WO2007094240A1 - 導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池 - Google Patents

導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池 Download PDF

Info

Publication number
WO2007094240A1
WO2007094240A1 PCT/JP2007/052262 JP2007052262W WO2007094240A1 WO 2007094240 A1 WO2007094240 A1 WO 2007094240A1 JP 2007052262 W JP2007052262 W JP 2007052262W WO 2007094240 A1 WO2007094240 A1 WO 2007094240A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive composite
particles
composite particles
particle
carbon layer
Prior art date
Application number
PCT/JP2007/052262
Other languages
English (en)
French (fr)
Inventor
Masahiro Deguchi
Mitsuru Hashimoto
Toyokazu Ozaki
Akira Taomoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2008500464A priority Critical patent/JP4208034B2/ja
Publication of WO2007094240A1 publication Critical patent/WO2007094240A1/ja
Priority to US12/050,637 priority patent/US20080166474A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to conductive composite particles used as an active material capable of charging / discharging lithium (Li), and in particular, the particle surface layer is a carbon having a fibrous structure and a porous structure containing metal fine particles.
  • the present invention relates to conductive composite particles composed of layers.
  • the electrode plate using the conductive composite particles of the present invention is suitable for constituting a lithium ion secondary battery or a capacitor having good initial charge / discharge characteristics and little cycle deterioration.
  • a negative electrode active material having a high theoretical capacity density For example, silicon (Si), tin (Sn), germanium (Ge), and oxide materials thereof that can be alloyed with lithium are expected. In general, however, these materials have the disadvantage of increasing the internal resistance of the battery because of their low electronic conductivity.
  • conductive materials such as silver and other fine metal powders, fine graphite powder, and carbon black (CB) are added as conductive materials, and the surface of the low-electron conductive material is covered with a conductive material. By forming the film, the electron conductivity is secured and the internal resistance of the battery is reduced.
  • Patent Documents 1 to 3 discloses that after forming Ni particles or Co particles on graphite as a negative electrode active material, carbon fibers are grown by vapor phase synthesis using the particles as a catalyst. Furthermore, a method of once growing a vapor-phase synthetic carbon fiber after forming an amorphous film by coating a graphite surface with a polymer (polyvinyl alcohol) as an amorphous carbon precursor and heating it is also disclosed.
  • the negative electrode active material studied as an alternative to a carbon material typified by graphite is poor in conductivity, and a lithium ion secondary battery in the case where a single negative electrode is formed is a charge / discharge battery.
  • the characteristics are not sufficient. Therefore, the problem is solved by adding a conductive material or coating the surface of the active material with a conductive material (for example, a carbon film).
  • a conductive material for example, a carbon film.
  • the electron conduction network formed of a conductive material or the like gradually develops due to the expansion and contraction of the active material accompanying the lithium alloying reaction and lithium desorption reaction that occur in the charge / discharge cycle.
  • the battery was disconnected and the internal resistance value of the battery increased, there was a problem. In other words, there was a problem that it was difficult to realize satisfactory cycle characteristics of a lithium ion secondary battery.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-196064
  • Patent Document 2 JP 2004-220910 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-349056
  • the present invention solves the above-described problems, and improves the conductivity of active material particles used in negative electrodes such as lithium ion secondary batteries, and realizes charge / discharge characteristics with little cycle deterioration.
  • the present invention provides easily and highly productive conductive composite particles, electrode plates using the same, and lithium-ion secondary batteries.
  • the method for producing conductive composite particles of the present invention includes lithium
  • a first step of preparing a polymer material containing a metal element constituting a fine particle dispersed in a carbon layer, and a metal element In the second step of coating the particle surface with the polymer material containing the polymer material, and by heating the particles coated with the polymer containing the metal element in an inert atmosphere to carbonize the polymer material, And a third step of forming a carbon layer comprising a porous structure including a fibrous structure as a surface layer portion.
  • the second method for producing a conductive composite particle of the present invention is a region in which lithium (Li) can be electrochemically inserted and desorbed.
  • the polymer material in the second step of coating the surface of the polymer material with the polymer material, and by heating the carbon material-coated particle in an inert gas atmosphere to carbonize the polymer material, the polymer material can be used as a surface layer portion. Porous structure with fibrous structure And a third step of forming a carbon layer.
  • the conductive composite particles obtained by the above-described production method are porous carbon containing a fibrous structure in which electrochemically active particles and fine particles containing a metal element bonded to the surface thereof are dispersed. It is composed of layers, but may contain other elements as long as the function of the conductive composite particles is not impaired. Examples of other elements include conductive polymers.
  • the junction between the core particle and the carbon layer covered by the surface layer may be the entire surface of the particle surface or a part thereof. Also, the junction structure may be through a carbon region in the carbon layer or through fine particles containing a metal element. In any case, it is sufficient if the core particles and the carbon layer on the surface layer are firmly connected rather than simply contacted, and that the electrical connection between the particles and the carbon layer is sufficiently secured.
  • the carbon layer constituting the outermost surface of the conductive composite particles obtained by this production method is preferably carbon that also has a fibrous structural force. That is, the structure of the porous carbon layer including the fibrous structure formed on the core particle surface may be entirely uniform, but in particular, the fibrous carbon layer toward the surface layer direction of the conductive composite particles. It is preferable that the ratio of is increased.
  • the fibrous carbon used in the present invention may be any fibrous carbon that is flexible to some extent with respect to shape change and has conductivity.
  • Eight laminates, the so-called Herring 'bone type is a force that is suitable in terms of manufacturing power and the like.
  • each fibrous carbon used in the present invention has a fiber length of about 5 nm to about 100 m and a fiber diameter of about 1 nm to 50 nm.
  • the particles described above are either a simple substance, a compound, or a mixture thereof containing at least one element selected from silicon (Si), tin (Sn), and germanium (Ge) force. It is preferable that In particular, the compounds that make up the particles It is preferably any of oxide, nitride, oxynitride, and carbide.
  • particles made of Si alone, particles made of oxidized S, particles containing Si as a main component, and Si, Sn, and Ge contain trace amounts of oxygen, nitrogen, and carbon components. This includes, but is not limited to, particles.
  • the particles may be crystalline or amorphous alone, or may be a mixture or a crystalline-amorphous mixture and an amorphous / amorphous mixture that can aggregate microcrystalline layers.
  • the film thickness of the polymer material is preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • the polymer layer formed on the particle surface is partly pyrolyzed by heat treatment and carbonized in the process, thereby changing to a porous carbon layer including a fibrous structure. Since the thickness of the carbon layer depends on the thickness of the polymer material, the thickness of the polymer material may be appropriately selected depending on the thickness of the carbon layer to be obtained.
  • the value is generally 0.05 m or more and 10 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.5 m or less, and further preferably.
  • the polymer layer covering the particle surface has a suitable film thickness as described above in the process of carbonization during the heat treatment, the electron conductive property It has been found that it is easy to form a carbon layer composed of a porous structure including a fibrous structure suitable for network formation, and finally, in order to obtain conductive composite particles having a greater effect, A polymer layer thickness selected from the above range is preferred.
  • the polymer material is preferably an aromatic polyimide.
  • a polyimide material having a thermal decomposition temperature power in the range of 00 ° C to 600 ° C is preferable.
  • a carbon layer having desired characteristics can be easily formed on the particle surface.
  • iron (Fe), cobalt (Co), nickel (Ni), and manganese (Mn) forces are also selected as metal elements added to the polymer material or supported on the particle surface. It is preferable that one or more of them be included. In particular, nickel is preferable.
  • a force that depends on the polymer material to be used for example, a method of dispersing predetermined metal fine particles in a polymer, or a monomer (molecule) bonded with a metal element itself
  • a method for polymerizing a compound a method for dissolving a compound having a predetermined metal element in a solution polymer precursor, and further polymerizing the compound.
  • a simpler and more effective method is a method in which a predetermined metal compound is added and dissolved in the solution polymer precursor described at the end.
  • the metal element can be added to the polymer in a homogeneous dispersion state.
  • a metal compound added to the solution polymer for example, a nitrate of a metal element such as nickel nitrate can be easily used as an additive compound, but is not limited thereto.
  • an aqueous solution of the metal compound or the like is prepared, attached to the particle surface by a method such as coating or spraying, and then dried. It ’s fine.
  • This production method makes it possible to easily form a carbon layer having desired characteristics on the particle surface.
  • the amount of the metal element mixed in the polymer layer is generally about 0.1% or more and 15% or less, more preferably 1% or more and 10% or less with respect to the weight of carbon. This is because if the amount of the metal element is too large, the ratio of the electrochemically active particles as a whole decreases, and if it is too small, the porous carbon layer containing a fibrous structure involved in the formation of an electron conductive network. This is because it is difficult to increase the electrical conductivity of the film. Therefore, the amount of the metal element selected from the above range is suitable for obtaining conductive composite particles that are finally more effective and more conductive.
  • the heating temperature power is not less than 00 ° C and not more than 1000 ° C. In general, a lower firing temperature is preferred, but in order to form a carbon layer having good conductive properties, a heating temperature of a certain level or more is required.
  • a carbon layer suitable for the conductive composite particles is obtained by firing treatment at a heating temperature selected from the range of force 400-1 000 ° C depending on the polymer material used and the type of metal compound to be added. Can be formed.
  • examples of the first process procedure for producing the conductive composite particles of the present invention include (i) a step of dissolving a metal compound in a solution polymer precursor, and (ii) a polymer.
  • Examples of the second process procedure include (i) a step of applying a metal compound aqueous solution to the particle surface and drying, (ii) a step of coating the particle surface with a solution polymer precursor, and (iii) a polymer. It comprises a step of polymerizing the precursor on the particle surface, and (iv) a step of firing the particles coated with the polymer material in an inert gas atmosphere at a heating temperature equal to or higher than the thermal decomposition temperature of the polymer material.
  • the conductive composite particles of the present invention include a core portion composed of particles having a region in which lithium (Li) can be electrochemically inserted and desorbed; It is composed of a surface layer portion composed of a carbon layer bonded to the particle surface, and is a conductive composite particle in which fine particles containing a metal element are dispersed in the carbon layer, and the carbon layer has nitrogen (N) or It consists of a porous structure containing hydrogen (H) and a fibrous structure.
  • nitrogen (N) or water is included in the carbon layer constituting the conductive composite particles.
  • Force containing elemental (H) The content is about 10ppm to 2% of carbon (C).
  • carbon layer containing a small amount of nitrogen in this range.
  • the particles are any of a simple substance, a compound, or a mixture containing at least one element selected from silicon (Si), tin (Sn), and germanium (Ge) forces. It is preferable.
  • the compound constituting the particles is preferably an oxide, nitride, oxynitride, or carbide.
  • particles composed of Si alone, particles that also contain oxidized S, particles that contain Si as a main component, and particles that contain a small amount of oxygen, nitrogen, and carbon components in Si, Sn, and Ge This is not the case.
  • the particles may be crystalline or amorphous alone, or may be a mixture having an aggregate strength of a fine crystalline layer, a crystalline amorphous mixture, or an amorphous-amorphous mixture.
  • the carbon layer constituting the outermost surface of the conductive composite particles is preferably carbon having a fibrous structural force. That is, the structure of the porous carbon layer including the fibrous structure formed on the surface of the core particle may be homogeneous as a whole, but in particular, the fibrous carbon layer is directed toward the surface layer of the conductive composite particles. It is preferable that the ratio increases.
  • the metal element constituting the fine particles dispersed in the carbon layer force Iron (Fe), cobalt (Co), nickel (Ni), manganese (Mn) force One or more selected It is preferable to include.
  • nickel is suitable for forming a porous carbon layer including a fibrous structure constituting the conductive composite particles of the present invention from a polymer material.
  • the fine particles used in the present invention have a diameter of generally about 1 nm or more and 50 nm or less.
  • the electrode plate of the present invention includes a metal thin plate and a conductive material.
  • the lithium ion secondary battery of the present invention includes a lithium ion secondary battery having chargeable / dischargeable positive electrodes, chargeable / dischargeable negative electrodes, and a non-aqueous electrolyte as components.
  • the negative electrode is composed of an electrode including the above-described conductive composite particles that can be obtained by any one of the manufacturing methods described above.
  • the conductive composite particle produced by the production method of the present invention a fibrous structure is formed on the particle surface having a region where lithium (Li) can be inserted and desorbed electrochemically.
  • a conductive carbon layer having a porous structure is included. Therefore, the electrode plate composed of the conductive composite particle aggregate has high electron conductivity, and as a result, a lithium ion secondary battery having excellent initial charge / discharge characteristics can be obtained. Furthermore, even when the battery charge / discharge cycle evaluation is performed by the action of the porous carbon layer including the fibrous structure bonded to the particle surface, the electrochemically active particle carbon layer and the force layer —Electric connection between carbon layers is maintained. Therefore, if the conductive composite particles of the present invention are used, a lithium ion secondary battery having excellent charge / discharge cycle characteristics can be obtained.
  • the nitrogen or hydrogen-containing carbon layer obtained by the production method of the present invention includes not only electronic conductivity but also a function of inserting and desorbing lithium electrochemically. Therefore, it is possible to produce a lithium ion secondary battery with a high capacity as a whole.
  • FIG. 1 is a cross-sectional view conceptually showing the structure of conductive composite particles of the present invention.
  • FIG. 2 is a sectional view conceptually showing the structure of another conductive composite particle of the present invention.
  • FIG. 3 is a sectional view conceptually showing the structure of another conductive composite particle of the present invention.
  • FIG. 4 is a view showing a scanning electron microscope (SEM) image of the surface of the conductive composite particles obtained in Example 1 of the present invention.
  • FIG. 1 is a cross-sectional view conceptually showing the structure of the conductive composite particles in the present invention.
  • the conductive composite particle 10 of the present invention includes a particle (hereinafter referred to as “active material particle”) 11 having a region in which lithium (Li) can be electrochemically inserted and desorbed, and a porous structure 12. And a carbon layer 14 composed of a fiber structure 13 and metal or metal compound fine particles (hereinafter referred to as “metal fine particles”) 15 dispersed in the carbon region.
  • the active material particle 11 may be a granulated body having a plurality of particle forces, but is preferably composed of a single particle. This is because single particles are less likely to collapse due to expansion / contraction of the active material particles during the charge / discharge cycle. Even in the case of a single particle, the average particle size of the active material particles 11 is preferably in the range of 0.5 ⁇ m force to 20 ⁇ m from the viewpoint of suppressing cracking of the particles as much as possible.
  • the fine metal particles 15 dispersed in the carbon layer 14 are not particularly limited as long as they are other than a metal group that forms a stable carbide, for example, titanium (Ti) and tantalum (Ta). Any metal element having an active catalytic activity, particularly iron (Fe), cobalt (Co), or nickel (Ni) force, is particularly preferably used. Usually, the size is about several nm to several tens of nm in diameter.
  • this metal element is roughly divided into two.
  • the active material particles 11 and the carbon layer 14 bonded to the surface thereof are in an electrically connected state. Therefore, since high electron conductivity can be ensured, good charge / discharge characteristics can be obtained. Further, even when the active material particles expand or contract due to the charge / discharge cycle, electrical connection is easily maintained.
  • a method for forming a carbon layer having a porous structure including a fibrous structure on the surface of the active material particles 11 will be described.
  • a method of forming a carbon layer having the above-mentioned structure is prepared by previously mixing a metal compound that exhibits catalytic action with a polymer material that is a carbon layer precursor, and using the polymer material. It is easy to fire the coated particles at a heating temperature equal to or higher than the thermal decomposition temperature of the polymer material.
  • an active material particle whose surface is coated with a polymer material containing a metal element having an appropriate film thickness is placed in an electric furnace and fired at 400 to 1000 ° C. in an inert gas atmosphere.
  • conductive composite particles having a desired structure can be produced.
  • the calcination temperature depends on the polymer material used or the metal compound added. However, when the calcination temperature is 300 ° C or lower, the polymer material is insufficiently carbonized or conversely 1200 ° C. If this is the case, there is a high possibility that the electrochemical function of the active material particles will be impaired. Therefore, as described above, 300 to 1200 ° C, particularly 400 to 1000 ° C, more preferably 500 to 800 ° C. The firing temperature is preferred.
  • the polymer material covering the particle surface is generally applicable as long as it is a material that is carbonized by the catalytic action of a metal element in the temperature range of the firing treatment.
  • a polymer having a relatively low thermal decomposition temperature such as polybulal alcohol, is not suitable because the polymer is thermally decomposed before the catalytic action of the metal element functions.
  • the thermal decomposition temperature of the polymer is too high, the catalyst metal particles aggregate before the carbonization of the polymer material is promoted, and a fibrous carbon layer is formed. Therefore, metal catalyst is efficient
  • Polymers having a thermal decomposition temperature of about 400 to 600 ° C. that act on the surface, particularly polymer materials having an imide structure in a polymer structure such as an aromatic polyimide are preferred.
  • An aromatic polyimide which is an example of a polymer material, can generally be formed by polycondensation of an acid anhydride and diamine.
  • Various polyimide structures can be produced by combining the acid component and the diamine component.
  • acid anhydride components include pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), benzophenone tetracarboxylic dianhydride (BTDA), and diamine components.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • diamine components diamine components.
  • Oxidaniline (ODA) Noraf-Diendamine (PPD), Benzophenone Diamine (BDA), and the like.
  • the carbon layer 14 formed on the surface of the active material particles 11 also has a porous carbon force including fibrous carbon.
  • This porous carbon region is not limited in its amount or porosity as long as it does not affect the characteristics of the 1S battery formed on the surface of the active material particles. However, as a general guideline, it is optimal to cover almost the whole or most of the particle surface.
  • FIG. 2 is a schematic cross-sectional view when porous carbon is formed on a part of the surface of the active material particles. In this case, it is preferable that a fibrous carbon is present in a portion where no porous carbon is present.
  • the electrode plate with the conductive composite particle aggregate so as to cover the entire surface of the active material particles with the fibrous carbon region. It is.
  • any shape such as a tube shape, an accordion shape, a plate shape, a herring bone shape, and an amorphous shape can be applied as long as the conductivity can be secured.
  • FIG. 3 is a schematic cross-sectional view showing a state where the outermost surface of the conductive composite particles is covered with fibrous carbon.
  • the resurface is a fibrous carbon region in constructing an electron conduction network when an electrode plate is formed from a conductive composite particle aggregate.
  • a metal element having a catalytic action that promotes carbonization coexists, it is possible to promote carbonization of the polymer by the action. That is, a carbon layer exhibiting high conductivity can be formed by a baking treatment at a lower heating temperature than a polymer material that does not contain a metal element having a catalytic action.
  • the thermal decomposition temperature range of the polymer material and the temperature range where the metal element is catalytically active are controlled to be substantially the same range, and the polymer layer thickness is set to a suitable range, so that In addition to the promotion, it is possible to simultaneously form the porous layer and the fibrous structure of the carbon layer with the catalyst metal fine particle as a starting point. Therefore, in order to form the conductive composite particles of this configuration, a polymer that thermally decomposes at 400 to 600 ° C. is suitable as described above, and a polymer material having a low thermal decomposition temperature is porous with a fibrous structure. It is difficult to obtain a quality carbon layer.
  • an electrode plate composed of conductive composite particles will be described.
  • a general electrode plate used for a cylindrical or rectangular non-aqueous electrolyte lithium ion secondary battery can be obtained by processing an electrode plate having an electrode mixture supported on a current collector into a predetermined shape.
  • the electrode mixture usually contains conductive composite particles and a resin binder as constituent components.
  • a conductive material, a thickener and the like can be included as optional components as long as the effects of the present invention are not impaired.
  • fluorine resin such as polyvinylidene fluoride (PVDF), rubbery resin such as styrene butadiene rubber (SBR), rubbery resin containing acrylic acid, acrylonitrile and the like are used.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • conductive material carbon black (CB), acetylene black (AB) or the like is preferably used.
  • thickener carboxymethylcellulose (CMC) or the like is preferably used.
  • the electrode mixture is mixed with a liquid component to form a slurry, and the obtained slurry is coated on both sides of the current collector and dried. After that, the electrode mixture supported on the current collector is removed from the current collector.
  • a desired electrode can be obtained by rolling together and cutting into a predetermined size.
  • the method described here is merely an example, and the electrode may be manufactured by any other method.
  • the type and shape of the electrode are not limited.
  • the conductive composite particles can be used as the electrode of a coin-type battery.
  • a lithium ion secondary battery using an electrode plate composed of conductive composite particles will be described.
  • An electrode group is configured by using the electrode plate manufactured by the method as described above, a counter electrode, and a separator.
  • the force with which a microporous film made of polyolefin resin is preferably used for the separator is not limited to this.
  • the electrode group is accommodated in the battery case together with the non-aqueous electrolyte.
  • a nonaqueous solvent in which a lithium salt is dissolved is used for the nonaqueous electrolyte.
  • the lithium salt is not particularly limited, but for example, LiPF6, LiBF4, etc. are preferably used.
  • the non-aqueous solvent is not particularly limited, but carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethylolate carbonate (DMC), jetinorecarbonate (DEC), and ethylmethyl carbonate (EMC) are preferred. Used.
  • carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethylolate carbonate (DMC), jetinorecarbonate (DEC), and ethylmethyl carbonate (EMC) are preferred. Used.
  • aromatic polyimide as a polymer material for coating active material particles
  • Aromatic polyimide was synthesized using an organic synthesis method generally called a solution method. Specifically, using dimethylacetamide (DMAc) as a solvent, pyromellitic anhydride (PMDA) and 4,4'-diaminodiphenyl ether (ODA) are mixed in an equimolar amount and then reacted to form a 10 wt% polyamic acid solution. (Hereinafter referred to as “PAA solution”). Furthermore, in order to add nickel (Ni) as a catalyst element for carbon layer formation to the polymer material, nickel nitrate hexahydrate (Ni (NO))
  • Si particles were mixed with the Ni-added PAA solution (Ni—PAA solution), and the magnetic After stirring with a tic stirrer, the particle-mixed solution was transferred to a petri dish, placed in a vacuum dryer evacuated by a rotary pump, dried and heated to imidize PAA.
  • the average particle size of the Si particles used is ⁇ 5 ⁇ m.
  • the obtained sheet-like sample was lightly ground in a glass mortar to obtain a powder shape.
  • Si particles whose surface was coated with a Ni-added polyimide film (Ni-PI film) were obtained.
  • the film thickness of the polyimide film coated on the Si particle surface was approximately 0.3-0.
  • the carbon particles are placed in an electric furnace and baked at 1000 ° C for 1 hour in an argon (Ar) gas atmosphere.
  • the imide film was carbonized.
  • a porous carbon layer is formed on the surface of the Si particles, and a fibrous carbon layer having a fiber diameter of several tens to several lOOnm and a fiber length of several / zm is formed so as to cover the porous carbon layer. Been formed.
  • the amount of the carbon layer formed was 40 parts by weight per 100 parts by weight of the active material particles. Further, as a result of the composition analysis of the obtained carbon layer, trace amounts (1% or less) of nitrogen and hydrogen were contained in the carbon layer.
  • the nickel nitrate contained in the polyimide layer was thermally decomposed during the firing process, and was scattered as reduced Ni particles in the porous layer and the fiber layer.
  • the particle size is several tens to several hundreds ⁇ m.
  • Fig. 4 shows a scanning electron microscope (SEM) photograph of the fabricated conductive composite particles.
  • the conductive composite particles produced by the above-described method were used as the electrode material A1 of the nonaqueous electrolyte secondary battery.
  • Example 2 The same operation as in Example 1 was performed except that cobalt nitrate hexahydrate was contained instead of nickel nitrate hexahydrate in the polyimide layer.
  • Electrode material B1 for the nonaqueous electrolyte secondary battery.
  • a solution in which nickel nitrate hexahydrate was dissolved in ion-exchanged water was prepared.
  • Nickel nitrate six The concentration of hydrate was 1 part by weight per 100 parts by weight of ion-exchanged water.
  • the Si particles used in Example 1 were mixed in this nitric acid-packet solution, stirred for 1 hour, and then the water was removed by an evaporator device, thereby supporting nickel nitrate on the surface of the Si particles.
  • the Si particles carrying nickel nitrate were mixed with a PAA solution, stirred with a magnetic stirrer, and then the solution mixed with the particles was transferred to a petri dish, which was evacuated by a rotary pump and vacuum dried.
  • PAA was imidized by placing it in the machine, drying it, and heating it. After completion of the imidation, the obtained sheet-shaped sample was lightly ground in a glass mortar to obtain a powder shape. As a result, nickel nitrate-supported Si particles whose surface was coated with polyimide were obtained.
  • the PAA solution prepared in the same manner as in Example 1 was mixed with Ni fine particles having an average particle size of lOnm, and the solution with Si fine particles added was stirred with a magnetic stirrer, and then the particles mixed solution
  • the PAA was transferred to a petri dish, placed in a vacuum dryer evacuated by a rotary pump, dried and heated to imidize PAA. After completion of imidization, the produced sheet-like sample was lightly ground in a glass mortar to obtain a powder shape. As a result, Si particles whose surface was coated with polyimide in which Ni fine particles were dispersed were produced.
  • Example 2 The same operation as in Example 1 was performed, except that the thickness of the polymer layer covering the Si particles was reduced (film thickness: ⁇ 0.1 m). As a result, Si particles having a smaller carbon layer formation than Example 1 were formed. In particular, the length of the fibrous carbon contained in the carbon layer was shorter than that in Example 1. This is the electrode material E1 for nonaqueous electrolyte secondary batteries. It was.
  • Example 1 The same operation as in Example 1 was performed except that the thickness of the polymer layer covering the Si particles was increased (film thickness: ⁇ 2 m). As a result, Si particles having a larger amount of carbon layer formed than in Example 1 were formed. However, the proportion of fibrous carbon contained in the carbon layer was smaller than that in Example 1. This was designated as electrode material F1 for nonaqueous electrolyte secondary batteries.
  • Example 1 The same operation as in Example 1 was carried out except that the treatment temperature when heating and baking the Si particles surface-coated with the nickel nitrate-added polyimide was 800 ° C. As a result, Si particles covered with porous and fibrous carbon layers substantially the same as in Example 1 were formed. This was designated as electrode material G1 for non-aqueous electrolyte secondary batteries.
  • Example 2 The same operation as in Example 1 was carried out except that the treatment temperature when heat-firing the Si particles surface-coated with the nickel nitrate-added polyimide was changed to 600 ° C. As a result, Si particles were formed in which the amount of fibrous carbon layer formed was slightly smaller than in Example 1. This was designated as the electrode material HI of the non-aqueous electrolyte secondary battery.
  • a solution was prepared by adding nickel nitrate hexahydrate to polyacrylo-tolyl. After mixing and stirring Si particles in this solution, the solvent component was removed in a vacuum drying furnace to obtain Si particles whose surface was coated with nickel nitrate-added polyatari mouth-tolyl. The particles were calcined at 800 ° C. for 1 hour in an argon atmosphere.
  • Example 2 The same operation as in Example 1 was performed, except that the Si particles whose surface was coated with polyimide to which nickel nitrate was not added were calcined. As a result, the progress of carbon dioxide compared to Example 1 Si particles covered with an amorphous carbon film, in which the formation of a porous layer and a fibrous layer with a small degree of formation could hardly be confirmed, were formed. This was used as the electrode material al for non-aqueous electrolyte secondary batteries.
  • Example 2 The same operation as in Example 1 was performed, except that the treatment temperature at the time of firing the Si particles surface-coated with the nickel nitrate-added polyimide was changed to 300 ° C. As a result, Si particles were formed in which the polymer layer was almost carbony and had a large size. This was designated as the electrode material bl for non-aqueous electrolyte secondary batteries.
  • Dry mix of 100 parts by weight of Si particles and 10 parts by weight of acetylene black (AB) as a conductive material dry mix of 100 parts by weight of Si particles and 10 parts by weight of acetylene black (AB) as a conductive material.
  • Electrode materials obtained in Examples 1 to 9 and Comparative Examples 1 to 4 a binder composed of vinylidene fluoride resin (PVDF) and N-methyl 2-pyrrolidone (NMP) were mixed. Thus, a mixture slurry was prepared. The slurry was cast on a copper foil (Cu foil) having a thickness of 15 m, and after drying, the mixture was rolled to produce an electrode plate. The mixture density of this electrode plate was 0.8 to 1.4 g / cm (?
  • This electrode plate was sufficiently dried in an oven at 80 ° C. to produce a working electrode.
  • a coin-type lithium ion battery regulated by the working electrode was fabricated.
  • LiPF was dissolved in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and jetyl carbonate (DE C) at a concentration of 1.
  • OM molZL
  • the initial charge capacity was at a charge / discharge rate of 0.05C.
  • the amount and initial discharge capacity were measured, and the initial discharge capacity and charge / discharge efficiency per active material weight (initial discharge capacity Z initial charge capacity) were determined.
  • the discharge capacity ratio when 50 cycles of charge / discharge were repeated at the same charge / discharge rate was calculated as the cycle efficiency (discharge capacity Z after 50 cycles). Initial discharge capacity))). The results are shown in Table 1.
  • PAN Polyacrylonitrile AB: Acetylene black
  • Comparative Example 1 fibrous and porous carbon layers are formed on the particle surface. From this, the electronic conduction between the active material particles is accompanied by the expansion and contraction of the active material due to charge and discharge. Sex This is probably because the network was cut. As a result, it is considered that a large difference in cycle characteristics occurred.
  • the battery for evaluation using the electrode material bl of Comparative Example 2 had a complete function as a battery because the firing temperature was lower than the predetermined heating temperature! This is presumably because the polymer layer covering the active material particle surface is carbonized and thus lacks electrical conductivity.
  • the discharge capacity and the charge / discharge efficiency were decreased. This is considered to be because the ratio of the active material particles was relatively reduced as compared with Example 1 due to the large amount of particles covered.
  • the proportion of fibrous carbon was smaller than that in Example 1, the electronic conductive network between the active material particles was more likely to be cut than in Example 1 due to the expansion and contraction of the active material due to charge and discharge. Conceivable.
  • Example 7 the electrode material G1 of Example 7 in which the firing temperature was slightly lowered exhibited substantially the same level of characteristics as Example 1. This is presumably because it was included in the heating temperature range where a desired carbon layer structure can be formed.
  • Example 9 In the electrode material II of Example 9 in which the polymer material was changed, each characteristic was observed to be reduced as compared with Example 1. This is because the formation amount of carbon layer, the formation amount of fibrous carbon, and the conductivity are smaller than in Example 1, so that the development of the fibrous carbon layer becomes insufficient, and the active material expands and contracts due to charge and discharge. This is probably because the electron conductive network between the active material particles is more easily cut than in Example 1.
  • a negative electrode plate was produced using the electrode material A1 produced in Example 1, and Li corresponding to the irreversible capacity was applied to the negative electrode plate by resistance heating vapor deposition.
  • LiNi Co Al O particles which are positive electrode active materials, and polyvinyl fluoride
  • a positive electrode mixture slurry was prepared by mixing 10 parts by weight of a binding agent that also became a Yudenka, 5 parts by weight of carbon black, and an appropriate amount of N-methyl-2-pyrrolidone. This slurry was cast on an Al plate having a thickness of 15 m, and after drying, the positive electrode mixture was rolled to form a positive electrode mixture layer to obtain a positive electrode plate.
  • a coin-type lithium ion battery was produced using the positive electrode plate and the negative electrode plate obtained by the method described above, and evaluated in the same manner as in Example 1.
  • resistance heating vapor deposition was used as a method for adding Li to the negative electrode.
  • the present invention is not limited to this.
  • the battery is assembled or the battery container is filled. Li powder may be introduced into the.
  • the conductive composite particles according to the present invention can be applied to all active material particles used for electrodes of electrochemical devices.
  • it is useful as an electrode material for lithium ion secondary batteries and capacitors having excellent initial charge / discharge characteristics and stable cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Non-Insulated Conductors (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 導電性複合粒子の製造方法では、リチウムを電気化学的に挿入・脱離することが可能な領域を有する活物質粒子と、この粒子表面に接合されたカーボン層とで構成され、カーボン層内には金属微粒子が分散している導電性複合粒子を製造する。この方法は次の3つの工程を含む。第1の工程ではカーボン層内に分散している金属微粒子を構成する金属元素を含有したポリマー材料を準備する。第2の工程では金属元素を含有したポリマー材料で活物質粒子表面を被覆する。第3の工程では金属元素を含有したポリマーで被覆された活物質粒子を不活性雰囲気下、加熱してポリマー材料を炭化する処理により、ポリマー材料から表層部分として繊維状構造を含んだ多孔質構造からなるカーボン層を形成する。

Description

明 細 書
導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチ ゥムイオン二次電池
技術分野
[0001] 本発明は、リチウム (Li)を充放電可能な活物質材料等に用いる導電性複合粒子に 関し、特に粒子表層が、金属微粒子を含有した繊維状構造と多孔質状構造からなる カーボン層で構成された導電性複合粒子に関する。本発明の導電性複合粒子を用 いた電極板は、初期充放電特性が良ぐかつサイクル劣化の少ないリチウムイオン二 次電池やキャパシタを構成するのに適している。
背景技術
[0002] 電子機器のポータブル化が進むにつれて、小型、軽量で、かつ高エネルギー密度 を有する非水電解質二次電池に対する要求が厳しくなつている。現在、リチウムィォ ン二次電池の負極活物質としては、一般的に黒鉛などの炭素材料が実用化されて いる。負極活物質として用いられる黒鉛は、理論上、炭素 (C)原子 6個に対してリチ ゥム (Li)原子を 1個挿入することができることから、計算される理論容量密度は 372m AhZgである。し力しながら、実際的には不可逆容量などによる容量ロスなどの結果 、黒鉛を負極材料に用いたリチウムイオン二次電池の放電容量密度は 300〜330m AhZg程度である。
[0003] 故に、より高いエネルギー密度を持つリチウムイオン二次電池を開発するために、 理論容量密度の高い負極活物質を用いることが検討されている。例えば、リチウムと 合金化することが可能なシリコン (Si)、スズ (Sn)、ゲルマニウム (Ge)やそれらの酸 化物材料などが期待されている。し力しながら一般的に、これら材料は電子伝導性が 低いため、電池の内部抵抗が大きくなるといったデメリットを有している。その対策とし て、銀などの金属微粒子ゃ微粒黒鉛粉末、カーボンブラック (CB)などの導電性物質 を導電材として添加することや、電子伝導性の低 ヽ材料表面に導電性材料による被 覆層を形成することで電子伝導性を確保し、電池内部抵抗の低減化が図られて ヽる [0004] また負極活物質間に安定な電子伝導ネットワークを形成し、電池のサイクル特性を 向上させることを目的として、負極活物質粒子の表面にワイヤ状カーボンを気相合成 で成長させる提案もなされている(特許文献 1— 3)。例えば特許文献 1には、負極活 物質である黒鉛に Ni粒子や Co粒子を形成後、その粒子を触媒として気相合成法に より炭素繊維を成長させることが開示されている。さらに一旦黒鉛表面に非晶質炭素 前駆体としてポリマー (ポリビニルアルコール)を被覆し加熱することで非晶質被膜を 形成した後、気相合成炭素繊維を成長させる方法も開示されている。
[0005] 上述の様に、黒鉛に代表される炭素材料の代替品として検討されている負極活物 質は導電性に乏しぐ単独で負極を構成した場合のリチウムイオン二次電池は充放 電特性が充分でない。そのため、導電材を添加したり、活物質表面に導電性材料( 例えば、炭素膜)を被覆したりすることでその課題の解決が図られている。しかし、こ れらの構成の場合、充放電サイクルにおいて発生するリチウム合金化反応、リチウム 脱離反応に伴う活物質の膨張 '収縮により、導電材等で形成された電子伝導ネットヮ ークが徐々に切断されて、電池の内部抵抗値が上昇するといつた課題があった。す なわち、満足できるリチウムイオン二次電池のサイクル特性を実現することが困難で あると ヽつた課題があった。
[0006] またその課題を解決する手段として、繊維状カーボンを気相合成法によって活物 質粒子表面に形成することが提案されているが、製造装置が大規模になったり、生 産性に欠けたりするといつた課題があった。すなわち、満足できるサイクル特性を有 するリチウムイオン二次電池を容易に作製することが困難であると ヽつた課題があつ た。
[0007] 以上の様に、リチウムイオン二次電池の充放電サイクル過程における電極の高抵 抗化現象を回避するためには、サイクル過程に対して安定性の高 ヽ電子伝導ネット ワークを構成する活物質材料を容易に製造する必要があった。
特許文献 1 :特開 2001—196064号公報
特許文献 2:特開 2004 - 220910号公報
特許文献 3:特開 2004 - 349056号公報
発明の開示 [0008] 本発明は、上述の課題を解決するもので、リチウムイオン二次電池等の負極に用い られる活物質粒子の導電性を向上させると共に、サイクル劣化の少な 、充放電特性 を実現することが可能な導電性複合粒子、並びにそれを用いた電極板、リチウムィォ ン二次電池を容易に、生産性高く提供するものである。
[0009] 従来の課題を解決するために、本発明の導電性複合粒子の製造方法は、リチウム
(Li)を電気化学的に挿入'脱離することが可能な領域を有する粒子からなる核部分 と、粒子表面に接合されたカーボン層からなる表層部分で構成され、カーボン層内 には金属元素を含む微粒子が分散している導電性複合粒子の製造方法であって、 カーボン層内に分散して ヽる微粒子を構成する金属元素を含有したポリマー材料を 準備する第 1の工程と、金属元素を含有したポリマー材料で粒子表面を被覆する第 2 の工程と、金属元素を含有したポリマーで被覆された粒子を不活性雰囲気下、加熱 してポリマー材料を炭化する処理により、ポリマー材料カゝら表層部分として繊維状構 造を含んだ多孔質構造カゝらなるカーボン層を形成する第 3の工程とからなる。
[0010] また上述した従来の課題を解決するために、本発明の第 2の導電性複合粒子の製 造方法は、リチウム (Li)を電気化学的に挿入'脱離することが可能な領域を有する粒 子力もなる核部分と、粒子表面に接合されたカーボン層からなる表層部分で構成さ れ、カーボン層内には金属元素を含む微粒子が分散して ヽる導電性複合粒子の製 造方法であって、カーボン層内に分散して!/ヽる微粒子を構成する金属元素を含有し た化合物を粒子表面に担持する第 1の工程と、金属元素を含有した化合物が表面に 担持された粒子表面にポリマー材料を被覆する第 2の工程と、ポリマー材料で被覆さ れた粒子を不活性ガス雰囲気下、加熱してポリマー材料を炭化する処理により、ポリ マー材料カゝら表層部分として繊維状構造を含んだ多孔質構造カゝらなるカーボン層を 形成する第 3の工程とからなる。
[0011] 上述の製造方法によって得られる導電性複合粒子は、電気化学的に活性な粒子と 、その表面に接合された金属元素を含む微粒子が分散した繊維状構造を含んだ多 孔質状カーボン層から構成されるが、導電性複合粒子の機能を損なわな ヽ範囲で、 他の要素を含んでも良い。他の要素としては、例えば導電性ポリマーなどが挙げられ る。 [0012] また核となる粒子とその表層に被覆されるカーボン層との接合部は、粒子表面の全 面でも良いし、一部でも良い。また、その接合部構造も、カーボン層内のカーボン領 域を介しても良いし、金属元素を含む微粒子を介しても良い。いずれにせよ、核とな る粒子と表層のカーボン層が単なる接触ではなく強固に接続し、かつそれによつて粒 子とカーボン層間の電気的な接続が充分にとれて 、れば良!、。
[0013] 本製造方法により、従来よりも優れた充放電特性を有し、かつサイクル劣化の少な Vヽリチウムイオン二次電池電極作製に用いられる導電性複合粒子をより容易に製造 することが可能になる。
[0014] さらに本製造方法によって得られる導電性複合粒子の最表面を構成するカーボン 層は、繊維状構造力もなるカーボンであることが好ましい。すなわち、核となる粒子表 面に形成される繊維状構造を含んだ多孔質状カーボン層の構造は全体的に均質で も良いが、とりわけ、導電性複合粒子の表層方向に向かって繊維状カーボンの割合 が増加して 、ることが好適である。
[0015] 本構成により、導電性複合粒子の集合体により電極板等を作製した際、より安定し た電子伝導ネットワークを形成することが可能になる。
[0016] なお本発明で用いる繊維状カーボンとしては、形状変化に対してある程度柔軟性 があり、かつ導電性を有する繊維状カーボンであれば良い。例えば、チューブ状カー ボン、アコーディオン状カーボン、プレート状カーボン、ヘリング 'ボーン状カーボン、 非晶質状カーボンなどが挙げられるが、とりわけ、繊維軸方向に対して傾いた方向に グラフェン面を有する微小グラフアイトの積層体、いわゆるヘリング 'ボーン型が作製 面等の観点力も好適である力 この限りではない。
[0017] また本発明で用いられるそれぞれの繊維状カーボンの一般的な構造は、繊維長が 概ね 5nm以上、 100 m以下程度、繊維径が概ね lnm以上、 50nm以下である。
[0018] 本構成により、より優れた充放電特性を有するリチウムイオン二次電池電極用導電 性複合粒子を作製することが可能になる。
[0019] さらに本製造方法において、前述の粒子がシリコン(Si)、スズ(Sn)、ゲルマニウム( Ge)力 選択される元素を少なくとも 1種以上含んだ単体、化合物、あるいはそれら の混合物のいずれかであることが好ましい。とりわけ、この粒子を構成する化合物が、 酸化物、窒化物、酸窒化物、炭化物のいずれかであることが好適である。例えば、 Si 単体カゝらなる粒子や酸化 S ゝらなる粒子、あるいは Siを主成分として酸化 Si成分を 含んだ粒子、 Si、 Sn、 Ge中に微量の酸素、窒素、炭素成分が含まれた粒子などが 挙げられるが、この限りではない。またこの粒子は、結晶質あるいは非晶質単独でも 良ぐまた微小な結晶質層の集合体力 なる混合体や結晶質—非晶質混合体及び 非晶質 非晶質混合体でも良 、。
[0020] 本構成により、従来の負極電極として用いられてきた黒鉛等の炭素材料よりも優れ た充放電特性を有する負極電極用導電性複合粒子を安定性良く作製することがで きる。
[0021] さらに本製造方法において、ポリマー材料の膜厚が、 0. 05 μ m以上、 10 μ m以下 であることが好ましい。本発明において粒子表面に形成されるポリマー層は、加熱処 理によって一部熱分解すると共にその過程で炭化することで、繊維状構造を含む多 孔質状カーボン層に変化する。そのカーボン層の厚さは、ポリマー材料の膜厚に依 存するので、ポリマー材料の膜厚は、得ようとするカーボン層の厚さによって適宜選 択すれば良い。その値は本導電性複合粒子の作製を目的とする場合、概ね 0. 05 m以上、 10 μ m以下であり、より好適には 0. 05 μ m以上、 0. 5 m以下、さらに望ま しくは 0. 05 μ m以上、 0. 5 m以下より選ばれる。なぜならば、ポリマー膜厚、すな わちカーボン層厚が厚すぎると、電極形成において全体的に電気化学的に活性な 粒子の割合が減少し、また逆に小さすぎると、電子伝導性ネットワークの形成が困難 になるからである。また本発明方法の場合、粒子表面を被覆したポリマー層が加熱処 理にお 、て炭化する過程にお!、て上記のような適切な膜厚を有して 、ると、電子伝 導性ネットワーク形成に適した繊維状構造を含んだ多孔質構造からなるカーボン層 の形成が容易であることが見出されており、故に最終的に、より効果が大きい導電性 複合粒子を得るためには、上記範囲より選択されるポリマー層厚が好適である。
[0022] さらに本製造方法において、ポリマー材料が芳香族ポリイミドであることが好ましい。
中でも、熱分解温度力 00°Cから 600°Cの範囲であるポリイミド材料が好適である。
[0023] 本製造方法により、所望の特性を有するカーボン層を粒子表面に容易に形成する ことが可能になる。 [0024] また本製造方法にお!ヽて、ポリマー材料に添加、あるいは粒子表面に担持される 金属元素が鉄(Fe)、コバルト(Co)、ニッケル (Ni)、マンガン(Mn)力も選択される 1 種以上を含んでいることが好ましい。とりわけ、ニッケルが好適である。
[0025] ポリマー材料に金属元素を添加する方法としては、用いるポリマー材料にも依存す る力 例えば、ポリマー中に所定の金属微粒子を分散させる方法や、金属元素が結 合したモノマー (分子)自身をポリマー化させる方法、溶液状ポリマー前駆体に所定 の金属元素を有する化合物を溶解させ、さらにそれをポリマー化する方法など様々 なものがある。その中で、より簡便で効果的な方法は、最後に記した溶液状ポリマー 前駆体に所定の金属化合物を添加し、溶解させる方法である。この方法を用いると、 金属元素の添加量制御が容易であり、かつ均質分散の状態で金属元素をポリマー 中に添加することができる。溶液状ポリマーに添加する金属化合物としては、例えば 硝酸ニッケルなど金属元素の硝酸塩などが添加ィ匕合物として容易に使用できるが、 この限りではない。
[0026] また粒子表面に金属元素を含む化合物を担持させる方法としては、金属化合物の 水溶液等を作製し、粒子表面に塗布、噴霧等の方法で付着させた後、乾燥させる等 の方法を用いれば良い。
[0027] 本製造方法により、所望の特性を有するカーボン層を粒子表面に容易に形成する ことが可能になる。
[0028] なおポリマー層内に混合される金属元素量としては、炭素重量に対して概ね 0. 1 %以上、 15%以下であり、より好適には 1%以上、 10%以下より選ばれる。なぜなら ば、金属元素量が大きすぎると、全体的に電気化学的に活性な粒子の割合が減少し 、また小さすぎると、電子伝導性ネットワーク形成に関与する繊維状構造を含む多孔 質状カーボン層の導電性を高くすることが困難になるからである。故に、最終的に、よ り効果が大き!、導電性複合粒子を得るためには、上記範囲より選択される金属元素 量が好適である。
[0029] また粒子表面に金属元素を含む化合物を担持する場合も同様であり、ポリマー材 料に対して概ね 0. 1%以上、 15%以下の金属元素量になる様に、金属化合物を粒 子表面に付着させれば良い。 [0030] 本製造方法により、従来よりも優れた充放電特性を有し、かつサイクル劣化の少な Vヽリチウムイオン二次電池電極作製に用いる導電性複合粒子をより容易に製造する ことが可能になる。
[0031] また本製造方法において、加熱温度力 00°C以上、 1000°C以下であることが好ま しい。一般的に焼成処理温度としては低い方が好まれるが、良好な導電特性を有す るカーボン層を形成するためには、ある程度以上の加熱温度が必要となる。本製造 方法においては、用いるポリマー材料や添加する金属化合物種にもよる力 400-1 000°Cの範囲から選択される加熱温度で焼成処理することで、導電性複合粒子に適 したカーボン層を形成することができる。
[0032] 以上の説明した様に、本発明の導電性複合粒子を製造する第 1の工程手順例とし ては、(i)溶液状ポリマー前駆体に金属化合物を溶解させる工程、(ii)ポリマー前駆 体溶液を粒子表面に塗布する工程、 (iii)ポリマー前駆体を粒子表面でポリマー化さ せる工程、(iv)ポリマー材料で被覆された粒子を不活性ガス雰囲気下、ポリマー材 料の熱分解温度以上の加熱温度で焼成処理する工程で構成される。
[0033] また第 2の工程手順例としては、(i)粒子表面に金属化合物水溶液を塗布し乾燥す る工程、(ii)溶液状ポリマー前駆体で粒子表面を被覆する工程、(iii)ポリマー前駆 体を粒子表面でポリマー化させる工程、 (iv)ポリマー材料で被覆された粒子を不活 性ガス雰囲気下、ポリマー材料の熱分解温度以上の加熱温度で焼成処理する工程 で構成される。
[0034] 上記工程手順例は、一般的な工程を示したものであり、他の工程手順によって本 導電性複合粒子を作製しても良 ヽ。
[0035] また従来の課題を解決するために、本発明の導電性複合粒子は、リチウム (Li)を 電気化学的に挿入'脱離することが可能な領域を有する粒子からなる核部分と、粒 子表面に接合されたカーボン層からなる表層部分で構成され、カーボン層内には金 属元素を含む微粒子が分散している導電性複合粒子であって、カーボン層が、窒素 (N)あるいは水素 (H)を含有しており、かつ繊維状構造を含んだ多孔質状構造から なる。
[0036] 本構成において、導電性複合粒子を構成するカーボン層には窒素 (N)あるいは水 素 (H)を含有している力 その含有量は炭素(C)に対して概ね 10ppm〜2%程度で ある。とりわけ、この範囲の窒素を微量含有したカーボン層を用いることが好適である
[0037] さらに本構成において、粒子がシリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)力も選 択される元素を少なくとも 1種以上含んだ単体、化合物、あるいはそれらの混合物の いずれかであることが好ましい。とりわけ、この粒子を構成する化合物が、酸化物、窒 化物、酸窒化物、炭化物のいずれかであることが好適である。例えば、 Si単体からな る粒子や酸化 S もなる粒子、あるいは Siを主成分として酸化 Si成分を含んだ粒子 、 Si、 Sn、 Ge中に微量の酸素、窒素、炭素成分が含まれた粒子などが挙げられるが 、この限りではない。またこの粒子は、結晶質あるいは非晶質単独でも良ぐまた微小 な結晶質層の集合体力 なる混合体や結晶質 非晶質混合体及び非晶質ー非晶 質混合体でも良い。
[0038] 本構成により、従来の負極電極として用いられてきた黒鉛等の炭素材料よりも優れ た充放電特性を有する負極電極用導電性複合粒子を得ることが可能となる。
[0039] さらに本構成において、導電性複合粒子の最表面を構成するカーボン層は、繊維 状構造力もなるカーボンであることが好ましい。すなわち、核となる粒子表面に形成さ れる繊維状構造を含む多孔質状カーボン層の構造は全体的に均質でも良いが、とり わけ、導電性複合粒子の表層方向に向力つて繊維状カーボンの割合が増加してい ることが好適である。
[0040] 本構成により、導電性複合粒子の集合体により電極板等を作製した際、より安定し た電子伝導ネットワークを形成することが可能になる。
[0041] さらに本構成において、カーボン層内に分散している微粒子を構成する金属元素 力 鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、マンガン (Mn)力 選択される 1種以上 を含んでいることが好ましい。とりわけ、ニッケルが本発明の導電性複合粒子を構成 する繊維状構造を含む多孔質状カーボン層をポリマー材料から形成する上で好適 である。なお本発明で用いる微粒子としては、その直径が概ね lnm以上、 50nm以 下である。
[0042] また従来の課題を解決するために、本発明の電極板は、金属薄板と、導電性材料 カゝらなる電極板であって、金属薄板上に積層された導電性材料が上述の ヽずれか の製造方法で作製されるような上記の導電性複合粒子の集合体で構成されているこ とからなる。
[0043] また従来の課題を解決するために、本発明のリチウムイオン二次電池は、充放電が 可能な正極と、充放電が可能な負極と、非水電解質を構成要素に有するリチウムィ オン二次電池であって、負極が上述の 、ずれかの製造方法で得られるような上記の 導電性複合粒子を含んだ電極で構成されていることからなる。
[0044] 本構成により、従来よりも高い充放電特性を持ち、かつ安定したサイクル特性を有 するリチウムイオン二次電池、及びそれに用いられる負極電極を作製することができ る。
[0045] 本発明の製造方法で作製された導電性複合粒子によれば、リチウム (Li)を電気化 学的に挿入'脱離することが可能な領域を有する粒子表面に、繊維状構造を含んだ 多孔質状構造からなる導電性のカーボン層が形成されている。よって、この導電性複 合粒子集合体で構成される電極板は、電子伝導性が高ぐその結果、優れた初期充 放電特性を有するリチウムイオン二次電池を得ることができる。さらに、粒子表面に接 合された繊維状構造を含む多孔質状カーボン層の作用により、電池充放電サイクル 評価を行なった場合においても、電気化学的に活性な粒子 カーボン層間、及び力 一ボン層—カーボン層間の電気的な接続は維持される。よって本発明の導電性複合 粒子を用いれば、充放電サイクル特性に優れたリチウムイオン二次電池を得ることが できる。
[0046] さらに本発明の製造方法で得られた窒素あるいは水素を含有したカーボン層は、 電子伝導性のみならず、それ自体が電気化学的にリチウムを挿入したり、脱離したり する機能を含むことから、トータルとして容量の高 、リチウムイオン二次電池を作製す ることがでさる。
図面の簡単な説明
[0047] [図 1]図 1は本発明の導電性複合粒子の構造を概念的に示す断面図である。
[図 2]図 2は本発明の他の導電性複合粒子の構造を概念的に示す断面図である。
[図 3]図 3は本発明の他の導電性複合粒子の構造を概念的に示す断面図である。 [図 4]図 4は本発明の実施例 1で得られた導電性複合粒子表面の走査電子顕微鏡( SEM)像を示す図である。
符号の説明
[0048] 10 導電性複合粒子
11 活物質粒子
12 多孔質状カーボン
13 繊維状カーボン
14 カーボン層
15 金属微粒子
発明を実施するための最良の形態
[0049] 以下、本発明の実施の形態について図面を参照しながら説明する。図 1は、本発 明における導電性複合粒子の構造を概念的に示した断面図である。本発明の導電 性複合粒子 10は、リチウム (Li)を電気化学的に挿入'脱離することが可能な領域を 有する粒子 (以下、「活物質粒子」と記す) 11と、多孔質構造 12と繊維構造 13からな るカーボン層 14、及びカーボン領域内に分散された金属あるいは金属化合物微粒 子 (以下、「金属微粒子」と記す) 15からなる。
[0050] 活物質粒子 11は、複数の粒子力 なる造粒体であっても良いが、単一の粒子から なる方が好ましい。なぜならば、単一の粒子の方が、充放電サイクル時の活物質粒 子の膨張 ·収縮に伴う崩壊が起こしにくいからである。また単一の粒子の場合におい ても、出来るだけ粒子の割れを抑制する観点から、活物質粒子 11の平均粒径が 0. 5 μ m力ら 20 μ mの範囲にあることが好ましい。
[0051] カーボン層 14中に分散して存在する金属微粒子 15は、安定な炭化物をつくる金 属群、例えば、チタン (Ti)やタンタル (Ta)以外であれば、特に限定はされないが、 炭素化触媒作用が活性な金属元素、とりわけ鉄 (Fe)、コバルト (Co)、ニッケル (Ni) 力も選ばれるいずれかが特に好ましく用いられる。通常、その大きさは、直径数 nmか ら数 10nm程度である。
[0052] この金属元素の作用は、大きく分けて 2つある。第 1は、金属元素が有する触媒作 用により、ポリマー材料の炭化によって活物質粒子 11表面に形成されるカーボン層 1 4の状態を、容易に高品質ィ匕させるためである。そして第 2には、形成されるカーボン 層 14の一部を繊維状構造 13とするための活性点としての働きである。すなわち、本 構成において金属微粒子 15が存在しない場合、本発明の構成を実現するには非常 に高い焼成処理温度が必要となったり、所望の繊維状構造を含む多孔質状カーボ ン層を形成することが困難になったりする。
[0053] 以上の結果として、活物質粒子 11とその表面に接合されたカーボン層 14は電気的 に接続された状態となる。故に、高い電子伝導性を確保できるので、良好な充放電 特性が得られる。さらに、充放電サイクルにより、活物質粒子の膨張 '収縮が起こった 場合においても、電気的な接続が維持されやすい。
[0054] 次に活物質粒子 11表面に繊維状構造を含んだ多孔質状構造を有するカーボン層 を形成させる方法について説明する。前述の構造を有するカーボン層を形成させる 方法は、本発明方法に示した様に、カーボン層前駆体であるポリマー材料に触媒作 用を発揮する金属化合物を予め混合しておき、そのポリマー材料で被覆された粒子 をポリマー材料の熱分解温度以上の加熱温度で焼成処理することが容易である。例 えば、適切な膜厚を有する金属元素を含有したポリマー材料で表面被覆された活物 質粒子を電気炉に設置し、不活性ガス雰囲気下、 400〜1000°Cで焼成処理するこ とで、所望の構造を有する導電性複合粒子を作製することができる。
[0055] 焼成処理温度は、用いるポリマー材料または添加された金属化合物によっても依 存するが、焼成処理温度が 300°C以下の場合、ポリマー材料のカーボンィヒが不十分 であったり、逆に 1200°C以上であると活物質粒子の電気化学的な機能が損なわれ る可能性が高かったりするため、前述の様に 300〜1200°C、とりわけ 400〜1000°C 、さらに好ましくは 500〜800°Cの焼成温度が好適である。
[0056] 粒子表面を被覆するポリマー材料としては、上記焼成処理温度範囲において金属 元素の触媒作用を受けてカーボンィ匕する材料であれば、概ね適用可能である。しか しながら、熱分解温度が比較的低温なポリマー、例えばポリビュルアルコールなどは 金属元素の触媒作用が機能する前にポリマーが熱分解してしまうので適さない。逆 に、ポリマーの熱分解温度が高すぎるとポリマー材料の炭化が促進する前に触媒金 属粒子が凝集し、繊維状カーボン層が形成されに《なる。よって、金属触媒が効率 的に作用する 400〜600°C程度の熱分解温度を有するポリマー、とりわけ芳香族ポリ イミド等のポリマー構造にイミド構造を有するポリマー材料が好適である。
[0057] ポリマー材料の一例である芳香族ポリイミドは、一般的に酸無水物とジァミンの重縮 合によって形成することが可能である。酸成分とジァミン成分の組み合わせにより、種 々のポリイミド構造を作製することができる。例えば酸無水物成分としては、ピロメリット 酸二無水物(PMDA)、ビフエ-ルテトラカルボン酸二無水物(BPDA)、ベンゾフエ ノンテトラカルボン酸二無水物(BTDA)等があり、ジァミン成分としては、ォキシジァ 二リン(ODA)、ノ ラフエ-レンジァミン(PPD)、ベンゾフエノンジァミン(BDA)等が 挙げられる。これらを組み合わせた、例えば、ポリ— 4, 4'—ォキシジフエ-レンピロメ リットイミドなどは、本発明のポリマー材料の好適な例として用いることができる力 こ の限りではない。
[0058] 活物質粒子 11表面に形成されるカーボン層 14は、繊維状カーボンを含む多孔質 状カーボン力もなる。この多孔質状のカーボン領域は活物質粒子表面に形成される 1S 電池特性に影響を与えない範囲でその量や多孔度の限定はない。しかしながら 一般的な指針として、粒子表面のほぼ全面、もしくは大部分を覆う程度が最適である 。例えば、図 2は活物質粒子表面の一部に多孔質状カーボンが形成された場合の断 面模式図である。なお、この場合、多孔質状カーボンが無い部分には繊維状カーボ ンがある方が好ましい。なぜならば、繊維状カーボン領域で活物質粒子表面全体を 覆うように形成されて ヽる方が導電性複合粒子集合体で電極板を形成する際の電子 伝導ネットワークを構築する上で好まし 、からである。なお繊維状カーボンの構造とし ては、チューブ状、アコーディオン状、プレート状、ヘリング 'ボーン状、非晶質状など 、いずれの形態でも導電性が確保できる範囲で適用可能である。
[0059] また図 3は、導電性複合粒子の最表面が繊維状カーボンで覆われた状態の断面模 式図である。前述の様に、導電性複合粒子集合体で電極板を形成する際の電子伝 導ネットワークを構築する上で、再表面が繊維状カーボン領域である方が好ま 、。
[0060] 続いて、前述の工程手順例により、本発明の導電性複合粒子を形成する過程につ いて、簡単に説明する。ポリマー材料を熱分解温度以上の加熱温度で焼成処理する と、熱分解を起こし、炭化水素や一酸化炭素、二酸ィ匕炭素といった気化成分を一部 脱離しながら、残りのポリマー成分は炭化され、ほぼカーボンのみ力もなるカーボン 層に変質する。一般的に、焼成温度が高いほど、カーボンィ匕は進行し、高い導電性 を示す様になる。し力しながら、一般的に、ポリマー材料のみの焼成処理において、 カーボン化が完了し、高導電性を示すためには 1000°C以上の焼成処理が必要であ る。
[0061] それに対し、カーボン化を促進するような触媒作用を有する金属元素が共存すると 、その作用によりポリマーのカーボン化を促進させることが可能になる。すなわち、触 媒作用を有する金属元素を含有しないポリマー材料と比較して、より低い加熱温度で の焼成処理により、高導電性を示すカーボン層を形成することができる。
[0062] さらに、ポリマー材料の熱分解温度域と金属元素が触媒活性となる温度域をほぼ 同じ領域に制御すると共に、ポリマー層膜厚を好適な範囲に設定することにより、力 一ボンィ匕の促進に加えて、触媒金属微粒子を基点としてカーボン層の多孔質状ィ匕 及び繊維状構造の形成を同時に実現することが可能になる。よって、本構成の導電 性複合粒子を形成するためには、前述のように 400〜600°Cで熱分解するポリマー が適しており、低い熱分解温度を有するポリマー材料では繊維状構造を含む多孔質 状カーボン層を得ることは困難である。
[0063] 次に導電性複合粒子で構成される電極板にっ ヽて説明する。例えば、円筒形もし くは角形の非水電解質リチウムイオン二次電池に用いる一般的な電極板は、電極合 剤を集電体に担持させた極板を所定の形状に加工すれば得られる。電極合剤は、 通常、導電性複合粒子および榭脂結着剤を構成成分として含んでいる。電極合剤に は、任意成分として、導電材、増粘剤等を本発明の効果が損なわれない範囲で含め ることができる。結着剤としては、ポリフッ化ビ-リデン (PVDF)等のフッ素榭脂、スチ レンブタジエンゴム(SBR)等のゴム性状榭脂、アクリル酸、アクリロニトリル等を含む ゴム性状榭脂等が用いられる。導電材としては、カーボンブラック(CB)、アセチレン ブラック (AB)等が好ましく用いられる。増粘剤には、カルボキシメチルセルロール (C MC)等が好ましく用いられる。
[0064] 電極合剤は、スラリー状にするために液状成分と混合され、得られたスラリーは集電 体の両面に塗工の上、乾燥される。その後、集電体に担持された電極合剤を集電体 と共に圧延し、所定サイズに裁断すれば、所望の電極が得られる。なおここで説明し た方法は、一例にすぎず、他のどの様な方法で電極を作製しても良い。また電極の 種類や形状は限定されず、例えば導電性複合粒子をコイン型電池の電極に利用す ることちでさる。
[0065] さらに導電性複合粒子で構成された電極板を用いたリチウムイオン二次電池につ いて説明する。前述の様な方法で作製された電極板と、対極と、セパレータとを用い て電極群が構成される。セパレータには、ポリオレフイン榭脂製の微多孔フィルムが 好ましく用いられる力 この限りではない。電極群は、非水電解液と共に電池ケース 内に収容される。非水電解液には一般的に、リチウム塩を溶解させた非水溶媒が用 いられる。リチウム塩は、特に限定されないが、例えば LiPF6、 LiBF4等が好ましく用 いられる。また非水溶媒に関しても特に限定はされないが、エチレンカーボネート (E C)、プロピレンカーボネート (PC)、ジメチノレカーボネート (DMC)、ジェチノレカーボ ネート(DEC)、ェチルメチルカーボネート (EMC)等の炭酸エステルが好ましく用い られる。
[0066] 以下、本発明の実施例および比較例に基づいて具体的に説明するが、以下の実 施例は本発明の実施態様の一部を例示するものにすぎず、本発明はこれらの実施 例に限定されるものではない。
[0067] <実施例 1 : 電極材料 Al >
活物質粒子を被覆するポリマー材料として、芳香族ポリイミドを用いた例にっ ヽて記 す。
[0068] 芳香族ポリイミドの合成は、一般的に溶液法と呼ばれる有機合成方法を用いて行な つた。具体的にはジメチルァセトアミド(DMAc)を溶媒として、無水ピロメリット酸 (PM DA)と 4, 4'ージアミノジフエ-ルエーテル(ODA)を等モル混合した後、反応させて 、 10wt%ポリアミド酸溶液 (以下、「PAA溶液」と記す)を作製した。さらに、カーボン 層形成の触媒元素となるニッケル (Ni)をポリマー材料に添加するために、ポリマー 成分に対する Ni含有割合力 lOwt%になる様に硝酸ニッケル六水和物 (Ni(NO ) ·
3 2
6H O)を PAA溶液に添加し、数時間攪拌して溶解させた。
2
[0069] 続いて、 Ni添加 PAA溶液 (Ni— PAA溶液)にシリコン(Si)粒子を混合し、マグネ チックスターラーで攪拌した後、粒子混合された溶液をシャーレに移し、それをロータ リーポンプによって真空排気された真空乾燥機内に配置して乾燥処理し加熱処理す ることで PAAをイミド化した。なお、用いた Si粒子の平均粒径は φ 5 μ mである。イミド 化終了後、得られたシート状の試料をガラス乳鉢で軽くすりつぶし、粉体形状とした。 その結果、 Ni添加ポリイミド膜 (Ni- PI膜)で表面を被覆された Si粒子が得られた。 なお、 Si粒子表面に被覆されたポリイミド膜の膜厚は、概ね 0. 3〜0. であった
[0070] さらに、 Ni添加ポリイミド膜で被覆された Si粒子をカーボン製容器に充填した後、電 気炉に入れ、アルゴン (Ar)ガス雰囲気中で 1000°Cで 1時間焼成処理することでポリ イミド膜をカーボン化させた。
[0071] その結果、 Si粒子表面に多孔質状カーボン層が形成されると共に、さらにそれを覆 うように繊維径が数 10〜数 lOOnmで、繊維長が数/ z mの繊維状カーボン層が形成 された。形成されたカーボン層の量は、活物質粒子 100重量部当たり 40重量部であ つた。また得られたカーボン層の組成分析を行なった結果、微量(1 %以下)の窒素と 水素がカーボン層に含まれて 、た。
[0072] なおポリイミド層に含有させた硝酸ニッケルは、焼成過程にお!、て熱分解し、多孔 質層及び繊維層に還元 Ni粒子となって点在して 、た。その粒径は数 10〜数 100η mである。作製された導電性複合粒子の走査電子顕微鏡 (SEM)写真を図 4に示す
[0073] 前述の方法で作製された導電性複合粒子を非水電解質二次電池の電極材料 A1 とした。
[0074] <実施例 2 : 電極材料 Bl >
硝酸ニッケル六水和物をポリイミド層に含有させる代わりに、硝酸コバルト六水和物 を含有させた以外は実施例 1と同様の操作を行なった。
[0075] その結果、実施例 1とほぼ同様の多孔質状及び繊維状カーボン層で被覆された Si 粒子が形成された。これを非水電解質二次電池の電極材料 B1とした。
[0076] <実施例 3 : 電極材料 Cl >
硝酸ニッケル六水和物をイオン交換水に溶解した溶液を準備した。硝酸ニッケル六 水和物の濃度は、イオン交換水 100重量部に対して 1重量部とした。この硝酸-ッケ ル溶液に実施例 1で用いた Si粒子を混合し、 1時間攪拌した後、エバポレータ装置 で水分を除去することで、 Si粒子表面に硝酸ニッケルを担持させた。
[0077] さらにこの硝酸ニッケルを担持させた Si粒子を PAA溶液に混合し、マグネチックス ターラーで攪拌した後、粒子混合された溶液をシャーレに移し、それをロータリーポ ンプによって真空排気された真空乾燥機内に配置して乾燥処理し加熱処理すること で PAAをイミドィ匕した。イミドィ匕終了後、得られたシート状の試料をガラス乳鉢で軽く すりつぶし、粉体形状とした。その結果、ポリイミドで表面被覆された硝酸ニッケル担 持 Si粒子が得られた。
[0078] 以下、実施例 1と同様の焼成処理を行なった結果、実施例 1とほぼ同様の多孔質 状及び繊維状カーボン層で被覆された Si粒子が形成された。これを非水電解質二 次電池の電極材料 C 1とした。
[0079] <実施例 4 : 電極材料 Dl >
実施例 1と同様の方法で作製した PAA溶液に対して、平均粒径が lOnmの Ni微粒 子を混合し、さらに Si微粒子を添加した溶液をマグネチックスターラーで攪拌した後 、粒子混合された溶液をシャーレに移し、それをロータリーポンプによって真空排気 された真空乾燥機内に配置して乾燥処理し加熱処理することで PAAをイミド化した。 イミド化終了後、作製されたシート状の試料をガラス乳鉢で軽くすりつぶし、粉体形状 とした。その結果、 Ni微粒子が分散されたポリイミドで表面被覆された Si粒子が作製 された。
[0080] 以下、実施例 1と同様の加熱焼成処理を行なった結果、実施例 1とほぼ同様の多 孔質状及び繊維状カーボン層で被覆された Si粒子が形成された。これを非水電解 質二次電池の電極材料 D1とした。
[0081] <実施例 5 : 電極材料 El >
Si粒子を被覆するポリマー層の厚さを薄く(膜厚:〜 0. 1 m)した以外は実施例 1 と同様の操作を行なった。その結果、実施例 1と比べてカーボン層の形成量が少な い Si粒子が形成された。とりわけ、カーボン層に含まれる繊維状カーボンの長さが実 施例 1の場合と比較して、短カゝつた。これを非水電解質二次電池の電極材料 E1とし た。
[0082] <実施例 6 : 電極材料 Fl >
Si粒子を被覆するポリマー層の厚さを厚く(膜厚:〜 2 m)した以外は実施例 1と同 様の操作を行なった。その結果、実施例 1と比べてカーボン層の形成量が多い Si粒 子が形成された。しカゝしながら、カーボン層に含まれる繊維状カーボンの割合が実施 例 1の場合と比較して、小さカゝつた。これを非水電解質二次電池の電極材料 F1とし た。
[0083] <実施例 7 : 電極材料 Gl >
硝酸ニッケル添加ポリイミドで表面被覆された Si粒子を加熱焼成処理する際の処理 温度を 800°Cにした以外は実施例 1と同様の操作を行なった。その結果、実施例 1と ほぼ同様の多孔質状及び繊維状カーボン層で被覆された Si粒子が形成された。こ れを非水電解質二次電池の電極材料 G1とした。
[0084] <実施例 8 : 電極材料 HI >
硝酸ニッケル添加ポリイミドで表面被覆された Si粒子を加熱焼成処理する際の処理 温度を 600°Cにした以外は実施例 1と同様の操作を行なった。その結果、実施例 1と 比べて繊維状カーボン層の形成量が若干少な ヽ Si粒子が形成された。これを非水 電解質二次電池の電極材料 HIとした。
[0085] <実施例 9 : 電極材料 II >
ポリイミドの代わりにポリアクリロニトリルをポリマー材料として用い、ポリアクリロ-トリ ルに硝酸ニッケル六水和物を添加した溶液を作製した。この溶液に Si粒子を混合、 攪拌した後、真空乾燥炉で溶媒成分を除去することで、硝酸ニッケル添加ポリアタリ 口-トリルで表面被覆された Si粒子を得た。この粒子をアルゴン雰囲気下で 800°Cで 1時間焼成処理した。
[0086] その結果、実施例 1と比べて繊維状カーボン層の形成量が若干少ない Si粒子が形 成された。これを非水電解質二次電池の電極材料 IIとした。
[0087] <比較例 1 : 電極材料 al >
硝酸ニッケルを添加しないポリイミドで表面被覆された Si粒子を焼成処理する以外 は実施例 1と同様の操作を行なった。その結果、実施例 1と比べてカーボンィ匕の進行 度合が小さぐ多孔質層及び繊維質層の形成がほとんど確認できない非晶質炭素膜 で被覆された Si粒子が形成された。これを非水電解質二次電池の電極材料 alとした
[0088] <比較例 2 : 電極材料 bl >
硝酸ニッケル添加ポリイミドで表面被覆された Si粒子を焼成処理する際の処理温度 を 300°Cにした以外は実施例 1と同様の操作を行なった。その結果、ポリマー層がほ とんどカーボンィ匕して ヽな ヽ Si粒子が形成された。これを非水電解質二次電池の電 極材料 blとした。
[0089] <比較例 3 : 電極材料 cl >
Si粒子 100重量部と、導電材としてアセチレンブラック (AB) 10重量部とを乾式混 oし 7こ o
[0090] これを非水電解質二次電池の電極材料 clとした。
[0091] <比較例 4 : 電極材料 dl >
Si粒子 100重量部と、導電材としてカーボンファイバー 10重量部とを乾式混合した
[0092] これを非水電解質二次電池の電極材料 dlとした。
[0093] <電極材料の評価 >
実施例 1〜9及び比較例 1〜4で得られた電極材料に対して、フッ化ビ-リデン榭脂 (PVDF)からなる結着剤と、 N—メチル 2—ピロリドン (NMP)とを混合して、合剤ス ラリーを調製した。そのスラリーを厚さ 15 mの銅箔 (Cu箔)上にキャスティングし、乾 燥後、合剤を圧延して電極板を作製した。この電極板の合剤密度は 0. 8〜1. 4g/c m (?めった。
[0094] この電極板を 80°Cのオーブンで充分乾燥させ、作用極を作製した。リチウム金属箔 を作用極の対極として用い、作用極で規制されたコイン型リチウムイオン電池を作製 した。非水電解液としては、エチレンカーボネート(EC)とジェチルカーボネート(DE C)の混合溶媒 (体積比率 1 : 1)に LiPFを 1. OM (molZL)の濃度で溶解させたも
6
のを使用した。
[0095] 得られたコイン型リチウムイオン電池に関し、 0. 05Cの充放電速度で、初期充電容 量と初期放電容量を測定し、活物質重量当たりの初期放電容量及び充放電効率( 初期放電容量 Z初期充電容量)を求めた。また 0. 05Cの充放電速度で得られた初 期放電容量に対して、同充放電速度で充放電を 50サイクル繰り返した時の放電容 量割合をサイクル効率 (50サイクル後の (放電容量 Z初期放電容量) )とした。結果を 表 1に示す。
[0096] [表 1]
Figure imgf000021_0001
PAN :ポリアクリロニトリル AB : アセチレンブラック
[0097] 表 1に示した様に、実施例 1〜9で製造された電極材料 A1〜I1を用いた評価用電 池にお 1、て、添加金属化合物の違!、や形成された多孔質状及び繊維状カーボン層 の状態によって若干の差異はあるものの、本発明に記載された導電性複合粒子を用 いた試料は、活物質重量当たりの初期放電容量、充放電効率およびサイクル効率共 に、多孔質状及び繊維状カーボン層を含まな 、比較例 1の電極材料 alよりも優れて いた。
[0098] 比較例 1では、粒子表面に繊維状及び多孔質状カーボン層が形成されて 、な 、こ とから、充放電による活物質の膨張'収縮に伴って、活物質粒子間の電子伝導性ネ ットワークが切断されていったためであると考えられる。その結果として、サイクル特性 に大きな差異が生じたものと考えられる。
[0099] また焼成温度が所定の加熱温度よりも低!、比較例 2の電極材料 blを用いた評価用 電池では、全く電池としての機能を果たさな力つた。これは活物質粒子表面を被覆し て 、るポリマー層がカーボン化されて ヽな 、ため、導電性に欠如して 、るためと考え られる。
[0100] また活物質粒子に導電材としてアセチレンブラック (AB)を混合した比較例 3の電 極材料 clでは、導電材である ABを混合したのみであることから、充放電による活物 質の膨張'収縮に伴って、活物質粒子と ABの電子伝導性ネットワークが切断されて いったためであると考えられる。その結果として、サイクル特性に大きな差異が生じた ものと考えられる。
[0101] また活物質粒子に導電材としてカーボンファイバーを混合した比較例 4の電極材料 dlでは、導電材であるカーボンファイバーを混合したのみであることから、充放電に よる活物質の膨張'収縮に伴って、活物質粒子とカーボンファイバーの電子伝導性 ネットワークが切断されていったためであると考えられる。その結果として、サイクル特 性に大きな差異が生じたものと考えられる。
[0102] また実施例 1〜9で製造された電極材料 A1〜I1間においても、効果に若干の差が 生じた場合が見られた。
[0103] 添加金属化合物が異なる実施例 2の電極材料 B1では、実施例 1の電極材料 A1の 結果とほぼ同レベルの結果が得られた。これは活物質粒子表面に形成された繊維状 構造を含む多孔質状カーボン層がほぼ同様であることに起因すると考えられる。
[0104] また添加金属化合物の添加方法が異なる実施例 3の電極材料 C1においても、同 様の理由力 実施例 1と同レベルの結果が得られた。
[0105] また添加金属化合物として Ni微粒子を用いた実施例 4の電極材料 D1では、繊維 状カーボンの形成量が実施例 1よりも少な力つたため、サイクル効率の低下が観察さ れた。
[0106] またポリマー被覆量の少ない実施例 5の電極材料 E1では、サイクル効率の低下が 顕著であった。これは粒子の被覆割合が小さいため、充放電による活物質の膨張 · 収縮に伴って活物質粒子間の電子伝導性ネットワークが実施例 1よりも切断されやす い状況であったためと考えられる。
[0107] またポリマー被覆量の多い実施例 6の電極材料 F1では、放電容量及び充放電効 率の低下が見られた。これは粒子の被覆量が多いため、実施例 1よりも相対的に活 物質粒子の割合が低減したためと考えられる。また繊維状カーボンの割合が実施例 1よりも小さかったため、充放電による活物質の膨張'収縮に伴って活物質粒子間の 電子伝導性ネットワークが実施例 1よりも切断されやすい状況であったためと考えら れる。
[0108] また焼成温度を若干下げた実施例 7の電極材料 G1では、実施例 1とほぼ同レベル の特性が得られた。これは所望のカーボン層構造を形成することが可能な加熱温度 域に含まれていたためと考えられる。
[0109] また焼成温度をさらに下げた実施例 8の電極材料 HIでは、実施例 1と比較して顕 著なサイクル特性の低下が見られた。これは焼成処理温度を下げすぎると、繊維状 カーボン層の発達が不十分となり、充放電による活物質の膨張 *収縮に伴って活物 質粒子間の電子伝導性ネットワークが実施例 1よりも切断されやすい状況になったた めと考えられる。
[0110] またポリマー材料を変えた実施例 9の電極材料 IIでは、実施例 1と比較して各特性 の低減が観測された。これはカーボン層の形成量及び繊維状カーボンの形成量、導 電性が実施例 1よりも小さくなつたため、繊維状カーボン層の発達が不十分となり、充 放電による活物質の膨張'収縮に伴って活物質粒子間の電子伝導性ネットワークが 実施例 1よりも切断されやすい状況になったためと考えられる。
[0111] <実施例 10 : 電極材料 A2〜I2>
シリコン粒子の代わりに酸ィ匕シリコン層を含んだシリコン粒子を活物質粒子として用 いた以外は実施例 1〜9と同様の操作を行なった。また同様に比較例 1〜4に対応す る電極材料 a2〜d2も作製した。
[0112] その結果、前述の実施例 1〜9とほぼ同様の傾向を示し、電極材料 A2〜I2を用い た評価用電池にお!ヽて、添加金属化合物の違!ヽゃ形成された多孔質状及び繊維状 カーボン層の状態によって若干の差異はあるものの、本発明に記載された導電性複 合粒子を用いた試料は、活物質重量当たりの初期放電容量、充放電効率およびサ イタル効率共に、比較例の電極材料 a2〜d2よりも優れて 、た。
[0113] く実施例 11 >
実施例 1で製造された電極材料 A1を用いて負極電極板を作製し、この負極電極 板に抵抗加熱蒸着により、不可逆容量分に相当する Liを付与した。
[0114] 続いて、正極活物質である LiNi Co Al O粒子 100重量部と、ポリフッ化ビ
0. 8 0. 17 0. 03 2
ユリデンカもなる結着剤 10重量部と、カーボンブラック 5重量部と、適量の N—メチル —2—ピロリドンとを混合して正極合剤スラリーを調製した。このスラリーを厚さ 15 m の Al板上にキャスティングし、乾燥後、正極合剤を圧延して、正極合剤層を形成し、 正極板を得た。
[0115] 前述の方法で得られた正極板、負極板を用いてコイン型リチウムイオン電池を作製 し、実施例 1と同様に評価した。
[0116] その結果、負極活物質重量当たりの初期放電容量: 3798mAhZg、放電効率: 85
%、サイクル特性: 91%であった。
[0117] なお本実施例においては、負極への Li添加方法として抵抗加熱蒸着を用いたが、 この限りではなぐ例えば、負極に Li箔を貼り付けた後、電池を組み立てたり、電池容 器内に Li粉末を導入したりしても良い。
産業上の利用可能性
[0118] 本発明にカゝかる導電性複合粒子は、電気化学素子の電極に用いられる活物質粒 子全般に適用可能である。とりわけ、優れた初期充放電特性や安定なサイクル特性 を有するリチウムイオン二次電池やキャパシタの電極材料として有用である。

Claims

請求の範囲
[1] リチウムを電気化学的に挿入'脱離することが可能な領域を有する粒子力 なる核部 分と、前記粒子表面に接合されたカーボン層からなる表層部分で構成され、前記力 一ボン層内には金属元素を含む微粒子が分散して ヽる導電性複合粒子の製造方法 であって、
前記カーボン層内に分散して 、る微粒子を構成する金属元素を含有したポリマー材 料を準備する第 1の工程と、
前記金属元素を含有したポリマー材料で前記粒子表面を被覆する第 2の工程と、 前記金属元素を含有したポリマーで被覆された粒子を不活性雰囲気下、加熱してポ リマー材料を炭化する処理により、前記ポリマー材料力 前記表層部分として繊維状 構造を含んだ多孔質構造力もなるカーボン層を形成する第 3の工程とからなる導電 性複合粒子の製造方法。
[2] リチウムを電気化学的に挿入'脱離することが可能な領域を有する粒子力 なる核部 分と、前記粒子表面に接合されたカーボン層からなる表層部分で構成され、前記力 一ボン層内には金属元素を含む微粒子が分散して ヽる導電性複合粒子の製造方法 であって、
前記カーボン層内に分散して ヽる微粒子を構成する金属元素を含有した化合物を 粒子表面に担持する第 1の工程と、
前記金属元素を含有したィヒ合物が表面に担持された粒子表面にポリマー材料を被 覆する第 2の工程と、
前記ポリマー材料で被覆された粒子を不活性ガス雰囲気下、加熱してポリマー材料 を炭化する処理により、前記ポリマー材料カゝら前記表層部分として繊維状構造を含 んだ多孔質構造カゝらなるカーボン層を形成する第 3の工程とからなる導電性複合粒 子の製造方法。
[3] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記粒子が、シリコン、スズ、ゲルマニウムカゝら選択される元素を少なくとも 1種以上 含んだ単体、化合物、あるいはそれらの混合物のいずれかであることを特徴とする導 電性複合粒子の製造方法。
[4] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記粒子を構成する化合物が、シリコン、スズ、ゲルマニウムカゝら選択される元素を 少なくとも 1種以上含んだ酸化物、窒化物、酸窒化物、炭化物のいずれかであること を特徴とする導電性複合粒子の製造方法。
[5] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記ポリマー材料の膜厚力 0. 05 /z m以上、 10 /z m以下であることを特徴とする導 電性複合粒子の製造方法。
[6] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記ポリマー材料が、芳香族ポリイミドであることを特徴とする導電性複合粒子の製 造方法。
[7] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記金属元素が、鉄、コバルト、ニッケル、マンガン力 選択される 1種以上を含んで
V、ることを特徴とする導電性複合粒子の製造方法。
[8] 請求項 1または 2に記載の導電性複合粒子の製造方法にぉ 、て、
前記加熱温度が、 400°C以上、 1000°C以下であることを特徴とする導電性複合粒 子の製造方法。
[9] リチウムを電気化学的に挿入'脱離することが可能な領域を有する粒子力 なる核部 分と、前記粒子表面に接合されたカーボン層からなる表層部分で構成され、前記力 一ボン層内には金属元素を含む微粒子が分散して ヽる導電性複合粒子であって、 前記カーボン層が、窒素あるいは水素を含有しており、かつ繊維状構造を含んだ多 孔質状構造からなることを特徴とする導電性複合粒子。
[10] 請求項 9に記載の導電性複合粒子にぉ 、て、
前記粒子が、シリコン、スズ、ゲルマニウムカゝら選択される元素を少なくとも 1種以上 含んだ単体、化合物、あるいはそれらの混合物のいずれかであることを特徴とする導 電性複合粒子。
[11] 請求項 10に記載の導電性複合粒子において、
前記粒子を構成する化合物が、シリコン、スズ、ゲルマニウムカゝら選択される元素を 少なくとも 1種以上含んだ酸化物、窒化物、酸窒化物、炭化物のいずれかであること を特徴とする導電性複合粒子。
[12] 請求項 9に記載の導電性複合粒子において、
導電性複合粒子の最表面を構成する前記カーボン層が、繊維状構造カゝらなるカー ボンであることを特徴とする導電性複合粒子。
[13] 請求項 9に記載の導電性複合粒子において、
前記カーボン領域内に分散している微粒子を構成する金属元素が、鉄、コバルト、二 ッケル、マンガンカゝら選択される 1種以上を含んで ヽることを特徴とする導電性複合 粒子。
[14] 金属薄板と、導電性材料からなる電極板であって、
前記金属薄板上に積層された前記導電性材料が、請求項 9記載の導電性複合粒子 の集合体で構成されて 、ることを特徴とする電極板。
[15] 充放電が可能な正極と、充放電が可能な負極と、非水電解質を構成要素に有するリ チウムイオン二次電池であって、
前記負極が、請求項 9記載の導電性複合粒子を含んだ電極で構成されて ヽることを 特徴とするリチウムイオン二次電池。
PCT/JP2007/052262 2006-02-17 2007-02-08 導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池 WO2007094240A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008500464A JP4208034B2 (ja) 2006-02-17 2007-02-08 導電性複合粒子の製造方法
US12/050,637 US20080166474A1 (en) 2006-02-17 2008-03-18 Conductive composite particle, method of manufacturing the same, electrode using the same, lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-040551 2006-02-17
JP2006040551 2006-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/050,637 Continuation-In-Part US20080166474A1 (en) 2006-02-17 2008-03-18 Conductive composite particle, method of manufacturing the same, electrode using the same, lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2007094240A1 true WO2007094240A1 (ja) 2007-08-23

Family

ID=38371427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052262 WO2007094240A1 (ja) 2006-02-17 2007-02-08 導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池

Country Status (3)

Country Link
US (1) US20080166474A1 (ja)
JP (1) JP4208034B2 (ja)
WO (1) WO2007094240A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082483A1 (en) * 2007-09-20 2009-03-26 Petrovic Zoran S Polyglycerol based polyols and polyurethanes and methods for producing polyols and polyurethanes
EP2079120A2 (en) * 2008-01-08 2009-07-15 Samsung SDI Co., Ltd. Electrode Assembly and Lithium Secondary Battery having the same
JP2009252580A (ja) * 2008-04-08 2009-10-29 Sony Corp 負極および二次電池
WO2010026627A1 (ja) * 2008-09-03 2010-03-11 住友大阪セメント株式会社 電極材料の製造方法と電極材料および電極並びに電池
JP2011060432A (ja) * 2009-09-04 2011-03-24 Ube Industries Ltd 微細な炭素繊維で覆われた粒子
JP2011076744A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076742A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076743A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076741A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011096491A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
JP2011134534A (ja) * 2009-12-24 2011-07-07 Sumitomo Bakelite Co Ltd リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
JP2011228246A (ja) * 2010-04-19 2011-11-10 Ulsan National Institute Of Science And Technology リチウム2次電池用負極活物質の製造方法およびリチウム2次電池
JP2012523674A (ja) * 2009-04-13 2012-10-04 エルジー・ケム・リミテッド リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
WO2014007393A1 (ja) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
US8846135B2 (en) 2008-08-19 2014-09-30 Uniwersytet Jagiellonski Process for the preparation of conductive carbon layers on powdered supports
JP2014209434A (ja) * 2013-03-25 2014-11-06 住友大阪セメント株式会社 電極材料及び電極並びにリチウムイオン電池
JP2014532024A (ja) * 2012-07-20 2014-12-04 エルジー・ケム・リミテッド カーボン−シリコン複合体、その製造方法及びこれを含む負極活物質
WO2015194497A1 (ja) * 2014-06-20 2015-12-23 住友金属鉱山株式会社 被覆リチウム-ニッケル複合酸化物粒子及び被覆リチウム-ニッケル複合酸化物粒子の製造方法
JP2016009524A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
JP2016009523A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
KR20160081692A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 실리콘계 음극 활물질, 이의 제조방법, 상기 실리콘계 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
WO2016136543A1 (ja) * 2015-02-26 2016-09-01 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
JP2017178660A (ja) * 2016-03-30 2017-10-05 積水化学工業株式会社 炭素粒子の製造方法
KR101948125B1 (ko) * 2011-08-31 2019-02-14 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Si/C 복합 재료 및 그 제조 방법, 및 전극
JP2019521488A (ja) * 2016-06-30 2019-07-25 ハイドロ−ケベック 炭素被覆活性粒子およびその調製のためのプロセス
WO2023002758A1 (ja) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 負極活物質、負極材料、および電池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792498B (zh) 2010-03-11 2015-09-02 株式会社Lg化学 聚合物-硅复合粒子、其制备方法以及包含所述聚合物-硅复合粒子的负极和锂二次电池
WO2012105009A1 (ja) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 複合活物質、複合活物質の製造方法および電池
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
EP2810321A1 (en) 2012-01-30 2014-12-10 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) * 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
US8932764B2 (en) * 2012-02-28 2015-01-13 Sila Nanotechnologies, Inc. Core-shell composites for sulfur-based cathodes in metal-ion batteries
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
KR101472634B1 (ko) * 2012-10-29 2014-12-15 삼성전기주식회사 금속 나노입자 및 그 표면 처리 방법
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR102287812B1 (ko) * 2014-09-26 2021-08-09 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 전지, 및 상기 음극 활물질의 제조방법
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
CN105139920B (zh) * 2015-09-25 2017-12-26 京东方科技集团股份有限公司 一种导电颗粒及其制备方法、导电胶、显示装置
KR102067786B1 (ko) * 2016-03-21 2020-01-17 주식회사 엘지화학 표면 코팅된 양극 활물질 입자 및 이를 포함하는 이차 전지
CN109562949B (zh) * 2016-08-11 2022-09-20 瓦克化学股份公司 Si/C复合颗粒的制备
WO2018145732A1 (de) 2017-02-07 2018-08-16 Wacker Chemie Ag Kern-schale-kompositpartikel für lithium-ionen-batterien
PL3611784T3 (pl) 2017-05-04 2021-11-22 Lg Chem, Ltd. Materiał czynny elektrody ujemnej, elektroda ujemna zawierająca materiał czynny elektrody ujemnej, akumulator zawierający elektrodę ujemną i sposób wytwarzania materiału czynnego elektrody ujemnej
WO2018203731A1 (ko) * 2017-05-04 2018-11-08 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
US11626585B2 (en) * 2018-10-09 2023-04-11 City University Of Hong Kong Electrode material and a method of preparing the same
DE102020202504A1 (de) 2020-02-27 2021-09-02 Volkswagen Aktiengesellschaft Anodenmaterial, Batterie mit einem solchen Anodenmaterial und Verfahren zur Herstellung eines Anodenmaterials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2005135925A (ja) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池およびその製造方法
JP2005158721A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2006173121A (ja) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd 陰極活物質、その製造方法及びそれを用いた陰極とリチウム電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315232B1 (ko) * 1999-02-24 2001-11-26 김순택 리튬 이차 전지용 음극 활물질 및 그 제조 방법
KR100570648B1 (ko) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP4740753B2 (ja) * 2005-01-28 2011-08-03 三星エスディアイ株式会社 充放電するリチウム電池、及び充放電するリチウム電池の負極に含まれる負極活物質の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196064A (ja) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd リチウム二次電池用負極活物質及びその製造方法
JP2005135925A (ja) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池およびその製造方法
JP2005158721A (ja) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd 非水二次電池の電極材料およびその製造方法、並びにそれを用いた非水二次電池
JP2006173121A (ja) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd 陰極活物質、その製造方法及びそれを用いた陰極とリチウム電池

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082483A1 (en) * 2007-09-20 2009-03-26 Petrovic Zoran S Polyglycerol based polyols and polyurethanes and methods for producing polyols and polyurethanes
EP2079120A2 (en) * 2008-01-08 2009-07-15 Samsung SDI Co., Ltd. Electrode Assembly and Lithium Secondary Battery having the same
EP2079120A3 (en) * 2008-01-08 2009-10-21 Samsung SDI Co., Ltd. Electrode Assembly and Lithium Secondary Battery having the same
JP2009252580A (ja) * 2008-04-08 2009-10-29 Sony Corp 負極および二次電池
US9012066B2 (en) 2008-04-08 2015-04-21 Sony Corporation Anode and secondary battery
US8846135B2 (en) 2008-08-19 2014-09-30 Uniwersytet Jagiellonski Process for the preparation of conductive carbon layers on powdered supports
WO2010026627A1 (ja) * 2008-09-03 2010-03-11 住友大阪セメント株式会社 電極材料の製造方法と電極材料および電極並びに電池
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
US9413000B2 (en) 2009-04-13 2016-08-09 Lg Chem, Ltd. Negative-electrode active material for rechargeable lithium battery
US8669008B2 (en) 2009-04-13 2014-03-11 Lg Chem, Ltd. Negative-electrode active material for rechargeable lithium battery
JP2012523674A (ja) * 2009-04-13 2012-10-04 エルジー・ケム・リミテッド リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
JP2011060432A (ja) * 2009-09-04 2011-03-24 Ube Industries Ltd 微細な炭素繊維で覆われた粒子
JP2011076741A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076743A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076742A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011076744A (ja) * 2009-09-29 2011-04-14 Sumitomo Bakelite Co Ltd リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池
JP2011096491A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
JP2011134534A (ja) * 2009-12-24 2011-07-07 Sumitomo Bakelite Co Ltd リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
JP2011228246A (ja) * 2010-04-19 2011-11-10 Ulsan National Institute Of Science And Technology リチウム2次電池用負極活物質の製造方法およびリチウム2次電池
US9306209B2 (en) 2010-04-19 2016-04-05 Ulsan National Institute Of Science And Technology Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery
KR101948125B1 (ko) * 2011-08-31 2019-02-14 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Si/C 복합 재료 및 그 제조 방법, 및 전극
GB2520193B (en) * 2012-07-06 2015-11-04 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
GB2520193A (en) * 2012-07-06 2015-05-13 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2014007393A1 (ja) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
US10483531B2 (en) 2012-07-06 2019-11-19 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP5674964B2 (ja) * 2012-07-06 2015-02-25 三井金属鉱業株式会社 非水電解液二次電池用負極活物質
US10263249B2 (en) 2012-07-20 2019-04-16 Lg Chem, Ltd. Carbon-silicon composite, method of preparing the same, and anode active material including the carbon-silicon composite
JP2014532024A (ja) * 2012-07-20 2014-12-04 エルジー・ケム・リミテッド カーボン−シリコン複合体、その製造方法及びこれを含む負極活物質
US9923207B2 (en) 2013-03-25 2018-03-20 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode and lithium ion battery
JP2014209434A (ja) * 2013-03-25 2014-11-06 住友大阪セメント株式会社 電極材料及び電極並びにリチウムイオン電池
WO2015194497A1 (ja) * 2014-06-20 2015-12-23 住友金属鉱山株式会社 被覆リチウム-ニッケル複合酸化物粒子及び被覆リチウム-ニッケル複合酸化物粒子の製造方法
JP2016009524A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
CN106663803A (zh) * 2014-06-20 2017-05-10 住友金属矿山株式会社 带覆膜的锂‑镍复合氧化物粒子和带覆膜的锂‑镍复合氧化物粒子的制造方法
US10553860B2 (en) 2014-06-20 2020-02-04 Sumitomo Metal Mining Co., Ltd. Covered lithium-nickel composite oxide particles, and method for manufacturing covered lithium-nickel composite oxide particles
JP2016009523A (ja) * 2014-06-20 2016-01-18 住友金属鉱山株式会社 被覆リチウム−ニッケル複合酸化物粒子及び被覆リチウム−ニッケル複合酸化物粒子の製造方法
KR102301040B1 (ko) * 2014-12-31 2021-09-14 삼성전자주식회사 실리콘계 음극 활물질, 이의 제조방법, 상기 실리콘계 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
KR20160081692A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 실리콘계 음극 활물질, 이의 제조방법, 상기 실리콘계 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
US10686187B2 (en) 2015-02-26 2020-06-16 I.S.T Corporation Slurry for electrode material, method for producing slurry for electrode material, negative electrode, battery, and polyimide-coated active material particles
WO2016136543A1 (ja) * 2015-02-26 2016-09-01 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
JP2016157652A (ja) * 2015-02-26 2016-09-01 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
JP2017178660A (ja) * 2016-03-30 2017-10-05 積水化学工業株式会社 炭素粒子の製造方法
JP2019521488A (ja) * 2016-06-30 2019-07-25 ハイドロ−ケベック 炭素被覆活性粒子およびその調製のためのプロセス
JP7126955B2 (ja) 2016-06-30 2022-08-29 ハイドロ-ケベック 炭素被覆活性粒子およびその調製のためのプロセス
US11563209B2 (en) 2016-06-30 2023-01-24 Hydro-Quebec Carbon-coated active particles and processes for their preparation
WO2023002758A1 (ja) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 負極活物質、負極材料、および電池

Also Published As

Publication number Publication date
JPWO2007094240A1 (ja) 2009-07-02
JP4208034B2 (ja) 2009-01-14
US20080166474A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4208034B2 (ja) 導電性複合粒子の製造方法
KR100832205B1 (ko) 비수 전해질 이차 전지용 부극과 그를 이용한 비수 전해질이차 전지
US9843045B2 (en) Negative electrode active material and method for producing the same
JP5416128B2 (ja) 非水二次電池
JP5985137B2 (ja) 非水二次電池の製造方法
JP5749339B2 (ja) リチウムイオン二次電池
JPWO2009063902A1 (ja) 非水二次電池用電極およびそれを用いた非水二次電池、並びに電極の製造方法
JP2013084601A (ja) 負極活物質及び該物質を採用したリチウム電池
JP2015524993A (ja) 多孔性シリコン系負極活物質、この製造方法、及びこれを含むリチウム二次電池
JPWO2006068066A1 (ja) 非水電解液二次電池用もしくは非水電解液電気化学キャパシタ用の複合電極活物質およびその製造法
TW201246669A (en) Electrode for a lithium battery and lithium battery
JP7162147B2 (ja) 触媒部位が導入された機能性分離膜、その製造方法及びこれを含むリチウム二次電池
KR101105877B1 (ko) 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 이용한 리튬 이차전지
JP2004349056A (ja) リチウム二次電池用負極材料及びその製造方法
KR101108189B1 (ko) 음극 활물질 및 이를 채용한 전극과 리튬 전지
KR20230131963A (ko) 리튬 황 배터리용 캐소드 및 캐소드 물질
JP2011233349A (ja) 非水二次電池
JP2003100284A (ja) リチウム二次電池
JP4021652B2 (ja) リチウムイオン二次電池用正極板およびその製造方法、並びに該正極板を用いたリチウムイオン二次電池
JP2000251890A (ja) 非水電解液二次電池用負極およびこれを用いる二次電池
JP2007311207A (ja) 非水電解液二次電池用負極材料およびそれを用いた非水電解液二次電池、ならびに非水電解液二次電池用負極材料の製造方法
JP6143216B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP7100158B2 (ja) 機能性分離膜、その製造方法及びこれを含むリチウム二次電池
WO2020105599A1 (ja) 複合炭素粒子、その製造方法及びリチウムイオン二次電池
KR102597205B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708246

Country of ref document: EP

Kind code of ref document: A1