lnm以下であり、有機吸着層の厚さ は約 lnmであると算出された。
[0068] (実験例 2)
実験例 1と同様にして、基板に表面処理層及び第 1結合層 (金属酸化物層)を形成 し、次に第 2有機吸着層を形成した後、第 2結合層 (金属酸化物層)と第 2有機吸着 層の形成を交互に繰り返し行い、表面処理層の上に、金属酸化物層、有機吸着層 が各々 10層ずつ積層された実験例 2のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定した結果、金属酸化物層では 1層当り平均 10Hzの振動 数変化がみられ、有機吸着層では 1層当り平均 39Hzの振動数変化がみられた。実 験例 1と同様にして、 1層当たりの金属酸ィ匕物層の厚さは lnm以下であり、有機吸着 層の厚さは約 lnmであると算出された。
[0069] (実験例 3) 実験例 1と同様にして、基板に表面処理層及び第 1結合層 (金属酸化物層)を形成 し、次に第 2有機吸着層を形成した後、第 2結合層 (金属酸化物層)と第 2有機吸着 層の形成を交互に繰り返し行い、表面処理層の上に、金属酸化物層、有機吸着層 が各々 20層ずつ積層された実験例 3のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定した結果、金属酸化物層では 1層当り平均 23Hzの振動 数変化がみられ、有機吸着層では 1層当り平均 45Hzの振動数変化がみられた。実 験例 1と同様にして、 1層当たりの金属酸ィ匕物層の厚さは lnm以下であり、有機吸着 層の厚さは約 lnmであると算出された。
[0070] (実験例 4)
両面に金製の電極が形成された基準振動数 9MHzの水晶振動子を基板として用 いた。この基板をピラナ (H SO: H O = 3 : 1)処理した後、 2—アミノエタンチォー
2 4 2 2
ル(和光純薬製、分子量 77. 15)のエタノール溶液(lOmmolZL)に 30°Cで 12時 間浸漬して、基板及び電極の表面をァミノ基修飾した。エタノール及びイオン交換水 で十分洗浄した後、窒素ガスを吹き付けて乾燥させ、基板及び電極にアミノ基を有す る表面処理層を形成した。
基板の両面に各々形成された表面処理層に、ポリアクリル酸 (シグマアルドリッチ製 、重量平均分子量 400000、密度 1. 4gZcm3)の 0. lwt%水溶液を 20 Lずつ塗 布した後、シリカゲルを敷いた室温 (約 25°C)のデシケータ内で 5時間乾燥して、基 板の両面の表面処理層上に有機吸着層を形成し、実験例 4のガス検知素子を得た。 水晶振動子の固有振動数を QCM (水晶天秤)によって測定した結果、 30372Hz ( 作成した 3個のガス検知素子の平均値)の周波数変化がみられた。この結果、有機 吸着層の厚さは約 590nm (平均値)であると算出された。
また、ポリアクリル酸の水溶液を同様に表面処理層に塗布した後、デシケータ内で 乾燥せず、室温 (約 25°C)の大気中で 5時間乾燥したガス検知素子も比較のために 作成した。
[0071] (比較例 1)
両面に金製の電極が形成された基準振動数 9MHzの水晶振動子を基板として用 いた。この基板をピラナ(H SO : H O =3 : 1)処理した後、メルカプトエタノールの
2 4 2 2
エタノール溶液(lOmmolZL)に 12時間浸漬して基板及び電極を水酸基修飾した 。エタノール及びイオン交換水で十分洗浄した後、窒素ガスを吹き付けて乾燥させ、 基板及び電極に水酸基を有する表面処理層を形成した。
次いで、金属酸ィ匕物前駆体のチタンブトキシド (Ti(O-nBu) ) (キシダ化学製) 10〜
4
20mLを攪拌装置付き恒温槽の中で 85°Cに保持し、流量 3LZ分の窒素ガスを吹き 込んでチタンブトキシドの蒸気を発生させ、発生したチタンブトキシドの蒸気を、窒素 ガス (移動媒体)を用いて表面処理層の表面に移動させ 10分間接触させ、表面処理 層の表面に金属酸化物前駆体の吸着層を形成した。その後、さらに窒素ガス (移動 媒体)のみを金属酸化物前駆体の吸着層に十分吹き込み、過剰の金属酸化物前駆 体である弱い物理吸着種を除去した。次いで、イオン交換水によって加水分解し金 属酸ィ匕物層を形成した後、窒素ガスを吹き付けて乾燥させた。
次に、同様の方法で金属酸ィ匕物層を積層し、 20層の金属酸ィ匕物層が積層された 比較例 1のガス検知素子を得た。
なお、金属酸ィヒ物層を形成する度に水晶振動子の固有振動数を QCM (水晶天秤 )によって測定した結果、 1層当り平均 20Hzの振動数変化がみられた。実験例 1と同 様にして、 1層当たりの金属酸化物層の厚さは lnm以下であると算出された。
(アンモニアに対するガス検知素子の応答)
得られたガス検知素子のガス応答性を測定した。まず、ガス検知素子をフローセル 内に配置した後、フローセルに空気 (ブランクガス)を 1LZ分で流し、水晶振動子の 固有振動数の変化を測定し、これをガス検知素子のベースラインとした。
次に、空気 (ブランクガス)を 1LZ分で水中に導入し、水中を通過した空気をフロー セルに導入して、水晶振動子の固有振動数の変化を測定した。次いで、フローセル に空気(ブランクガス)を 1LZ分で 20秒間流した後、濃度が 300ppb、 600ppb、 90 0ppb、 1. 2ppm、 1. 5ppm、 3ppm、 4. 5ppm、 6ppm、 7. 5ppm、 9ppm、 10. 5p pm、 15ppmの各アンモニアガスをフローセルに lLZ分で流し、水晶振動子の固有 振動数の変化を QCMによって測定した。この測定はフローセルを 25°Cに保って行 つた o なお、フローセルに一定の濃度のアンモニアガスを流してガス検知素子の応答を測 定した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振動 数を初期の状態に戻した。
図 6は実験例 3のガス検知素子の振動数変化の時間応答特性を、アンモニアガス 濃度毎にプロットした図である。プロットされた各点は、振動数変化の少ないものから 順に、水中を通過させた空気(水蒸気)、アンモニアガス濃度 300ppb、 600ppb、 90 Oppb、 1. 2ppm、 1. 5ppm、 3ppm、 4. 5ppm、 6ppm、 7. 5ppm、 9ppm、 10. 5p pm、 15ppmを示して ヽる。
図 6から、実験例 3のガス検知素子は水中を通過させた空気 (水蒸気)では振動数 変化がほとんど生じないことがわかった。また、アンモニアガスをフローセルに流入し て力も 5秒以下 (試験開始力も 25秒以下)の短時間で振動数変化が生じており、短 時間でガス検知ができることがわかった。また、 lppm以下の濃度のアンモニアガス でも振動数変化が生じており、 ppbオーダーの希薄なアンモニアガスを検知できるこ ともわかった。
また、図 7は実験例 3のガス検知素子において、フローセルにアンモニアガスを流 入させて 20秒後 (試験開始力も 40秒後)の振動数変化とアンモニア濃度との関係を 示した図である。
