WO2007101789A1 - Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes - Google Patents

Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes Download PDF

Info

Publication number
WO2007101789A1
WO2007101789A1 PCT/EP2007/051664 EP2007051664W WO2007101789A1 WO 2007101789 A1 WO2007101789 A1 WO 2007101789A1 EP 2007051664 W EP2007051664 W EP 2007051664W WO 2007101789 A1 WO2007101789 A1 WO 2007101789A1
Authority
WO
WIPO (PCT)
Prior art keywords
trichlorosilane
fluidized bed
bed reactor
silicon
boiling compound
Prior art date
Application number
PCT/EP2007/051664
Other languages
English (en)
French (fr)
Inventor
Laszlo Fabry
Uwe Pätzold
Michael Stepp
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37909332&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007101789(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to US12/281,550 priority Critical patent/US8557210B2/en
Priority to CN2007800040064A priority patent/CN101378990B/zh
Priority to DE502007006026T priority patent/DE502007006026D1/de
Priority to JP2008557711A priority patent/JP5101532B2/ja
Priority to EP07712268.7A priority patent/EP1991501B2/de
Priority to ES07712268T priority patent/ES2358614T5/es
Priority to AT07712268T priority patent/ATE492513T1/de
Publication of WO2007101789A1 publication Critical patent/WO2007101789A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
    • C01B33/10763Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane from silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles

Definitions

  • the invention relates to a process for the recycling of high-boiling compounds within a chlorosilane composite.
  • high-boiling compound high-boiling di- and Oligochlorsilane (HS).
  • high boilers refers to a compound which consists of silicon, chlorine, optionally hydrogen, oxygen and carbon and a higher boiling point than tetrachlorosilane (57 ° C / at 1013 hPa) having.
  • Trichlorosilane from the trichlorosilane synthesis contains from 0.05 to 5%, the HS ⁇ ser.
  • FeCl 2 , FeCl 3 and AlCl 3 must be separated from the products trichlorosilane and silicon tetrachloride.
  • US 5,252,307, US 5,080,804, US 4,690,810 or US 4,252,780 describe the concentration of the chlorides with metal contaminated ⁇ HS-groups in the bladder deduction to 1 wt% -.. 50% by weight, the subsequent hydrolysis and disposal as hydrolysed ⁇ seruckstand. These processes cause losses of silicon and chlorine, as well as problems with the disposal of the hydrolyzate and the resulting hydrochloric acid wastewater [MG Kroupa in Proceedings Silicon for the Chemical Industry VI, pp. 436-590 ]. 201-207, Loen, Norway, 17-21. June 2002].
  • high-purity HS are in the bubble-off of the polycondensate distillation, which can be converted with silicon tetrachloride at 600 - 1200 ° C [WO02 / 100776 Al].
  • HS can also be cleaved in a low temperature conversion in the fluidized bed reactor in the presence of hydrogen [JPHeil 188414 Osaka Titanium 1988].
  • Lewis acids such as AlCl 3 can also catalyze the Si-Si cleavage [A. Gupper et al. , Eur. J. Inorg. Chem, 8, 2007-2011, 2001].
  • the present invention relates to a process for the preparation of trichlorosilane by reacting metallurgical silicon and HCl in a fluidized bed reactor at a temperature of 290 ° C to 400 ° C, which is characterized in that a high-boiling compound is fed into the fluidized bed reactor.
  • the HS are preferably derived from the exhaust gases that are produced in the production of polycrystalline silicon or in the production of trichlorosilane.
  • the process according to the invention thus makes it possible to increase the trichlorosilane yield during production in the fluidized-bed reactor and to economically reuse HS. It minimizes the silicon losses and protects the environment by Redu ⁇ cation of the landfill requirement and acid hydrolyzate products.
  • FIG. 1 shows by way of example a chlorosilane compound comprising an embodiment of the inventive recirculation (4/10) of the HS from the exhaust gases which are formed in the production of trichlorosilane in a fluidized bed reactor (3) or in the production of polycrystalline silicon (deposit 2) ,
  • the exhaust gases (7) from the fluidized-bed reactor (3) are introduced via a dust separation system, usually a dust filter (13) and a condensation system (14), into a separation column (Ia and Ib), where trichlorosilane and NS of silicon tetrachloride and HS separated who ⁇ the. Silicon tetrachloride and HS are added to a high boiler column (Ic) where silicon tetrachloride is partially separated from the HS.
  • the HS-containing mixture having an atmospheric boiling point of 80-155 ° C. is now recycled to a fluidized-bed reactor (3) for the production of trichlorosilane within the chlorosilane composite (4).
  • the exhaust gas which originates from the deposition (2) for the production of polycrystalline silicon, is recycled to a fluidized bed reactor (3) for the production of trichlorosilane within the chlorosilane composite.
