WO2007113973A1 - ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 - Google Patents

ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 Download PDF

Info

Publication number
WO2007113973A1
WO2007113973A1 PCT/JP2007/054336 JP2007054336W WO2007113973A1 WO 2007113973 A1 WO2007113973 A1 WO 2007113973A1 JP 2007054336 W JP2007054336 W JP 2007054336W WO 2007113973 A1 WO2007113973 A1 WO 2007113973A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ferrite magnetic
magnetic powder
wet
ferrite
Prior art date
Application number
PCT/JP2007/054336
Other languages
English (en)
French (fr)
Inventor
Shuichi Kohayashi
Hiroya Ikeda
Hideki Katayama
Keisuke Ayabe
Original Assignee
Dowa Electronics Materials Co., Ltd.
Dowa F-Tec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co., Ltd., Dowa F-Tec Co., Ltd. filed Critical Dowa Electronics Materials Co., Ltd.
Priority to CN2007800112630A priority Critical patent/CN101410912B/zh
Priority to KR1020087024017A priority patent/KR101156806B1/ko
Priority to US12/225,235 priority patent/US20100230630A1/en
Priority to EP07737883.4A priority patent/EP2003657B1/en
Publication of WO2007113973A1 publication Critical patent/WO2007113973A1/ja
Priority to US14/255,621 priority patent/US9460850B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • Ferrite magnetic powder for bonded magnet Method for producing the same, and bonded magnet technical field
  • the present invention relates to a magnetic powder for a bonded magnet containing iron and an alkaline earth metal as component elements, a method for producing the same, and a bonded magnet using the magnetic content thereof.
  • Bonded magnets are composite permanent magnets in which magnet (hard magnetic material) powder is used as a filler, and the magnet powder is solidified with a binder (binder) such as rubber or resin.
  • a binder such as rubber or resin.
  • the magnetic powder that is a filler of the bonded magnet usually, a ferrite magnetic powder having excellent residual magnetic flux density and solid coercive force is used. As described in Patent Documents 1 and 2, for example, various magnetic powders for bond magnets have been developed.
  • ferrite magnetic materials contain iron and alkaline earth metals as component elements, and this is also the same in the case of the bright magnetic powder for bonded magnets.
  • examples of this type of ferrite magnetic material include BaO-6FeO and SrO'6FeO.
  • the material is also used as bright magnetic powder for bonded magnets.
  • This bright magnetic powder for bonded magnets is manufactured through the following steps.
  • Patent Document 1 Japanese Patent No. 3257936
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-86412
  • the present inventors have considered that it is industrially important that bond magnets widely used in various electrical and electronic products exhibit magnetic properties close to those of sintered isotropic magnets. Therefore, research was conducted to invent a bonded magnet having magnetic properties close to those of a sintered isotropic magnet. As a result of this research, the inventors have conceived that the magnetic properties of the bonded magnet can be improved by adding a small amount of Cr (chromium) element to the bonded magnet. This is because if the ferrite magnetic powder, which is the raw material of the bonded magnet, contains an appropriate amount of Cr, the dispersibility is improved, and the fluidity when the fluorescent magnetic powder is mixed with a binder resin or rubber is improved. improves. As a result of the improvement of the fluidity, the orientation of the ferrite magnetic powder is enhanced, and this is considered to be due to the improvement of the magnetic properties in the manufactured bonded magnet.
  • Cr chromium
  • hexavalent chromium which is an environmentally hazardous substance
  • the amount of hexavalent chromium remaining in the bonded magnet is below the environmental standard, and there is no concern of immediately causing environmental pollution.
  • bonded magnets are used in a wide variety of large quantities of electrical and electronic products. Therefore, the present inventors considered that it was necessary to reduce the amount of hexavalent chromium, which is an environmentally hazardous substance, without reducing the magnetic properties of the bonded magnet as much as possible.
  • the present invention has been made under the circumstances as described above, and its purpose is to have a high fluidity when mixed with a comparatively resin or binder rubber, and in particular, a bond with high characteristics.
  • An object of the present invention is to provide a ferrite magnetic powder that can produce a magnet, and in which the amount of hexavalent chromium is reduced below the detection limit in the produced bonded magnet, a method for producing the same, and a bonded magnet.
  • the present inventors have studied the cause of the detection of hexavalent chromium for bonded magnets and have clarified the following.
  • the manufacturing process of the ferrite magnetic powder for manufacturing the bonded magnet includes a process of cleaning the fired powder containing an appropriate amount of Cr element obtained by firing the raw material powder, and the fired powder as a wet powder. Includes at least one crushing step.
  • the washing step and the wet pulverization step are performed using water as a solvent (dispersion solvent).
  • the present inventors maintain the hydrogen ion concentration of the dispersion solvent used during wet cleaning and wet pulverization within the range of pH 8.5 or less, in which Cr compound does not elute.
  • the inventors have conceived of a configuration that suppresses the Cr compound from becoming hexavalent chromium, thereby completing the present invention. That is, the first means for solving the above-described problem is
  • Ferrite magnetic powder for bonded magnet containing iron and alkaline earth metal and subjected to wet cleaning and / or wet powder
  • the second means is:
  • Ferrite magnetic powder characterized by containing Cr element of lOOppm or more and 3000ppm or less and having a hexavalent chromium content of lp pm or less.
  • the third means is:
  • Ferrite magnetic powder characterized by residual magnetic flux density Br of 1730 Gauss or more and intrinsic coercive force iHc of 2270 Oe or more.
  • the fourth means is:
  • a raw material powder containing iron and an alkaline earth metal is a method for producing a ferrite magnetic powder for producing a ferrite magnetic powder for a bonded magnet
  • the ferrite magnetic powder for bonded magnets is manufactured by performing cleaning with the pH of the dispersion solvent used for cleaning being 8.5 or less.
  • the fifth means is:
  • Ferrite magnetic powder manufacturing method for manufacturing ferrite magnetic powder for raw material powder containing iron and alkaline earth metal
  • the ferrite magnetic powder for bonded magnets is manufactured by performing cleaning with the pH of the dispersion solvent used for cleaning being 8.5 or less.
  • the sixth means is:
  • Ferrite magnetic powder manufacturing method for manufacturing ferrite magnetic powder for raw material powder containing iron and alkaline earth metal
  • a wet magnetic pulverization is performed by setting the pH of a dispersion solvent used for wet pulverization to 8.5 or less.
  • the seventh means is:
  • the eighth means is:
  • the ninth means is
  • a method for producing a bright magnetic powder for bonded magnets characterized by reduction treatment in a gas atmosphere containing at least one kind of C (hydride carbon) gas and in a temperature range of 80 ° C to 300 ° C. It is.
  • the tenth means is A bonded magnet comprising the ferrite magnetic powder for bonded magnet according to any one of the first to third means.
  • the ferrite magnetic powder according to the present invention can ensure fluidity when mixed with a binder resin or a binder rubber. Furthermore, the amount of hexavalent chromium in the manufactured bonded magnet can be made below the detection limit.
  • Ferrite magnetic powder according to the present invention contains lOOppm or more and 3000ppm or less of Cr element, but the content of hexavalent chromium is less than ppmw determined by the detection limit of diphenylcarbazide absorptiometry. It is.
  • the ferrite magnetic powder according to the present invention contains Cr element of lOOppm or more and 3000ppm or less, the melt flow rate (MFR) force when mixed with resin is as high as S70g / I0min or more. And since the MFR is high, the ferrite magnetic powder and the resin are smoothly mixed to form a highly uniform mixture.
  • the bonded magnet produced by injection molding in the magnetic field of the green compact produced by the mixture force with high uniformity showed high magnetic properties.
  • 7 g of the ferrite magnetic powder is filled with 0.4 cc of polyester resin, filled into a ⁇ 15 mm mold, and formed with a pressure of 8 MPa.
  • the green compact was found to have a residual magnetic flux density Br of 1730 Gauss or higher and an intrinsic coercive force iHc of 2270 Oe or higher.
  • a ferrite magnet powder having a residual magnetic flux density Br of 1730 Gauss or more and an intrinsic coercive force of iHc 2270 Oe or more was used, and a bond magnet was produced by injection molding in a magnetic field. Since the bond magnet can secure a BHmax of 1.8MGOe or more, which is close to that of a sintered isotropic magnet, it has been found that the bond magnet can be widely applied to motors and maggloles.
  • the ferrite magnetic powder according to the present invention contains not less than lOOppm and not more than 3000ppm of Cr element
  • the content of hexavalent chromium which is an environmental load substance is diphenylcarbazide absorbance. It was below lppm which is below the detection limit of the method.
  • the hexavalent chromium content is based on environmental standards (eg, lOOOOppm as defined by ROHS standards). Is a much smaller amount.
  • the manufacturing process of the ferrite magnetic powder according to the present invention includes (1) a mixing and mixing process, (2) a granulating process, (3) a firing process, and (4) a pulverizing process. , (5) Cleaning step, (6) Annealing step.
  • the granulated powder obtained in the granulation step is dried and then calcined in an electric furnace in the range of 900 ° C to 1350 ° C for 10 minutes to 2 hours to obtain a calcined powder.
  • the firing temperature is 900 ° C or higher, the ferritization reaction proceeds.
  • the firing temperature is 1350 ° C or lower, coarse growth of crystals and inter-particle sintering can be avoided in the fired powder.
  • the firing time force S is 10 minutes or more, the firing effect can be obtained.
  • the firing time is preferably 2 hours or less.
  • wet pulverization is performed on the calcined powder obtained in the calcining step until the average particle size becomes 2.5 zm or less.
  • This wet grinding is performed using water as a dispersion solvent.
  • An acidic compound is added to the solvent so that the pH of the dispersion solvent is maintained at 8.5. So-called pH control is performed, and ferrite magnetic powder is produced by wet grinding under this pH control.
  • the slurry-like calcined powder obtained in the pulverizing step is added with water that is at least 0.1 times the weight of the calcined powder excluding the solvent and is ⁇ 5-8. Filter and dehydrate. Alternatively, after the slurry-like calcined powder obtained in the pulverization step is filtered and dehydrated, it is washed with water having a weight of 0.1 to more than the weight of the calcined powder excluding the solvent and ⁇ 5-8, Dry in a dryer at 150 ° C.
  • the annealing process is for removing crystal distortion generated in the crystals of the ferrite magnetic powder at the time of pulverization of the calcined powder or pulverization after drying.
  • the annealing temperature is preferably in the range of 850 ° C to 1050 ° C.
  • the crystal distortion is removed and the He can be further increased by setting the annealing process temperature to 850 ° C or higher.
  • the annealing temperature is 1050 ° C. or lower, the aggregation of the ferrite magnetic powder can be suppressed and the dispersibility of the ferrite magnetic powder can be maintained. And the ferrite magnetic powder which concerns on this invention was obtained after the said annealing process.
  • a bond magnet was produced by using the above-mentioned ferrite magnetic powder and a usual method. It has been confirmed that the bonded magnet can be used for various electric and electronic products without any problem.
  • the manufacturing process of the ferrite magnetic powder according to the present invention includes (1) a blending and mixing process, and (2) granulation. It has various processes, (3) firing process, (4) dusting process, (5) washing process, and (6) annealing process.
  • the powder After drying the granulated powder obtained in the granulation step, the powder is baked in an electric furnace in the range of 900 ° C to 1350 ° C for 10 minutes to 2 hours.
  • the firing temperature is 900 ° C or higher, the ferrite reaction proceeds.
  • the firing temperature is 1350 ° C. or lower, coarse growth of crystals and inter-particle sintering can be avoided in the fired powder.
  • the firing time is preferably 2 hours or less.
  • the pulverized powder obtained in the calcination step is wet-pulverized until the average particle size becomes 2.5 zm or less.
  • the average particle size of the fired powder is set to 2.5 zm or less, magnetic properties such as coercive force are improved in the manufactured bonded magnet.
  • This wet pulverization is carried out using water as a dispersion solvent.
  • so-called pH control is performed by adding an acidic compound to the solvent so that the pH of the solvent is 8.5 or lower.
  • ferrite magnetic powder is manufactured by the grinding
  • water is used as a dispersion solvent
  • the boiling point of 200 ° C which contains carbon or carbon with an average particle size of 100 ⁇ or less and one or more elements of H, 0, N, and CI, in addition to the calcined powder obtained in the above step
  • a compound of C or more hereinafter sometimes simply referred to as a carbon compound
  • both carbon and a carbon compound are added and mixed.
  • the mixture is wet-pulverized so that the average particle size of ferrite magnetic powder is 2.5 ⁇ m or less.
  • the amount of carbon and Z or carbon compound added is 0.2 wt% to 2. Owt% with respect to the calcined powder.
  • carbon and / or carbon compounds are preferably added and mixed in the form of powder or liquid having an average particle size of 100 zm or less. This is because by taking this form, the effect of reducing hexavalent chromium remaining in a trace amount in the fluorescent magnetic powder is enhanced.
  • a compound having a boiling point of 200 ° C. or higher and containing 4 elements or more of H, ⁇ , N, and CI, each of which is essential for carbon alcohols having a boiling point of 200 ° C. or higher (diethylene group) Ricone, triethylene glycol, diethanolamine, triethanolamine, dipropylene glycol, tripropylene glycol, polyvinyl alcohol (PVA), etc.).
  • the powerful compound may be temporarily added to a solvent such as water or alcohol.
  • a solvent such as water or alcohol.
  • the amount of the carbon or carbon compound added is 0.2 wt% or more based on the ferrite magnetic powder, a sufficient reducing effect is exhibited.
  • the added amount is 5 wt% or less with respect to the ferrite magnetic powder, a situation in which the ferrite magnetic powder is reduced to ferrite, a situation in which sintering between ferrite particles occurs, and the like can be avoided. Therefore, if the added amount of the carbon or the strong bon compound is 0.2 wt% or more and 5 wt% or less with respect to the ferrite magnetic powder, a bright magnetic powder capable of producing a high-performance bonded magnet can be obtained.
  • the slurry-like calcined powder obtained in the pulverization step was added with water that was at least 0.1 times the weight of the calcined powder excluding the solvent and pH 5-8. Then, it is filtered and dehydrated. Alternatively, after the slurry-like calcined powder obtained in the pulverization step is filtered and dehydrated, the solvent is removed, and water that is at least 0.1 times the weight of the calcined powder and pH 5-8 is added. Wash and dry at 80 ⁇ : 150 ° C drier.
  • the annealing process is for removing crystal distortion generated in the crystals of the ferrite magnetic powder at the time of pulverization of the calcined powder or pulverization after drying. Furthermore, in the case where carbon and Z or a carbon compound was added in the pulverization process or cleaning process in addition to the removal of the crystal distortion, a small amount remains due to the reduction effect of the added carbon and Z or carbon compound. The reduced hexavalent chromium is reduced and removed.
  • the annealing temperature is preferably in the range of 850 ° C to 1050 ° C.
  • the annealing process temperature By setting the annealing process temperature to 850 ° C or higher, the crystal distortion is removed, and He can be further increased in the manufactured bonded magnet. Furthermore, in addition to the removal of the crystal distortion, carbon and / or carbon compounds may be added in the dusting process or washing process. Reduced and removed.
  • the annealing temperature is 1050 ° C. or lower, the occurrence of aggregation of the ferrite magnetic powder is suppressed, and the dispersibility of the ferrite magnetic powder can be maintained. As a result, the ferrite magnetic powder according to the present invention was obtained after the annealing step.
  • the reducing power of the divalent Fe causes the same six values as in the case of adding carbon and Z or a carbon compound.
  • the reduced chromium is reduced and the ferrite magnetic powder according to the present invention can be obtained.
  • a bond magnet was produced by using the above-mentioned ferrite magnetic powder and a usual method. It has been confirmed that the bonded magnet can be used for various electric and electronic products without any problem.
  • the manufacturing process of the ferrite magnetic powder according to the present invention includes (1) a blending and mixing process, (2) a granulating process, (3) a firing process, (4) a pulverizing process, (5) a washing process, (6) ) Has an annealing process.
  • the dispersibility of the ferrite magnetic powder can be improved by setting the Cr element content in the iron oxide to be lOOppm or more, and by setting it to 3000ppm or less, the magnetic properties of the manufactured bond magnet are as follows. This is because it is possible to improve the dispersibility of the ferrite magnetic powder without lowering.
  • the granulated powder obtained in the granulation step is dried and then baked in an electric furnace in the range of 900 ° C. to: 1350 ° C. for 10 minutes to 2 hours to obtain a baked powder.
  • the firing temperature is 900 ° C or higher, the ferrite reaction proceeds.
  • the firing temperature is 1350 ° C. or lower, coarse growth of crystals and inter-particle sintering can be avoided in the fired powder.
  • Baking time is less than 10 minutes If it is above, the firing effect can be obtained.
  • the firing time is preferably 2 hours or less.
  • the pulverization step water is added as a dispersion solvent to the baked powder obtained in the calcination step, and wet pulverization is performed until the average particle size becomes 2.5 zm or less.
  • the operation of adding carbon and carbon having an average particle diameter of 100 xm or less and Z or a carbon compound described in the pulverization step is performed. Also good.
  • the slurry-like calcined powder obtained in the pulverizing step is added with water that is at least 0.1 times the weight of the calcined powder excluding the solvent and has a pH of 5 to 8, and then filtered. Over dehydrate.
  • the slurry-like calcined powder obtained in the pulverization process is filtered and dehydrated, washed with 0.1 to 5 times the weight of the calcined powder excluding the solvent and pH 5-8.
  • Dry in a dryer at 150 ° C.
  • the crystal distortion generated in the ferrite magnetic powder crystals is removed during the above-described firing of the calcined powder or during crushing after drying. Furthermore, if carbon and / or carbon compounds are added in the pulverization process or washing process in addition to the removal of the crystal distortion, a slight amount of hexavalent chromium remains and is reduced. Removed.
  • the annealing temperature is preferably in the range of 850 ° C to 1050 ° C.
  • the ferrite magnetic powder after the annealing step is placed in a thermostatic sodium carbonate that can be sealed and has a stirring function, and the inside of the tank is H gas, CO gas, NO gas, HC (hydride carbon) Ga
  • the hexavalent chromium is reduced by substituting with a reducing gas containing at least one kind of sulfur or miscellaneous and setting the temperature range from 80 ° C to 300 ° C.
  • the concentration of the reducing gas is preferably 0.01% or more. If the concentration of the reducing gas is 0.01% or more, the reduction treatment time, which is effective in reducing and removing residual hexavalent chromium, can be reduced to 12 hours or less.
  • the processing temperature is 80 ° C or higher, the effect of reducing the residual hexavalent chromium is exhibited, and if it is 300 ° C or lower, the ferrite is reduced, and the magnetic properties of ferrite in the manufactured bonded magnet. Can be avoided.
  • washing step instead of carbon and / or carbon compound, divalent Fe and / or a compound containing divalent Fe, It is also preferable to add 0.2 wt% to 2 wt% of the calcined powder in terms of the amount of divalent Fe.
  • divalent Fe and / or the compound containing divalent Fe when carbon and / or carbon compound is added due to the reducing power of the divalent Fe.
  • hexavalent chromium is reduced and removed, and the ferrite magnetic powder according to the present invention can be obtained.
  • the flowability of the ferrite magnetic powder was determined based on the method for measuring the melt flow rate (MFR) described later. As a result, the ferrite magnetic powder according to the present invention was excellent in fluidity, easily and easily with resin and rubber. It was found to mix evenly.
  • the bonded magnet according to the present invention could be produced by compression molding the mixture. It was confirmed that the bonded magnet can be used for various electrical and electronic products without any problems.
  • the properties of the ferrite magnetic powder in the green compact have a residual magnetic flux density Br of 173 OGauss or higher, an intrinsic coercive force iHc of 2270 Oe or higher, and a magnetic field orientation.
  • the magnetic properties of the bonded magnet when it was applied showed a BHmax force of 1.8 MGe or higher, which was comparable to a sintered isotropic magnet.
  • the fired powder was wet-ground for 120 minutes using an attritor with a volume of 10L.
  • the slurry was again collected and allowed to stand, and the pH of the supernatant was measured.
  • the pH of the slurry was 5.29, the pH after 120 minutes was 7.7, and the pH gradually increased with the progress of wet grinding, but the pH of the slurry during the wet grinding was 8. It was kept below 5.
  • the strontium ferrite powder was placed in an electric furnace, and 980 Annealing was performed at ° C for 20 minutes to produce a ferrite magnetic powder for a bond magnet according to Example 1.
  • the specific surface area diameter measured by the air permeation method was 1.65 / m, and the compression density was 3. It was 29 g / cm 3 .
  • the aspect of measuring methods such as the said specific surface area diameter, it mentions later.
  • melt flow rate (MFR) was as high as 71.5 g / l0 min.
  • the amount of hexavalent chromium in the ferrite magnetic powder for bonded magnet according to Example 1 was measured by the difluorocarbazide absorptiometry (the extraction method was a low-quality survey method performed by the 3% solute method). It was found to be lppm or less because it was below the detection limit.As described above, the powder characteristics and flow characteristics measured by the ferrite magnetic powder for bonded magnets and the injection molded article according to Example 1 were measured. The measured values of magnetic properties are shown in Table 1.
  • a powder specific surface area measuring device SS-100 manufactured by Shimadzu Corporation was used as a measuring device.
  • a press machine attached to the powder specific surface area measuring device a ferrite powder sample for a bonded magnet is press-molded to a cross-sectional area of 2 cm 2 and a thickness of 1 cm.
  • a small amount of petrolatum is applied to the sample cylinder of the powder specific surface area measuring device, and the press-formed ferrite powder for bonded magnets is tested. Set the fee.
  • the time t during which the air passes through the press-molded ferrite powder sample for bonded magnets by 2 cm 3 is measured, and from this measured time t, the ferrite powder sample for bonded magnets is measured using the following conversion formula. The specific surface area was calculated.
  • Sw is the specific surface area.
  • p is the density of the press-molded bright powder sample for bonded magnet, and in this example, 5. lg / cm 3 .
  • is a pressure difference, which is 40 gZcm 2 in this example.
  • A is the cross-sectional area of the sample layer, which is 2 cm 2 in this embodiment.
  • is a 180X 10- 6 g / cm 2 a viscosity coefficient of water.
  • L is the thickness of the sample and is lcm in this example.
  • W is the weight of the sample and is 5 g in this example.
  • Q is the amount of air permeation and is 2 cm 3 in this embodiment.
  • t is the time required for air permeation.
  • is the porosity of the sample layer (1_WZ 'A'L)).
  • the compression density was determined by measuring the density value after pressure-molding a ferrite powder sample for bonded magnets at lton / cm 2 and setting the measured value as the compression density value.
  • the weighed magnetic powder for bonded magnet was filled into a cylindrical mold of ⁇ 15 mm and pressed at a pressure of 8 MPa for 20 seconds to form a green compact.
  • the magnetic properties of the injection molded body were measured as follows.
  • Example 2 Using the same raw materials as in Example 1, the same operation was performed to produce a calcined powder.
  • the manufactured baked powder is subjected to a wet pulverization process as follows, and according to Example 2.
  • Strontium ferrite powder was produced.
  • wet pulverization was performed by rotating the attritor for 120 minutes while continuing to blow carbon dioxide. After 60 minutes during the wet pulverization and 120 minutes after completion, the slurry was collected again and allowed to stand, and the pH of the supernatant was measured. The pH after 60 minutes was 5.80, 120 The pH after 5.7 was 5.7, and the pH of the slurry was kept lower than 8.5 during wet grinding.
  • the slurry is dehydrated and filtered in the same manner as in Example 1, followed by decantation, and the fired powder obtained by washing and filtering is dried to obtain an average particle size of 1. 42 / An im strontium ferrite powder was obtained.
  • Annealing was performed at ° C for 20 minutes to produce a ferrite magnetic powder for a bond magnet according to Example 2.
  • melt flow rate (MFR) was as high as 72.8 g / lOmin.
  • a green compact was produced from the ferrite magnetic powder for bonded magnet according to Example 2 in the same manner as in Example 1.
  • Br was 1870 Gauss (hereinafter referred to as G)
  • iHc was 25600000e, indicating a high value.
  • a kneaded product according to Example 2 was produced from the bright magnetic powder for bonded magnets according to Example 2 in the same manner as in Example 1.
  • Br was 2757G
  • iHc was 2440 ° e
  • BHmax ⁇ 1 85MG ⁇ e
  • the ferrite magnetic powder for bonded magnet according to Example 2 has good fluidity, and therefore the SQx value, which is one of the orientation indexes in the injection-molded article according to Example 2, is also high. Was found to have high magnetic properties.
  • Table 1 shows the measured values of the powder properties, flow properties, and magnetic properties measured with the ferrite magnetic powder for bonded magnets and the injection-molded product according to Example 2.
  • Example 2 Using the same raw materials as in Example 1, the same operation was performed to produce a calcined powder.
  • the strontium ferrite powder was treated in the same manner as in Example 1 except that hydrochloric acid and carbon corresponding to 0.5 wt% of the calcined powder were added to the produced calcined powder in the wet milling process. Manufactured.
  • the attritor continued the operation for 120 minutes and performed wet grinding. Then, 60 minutes after the wet pulverization and 120 minutes after the completion, the slurry was again collected and allowed to stand, and when the pH of the supernatant was measured, the pH after 60 minutes was 5.81. the P H after 12 0 min 8. and 2, with the passage of the wet grinding time, pH was gradually increased. However, the pH of the slurry during the wet pulverization was kept at 8.5 or lower.
  • the slurry is dehydrated and filtered in the same manner as in Example 1 and then decane.
  • the baked powder obtained by performing the treatment and washing and filtering was dried to obtain a strontium ferrite powder having an average particle size of 1.50 ⁇ m.
  • the strontium ferrite powder was placed in an electric furnace, and the atmosphere was 980.
  • Annealing was performed at ° C for 20 minutes to produce a ferrite magnetic powder for a bond magnet according to Example 3.
  • melt flow rate was as high as 77.8 g / l 0 min.
  • a green compact was produced from the ferrite magnetic powder for bonded magnet according to Example 3 in the same manner as in Example 1.
  • Br was 1880G and iHc was 2
  • Example 3 a kneaded material according to Example 3 was produced from the bright magnetic powder for bonded magnets according to Example 3 in the same manner as in Example 1.
  • Table 1 shows the measured values of the powder properties, flow properties, and magnetic properties measured with the ferrite magnetic powder for bonded magnets and the injection-molded product according to Example 3.
  • Example 2 Using the same raw materials as in Example 1, the same operation was performed to produce a calcined powder.
  • the manufactured baked powder was operated in the same manner as in the baked powder power Example 1 except that hydrochloric acid was not added in the wet pulverization step, and strontium ferrite powder was manufactured.
  • [0106] Specifically, weigh 1 ⁇ 3 kg of calcined powder, 12 g of hydrochloric acid with a concentration of 35%, and 10 kg of ⁇ 8 mm steel balls. Next, the force of operating an attritor with a volume of 10 L at a rotational speed of 200 rpm, S, et al. A slurry was obtained by mixing.
  • the slurry was collected and allowed to stand, and the pH of the supernatant was measured and found to be 1.38.
  • the attritor continued wet operation for 120 minutes. Then, 60 minutes after the wet pulverization and 120 minutes after the completion, the slurry was again collected and allowed to stand, and when the pH of the supernatant was measured, the pH after 60 minutes was 5.90. the P H after 12 0 min and 8.4, with the passage of the wet grinding time, pH was gradually increased. However, the pH of the slurry during the wet pulverization was kept at 8.5 or lower.
  • the slurry is dehydrated and filtered in the same manner as in Example 1, followed by decantation, and the calcined powder obtained by washing and filtering is dried to obtain an average particle size of 1.50 ⁇ m. m strontium ferrite powder was obtained.
  • the strontium ferrite powder was placed in an electric furnace and annealed at 980 ° C for 20 minutes in an air atmosphere.
  • the annealed strontium ferrite powder is placed in a sealed thermostat having a stirring function, and a mixed gas of nitrogen and hydrogen (with a hydrogen gas concentration of 0 at a flow rate of 1 L / min) is placed in the thermostat. 1%), and the atmosphere in the thermostatic chamber was replaced with a mixed gas. Then, after completion of the replacement, while stirring the annealed strontium ferrite powder, the atmospheric temperature in the thermostatic bath was raised to 150 ° C. and held for 2 hours, and then lowered to room temperature.
  • Example 4 Ferrite magnetic powder for bonded magnets was manufactured.
  • Example 4 The powder properties of the ferrite magnetic powder for bonded magnet according to Example 4 were measured in the same manner as in Example 1. As a result, the specific surface area diameter measured by the air permeation method was 1.90 xm, and the compression density was 3. 41g / cm 3 in fe ivy.
  • melt flow rate was 75.5 g / l 0 min, indicating high fluidity.
  • a green compact was produced in the same manner as in Example 1 from the ferrite magnetic powder for bonded magnet according to Example 4. Then, when the magnetic properties of the green compact were measured, Br was 1880G and iHc was 2550Oe, indicating a high level. Furthermore, the kneaded material according to Example 4 was produced from the ferrite magnetic powder for bonded magnet according to Example 4 in the same manner as in Example 1.
  • Table 1 shows the measured values of the powder properties, flow properties, and magnetic properties measured for the fluorescent magnetic powder for bonded magnets and the injection-molded product according to Example 4.
  • Example 2 Using the same raw materials as in Example 1, the same operation was performed to produce a calcined powder.
  • a strontium ferrite powder was produced in the same manner as in Example 1 except that hydrochloric acid was not added in the wet pulverization step.
  • the slurry was collected and allowed to stand, and the pH of the supernatant was measured and found to be 9.95.
  • the attritor continued the operation for 120 minutes and performed wet grinding. After 60 minutes during the wet pulverization and 120 minutes after completion, the slurry was again collected and allowed to stand, and when the pH of the supernatant was measured, the pH after 60 minutes was 11.1, The pH after 120 minutes was 11.9, and the pH gradually increased with the lapse of the wet grinding time.
  • the pH of the slurry during the wet pulverization was higher than pH 8.5 where Cr is considered to change to hexavalent chromium.
  • the slurry is dehydrated and filtered in the same manner as in Example 1, and then decane is used.
  • the baked powder obtained by performing the treatment and washing and filtering was dried to obtain a strontium ferrite powder having an average particle size of 1.50 ⁇ m.
  • the strontium ferrite powder was placed in an electric furnace, and the atmosphere was 980.
  • Annealing was performed at ° C for 20 minutes to produce a ferrite magnetic powder for bonded magnets according to Comparative Example 1.
  • melt flow rate was 72.3 g / l 0 min, indicating a high fluidity.
  • a green compact was produced from the bright magnetic powder for bonded magnets according to Comparative Example 1 in the same manner as in Example 1.
  • Br was 1870G and iHc was 2
  • Table 1 shows the measured values of the powder properties, flow properties, and magnetic properties measured with the ferrite magnetic powder for bonded magnets and the injection-molded product according to Comparative Example 1.
  • a calcined powder was produced in the same manner as in Example 1 except that iron oxide containing 5 ppm of Cr element was used as a raw material.
  • a strontium ferrite powder was produced in the same manner as in Example 1 except that hydrochloric acid was not added in the wet pulverization step.
  • [0126] Specifically, weigh 1 ⁇ 3kg of fired powder and 10kg of ⁇ 8mm steel ball. Next, while operating an attritor having a volume of 10 L at a rotational speed of 200 i "pm, 10 kg of steel balls, 2 L of ⁇ 6 ⁇ 7 water, and 1 ⁇ 3 kg of calcined powder were added in this order to obtain a slurry. The slurry was collected and allowed to stand, and the pH of the supernatant was measured to be 9.95, while the attritor continued the operation for 120 minutes to perform wet grinding.
  • the slurry is dehydrated and filtered in the same manner as in Example 1, followed by decantation.
  • the washed and filtered calcined powder is dried, and the average particle size is 1.45 ⁇ m. m strontium ferrite powder was obtained.
  • the strontium ferrite powder was placed in an electric furnace and annealed at 980 ° C. for 20 minutes in an air atmosphere to produce a ferrite magnetic powder for a bond magnet according to Comparative Example 2.
  • melt flow rate was 58 ⁇ 9g / 10min and the flowability was low.
  • a green compact was produced from the ferrite magnetic powder for bonded magnet according to Comparative Example 2 in the same manner as in Example 1.
  • Br was 1850G and iHc was 2 300 Oe.
  • a kneaded product according to Comparative Example 2 was produced from the ferrite magnetic powder for bonded magnets according to Comparative Example 2 in the same manner as in Example 1.
  • the ferrite magnetic powder for bonded magnet according to Comparative Example 2 has a poor fluidity ratio. It was found that the SQx value, which is one of the orientation indexes in the injection molded article according to Comparative Example 2, was lowered and the magnetic properties were inferior.
  • Table 1 shows the measured values of the powder properties, flow properties, and magnetic properties measured using the ferrite magnetic powder for bonded magnets and the injection-molded product according to Comparative Example 2.
  • FIG. 1 is a flowchart showing an example of manufacturing ferrite magnetic powder for bonded magnets according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

 低コストで、生産性を損なうことなく、また、使用上支障となる磁気特性への悪影響をもたらすことなく、環境負荷物質である六価クロムの残存を確実に抑制したボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石を提供する。  原料粉を焼成して焼成粉を得る工程と、焼成された上記焼成粉を湿式粉砕する工程と、粉砕された上記焼成粉を湿式洗浄する工程と、洗浄された上記焼成粉をアニールする工程を行うとともに、上記湿式粉砕の工程や湿式洗浄において粉砕時や洗浄時の分散溶媒のpHを8.5以下に保ちながら粉砕や洗浄を行うことにより、環境負荷物質である六価クロムの生成を抑える。

Description

明 細 書
ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 技術分野
[0001] 本発明は、成分元素として鉄とアルカリ土類金属とを含むボンド磁石用磁性粉およ びその製造方法、並びにその磁性分を用いたボンド磁石に関する。
背景技術
[0002] ボンド磁石は、磁石 (硬磁性体)粉末をフイラ一とし、当該磁石粉末をゴムや樹脂等 のバインダー (結着剤)で固化成形した複合永久磁石で、形状自由度が高ぐ機械 的特性においても欠け難い等の利点があり、さらに、金型成形等による大量生産が 容易で生産性にすぐれているなど、多くの利点を有する。
[0003] このため、当該ボンド磁石の応用製品は非常に多岐にわたっており、たとえば、冷 蔵庫のドアパッキン、各種マグネットシート、パソコン周辺機器のスピンドルモータ、 自 動車の各種メータ、健康機器、文具、玩具などに広く利用されている。
[0004] このボンド磁石のフィラーである磁石粉末としては、通常、残留磁束密度および固 有保磁力にすぐれたフヱライト磁性粉が用いられる。このボンド磁石用のフヱライト磁 性粉については、たとえば特許文献 1、 2に記載されているように、種々開発されてい る。
[0005] フェライト磁性材料には、成分元素として鉄とアルカリ土類金属とを含むものが多い が、これはボンド磁石用フヱライト磁性粉の場合も概略同様である。この種のフェライ ト磁性材料としては、たとえば、 BaO - 6Fe Oや SrO ' 6Fe O等があるが、これらの
2 3 2 3
材料はボンド磁石用フヱライト磁性粉としても使用されている。
[0006] このボンド磁石用フヱライト磁性粉は、次のような工程を経て製造される。
(1)焼成元素材料として、鉄とアルカリ土類金属とを含む原料粉を焼成して焼成粉 を得る工程
(2)工程(1)で得た焼成粉を粉碎する工程
(3)工程 (2)で粉砕された焼成粉を洗浄する工程
(4)工程(3)で洗浄された焼成粉をァニールする工程 [0007] 特許文献 1 :特許第 3257936号公報
特許文献 2 :特開 2003— 86412号公報
発明の開示
発明が解決しょうとする課題
[0008] 近年、電気'電子製品等に対する要求は、その用途に対応できる特性に対する要 求に加えて、コストに対する要求も厳しい。さらに最近では、環境問題の見地から、環 境負荷の小さな製品が求められるようになつてきた。
[0009] 本発明者らは、種々の電気'電子製品に広く用いられるボンド磁石に焼結等方性 マグネットに近い磁気特性を発揮させることが産業上重要であると考えた。そこで、焼 結等方性マグネットに近い磁気特性を有するボンド磁石を発明するための研究をお こなった。そして、当該研究の結果、ボンド磁石に少量の Cr (クロム)元素を含有させ ることで、当該ボンド磁石の磁気特性を向上させることが出来ることに想到した。これ は、当該ボンド磁石の原料であるフェライト磁性粉に適量の Crが含有されていると分 散性が向上し、当該フヱライト磁性粉と、バインダー樹脂やゴムとを混合したときの流 動性が向上する。この流動性が向上する結果、フェライト磁性粉の配向性が高まり、 製造されるボンド磁石において、磁気特性が向上する為であると考えられる。
[0010] ところ力 製造されたボンド磁石において環境負荷物質である六価クロムが検出さ れる場合があった。尤も、当該ボンド磁石に残存した六価クロム量は環境基準を下回 つており、直ちに環境汚染を惹起する心配はない。しかし、上述したように、ボンド磁 石は、非常に多種 ·大量の電気 ·電子製品に利用されている。そこで、本発明者らは 、当該ボンド磁石の磁石特性を低下させることなぐ環境負荷物質である六価クロム 量を出来るだけ削減することが必要と考えた。
[0011] 本発明は、以上のような状況下でなされたものであり、その目的は、ノくインダー樹脂 やバインダーゴムと混合したときの流動性が高レ、こと力ら、高特性のボンド磁石を製 造することができ、且つ、当該製造されたボンド磁石において、六価クロム量が検出 限界以下に低減されるフェライト磁性粉およびその製造方法、並びに、ボンド磁石を 提供することにある。
課題を解決するための手段 [0012] 本発明者らは、ボンド磁石用に六価クロムが検出される原因について研究を行い、 以下のようなことを明らかにした。
[0013] ボンド磁石製造用のフェライト磁性粉の製造工程には、上述したように、原料粉を 焼成して得た適宜量の Cr元素を含む焼成粉を洗浄する工程、当該焼成粉を湿式粉 砕する工程の少なくても 1つが含まれる。この洗浄工程や湿式粉砕工程は、一般的 に水を溶媒 (分散溶媒)として行う。
当該湿式洗浄工程を付加することで、製造されたフェライト磁性粉において、未反 応の不純物成分が溶媒中に溶出することで除去される。すると、その後ァニール処 理を行った場合に、粒子間の凝集や粒成長が格段に抑制される。よって、このァニ ール処理にぉレ、て熱を加えることで、粉砕時に発生した結晶の歪みが除去されて磁 気特性が回復すると共に、適宜量の Cr元素を含むフェライト磁性粉中の粒子間の分 散性が維持され、ノインダーである天然ゴム、樹脂やゴムと混練した際に、これらバイ ンダ一中に均一に分散されることとなり、当該混練物中におけるフェライト磁性粉粒 子の流動性 ·配向性が向上する。この結果、後工程において、当該混練物を、磁場 中で射出成形したとき、個々のフェライト磁性粉粒子がより均一に配向する為、製造 されるボンド磁石におレ、て磁力が向上する。
[0014] また、当該湿式粉砕する工程を行うことで、フェライト磁性粉粒子中の未反応の不 純物成分が溶媒中に溶出して除去されると共に効率よく粉砕することが可能となる。 この結果、磁気特性の観点、および、樹脂と混合したときの流動性の観点において 最適な粒径まで、生産性良く粉碎することが可能となる。
[0015] しかし、当該湿式洗浄工程および湿式粉碎工程において、焼成粉中に存在する未 反応の Srや Baなどのアルカリ土類金属が分散溶媒である水に溶出して当該分散溶 媒の pHが 8. 5より高くなる。すると、焼成粉中に含まれていた Crィ匕合物の一部が乾 燥熱処理後に六価クロムに変化し易い状態となり、後のァニール工程で焼成されると
、一部が六価クロムに変化することが判明した。
[0016] ここで、本発明者らは、湿式洗浄時および湿式粉砕において、使用される分散溶媒 の水素イオン濃度を、 Crィ匕合物が溶出しなレ、 pH8. 5以下の範囲に保つことにより、 Crィ匕合物が六価クロムとなることを抑制する構成に想到し、本発明を完成させた。 [0017] すなわち、上述の課題を解決するための第 1の手段は、
鉄とアルカリ土類金属とを含み、湿式洗浄および/または湿式粉碎を経たボンド磁 石用のフェライト磁性粉であって、
lOOppm以上、 3000ppm以下の Cr元素を含み、且つ、六価クロムが検出されな レ、ことを特徴とするフェライト磁性粉である。
[0018] 第 2の手段は、
鉄とアルカリ土類金属とを含み、湿式洗浄および Zまたは湿式粉砕を経たボンド磁 石用のフェライト磁性粉であって、
lOOppm以上、 3000ppm以下の Cr元素を含み、且つ、六価クロムの含有量が lp pm以下であることを特徴とするフェライト磁性粉である。
[0019] 第 3の手段は、
第 1または第 2の手段に記載のフヱライト磁性粉であって、
当該フェライト磁性粉 7gにポリエステル樹脂 0. 4cc加え、 φ 15mmの型に充填し 8 MPaの圧力をかけて作製した圧粉体の磁気特性において、
残留磁束密度 Brが 1730Gauss以上、固有保磁力 iHcが 2270Oe以上であること を特徴とするフェライト磁性粉である。
[0020] 第 4の手段は、
鉄とアルカリ土類金属とを含む原料粉力 ボンド磁石用のフェライト磁性粉を製造 するフェライト磁性粉の製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、上記焼成粉を湿式洗浄する工程と、 上記湿式洗浄された焼成粉をァニールする工程とを有し、
上記湿式洗浄する工程において、洗浄に用いる分散溶媒の pHを 8. 5以下として 洗浄を行うことを特徴とするボンド磁石用フェライト磁性粉の製造方法である。
[0021] 第 5の手段は、
鉄とアルカリ土類金属とを含む原料粉力、らボンド磁石用のフヱライト磁性粉を製造 するフェライト磁性粉製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、上記焼成粉を粉砕する工程と、上記 粉砕された焼成粉を湿式洗浄する工程と、上記湿式洗浄された焼成粉をァニールす る工程とを有し、
上記湿式洗浄工程において、洗浄に用いる分散溶媒の pHを 8. 5以下として洗浄 を行うことを特徴とするボンド磁石用フェライト磁性粉の製造方法である。
[0022] 第 6の手段は、
鉄とアルカリ土類金属とを含む原料粉力、らボンド磁石用のフヱライト磁性粉を製造 するフェライト磁性粉製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、焼成された上記焼成粉を湿式粉砕す る工程と、上記湿式粉砕された焼成粉をァニールする工程とを有し、
上記湿式粉砕工程において、湿式粉砕に用いる分散溶媒の pHを 8. 5以下として 湿式粉砕を行うことを特徴とするボンド磁石用フェライト磁性粉の製造方法である。
[0023] 第 7の手段は、
第 4から第 6のいずれかの手段に記載のフヱライト磁性粉の製造方法であって、 焼成粉を得る工程より後で、ァニールする工程より前に、上記焼成粉へ、カーボン、 および/または、カーボンを必須とし、 H、〇、 N、 CIのいずれか 1種以上の元素とを 含む沸点 200°C以上の化合物を添加することを特徴とするボンド磁石用フェライト磁 性粉の製造方法である。
[0024] 第 8の手段は、
第 4から第 6のいずれかの手段に記載のフェライト磁性粉の製造方法であって、 焼成粉を得る工程より後で、ァニールする工程より前に、上記焼成粉へ、 2価の Fe および/または 2価の Feを含む化合物を添加することを特徴とするボンド磁石用フエ ライト磁性粉の製造方法である。
[0025] 第 9の手段は、
第 4から第 6のいずれかの手段に記載のフヱライト磁性粉の製造方法であって、 湿式粉砕および Zまたは湿式洗浄された焼成粉を、 Hガス、 COガス、 N〇ガス、 H
2
C (ハイド口カーボン)ガスのいずれ力、 1種以上を含み、 80°C〜300°Cの温度範囲に あるガス雰囲気中で還元処理することを特徴とするボンド磁石用フヱライト磁性粉の 製造方法である。
[0026] 第 10の手段は、 第 1から第 3の手段のいずれかに記載のボンド磁石用フェライト磁性粉を含むことを 特徴とするボンド磁石である。
発明の効果
[0027] 本発明に係るフヱライト磁性粉によれば、バインダー樹脂やバインダーゴムと混合し たときの流動性を確保できる。さらに、製造されたボンド磁石における六価クロム量を 検出限界以下とすることが出来る。
発明を実施するための最良の形態
[0028] 本発明に係るフェライト磁性粉は、 lOOppm以上、 3000ppm以下の Cr元素を含有 しているが、六価クロムの含有量は、ジフエ二ルカルバジド吸光光度法の検出限界で める丄 ppmw下である。
つまり、本発明に係るフェライト磁性粉は lOOppm以上、 3000ppm以下の Cr元素 を含有しているので、樹脂と混合したときのメルトフローレート(MFR)力 S70g/I0mi n以上と高い。そして、当該 MFRが高いので、当該フェライト磁性粉と樹脂との混合 が円滑に進み均一性の高い混合物となる。当該均一性の高い混合物力 製造した 圧粉体を磁場中射出成形で製造したボンド磁石は高レ、磁気特性を示した。因みに、 本発明に係るフェライト磁性粉磁気特性を測定するため、当該フェライト磁性粉 7gに ポリエステル樹脂を 0. 4ccカ卩え、 φ 15mmの金型に充填し 8MPaの圧力をかけて成 形することで圧粉体とし、測定した。すると当該圧粉体は、残留磁束密度 Brが 1730 Gauss以上、固有保磁力 iHcが 2270Oe以上の値を有していることが判明した。 そして、圧粉体としたとき残留磁束密度 Brが 1730Gauss以上、固有保磁力が iHc 2270Oe以上を示すフェライト磁性粉を用レ、、磁場中射出成形してボンド磁石を製 造した場合、得られたボンド磁石は、焼結等方性マグネットに近い 1. 8MGOe以上 の BHmaxを確保できるようになることから、当該ボンド磁石は、モーターやマグロー ルなどへ広く応用できることが判明した。
[0029] 一方、本発明に係るフェライト磁性粉は、 lOOppm以上、 3000ppm以下の Cr元素 を含有しているにも拘わらず、環境負荷物質である六価クロムの含有量は、ジフエ二 ルカルバジド吸光光度法の検出限界以下である lppm以下にすることができた。当 該六価クロムの含有量は、環境基準(例えば、 ROHS規格の定める lOOOppm)より もはるかに少ない量である。
[0030] (第 1の実施形態)
次に、本発明に係るボンド磁石用のフェライト磁性粉の製造方法について、その製 造プロセスの好適な一実施形態を、図 1を参照しながら説明する。
[0031] 本発明に係るフェライト磁性粉の製造工程は、図 1のフローに示すように(1)配合お よび混合工程、(2)造粒工程、(3)焼成工程、 (4)粉砕工程、(5)洗浄工程、(6)ァ ニール工程の諸工程を有する。
以下、工程ごとに説明する。
[0032] (1)配合'混合工程:
炭酸ストロンチウムと酸化鉄とを、モル比で SrC〇 : Fe O = 1 : 5. 20〜6. 00の範
3 2 3
囲となるよう評量し、混合して混合物を得る。
このとき酸化鉄として、 Fe Oの純度が 99. 0〜99. 9%, Cr元素の含有量が ΙΟΟρ
2 3
pm以上、 3000ppm以下のものを用いた。これは、 Crの含有量を lOOppm以上とす ることで、フェライト磁性粉の分散性を高める効果が発揮され、 3000ppm以下とする ことで、フェライト磁性粉の磁気特性の低下を回避できるからである。
[0033] (2)造粒工程:
得られた混合物へ、 5〜15wt%の水を添加して混合し、 <i> 3〜10mmの球状に造 粒し造粒粉を得る。
[0034] (3)焼成工程:
造粒工程で得られた造粒粉を、乾燥後電気炉で 900°C〜1350°Cの範囲で 10分 間〜 2時間の範囲で焼成して焼成粉を得る。ここで、焼成温度が 900°C以上あれば、 フェライト化反応が進行する。一方、焼成温度が 1350°C以下であれば、当該焼成粉 において、結晶の粗大成長や粒子間焼結を回避することができる。また、焼成時間 力 S10分間以上あれば、当該焼成の効果を得ることが出来る。一方、生産性の観点か らは焼成時間が 2時間以下であることが好ましい。
[0035] (4)粉砕工程:
粉砕工程においては、焼成工程で得られた焼成粉を、その平均粒子径が 2. 5 z m 以下となるまで湿式粉砕を行う。この湿式粉砕は水を分散溶媒にして行うが、このとき 分散溶媒の pHが 8· 5以下を保持するように、酸性化合物を溶媒に添加する。いわ ゆる pH制御を行うが、この pH制御下での湿式粉砕によって、フェライト磁性粉を製 造する。
[0036] (5)洗浄工程:
洗浄工程においては、粉砕工程で得られたスラリー状の焼成粉に、溶媒を除いた 焼成粉量に対して 0. 1重量倍以上であって、 ρΗ5〜8である水を添カ卩して濾過脱水 する。または、粉砕工程で得られたスラリー状の焼成粉を濾過脱水後、溶媒を除いた 焼成粉量に対して 0. 1重量倍以上であって ρΗ5〜8の水を用いて洗浄し、 80-15 0°Cの乾燥機中で乾燥する。
[0037] (6)ァニール工程:
ァニール工程は、上述した焼成粉の粉砕時または乾燥後の解砕時に、フェライト磁 性粉の結晶に発生する結晶歪を除去するためのものである。ァニール温度としては 8 50°C〜1050°Cの範囲とすることが好ましい。
[0038] これは、当該ァニール工程の温度を 850°C以上にすることにより上記結晶歪みが 除去されて Heをより高めることができるからである。一方、当該ァニール温度が 1050 °C以下であれば、フェライト磁性粉の凝集の発生を抑制し、当該フェライト磁性粉の 分散性を保つことができるからである。そして、当該ァニール工程後に本発明に係る フェライト磁性粉を得た。
[0039] 上記フェライト磁性粉に対し、ジフエ二ルカルバジド吸光光度法により六価クロムの 含有量を測定したところ、検出限界以下であったことから lppm以下であることが確認 された。
そして、上記フェライト磁性粉を用レ、、通常の方法によりボンド磁石を作製した。当 該ボンド磁石は、各種電気'電子製品への用途へ、支障無く使用できることが確認さ れた。
[0040] (第 2の実施形態)
次に、本発明に係るカーボン用のフェライト磁性粉の製造方法について、その製造 プロセスの異なる好適な一実施形態を説明する。
[0041] 本発明に係るフェライト磁性粉の製造工程は、(1)配合および混合工程、(2)造粒 工程、(3)焼成工程、(4)粉碎工程、(5)洗浄工程、 (6)ァニール工程の諸工程を有 する。
以下、工程ごとに説明する。
[0042] (1)配合'混合工程:
炭酸ストロンチウムと酸化鉄とを、モル比で SrC〇 : Fe O = 1 : 5. 20〜6. 00の範
3 2 3
囲となるよう評量し、混合して混合物を得る。
このとき酸化鉄として、 Fe Oの純度が 99. 0〜99. 9%, Cr元素の含有量が ΙΟΟρ
2 3
pm以上、 3000ppm以下のものを用いた。これは、 Crの含有量を lOOppm以上とす ることで、フェライト磁性粉の分散性を高める効果が発揮され、 3000ppm以下とする ことで、フェライト磁性粉の磁気特性の低下を回避できるからである。
[0043] (2)造粒工程:
得られた混合物へ、 5〜15wt%の水を添加して混合し、 c) 3〜10mmの球状に造 粒して造粒粉を得る。
[0044] (3)焼成工程:
造粒工程で得られた造粒粉を乾燥後、電気炉にて 900°C〜1350°Cの範囲で、 10 分間〜 2時間焼成して焼成粉を得る。ここで、焼成温度が 900°C以上あれば、フェラ イト化反応が進行する。一方、焼成温度が 1350°C以下であれば、当該焼成粉にお いて、結晶の粗大成長や粒子間焼結を回避することができる。焼成時間が 10分間以 上あれば、当該焼成の効果を得ることが出来る。一方、生産性の観点からは焼成時 間が 2時間以下であることが好ましレ、。
[0045] (4)粉砕工程:
粉砕工程においては、焼成工程で得られた焼成粉を、その平均粒子径が 2. 5 z m 以下となるまで湿式粉砕を行う。当該焼成粉の平均粒子径を 2. 5 z m以下とすること で、製造されるボンド磁石において保磁力などの磁気特性が向上する。
この湿式粉砕は水を分散溶媒にして行うが、このとき溶媒の pHが 8. 5以下を保持 するように酸性化合物を溶媒へ添加し、いわゆる pH制御を行う。そして当該 PH制御 下での粉砕によって、フェライト磁性粉を製造する。
[0046] また、さらに好ましくは、当該粉砕工程において、分散溶媒として水を用い、焼成ェ 程で得られた焼成粉へ、さらに平均粒子径 100 μ ΐη以下の、カーボン、または、カー ボンを必須とし、 H、 0、 N、 CIのいずれか 1種以上の元素とを含む沸点 200°C以上 の化合物(以下、単にカーボン化合物と略記する場合がある。)、または、カーボンと カーボン化合物との両方を、添加混合する。そして、当該混合物を湿式粉砕し、フエ ライト磁性粉単体平均粒子径を 2. 5 μ m以下とする。
このとき、カーボンおよび Zまたはカーボン化合物の添加量は、焼成粉に対して 0. 2wt%〜2. Owt%とする。
さらに、カーボンおよび/またはカーボン化合物は、平均粒子径が 100 z m以下の 粉体、または、液体の形態で添加混合することが好ましい。当該形態をとることで、フ ヱライト磁性粉中に、微量に残留する六価クロムを還元する効果が高まるからである。 ここで、カーボンを必須とし、 H、〇、 N、 CIのいずれ力 4種以上の元素とを含む沸点 2 00°C以上の化合物の例としては、沸点が 200°C以上のアルコール類(ジエチレング リコーノレ、トリエチレングリコーノレ、ジエタノールァミン、トリエタノーノレアミン、ジプロピ レングリコール、トリプロピレングリコール、ポリビエルアルコール(PVA)など)が挙げ られる。
ここで、当該カーボンィ匕合物が、 PVA等のように粒子形態を有する場合は、当該力 一ボン化合物を水やアルコールなどの溶媒に一旦溶力して添加してもよレ、。また、当 該カーボンやカーボン化合物の添カ卩量は、フェライト磁性粉に対して 0. 2wt%以上 あれば十分な還元効果が発揮される。また、当該添加量がフェライト磁性粉に対して 5wt%以下であれば、当該フェライト磁性粉をフェライトまで還元してしまう事態や、フ エライト粒子間の焼結が発生する事態などを回避出来る。従って、当該カーボンや力 一ボン化合物の添加量が、フェライト磁性粉に対して 0. 2wt%以上、 5wt%以下で あれば高特性のボンド磁石を製造できるフヱライト磁性粉を得ることが出来る。
(5)洗浄工程:
洗浄工程においては、粉砕工程で得られたスラリー状の焼成粉に、溶媒を除いた 焼成粉の重量に対して 0. 1重量倍以上であって、 pH5〜8である水を添カ卩した後、 濾過脱水する。または、粉砕工程で得られたスラリー状の焼成粉を濾過脱水後、溶 媒を除レ、た焼成粉の重量に対して 0. 1重量倍以上であって pH5〜8の水を加えて 洗浄し、 80〜: 150°Cの乾燥機中で乾燥する。
[0048] 尚、上記(4)粉碎工程で説明した、平均粒子径 100 μ m以下の、カーボン、または 、カーボン化合物、または、カーボンとカーボン化合物との両方を添加混合する操作 を、当該洗浄工程で行っても良い。
[0049] (6)ァニール工程:
ァニール工程は、上述した焼成粉の粉砕時または乾燥後の解砕時に、フェライト磁 性粉の結晶に発生する結晶歪を除去するためのものである。さらに、当該結晶歪の 除去に加えて粉砕工程または洗浄工程でカーボンおよび Zまたはカーボンィ匕合物 を添加していた場合は、当該添加されたカーボンおよび Zまたはカーボン化合物の 還元効果により、微量に残留した六価クロムが還元除去される。ァニール温度として は 850°C〜: 1050°Cの範囲とすることが好ましい。
[0050] 当該ァニール工程の温度を 850°C以上にすることで、上記結晶歪みが除去され、 製造されるボンド磁石において Heをより高めることができる。さらに、当該結晶歪の除 去に加えて粉碎工程または洗浄工程でカーボンおよび/またはカーボン化合物を 添加してレ、た場合は、六価クロムが微量に残留して存在してレ、た場合も還元除去さ れる。一方、当該ァニール温度が 1050°C以下であれば、フェライト磁性粉の凝集の 発生が抑制され、当該フェライト磁性粉の分散性を保つことができる。この結果、当該 ァニール工程後に本発明に係るフェライト磁性粉を得た。
[0051] また、上記(4)粉砕工程、 (5)洗浄工程にぉレ、て、カーボンおよび/またはカーボ ン化合物の代わりに、 2価の Fe、または、 2価の Feを含む化合物(例えば、 FeO、 Fe SO、 FeCl )、または、 2価の Feと 2価の Feを含む化合物の両方を、 2価の Fe量に
4 2
換算して焼成粉に対して 0. 2wt%〜2wt%添加することも好ましい構成である。 当該 2価の Feおよび Zまたは 2価の Feを含む化合物を添加することによつても、当 該 2価の Feの還元力により、カーボンおよび Zまたはカーボン化合物を添加した場 合と同様に六価クロムが還元除去され、本発明に係るフェライト磁性粉を得ることが 出来る。
[0052] 上記フェライト磁性粉に対し、ジフヱ二ルカルバジド吸光光度法により六価クロムの 含有量を測定したところ、検出限界以下であったことから lppm以下であることが確認 された。
そして、上記フェライト磁性粉を用レ、、通常の方法によりボンド磁石を作製した。当 該ボンド磁石は、各種電気'電子製品への用途へ、支障無く使用できることが確認さ れた。
[0053] (第 3の実施形態)
次に、本発明に係るカーボン用のフェライト磁性粉の製造方法について、その製造 プロセスのさらに異なる好適な一実施形態を説明する。
[0054] 本発明に係るフェライト磁性粉の製造工程は、(1)配合および混合工程、(2)造粒 工程、(3)焼成工程、(4)粉砕工程、(5)洗浄工程、 (6)ァニール工程の諸工程を有 する。
[0055] 以下、工程ごとに説明する。
(1)配合'混合工程:
炭酸ストロンチウムと酸化鉄とを、モル比で SrCO : Fe O = 1 : 5. 20〜6. 00の範
3 2 3
囲となるよう評量し、混合して混合物を得る。
このとき酸化鉄として、 Fe Oの純度が 99. 0〜99. 9%、 Cr元素の含有量が ΙΟΟρ
2 3
pm以上、 3000ppm以下のものを用いた。
これは、当該酸化鉄中の Cr元素含有量を、 lOOppm以上とすることで、フェライト磁 性粉の分散性を高めることができ、 3000ppm以下とすることで、製造されるボンド磁 石の磁気特性を低下させることなぐフェライト磁性粉の分散性を高めることができる からである。
[0056] (2)造粒工程:
得られた混合物へ、 5〜15wt%の水を添加して混合し、 c) 3〜10mmの球状に造 粒し造粒粉を得る。
[0057] (3)焼成工程:
造粒工程で得られた造粒粉を乾燥後、電気炉にて 900°C〜: 1350°Cの範囲で 10 分間〜 2時間焼成して焼成粉を得る。ここで、焼成温度が 900°C以上あれば、フェラ イト化反応が進行する。一方、焼成温度が 1350°C以下であれば、当該焼成粉にお いて、結晶の粗大成長や粒子間焼結を回避することができる。焼成時間が 10分間以 上あれば、当該焼成の効果を得ることが出来る。一方、生産性の観点からは焼成時 間が 2時間以下であることが好ましレ、。
[0058] (4)粉砕工程:
粉砕工程においては、焼成工程で得られた焼成粉へ水を分散溶媒として加え、そ の平均粒子径が 2. 5 z m以下となるまで湿式粉砕を行う。当該湿式粉砕を行うことで 、生産性良く微粒子で高特性のフヱライト粉を製造することができる。
[0059] 尚、(第 1の実施形態(4) )粉砕工程で説明した、平均粒子径 100 x m以下のカー ボン、および Zまたは、カーボン化合物を添加混合する操作を、当該粉砕工程で行 つても良い。
[0060] (5)洗浄工程:
洗浄工程においては、粉砕工程で得られたスラリー状の焼成粉に、溶媒を除いた 焼成粉重量に対して 0. 1重量倍以上であって、 pH5〜8である水を添加した後、濾 過脱水する。または、粉砕工程で得られたスラリー状の焼成粉を濾過脱水後、溶媒を 除いた焼成粉重量に対して 0. 1重量倍以上であって pH5〜8の水をカ卩えて洗浄し、 80〜: 150°Cの乾燥機中で乾燥する。
[0061] 尚、(第 1の実施形態(4) )粉砕工程で説明した、平均粒子径 100 μ ΐη以下のカー ボン、および/または、カーボン化合物を添加混合する操作を、当該洗浄工程で行 つても良い。
[0062] (6)ァニール工程:
ァニール工程では、上述した焼成粉の粉碎時または乾燥後の解砕時に、フェライト 磁性粉の結晶に発生する結晶歪が除去される。さらに、当該結晶歪の除去に加えて 粉砕工程または洗浄工程でカーボンおよび/またはカーボン化合物を添カ卩していた 場合は、六価クロムが微量に残留して存在してレ、た場合も還元除去される。
ァニール温度としては 850°C〜: 1050°Cの範囲とすることが好ましい。
当該ァニール工程の温度を 850°C以上にすることにより、上記結晶歪みが除去さ れ、製造されるボンド磁石において Heをより高めることができるからである。一方、当 該ァニール温度が 1050°C以下であれば、フェライト磁性粉の凝集の発生を抑制し、 当該フェライト磁性粉の分散性を保つことができるからである。 [0063] 次に、前記ァニール工程後のフェライト磁性粉を、密閉可能で攪拌機能のついた 恒温ネ曹内に入れ、当該槽内を Hガス、 COガス、 NOガス、 HC (ハイド口カーボン)ガ
2
スのレ、ずれか 1種以上を含む還元ガスで置換し、 80°C〜300°Cの温度範囲とするこ とで、六価クロムを還元処理する。
ここで、還元ガスの濃度は 0. 01 %以上が望ましい。還元ガスの濃度が 0. 01 %以 上あれば、残留する六価クロムを還元除去する効果が高ぐ還元処理時間を 12時間 以下とすることが出来る。
さらに、処理温度が 80°C以上であれば、残留する六価クロムを還元する効果が発 揮され、 300°C以下ならばフェライトを還元して、製造されるボンド磁石においてフエ ライトの磁気特性を低下させてしまうことを回避できる。
そして、当該ァニール工程後に本発明に係るフェライト磁性粉を得た。
[0064] また、上記 (4)粉砕工程、 (5)洗浄工程にぉレ、て、カーボンおよび/またはカーボ ン化合物の代わりに、 2価の Feおよび/または 2価の Feを含む化合物を、 2価の Fe 量に換算して焼成粉に対して 0. 2wt%〜2wt%添加することも好ましい構成である 。当該 2価の Feおよび/または 2価の Feを含む化合物を添カ卩することによつても、当 該 2価の Feの還元力により、カーボンおよび/またはカーボンィ匕合物を添加した場 合と同様に六価クロムが還元除去され、本発明に係るフェライト磁性粉を得ることが 出来る。
[0065] 上記フェライト磁性粉に対し、ジフエ二ルカルバジド吸光光度法により六価クロムの 含有量を測定したところ、検出限界であったことから lppm以下であることが確認され た。
そして、上記フェライト磁性粉の流動性を、後述するメルトフローレート(MFR)の測 定方法に拠って求めたところ、本発明に係るフェライト磁性粉は流動性に優れ、樹脂 やゴムと、容易且つ、均一に混合することが判明した。当該混合物を圧縮成型するこ とで本発明に係るボンド磁石を製造することが出来た。当該ボンド磁石は、各種電気 •電子製品への用途へ、支障無く使用できることが確認された。
当該本発明に係る、フェライト磁性粉の圧粉体での特性は残留磁束密度 Brが 173 OGauss以上、固有保磁力 iHcが 2270Oe以上の値を有しており、さらに磁場配向さ せた時のボンド磁石の磁気特性は BHmax力 1. 8MG〇e以上を示すことから、焼 結等方性マグネットに匹敵するものであった。
実施例
[0066] 以下、実施例を参照しながら本発明をより具体的に説明するが、本発明は、当該実 施例の範囲に限られる訳ではない。
[0067] (実施例 1)
Cr元素を 400ppm含有する酸化鉄と、炭酸ストロンチウムとを、モル比で SrCO : F
3 e O = 1 : 5. 75となるよう評量する。そして、当該秤量物をサンプルミルで混合し混
2 3
合粉とする。次に、当該混合粉に 10Wt%の水を加えて混練し、当該混練物を造粒 し平均粒子径 8mmの造粒粉として乾燥した。当該乾燥した造粒粉を電気炉内に設 置し、大気雰囲気中にて 1200°C、 2時間焼成して焼成物を得た。当該焼成物を、ま ずサンプルミルで粗碎し、平均粒径が 8· 5 / mの焼成粉とした。
[0068] 次に、当該焼成粉を、容積 10Lのアトライターを用いて 120分間湿式粉砕した。
まず、当該焼成粉を 1 · 3kg、濃度 35%の塩酸を 15g、 φ 8mmのスチールボーノレ を 10kg秤量した。次に、アトライターを回転速度 20(kpmで動作させながら、前記ス チーノレボーノレ 10kg、 pH6. 7の水 2L、前記塩酸 15g、前記焼成粉 1. 3kgを、この順 で当該アトライターの中に投入し、スラリーを得た。このとき、当該スラリーを分取して 静置し、上澄み液の pHを計測したところ、 pHは 1. 25であった。一方、アトライターは 、 120分間の動作を継続し湿式粉砕を行った。そして、当該湿式粉砕途中の 60分間 後と、終了の 120分間後において、再度スラリーを分取して静置し、上澄み液の pH を計測したところ、 60分間後の pHは 5. 29、 120分間後の pHは 7. 7と、湿式粉砕時 間の経過に伴い、 pHは次第に上昇していた。しかし、当該湿式粉砕中におけるスラ リーの pHは、 8. 5以下に保たれていた。
[0069] 湿式粉砕が完了したら、濾紙と漏斗を用いて得られたスラリーを脱水濾過した後、 p H6. 5の水 4Lでデカンテーシヨンして洗浄した。当該洗浄され濾過して得た焼成粉 を 120°Cの乾燥機中で乾燥し、平均粒子径 1. 47 μ ΐηのストロンチウムフェライト粉を 得た。
[0070] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980 °Cで 20分間ァニールし、実施例 1に係るボンド磁石用フェライト磁性粉を製造した。
[0071] 製造された実施例 1に係るボンド磁石用フェライト磁性粉の粉体特性を測定したとこ ろ、空気透過法で計測された比表面積径は 1. 65 / m、圧縮密度は、 3. 29g/cm3 であった。尚、当該比表面積径、等の測定方法の態様については、後述する。
また、メルトフローレート(MFR)は、 71. 5g/l0minと高い流動性を示していた。
[0072] 次に、実施例 1に係るボンド磁石用フェライト磁性粉を用いて、後述する態様に従つ て、実施例 1に係る圧粉体を製造した。
[0073] 実施例 1に係る圧粉体の磁気特性を測定したところ、 Brは 1870Gauss (以下、単 に Gと記載する場合がある。)、 iHcは 2570〇eと高い値を示していた。
[0074] 次に、実施例 1に係るボンド磁石用フェライト磁性粉を後述する「5.射出成形体の 磁気特性の測定」により、磁気特性の測定を行ったところ、 Brは 2751G、 iHcは 244
4〇e、 BHmaxfま 1. 84MGOe、 SQxfま 0. 972であった。
[0075] 以上のことから、実施例 1に係るボンド磁石用フェライト磁性粉の流動性が良い為、 実施例 1に係る射出成形体における配向性の指標の一つである SQx値も高ぐさら には、高い磁気特性を有していることが判明した。
また、実施例 1に係るボンド磁石用フェライト磁性粉の六価クロム量をジフヱ二ルカ ルバジド吸光光度法 (抽出の方法は、低質調査法で 3%溶質法により実施した。)に より測定したところ、検出限界以下であったことから、 lppm以下であることが判明した 以上、実施例 1に係るボンド磁石用フェライト磁性粉および射出成形体にっレ、て測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[0076] ここで実施例 1に係るボンド磁石用フェライト磁性粉等の、比表面積等の測定方法 の具体的態様について説明する。
[0077] 1.空気透過法による比表面積径の測定
測定装置は、島津製作所 (株)製、粉体比表面積測定装置 SS— 100を用いた。 当該粉体比表面積測定装置に付属のプレス機を用い、ボンド磁石用フェライト粉試 料を、断面積 2cm2、厚さ lcmにプレス成形する。一方、当該粉体比表面積測定装 置の試料筒にワセリンを少量塗り、当該プレス成形されたボンド磁石用フェライト粉試 料をセットする。
そして、空気が、当該プレス成形されたボンド磁石用フェライト粉試料内を 2cm3透 過する時間 tを計測し、この計測時間 tから下記の換算式を用いて、ボンド磁石用フエ ライト粉試料の比表面積を算出した。
Sw= (14/ p ) - ((AP-A-f ε 3)/( η -L-Q- (1- ε )2))。· 5
但し、 Swは比表面積である。 pはプレス成形されたボンド磁石用フヱライト粉試料 の密度であり本実施例においては 5. lg/cm3である。 ΔΡは圧力差であり本実施例 においては 40gZcm2である。 Aは試料層の断面積であり本実施例においては 2cm 2である。 ηは水の粘性係数であり 180X 10— 6g/cm2である。 Lは試料の厚さであり 本実施例においては lcmである。 Wは試料の重量であり本実施例においては 5gで ある。 Qは空気の透過量であり本実施例においては 2cm3である。 tは空気の透過所 要時間である。 εは試料層の空隙率(1_WZ 'A'L))である。
[0078] 次に、ボンド磁石用フェライト粉試料の粒子形状は立方体、且つ、均一であると近 似して、比表面積径: Da = 6 / 'Sw)より、比表面積径を算出した。
[0079] 2.圧縮密度の測定
圧縮密度は、ボンド磁石用フェライト粉試料を lton/cm2で加圧成形した後の密 度値を測定し、当該測定値を圧縮密度の値とした。
[0080] 3.メルトフローレート(MFR)の測定
(1)ボンド磁石用フェライト磁性粉を 3ロット製造し、当該各ロットからボンド磁石用フエ ライト磁性粉を採取して 3000gとした。一方、シランカップリング剤(日本ュニカ株式 会社製、商品名 A— 1122) 30g、水 15g、メタノール 30gを準備した。
これらを、ハイスピードミキサー(深江工業株式会社製、 FS— GC— 5JD)内に装填し 、周速 8m/sec、処理時間 5分間で混合し、混合物を得た。
(2)得られた混合物を 100°C X 90分間乾燥し、乾燥粉を得た。
(3)得られた乾燥粉 3030gと、 6 _ナイロン (宇部興産株式会社製、 P-1010)410g とをハイスピードミキサー(深江工業株式会社製、 FS— GC— 5JD)内に装填し、周速 8m/sec,処理時間 5分間で混合し、混合物を得た。
(4)得られた混合物を 230°Cで混練し、平均径がほぼ 2mmのペレットを得た。尚、当 該混練には、 KCK株式会社製の連続混練押し出し式装置 (KCK70— 22VEX (6)
)を用いた。
(5)得られたペレットに 270°Cで荷重 10kgを掛け、 10分間の内に流動性評価装置 力、ら押し出された混練物重量を測定し、この値をメルトフローレート(MFR)とした。尚 、測定に用いた流動性評価装置は、東洋精機株式会社製の C— 5059D2を用いた 。この装置の構造 fお IS— K7210に準拠したものである。
[0081] 4.圧粉体の磁気特性の測定
まずボンド磁石用フェライト磁性粉力 圧粉体を製造した。
• ボンド磁石用フェライト磁性粉 7gを秤量し、ポリエステル樹脂 0. 4ccを加え混合し た。
. 秤量したボンド磁石用フヱライト磁性粉を、 φ 15mmの円柱型の金型に充填し、圧 力 8MPaで 20秒間加圧し圧粉体とした。
• 得られた圧粉体を金型から抜き取り、乾燥機に入れ、 150°Cで 30秒間かけて乾燥 させる。そして室温である 25°Cに冷却後、当該円柱状の圧粉体の Br、 iHc、を、 BH トレーサー (東英工業製、 BHトレーサー)で測定した。
[0082] 5.射出成形体の磁気特性の測定
射出成形体の磁気特性は、以下の様に測定した。
(1)上記「3·メノレトフローレート(MFR)の測定」で説明した(1)〜(4)と同様にして、 平均径がほぼ 2mmのペレットを得た。
(2)得られたペレットを、射出成形機を用い lOKOeの磁場中にて、温度 290°C、成 形圧力 8. 5N/mm2で射出成形し、直径 15mm X高さ 8mmの円柱状の成形品を 得た。尚、当該円柱状の成形品において、磁場の配向方向は円柱の中心軸に沿う 方向とした。
(3)得られた円柱状の成形品の Br、 iHc、 BHmax、 SQx (BrZ4 π I)を、 BHトレー サー (東英工業製、 BHトレーサー)で測定した。
[0083] (実施例 2)
実施例 1と同様の原料を用い同様の操作をおこなって焼成粉を製造した。 製造された焼成粉に対し、以下のように湿式粉砕工程をおこなって実施例 2に係る ストロンチウムフェライト粉を製造した。
[0084] まず、焼成粉を 1 · 3kg、 φ 8mmのスチールボールを 10kg秤量する。次に、容積 1 0Lのアトライターを回転速度 200i"pmで動作させながら、前記スチールボール 10kg と pH6. 7の水 2Lを投入した。さらに、直径 φ 6mmのスチールパイプをこの水溶液中 に差し込み、 lmL/minのスピードで 20分間炭酸ガスを吹き込んだ。この水溶液を 静置して pH計測したところ pH4. 80であった。次に、アトライターを回転速度 200rp mで動作させながら、前記焼成粉 1. 3kgをこの水溶液中に投入し、スラリーを得た。 このスラリーを分取して静置して上澄み液の pHを計測したところ pHは 6. 64であった
[0085] 次に、炭酸ガスの吹き込みを継続しながら、アトライターを 120分間回転させて湿式 粉砕を行った。当該湿式粉砕途中の 60分間後と、終了の 120分間後において、再 度スラリーを分取して静置し、上澄み液の pHを計測したところ、 60分後の pHは 5. 8 0、 120分後の pHは 5. 7と、湿式粉砕を行っている間中スラリーの pHは 8· 5よりも低 く保たれていた。
[0086] 湿式粉砕が完了したら、実施例 1と同様にして、スラリーを脱水濾過した後、デカン テーシヨンを行い、当該洗浄され濾過して得た焼成粉を乾燥し、平均粒子径 1. 42 /i mのストロンチウムフェライト粉を得た。
[0087] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980
°Cで 20分間ァニールし、実施例 2に係るボンド磁石用フェライト磁性粉を製造した。
[0088] 当該実施例 2に係るボンド磁石用フェライト磁性粉の粉体特性を、実施例 1と同様 に測定したところ、空気透過法で計測された比表面積径は 1. 71 μ ΐη,圧縮密度は 3
. 31g/cm3であった。
また、メルトフローレート(MFR)は、 72. 8g/l0minと高い流動性を示していた。
[0089] 実施例 2に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして圧粉体を 製造した。そして、当該圧粉体の磁気特性を測定したところ、 Brは 1870Gauss (以 下 Gとする)、 iHcは 2560〇eと高レ、値を示してレ、た。
[0090] さらに、実施例 2に係るボンド磁石用フヱライト磁性粉から、実施例 1と同様にして実 施例 2に係る混練物を製造した。 当該実施例 2に係る混練物を、実施例 1と同様にして磁場中で射出成形した射出 成形体の磁気特性の測定を行ったところ、 Brは 2757G、 iHcは 2440〇e、 BHmax ίま 1. 85MG〇e、 SQxttO. 971であった。
[0091] 以上のことから、実施例 2に係るボンド磁石用フェライト磁性粉の流動性が良い為、 実施例 2に係る射出成形体における配向性の指標の一つである SQx値も高ぐさら には、高い磁気特性を有していることが判明した。
[0092] また、実施例 2に係るボンド磁石用フェライト磁性粉の六価クロム量を実施例 1と同 様に測定したところ、検出限界以下であったことから、 lppm以下であることが判明し た。
[0093] 以上、実施例 2に係るボンド磁石用フェライト磁性粉および射出成形体にっレ、て測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[0094] (実施例 3)
実施例 1と同様の原料を用い同様の操作をおこなって焼成粉を製造した。 製造された焼成粉に対し湿式粉碎工程において、塩酸と、さらに当該焼成粉の 0. 5wt%に相当するカーボンと、を添加した以外は、実施例 1と同様の操作をおこなつ てストロンチウムフェライト粉を製造した。
[0095] 具体的には、焼成粉を 1. 3kg、濃度 35%の塩酸を 12g、平均粒径 3 β mのカーボ ンを 0· 65g、 φ 8mmのスチールボールを 10kg秤量する。次に、容積 10Lのアトライ ターを回転速度 200rpmで動作させながら、スチーノレボーノレ 10kgと、 ρΗ6· 7の水 2 Lと、塩酸 12g、焼成粉 1 · 3kg、平均粒径 3 /i mのカーボンを 0· 65gとを、この順に 投入し混合してスラリーを得た。
[0096] このとき、当該スラリーを分取して静置し、上澄み液の pHを計測したところ pHは 1.
32であった。一方、アトライターは、 120分間の動作を継続し湿式粉砕を行った。 そして、当該湿式粉砕途中の 60分間後と、終了の 120分間後において、再度スラリ 一を分取して静置し、上澄み液の pHを計測したところ、 60分間後の pHは 5. 81、 12 0分間後の PHは 8. 2と、湿式粉砕時間の経過に伴い、 pHは次第に上昇していた。 しかし、当該湿式粉砕中におけるスラリーの pHは、 8. 5以下に保たれていた。
[0097] 湿式粉砕が完了したら、実施例 1と同様にして、スラリーを脱水濾過した後、デカン テーシヨンを行い、当該洗浄され濾過して得た焼成粉を乾燥し、平均粒子径 1. 50 μ mのストロンチウムフェライト粉を得た。
[0098] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980
°Cで 20分間ァニールし、実施例 3に係るボンド磁石用フェライト磁性粉を製造した。
[0099] 当該実施例 3に係るボンド磁石用フェライト磁性粉の粉体特性を、実施例 1と同様 に測定したところ、空気透過法で計測された比表面積径は 1. 95 x m,圧縮密度は 3
. 43g/cm3であった。
また、メルトフローレート(MFR)は、 77. 8g/l 0minと高い流動性を示していた。
[0100] 実施例 3に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして圧粉体を 製造した。そして、当該圧粉体の磁気特性を測定したところ、 Brは 1880G、 iHcは 2
570Oeと高レ 直を示してレヽた。
[0101] さらに、実施例 3に係るボンド磁石用フヱライト磁性粉から、実施例 1と同様にして実 施例 3に係る混練物を製造した。
当該実施例 3に係る混練物を、実施例 1と同様にして磁場中で射出成形した射出 成形体の磁気特性の測定を行ったところ、 Brは 2780G、 iHcは 2400〇e、 BHmax ίま 1. 84MG〇e、 SQxttO. 980であった。
[0102] 以上のことから、実施例 3に係るボンド磁石用フェライト磁性粉の流動性が良い為、 実施例 3に係る射出成形体における配向性の指標の一つである SQx値も高ぐさら には、高い磁気特性を有していることが判明した。
[0103] また、実施例 3に係るボンド磁石用フェライト磁性粉の六価クロム量を実施例 1と同 様に測定したところ、検出限界以下であったことから、 lppm以下であることが判明し た。
[0104] 以上、実施例 3に係るボンド磁石用フェライト磁性粉および射出成形体にっレ、て測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[0105] (実施例 4)
実施例 1と同様の原料を用い同様の操作をおこなって焼成粉を製造した。 製造された焼成粉を、湿式粉砕工程において塩酸を添加しない以外は、当該焼成 粉力 実施例 1と同様に操作して、ストロンチウムフヱライト粉を製造した。 [0106] 具体的には、焼成粉を 1 · 3kg、濃度 35%の塩酸を 12g、 φ 8mmのスチールボー ルを 10kg秤量する。次に、容積 10Lのアトライターを回転速度 200rpmで動作させ な力 Sら、スチーノレボーノレ 10kgと、 pti6. 7の水 2Lと、塩酸 12g、焼成粉 1 · 3kgとを、 この順に投入し混合してスラリーを得た。
このとき、当該スラリーを分取して静置し、上澄み液の pHを計測したところ pHは 1. 38であった。一方、アトライターは、 120分間の動作を継続し湿式粉砕を行った。 そして、当該湿式粉砕途中の 60分間後と、終了の 120分間後において、再度スラリ 一を分取して静置し、上澄み液の pHを計測したところ、 60分間後の pHは 5. 90、 12 0分間後の PHは 8. 4と、湿式粉砕時間の経過に伴い、 pHは次第に上昇していた。 しかし、当該湿式粉砕中におけるスラリーの pHは、 8. 5以下に保たれていた。
[0107] 湿式粉砕が完了したら、実施例 1と同様にして、スラリーを脱水濾過した後、デカン テーシヨンを行い、当該洗浄され濾過して得た焼成粉を乾燥し、平均粒子径 1. 50 μ mのストロンチウムフェライト粉を得た。
[0108] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980 °Cで 20分間ァニールした。
そして、当該ァニールされたストロンチウムフェライト粉を、攪拌機能を有する密閉さ れた恒温槽内に設置し、当該恒温槽内に 1L/分の流量で窒素と水素の混合ガス( 但し、水素ガス濃度 0. 1 %)を流し、当該恒温槽内の雰囲気を混合ガスで置換した。 そして、当該置換完了後、当該ァニールされたストロンチウムフェライト粉を攪拌しな がら、当該恒温槽内の雰囲気温度を 150°Cまで昇温して 2h保持した後、室温まで降 温し、実施例 4に係るボンド磁石用フェライト磁性粉を製造した。
[0109] 当該実施例 4に係るボンド磁石用フェライト磁性粉の粉体特性を、実施例 1と同様 に測定したところ、空気透過法で計測された比表面積径は 1. 90 x m,圧縮密度は 3 . 41g/ cm3で feつた。
また、メルトフローレート(MFR)は、 75. 5g/l 0minと高い流動性を示していた。
[0110] 実施例 4に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして圧粉体を 製造した。そして、当該圧粉体の磁気特性を測定したところ、 Brは 1880G、 iHcは 2 550Oeと高レ 直を示してレヽた。 [0111] さらに、実施例 4に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして実 施例 4に係る混練物を製造した。
当該実施例 4に係る混練物を、実施例 1と同様にして磁場中で射出成形した射出 成形体の磁気特性の測定を行ったところ、 Brは 2760G、 iHcは 2433〇e、 BHmax fま 1. 86MG〇e、 SQxfま 0. 978であった。
[0112] 以上のことから、実施例 4に係るボンド磁石用フェライト磁性粉の流動性が良い為、 実施例 4に係る射出成形体における配向性の指標の一つである SQx値も高ぐさら には、高い磁気特性を有していることが判明した。
[0113] また、実施例 4に係るボンド磁石用フェライト磁性粉の六価クロム量を実施例 1と同 様に測定したところ、検出限界以下であったことから、 lppm以下であることが判明し た。
[0114] 以上、実施例 4に係るボンド磁石用フヱライト磁性粉および射出成形体について測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[0115] (比較例 1)
実施例 1と同様の原料を用い同様の操作をおこなって焼成粉を製造した。 製造された焼成粉を、湿式粉砕工程において塩酸を添加しない以外は、当該焼成 粉力 実施例 1と同様にストロンチウムフェライト粉を製造した。
[0116] 具体的には、焼成粉を 1 · 3kg、 φ 8mmのスチールボールを 10kg秤量する。次に 、容積 10Lのアトライターを回転速度 200i"pmで動作させながら、スチールボール 10 kgと pH6. 7の水 2L、焼成粉 1 · 3kgをこの順に投入し、スラリーを得た。
このとき、当該スラリーを分取して静置し、上澄み液の pHを計測したところ pHは 9. 95であった。一方、アトライターは、 120分間の動作を継続し湿式粉砕を行った。 そして、当該湿式粉砕途中の 60分間後と、終了の 120分間後において、再度スラリ 一を分取して静置し、上澄み液の pHを計測したところ、 60分間後の pHは 11. 1、 12 0分間後の pHは 11. 9と、湿式粉砕時間の経過に伴い、 pHは次第に上昇していた。 そして、当該湿式粉砕中におけるスラリーの pHは、 Crが六価クロムに変化すると考 えられる pH8. 5より高い値となっていた。
[0117] 湿式粉砕が完了したら、実施例 1と同様にして、スラリーを脱水濾過した後、デカン テーシヨンを行い、当該洗浄され濾過して得た焼成粉を乾燥し、平均粒子径 1. 50 μ mのストロンチウムフェライト粉を得た。
[0118] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980
°Cで 20分間ァニールし、比較例 1に係るボンド磁石用フェライト磁性粉を製造した。
[0119] 当該比較例 1に係るボンド磁石用フェライト磁性粉の粉体特性を、実施例 1と同様 に測定したところ、空気透過法で計測された比表面積径は 1. 80 x m,圧縮密度は 3
. 39g/cm3であった。
また、メルトフローレート(MFR)は、 72. 3g/l 0minと高い流動性を示していた。
[0120] 比較例 1に係るボンド磁石用フヱライト磁性粉から、実施例 1と同様にして圧粉体を 製造した。そして、当該圧粉体の磁気特性を測定したところ、 Brは 1870G、 iHcは 2
560Oeと高レ 直を示してレヽた。
[0121] さらに、比較例 1に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして比 較例 1に係る混練物を製造した。
当該比較例 1に係る混練物を、実施例 1と同様にして磁場中で射出成形した射出 成形体の磁気特性の測定を行ったところ、 Brは 2753G、 iHcは 2442〇e、 BHmax ίま 1. 84MG〇e、 SQxttO. 972であった。
[0122] 以上のことから、比較例 1に係るボンド磁石用フェライト磁性粉の流動性が良い為、 比較例 1に係る射出成形体における配向性の指標の一つである SQx値も高ぐさら には、高い磁気特性を有していることが判明した。
[0123] しかし、比較例 1に係るボンド磁石用フェライト磁性粉の六価クロム量を実施例 1と 同様に測定したところ、 49ppmであることが判明した。
[0124] 以上、比較例 1に係るボンド磁石用フェライト磁性粉および射出成形体にっレ、て測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[0125] (比較例 2)
Cr元素を 5ppm含有する酸化鉄を原料として用いた以外は、実施例 1と同様の操 作をおこなって焼成粉を製造した。
製造された焼成粉を、湿式粉砕工程において塩酸を添加しない以外は、当該焼成 粉力 実施例 1と同様にストロンチウムフヱライト粉を製造した。 [0126] 具体的には、焼成粉を 1 · 3kg、 φ 8mmのスチールボールを 10kg秤量する。次に 、容積 10Lのアトライターを回転速度 200i"pmで動作させながら、スチールボール 10 kgと、 ρΗ6 · 7の水 2Lと、焼成粉 1 · 3kgとをこの順に投入し、スラリーを得た。当該ス ラリーを分取して静置し、上澄み液の pHを計測したところ pHは 9. 95であった。一方 、アトライターは、 120分間の動作を継続し湿式粉砕を行った。
そして、当該湿式粉砕開始から 60分間後と、 120分間後の当該湿式粉砕終了に おいて、再度スラリーを分取して静置し、上澄み液の pHを計測した。すると、 60分間 後の pHは 1 1. 1、 120分間後の pHは 1 1. 9であり、湿式粉砕時間の経過に伴い、 p Hは次第に上昇していた。そして、当該湿式粉砕中におけるスラリーの pHは、 が 六価クロムに変化すると考えられる pH8. 5より高い値となっていた。
[0127] 湿式粉砕が完了したら、実施例 1と同様にして、スラリーを脱水濾過した後、デカン テーシヨンを行い、当該洗浄され濾過して得た焼成粉を乾燥し、平均粒子径 1. 45 μ mのストロンチウムフェライト粉を得た。
[0128] 次に、当該ストロンチウムフェライト粉を電気炉内に設置し、大気雰囲気下にて 980 °Cで 20分間ァニールし、比較例 2に係るボンド磁石用フェライト磁性粉を製造した。
[0129] 当該比較例 2に係るボンド磁石用フェライト磁性粉の粉体特性を、実施例 1と同様 に測定したところ、空気透過法で計測された比表面積径は 1. 74 μ ΐη,圧縮密度は 3 . 37g/cm3であった。
また、メルトフローレート(MFR)は、 58 · 9g/10minと流動性が低かった。
[0130] 比較例 2に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして圧粉体を 製造した。そして、当該圧粉体の磁気特性を測定したところ、 Brは 1850G、 iHcは 2 300Oeであった。
[0131] さらに、比較例 2に係るボンド磁石用フェライト磁性粉から、実施例 1と同様にして比 較例 2に係る混練物を製造した。
当該比較例 2に係る混練物を、実施例 1と同様にして磁場中で射出成形した射出 成形体の磁気特性の測定を行ったところ、 Brは 2725G、 iHcは 24630〇e、 BHmax fま 1. 77MG〇e、 SQxfま 0. 964であった。
[0132] 以上のことから、比較例 2に係るボンド磁石用フェライト磁性粉は流動性が悪ぐ比 較例 2に係る射出成形体における配向性の指標の一つである SQx値が低下し、磁 気特性が劣ることが判明した。
さらに、比較例 2に係るボンド磁石用フェライト磁性粉の六価クロム量を、実施例 1と 同様に測定したところ、検出限界以下であったことから、 lppm以下であることが判明 した。
以上、比較例 2に係るボンド磁石用フェライト磁性粉および射出成形体にっレ、て測 定した、粉体特性、流動特性、および磁気特性の測定値を表 1に記載した。
[表 1]
Figure imgf000028_0001
図面の簡単な説明
[図 1]本発明に係るボンド磁石用のフェライト磁性粉の製造例を示すフロー図である。

Claims

請求の範囲
[1] 鉄とアルカリ土類金属とを含み、湿式洗浄および Zまたは湿式粉砕を経たボンド磁 石用のフェライト磁性粉であって、
lOOppm以上、 3000ppm以下の Cr元素を含み、且つ、六価クロムが検出されな レ、ことを特徴とするフェライト磁性粉。
[2] 鉄とアルカリ土類金属とを含み、湿式洗浄および Zまたは湿式粉砕を経たボンド磁 石用のフェライト磁性粉であって、
lOOppm以上、 3000ppm以下の Cr元素を含み、且つ、六価クロムの含有量が lp pm以下であることを特徴とするフェライト磁性粉。
[3] 請求項 1または 2に記載のフェライト磁性粉であって、
当該フェライト磁性粉 7gにポリエステル樹脂 0. 4cc加え、 φ 15mmの型に充填し 8 MPaの圧力かけて作製した圧粉体の磁気特性において、
残留磁束密度 Brが 1730Gauss以上、固有保磁力 iHcが 2270Oe以上であること を特徴とするフェライト磁性粉。
[4] 鉄とアルカリ土類金属とを含む原料粉力 ボンド磁石用のフェライト磁性粉を製造 するフヱライト磁性粉の製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、上記焼成粉を湿式洗浄する工程と、 上記湿式洗浄された焼成粉をァニールする工程とを有し、
上記湿式洗浄する工程において、洗浄に用いる分散溶媒の pHを 8. 5以下として 洗浄を行うことを特徴とするボンド磁石用フェライト磁性粉の製造方法。
[5] 鉄とアルカリ土類金属とを含む原料粉力、らボンド磁石用のフヱライト磁性粉を製造 するフェライト磁性粉製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、上記焼成粉を粉砕する工程と、上記 粉砕された焼成粉を湿式洗浄する工程と、上記湿式洗浄された焼成粉をァニールす る工程とを有し、
上記湿式洗浄工程において、洗浄に用いる分散溶媒の pHを 8. 5以下として洗浄 を行うことを特徴とするボンド磁石用フェライト磁性粉の製造方法。
[6] 鉄とアルカリ土類金属とを含む原料粉力 ボンド磁石用のフェライト磁性粉を製造 するフェライト磁性粉製造方法であって、
上記原料粉を焼成して焼成粉を得る工程と、焼成された上記焼成粉を湿式粉碎す る工程と、上記湿式粉砕された焼成粉をァニールする工程とを有し、
上記湿式粉砕工程において、湿式粉砕に用いる分散溶媒の pHを 8. 5以下として 湿式粉砕を行うことを特徴とするボンド磁石用フヱライト磁性粉の製造方法。
[7] 請求項 4から 6のいずれかに記載のフヱライト磁性粉の製造方法であって、
焼成粉を得る工程より後で、ァニールする工程より前に、上記焼成粉へ、カーボン、 および/または、カーボンを必須とし、 H、〇、 N、 CIのいずれか 1種以上の元素とを 含む沸点 200°C以上の化合物を添加することを特徴とするボンド磁石用フェライト磁 性粉の製造方法。
[8] 請求項 4から 6のいずれかに記載のフヱライト磁性粉の製造方法であって、
焼成粉を得る工程より後で、ァニールする工程より前に、上記焼成粉へ、 2価の Fe および/または 2価の Feを含む化合物を添加することを特徴とするボンド磁石用フエ ライト磁性粉の製造方法。
[9] 請求項 4から 6のいずれかに記載のフェライト磁性粉の製造方法であって、 湿式 粉砕および/または湿式洗浄された焼成粉を、 Hガス、 COガス、 NOガス、 HC (ノヽ
2
イド口カーボン)ガスのいずれ力 1種以上を含み、 80°C〜300°Cの温度範囲にあるガ ス雰囲気中で還元処理することを特徴とするボンド磁石用フェライト磁性粉の製造方 法。
[10] 請求項 1から 3のいずれかに記載のボンド磁石用フェライト磁性粉を含むことを特徴 とするボンド磁石。
PCT/JP2007/054336 2006-03-31 2007-03-06 ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石 WO2007113973A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800112630A CN101410912B (zh) 2006-03-31 2007-03-06 粘结磁体用铁氧体磁性粉及其制备方法和粘结磁体
KR1020087024017A KR101156806B1 (ko) 2006-03-31 2007-03-06 본드 자석용 페라이트 자성분 및 그 제조 방법, 및 본드 자석
US12/225,235 US20100230630A1 (en) 2006-03-31 2007-03-06 Ferrite Magnetic Powder for Bond Magnet and Manufacturing Method of the Same, and Bond Magnet
EP07737883.4A EP2003657B1 (en) 2006-03-31 2007-03-06 Ferrite magnetic powder for bonded magnets and bonded magnets
US14/255,621 US9460850B2 (en) 2006-03-31 2014-04-17 Ferrite magnetic powder for bond magnet and manufacturing method of the same, and bond magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006096749 2006-03-31
JP2006-096749 2006-03-31
JP2007031074A JP4820312B2 (ja) 2006-03-31 2007-02-09 ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石
JP2007-031074 2007-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/225,235 A-371-Of-International US20100230630A1 (en) 2006-03-31 2007-03-06 Ferrite Magnetic Powder for Bond Magnet and Manufacturing Method of the Same, and Bond Magnet
US14/255,621 Division US9460850B2 (en) 2006-03-31 2014-04-17 Ferrite magnetic powder for bond magnet and manufacturing method of the same, and bond magnet

Publications (1)

Publication Number Publication Date
WO2007113973A1 true WO2007113973A1 (ja) 2007-10-11

Family

ID=38563245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054336 WO2007113973A1 (ja) 2006-03-31 2007-03-06 ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石

Country Status (6)

Country Link
US (2) US20100230630A1 (ja)
EP (1) EP2003657B1 (ja)
JP (1) JP4820312B2 (ja)
KR (1) KR101156806B1 (ja)
CN (1) CN101410912B (ja)
WO (1) WO2007113973A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321972A (zh) * 2022-08-09 2022-11-11 矿冶科技集团有限公司 一种粘结型永磁铁氧体的除铬方法及应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229492B (zh) * 2011-06-09 2013-01-30 南通万宝实业有限公司 使用压缩工艺的各向异性粘结铁氧体制备方法
WO2016052483A1 (ja) * 2014-10-01 2016-04-07 戸田工業株式会社 ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
CN111018510A (zh) * 2019-12-26 2020-04-17 南京大成材料科技有限公司 一种多极磁环的制造方法
CN112564436A (zh) * 2020-11-26 2021-03-26 浙江英洛华磁业有限公司 一种制造转子组件的方法
CN112679206B (zh) * 2020-12-30 2022-07-19 南京瑞洋新材料科技有限公司 一种高结构强度的永磁铁氧体磁瓦及其制备方法
CN116425206B (zh) * 2023-04-06 2024-06-25 中国科学院宁波材料技术与工程研究所 一种提高SrFe12O19铁氧体磁性能的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268001A (ja) * 1988-04-19 1989-10-25 Hitachi Metals Ltd 複合磁石用ハードフェライト粉末
JPH0826733A (ja) * 1994-07-19 1996-01-30 Toda Kogyo Corp 磁気カード用バリウムフェライト粒子粉末の製造法
JPH09260124A (ja) * 1996-03-26 1997-10-03 Sumitomo Special Metals Co Ltd フェライト磁石及びその製造方法
JPH11251127A (ja) * 1998-03-04 1999-09-17 Hitachi Metals Ltd 高性能フェライト磁石およびその製造方法
JP2001035715A (ja) * 1999-04-30 2001-02-09 Toda Kogyo Corp 磁気カード用板状複合マグネトプランバイト型フェライト粒子粉末及び該板状複合マグネトプランバイト型フェライト粒子粉末を用いた磁気カード
JP3257936B2 (ja) 1995-10-11 2002-02-18 日本弁柄工業株式会社 ボンド磁石用フエライト粉末およびこれを用いたボンド磁石
JP2003086412A (ja) 2001-09-14 2003-03-20 Daido Electronics Co Ltd ボンド磁石およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493874A (en) * 1983-03-08 1985-01-15 Tokyo Shibaura Denki Kabushiki Kaisha Production of a magnetic powder having a high dispersibility
US5378384A (en) * 1991-09-19 1995-01-03 Minnesota Mining And Manufacturing Company Process of making hexagonal magnetic ferrite pigment for high density magnetic recording applications
JPH0766027A (ja) * 1993-08-24 1995-03-10 Kawasaki Steel Corp ストロンチウムフェライト磁石の製造方法
RU2111571C1 (ru) * 1997-02-18 1998-05-20 Открытое акционерное общество Московский институт материаловедения и эффективных технологий Композиция для изготовления анизотропных магнитов и способ их получения
EP0969483A4 (en) * 1998-01-23 2002-06-05 Hitachi Metals Ltd BOUND MAGNET, MAGNETIC COIL AND POWDER FERRITE FOR USE IN THEIR PREPARATION AND THEIR PRODUCTION PROCESS
JP4314347B2 (ja) * 1999-12-02 2009-08-12 Dowaエレクトロニクス株式会社 フエライト磁性粉の製法
JP2001223104A (ja) * 2000-02-08 2001-08-17 Tdk Corp 焼結磁石の製造方法
JP4538991B2 (ja) * 2001-02-07 2010-09-08 日立金属株式会社 永久磁石およびその製造方法
JP2002313618A (ja) * 2001-02-07 2002-10-25 Sumitomo Special Metals Co Ltd 永久磁石、およびその製造方法
WO2005027153A1 (ja) * 2003-09-12 2005-03-24 Neomax Co., Ltd. フェライト焼結磁石
JP4215261B2 (ja) * 2004-10-29 2009-01-28 Tdk株式会社 フェライト磁性材料及びその製造方法
JP4595954B2 (ja) * 2007-03-15 2010-12-08 セイコーエプソン株式会社 焼結体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268001A (ja) * 1988-04-19 1989-10-25 Hitachi Metals Ltd 複合磁石用ハードフェライト粉末
JPH0826733A (ja) * 1994-07-19 1996-01-30 Toda Kogyo Corp 磁気カード用バリウムフェライト粒子粉末の製造法
JP3257936B2 (ja) 1995-10-11 2002-02-18 日本弁柄工業株式会社 ボンド磁石用フエライト粉末およびこれを用いたボンド磁石
JPH09260124A (ja) * 1996-03-26 1997-10-03 Sumitomo Special Metals Co Ltd フェライト磁石及びその製造方法
JPH11251127A (ja) * 1998-03-04 1999-09-17 Hitachi Metals Ltd 高性能フェライト磁石およびその製造方法
JP2001035715A (ja) * 1999-04-30 2001-02-09 Toda Kogyo Corp 磁気カード用板状複合マグネトプランバイト型フェライト粒子粉末及び該板状複合マグネトプランバイト型フェライト粒子粉末を用いた磁気カード
JP2003086412A (ja) 2001-09-14 2003-03-20 Daido Electronics Co Ltd ボンド磁石およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003657A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321972A (zh) * 2022-08-09 2022-11-11 矿冶科技集团有限公司 一种粘结型永磁铁氧体的除铬方法及应用
CN115321972B (zh) * 2022-08-09 2023-10-24 矿冶科技集团有限公司 一种粘结型永磁铁氧体的除铬方法及应用

Also Published As

Publication number Publication date
EP2003657A9 (en) 2009-04-22
CN101410912A (zh) 2009-04-15
JP4820312B2 (ja) 2011-11-24
EP2003657A4 (en) 2010-07-28
KR101156806B1 (ko) 2012-06-18
US20100230630A1 (en) 2010-09-16
EP2003657A2 (en) 2008-12-17
KR20080109005A (ko) 2008-12-16
US20140225316A1 (en) 2014-08-14
US9460850B2 (en) 2016-10-04
EP2003657B1 (en) 2015-04-01
CN101410912B (zh) 2013-06-26
JP2007294871A (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
US9460850B2 (en) Ferrite magnetic powder for bond magnet and manufacturing method of the same, and bond magnet
CN101345110B (zh) 粘结磁体用的铁氧体颗粒粉末和树脂组合物、及其成型体
JP4367649B2 (ja) フェライト焼結磁石
JP6947490B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
CN101860091B (zh) 一种稀土永磁铁氧体磁瓦的制备方法及产品
JP4806798B2 (ja) ボンド磁石用フェライト磁性粉およびその製造方法、並びにボンド磁石
EP2204352A1 (en) Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
CN104609843A (zh) 一种非稀土高剩磁永磁铁氧体的制备方法
JP5510345B2 (ja) フェライト焼結磁石の製造方法、磁性粉末、混練物及び成形体
JP6797735B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
EP3203484A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JP6171922B2 (ja) 希土類−鉄−窒素系磁性合金とその製造方法
JP7082033B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP2011214113A (ja) 希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末
JP2021141151A (ja) ボンド磁石用フェライト粉末およびその製造方法
EP3203485A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
CN1530345A (zh) 一种用铁鳞制造高性能锶铁氧体粘结磁粉的方法
WO2016136701A1 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
EP3203486A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JP2006269637A (ja) 希土類−遷移金属−窒素系磁石粉末、その製造方法及びそれを用いたボンド磁石用組成物、並びにボンド磁石
CN112585706B (zh) 粘结磁体用铁素体粉末及其制造方法
JP5005595B2 (ja) ボンド磁石用フェライト粉末およびその製造方法
WO2019093508A1 (ja) ボンド磁石用フェライト粉末およびその製造方法
JP2009176960A (ja) ボンド磁石用マグネトプランバイト型フェライト粒子粉末及びその製造法、該マグネトプランバイト型フェライト粒子粉末を用いた樹脂組成物、ボンド磁石並びにマグネットロール
JP2023041550A (ja) ボンド磁石用六方晶フェライト磁性粉とその製造方法、およびボンド磁石とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011263.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087024017

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737883

Country of ref document: EP