図 7から、アンモニアガス濃度と振動数変化との間には強い正の相関がみられるた め、本ガス検知素子は振動数変化と関係付けることでガス濃度を決定できることが明 らかになつた。
図 8は実験例 1〜3のガス検知素子において、フローセルにアンモニアガスを流入 させて 20秒後 (試験開始力 40秒後)の振動数変化とアンモニア濃度との関係を示 した図である。
図 8から、有機吸着層の積層数が多くなるにつれて大きな振動数変化を示すことが 明らかであり、有機吸着層と第 2結合層とを多層積層することによって検知感度を高 められることが明らかになった。また、水晶振動子の周波数変化は、有機吸着層の積 層数にほぼ比例して増加していることがわ力つた。表面の有機吸着層の官能基に吸 着されなカゝつたガス分子が有機吸着層及び第 2結合層を通過し、下層の有機吸着層 に吸着されているので、積層数にほぼ比例した周波数変化が生じたものと推察され る。このため、多層化することによってガス分子の反応点が増えガス分子の吸着量を 増やすことができ、ガス分子の吸着による大きな質量変化が得られるので検知感度を 高めることができることが明らかである。
[0074] 図 9は実験例 3と比較例 1のガス検知素子のフローセルにアンモニアガスを流入さ せて 20秒後 (試験開始力 40秒後)の振動数変化とアンモニア濃度との関係を示し た図である。
実験例 3のガス検知素子は、有機吸着層が形成されて!、な 、比較例 1のガス検知 素子と比較して大きな振動数変化を示しており、検知感度の高いガス検知素子が得 られることがわかった。
[0075] 図 10は実験例 3と実験例 4のガス検知素子のガス検知素子を配置したフローセル に 3ppmのアンモニアガス(1LZ分)を流したときのガス検知素子の振動数変化の時 間応答特性を示した図である。
ここで、実験例 3のガス検知素子における有機吸着層の積層数は 20層であり、有 機吸着層の 1層当たりの平均の振動数変化は約 45Hzであったため、 20層の有機吸 着層の質量を振動数変化に換算すると約 900Hzである。一方、実験例 4のガス検知 素子における有機吸着層の質量を振動数変化に換算すると 30372Hzである。よつ て、実験例 4のガス検知素子の有機吸着層の質量は、実験例 3のガス検知素子の有 機吸着層の約 34倍である。有機吸着層の官能基が全てガス分子の吸着に使われる のであれば、実験例 4のガス検知素子のガス分子の吸着による振動数変化は、実験 例 3のガス検知素子の振動数変化の約 34倍になるはずである。
し力しながら、図 10から、実験例 4のガス検知素子 (デシケータ内で乾燥したもの) の振動数変化は実験例 3のガス検知素子よりも小さいことがわ力つた。これは、実験 例 4のガス検知素子では有機吸着層内でカルボキシル基 (官能基)同士の結合によ り、有機吸着層の量に比してフリーに存在する官能基が少ないことが原因であると推 察される。これに対し実験例 3のガス検知素子では、有機吸着層の層間に金属酸ィ匕 物層の第 2結合層が積層されているため、フリーのカルボキシル基 (官能基)が有効 に存在するので、有機吸着層の量に比して大きな振動数変化が得られたと推察され る。
また、実験例 4のガス検知素子は、デシケータ内で乾燥したものとそうでないものと では、振動数変化が大きく異なることがわ力つた。これは、実験例 4のガス検知素子 の有機吸着層が厚いため、水分を吸着し易ぐ湿度の影響に左右され易い傾向があ るちのと推察される。
[0076] 図 11は実験例 3のガス検知素子を配置したフローセルに 3ppmのアンモニアガス ( 1LZ分)を 30秒間流した後、空気 (ブランクガス)を流したときのガス検知素子の振 動数変化の時間応答特性をプロットした図である。
図 11から、ガスを検知した後、空気 (ブランクガス)を 300秒程度流すことで、水晶 振動子の振動数を初期の状態に戻すことができ、容易に再生できることが明らかにな つた。これは、金属酸ィ匕物層や有機吸着層にガス分子が流通し易く拡散性に優れて おり、また有機吸着層のアンモニアガスの吸着は弱 、分子間相互作用を利用して ヽ るため、脱着までの時間が短く容易に再生させることができたものと推察される。
[0077] (プチルァミンに対するガス検知素子の応答)
実験例 3のガス検知素子をフローセル内に配置した後、フローセルに空気 (ブラン クガス)を 1LZ分で流し、水晶振動子の固有振動数の変化を測定し、これをガス検 知素子のベースラインとした。
次に、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、水中を通過 させた空気 (水蒸気)を流し、水晶振動子の固有振動数の変化を測定した。次に、フ ローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、濃度が 300ppb、 600 ppb、 lppm、 1. 5ppm、 2ppm、 3ppm、 4ppm、 6ppm、 lOppmの各フチノレア ンガ スをフローセルに 1LZ分で流し、水晶振動子の固有振動数の変化を測定した。 なお、フローセルに一定の濃度のブチルァミンガスを流してガス検知素子の応答を 測定した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振 動数を初期の状態に戻した。
図 12は実験例 3のガス検知素子の振動数変化の時間応答特性を、ブチルアミンガ ス濃度毎にプロットした図である。プロットされた各点は、振動数変化の少ないものか ら順に、水中を通過させた空気(水蒸気)、ブチルァミンガス濃度 300ppb、 600ppb 、 lppm、 1. 5ppm、 2ppm、 3ppm、 4ppm、 6ppm、 lOppmを している。
図 12から、実験例 3のガス検知素子は、プチルァミンガスの場合も 5秒以下 (試験 開始から 25秒以下)の短時間で振動数変化が生じており、短時間でガス検知ができ ることを示して ヽる。
図 13は実験例 3のガス検知素子において、フローセルにブチルァミンガスを流入さ せて 20秒後 (試験開始力 40秒後)の振動数変化とプチルァミン濃度との関係を示 した図である。
図 13から、プチルァミンガスの場合も濃度と振動数変化との間には強い正の相関 がみられるため、本ガス検知素子は振動数変化と関係付けることでガス濃度を決定 できることが明らかになった。
(ピリジンに対するガス検知素子の応答)
実験例 3のガス検知素子をフローセル内に配置した後、フローセルに空気 (ブラン クガス)を 1LZ分で流し、水晶振動子の固有振動数の変化を測定し、これをガス検 知素子のベースラインとした。
次に、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、水中を通過 させた空気 (水蒸気)を流し、水晶振動子の固有振動数の変化を測定した。次に、濃 度;^ 600ppb、 1. 2ppm、 1. 8ppm、 2. 4ppm、 3. 6ppm、 4. 8ppm、 8. 4ppm、 1 2ppmの各ピリジンガスをフローセルに 1LZ分で流し、水晶振動子の固有振動数の 変化を測定した。この測定はフローセルを 25°Cに保って行った。
なお、フローセルに一定の濃度のピリジンガスを流してガス検知素子の応答を測定 した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振動数 を初期の状態に戻した。
図 14は実験例 3のガス検知素子の振動数変化の時間応答特性を、ピリジンガス濃 度毎にプロットした図である。プロットされた各点は、振動数変化の少ないもの力 順 に、水中を通過させた空気 (水蒸気)、ピリジンガス濃度 600ppb、 1. 2ppm、 1. 8pp m、 2. 4ppm、 3. 6ppm、 4. 8ppm、 8. 4ppm、 12ppm している。
図 14から、実験例 3のガス検知素子は、ピリジンガスの場合も 5秒以下 (試験開始 力も 25秒以下)の短時間で振動数変化が生じており、短時間でガス検知ができること を示している。また、 600ppbの低濃度のピリジンガスでも振動数変化が生じており、 ppbオーダーの希薄なピリジンガスを検知できることも示している。
図 15は実験例 3のガス検知素子において、フローセルにピリジンガスを流入させて 20秒後 (試験開始力も 40秒後)の振動数変化とピリジン濃度との関係を示した図で ある。
図 15から、ピリジンガスの場合も濃度と振動数変化との間には強い正の相関がみら れるため、本ガス検知素子は振動数変化と関係付けることでガス濃度を決定できるこ とが明らかになった。
[0079] (ァミン系ガス以外のガスに対するガス検知素子の応答)
実験例 3のガス検知素子をフローセル内に配置した後、フローセルに空気 (ブラン クガス)を 1LZ分で流し、水晶振動子の固有振動数の変化を測定し、これをガス検 知素子のベースラインとした。
次に、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、濃度が 300p pb、 600ppb、 900ppb、 1. 6ppm、 4ppm、 8ppm、 lOppmの各エタノールガスをフ ローセルに 1LZ分で流し、水晶振動子の固有振動数の変化を測定した。この測定 はフローセルを 25°Cに保って行った。
なお、フローセルに一定の濃度のエタノールガスを流してガス検知素子の応答を測 定した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振動 数を初期の状態に戻した。
図 16は実験例 3のガス検知素子の振動数変化の時間応答特性を、エタノールガス 濃度毎にプロットした図である。
図 16から、実験例 3のガス検知素子の振動数変化は、アンモニアガス,ブチルアミ ンガス,ピリジンガスの場合と比較して著しく小さぐエタノールガスに対してほとんど 応答しないことがわ力つた。
[0080] クロ口ホルムについても同様にして、フローセルに空気(ブランクガス)を 1LZ分で 2 0秒間流した後、濃度力 OOppb、 800ppb、 1. 2ppm、 2ppm、 4ppm、 6ppm、 8pp m、 10ppm、 12ppmの各クロ口ホルムガスをフローセルに lLZ分で流し、水晶振動 子の固有振動数の変化を測定した。この測定はフローセルを 25°Cに保って行った。 なお、フローセルに一定の濃度のクロ口ホルムガスを流してガス検知素子の応答を 測定した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振 動数を初期の状態に戻した。
図 17は実験例 3のガス検知素子の振動数変化の時間応答特性を、クロ口ホルムガ ス濃度毎にプロットした図である。
図 17から、実験例 3のガス検知素子の振動数変化は、アンモニアガス,ブチルアミ ンガス,ピリジンガスの場合と比較して著しく小さぐクロ口ホルムガスに対してほとんど 応答しないことがわ力つた。
[0081] トルエンについても同様にして、フローセルに空気(ブランクガス)を 1LZ分で 20秒 間流した後、濃度力 S350ppb、 700ppb、 1. 4ppm、 2. lppm、 2. 8ppm、 3. 5ppm 、 4. 9ppm、 7ppmの各トルエンガスをフローセルに lLZ分で流し、水晶振動子の固 有振動数の変化を測定した。この測定はフローセルを 25°Cに保って行った。
なお、フローセルに一定の濃度のトルエンガスを流してガス検知素子の応答を測定 した後は、フローセルに空気 (ブランクガス)を十分流して水晶振動子の固有振動数 を初期の状態に戻した。
図 18は実験例 3のガス検知素子の振動数変化の時間応答特性を、トルエンガス濃 度毎にプロットした図である。
図 18から、実験例 3のガス検知素子の振動数変化は、アンモニアガス,ブチルアミ ンガス,ピリジンガスの場合と比較して著しく小さぐトルエンガスに対してほとんど応 答しないことがわ力つた。
[0082] 以上のように、ポリアクリル酸の有機吸着層を形成した実施例 1〜4のガス検知素子 は、アンモニア,ブチルァミン,ピリジンのアミン系ガスに対して高い識別性と高い検 知感度を有し、わず力な応答時間で検知できることが明らかになった。
[0083] (実験例 5)
両面に金製の電極が形成された基準振動数 9MHzの水晶振動子を基板として用 いた。この基板をピラナ(H SO : H O = 3 : 1)処理した後、メルカプトエタノールの
2 4 2 2
エタノール溶液(lOmmolZL)に 12時間浸漬して基板及び電極を水酸基修飾した 。エタノール及びイオン交換水で十分洗浄した後、窒素ガスを吹き付けて乾燥させ、 基板及び両面の電極に水酸基を有する表面処理層を形成した。
次いで、金属酸ィ匕物前駆体のチタンブトキシド (Ti(O-nBu) ) (キシダ化学製) 10〜
4
20mLを攪拌装置付き恒温槽の中で 85°Cに保持し、流量 3LZ分の窒素ガスを吹き 込んでチタンブトキシドの蒸気を発生させ、発生したチタンブトキシドの蒸気を、窒素 ガス (移動媒体)を用いて基板及び電極の表面に移動させ 10分間接触させ、表面処 理層の表面に金属酸ィ匕物前駆体吸着層を形成した。その後、さらに窒素ガス (移動 媒体)のみを金属酸化物前駆体吸着層に十分吹き込み、過剰の金属酸化物前駆体 である弱!ヽ物理吸着種を除去した (金属酸化物前駆体吸着層形成工程)。
次いで、イオン交換水によって金属酸化物前駆体吸着層を加水分解して金属酸化 物層の第 1結合層を形成した後、窒素ガスを吹き付けて乾燥させた (第 1結合層形成 工程)。
続いて、ポリアクリル酸(シグマアルドリッチ製、重量平均分子量 400000)の 0. lw t%水溶液 (30°C)に、第 1結合層 (金属酸化物層)が形成された基板を 20分間浸漬 した。次いで、基板をイオン交換水に 1分間浸漬して過剰吸着分を洗浄し窒素ガスで 乾燥して、第 1結合層 (金属酸化物層)の表面にポリアクリル酸の第 1有機吸着層を 形成した。
次に、チタンブトキシドの蒸気を、窒素ガス (移動媒体)を用いて第 1有機吸着層に 接触させ、第 1有機吸着層の表面に金属酸ィ匕物前駆体の吸着層である前駆体吸着 層を形成した。その後、さらに窒素ガス (移動媒体)のみを前駆体吸着層に十分吹き 込み、過剰の金属酸化物前駆体である弱!、物理吸着種を除去した (前駆体吸着層 形成工程)。
次いで、イオン交換水によって前駆体吸着層を加水分解して金属酸ィ匕物層の第 2 結合層を形成した後、窒素ガスを吹き付けて乾燥させた (第 2結合層形成工程)。 続いて、ポリアリルアミン塩酸塩(シグマアルドリッチ製、重量平均分子量 70000)の 0. lwt%水溶液 (30°C)に、第 2結合層(金属酸化物層)が形成された基板を 20分 間浸潰した。次いで、基板をイオン交換水に 1分間浸潰して過剰吸着分を洗浄し窒 素ガスで乾燥して、第 2結合層(金属酸ィ匕物層)の表面にポリアリルアミン塩酸塩の第 2有機吸着層を形成した。 次に、同様の方法で第 2結合層 (金属酸化物層)、第 2有機吸着層 (ポリアクリル酸) 、第 2結合層 (金属酸化物層)、第 2有機吸着層(ポリアリルアミン塩酸塩)を交互に繰 り返し積層して、表面処理層の上に、金属酸化物層が 10層、ポリアクリル酸の有機吸 着層が 5層、ポリアリルアミン塩酸塩の有機吸着層が 5層ずつ積層された実験例 5の ガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定した結果、金属酸ィ匕物層では 1層当たり平均 17Hzの振 動数変化がみられ、有機吸着層(ポリアクリル酸)では 1層当たり平均 217Hz、有機 吸着層(ポリアリルアミン塩酸塩)では 1層当たり平均 565Hzの振動数変化がみられ た。
ここで、本システムでは 1Hzの振動数変化は約 0. 9ngの質量変化を示していること から推察すると、 1層当たりの金属酸化物層の厚さは lnm以下であり、有機吸着層( ポリアクリル酸)の厚さは 4nmであり、有機吸着層(ポリアリルアミン塩酸塩)の厚さは 1 lnmであると算出された。
(実験例 5のガス検知素子の応答性の評価)
実験例 5のガス検知素子をフローセル内に配置した後、フローセルに空気 (ブラン クガス)を 1LZ分で流し、水晶振動子の固有振動数の変化を測定し、これをガス検 知素子のベースラインとした。
次に、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、濃度が 3pp mのアンモニアガスをフローセルに 1LZ分で流し、水晶振動子の固有振動数の変 化を測定した。次いで、フローセルに空気 (ブランクガス)を十分流して水晶振動子の 固有振動数を初期の状態に戻した。次に、フローセルに空気 (ブランクガス)を 1LZ 分で 20秒間流した後、濃度が 3ppmのホルムアルデヒドガスをフローセルに 1LZ分 で流し、水晶振動子の固有振動数の変化を測定した。
図 19は実験例 5のガス検知素子の振動数変化の時間応答特性をプロットした図で ある。
図 19に示すとおり、実験例 5のガス検知素子はアンモニアガスとホルムアルデヒド ガスの両方に反応しており、 1つの素子で 2種類のガスの検知ができるガス検知素子 を製造することができた。また、 3ppmのアンモニアガスの場合、実験例 5のガス検知 素子は 3秒程度で平衡に達しているのに対し、実験例 3のガス検知素子は、図 9に示 すように平衡に達するまでに 200秒程度を要しており、実験例 5のガス検知素子は、 実験例 3のガス検知素子に比べて応答速度を 60倍以上速くすることができた。これ は、カルボキシル基を有する有機吸着層とアミノ基を有する有機吸着層が交互に積 層されているため、ガス分子の吸着と反発が同時に行われ、有機吸着層や金属酸化 物層へのガス分子の拡散を促進させるからであると推察される。
また、図 20は実験例 5のガス検知素子を配置したフローセルに 3ppmのアンモニア ガス(1LZ分)を 30秒間流した後、空気 (ブランクガス)を流したときのガス検知素子 の振動数変化の時間応答特性をプロットした図であり、図 21は実験例 5のガス検知 素子を配置したフローセルに 3ppmのホルムアルデヒドガス(1LZ分)を 30秒間流し た後、空気 (ブランクガス)を流したときのガス検知素子の振動数変化の時間応答特 性をプロットした図である。
図 20、 21から、実験例 5のガス検知素子は、ガスを検知した後、空気 (ブランクガス )を 20秒程度流すことで、水晶振動子の振動数を初期の状態に戻すことができ、容 易に再生できることも明らかになった。
[0085] なお、フエ-ルァラニンを用いて有機吸着層を形成したガス検知素子では、硫ィ匕水 素,メチルメルカブタン等の含硫ガスに対して素早い応答を示すことを確認した。これ により、検知対象ガスに応じた有機吸着層の材質を選択することによって、アンモ- ァ,ピリジン等のアミン系ガス、硫化水素,メチルメルカプタン等の含硫ガス、ホルムァ ルデヒド等のアルデヒド系ガス等の種々のガスが検知可能な汎用性に優れたガス検 知素子が得られることが確認された。
[0086] (実験例 6)
実験例 1と同様にして、基板に表面処理層及び第 1結合層 (金属酸化物層)を形成 し、次に第 2有機吸着層を形成した後、第 2結合層 (金属酸化物層)と第 2有機吸着 層の形成を交互に繰り返し行い、有機吸着層の上に、金属酸化物層、有機吸着層 が各々 20層ずつ積層された実験例 6のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定したところ、 1層当たりの金属酸ィ匕物層の厚さは 0. 3nm であり、有機吸着層の厚さは 0. 5nmと算出された。
(実験例 7)
チタンブトキシドの蒸気を基板に接触させて金属酸化物層を形成するのに代えて、 チタンブトキシド(Ti(O-nBu) ) (キシダ化学製)の ImMトルエン Zエタノール溶液に
4
基板を浸漬した後、加水分解して金属酸化物層を形成した以外は、実験例 6と同様 にして、実験例 7のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定したところ、 1層当たりの金属酸ィ匕物層の厚さは lnmであ り、有機吸着層の厚さは 0. 7nmと算出された。
(実験例 8)
チタンブトキシドの蒸気を基板に接触させて金属酸化物層を形成するのに代えて、 チタンブトキシド(Ti(O-nBu) ) (キシダ化学製)の 5mMトルエン
4 Zエタノール溶液に 基板を浸漬した後、加水分解して金属酸化物層を形成した以外は、実験例 6と同様 にして、実験例 8のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定したところ、 1層当たりの金属酸ィ匕物層の厚さは 2nmであ り、有機吸着層の厚さは lnmと算出された。
(実験例 9)
チタンブトキシドの蒸気を基板に接触させて金属酸化物層を形成するのに代えて、 チタンブトキシド(Ti(O-nBu) ) (キシダ化学製)の 10mMトルエン
4 Zエタノール溶液に 基板を浸漬した後、加水分解して金属酸化物層を形成した以外は、実験例 6と同様 にして、実験例 9のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定したところ、 1層当たりの金属酸ィ匕物層の厚さは 3nmであ り、有機吸着層の厚さは 1. lnmと算出された。
(アンモニアに対するガス検知素子の応答)
実験例 6〜9のガス検知素子のガス応答性を各々測定した。まず、ガス検知素子を フローセル内に配置した後、フローセルに空気(ブランクガス)を 1LZ分で流し、水晶 振動子の固有振動数の変化を測定し、これをガス検知素子のベースラインとした。 次いで、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、各濃度(3 Oppmまで)のアンモニアガスをフローセルに 1LZ分で流し、水晶振動子の固有振 動数の変化(ベースラインとの差)を測定した。この測定はフローセルを 25°Cに保つ て行った。
図 22は実験例 6〜9のガス検知素子において、フローセルにアンモニアガスを流入 させて 20秒後 (試験開始力 40秒後)の振動数変化とアンモニア濃度との関係を示 した図である。
図 22から、金属酸ィ匕物層が厚くなるにつれて(実験例 6, 7, 8の順に)ガス検知素 子の振動数変化が大きくなる傾向がみられ、金属酸ィ匕物層の厚さが 3nmの実験例 9 のガス検知素子は、振動数変化が比較的小さいことがわ力つた。これは、金属酸ィ匕 物層が厚くなるにつれ金属酸ィヒ物層内のガス分子の拡散時間が長くなり、この結果 、応答時間が長くなり検知感度が低下する傾向がみられるものと推察している。この ため、 1層当たりの金属酸ィ匕物層の厚さは 3nm未満、好ましくは 0. lnm以上 2nm以 下が好適であると推察される。
[0088] (実験例 10)
ポリアクリル酸(シグマアルドリッチ製、重量平均分子量 400000)の 0. lwt%水溶 液(30°C)に代えて、ポリアクリル酸の 0. 05wt%水溶液を用いた以外は実験例 5と 同様にして、表面処理層の上に、金属酸化物層が 10層、ポリアクリル酸の有機吸着 層が 5層、ポリアリルアミン塩酸塩の有機吸着層が 5層ずつ積層された実験例 10のガ ス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定したところ、 1層当たりの金属酸ィ匕物層の厚さは 0. 2nm であり、有機吸着層(ポリアクリル酸)の厚さは 2nmであり、有機吸着層(ポリアリルアミ ン塩酸塩)の厚さは 6nmであると算出された。
[0089] (実験例 11)
両面に金製の電極が形成された基準振動数 9MHzの水晶振動子を基板として用 いた。この基板をピラナ(H SO : H O = 3 : 1)処理した後、メルカプトエタノールの
2 4 2 2
エタノール溶液(lOmmolZL)に 12時間浸漬して基板及び電極を水酸基修飾した 。エタノール及びイオン交換水で十分洗浄した後、窒素ガスを吹き付けて乾燥させ、 基板及び両面の電極に水酸基を有する表面処理層を形成した。
次いで、ポリアクリル酸(シグマアルドリッチ製、重量平均分子量 400000)の 0. 00 5wt%水溶液(30°C)に、表面処理層が形成された基板を 20分間浸漬した。次いで 、基板をイオン交換水に 1分間浸潰して過剰吸着分を洗浄し窒素ガスで乾燥して、ポ リアクリル酸の有機吸着層を形成した。
続いて、ポリアリルアミン塩酸塩(シグマアルドリッチ製、重量平均分子量 70000)の 0. 01wt%水溶液(30°C)に、有機吸着層(ポリアクリル酸)が形成された基板を 20 分間浸潰した。次いで、基板をイオン交換水に 1分間浸潰して過剰吸着分を洗浄し 窒素ガスで乾燥して、有機吸着層(ポリアクリル酸)の表面にポリアリルアミン塩酸塩 の有機吸着層を形成した。
同様の方法で、有機吸着層(ポリアクリル酸)、有機吸着層(ポリアリルアミン塩酸塩
)を交互に繰り返し積層して、表面処理層の上に、ポリアクリル酸の有機吸着層が 10 層、ポリアリルアミン塩酸塩の有機吸着層が 10層ずつ積層された実験例 11のガス検 知素子を得た。
なお、有機吸着層を形成する度に水晶振動子の固有振動数を QCM (水晶天秤) によって測定したところ、有機吸着層(ポリアクリル酸)は 1層当たり 7nm、有機吸着層 (ポリアリルアミン塩酸塩)は 1層当たり 7nmの厚さであると算出された。
(アンモニア及びホルムアルデヒドに対するガス検知素子の応答)
実験例 10、 11のガス検知素子のガス応答性を各々測定した。まず、ガス検知素子 をフローセル内に配置した後、フローセルに空気(ブランクガス)を 1LZ分で流し、水 晶振動子の固有振動数の変化を測定し、これをガス検知素子のベースラインとした。 次いで、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、各濃度 (4 Oppmまで)のアンモニアガスをフローセルに 1LZ分で流し、水晶振動子の固有振 動数の変化(ベースラインとの差)を測定した。この測定はフローセルを 25°Cに保つ て行った。 また、フローセルに空気 (ブランクガス)を 1LZ分で 20秒間流した後、各濃度(20p pmまで)のホルムアルデヒドガスをフローセルに 1LZ分で流し、水晶振動子の固有 振動数の変化 (ベースラインとの差)を測定した。この測定はフローセルを 25°Cに保 つて行った。
図 23は実験例 10、 11のガス検知素子において、フローセルにアンモニアガスを流 入させて 20秒後 (試験開始力も 40秒後)の振動数変化とアンモニア濃度との関係を 示した図であり、図 24は実験例 10、 11のガス検知素子において、フローセルにホル ムアルデヒドガスを流入させて 20秒後(試験開始力も 40秒後)の振動数変化とホルム アルデヒド濃度との関係を示した図である。
図 23及び図 24から、有機吸着層の間に金属酸ィ匕物層を介在させた実験例 10の ガス検知素子のガス濃度と振動数変化との間には、強い正の相関がみられるのに対 し、有機吸着層の間に金属酸化物層を介在させて!/ヽな 、実験例 11のガス検知素子 では、ガス濃度が増加するにつれて振動数変化が小さくなる傾向がみられることが明 らかである。これは、実験例 11のガス検知素子では、有機吸着層間の官能基同士の 強い結合により、ガス分子の吸着に寄与するフリーな官能基が少なくなるのに対し、 実験例 10のガス検知素子では、有機吸着層の層間に金属酸ィ匕物層が積層されてい るため、ガス分子の吸着に寄与するフリーな官能基が有効に存在するので、ガス濃 度に対して振動数がリニアに変化すると推察される。
この結果から、有機吸着層の間に金属酸ィ匕物層を介在させた実験例 10のガス検 知素子は、その固有の振動数変化と関係付けることでガス濃度を決定でき、定量性 に優れていることが明らかになった。
(実験例 12)
基準振動数が 9MHzの水晶振動子を用いるのに代えて、両面に金製の電極が形 成された基準振動数 30MHzの水晶振動子を基板として用いた以外は、実験例 1と 同様にして、表面処理層の上に、金属酸化物層、有機吸着層が各々 5層ずつ積層さ れた実験例 12のガス検知素子を得た。
なお、金属酸化物層、有機吸着層を形成する度に水晶振動子の固有振動数を QC M (水晶天秤)によって測定した結果、金属酸化物層、有機吸着層を各々 5層ずつ 積層した状態で、約 10000Hzの振動数変化がみられた。ここで、実験例 1のガス検 知素子では、金属酸化物層、有機吸着層を各々 5層ずつ積層した状態の振動数変 化は 235Hzだったことから、実験例 12のガス検知素子の感度は、実験例 1のガス検 知素子と比較して、 40倍以上であると推察された。
次に、実験例 12と実験例 1のガス検知素子のガス応答性を測定し比較した。まず、 ガス検知素子を各々フローセル内に配置した後、フローセルに空気 (ブランクガス)を 1LZ分で流し、水晶振動子の固有振動数の変化を測定し、これをガス検知素子の ベースラインとした。
次いで、フローセルに空気(ブランクガス)を 1LZ分で 20秒間流した後、 50ppb、 1 00ppb、 500ppb、 lppmの各濃度のアンモニアガスをフローセルに lLZ分で流し、 水晶振動子の振動数に経時変化がみられなくなったときの振動数変化 (ベースライ ンとの差)を測定した。この測定はフローセルを 25°Cに保って行った。
この結果、実験例 12のガス検知素子の振動数変化は、 50ppbのときが 2Hz、 100 ppbのときが 10Hz、 500ppbのとき力 S26Hz、 lppmのときが 52Hzであったのに対し 、実験例 1のガス検知素子の振動数変化は 500ppbのときが 0. 59Hz、 lppmのとき 力 O. 96Hzであり、 50ppbと 100ppbのとさは ィ匕カ Sみられな力つた。
以上のことから、基準振動数 30MHzの水晶振動子を基板として用いた実験例 12 のガス検知素子は、金属酸化物層と有機吸着層の交互積層数がわずか 5層である にも関わらず、ガス検知感度が高ぐ ppbオーダーの希薄なアンモニアガスを検知す ることができるとともに、生産性に優れることが明らかになった。
産業上の利用可能性
本発明は、アンモニア,ピリジン等のアミン系ガス、硫化水素,メチルメルカプタン等 の含硫ガス等の各種ガスのガス検知素子及びその製造方法に関し、短 、応答時間 で ppbオーダーの低濃度のガスを検知することができるとともに、有機吸着膜と基板と の結合力が強く耐久性に優れ、また種々の有機吸着層を基板に容易に固定ィ匕でき るので有機吸着層の選択肢が広ぐ複数種の有機吸着層を組み合わせることもでき 多くのガス種に応答を示し汎用性に優れるガス検知素子を提供でき、また層厚の薄 い軽量の薄膜の有機吸着層を短時間で精度良く形成することができ、生産性に優れ るとともに生産安定性に優れたガス検知素子の製造方法を提供することができる c

Claims

請求の範囲
[1] 基板と、前記基板に形成された官能基を有する表面処理層と、前記表面処理層の 表面に形成された有機吸着層と、を備えていることを特徴とするガス検知素子。
[2] 基板と、前記基板に形成された官能基を有する表面処理層と、前記表面処理層の 表面に形成された第 1結合層と、前記第 1結合層の表面に形成された第 1有機吸着 層と、を備えていることを特徴とするガス検知素子。
[3] 前記有機吸着層又は前記第 1有機吸着層の表面に、第 2結合層と第 2有機吸着層 の交互積層が 1乃至複数回行われていることを特徴とする請求項 1又は 2に記載のガ ス検知素子。
[4] 前記第 1結合層,前記第 2結合層が、 3nm未満の厚さに形成されていることを特徴 とする請求項 2又は 3に記載のガス検知素子。
[5] 前記基板が、単結晶シリコン、窒化シリコン、圧電性結晶、圧電セラミックス、圧電性 薄膜の内 、ずれか 1種であることを特徴とする請求項 1乃至 4の内 、ずれか 1に記載 のガス検知素子。
[6] 基板に形成された官能基を有する表面処理層の表面に有機吸着層を形成する有 機吸着層形成工程を備えていることを特徴とするガス検知素子の製造方法。
[7] 基板に形成された官能基を有する表面処理層に蒸気状態の金属酸化物前駆体を 接触させ前記基板に金属酸化物前駆体吸着層を形成する金属酸化物前駆体吸着 層形成工程と、前記金属酸化物前駆体吸着層を加水分解して金属酸化物層の第 1 結合層を形成する第 1結合層形成工程と、前記第 1結合層の表面に第 1有機吸着層 を形成する第 1有機吸着層形成工程と、を備えていることを特徴とするガス検知素子 の製造方法。
[8] 前記有機吸着層又は前記第 1有機吸着層に蒸気状態の金属酸化物前駆体を接 触させ前駆体吸着層を形成する前駆体吸着層形成工程と、前記前駆体吸着層を加 水分解して金属酸化物層の第 2結合層を形成する第 2結合層形成工程と、前記第 2 結合層の表面に第 2有機吸着層を形成する第 2有機吸着層形成工程と、を備えてい ることを特徴とする請求項 6又は 7に記載のガス検知素子の製造方法。
[9] 前記前駆体吸着工程と前記第 2結合層形成工程と前記第 2有機吸着層形成工程 との一群が繰り返し行われる繰り返し工程を備えていることを特徴とする請求項 8に記 載のガス検知素子の製造方法。
PCT/JP2007/056728 2006-03-29 2007-03-28 ガス検知素子及びその製造方法 WO2007114192A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508577A JP4565092B2 (ja) 2006-03-29 2007-03-28 ガス検知素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006092421 2006-03-29
JP2006-092421 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007114192A1 true WO2007114192A1 (ja) 2007-10-11

Family

ID=38563461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056728 WO2007114192A1 (ja) 2006-03-29 2007-03-28 ガス検知素子及びその製造方法

Country Status (2)

Country Link
JP (1) JP4565092B2 (ja)
WO (1) WO2007114192A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097905A (ja) * 2007-10-15 2009-05-07 Shinshu Univ センサおよびその製造方法
JP2009250896A (ja) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology アンモニア測定素子、アンモニア測定装置、アンモニアの測定方法、塩素測定素子、塩素測定装置及び塩素の測定方法
WO2011093429A1 (ja) * 2010-01-29 2011-08-04 財団法人北九州産業学術推進機構 高感度雰囲気センサーの製造方法、高感度雰囲気センサーおよびそれを用いた物質の検知方法
JP2011237295A (ja) * 2010-05-11 2011-11-24 Osaka Prefecture Univ 水晶振動子用コーティング液、ガス検出素子、エチレン検出素子およびガス検出素子の製造方法
US9346242B2 (en) 2011-12-13 2016-05-24 Samsung Electronics Co., Ltd. Multi-layer thin film assembly and barrier film for electronic device including the same
JP2018054609A (ja) * 2016-09-26 2018-04-05 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC ガスセンサ及びその製造方法
CN108267383A (zh) * 2016-12-30 2018-07-10 罗门哈斯电子材料有限责任公司 气体传感器和其制造方法
JP2019015675A (ja) * 2017-07-10 2019-01-31 富士通株式会社 ガスセンサ、ガスセンサシステム、及びガス検出方法
JP2019124687A (ja) * 2018-01-15 2019-07-25 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 音波センサおよび気相分析物を検知する方法
CN112666034A (zh) * 2020-12-15 2021-04-16 上海博物馆 一种基于锡酸铜/二维碳化钛复合材料的有机腐蚀性气体传感器的制备方法
CN114481339A (zh) * 2022-01-25 2022-05-13 武汉大学 一种金属氧化物纳米纤维传感器及其制备方法与在检测甲醛中的应用
WO2023058539A1 (ja) * 2021-10-05 2023-04-13 国立研究開発法人物質・材料研究機構 揮発性脂肪酸検出センサー、揮発性脂肪酸検出装置、および揮発性脂肪酸検出センサーの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249985A (ja) * 1997-03-11 1998-09-22 Tokuyama Corp 有機/金属酸化物複合薄膜の製造方法
JPH1144625A (ja) * 1997-07-29 1999-02-16 Agency Of Ind Science & Technol 揮発性有機塩素化合物の検出方法及びその検出装置
JP2002107322A (ja) * 2000-09-28 2002-04-10 Ngk Spark Plug Co Ltd ガス感応性積層体及びその製造方法並びにガスセンサ
JP2002338211A (ja) * 2001-03-13 2002-11-27 Inst Of Physical & Chemical Res アモルファス状金属酸化物の薄膜材料
JP2003161715A (ja) * 2001-11-27 2003-06-06 Ngk Spark Plug Co Ltd アンモニアガスセンサ及びその製造方法
JP2005114355A (ja) * 2002-09-25 2005-04-28 Ngk Spark Plug Co Ltd アンモニアセンサ
JP2005127743A (ja) * 2003-10-21 2005-05-19 Fis Inc アンモニアガスセンサ
JP2005147790A (ja) * 2003-11-13 2005-06-09 Tokuyama Corp ガスセンサ素子及び電気化学式ガスセンサ
JP2005321326A (ja) * 2004-05-11 2005-11-17 National Institute Of Advanced Industrial & Technology 有機無機ハイブリッドガスセンサ材料及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249985A (ja) * 1997-03-11 1998-09-22 Tokuyama Corp 有機/金属酸化物複合薄膜の製造方法
JPH1144625A (ja) * 1997-07-29 1999-02-16 Agency Of Ind Science & Technol 揮発性有機塩素化合物の検出方法及びその検出装置
JP2002107322A (ja) * 2000-09-28 2002-04-10 Ngk Spark Plug Co Ltd ガス感応性積層体及びその製造方法並びにガスセンサ
JP2002338211A (ja) * 2001-03-13 2002-11-27 Inst Of Physical & Chemical Res アモルファス状金属酸化物の薄膜材料
JP2003161715A (ja) * 2001-11-27 2003-06-06 Ngk Spark Plug Co Ltd アンモニアガスセンサ及びその製造方法
JP2005114355A (ja) * 2002-09-25 2005-04-28 Ngk Spark Plug Co Ltd アンモニアセンサ
JP2005127743A (ja) * 2003-10-21 2005-05-19 Fis Inc アンモニアガスセンサ
JP2005147790A (ja) * 2003-11-13 2005-06-09 Tokuyama Corp ガスセンサ素子及び電気化学式ガスセンサ
JP2005321326A (ja) * 2004-05-11 2005-11-17 National Institute Of Advanced Industrial & Technology 有機無機ハイブリッドガスセンサ材料及びその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097905A (ja) * 2007-10-15 2009-05-07 Shinshu Univ センサおよびその製造方法
JP2009250896A (ja) * 2008-04-09 2009-10-29 National Institute Of Advanced Industrial & Technology アンモニア測定素子、アンモニア測定装置、アンモニアの測定方法、塩素測定素子、塩素測定装置及び塩素の測定方法
WO2011093429A1 (ja) * 2010-01-29 2011-08-04 財団法人北九州産業学術推進機構 高感度雰囲気センサーの製造方法、高感度雰囲気センサーおよびそれを用いた物質の検知方法
JP5812419B2 (ja) * 2010-01-29 2015-11-11 公益財団法人北九州産業学術推進機構 芳香族ニトロ化合物検知センサーの製造方法、芳香族ニトロ化合物検知センサーおよびそれを用いた芳香族ニトロ化合物の検知方法
JP2011237295A (ja) * 2010-05-11 2011-11-24 Osaka Prefecture Univ 水晶振動子用コーティング液、ガス検出素子、エチレン検出素子およびガス検出素子の製造方法
US9346242B2 (en) 2011-12-13 2016-05-24 Samsung Electronics Co., Ltd. Multi-layer thin film assembly and barrier film for electronic device including the same
JP2018054609A (ja) * 2016-09-26 2018-04-05 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC ガスセンサ及びその製造方法
JP2018109614A (ja) * 2016-12-30 2018-07-12 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC ガスセンサ及びその製造方法
CN108267383A (zh) * 2016-12-30 2018-07-10 罗门哈斯电子材料有限责任公司 气体传感器和其制造方法
JP2019015675A (ja) * 2017-07-10 2019-01-31 富士通株式会社 ガスセンサ、ガスセンサシステム、及びガス検出方法
JP2019124687A (ja) * 2018-01-15 2019-07-25 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 音波センサおよび気相分析物を検知する方法
US10794866B2 (en) 2018-01-15 2020-10-06 Rohm And Haas Electronic Materials Llc Acoustic wave sensors and methods of sensing a gas-phase analyte
JP2020201286A (ja) * 2018-01-15 2020-12-17 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 音波センサおよび気相分析物を検知する方法
CN112666034A (zh) * 2020-12-15 2021-04-16 上海博物馆 一种基于锡酸铜/二维碳化钛复合材料的有机腐蚀性气体传感器的制备方法
CN112666034B (zh) * 2020-12-15 2023-03-21 上海博物馆 一种基于锡酸铜/二维碳化钛复合材料的有机腐蚀性气体传感器的制备方法
WO2023058539A1 (ja) * 2021-10-05 2023-04-13 国立研究開発法人物質・材料研究機構 揮発性脂肪酸検出センサー、揮発性脂肪酸検出装置、および揮発性脂肪酸検出センサーの製造方法
CN114481339A (zh) * 2022-01-25 2022-05-13 武汉大学 一种金属氧化物纳米纤维传感器及其制备方法与在检测甲醛中的应用
CN114481339B (zh) * 2022-01-25 2023-02-28 武汉大学 一种金属氧化物纳米纤维传感器及其制备方法与在检测甲醛中的应用

Also Published As

Publication number Publication date
JPWO2007114192A1 (ja) 2009-08-13
JP4565092B2 (ja) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2007114192A1 (ja) ガス検知素子及びその製造方法
Paschke et al. Fast surface acoustic wave-based sensors to investigate the kinetics of gas uptake in ultra-microporous frameworks
JP4093532B2 (ja) アモルファス状金属酸化物の薄膜材料の製造方法
EP2480880B1 (en) Device for detecting gases and/or volatile organic compounds (voc)
JP4883624B2 (ja) 高感度ガスセンサ及びその製造方法
JP2004513366A (ja) 薄層金属水素化物水素センサ
US10571420B2 (en) Nanolaminate gas sensor and method of fabricating a nanolaminate gas sensor using atomic layer deposition
US8516880B2 (en) Gas sensing system with quartz crystal substrate
US9759699B1 (en) Systems and methods for the detection of compounds
Ham et al. Effect of oxygen plasma treatment on carbon nanotube-based sensors
JP4952334B2 (ja) 湿度センサ
WO2018230382A1 (ja) 検出装置
KR102139802B1 (ko) ppb 레벨의 산화질소를 감지 가능한 고성능 가스 센서 및 그 제조 방법
JP4817371B2 (ja) 金属イオン検知用電極及びその製造方法
EP4063318A1 (en) Alkene detection gas sensor, and system using same
JP7304607B2 (ja) 無機ガス検出装置及び無機ガス検出システム
JP2009216672A (ja) センサー用材料およびそれを用いたセンサー
US20100086735A1 (en) Patterned Functionalization of Nanomechanical Resonators for Chemical Sensing
JP2005257474A (ja) 容量式湿度センサ及びその製造方法
Khomenko et al. Graphene based chemiresisitive vapor sensors
JPH03223648A (ja) 薄膜感湿素子
RU2308713C2 (ru) Датчик концентрации аммиака и способ формирования его чувствительного слоя
RU2175127C2 (ru) Датчик концентрации сероводорода и способ формирования его чувствительного слоя
JP2006307027A (ja) 薄膜の製造方法及びそれにより得られた薄膜
RU2308712C2 (ru) Датчик концентрации оксида азота и способ формирования его чувствительного слоя

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740166

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008508577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740166

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)