  • the exhaust gas of the deposition is preferably via a
  • recirculation of the HS fraction (4) preferably takes place from the lower side draw of the HS distillation (Ic) into a trichlorosilane fluidized bed reactor (3).
  • a portion (1 - 50%) of the HS fraction from the lower side draw of the HS distillation (Ic) of the HS annihilation (5) is fed to increase the silicon tetrachloride or TiCl 4 - and AlCl 3 or to avoid other metal chlorides and siloxane level in the swirl ⁇ layer reactor 3.
  • the recirculated HS mixture also contains silicon tetrachloride ( ⁇ 50%) and the above metal chlorides in a concentration ⁇ 5000 ppm.
  • This variant of the process according to the invention reduces the disposal for HS destruction in an environmentally friendly manner by 50-99% by weight and increases the trichlorosilane crude production by up to 1% by weight.
  • Monochlorosilane, monosilane, dichlorosilane, trichlorosilane and silicon tetrachloride are separated by distillation, concentrated ⁇ the HS in the residue to 0.5 - 20 wt.%. These HS are obtained as a bubble product of the polycondensate (8) in a fraction at atmospheric pressure and a temperature of 80-155 ° C. Possibly. , the HS-mixture to be centered in an enrichment column (9) to 50% HS aufkon ⁇ .
  • Trichlorosilane fluidized bed reactor (3) can be easily split into trichlorosilane and silicon tetrachloride. Since these HS Fraction beside HS also contains silicon tetrachloride but with respect. Do ⁇ animal substances, carbon and metal compounds incurred in a very high purity, this fraction can be returned directly in the Wirbel Anlagenre ⁇ actuator (3). After recirculation (10) into the fluidized bed reactor (3), no accumulation on HS in the exhaust gas (7) of the fluidized bed furnace (3) was detected.
  • This variant of the method according to the invention allows a 100% recycling of the HS from the exhaust gas (16) of the deposition of polycrystalline silicon, so that an environmentally harmful disposal is no longer necessary.
  • the yield in the trichlorosilane crude production is increased by at least 2% by weight.
  • silicon tetrachloride precipitates as a high-purity overhead product at the HS enrichment column (9) and at the HS column (Ic).
  • This silicon tetrachloride can either be converted in a converter (17) with hydrogen to trichlorosilane (DE 3024319) or pyrolyzed in a flame to highly dispersed silicic acid (HDK®, 17) (DE4322804), as described: T: Lovreyer and K. Hesse (T. Lobreyer et al., In Proceedings of Silicon for the Chemical Industry IV, in Geiranger, Norway, 3-5.6.1998, pp. 93-100 Ed .: HA Oye, HM Rong, L. Nygaard, G. SChussler, J. Kr. Tuset).
  • the recirculation of the HS mixture (4/10) or of the separated high boiler fractions (4 or 10) into the fluidized bed reactor (3) preferably takes place via a saturator (6).
  • the HS mixture is admixed with a portion of the HCl (preferably 10 to 40% by weight) (11) to the main stream of HCl and metered metallic silicon (12, MGSi) which is the fluidized bed reactor for producing trichlorosilane is supplied. This mixture is fed to the fluidized-bed reactor (3).
  • a Metal chloride enrichment was not to be measured in the process according to the invention in a measure which interfered with the process.
  • NS dichlorosilane and monochlorosilane
  • HS 0.1-0.3% HS.
  • the raw silane in the ppm range contained metal chlorides (eg TiCl 4 and AlCl 3 ).
  • t / h of crude silane were produced from 425 kg / h of silicon and 1750 kg / h of HCl.
  • the composition of the crude silane was 0.35% Niedersie- der (mono- and dichlorosilane), 79.3% trichlorosilane, 20.1% silicon tetrachloride and 0.25% HS.
  • the HS fraction was composed of about 50% disilanes, 47% disiloxanes and about 3% higher polychloro-oligosilanes and siloxanes. There were about 5 kg / h HS fraction.
  • Example 2 jerk supply (4) of the HS from the exhaust (7) of the Trichlorsi ⁇ lan preparation according to example 1 in the preparation of trichlorosilane in a fluidized-bed reactor (3).
  • Example 3 jerk supply (10) of the HS from the exhaust (16) of herstel ⁇ development of polycrystalline silicon (2) in the preparation of trichlorosilane in a fluidized bed reactor (3)
  • Example 4 Backfeed of the HS from an exhaust gas mixture 4 and 10
  • the synthesis was carried out as described in Example 1 ⁇ written .
  • 4 kg / h of HS fraction from the high boiler column (Ic) and 10 kg / h of HS were transferred from the waste gas (16) of the polyabide divide (2) into the saturator (6) and then together with about 175 kg / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Trichlorsilan durch Umsetzung von metallurgischem Silicium und HCl in einem Wirbelschichtreaktor bei einer Temperatur von 290°C bis 400°C, welches dadurch gekennzeichnet ist, dass eine hochsiedende Verbindung in den Wirbelschichtreaktor eingespeist wird.

Description

Wiederverwertung von hochsiedenden Verbindungen innerhalb eines Chlorsilanverbundes
Die Erfindung betrifft ein Verfahren zur Wiederverwertung von hoch- siedenden Verbindungen innerhalb eines Chlorsilanverbundes.
In den verschiedenen Teilprozessen der Erzeugung von polykristallinem Silicium entstehen unterschiedliche Chlorsilanverbindungen, u. a. hochsiedende Di- und Oligochlorsilane (HS) . Der Begriff "hochsiedende Verbindung, hochsiedendes Di- und Oligochlorsilan" oder "Hochsieder" bezeichnet dabei eine Verbindung, welche aus Silicium, Chlor, ggf. Wasserstoff, Sauerstoff und Kohlenstoff besteht und einen höheren Siedepunkt als Tetrachlorsilan (57°C/bei 1013 hPa) aufweist. Bevor¬ zugt handelt es sich um Disilane HnCl6-I1Si2 (n= 0 - 4) und höhere Oli- go (chlor) silane vorzugsweise mit 2 bis 4 Si Atomen sowie Disiloxane HnCl6-I1Si2O (n= 0 - 4) und höhere Siloxane vorzugsweise mit 2 bis 4 Si Atomen einschließlich zyklischer Oligosiloxane sowie deren Methylderivate. Im Folgenden werden niedersiedende Silane mit einem Siede¬ punkt < 40°C unter atmosphärischen Bedingungen (1013 hPa) als NS ab- gekürzt.
Sowohl die Synthese von Trichlorsilan (TCS) aus metallurgischem Silicium und HCl als auch die Abscheidung von polykristallinem Silicium (PoIy) aus Trichlorsilan beruhen auf thermischen Gleichgewichtspro- zessen von Chlorsilanen, wie sie beispielsweise in E. Sirtl, K. Reu- schel, Z. anorg. allg. Chem. 332, 113-216, 1964 oder L. P. Hunt, E. Sirtl, J. Electrochem. Soc. 119(12), 1741-1745, 1972 beschrieben sind. In der Trichlorsilan-Synthese entstehen demnach neben Trichlorsilan und Siliciumtetrachlorid (STC) auch Di- und Monochlorsilane, sowie HS einem thermischen Gleichgewicht entsprechend. Das Roh-
Trichlorsilan aus der Trichlorsilan-Synthese enthalt 0,05 - 5 % die¬ ser HS. Außerdem entstehen in der Roh-Trichlorsilan-Erzeugung etwa 20 ppm an verschiedenen Bor-Verbindungen, bis zu 200 ppm TiCl4 und einschließlich anderer Metallchloride, wie z. B. FeCl2, FeCl3 und AlCl3. Diese müssen von den Produkten Trichlorsilan und Siliciumtetrachlorid abgetrennt werden. Verfahren zur Abtrennung von Trichlorsilan und Siliciumtetrachlorid von o. g. HS sind bekannt. So beschreiben US 5,252,307, US 5,080,804, US 4,690,810 oder US 4,252,780 das Aufkonzentrieren der mit Metall¬ chloriden verunreinigten HS-Fraktionen im Blasenabzug auf 1 Gew.% - 50 Gew.%, die anschließende Hydrolyse und die Entsorgung als Hydroly¬ seruckstand. Diese Verfahren verursachen Silicium- und Chlorverluste sowie Entsorgungsprobleme des Hydrolysates und der anfallenden salz¬ sauren Abwasser [M. G. Kroupa in Proceedings Silicon for the Chemical Industry VI, pp . 201-207, Loen, Norwegen, 17-21. Juni 2002].
Weitere unerwünschte hochsiedende Chlordisiloxane-Fraktionen entste¬ hen bei der Destillation und teilhydrolytischen Reinigung von Chlor- silanen. Diese Hochsiederfraktionen werden bisher ebenfalls als Hydrolyseruckstande sowie salzsaure Abwasser entsorgt, wie z. B. in US 6,344,578 Bl, US 3,540,861 oder US 4,374,110 beschrieben.
Es ist ferner sowohl theoretisch abgeleitet [E. Sirtl, K. Reuschel, Z. anorg. allg. Chem. 332, 113-216, 1964; E. Sirtl et al . , J. E- lectrochem. Soc. 121, 919-, 1974; V. F. Kochubei et al . , Kinet. Ka- tal., 19(4), 1084, 1978], als auch analytisch nachgewiesen [V. S. Ban et al., J. Electrochem. Soc. 122, 1382-, 1975], dass HS (Hexa-, Pen- ta-, Tetra- und Trichlordisilan) auch bei der Abscheidung von polykristallinem Silicium aus Trichlorsilan entstehen. Diese, im Bezug auf Dotierstoffe und Metalle, hochreinen HS befinden sich im Blasen- abzug der Polykondensat-Destillation, die mit Siliciumtetrachlorid bei 600 - 1200°C konvertiert werden kann [WO02/100776 Al].
HS können auch in einer Niedertemperatur-Konvertierung im Wirbelbett- Reaktor in der Gegenwart von Wasserstoff gespalten werden [JPHeil- 188414-Osaka Titanium 1988].
Polychlorsilane (SinCl2n+2; 4>n>2), insbesondere Si2Cl6 (HCDS), zer¬ fallen bei >700°C in der Gegenwart von Siliciumkristallkeimen bzw. an einer geheizten Siliciumseele [EP282037-Mitsubishi 1988] . Es ist ferner bekannt, dass aus den Abgasen der Abscheidung von polykristal- linem Silicium hochreines HCDS isoliert werden kann [WO2002012122- Mitsubishi, 2002] . Mit HCl kann die Spaltung von Polychlordisilanen an Aktivkohle bereits zwischen 30 und 150°C vor sich gehen [JP09- 263405-Tokuyama 1996] . Die Umsetzung dieser HS-Fraktion zusammen mit Siliciumtetrachlorid und Wasserstoff kann in einem Hochtemperaturre¬ aktor erfolgen (Dow Corning 2001 [US2002/0187096] ) . Disilane aus der siliciumorganischen Direktsynthese können bei 300 °C ebenfalls zu Trichlorsilan und/oder Siliciumtetrachlorid konvertiert werden [US 6,344,578 Bl Wacker 2000]. Niedertemperatur-Spaltung erfolgt in der Gegenwart von nukleophilen Katalysatoren [F. Hoefler et al . , Z. a- norg. allg. Chem. 428, 75-82, 1977; DE3503262-Wacker 1985; G. Laroze et al, Proceedings Silicon for the Chemical Industry III, pp . 297- 307, Trondheim, Norwegen, 1996; W. -W. du Mont et al, Organosilicon Chemistry V, Sept 2001, Chem. Abst., 142:155991; G. Roewer et al . , Silicon cabide - a survey in Structure and Bonding 101, pp . 69-71,
Springer 2002]. Lewis-Sauren wie AlCl3 können die Si-Si Spaltung e- benfalls katalysieren [A. Gupper et al . , Eur. J. Inorg. Chem, 8, 2007- 2011, 2001] .
Alle diese Verfahren zum Entfernen von unerwünschten HS aus Prozessen zur Gewinnung von polykristallinem Silicium beinhalten einen hohen technischen Aufwand für die Entsorgungs-, Trenn- und Reinigungs¬ schritte. Zudem lassen sich Verluste an Chlor und Silicium nicht vermeiden .
Die thermische Zersetzung von HS in der Anwesenheit von Siliciumtetrachlorid und Wasserstoff ist aus JPHeil-188414 der Fa. Osaka Ti- tanium bekannt.
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Trichlorsilan durch Umsetzung von metallurgischem Silicium und HCl in einem Wirbelschichtreaktor bei einer Temperatur von 290°C bis 400°C, welches dadurch gekennzeichnet ist, dass eine hochsiedende Verbindung in den Wirbelschichtreaktor eingespeist wird. Die HS stammen vorzugsweise aus den Abgasen, die bei der Herstellung von polykristallinem Silicium oder bei der Herstellung von Trichlor- silan entstehen. Das erfindungsgemaße Verfahren ermöglicht damit eine Erhöhung der Trichlorsilan Ausbeute bei der Herstellung im Wirbel- schichtreaktor und eine kostengünstige Wiederverwertung von HS. Es minimiert die Silicium-Verluste und entlastet die Umwelt durch Redu¬ zierung des Deponiebedarfes und sauerer Hydrolysat-Produkte .
Fig. 1 zeigt beispielhaft einen Chlorsilanverbund umfassend eine Aus- fuhrungsform der erfindungsgemaße Rückführung (4/10) der HS aus den Abgasen, die bei der Herstellung von Trichlorsilan in einem Wirbelschichtreaktor (3) oder bei der Herstellung von polykristallinem Silicium (Abscheidung 2) entstehen.
Die Abgase (7) aus dem Wirbelschichtreaktor (3) werden dabei über ein Staubabtrennungssystem, in der Regel ein Staubfilter (13) und ein Kondensationssystem (14), in eine Trennkolonne (Ia und Ib) gegeben, wo Trichlorsilan und NS von Siliciumtetrachlorid und HS getrennt wer¬ den. Siliciumtetrachlorid und HS werden in eine Hochsiederkolonne (Ic) gegeben, wo Siliciumtetrachlorid zum Teil von den HS abgetrennt wird. In einer Ausfuhrungsform des erfindungsgemaßen Verfahrens wird nun das HS haltige Gemisch mit einem atmosphärischem Siedepunkt von 80 - 155°C in einen Wirbelschichtreaktor (3) zur Herstellung von Trichlorsilan innerhalb des Chlorsilanverbundes zurückgeführt (4) .
In einer anderen Ausfuhrungsform des erfindungsgemaßen Verfahrens wird das Abgas, welches aus der Abscheidung (2) zur Herstellung von polykristallinem Silicium stammt, in einen Wirbelschichtreaktor (3) zur Herstellung von Trichlorsilan innerhalb des Chlorsilanverbundes zurückgeführt. Das Abgas der Abscheidung wird vorzugsweise über ein
Kondensationssystem (15) in eine Polykondensatkolonne (8) gefuhrt, in der Siliciumtetrachlorid und HS von Trichlorsilan und NS getrennt werden. Siliciumtetrachlorid und HS werden wiederum in eine HS Anrei¬ cherungskolonne (9) gegeben, in der Siliciumtetrachlorid zum Teil von HS abgetrennt wird. Das hierbei entstehende HS Gemisch wird erfin- dungsgemaß in den Wirbelschichtreaktor (3) zur Herstellung von Trichlorsilan zurückgeführt (10) . Es ist ebenso möglich, ein Abgasgemisch beider Ausfuhrungsformen des erfindungsgemaßen Verfahrens in den Wirbelschichtreaktor zur Herstellung von Trichlorsilan zurückzuführen. Es zeigte sich überraschend, dass die HS-haltigen Gemische in einem Wirbelschichtreaktor (3) mit metallischem Silicum zu Trichlorsilan reagieren.
In der erstgenannten Verfahrensvariante erfolgt eine Rückführung der HS-Fraktion (4) vorzugsweise aus dem unteren Seitenabzug der HS- Destillation (Ic) in einen Trichlorsilan Wirbelschichtreaktor (3) . Vorzugsweise wird ein Teil (1 - 50 %) der HS-Fraktion aus dem unteren Seitenabzug der HS-Destillation (Ic) der HS-Vernichtung (5) zugeführt, um eine Erhöhung der Siliciumtetrachlorid- bzw. TiCl4- und AlCl3 bzw. anderer Metallchloride sowie Siloxan-Pegel im Wirbel¬ schichtreaktor 3 zu vermeiden. Damit werden vorzugsweise 50 - 99 Gew.% der HS-Fraktion mit einem atmosphärischen Siedepunkt von 80 - 155°C aus dem unteren Seitenabzug der Hochsiederdestillation (Ic) in einen Trichlorsilan-Wirbelschichtreaktor (3) zuruckgeleitet . Das zurückgeführte HS-Gemisch enthalt auch Siliciumtetrachlorid (< 50 %) und o. g. Metallchloride in einer Konzentration < 5000 ppm. Diese Va- riante des erfindungsgemaßen Verfahrens reduziert die Entsorgung zur HS-Vernichtung umweltschonend um 50 - 99 Gew.% und erhöht die Trich- lorsilan-Roherzeugung um bis zu 1 Gew.%.
Auch im Abgas (16) eines Abscheidereaktors (2) zur Herstellung von polykristallinem Silicium aus Trichlorsilan befinden sich HS neben
Monochlorsilan, Monosilan, Dichlorsilan, Trichlorsilan und Siliciumtetrachlorid. Nachdem Trichlorsilan und Siliciumtetrachlorid z. T. in der Polykondensatkolonne (8) destillativ abgetrennt werden, konzent¬ rieren sich die HS im Ruckstand auf 0,5 - 20 Gew.%. Diese HS werden als Blasenprodukt der Polykondensatkolonne (8) in einer Fraktion bei Normaldruck und einer Temperatur von 80 - 155 °C gewonnen. Ggf. kann das HS-Gemisch in einer Anreicherungskolonne (9) bis 50 % HS aufkon¬ zentriert werden.
Es zeigte sich nun, dass auch diese HS-haltige Fraktion (10) im
Trichlorsilan-Wirbelschichtreaktor (3) problemlos in Trichlorsilan und in Siliciumtetrachlorid gespaltet werden kann. Da diese HS- Fraktion neben HS auch Siliciumtetrachlorid enthalt aber bzgl . Do¬ tierstoffen, Kohlenstoff- und Metallverbindungen in einer sehr hohen Reinheit anfallt, kann diese Fraktion direkt in den Wirbelschichtre¬ aktor (3) ruckgefuhrt werden. Nach der Rückführung (10) in den Wir- belschichtreaktor (3) wurde keine Anreicherung an HS im Abgas (7) des Wirbelschichtofens (3) festgestellt. Diese Variante des erfindungsge- maßen Verfahrens ermöglicht eine 100 %ige Wiederverwertung der HS aus dem Abgas (16) der Abscheidung von polykristallinem Silicium, eine umweltbelastende Entsorgung ist damit nicht mehr notwendig. Zudem wird die Ausbeute in der Trichlorsilan-Roherzeugung mindestens um 2 Gew% erhöht.
In dem Prozess fallt Siliciumtetrachlorid als hochreines Kopfprodukt an der HS-Anreicherungskolonne (9) sowie an der HS-Kolonne (Ic) an. Dieses Siliciumtetrachlorid kann entweder in einem Konverter (17) mit Wasserstoff zu Trichlorsilan konvertiert (DE 3024319) oder in einer Flamme zu hochdisperser Kieselsaure (HDK®, 17) pyrolysiert (DE4322804) werden, wie T: Lovreyer and K. Hesse beschrieben (T. Lobreyer at al . im Proceedings von Silicon for the Chemical Industry IV, in Geiranger, Norwegen, 3.-5.6.1998, pp.93-100 Ed.: H.A. Oye, H. M. Rong, L. Nygaard, G. SChussler, J. Kr. Tuset) .
Vorzugsweise erfolgt die Rückführung des HS-Gemisches (4/10) oder der getrennten Hochsiederfraktionen (4 bzw. 10) in den Wirbelschichtreak- tor (3) über einen Sattiger (6) .
Im Sattiger (6) wird das HS-Gemisch einem Teil der HCl (vorzugsweise 10 bis 40 Gew. %) (11) zum Hauptstrom von HCl und zudosiertem metallischem Silicium (12, MGSi) zugemischt, welche dem Wirbelschichtreak- tor zur Herstellung von Trichlorsilan zugeführt wird. Diese Mischung wird dem Wirbelschichtreaktor (3) zugeführt.
Die analytische Prüfung der Zusammensetzung des HS-Gemisches (4) bzw. der Abgaszusammensetzung (7) hat nach mehrtägiger Betriebszeit erge- ben, dass Polychlordisiloxane HnCl6-I1Si2O (n= 0 - 4) sich um etwa eine Größenordnung angereichert haben, die den Prozess nicht stören. Eine Metallchloridanreicherung war im erfindungsgemaßen Verfahren nicht in einem den Prozess störenden Maße zu messen.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfin- düng:
Beispiel 1: Herstellung Trichlorsilan (Vergleichsbeispiel)
In einem Reaktorsystem, bestehend aus einem Wirbelschichtreaktor (3), einem Staubabtrennungssystem (13) und einem Kondensationssystem (14) (beschrieben in US 4,130,632) wurde metallurgisches Silicium mit einer Reinheit von > 98 % Silicium mit Chlorwasserstoffgas umgesetzt.
Man erhielt nach der Kondensation ein Roh-Silan-Gemisch mit 70 - 90 Gew.% Trichlorsilan, 10 - 29,2 Gew.% Siliciumtetrachlorid, 0,1 -
0,5 % NS (Dichlorsilan und Monochlorsilan) und 0,1 - 0,3 % HS. Weiterhin enthielt das Roh-Silan im ppm-Bereich Metallchloride (z. B. TiCl4 und AlCl3) .
Es wurden ca. 2 t/h Roh-Silan aus 425 kg/h Silicium und 1750 kg/h HCl erzeugt. Die Zusammensetzung des Roh-Silans betrug 0,35 % Niedersie- der (Mono- und Dichlorsilan), 79,3 % Trichlorsilan, 20,1 % Siliciumtetrachlorid sowie 0,25 % HS. Die HS-Fraktion setzte sich aus etwa 50 % Disilanen, 47 % Disiloxanen und ca. 3 % höheren Polychloroligosila- nen und Siloxanen zusammen. Es entstanden ca. 5 kg/h HS-Fraktion.
Es mussten damit pro 1000 kg erzeugtes Rohsilan etwa 2,5 kg HS- Fraktion über Hydrolyse entsorgt werden.
Beispiel 2: Ruckspeisung (4) der HS aus dem Abgas (7) der Trichlorsi¬ lan Herstellung gemäß Bsp. 1 in die Trichlorsilan Herstellung im Wirbelschichtreaktor (3)
Verfahren zur Herstellung der Rohsilane erfolgte wie in Beispiel 1 beschrieben. Die Abgase des Verfahrens wurden nach der Trennkolonne (Ia) in eine Hochsiederkolonne (Ic) gegeben. Dabei wurden die HS an- gereichert. Etwa 20 Gew.% (1 kg/h) der HS-Fraktion wurden abgetrennt und zur HS-Vernichtung (5) geleitet. Die restlichen 4 kg/h der HS- Fraktion wurden in einen beheizbaren Sattiger (6) überfuhrt und von dort mit Hilfe eines HCl-Tragergasstromes (11) in den Wirbelschicht- reaktor (3) eingespeist. Die Gesamtmenge der HCl (11+12) wurde hierzu geteilt (90 % wurde direkt (12) in die Wirbelschicht (3) eingespeist, 10 % der HCl-Menge wurde als Tragergas (11) für Beförderung von HS verwendet) . Bei der vorgegebenen Reaktionstemperatur wurden die spaltbaren Anteile der HS-Fraktion in Monomere überfuhrt, wahrend sich nichtspaltbare Anteile im Roh-Silan etwas anreichern.
Bezogen auf 1000 kg Rohsilan mussten in diesem Beispiel nur 1,2 kg HS-Fraktion über Hydrolyse entsorgt werden.
Beispiel 3: Ruckspeisung (10) der HS aus dem Abgas (16) der Herstel¬ lung von polykristallinem Silicium (2) in die Trichlorsilan Herstellung im Wirbelschichtreaktor (3)
Das Verfahren zur Herstellung des Rohsilans erfolgte gemäß Beispiel 1. Zusatzlich wurden 10 kg/h der HS-Fraktion aus der Polyabscheidung
(2) zusammen mit 1/10 der Gesamt-HCl-Menge (11) über den Sattiger (6) in den Wirbelschicht-Reaktor (3) eingespeist.
Überraschend wurde gefunden, dass sich die Zusammensetzung des dabei erhaltenen Rohsilans nicht von demjenigen aus Beispiel 1 unterschied (0,25 % HS-Anteil). D. h. die Polychlordisilane in der HS-Fraktion wandelten sich vollständig in Monomere wie Trichlorsilan oder Silici- umtetrachlorid um.
Es entstanden keine zusatzlichen HS, welche entsorgt werden mussten. Die in der Polyabscheidung (2) anfallenden HS konnten mittels des er- findungsgemaßen Verfahrens nach Kondensation (15) und destillativer Trennung (8) bzw. Anreicherung (9) vollständig über die Rückführung (10) in den Wirbelschichtreaktor (3) zu Trichlorsilan oder Silicium- tetrachlorid recycelt werden.
Beispiel 4: Ruckspeisung der HS aus einem Abgasgemisch 4 und 10 In der Praxis hat es sich als sinnvoll erwiesen, die HS-Fraktionen gemeinsam zu verarbeiten. Die Synthese wurde wie in Beispiel 1 be¬ schrieben durchgeführt. Zusatzlich wurden 4 kg/h HS-Fraktion aus der Hochsiederkolonne (Ic) und 10 kg/h HS aus dem Abgas (16) der Polyab- Scheidung (2) in den Sattiger (6) überfuhrt und dann gemeinsam mit ca. 175 kg/h HCl-Tragergas (11) in den Wirbelschicht-Reaktor (3) ein¬ gespeist. Wie in Beispiel 2 reicherten sich die Oligosiloxane im Roh- silan etwas an.
Pro 1000 kg Rohsilan mussten 1,2 kg HS in der HS-Vernichtung (5) mittels Hydrolyse entsorgt werden.

Claims

Patentansprüche :
1. Verfahren zur Herstellung von Trichlorsilan durch Umsetzung von metallurgischem Silicium und HCl in einem Wirbelschichtreaktor bei einer Temperatur von 290°C bis 400°C, welches dadurch gekennzeichnet ist, dass eine hochsiedende Verbindung in den Wirbelschichtre¬ aktor eingespeist wird.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die hoch- siedende Verbindung eine Verbindung ist, welche aus Silicium,
Chlor, ggf. Wasserstoff, Sauerstoff und Kohlenstoff besteht und einen höheren Siedepunkt als Tetrachlorsilan (57°C/bei 1013 hPa) aufweist .
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die hoch¬ siedende Verbindung ein Disilan der Formel HnCl6-I1Si2 (n= 0 - 4) oder ein höheres Oligo (chlor) silan vorzugsweise mit 2 bis 4 Si A- tomen oder ein Disiloxan HnCl6-HSi2O (n= 0 - 4) oder ein höheres Siloxan vorzugsweise mit 2 bis 4 Si Atomen einschließlich zykli- scher Oligosiloxane oder ein Methylderivat der genannten Verbindungen ist.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hochsiedende Verbindung aus den Abgasen die bei der Herstellung von polykristallinem Silicium stammt.
5. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hochsiedende Verbindung aus den Abgasen, die bei der Herstellung von Trichlorsilan in einem Wirbelschichtreaktor ent- stehen, stammt.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass 50 - 99 Gew.% der hochsiedenden Verbindung aus der Hochsiederdestillation in den Wirbelschichtreaktor zuruckgeleitet werden und 1 - 50 Gew.% der hochsiedenden Verbindung aus der Hochsiederdestillation der Hochsieder-Vernichtung zugeführt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Einspeisung der hochsiedenden Verbindung in den Wirbelschichtreaktor über einen Sattiger erfolgt.
PCT/EP2007/051664 2006-03-03 2007-02-21 Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes WO2007101789A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/281,550 US8557210B2 (en) 2006-03-03 2007-02-21 Recycling of high-boiling compounds within an integrated chlorosilane system
CN2007800040064A CN101378990B (zh) 2006-03-03 2007-02-21 在综合氯硅烷设备中回收高沸点化合物
DE502007006026T DE502007006026D1 (de) 2006-03-03 2007-02-21 Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes
JP2008557711A JP5101532B2 (ja) 2006-03-03 2007-02-21 クロロシランコンビナート内での高沸点化合物の再利用
EP07712268.7A EP1991501B2 (de) 2006-03-03 2007-02-21 Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes
ES07712268T ES2358614T5 (es) 2006-03-03 2007-02-21 Reciclamiento de compuestos que hierven a altas temperaturas dentro de un conjunto de tratamiento de clorosilanos
AT07712268T ATE492513T1 (de) 2006-03-03 2007-02-21 Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006009954A DE102006009954A1 (de) 2006-03-03 2006-03-03 Wiederverwertung von hochsiedenden Verbindungen innerhalb eines Chlorsilanverbundes
DE102006009954.0 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007101789A1 true WO2007101789A1 (de) 2007-09-13

Family

ID=37909332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051664 WO2007101789A1 (de) 2006-03-03 2007-02-21 Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes

Country Status (9)

Country Link
US (1) US8557210B2 (de)
EP (1) EP1991501B2 (de)
JP (1) JP5101532B2 (de)
KR (1) KR101037641B1 (de)
CN (1) CN101378990B (de)
AT (1) ATE492513T1 (de)
DE (2) DE102006009954A1 (de)
ES (1) ES2358614T5 (de)
WO (1) WO2007101789A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227577A (ja) * 2008-02-29 2009-10-08 Mitsubishi Materials Corp トリクロロシランの製造方法および製造装置
WO2010065287A1 (en) * 2008-12-03 2010-06-10 Dow Corning Corporation Process for producing trichlorosilane and tetrachlorosilane
KR101077003B1 (ko) 2008-01-14 2011-10-26 와커 헤미 아게 다결정질 규소의 증착 방법
DE102011082662A1 (de) 2011-09-14 2013-03-14 Evonik Degussa Gmbh Verwertung niedrigsiedender Verbindungen in Chlorsilan-Prozessen
CN107074562A (zh) * 2014-09-25 2017-08-18 电化株式会社 五氯乙硅烷的制造方法以及采用该方法制造的五氯乙硅烷
US11845667B2 (en) 2018-04-18 2023-12-19 Wacker Chemie Ag Method for producing chlorosilanes

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG174957A1 (en) * 2009-03-30 2011-11-28 Denki Kagaku Kogyo Kk Method for collection of hexachlorodisilane and plant for the method
JP5482265B2 (ja) * 2009-12-15 2014-05-07 三菱マテリアル株式会社 トリクロロシラン製造装置
DE102010043649A1 (de) 2010-11-09 2012-05-10 Evonik Degussa Gmbh Verfahren zur Spaltung höherer Silane
CN102287616B (zh) * 2011-02-17 2013-06-12 四川新光硅业科技有限责任公司 一种储存和循环回收氯硅烷的装置及工艺
DE102011110040B4 (de) * 2011-04-14 2024-07-11 Evonik Operations Gmbh Verfahren zur Herstellung von Chlorsilanen mittels hochsiedender Chlorsilane oder chlorsilanhaltiger Gemische
DE102012103755A1 (de) 2012-04-27 2013-10-31 Centrotherm Sitec Gmbh Verfahren zur Synthese von Trichlorsilan und Vorrichtung zur Durchführung dieses Verfahrens
DE102012216356A1 (de) 2012-09-14 2014-03-20 Evonik Industries Ag Verfahren zur Herstellung von Chlorsilanen mittels hochsiedender Chlorsilane oder chlorsilanhaltiger Gemische
DE102013212908A1 (de) * 2013-07-02 2015-01-08 Wacker Chemie Ag Analyse der Zusammensetzung eines Gases oder eines Gasstromes in einem chemischen Reaktor und ein Verfahren zur Herstellung von Chlorsilanen in einem Wirbelschichtreaktor
KR102096577B1 (ko) 2016-12-29 2020-04-02 한화솔루션 주식회사 폴리실리콘 제조 장치
CN113087735A (zh) * 2019-12-23 2021-07-09 新疆新特晶体硅高科技有限公司 一种氯硅烷渣浆液回收再利用的方法及其生产系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311650A1 (de) * 1982-03-31 1983-10-13 Union Carbide Corp., 06817 Danbury, Conn. Verfahren zur herstellung von hoch reinem silan sowie hoch reinem polykristallinem und einkristallinem silicium fuer solarzellen und halbleiter
DE3503262A1 (de) * 1985-01-31 1986-08-07 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zum aufarbeiten von bei der siliciumherstellung anfallenden halogensilangemischen
DE3709577A1 (de) * 1986-03-26 1987-10-01 Union Carbide Corp Behandlungsverfahren fuer abfaelle bei der herstellung von hochreinem silicium
EP0921098A1 (de) * 1997-11-10 1999-06-09 MEMC Electronic Materials, Inc. Geschlossener Kreisprozess für die Herstellung von polykristallinem Silicium und pyrogenem Siliciumdioxid
EP1249453A1 (de) * 2001-04-12 2002-10-16 Wacker-Chemie GmbH Staubrückführung bei der Direktsynthese von Chlor-und Methylchlorsilan in Wirbelschicht
EP1262483A1 (de) * 2001-05-31 2002-12-04 Wacker-Chemie GmbH Verfahren zur Herstellung von Silanen
EP1586537A1 (de) * 2004-04-08 2005-10-19 Wacker-Chemie GmbH Verfahren zur Herstellung von Trichlormonosilan

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540861A (en) * 1968-02-07 1970-11-17 Union Carbide Corp Purification of silicon compounds
US3863577A (en) * 1971-11-22 1975-02-04 Dorr Oliver Inc Fluidized bed reactor
DE2457029C2 (de) * 1974-12-03 1982-09-23 Uhde Gmbh, 4600 Dortmund Verfahren zur Aufheizung eines Wirbelbettes eines thermischen Reaktionsofens
DE2623290A1 (de) * 1976-05-25 1977-12-08 Wacker Chemitronic Verfahren zur herstellung von trichlorsilan und/oder siliciumtetrachlorid
DE2630542C3 (de) 1976-07-07 1981-04-02 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Trichlorsilan und Siliciumtetrahlorid
US4079071A (en) * 1977-03-28 1978-03-14 Union Carbide Corporation Synthesis of hydrosilanes from methylchloropolysilanes
DE2820617A1 (de) * 1978-05-11 1979-11-22 Wacker Chemitronic Verfahren zum aufarbeiten hydrolysierbarer und/oder wasserloeslicher verbindungen und bevorzugte anwendung
DE3024319C2 (de) 1980-06-27 1983-07-21 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Kontinuierliches Verfahren zur Herstellung von Trichlorsilan
US4374110A (en) * 1981-06-15 1983-02-15 Motorola, Inc. Purification of silicon source materials
DE3303903A1 (de) * 1982-02-16 1983-08-25 General Electric Co., Schenectady, N.Y. Verfahren zum herstellen von trichlorsilan aus silizium
JPS5935017A (ja) * 1982-08-23 1984-02-25 Denki Kagaku Kogyo Kk 三塩化シランの製法
US4690810A (en) * 1986-03-26 1987-09-01 Union Carbide Corporation Disposal process for contaminated chlorosilanes
DE3615509A1 (de) 1986-05-07 1987-11-12 Dynamit Nobel Ag Verfahren zur spaltung von chlorsiloxanen
JPS63222011A (ja) 1987-03-11 1988-09-14 Mitsubishi Metal Corp 多結晶シリコンの製造方法
JPH0791049B2 (ja) 1988-01-21 1995-10-04 大阪チタニウム製造株式会社 多結晶シリコンの製造におけるポリマーのトリクロロシラン転化方法
DE3941825A1 (de) * 1989-12-19 1991-06-20 Huels Chemische Werke Ag Verfahren zur abwasserfreien aufarbeitung von rueckstaenden einer chlorsilandestillation mit calciumcarbonat
TW223109B (de) * 1991-09-17 1994-05-01 Huels Chemische Werke Ag
DE4322804A1 (de) 1993-07-08 1995-01-12 Wacker Chemie Gmbh Verfahren zur Herstellung von hochdisperser Kieselsäure und Vorrichtung zur Durchführung des Verfahrens
US6090360A (en) * 1995-02-15 2000-07-18 Dow Corning Corporation Method for recovering particulate silicon from a by-product stream
JP3853894B2 (ja) 1996-01-23 2006-12-06 株式会社トクヤマ 塩化水素の減少した混合物の製造方法
EP1264798B1 (de) 2000-08-02 2016-08-31 Mitsubishi Materials Corporation Verfahren zur herstellung von disiliciumhexachlorid
DE10039172C1 (de) * 2000-08-10 2001-09-13 Wacker Chemie Gmbh Verfahren zum Aufarbeiten von Rückständen der Direktsynthese von Organochlorsilanen
US20020187096A1 (en) * 2001-06-08 2002-12-12 Kendig James Edward Process for preparation of polycrystalline silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311650A1 (de) * 1982-03-31 1983-10-13 Union Carbide Corp., 06817 Danbury, Conn. Verfahren zur herstellung von hoch reinem silan sowie hoch reinem polykristallinem und einkristallinem silicium fuer solarzellen und halbleiter
DE3503262A1 (de) * 1985-01-31 1986-08-07 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zum aufarbeiten von bei der siliciumherstellung anfallenden halogensilangemischen
DE3709577A1 (de) * 1986-03-26 1987-10-01 Union Carbide Corp Behandlungsverfahren fuer abfaelle bei der herstellung von hochreinem silicium
EP0921098A1 (de) * 1997-11-10 1999-06-09 MEMC Electronic Materials, Inc. Geschlossener Kreisprozess für die Herstellung von polykristallinem Silicium und pyrogenem Siliciumdioxid
EP1249453A1 (de) * 2001-04-12 2002-10-16 Wacker-Chemie GmbH Staubrückführung bei der Direktsynthese von Chlor-und Methylchlorsilan in Wirbelschicht
EP1262483A1 (de) * 2001-05-31 2002-12-04 Wacker-Chemie GmbH Verfahren zur Herstellung von Silanen
EP1586537A1 (de) * 2004-04-08 2005-10-19 Wacker-Chemie GmbH Verfahren zur Herstellung von Trichlormonosilan

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077003B1 (ko) 2008-01-14 2011-10-26 와커 헤미 아게 다결정질 규소의 증착 방법
JP2009227577A (ja) * 2008-02-29 2009-10-08 Mitsubishi Materials Corp トリクロロシランの製造方法および製造装置
WO2010065287A1 (en) * 2008-12-03 2010-06-10 Dow Corning Corporation Process for producing trichlorosilane and tetrachlorosilane
CN102232080A (zh) * 2008-12-03 2011-11-02 陶氏康宁公司 三氯硅烷及四氯硅烷的生产工艺
RU2499801C2 (ru) * 2008-12-03 2013-11-27 Доу Корнинг Корпорейшн Способ получения трихлорсилана и тетрахлорсилана
TWI466827B (zh) * 2008-12-03 2015-01-01 Dow Corning 產製三氯矽烷及四氯矽烷之方法
DE102011082662A1 (de) 2011-09-14 2013-03-14 Evonik Degussa Gmbh Verwertung niedrigsiedender Verbindungen in Chlorsilan-Prozessen
WO2013037639A1 (de) 2011-09-14 2013-03-21 Evonik Degussa Gmbh Verwertung niedrigsiedender verbindungen in chlorsilan-prozessen
CN107074562A (zh) * 2014-09-25 2017-08-18 电化株式会社 五氯乙硅烷的制造方法以及采用该方法制造的五氯乙硅烷
CN107074562B (zh) * 2014-09-25 2019-07-09 电化株式会社 五氯乙硅烷的制造方法以及采用该方法制造的五氯乙硅烷
US11845667B2 (en) 2018-04-18 2023-12-19 Wacker Chemie Ag Method for producing chlorosilanes

Also Published As

Publication number Publication date
CN101378990B (zh) 2012-07-11
CN101378990A (zh) 2009-03-04
EP1991501B2 (de) 2016-02-17
US8557210B2 (en) 2013-10-15
KR101037641B1 (ko) 2011-05-30
JP2009528252A (ja) 2009-08-06
ES2358614T5 (es) 2016-05-19
KR20080083347A (ko) 2008-09-17
ATE492513T1 (de) 2011-01-15
JP5101532B2 (ja) 2012-12-19
DE102006009954A1 (de) 2007-09-06
DE502007006026D1 (de) 2011-02-03
US20090016947A1 (en) 2009-01-15
EP1991501A1 (de) 2008-11-19
EP1991501B1 (de) 2010-12-22
ES2358614T3 (es) 2011-05-12

Similar Documents

Publication Publication Date Title
EP1991501B2 (de) Wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes
EP2294006B1 (de) Verfahren zur entfernung von bor enthaltenden verunreinigungen aus halogensilanen sowie anlage zur durchführung des verfahrens
EP2078695B1 (de) Verfahren zur Abscheidung von polykristallinem Silicium
US20020187096A1 (en) Process for preparation of polycrystalline silicon
EP1991502B1 (de) Verfahren zur wiederverwertung von hochsiedenden verbindungen innerhalb eines chlorsilanverbundes
US9089788B2 (en) Process for purifying chlorosilanes by distillation
WO2016198264A1 (de) Verfahren zur aufarbeitung von mit kohlenstoffverbindungen verunreinigten chlorsilanen oder chlorsilangemischen
DE102008004396A1 (de) Anlage und Verfahren zur Verminderung des Gehaltes von Elementen, wie Bor, in Halogensilanen
EP1179534B1 (de) Verfahren zum Aufarbeiten von Rückständen der Direktsynthese von Organochlorsilanen
EP1505070B1 (de) Verfahren zur Herstellung von Chlorsilanen
DE102011110040B4 (de) Verfahren zur Herstellung von Chlorsilanen mittels hochsiedender Chlorsilane oder chlorsilanhaltiger Gemische
EP2895425A1 (de) Verfahren zur herstellung von chlorsilanen mittels hochsiedender chlorsilane oder chlorsilanhaltiger gemische
WO2021164876A1 (de) Verfahren zur gewinnung von hexachlordisilan durch umsetzung von mindestens einem teilhydrierten chlordisilan an einem festen, unfunktionalisierten adsorber
WO2020114609A1 (de) Verfahren zur verminderung des gehalts an borverbindungen in halogensilan enthaltenden zusammensetzung
DE102011082662A1 (de) Verwertung niedrigsiedender Verbindungen in Chlorsilan-Prozessen
WO2009141062A2 (de) Herstellung und verwendung von feinteiligem silizium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780004006.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087019022

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007712268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008557711

Country of ref document: JP

Ref document number: 12281550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE