WO2007111091A1 - 二酸化炭素を原料とするアルコールの製造方法 - Google Patents

二酸化炭素を原料とするアルコールの製造方法 Download PDF

Info

Publication number
WO2007111091A1
WO2007111091A1 PCT/JP2007/054263 JP2007054263W WO2007111091A1 WO 2007111091 A1 WO2007111091 A1 WO 2007111091A1 JP 2007054263 W JP2007054263 W JP 2007054263W WO 2007111091 A1 WO2007111091 A1 WO 2007111091A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
alcohol
producing
compound
reaction
Prior art date
Application number
PCT/JP2007/054263
Other languages
English (en)
French (fr)
Inventor
Kenichi Tominaga
Kazuhiko Sato
Junichi Kamei
Tetsushi Maruyama
Akihiro Kobayashi
Original Assignee
Hitachi Chemical Company, Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Hitachi Chemical Company, Ltd.
Priority to CN2007800103839A priority Critical patent/CN101405246B/zh
Priority to KR1020087023061A priority patent/KR101455870B1/ko
Priority to JP2008507406A priority patent/JP5271075B2/ja
Priority to EP07715231.2A priority patent/EP2000453B1/en
Publication of WO2007111091A1 publication Critical patent/WO2007111091A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing alcohol, and more particularly to a method for producing alcohol by hydroformylating carbon dioxide as a raw material.
  • the present inventors have used a ruthenium compound as a catalyst, which makes diacids much safer for humans and the environment than carbon monoxide.
  • a novel hydroformylation method that can use carbonized carbon as a raw material (Patent Document 1).
  • the present inventors have used a general raw material such as a general raw material by using a catalyst obtained by dispersing a ruthenium compound in a non-aqueous ionic liquid composed of an organic / inorganic salt liquid that becomes a liquid near room temperature.
  • a method for producing alcohol by selectively hydroformylating a compound with carbon dioxide Patent Document 2. In this way, there is no other method for producing alcohol by hydroformyl, which uses carbon dioxide as a raw material.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-233795
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-091331
  • the present invention uses an organic compound having an unsaturated carbon bond, carbon dioxide and hydrogen as raw materials.
  • An object of the present invention is to provide a method for producing alcohol quickly and efficiently.
  • the present inventor has found a method for rapidly producing a target alcohol by using a catalyst system in which a ruthenium compound and an acid are combined. According to this method, it is possible to increase the speed of only the target formyl form without increasing the speed of hydrogenation of the raw material compound, which is a side reaction. As a result, the yield of the target product is also selected. The rate also increases at the same time.
  • a method for producing an alcohol wherein an alcohol is produced by hydroformylating an organic compound having an unsaturated carbon bond with a diacid-carbon and hydrogen using a catalyst system in which a ruthenium compound and an acid are combined.
  • an organic compound having an unsaturated carbon bond is hydroformylated with diacid-carbon and hydrogen, and in this hydroformylation, A catalyst system combining a sulfur compound and an acid is used.
  • the organic compound having an unsaturated carbon bond used in the present invention is not particularly limited as long as it is a compound having an unsaturated carbon bond, and is an aliphatic chain unsaturated compound, an aliphatic cyclic unsaturated compound, an aromatic compound. A compound or the like is used. At this time, the unsaturated carbon bond may be present at the molecular end or inside the molecule. Moreover, what has a several unsaturated carbon bond can also be used. It is also possible to produce polyhydric alcohols with multiple hydroxymethyl groups (one CH OH) by using raw materials that have multiple unsaturated carbon bonds.
  • the hydrogen atom in the molecule is an alkyl group, a cycloaliphatic group, an aromatic group, a heterocyclic group, a carbon group, an alkoxy group, a cyano group, an amino group, an amide group, a nitro group. It is substituted with one or more groups selected from a group, halogen, and phosphorus-containing substituent group.
  • Examples of the aliphatic chain unsaturated compound include ethylene, propylene, butylene, and pentene.
  • Aliphatic cyclic unsaturated compounds include, for example, cyclopentene, cyclohexene, cycloheptene, cyclopentene, cyclopentagen, cyclohexagen, cycloheptadiene, cyclooctagen, tetrahydroindene, methyltetrahydroindene, norbornene. , Norbornagen, methylvinylnorbornene, dicyclopentadiene, methyldicyclopentagen, tricyclopentagen, tetracyclopentagen, and isomers and derivatives thereof.
  • aromatic chain unsaturated compound examples include styrene, stilbene, triphenylethylene, tetraphenylethylene and derivatives thereof.
  • aromatic cyclic unsaturated compound examples include indene, dihydronaphthalene, indole and derivatives thereof.
  • the raw material gas used in the present invention is a mixed gas mainly composed of hydrogen and carbon dioxide.
  • the carbon dioxide content is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is preferably 5 to 90 vol%, more preferably 20 to 50 vol%. They are It may be supplied in the form of a mixed gas or may be supplied separately. When the hydrogen content exceeds 90%, hydrogenation of the raw material occurs remarkably, and when it is less than 5%, the reaction rate may decrease remarkably.
  • the source gas need not be mixed with carbon monoxide or carbon, but it may be mixed.
  • the ruthenium compound used in the present invention is not particularly limited as long as it contains ruthenium, but preferably Ru (CO) CI, Ru (CO), H Ru (CO), H Ru (CO), HR
  • Clustered ruthenium compounds such as 2 6 4 3 12 4 4 12 2 6 18 2 u C (CO) can be mentioned. Also these
  • Cluster compounds are the raw materials RuCl, RuCl (C H), Ru (CO) (C H), Ru (CO) (C H), Ru (CO
  • the amount of the ruthenium compound used is preferably 1Z10000 to 1 equivalent, more preferably 1Z1000 to 1Z50 equivalent, relative to the raw material mixture. If the ruthenium compound is less than 1Z10000 equivalent, the reaction tends to become extremely slow. If it exceeds 1 equivalent, the raw material compound may be hydrogenated before the carbon dioxide is reacted.
  • any acid that meets the definition of Lewis can be used.
  • the acid described above is preferably an acid in which A becomes a proton, that is, a Bronsted acid.
  • the Bronsted acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methyl phosphoric acid, alkyl phosphoric acid, phenolic acid, phenolphosphonic acid, phenolphosphinic acid, boric acid, phenolic acid, Typical examples are trifluoromethanesulfonic acid, paratoluenesulfonic acid, phenol, tandastic acid, phosphotungstic acid, and alkylcarboxylic acids such as formic acid, acetic acid, trifluoroacetic acid, propionic acid, and butyric acid, benzoic acid, phthalic acid, and salicylic acid.
  • Aromatic carboxylic acids and the like are preferably used, and acids containing phosphorus such as phosphoric acid, alkylphosphoric acid, and phenylphosphoric acid are preferable.
  • the amount of acid added is, for example, 0.1 to: LOO equivalent, preferably 1 to: LO equivalent to the ruthenium compound. When the amount of acid added is less than 0.1 equivalent to the ruthenium compound, the reaction promoting effect by addition of the acid is hardly observed, and when it exceeds 100 equivalents, the productivity may be significantly reduced.
  • a halide salt is added to the catalyst system of the present invention.
  • the cation used in the halide salt may be a shift between inorganic ions and organic ions.
  • Suitable halide salts are chloride, bromide and iodide salts.
  • the added amount of the halide salt is, for example, 1 to: LOOO equivalent to the ruthenium compound.
  • Examples of the inorganic ions used in the salt of a hydrogenide and a rhogenide include lithium, sodium, potassium, rubidium, cesium, calcium and strontium.
  • Examples of organic substances include tetramethyl ammonium, tetraethyl ammonium, tetrapropyl ammonium, tetrabutyl ammonium, tetrapentyl ammonium, tetrahexyl ammonium, Tetraheptyl ammonium, tetraoctyl ammonium, benzyltrimethyl ammonium, benzyltriethyl ammonium, benzyltributyl ammonium, tetramethinorephosphonium, tetraethinorephosphonium, tetraphenol Ninolephosphonium, benzyltriphenylphosphonium, bis (triphenylphosphine) iminium, and the like.
  • the halide salt is not necessarily a solid salt, and is preferably a non-aqueous ionic liquid containing a halide ion that becomes liquid in the vicinity of room temperature or in a temperature range of 100 ° C or lower.
  • Examples of cations used as non-aqueous ionic liquids are 1-ethyl-3-methyrene imidazolium, 1-propyl-1-3-methylimidazole, 1-butynole 3-methinoley imidazolium, 1 pentyl 3 —Methyl imidazolium, 1 hex leuor 3—Methyl imidazol zoum, 1 uni petit loupe 3—Methyl imidazolium, 1 octyl loupe 3—Methyl imidazolium, 1 decyl 1 3—Methyl imidazolium, 1—dodecyl 1-Methyl imidazolium, 1 Tetradecyl 3 Methyl imidazolium, 1 Hexadecyl 3 Methyl imidazolium, 1-octadecyl 3-Methyl imidazolium, 1-Ethyl 2, 3 Dimethyl imidazolium, 1
  • the hydroformylation reaction is preferably performed in the range of about 100 ° C to 180 ° C. More preferably, it is in the range of 120 ° C to 160 ° C. In the temperature range below 100 ° C, carbon dioxide may not react, and in the temperature range above 180 ° C, only hydrogenation of unsaturated bonds may preferentially occur.
  • the hydroformylation reaction is preferably performed under a pressure of 1 to 50 MPa. More preferably, it is 2 to 15 MPa. If the pressure is less than IMpa, the reaction may be slow, and if it exceeds 5 OMPa, no further effect of promoting the reaction can be obtained! / ⁇ .
  • a solvent can be used in the reaction system.
  • the solvent that can be used is not particularly limited as long as it can dissolve the reaction raw material, but preferably n pentane, n-hexane, n-heptane, cyclohexane, benzene, tolylene, o xylene, p-xylene, m— Xylene, ethylbenzene, tamen, tetrahydrofuran, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and the like can be used.
  • the concentration of the raw material mixture is preferably 0.1 lvol% or more, preferably 1. Ovol% or more.
  • Ru (C) as a ruthenium compound in a stainless steel pressure reactor with an internal volume of 50 ml at room temperature
  • the conversion rate of cyclohexene was 96%, yielding 66% cyclohexanemethanol, and yielding 7% cyclohexane as the hydrogenation product.
  • Example 8 Hydroformylation of cyclohexene using non-aqueous ionic liquid as halogenated salt and phenylphosphoric acid
  • an alcohol can be obtained with high yield in a short reaction time. This helps to put environmentally friendly alcohol synthesis using safer and cheaper diacid carbon instead of monoxide carbon to practical use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ルテニウム化合物と酸を組み合わせた触媒系を用いて、不飽和炭素結合を有する有機化合物を、二酸化炭素と水素によりヒドロホルミル化してアルコールを製造する、アルコールの製造方法。

Description

二酸化炭素を原料とするアルコールの製造方法
技術分野
[0001] 本発明は、アルコールの製造方法に関し、特に二酸化炭素を原料としてヒドロホル ミルィ匕することによりアルコールを製造する方法に関する。
背景技術
[0002] 現在、アルコールを製造する一般的な方法としては、不飽和炭素結合を有する原 料有機化合物を水和する方法とヒドロホルミルィ匕する方法が知られている。しかし、前 者はマルコフ-コフ則により二級又は三級アルコールの生成が優先するため、一級 アルコールを製造するにはヒドロホルミル化反応を用いる必要がある。このため、ヒド 口ホルミル化反応は化学産業の中でも重要なプロセスの一つとなっており、世界中で 年間 600万トン以上もの化成品製造に用いられて 、る。
[0003] し力しながら、ヒドロホルミルィ匕反応は原料として極めて有毒な一酸ィ匕炭素を大量に 用いるため、この反応を工業化するには安全管理及び環境保全のため多大の投資 を余儀なくされている。
[0004] この問題を解消するための解決策として、本発明者らはルテニウム化合物を触媒と して用いることにより一酸ィ匕炭素に比べて人体にもまた環境にもはるかに安全な二酸 化炭素を原料として用いることができる新規なヒドロホルミルィ匕法を開発した (特許文 献 1)。また、本発明者らは室温付近で液体となる有機 ·無機塩カゝら構成される非水 系イオン性液体中にルテニウム化合物を分散したものを触媒として用いることにより、 一般的な原料ィ匕合物に対しても選択的に二酸ィ匕炭素によりヒドロホルミルイ匕し、アル コールを製造する方法を開発した (特許文献 2)。これらのように二酸ィ匕炭素を直接原 料として用いたヒドロホルミルィ匕によるアルコールの製造法は国内外を問わず他に類 を見ない。
特許文献 1:特開 2001— 233795号公報
特許文献 2:特開 2004— 091331号公報
[0005] 本発明は、不飽和炭素結合を有する有機化合物、二酸化炭素及び水素を原料とし て、迅速かつ効率よくアルコールを製造する方法を提供することを目的とする。
発明の開示
[0006] 本発明者は、鋭意研究した結果、ルテニウム化合物及び酸を組み合わせた触媒系 を用いることにより、迅速に目的とするアルコールを製造する方法を見いだした。この 方法によれば、副反応である原料ィ匕合物の水素化の速度を上げずに目的とするヒド 口ホルミルィ匕のみの速度を上げることができ、結果として目的生成物の収率も選択率 も同時に向上する。
[0007] 本発明によれば、以下のアルコールの製造方法が提供される。
1.ルテニウム化合物と酸を組み合わせた触媒系を用いて、不飽和炭素結合を有す る有機化合物を、二酸ィ匕炭素と水素によりヒドロホルミルイ匕してアルコールを製造する 、アルコールの製造方法。
2.前記ルテニウム化合物力 クラスター化したルテニウム錯体である 1記載のアルコ ールの製造方法。
3.前記触媒系にハロゲンィ匕物塩を併用する 1又は 2記載のアルコールの製造方法。
4.前記ハロゲン化物塩として非水系イオン性液体を用いる 3記載のアルコールの製 造方法。
5.前記酸がブレンステッド酸である 1〜4 、ずれか記載のアルコールの製造方法。
6.ブレンステッド酸がリンを含む酸である 5記載のアルコールの製造方法。
7.ヒドロホルミル化反応を温度 100°C〜180°C、圧力 l〜50MPaで行なう 1〜6いず れか記載のアルコールの製造方法。
8.前記有機化合物が二以上の不飽和炭素結合を有する化合物であり、この有機化 合物を用いて、多価アルコールを製造する 1〜7いずれか記載のアルコールの製造 方法。
[0008] 本発明によれば、不飽和炭素結合を有する有機化合物、二酸化炭素及び水素を 原料として、迅速かつ効率よくアルコールを製造する方法を提供できる。
発明を実施するための最良の形態
[0009] 本発明のアルコールの製造方法においては、不飽和炭素結合を有する有機化合 物を二酸ィ匕炭素と水素によりヒドロホルミルイ匕し、このヒドロホルミル化の際に、ルテ- ゥム化合物と酸を組み合わせた触媒系を用いる。
[0010] 本発明で用いる不飽和炭素結合を有する有機化合物としては、不飽和炭素結合を 有する化合物であれば特に制限されず、脂肪族鎖状不飽和化合物、脂肪族環状不 飽和化合物、芳香族化合物等が用いられる。このとき不飽和炭素結合は分子末端に 存在しても、また分子内部に存在してもよい。また、複数の不飽和炭素結合を有する ものも用いることができる。複数の不飽和炭素結合を有するものを原料とすることによ り、複数のヒドロキシメチル基(一 CH OH)を持つ多価アルコールを製造することも可
2
能である。これらの不飽和化合物類は、分子内の水素原子がアルキル基、環状脂肪 族基、芳香族基、複素環式基、カルボ-ル基、アルコキシ基、シァノ基、アミノ基、アミ ド基、ニトロ基、ハロゲン、含リン置換基カゝら選ばれる 1種以上の基で置換されていて ちょい。
[0011] 肪族鎖状不飽和化合物としては例えば、エチレン、プロピレン、ブチレン、ペンテン
、へキセン、ヘプテン、オタテン、ノネン、デセン、ゥンデセン、ドデセン、トリデセン、テ トラデセン、ペンタデセン、へキサデセン、ヘプタデセン、ォクタデセン、ノナデセン、 ブタジエン、ペンタジェン、へキサジェン、へブタジエン、ォクタジェン、ノナジェン、 へキサントリェン、ヘプタトリエン、オタタトリエン、及びこれらの異性体と誘導体等が 挙げられる。また脂肪族環状不飽和化合物としては、例えば、シクロペンテン、シクロ へキセン、シクロヘプテン、シクロ才クテン、シクロペンタジェン、シクロへキサジェン、 シクロへブタジエン、シクロォクタジェン、テトラヒドロインデン、メチルテトラヒドロイン デン、ノルボルネン、ノルボルナジェン、メチルビ-ルノルボルネン、ジシクロペンタジ ェン、メチルジシクロペンタジェン、トリシクロペンタジェン、テトラシクロペンタジェン、 及びこれらの異性体と誘導体等が挙げられる。芳香族鎖状不飽和化合物としては、 スチレン、スチルベン、トリフエ-ルエチレン、テトラフエ-ルエチレンとその誘導体等 が挙げられる。芳香族環状不飽和化合物としてはインデン、ジヒドロナフタレン、イン ドールとその誘導体等が挙げられる。
[0012] 本発明で用いる原料ガスは、水素と二酸ィ匕炭素を主成分とする混合ガスである。二 酸化炭素の含有量は、好ましくは 10〜95vol%、より好ましくは 50〜80vol%、水素 の含有量は、好ましくは 5〜90vol%、より好ましくは 20〜50vol%である。これらは 混合ガスの形で供給してもよぐまた別々に供給してもよい。水素の含容量が 90%を 超えると原料の水素化が顕著に起こり、また 5%以下では反応速度が著しく低下する 場合がある。原料ガス中に一酸ィ匕炭素が混入している必要は全くないが、混入して いたとしても差し支えない。
[0013] 本発明で用いるルテニウム化合物は、ルテニウムを含むのであれば特に制限はな いが、好ましくは Ru (CO) CI、 Ru (CO) 、 H Ru (CO) 、 H Ru (CO) 、 H R
2 6 4 3 12 4 4 12 2 6 18 2 u C (CO) 等のクラスター化したルテニウム化合物等が挙げられる。また、これらの
6 16
クラスター化合物は原料となる RuCl、 RuCl (C H )、 Ru (CO) (C H )、 Ru (CO
3 2 8 12 3 8 8
) (C H )、Ru (C H ) (C H )等の単核のルテニウム化合物を反応前又は反応
3 8 12 8 10 8 12
中にクラスター化処理して用いることもできる。クラスター化の一般的な方法としては, 一酸化炭素を加えて加熱する方法、又はギ酸を加えて加熱する方法等が知られて いる。
[0014] ルテニウム化合物の使用量は原料ィ匕合物に対して、好ましくは 1Z10000〜1当量 、より好ましくは 1Z1000〜1Z50当量である。ルテニウム化合物が 1Z10000当量 未満の場合は反応が極端に遅くなる傾向にあり、また 1当量を超えた場合は二酸ィ匕 炭素が反応する前に原料化合物が水素化される恐れがある。
[0015] 本発明で用いる酸は、ルイスの定義にあてはまるあらゆる酸を用いることができる。
この定義によれば、ある物質 Aが別の物質 Bより電子対を供与されるとき、 Aを酸、 B を塩基と定義される力 電子対を受容する Aにあてはまるもの全てを用いることができ る。
[0016] 上述の酸としては、好ましくは Aがプロトンとなる酸、即ちブレンステッド酸である。ブ レンステッド酸としては、例えば、塩酸、硫酸、硝酸、リン酸、メチルリン酸、アルキルリ ン酸、フエ-ルリン酸、フエ-ルホスホン酸、フエ-ルホスフィン酸、ホウ酸、フエ-ルホ ゥ酸、トリフルォロメタンスルホン酸、パラトルエンスルホン酸、フエノール、タンダステ ン酸、リンタングステン酸、及びギ酸、酢酸、トリフルォロ酢酸、プロピオン酸、酪酸に 代表されるアルキルカルボン酸、安息香酸、フタル酸、サリチル酸に代表される芳香 族カルボン酸等が用いられ、好ましくはリン酸、アルキルリン酸、フエ-ルリン酸等のリ ンを含む酸である。 [0017] 酸の添カ卩量は、例えば、ルテニウム化合物に対して 0. 1〜: LOO当量、好ましくは 1 〜: LO当量である。酸の添加量がルテニウム化合物に対して 0. 1当量未満の場合は 酸の添加による反応促進効果はほとんど見られず、また 100当量を超える場合は生 産性が著しく低下する場合がある。
[0018] 本発明の触媒系には、好ましくはハロゲンィ匕物塩が加えられる。ハロゲン化物塩に 用いるカチオンとしては無機物イオン及び有機物イオンの 、ずれでもよ 、。
好適なハロゲン化物塩は、塩化物塩、臭化物塩、ヨウ化物塩である。
ハロゲン化物塩の添カ卩量は、例えば、ルテニウム化合物に対して 1〜: LOOO当量で ある。
[0019] ノ、ロゲン化物塩に用いる無機物イオンとしては例えば、リチウム、ナトリウム、カリウム 、ルビジウム、セシウム、カルシウム、ストロンチウム等が挙げられる。また有機物ィォ ンとしては例えば、テトラメチルアンモ-ゥム、テトラエチルアンモ-ゥム、テトラプロピ ルアンモ-ゥム、テトラプチルアンモ-ゥム、テトラペンチルアンモ-ゥム、テトラへキ シルアンモ-ゥム、テトラへプチルアンモ-ゥム、テトラオクチルアンモ-ゥム、ベンジ ルトリメチルアンモ-ゥム、ベンジルトリェチルアンモ-ゥム、ベンジルトリブチルアン モニゥム、テトラメチノレホスホニゥム、テトラエチノレホスホニゥム、テトラフエ二ノレホスホ -ゥム、ベンジルトリフエ-ルホスホ-ゥム、ビス(トリフエ-ルホスフィン)イミ-ゥム等が 挙げられる。
[0020] ハロゲン化物塩は、固体の塩である必要はなぐ好ましくは室温付近又は 100°C以 下の温度領域で液体となるハロゲンィ匕物イオンを含む非水系イオン性液体である。
[0021] 非水系イオン性液体として用いられるカチオンの例としては、 1ーェチルー 3—メチ ノレイミダゾリゥム、 1—プロピル一 3—メチルイミダゾリゥム、 1—ブチノレ一 3—メチノレイミ ダゾリゥム、 1 ペンチルー 3—メチルイミダゾリゥム、 1一へキシルー 3—メチルイミダ ゾリゥム、 1一へプチルー 3—メチルイミダゾリゥム、 1ーォクチルー 3—メチルイミダゾリ ゥム、 1—デシル一 3—メチルイミダゾリゥム、 1—ドデシル一 3—メチルイミダゾリゥム、 1 テトラデシル 3 メチルイミダゾリゥム、 1 へキサデシル 3 メチルイミダゾリ ゥム、 1ーォクタデシルー 3—メチルイミダゾリゥム、 1ーェチルー 2, 3 ジメチルイミダ ゾリゥム、 1ーブチルー 2, 3 ジメチルイミダゾリゥム、 1一へキシルー 2, 3 ジメチル イミダゾリゥム、 1 ェチルピリジ-ゥム、 1 ブチルビジリニゥム、 1一へキシルピリジ- ゥム、 8—メチルー 1, 8 ジァザビシクロ [5. 4. 0]— 7 ゥンデセン、 8 ェチル 1 , 8 ジァザビシクロ [5. 4. 0]— 7 ゥンデセン、 8 プロピル一 1, 8 ジァザビシク 口 [5. 4. 0]—7 ゥンデセン、 8 ブチルー 1, 8 ジァザビシクロ [5. 4. 0]—7 ゥ ンデセン、 8 ペンチルー 1, 8 ジァザビシクロ [5. 4. 0]— 7 ゥンデセン、 8 へ キシル 1, 8 ジァザビシクロ [5. 4. 0]— 7 ゥンデセン、 8 へプチルー 1, 8 ジ ァザビシクロ [5. 4. 0]— 7 ゥンデセン、 8—ォクチルー 1, 8 ジァザビシクロ [5. 4 . 0]— 7 ゥンデセン等が挙げられる。これらのハロゲンィ匕物塩は単独で用いても複 数組み合わせて用いてもょ 、。
[0022] ヒドロホルミル化反応は、好ましくは約 100°C〜180°Cの範囲で行う。より好ましくは 120°C〜160°Cの範囲である。 100°Cより低い温度域では二酸化炭素は反応しない 恐れがあり、 180°Cより高い温度域では不飽和結合の水素化のみが優先して起こる 恐れがある。
[0023] ヒドロホルミル化反応は、好ましくは圧力が l〜50MPaの加圧下で行われる。より好 ましくは 2〜15MPaである。圧力が IMpa未満の場合、反応が遅くなる場合があり、 5 OMPaを超える場合、それ以上の反応促進の効果は得られな!/ヽ。
[0024] また、本発明の製造方法では、例えば、反応系中に溶媒を使用することができる。
使用できる溶媒は反応原料を溶解するものであれば特に限定はないが、好ましくは n ペンタン、 n—へキサン、 n—ヘプタン、シクロへキサン、ベンゼン、トノレェン、 o キ シレン、 p キシレン、 m—キシレン、ェチルベンゼン、タメン、テトラヒドロフラン、 N— メチルピロリドン、ジメチルホルムアミド、ジメチルァセトアミド、ジメチルイミダゾリジノン 、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリ エチレングリコールジメチルエーテル等が使用できる。溶媒を使用する場合、その好 適な使用量としては原料ィ匕合物の濃度が 0. lvol%以上、好ましくは 1. Ovol%以上 である。
[実施例]
[0025] 実施例 1
[リン酸を添カ卩したシクロへキセンのヒドロホルミル化] 内容積 50mlのステンレス製加圧反応装置に室温でルテニウム化合物として Ru (C
3
O) を 0. lmmol、ハロゲン化物塩としてビス(トリフエ-ルホスフィン)イミ-ゥムクロリ
12
ドを 0. 5mmol、酸としてリン酸を 0. 5mmol、原料有機化合物としてシクロへキセン を 20. Ommol、溶媒としてテトラヒドロフランを 5. OmL入れ、撹拌して溶解させたの ち、二酸化炭素を 4MPa、水素を 4MPaを撹拌しつつ圧入し、 140°Cで 10時間保持 した。その後反応装置を室温まで冷却し、放圧して残存有機相を抜き取り、ガスクロ マトグラフにて分析した。シクロへキセンの転換率は 86%であり、アルコールとしてシ クロへキサンメタノールが収率 68%生成し、水素化生成物としてシクロへキサンが収 率 11%生成した。
[0026] 実施例 2
[フエ-ルリン酸を添カ卩したシクロへキセンのヒドロホルミル化]
リン酸をフエ-ルリン酸に代えた以外は実施例 1と同様に反応を行なった結果、シク 口へキセンの転換率は 94%であり、シクロへキサンメタノールが収率 77%生成し、水 素化生成物としてシクロへキサンが収率 9%生成した。
[0027] 実施例 3
[フエ-ルホスホン酸を添カ卩したシクロへキセンのヒドロホルミル化]
リン酸をフエ-ルホスホン酸に代えた以外は実施例 1と同様に反応を行なった結果
、シクロへキセンの転換率は 96%であり、シクロへキサンメタノールが収率 66%生成 し、水素化生成物としてシクロへキサンが収率 7%生成した。
[0028] 実施例 4
[酢酸を添カ卩したシクロへキセンのヒドロホルミル化]
リン酸を酢酸に代えた以外は実施例 1と同様に反応を行なった結果、シクロへキセ ンの転換率は 88%であり、シクロへキサンメタノールが収率 40%生成し、水素化生 成物としてシクロへキサンが収率 28%生成した。
[0029] 実施例 5
[トリフルォロ酢酸を添カ卩したシクロへキセンのヒドロホルミル化]
リン酸をトリフルォロ酢酸に代えた以外は実施例 1と同様に反応を行なった結果、シ クロへキセンの転換率は 94%であり、シクロへキサンメタノールが収率 44%生成し、 水素化生成物としてシクロへキサンが収率 39%生成した。
[0030] 実施例 6
[フエ-ルホウ酸を添カ卩したシクロへキセンのヒドロホルミル化]
リン酸をフエ-ルホウ酸に代えた以外は実施例 1と同様に反応を行なった結果、シ クロへキセンの転換率は 84%であり、シクロへキサンメタノールが収率 40%生成し、 水素化生成物としてシクロへキサンが収率 33%生成した。
[0031] 比較例 1
[酸を添カ卩しない条件でのシクロへキセンのヒドロホルミル化]
リン酸を加えないこと以外は実施例 1と同様に反応を行なった結果、シクロへキセン の転換率は 77%であり、シクロへキサンメタノールが収率 38%生成し、水素化生成 物としてシクロへキサンが収率 32%生成した。
[0032] 以上の結果より、従来のルテニウム化合物触媒に酸を添加することにより、原料転 換率及びアルコール収率が向上すること、即ちアルコール生成の反応速度が向上す ることが分かる。また、酸の中でも特にリンを含む酸の効果が高いことも分かる。
[0033] 実施例 7
[フエ-ルリン酸を添カ卩した 1一へキセンのヒドロホルミル化]
原料有機化合物として 1一へキセンを用いた以外は実施例 2と同様に反応を行なつ た結果、転換率は 91%であり、ヘプタノールが収率 66%生成し、水素化生成物とし てへキサンが 13%生成した。
[0034] 比較例 2
[酸を添カ卩しな 、条件での 1 へキセンのヒドロホルミル化]
フエ-ルリン酸を加えないこと以外は実施例 7と同様の反応を行なった結果、転換 率は 70%であり、ヘプタノールが 28%、ヘプタナールが 19%、水素化生成物として へキセンが 17%生成した。
[0035] 以上の結果より、原料有機化合物が環状であっても鎖状であっても、酸を添加する ことにより、ヒドロホルミル化反応の反応速度が向上し、アルコール収率が向上するこ とが分かる。
[0036] 実施例 8 [ハロゲンィ匕物塩として非水系イオン性液体を用い、フエ二ルリン酸を添カ卩したシクロ へキセンのヒドロホルミル化]
ハロゲン化物塩として 1 ブチル 3 メチルイミダゾリゥムクロリドを 5. Ommol用 ヽ 、溶媒としてトルエンを 5. OmL用いた以外は実施例 2と同様に反応を行なった結果 、シクロへキセンの転換率は 84%であり、シクロへキサンメタノールが収率 67%生成 し、水素化生成物としてシクロへキサンが収率 4%生成した。
[0037] 比較例 3
[ハロゲンィ匕物塩として非水系イオン性液体を用いる力 酸を添カ卩しな ヽ条件でのシ クロへキセンのヒドロホルミル化]
酸を添加しない以外は実施例 8と同様に反応を行なった結果、シクロへキセンの転 換率は 30%であり、シクロへキサンメタノールが収率 18%生成し、水素化生成物とし てシクロへキサンが収率 1%生成した。
[0038] 以上の結果より、ハロゲン化物塩として非水系イオン性液体を用いた場合でも、酸 を添加することにより、ヒドロホルミルィ匕反応の反応速度が向上し、アルコール収率が 向上することが分かる。
[0039] 実施例 9
[多価アルコールの製造]
原料有機化合物としてジシクロペンタジェンを 5. Ommol用い、有機溶媒としてトル ェンを 10. OmL用いた以外は実施例 7と同様に反応を行なった結果、ジシクロペン タジェンの転換率は 100%であり、ジシクロペンタジェンジメタノールが収率 78%、ジ ヒドロジシクロペンタジェンメタノールが収率 14%、ジシクロペンタジェンメタノールが 収率 2%生成し、水素化生成物としてジヒドロジシクロペンタジェンが収率 4%生成し た。
[0040] 比較例 4
[酸を添加しな 、条件での多価アルコールの製造]
酸を添加しな 、こと以外は実施例 9と同様に反応を行なった結果、ジシクロペンタジ ェンの転換率は 100%であり、ジシクロペンタジェンジメタノールが収率 60%、ジヒド ロジシクロペンタジェンメタノールが収率 9%、ジシクロペンタジェンメタノールが収率 13%生成し、水素化生成物としてジヒドロジシクロペンタジェンが収率 13%生成した [0041] 実施例 10
[ハロゲン化物塩として臭化物塩を用い、フエ二ルリン酸を添加した触媒系によるシク 口へキセンのヒドロホルミル化]
ハロゲン化物塩として 1ーブチルー 3—メチルイミダゾリウムブロミドを 5. Ommol用 い、溶媒としてトルエンを 5. OmL用いた以外は実施例 2と同様に反応を行なった結 果、シクロへキセンの転換率は 95%であり、シクロへキサンメタノールが収率 70%生 成し、水素化生成物としてシクロへキサンが収率 5%生成した。
[0042] 比較例 5
[ハロゲン化物塩として臭化物塩を用いる力 酸を添カ卩しな 、条件でのシクロへキセ ンのヒドロホルミル化]
酸を添加しない以外は実施例 10と同様に反応を行なった結果、シクロへキセンの 転換率は 51%であり、シクロへキサンメタノールが収率 30%生成し、水素化生成物と してシクロへキサンが収率 5%生成した。
[0043] 以上の結果より、ハロゲン化物塩として塩ィ匕物塩以外の塩を用いた場合でも、酸の 添カ卩によりヒドロホルミルィ匕反応が促進され、高級アルコールの収率が向上すること が分かる。
産業上の利用可能性
[0044] 本発明の方法により、短い反応時間でアルコールを収率よく得ることができる。これ により、一酸ィ匕炭素に代えてより安全で安価な二酸ィ匕炭素を原料とする環境調和型 のアルコール合成を実用化するための一助となる。

Claims

請求の範囲
[1] ルテニウム化合物と酸を組み合わせた触媒系を用いて、
不飽和炭素結合を有する有機化合物を、二酸化炭素と水素によりヒドロホルミル化 してアルコールを製造する、アルコールの製造方法。
[2] 前記ルテニウム化合物力 クラスター化したルテニウム錯体である請求項 1記載の アルコールの製造方法。
[3] 前記触媒系にハロゲンィ匕物塩を併用する請求項 1又は請求項 2記載のアルコール の製造方法。
[4] 前記ハロゲン化物塩として非水系イオン性液体を用いる請求項 3記載のアルコー ルの製造方法。
[5] 前記酸がブレンステッド酸である請求項 1〜4 、ずれか記載のアルコールの製造方 法。
[6] ブレンステッド酸がリンを含む酸である請求項 5記載のアルコールの製造方法。
[7] ヒドロホルミル化反応を温度 100°C〜180°C、圧力 l〜50MPaで行なう請求項 1〜
6V、ずれか記載のアルコールの製造方法。
[8] 前記有機化合物が二以上の不飽和炭素結合を有する化合物であり、この有機化 合物を用いて、多価アルコールを製造する請求項 1〜7いずれか記載のアルコール の製造方法。
PCT/JP2007/054263 2006-03-28 2007-03-06 二酸化炭素を原料とするアルコールの製造方法 WO2007111091A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800103839A CN101405246B (zh) 2006-03-28 2007-03-06 以二氧化碳为原料的醇的制造方法
KR1020087023061A KR101455870B1 (ko) 2006-03-28 2007-03-06 이산화탄소를 원료로 하는 알코올의 제조방법
JP2008507406A JP5271075B2 (ja) 2006-03-28 2007-03-06 二酸化炭素を原料とするアルコールの製造方法
EP07715231.2A EP2000453B1 (en) 2006-03-28 2007-03-06 Method for producing alcohol by using carbon dioxide as raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-087788 2006-03-28
JP2006087788 2006-03-28

Publications (1)

Publication Number Publication Date
WO2007111091A1 true WO2007111091A1 (ja) 2007-10-04

Family

ID=38541017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054263 WO2007111091A1 (ja) 2006-03-28 2007-03-06 二酸化炭素を原料とするアルコールの製造方法

Country Status (5)

Country Link
EP (1) EP2000453B1 (ja)
JP (1) JP5271075B2 (ja)
KR (1) KR101455870B1 (ja)
CN (1) CN101405246B (ja)
WO (1) WO2007111091A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041192A1 (ja) * 2007-09-25 2009-04-02 Hitachi Chemical Company, Ltd. 二酸化炭素を原料とするアルコールの製造方法
JP2021010873A (ja) * 2019-07-05 2021-02-04 国立研究開発法人産業技術総合研究所 二酸化炭素を原料とするヒドロホルミル化反応用触媒

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030209A1 (de) * 2010-06-17 2011-12-22 Evonik Oxeno Gmbh Energieeffiziente Synthese von aliphatischen Adelhyden aus Alkanen und Kohlendioxid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118429A (en) * 1979-03-05 1980-09-11 Mitsubishi Petrochem Co Ltd Preparation of tricyclodecanedimethylol
JP2001233795A (ja) 2000-02-23 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti 二酸化炭素を利用したヒドロホルミル化法
JP2004091331A (ja) 2002-08-29 2004-03-25 National Institute Of Advanced Industrial & Technology 二酸化炭素を原料とする高級アルコールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118429A (en) * 1979-03-05 1980-09-11 Mitsubishi Petrochem Co Ltd Preparation of tricyclodecanedimethylol
JP2001233795A (ja) 2000-02-23 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti 二酸化炭素を利用したヒドロホルミル化法
JP2004091331A (ja) 2002-08-29 2004-03-25 National Institute Of Advanced Industrial & Technology 二酸化炭素を原料とする高級アルコールの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAASKELAINEN S. ET AL.: "The use of carbon dioxide in ruthenium carbonyl catalyzed 1-hexene hydroformylation promoted by alkali metal and alkaline earth salts", APPLIED CATALYSIS A: GENERAL, vol. 247, 2003, pages 95 - 100, XP004434429 *
See also references of EP2000453A4 *
TOMINAGA K.: "An environmentally friendly hydroformylation using carbon dioxide as a reactant catalyzed by immobilized Ru-complex in ionic liquids", CATALYSIS TODAY, vol. 115, 24 March 2006 (2006-03-24), pages 70 - 72, XP005451294, Retrieved from the Internet <URL:http://www.sciencedirect.com> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041192A1 (ja) * 2007-09-25 2009-04-02 Hitachi Chemical Company, Ltd. 二酸化炭素を原料とするアルコールの製造方法
KR20100058474A (ko) * 2007-09-25 2010-06-03 히다치 가세고교 가부시끼가이샤 이산화탄소를 원료로 하는 알코올의 제조방법
KR101583846B1 (ko) 2007-09-25 2016-01-08 히타치가세이가부시끼가이샤 이산화탄소를 원료로 하는 알코올의 제조방법
JP2021010873A (ja) * 2019-07-05 2021-02-04 国立研究開発法人産業技術総合研究所 二酸化炭素を原料とするヒドロホルミル化反応用触媒
JP7291387B2 (ja) 2019-07-05 2023-06-15 国立研究開発法人産業技術総合研究所 二酸化炭素を原料とするヒドロホルミル化反応用触媒

Also Published As

Publication number Publication date
CN101405246A (zh) 2009-04-08
KR101455870B1 (ko) 2014-11-03
KR20080109771A (ko) 2008-12-17
EP2000453A2 (en) 2008-12-10
JP5271075B2 (ja) 2013-08-21
EP2000453B1 (en) 2014-12-03
CN101405246B (zh) 2013-06-12
EP2000453A4 (en) 2014-03-12
EP2000453A9 (en) 2009-03-11
JPWO2007111091A1 (ja) 2009-08-06

Similar Documents

Publication Publication Date Title
Miao et al. TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metal‐Free Catalytic System for Aerobic Oxidation of Alcohols
US20170275226A1 (en) Process for Making Cyclohexanone
CA2647396C (en) Tuning product selectivity in catalytic hydroformylation reactions with carbon dioxide expanded liquids
CN104379543B (zh) 由2-乙基己醇生产异壬酸的方法
KR20000058062A (ko) 디부텐의 분별화 방법
JP5367578B2 (ja) 二酸化炭素を原料とするアルコールの製造方法
JP5604431B2 (ja) エステル化合物の製造方法
CA2828579A1 (en) Reduction of c-o bonds by catalytic transfer hydrogenolysis
WO2007111091A1 (ja) 二酸化炭素を原料とするアルコールの製造方法
EP1656336B1 (en) Process for the carbonylation of conjugated dienes using a palladium catalyst system
KR101644407B1 (ko) 알데하이드의 제조방법
US20100069678A1 (en) Hydroformylation process
JP3702343B2 (ja) 二酸化炭素を原料とする高級アルコールの製造方法
JP2010235516A (ja) 精製ジオールの製造方法
JP6460521B2 (ja) 再活性化触媒系の製造方法、及び再活性化触媒系を用いたエステル化合物の製造方法
JP2005120037A (ja) アルキルベンズアルデヒド類の製造方法
JP4780964B2 (ja) オレフィン化合物の製造方法
KR101642960B1 (ko) 벤조산의 제조 방법
Okamoto et al. Kinetic Studies of Solvolysis. XVI. Phenolysis of cis-and trans-4-t-Butylcyclohexy p-Toluenesulfonates. Rates and Product Distribution
JP2014234375A (ja) 多価アルコールの製造方法
TW202222759A (zh) 烯烴於均相中之氫甲醯化方法
JP6528191B2 (ja) エステル化合物の製造方法
EP2692717A1 (en) Method for producing 4,4&#39;-diformyldiphenylalkane
JPS63264433A (ja) オレフィンのヒドロホルミル化方法
KR20050080443A (ko) 다환방향족 비닐화합물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07715231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008507406

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007715231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780010383.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE