WO2014007393A1 - 非水電解液二次電池用負極活物質 - Google Patents

非水電解液二次電池用負極活物質 Download PDF

Info

Publication number
WO2014007393A1
WO2014007393A1 PCT/JP2013/068597 JP2013068597W WO2014007393A1 WO 2014007393 A1 WO2014007393 A1 WO 2014007393A1 JP 2013068597 W JP2013068597 W JP 2013068597W WO 2014007393 A1 WO2014007393 A1 WO 2014007393A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
electrolyte secondary
silicon
Prior art date
Application number
PCT/JP2013/068597
Other languages
English (en)
French (fr)
Inventor
井上 大輔
ヤンコ マリノフ トドロフ
蔭井 慎也
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020147034405A priority Critical patent/KR102063590B1/ko
Priority to GB1500087.0A priority patent/GB2520193B/en
Priority to JP2013556927A priority patent/JP5674964B2/ja
Priority to US14/412,854 priority patent/US10483531B2/en
Publication of WO2014007393A1 publication Critical patent/WO2014007393A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode active material that can be used in a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • the negative electrode of a non-aqueous electrolyte secondary battery is generally prepared by mixing active material particles made of a material capable of inserting lithium ions by charging with a binder, a conductive material, and a solvent, and collecting the resulting mixture. It is manufactured by applying to the surface of the body and drying to form a coating film, followed by pressing.
  • a silicon-based active material is a material that has attracted particular attention as a negative electrode active material for batteries because it has a potential of 5 to 10 times the capacity per mass of graphite.
  • JP-A-11-250896 JP 2000-285919 A Japanese Patent Laid-Open No. 11-354104
  • the silicon-based active material has a potential that the capacity per mass is 5 to 10 times that of graphite, but has a problem.
  • silicon (Si) in the active material reacts with the electrolytic solution to produce a corrosion product, the corrosion product is deposited while charging and discharging are repeated, and the battery capacity gradually decreases. I had a problem.
  • the present invention proposes a new negative electrode active material for a nonaqueous electrolyte secondary battery that can effectively suppress a decrease in battery capacity even after repeated charge and discharge.
  • the present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon, the negative electrode active material having a surface layer containing carbon and titanium or aluminum on the entire surface or part of the active material surface
  • a negative electrode active material for a non-aqueous electrolyte secondary battery containing particles is proposed.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery proposed by the present invention is obtained by providing a surface layer containing oxygen and titanium or aluminum on the entire surface or a part of the surface of the active material, thereby providing silicon in the active material. And the reaction between the electrolyte and the electrolyte solution could be suppressed. As a result, accumulation of corrosion products can be prevented, and the battery capacity can be maintained even after repeated charge and discharge, so that a negative electrode for a non-aqueous electrolyte secondary battery with excellent cycle life can be provided. .
  • the negative electrode active material for a non-aqueous electrolyte secondary battery according to an example of this embodiment is the entire surface of the active material containing silicon (referred to as “core portion”) or A negative electrode active material for a nonaqueous electrolyte secondary battery (hereinafter referred to as “the negative electrode active material particles”) including negative electrode active material particles each having a surface layer containing carbon and titanium or aluminum.
  • the core portion of the negative electrode active material is, for example, pure silicon, silicon oxide such as SiO or SiO 2 , silicon alloy such as SiB 4 , SiB 6 , Cu 5 Si, FeSi 2 , Mg 2 Si, or Si 3 N 4. And silicon-containing substances such as silicon compounds such as SiC.
  • the silicon oxide, silicon alloy or silicon compound includes one or more elements selected from the group consisting of Ni, B, Co, Ti, Fe, In, Ag, Cu and Nb. Is willing to do. In that case, you may contain in what state, for example, you may contain in the state dissolved.
  • the silicon-containing material is a group consisting of a transition metal element, a group 3 metalloid element or metal element, a metal group element or metal element of group 4 (excluding silicon), and a nonmetal or metalloid element of group 5
  • Additive elements may be included.
  • the additive element may be a solid solution in a silicon-containing substance (referred to as “silicon solid solution”).
  • silicon solid solution a silicon-containing substance
  • the mixture of such a silicon solid solution and said silicon-containing substance may be sufficient.
  • the degree of deterioration of the negative electrode active material due to side reactions such as electrolytic solution decomposition is reduced, and corrosion can be suppressed. Further, the generation of the side reaction product not only causes expansion of the electrode, but also causes problems such as consumption of active lithium in the electrode reaction. From such a point of view, among the above additive elements, boron, phosphorus and iron are preferable, and among them, boron is particularly preferable in terms of suppressing reactivity with the electrolytic solution. In this case, it can be considered that many holes are introduced into the solid solution due to the solid solution of boron in silicon. Since the side reaction of the electrolyte solution on the negative electrode active material is mainly an electrophilic reaction, it can be considered that the side reaction is reduced by the presence of many holes in the negative electrode active material.
  • the content of the additive element is 0.01 atomic% to 10 atomic%, particularly 1 atomic% or more, based on 100 atomic% of silicon. It is preferably 6 atomic% or less, more preferably 1 atomic% or more or 3 atomic% or less. Such a numerical value is considerably higher than usual and covers a range exceeding the theoretical value.
  • it can be realized by atomizing by a steam explosion atomizing method described later or by atomizing by a water atomizing method. However, it is not limited to this method.
  • an additive element such as boron (B) is dissolved, it is preferable to precipitate the additive element at the grain boundary by heat treatment from the viewpoint of improving battery characteristics.
  • the core part of the negative electrode active material may have the silicon-containing material as a main component, or may have the silicon solid solution as a main component, or the silicon solid solution and the silicon-containing material.
  • the main component may be a mixture with a substance.
  • the main component may be a mixture of these and a silicon alloy.
  • examples of the silicon alloy include an alloy of silicon and a transition metal, and examples of the transition metal include iron, nickel, titanium, cobalt, and copper. Further, an alloy of silicon and niobium may be used.
  • the “main component” includes a meaning that a component other than the main component may be included, and the content of the main component is 90% by mass or more, particularly 95% by mass or more, Of these, 97% by mass or more is preferable.
  • the surface layer should just exist in the whole surface or a part of surface of an active material (core part), and should just contain carbon, titanium, or aluminum.
  • the surface layer may be present so as to cover the entire surface of the active material, or there may be a portion that is partially present on the surface of the active material and has no surface layer. Further, when observed with an electron microscope, it has been confirmed that even if titanium or aluminum is not densely present on the surface of the active material, the effect of the present invention can be obtained if it is scattered.
  • Such a surface layer can be formed, for example, by producing a negative electrode active material containing silicon and then surface-treating it using a coupling agent containing titanium or aluminum. Further, it may be preferable to heat at 300 to 500 ° C. as necessary.
  • the content of titanium or aluminum in the surface layer is preferably 0.002 to 0.5 mass%, more preferably 0.004 mass% or more or 0.3 mass% or less, and more preferably 0.006 mass% or more. Or it is more preferable that it is 0.2 mass% or less. If the content of titanium or aluminum in the surface layer is 0.002% by mass or more, the reaction between silicon in the active material and the electrolytic solution can be effectively suppressed, and 0.5% by mass or less. Thus, the reaction with the electrolytic solution can be effectively suppressed without hindering the movement of lithium ions.
  • the amount of titanium or aluminum in the surface layer can be adjusted by the amount of coupling agent attached.
  • the amount of carbon in the surface layer is preferably 0.001 to 1.0% by mass of the negative electrode active material particles, and more preferably 0.002% by mass or more and 0.8% by mass or less. More preferably, it is 004 mass% or more or 0.5 mass% or less. If the amount of carbon in the surface layer is 0.001% by mass or more, the dispersibility of the negative electrode active material can be further enhanced, and if it is 1.0% by mass or less, the electrical resistance is further effectively suppressed. Can do.
  • the amount of carbon in the surface layer can be adjusted by the amount of the coupling agent attached, and further by heating after the coupling treatment.
  • the negative electrode active material particles may include an intermediate layer containing an oxide of titanium or aluminum between the surface of the active material (core portion) and the surface layer.
  • the intermediate layer may be formed on the entire surface or part of the surface of the active material, and may include the surface layer on the entire surface or part of the intermediate layer. However, this intermediate layer may not be present.
  • the thickness of the intermediate layer is preferably 0.1 nm to 2.0 nm.
  • the negative electrode active material preferably has a total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) of 0.1 to 2.5% by mass.
  • a total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) is 0.1% by mass or more, the purity of silicon is not too high. If the total content is 2.5% by mass or less, a high capacity can be maintained as the negative electrode active material.
  • the total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) is more preferably 2.0% by mass or less, More preferably, it is 0.5 mass% or more or 1.0 mass% or less.
  • the total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) is, for example, adjustment of the purity of the silicon ingot used as a raw material, selection of a crucible during atomization It can be adjusted by adjusting the particle size.
  • the particle shape of the negative electrode active material is not particularly limited.
  • a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scale shape, an amorphous shape, or a combination thereof can be used.
  • (D50) D50 of the present negative electrode active material is preferably 0.1 ⁇ m to 5.0 ⁇ m, more preferably 4.0 ⁇ m or less, and particularly preferably 3.5 ⁇ m or less.
  • the particle size in such a range not only can the reactivity of the negative electrode active material particles be increased to improve the cycle characteristics, but also the electrode can have excellent uniform reactivity, which also improves the cycle characteristics. Can be increased. Furthermore, a decrease in volume energy density can be suppressed.
  • the laser diffraction / scattering particle size distribution measurement method is a measurement method in which agglomerated powder particles are regarded as one particle (aggregated particle) and the particle size is calculated.
  • D50 by the measuring method means 50% volume cumulative particle diameter, that is, a diameter of 50% cumulative from the narrower one in the cumulative percentage notation of the particle size measurement value converted into volume in the volume reference particle size distribution chart.
  • the amount of water per unit specific surface area (120 ° C.-300 ° C.) of the negative electrode active material particles is preferably 40 ppm / (m 2 / g) to 350 ppm / (m 2 / g), particularly 42 ppm / (m 2 / g) or more, or preferably at 300 ppm / (m 2 / g) or less, and more preferably among them 45 ppm / (m 2 / g) or more, or 270 ppm / (m 2 / g) or less.
  • the amount of water (120 ° C.-300 ° C.) on the surface of the negative electrode active material particles can be adjusted by the amount of the coupling agent attached and further by heating after the coupling treatment.
  • the specific surface area of the negative electrode active material 1.0 ⁇ 15.0 m 2 / g is preferably from, particularly 1.5m 2 / g or more or 14.0 m 2 / g or less, particularly 1.5m among them 2 / g or more, or 12.0 m 2 / g or less, more preferably 10.0 m 2 / g or less. If the specific surface area is adjusted to such a range, the reactivity of the negative electrode active material particles can be increased to improve the cycle characteristics. In order to adjust the specific surface area of the present negative electrode active material to the above range, for example, it is preferable to atomize by a steam explosion atomizing method described later and to perform pulverization by a jet mill or the like. However, it is not limited to such a manufacturing method.
  • silicon powder core part
  • the silicon powder may be obtained by heating a silicon-containing substance to form a melt, or after mixing the silicon-containing substance with the additive element and heating to form a melt, or by heating the silicon-containing substance. After adding the above additive elements to the melt, atomize by atomizing method, etc., and further pulverize and classify under non-oxygen atmosphere as necessary to adjust the particle size to produce silicon powder do it.
  • a silicon ingot may be pulverized in a non-oxygen atmosphere and classified to adjust the particle size to produce silicon powder.
  • the silicon-containing material as a raw material has a surface moisture content (200-300 ° C.) per unit specific surface area of 0.1 ppm / (m 2 / g) to 20 ppm / (m 2 / g), and more particularly 0.5 ppm / ( m 2 / g) or more or 15 ppm / (m 2 / g) or less, and among them, it is preferable to use one having a concentration of 1.0 ppm / (m 2 / g) or more or 10 ppm / (m 2 / g) or less.
  • a relatively small amount of coupling agent can be applied to the surface of the silicon-containing material particles, and the thickness of the surface layer is reduced. be able to.
  • a silicon-containing substance having a surface moisture content (200-300 ° C.) per unit specific surface area of 0.1 ppm / (m 2 / g) to 20 ppm / (m 2 / g) for example, used as a raw material What is necessary is just to dry or to grind
  • inert gas for example, nitrogen gas
  • the pressure wave generated by causing boiling by spontaneous nucleation is dropped into the cooling medium. It is preferable to employ a method of atomizing the molten metal (this atomization method is referred to as “a steam explosion atomization method” in the present specification). However, it is not limited to such an atomizing method.
  • the silicon powder thus obtained can be subjected to a surface treatment using a coupling agent containing titanium or aluminum, dried, and the solvent is evaporated to obtain the present negative electrode active material.
  • a coupling agent containing titanium or aluminum it may be preferable to heat at 300 to 500 ° C. after volatilizing the solvent.
  • the coupling agent containing titanium or aluminum may be a compound having an organic functional group and a hydrolyzable group in the molecule, and among them, one having an amino group in the side chain is preferable.
  • a coupling agent having an amino group in the side chain is particularly excellent in binding property with the binder because it is more compatible with the binder.
  • the surface treatment of the active material is performed using such a coupling agent, it is necessary to dry it by heating to, for example, 40 to 120 ° C. in order to volatilize the solvent.
  • heating at 300 to 500 ° C. may be preferable. By heating to 300 to 500 ° C. in this way, the surface layer can be oxidized, and the life characteristics may be further enhanced depending on the type of coupling agent.
  • the negative electrode according to the present embodiment includes a coating film including the negative electrode active material, a binder, a conductive material as necessary, and graphite as the negative electrode active material as necessary.
  • binder any of polyimide, polyamide, and polyamideimide may be used. These may be used singly or in combination of two or more (hereinafter collectively referred to as “polyimide etc.”). Furthermore, you may use together binders other than these further.
  • polyimide Commercially available products can be used as the polyimide and the like.
  • a polyamide having a glass transition point Tg of 200 to 400 ° C it is preferable to use a polyamideimide having a glass transition point Tg of 200 to 400 ° C.
  • the polyimide or the like is preferably fixed to at least a part of the surface of the negative electrode active material particles (hereinafter simply referred to as “negative electrode active material particles” when simply referred to as “active material particles”).
  • a particularly preferable form of fixing of polyimide or the like is a form in which the surface of the active material particles is fixed in a planar shape with at least a part of the surface.
  • “Surface shape” is synonymous with film shape, and is in a state opposite to a state in which dots are scattered.
  • “adhesion” refers to bonding in a state where a mechanical bonding force (for example, an anchor effect such as engagement or fitting) or a chemical bonding force is generated between the active material particles and polyimide. The state where the active material particles and polyimide are simply mixed and both are in contact with each other as a result is not “fixed”.
  • a method for fixing polyimide or the like on the surface of the active material particles in a planar shape will be described later.
  • the polyimide or the like does not cover the entire surface of the active material particles, but is preferably fixed to the surface in such a manner that a portion where the polyimide or the like is not fixed remains on the surface of the active material particles. . It is preferable that adjacent active material particles are in contact with each other at a portion where polyimide or the like is not fixed, and polyimide or the like is fixed and connected around the contact point. Thus, the electronic conductivity can be ensured by bringing the active material particles into contact with each other through a portion where polyimide or the like is not fixed.
  • the polyimide, etc., fixed in a planar shape to the surface of the active material particles are integrally connected via a connecting portion made of polyimide, etc., fixed to the surface of another active material adjacent to the particle.
  • a connecting portion made of polyimide, etc. fixed to the surface of another active material adjacent to the particle.
  • the active material particles are in contact with adjacent particles, and polyimide or the like fixed around the contact point is connected to each other to form a connected portion.
  • the connecting portion made of polyimide or the like can be stretched while maintaining a fixed state with the particles. This effectively prevents the active material particles from falling off the active material layer due to expansion, and improves the charge / discharge cycle characteristics.
  • This also contributes to suppression of an increase in battery thickness associated with charging.
  • the suppression of the increase in the thickness of the battery accompanying charging is particularly effective when the negative electrode of the present invention is applied to a battery used in a situation where the battery accommodation space is limited, such as a battery for a mobile phone.
  • the connection site can also contract as the particles contract.
  • the connection part which consists of polyimides etc. has connected active material particle
  • the plurality of active material particles are connected in a bead shape via the connecting part.
  • the beaded connection may be linear or meandering.
  • the beaded connection may literally be annular or non-annular.
  • the bead-like connection may be a single line or a branched aspect.
  • the proportion of polyimide or the like contained in the active material layer is preferably 1 to 15% by mass, more preferably 2% by mass or more and 10% by mass or less, based on the mass of the active material particles.
  • the conductive material for example, metal fine powder, powder of conductive carbon material such as acetylene black, or the like can be used.
  • metal fine powder powder of conductive carbon material such as acetylene black, or the like can be used.
  • fine powder such as a metal having lithium ion conductivity such as Sn, Zn, Ag and In or an alloy of these metals.
  • the content of the binder is preferably 1 to 15 parts by mass, particularly 2 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the present negative electrode active material.
  • the content of the conductive material is preferably 1 to 10 parts by weight, particularly 2 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the present negative electrode active material.
  • graphite is blended as the negative electrode active material, the graphite content is such that the mixing mass ratio of the negative electrode active material and graphite is 0.5: 95 to 50:50, particularly 10:90. preferable.
  • the negative electrode is prepared by mixing the negative electrode active material (particulate), a binder, a conductive material, and a solvent to prepare a negative electrode mixture.
  • the negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • the negative electrode active material layer can be formed by coating and drying, and then the active material layer can be pressed as necessary.
  • Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed in a non-oxygen atmosphere, such as an argon atmosphere, for 1 hour to 10 hours, particularly 1 hour to 7 hours.
  • a non-oxygen atmosphere such as an argon atmosphere
  • the negative electrode active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and a conductive material such as metal fine powder or acetylene black are mixed as necessary.
  • a negative electrode mixture is prepared, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • a polyamic acid polyamide acid
  • a polyimide precursor compound can be used as a polyimide precursor compound.
  • the negative electrode mixture is applied to the surface of the current collector, it is preferably heated to a temperature exceeding 300 ° C., particularly 310 ° C. or higher, more preferably 315 ° C. or higher to volatilize the organic solvent and polymerize the polyimide precursor compound.
  • polyimide can be fixed in a planar shape on the surface of the active material particles, and the active material is connected in a bead shape through a connecting portion made of polyimide. Can do.
  • the first-stage heating is preferably performed at 100 to 150 ° C.
  • the second-stage heating is preferably performed at a temperature exceeding 300 ° C., for example, 310 to 400 ° C.
  • the heating time of the first stage is equal to or longer than the heating time of the second stage.
  • a heating temperature intermediate between the first and second stages in the above-described two-stage heating is preferably performed at 150 to 190 ° C.
  • the heating time is preferably the same as the time of the first stage and the second stage or a time intermediate between the first stage and the second stage. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress. Furthermore, when performing heating of 4 steps
  • heating is preferably performed in an inert atmosphere such as argon, and in the final stage, heating is preferably performed at a temperature exceeding 300 ° C., particularly 310 ° C. or higher.
  • a pressing member such as a glass plate.
  • the organic solvent contained in the negative electrode mixture can be gradually volatilized, whereby the precursor compound of the polyamide can be made sufficiently high molecular weight, and the active material Polyimide can be fixed over a wide range of the particle surface, and a three-dimensional network void can be formed in the active material layer over the entire thickness direction.
  • heat treatment can be performed in the same manner as the polyimide described above.
  • a negative electrode mixture containing polyamide or polyamideimide and active material particles is applied to the surface of the current collector, and then Tg-100 ° C. to Tg + 100 ° C. (where Tg is polyamide or It is preferable to form the active material layer by heating and drying the coating film in a temperature range of (representing the glass transition point of polyamideimide), particularly in the temperature range of Tg-100 ° C. to Tg.
  • the further improvement of the cycle characteristics is even more remarkable when the above-mentioned drying is performed at a temperature of Tg-50 ° C to Tg + 50 ° C, especially Tg-50 ° C to Tgm, especially 300 ° C or higher, for example, 310 ° C or higher. It will be something.
  • the glass transition point of polyamide or polyamideimide is measured by using TG-DTA6200 (manufactured by SII Co., Ltd.) under an argon atmosphere and setting the scanning speed to 5 ° C./min.
  • the non-aqueous electrolyte secondary battery (referred to as “the present secondary battery”) according to the present embodiment can be composed of a negative electrode, a positive electrode, a separator, a non-aqueous electrolyte, and the like. It can be used as a secondary battery.
  • the positive electrode is formed, for example, by forming a positive electrode active material layer on at least one surface of a current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • a positive electrode active material what is conventionally known in the said technical field can be especially used without a restriction
  • various lithium transition metal composite oxides can be used. Examples of such a material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1.
  • a synthetic resin nonwoven fabric As the separator used together with the negative electrode and the positive electrode, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene or polypropylene, or a polytetrafluoroethylene porous film is preferably used.
  • the nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • organic solvent include carbonate organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, fluorine organic solvents obtained by fluorinating a part of the carbonate organic solvent such as fluoroethylene carbonate, and the like.
  • One type or a combination of two or more types is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate, or the like can be used.
  • the lithium salt CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI And LiC 4 F 9 SO 3 .
  • These can be used alone or in combination of two or more.
  • Example 1 Manufacture of negative electrode active material Roughly pulverizing an ingot of silicon (Si), and further pulverizing with jet mill under nitrogen atmosphere (less than 1% in the air, the remainder being vaporized nitrogen from liquefied nitrogen (purity 99.999% or more)) The particle size was adjusted using a machine to obtain silicon fine powder having an indefinite shape.
  • the impurity content of the obtained silicon fine powder was measured, the total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) was 0.64% by mass. Further, when the surface moisture content of the obtained silicon fine powder was measured, the surface moisture content (200-300 ° C.) was 25 ppm, the specific surface area of the silicon fine powder was 4.3 m 2 / g, and the unit specific surface area Per surface water content (200-300 ° C.) was 5.8 ppm / (m 2 / g).
  • the negative electrode mixture prepared as described above was applied on one side so as to have a coating thickness of 12 ⁇ m on the electrolytic copper foil. Subsequently, the coating film was heated in a reduced pressure argon atmosphere to polymerize the precursor compound, thereby preparing a negative electrode. The heating was performed in four stages. The first stage heating was performed at 120 ° C. for 4 hours, the second stage heating was performed at 150 ° C. for 1 hour, the third stage heating was performed at 200 ° C. for 1 hour, and the fourth stage heating was performed at 310 ° C. for 1 hour. During the heating, the current collector on which the coating film was formed was sandwiched between two glass plates.
  • the negative electrode produced in this way when the vicinity of the current collector interface in the longitudinal section of the active material layer was observed with a scanning microscope, a surface layer partially existed on the surface of the active material particles (core portion) made of silicon. In addition, aluminum (Al) was scattered on the surface of the active material particles (core portion). Moreover, when this surface layer was analyzed by EDX, it turned out that it contains oxygen, aluminum, and carbon. Further, the polyimide was fixed in a planar shape on the surface of the active material particles made of silicon. Adjacent active material particles were in contact with each other, and adjacent active material particles were connected by a connecting portion made of polyimide, resulting in a bead shape. Furthermore, the active material particles and the current collector were also connected by a connecting portion made of polyimide.
  • Example 2 Example except that titanate coupling agent (Ajinomoto Fine Techno Co., Ltd. Preneact KR-44) was used instead of aluminate coupling agent (Ajinomoto FineTechno Co., Ltd. Preneact AL-M) as the surface treatment agent.
  • titanate coupling agent Alkaolin Co., Ltd. Preneact KR-414
  • aluminate coupling agent Alkaolino Chemical Co., Ltd. Preneact AL-M
  • surface-treated silicon powder D50: 3.3 ⁇ m, specific surface area 4.5 m 2 / g
  • a negative electrode mixture and a negative electrode were obtained.
  • the negative electrode produced in this way when the vicinity of the current collector interface in the longitudinal section of the active material layer was observed with a scanning microscope, a surface layer partially existed on the surface of the active material particles (core portion) made of silicon. In addition, titanium was scattered on the surface of the active material particles (core portion). Further, when the surface layer was analyzed by EDX, it was found to contain oxygen, titanium and carbon. Further, the polyimide was fixed in a planar shape on the surface of the active material particles made of silicon. Adjacent active material particles were in contact with each other, and adjacent active material particles were connected by a connecting portion made of polyimide, resulting in a bead shape. Furthermore, the active material particles and the current collector were also connected by a connecting portion made of polyimide.
  • Example 1 As in Example 1, a negative electrode was prepared in the same manner as in Example 1 except that a silicon fine powder before surface treatment (D50: 3.2 ⁇ m, specific surface area 4.3 m 2 / g) was prepared and used as a negative electrode active material. A mixture and a negative electrode were obtained.
  • a silicon fine powder before surface treatment D50: 3.2 ⁇ m, specific surface area 4.3 m 2 / g
  • Example 3 (1) Manufacture of negative electrode active material Steam explosion atomization is performed on the melt obtained by heating and melting a silicon (Si) ingot to 1600 ° C. using the apparatus described in FIG. 2 of International Publication No. 01/081033. It was. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. Each 13 g of silicon melt was dropped into the mixing nozzle 2 (free fall). The cooling rate at this time was estimated to be 10 6 K / s to 10 8 K / s according to the estimation method described above.
  • the silicon powder obtained by the above steam explosion atomization is further subjected to particle size adjustment using a jet mill pulverizer under a nitrogen atmosphere (less than 1% in the air, the remainder is vaporized nitrogen from liquefied nitrogen (purity 99.999% or more)), Silicon fine powder as a negative electrode active material was obtained.
  • the impurity content of the obtained silicon fine powder was measured, the total content of iron (Fe), calcium (Ca), phosphorus (P) and oxygen (O) was 0.77% by mass. Further, when the surface moisture content of the obtained silicon fine powder was measured, the surface moisture content (200-300 ° C.) was 18 ppm, the specific surface area of the silicon fine powder was 2.7 m 2 / g, and the unit specific surface area Per surface water content (200-300 ° C.) was 6.7 ppm / (m 2 / g).
  • Cutter mill contains 100 parts by mass of the silicon powder obtained above, 1 part by mass of a titanate coupling agent (Ajinomoto Fine Techno Co., Ltd., Preneact KR-44) as a surface treatment agent, and 1.4 parts by mass of isopropyl alcohol as a solvent. (Milcer 720G manufactured by Iwatani Corporation) was used for mixing. Subsequently, the mixed silicon powder was heat-treated at 100 ° C. for 1 hour under vacuum to obtain a surface-treated silicon powder (D50: 3.4 ⁇ m, specific surface area 2.8 m 2 / g).
  • Adjacent active material particles were in contact with each other, and adjacent active material particles were connected by a connecting portion made of polyimide, resulting in a bead shape. Furthermore, the active material particles and the current collector were also connected by a connecting portion made of polyimide.
  • Example 4> Instead of using a titanate coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact KR-44) as a surface treatment agent, a titanate coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact KR-46B) was used. Further, 100 parts by mass of the obtained silicon powder, 1 part by mass of the titanate coupling agent, and 1.4 parts by mass of isopropyl alcohol as a solvent were mixed using a cutter mill (Milcer 720G manufactured by Iwatani Corporation). The mixed silicon powder was heat-treated at 100 ° C. for 1 hour under vacuum, and further treated at 500 ° C.
  • the negative electrode produced in this way when the vicinity of the current collector interface in the longitudinal section of the active material layer was observed with a scanning microscope, a surface layer partially existed on the surface of the active material particles (core portion) made of silicon. In addition, titanium was scattered on the surface of the active material particles (core portion). Further, when the surface layer was analyzed by EDX, it was found to contain oxygen, titanium and carbon. Further, the polyimide was fixed in a planar shape on the surface of the active material particles made of silicon. Adjacent active material particles were in contact with each other, and adjacent active material particles were connected by a connecting portion made of polyimide, resulting in a bead shape. Furthermore, the active material particles and the current collector were also connected by a connecting portion made of polyimide.
  • Example 5 Surface-treated silicon powder using aluminate coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact AL-M) instead of titanate coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact KR-44) as a surface treatment agent (D50: 3.5 ⁇ m, specific surface area 2.7 m 2 / g) was obtained in the same manner as in Example 4 to obtain a negative electrode mixture and a negative electrode.
  • aluminate coupling agent Align Al-M
  • titanate coupling agent Align KR-444
  • the negative electrode produced in this way when the vicinity of the current collector interface in the longitudinal section of the active material layer was observed with a scanning microscope, a surface layer partially existed on the surface of the active material particles (core portion) made of silicon. In addition, aluminum (Al) was scattered on the surface of the active material particles (core portion). Moreover, when this surface layer was analyzed by EDX, it turned out that it contains oxygen, aluminum, and carbon. Further, the polyimide was fixed in a planar shape on the surface of the active material particles made of silicon. Adjacent active material particles were in contact with each other, and adjacent active material particles were connected by a connecting portion made of polyimide, resulting in a bead shape. Furthermore, the active material particles and the current collector were also connected by a connecting portion made of polyimide.
  • Example 3 a negative electrode was prepared in the same manner as in Example 3 except that a silicon fine powder before surface treatment (D50: 3.3 ⁇ m, specific surface area of 2.7 m 2 / g) was prepared and used as the negative electrode active material. A mixture and a negative electrode were obtained.
  • a silicon fine powder before surface treatment D50: 3.3 ⁇ m, specific surface area of 2.7 m 2 / g
  • ICP emission spectroscopic analysis
  • Horiba EMGA-620W oxygen nitrogen analyzer
  • Fe iron
  • Ca calcium
  • O oxygen
  • the sample (powder) obtained by the Example and the comparative example was 0.414 MPa using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.).
  • the particle size distribution (dry method) was measured using a laser diffraction particle size distribution analyzer “MT3000II” manufactured by Nikkiso Co., Ltd., and D50 was determined from the obtained volume-based particle size distribution chart.
  • the particle permeability condition for measurement was reflection, the shape was non-spherical, the measurement range was 0.133 to 704.0 ⁇ m, the measurement time was 30 seconds, and the average value measured twice was D50.
  • MONOSORBLOOP product name MS-18 manufactured by Yuasa Ionics Co., Ltd.
  • the inside of the glass cell was replaced with nitrogen gas for 5 minutes at a gas amount of 30 mL / min, and then heat treatment was performed at 250 ° C. for 10 minutes in the nitrogen gas atmosphere.
  • the sample (powder) was measured by the BET single point method using the MONOSORBLOOP.
  • the adsorbed gas at the time of measurement was a mixed gas of 30% nitrogen: 70% helium.
  • the negative electrode active material (powder) was measured from 120 ° C. to 300 ° C. under the following conditions using the following Karl Fischer moisture meter. The amount of water released upon heating was measured to determine the amount of water at 120 ° C. to 300 ° C., and indicated as “120-300 ° C. water amount (ppm)” in the table.
  • Lithium secondary batteries were prepared using the negative electrodes obtained in the examples and comparative examples, and the cycle characteristics (capacity retention ratio) when charging and discharging were repeated at room temperature were measured.
  • an electrolytic solution a solution obtained by dissolving 1 mol / l LiPF 6 in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used. A polypropylene porous film was used as the separator. The obtained negative electrode was punched into a circle having a diameter of 14 mm and vacuum-dried at 160 ° C. for 6 hours. Then, a 2032 coin cell was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode. As an electrolytic solution, a solution of 1 mol / L LiPF 6 dissolved in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used. A polypropylene porous film was used as the separator.
  • Example 1 to 5 and Comparative Examples 1 and 2 6.93 mA was set to 1C. Based on the current value of 1C, the current value of each C rate was calculated and used to evaluate the capacity retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 充放電を繰り返しても電池容量が低下しない、新たな非水電解液二次電池用負極を提案する。 ケイ素を含有する非水電解液二次電池用負極活物質であって、活物質表面の全面又は一部に、酸素とチタン又はアルミニウムとを含有する表面層を備えた負極活物質粒子を含む非水電解液二次電池用負極活物質を提案する。

Description

非水電解液二次電池用負極活物質
 本発明は、リチウム二次電池等の非水電解液二次電池に用いることのできる負極活物質に関する。
 非水電解液二次電池の負極は、一般的に、充電によってリチウムイオンを挿入可能な材料からなる活物質の粒子を、バインダー、導電材及び溶剤と混合し、得られた合剤を集電体の表面に塗布して乾燥させて塗膜とし、更にプレス加工を施して製造されている。
 近年、電気自動車やスマートフォンといったアプリケーションの発達に伴い、電池の高容量化や高寿命化がさらに望まれている。現在、市販されている電池の負極は、そのほとんどがグラファイトを負極活物質として使っているが、容量の面ではすでに理論限界に至っており、新たな負極活物質の開発が必要とされている。その有力候補の一つとして挙げられるのが、ケイ素を含有する活物質(「ケイ素系活物質」とも称する)である。ケイ素系活物質は、質量当たりの容量がグラファイトの5~10倍というポテンシャルを有しているため、電池の負極活物質として特に注目されている材料である。
 この種のケイ素系活物質に関しては、様々な面から新たな提案が為されている。
 例えば、ケイ素系活物質の電子伝導性を高めるために、例えば導電助剤を加えることにより、添加集電体と活物質との間の電子伝導性を付与することが提案されている(例えば特許文献1、特許文献2参照)。
 また、ケイ素系活物質のサイクル特性を向上させるため、シランカップリング剤で表面処理することが提案されている(例えば特許文献3参照)
特開平11-250896号公報 特開2000-285919号公報 特開平11-354104号公報
 ケイ素系活物質は、前述のように質量当たりの容量がグラファイトの5~10倍というポテンシャルを有している反面、課題も抱えている。例えば活物質中のケイ素(Si)と電解液とが反応して腐食生成物を生成するため、充放電を繰り返すうちに、該腐食生成物が堆積するようになり、次第に電池容量が低下するといった問題を抱えていた。
 そこで本発明は、充放電を繰り返しても電池容量の低下を効果的に抑えることができる、新たな非水電解液二次電池用負極活物質を提案せんとするものである。
 本発明は、ケイ素を含有する非水電解液二次電池用負極活物質であって、活物質表面の全面又は一部に、炭素とチタン又はアルミニウムとを含有する表面層を備えた負極活物質粒子を含む非水電解液二次電池用負極活物質を提案する。
 本発明が提案する非水電解液二次電池用負極活物質は、活物質表面の全面又は一部に、酸素とチタン又はアルミニウムとを含有する表面層を設けたことにより、活物質中のケイ素と電解液との反応を抑制することができた。これによって、腐食生成物の堆積を防ぐことができ、充放電を繰り返しても電池容量を維持することができるため、サイクル寿命に優れた非水電解液二次電池用負極を提供することができる。
<本負極活物質>
 本実施形態の一例に係る非水電解液二次電池用負極活物質(以下「本負極活物質」と称する)は、ケイ素を含有する活物質(「コア部」と称する)の表面の全面又は一部に、炭素とチタン又はアルミニウムとを含有する表面層を備えた負極活物質粒子を含む非水電解液二次電池用負極活物質(以下「本負極活物質粒子」と称する)である。
(コア部)
 本負極活物質のコア部は、例えば純ケイ素、SiOやSiO2等のケイ素酸化物、SiB4やSiB6、Cu5Si、FeSi2、Mg2Si等のケイ素合金、さらにはSi34やSiC等のケイ素化合物などのケイ素含有物質を主成分とするものである。
 この際、上記ケイ素酸化物、ケイ素合金又はケイ素化合物が、Ni、B、Co、Ti、Fe、In、Ag、Cu及びNbからなる群のうちの1又は2以上の元素を含有するものも包含する意である。その際、どのような状態で含有してもよく、例えば固溶した状態で含有してもよい。
 上記ケイ素含有物質は、遷移金属元素、3族の半金属元素若しくは金属元素、4族(ただしケイ素は除く)の半金属元素若しくは金属元素、および5族の非金属若しくは半金属元素からなる群のうちの1種又は2種以上の元素(これをまとめて「添加元素」と称する)を含有するものであってもよい。好ましくは、当該添加元素がケイ素含有物質に固溶されてなるもの(「ケイ素固溶体」と称する)であってもよい。また、このようなケイ素固溶体と上記のケイ素含有物質との混合物であってもよい。
 本負極活物質の粒径を小さくすると、比表面積が大きくなるため、充放電時において電解液分解などの副反応による負極活物質の劣化が起こりやすくなる。そこで、上記のような添加元素を固溶させることで、電解液分解などの副反応による負極活物質の劣化の程度が小さくなり、腐食を抑制することができる。また、副反応物の発生は電極膨張の原因になるだけではなく、電極反応に活性なリチウムを消費するなどの不具合が生じる。このような観点から、上記添加元素の中でも、ホウ素、リン、鉄が好ましく、その中でも、電解液との反応性を抑制する点で、特にホウ素が好ましい。この場合、ケイ素にホウ素が固溶することに起因して、固溶体中に多くの正孔が導入されるものと考えることができる。負極活物質上での電解液の副反応は主に求電子反応であるため、負極活物質に多くの正孔が存在することで、その副反応が低減するものと考えることができる。
 ホウ素(B)などの添加元素を上記ケイ素含有物質に固溶させる場合、当該添加元素の含有量は、ケイ素100原子%に対して0.01原子%~10原子%、特に1原子%以上或いは6原子%以下、その中でも1原子%以上或いは3原子%以下であるのが好ましい。かかる数値は、通常よりかなり高く、理論値を超える範囲までカバーするものである。
 上記添加元素の固溶量を高めるためには、例えば、後述する水蒸気爆発アトマイズ法により微粒化したり、水アトマイズ法により微粒化したりすることによって実現することができる。但し、かかる方法に限定されるものではない。
 なお、ホウ素(B)などの添加元素を固溶させる場合には、熱処理することで当該添加元素を粒界に析出させることが電池特性向上の点で好ましい。
 本負極活物質のコア部は、上述したように、上記ケイ素含有物質を主成分とするものでもよいし、上記ケイ素固溶体を主成分とするものでもよいし、また、上記ケイ素固溶体と上記ケイ素含有物質との混合物を主成分とするものでもよい。さらには、これらと、ケイ素合金との混合物を主成分とするものでもよい。
 この際、当該ケイ素合金としては、例えばケイ素と遷移金属との合金を挙げることができ、当該遷移金属としては、例えば鉄、ニッケル、チタン、コバルト、銅などを挙げることができる。また、ケイ素とニオブとの合金であってもよい。
 なお、本発明において「主成分」とは、該主成分以外の成分を含んでいてもよい意味を包含するものであり、主成分の含有量としては90質量%以上、特に95質量%以上、中でも97質量%以上であるのが好ましい。
(表面層)
 表面層は、活物質(コア部)の表面の全面又は一部に存在していればよく、炭素と、チタン又はアルミニウムとを含有していればよい。
 活物質表面の全面又は一部に、このような表面層を設けたことにより、活物質中のケイ素と電解液との反応を抑制することができ、充放電を繰り返しても電池容量を維持することができる。また、このような表面層は、リチウムイオンの移動に実質的に影響を及ぼさない。
 当該表面層は、活物質表面の全面を被覆するように存在してもよいし、又、活物質表面に部分的に存在し、表面層が存在しない部分があってもよい。
 また、電子顕微鏡で観察すると、活物質表面にチタンやアルミニウムが密に存在していなくても、点在していれば本発明の効果を得られることが確認されている。
 このような表面層は、例えば、ケイ素を含有する負極活物質を製造した後、チタン又はアルミニウムを含有するカップリング剤を用いて表面処理することにより形成することができる。また、その後必要に応じて300~500℃で加熱する方が好ましい場合もある。
 前記表面層におけるチタン又はアルミニウムの含有量は、0.002~0.5質量%であるのが好ましく、中でも0.004質量%以上或いは0.3質量%以下、その中でも0.006質量%以上或いは0.2質量%以下であるのがさらに好ましい。
 表面層中のチタン又はアルミニウムの含有量が0.002質量%以上であれば、活物質中のケイ素と電解液との反応を効果的に抑制することができ、0.5質量%以下であれば、リチウムイオンの移動を妨げず、電解液との反応を効果的に抑制することができる。
 表面層中のチタン又はアルミニウム量は、カップリング剤の付着量によって調整することができる。
 また、当該表面層中の炭素量は、負極活物質粒子の0.001~1.0質量%であるのが好ましく、中でも0.002質量%以上或いは0.8質量%以下、その中でも0.004質量%以上或いは0.5質量%以下であるのがさらに好ましい。
 表面層中の炭素量が0.001質量%以上であれば、本負極活物質の分散性をより一層高めることができ、1.0質量%以下であれば、電気抵抗をさらに有効に抑えることができる。
 表面層中の炭素量は、カップリング剤の付着量、さらにはカップリング処理後の加熱によって調整することができる。
(中間層)
 本負極活物質粒子は、前記活物質(コア部)の表面と前記表面層との間に、チタン又はアルミニウムの酸化物を含有する中間層を備えていてもよい。この際、当該中間層は、活物質表面の全面又は一部に形成されていればよく、また、当該中間層の全面又は一部に上記の表面層を備えていてもよい。但し、この中間層が存在しなくてもよい。
 また、該中間層の厚さは0.1nm~2.0nmであるのが好ましい。
(不純物含有量)
 本負極活物質は、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量が0.1~2.5質量%であるのが好ましい。
 本負極活物質において、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量が0.1質量%以上であれば、ケイ素の純度が高過ぎないため、電気伝導性の低下を抑えることができ、しかも、当該合計含有量が2.5質量%以下であれば、負極活物質として高容量を維持することができる。
 かかる観点から、本負極活物質において、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量は、特に2.0質量%以下であるのがさらに好ましく、中でも0.5質量%以上或いは1.0質量%以下であるのがさらに好ましい。
 なお、本負極活物質において、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量は、例えば原料として用いるケイ素インゴットの純度の調整、アトマイズ時の坩堝の選択、粒度の調整などによって調整することができる。
(粒子形状)
 本負極活物質の粒子形状は、特に限定されるものではない。例えば球状、多面体状、紡錘状、板状、鱗片状若しくは不定形又はそれらの組み合わせを用いることができる。例えばガスアトマイズによれば球状となり、ジェットミルなどにより粉砕すると、粒界に沿って粒子が割れるために不定形状になることが確認されている。
(D50)
 本負極活物質のD50は0.1μm~5.0μmであるのが好ましく、中でも4.0μm以下、その中でも特に3.5μm以下であるのがさらに好ましい。かかる範囲の粒度に調整すれば、負極活物質粒子の反応性を高めてサイクル特性を高めることができるばかりか、電極の均一反応性を優れたものとすることができ、これによってもサイクル特性を高めることができる。さらには体積エネルギー密度の低下を抑えることができる。
 なお、本負極活物質のD50を上記範囲に調整するには、例えば、後述する水蒸気爆発アトマイズ法により微粒化すると共に、ジェットミルなどにより粉砕を実施するのがよい。但し、そのような製法に限定されるものではない。
 なお、レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法である。その測定方法によるD50とは、50%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細い方から累積50%の径を意味する。
(水分量)
 本負極活物質粒子の単位比表面積当たりの水分量(120℃-300℃)は、40ppm/(m2/g)~350ppm/(m2/g)であるのが好ましく、特に42ppm/(m2/g)以上或いは300ppm/(m2/g)以下であるのが好ましく、中でも45ppm/(m2/g)以上或いは270ppm/(m2/g)以下であるのがさらに好ましい。
 本負極活物質粒子表面の水分量(120℃-300℃)は、カップリング剤の付着量、さらにはカップリング処理後の加熱によって調整することができる。
(比表面積)
 本負極活物質の比表面積は、1.0~15.0m2/gであるのが好ましく、特に1.5m2/g以上或いは14.0m2/g以下、その中でも特に1.5m2/g以上或いは12.0m2/g以下、さらにその中でも10.0m2/g以下であるのがより一層好ましい。
 比表面積をかかる範囲に調整すれば、負極活物質粒子の反応性を高めてサイクル特性を高めることができる。
 なお、本負極活物質の比表面積を上記範囲に調整するには、例えば、後述する水蒸気爆発アトマイズ法により微粒化すると共に、ジェットミルなどにより粉砕を実施するのがよい。但し、そのような製法に限定されるものではない。
(本負極活物質の製造方法)
 本負極活物質の製造方法の一例について説明する。
 先ず、ケイ素粉末(コア部)を作製する。
 ケイ素粉末は、例えばケイ素含有物質を加熱して溶融液とした後、或いは、上記ケイ素含有物質に上記添加元素を混合して加熱して溶融液とした後、或いは、上記ケイ素含有物質を加熱して溶融液とし、この溶融液に上記添加元素を混合した後、アトマイズ法などによって微粒化させ、さらに必要に応じて非酸素雰囲気下で粉砕及び分級を行って粒度を調整してケイ素粉末を作製すればよい。
 また、ケイ素のインゴットを、非酸素雰囲気下で粉砕し、分級を行って粒度を調整してケイ素粉末を作製するようにしてもよい。
 原料であるケイ素含有物質には、単位比表面積当たりの表面水分量(200-300℃)が0.1ppm/(m2/g)~20ppm/(m2/g)、中でも0.5ppm/(m2/g)以上或いは15ppm/(m2/g)以下、その中でも1.0ppm/(m2/g)以上或いは10ppm/(m2/g)以下であるものを使用するのが好ましい。
 このように表面水分量の少ないケイ素含有物質を原料としてカップリング剤処理することにより、比較的少量のカップリング剤でもケイ素含有物質粒子表面に付けることができ、前記表面層の厚さを薄くすることができる。
 なお、単位比表面積当たりの表面水分量(200-300℃)が0.1ppm/(m2/g)~20ppm/(m2/g)であるケイ素含有物質を得るには、例えば原料として使用する前に乾燥させたり、不活性ガス(例えば窒素ガス)雰囲気下で粉砕処理したりすればよい。
 上記のアトマイズ法としては、例えば、国際公開01/081033号パンフレットの図2に記載の装置を用いて、自発核生成による沸騰を起こさせて生じる圧力波を利用して、冷却媒中に滴下した溶融金属を微粒化する方法(この微粒化方法を本明細書では「水蒸気爆発アトマイズ法」と称する)を採用するのが好ましい。但し、かかるアトマイズ法に限定するものではない。
 次に、このようにして得たケイ素粉末に対して、チタン又はアルミニウムを含むカップリング剤を用いて表面処理を行い、乾燥させて溶媒を揮発させて本負極活物質を得ることができる。この際、前記カップリング剤の種類によっては、溶媒を揮発させた後、300~500℃で加熱するのが好ましい場合もある。
 前記のチタン又はアルミニウムを含むカップリング剤としては、有機官能基と加水分解性基を分子中に有する化合物であればよく、中でも側鎖にアミノ基を有するものが好ましい。側鎖にアミノ基を有するカップリング剤は、バインダーとのなじみがより良いため、バインダーとの結着性に特に優れている。
 このようなカップリング剤を用いて活物質の表面処理を行う場合、溶媒を揮発させるために例えば40~120℃に加熱して乾燥させる必要がある。カップリング剤の種類によっては、さらに300~500℃で加熱するのが好ましい場合もある。
 このように300~500℃に加熱することで、表面層を酸化させることができ、カップリング剤の種類によっては、寿命特性をさらに高めることができる場合がある。
<本負極>
 本実施形態に係る負極(以下「本負極」と称する)は、本負極活物質と、バインダーと、必要に応じて導電材と、必要に応じて負極活物質としてのグラファイトとを含む塗膜を、集電体上に備えた非水電解液二次電池用負極である。
(バインダー)
 バインダーとしては、ポリイミド、ポリアミド及びポリアミドイミドのうちのいずれを用いてもよい。これらは単独で用いてもよく、あるいは2種以上を組み合わせてもよい(以下、これらを総称して「ポリイミド等」とも言う。)。更にこれら以外のバインダーを更に併用してもよい。
 上記のポリイミド等としては、市販のものを制限なく用いることができる。特にポリアミドとしては、200~400℃のガラス転移点Tgを有するものを用いることが好ましい。ポリアミドイミドとしても、200~400℃のガラス転移点Tgを有するものを用いることが好ましい。
 上記のポリイミド等は、負極活物質粒子(以降、単に「活物質粒子」と言えば「負極活物質粒子」の意である)の表面の少なくとも一部に固着しているのが好ましい。
 ポリイミド等の固着の形態として特に好ましい形態は、活物質粒子の表面を少なくとも一部おいて面状に固着している形態である。「面状」とは、膜状と同義であり、点状に散在している状態と対極にある状態である。また、「固着」とは、活物質粒子とポリイミド等との間に機械的な結合力(例えば係合や嵌合等のアンカー効果)又は化学的な結合力が生じるような状態で結合している状態であり、活物質粒子とポリイミド等とを単に混合して両者が結果的に接触しているだけ状態は「固着」に当たらない。
 活物質粒子の表面にポリイミド等を面状に固着させるための方法については後述する。
 ポリイミド等は、活物質粒子の表面の全域を被覆しているのではなく、ポリイミド等が固着していない部分を活物質粒子表面に残すような態様で、該表面に固着していることが好ましい。そして、隣接する活物質粒子間は、ポリイミド等が固着していない部分において接触すると共に、その接触点の周辺にポリイミド等が固着して連結しているのが好ましい。このようにポリイミド等が固着していない部分を介して活物質粒子どうしが接触することで電子伝導性を確保することができる。
 活物質粒子の表面に面状に固着しているポリイミド等は、当該粒子と隣り合う別の活物質の表面に固着しているポリイミド等からなる連結部位を介して一体的に連結しているのが好ましい。すなわち、上述したように、活物質粒子は隣接する粒子同士接触すると共に、その接触点の周辺に固着したポリイミド等が互いに連結して連結部位を形成しているのが好ましい。
 ポリイミド等からなる該連結部位は、活物質粒子にリチウムイオンが挿入され膨張するときに、該粒子との固着状態を維持したままで伸長が可能である。このことによって、膨張に起因する活物質粒子の活物質層からの脱落が効果的に防止され、充放電のサイクル特性が向上する。また、このことは、充電に伴う電池の厚みの増加の抑制にも寄与する。充電に伴う電池の厚みの増加の抑制は、本発明の負極を、携帯電話用の電池のように、電池収容スペースが限られている場面で用いられる電池に適用した場合に特に有効である。一方、放電によって活物質粒子からリチウムイオンが脱離すると該粒子は収縮するところ、連結部位も該粒子の収縮に伴い収縮が可能である。このように、ポリイミド等からなる連結部位は、活物質粒子どうしをあたかもバネのように連結しているので、該粒子が活物質層から脱落することが効果的に防止される。
 活物質粒子どうしが、ポリイミド等からなる連結部位を介して連結していることに加え、複数個の活物質粒子が、前記の連結部位を介して数珠状に連結していることがさらに好ましい。この際、数珠状の連結は、直線状でもよく、あるいは蛇行状でもよい。また、数珠状の連結は、文字どおり環状になっていてもよく、あるいは非環状でもよい。
 さらに、数珠状の連結は、一本の線となる態様でもよく、あるいは枝分かれの態様であってもよい。複数の活物質粒子が数珠状に連結していることで、活物質粒子の膨張による体積の増加が、数珠状の連結の再配置によって一層緩和され、充電に伴う電池の厚みの増加が一層抑制される。
 このように複数個の活物質粒子が数珠状に連結するようにするには、例えば負極合剤を集電体に塗布した後、後述するように、比較的低温で加熱して乾燥させるようにすればよい。但し、この方法に限定するものではない。急激に乾燥させるのではなく、緩やかに乾燥させることにより、溶媒が揮発する経路が生じ、この経路に沿って活物質粒子が配列されるのではないか、と考えることができる。
 活物質層中に含まれるポリイミド等の割合は、活物質粒子の質量に対して1~15質量%であるのが好ましく、特に2質量%以上或いは10質量%以下であるのがさらに好ましい。
(導電材)
 導電材としては、例えば金属微粉や、アセチレンブラック等の導電性炭素材料の粉末等を用いることができる。導電材として金属微粉を用いる場合には、Sn、Zn、Ag及びIn等のリチウムイオン伝導性有する金属又はこれらの金属の合金等の微粉を用いることが好ましい。
(グラファイト)
 負極活物質としてのグラファイトを本負極活物質に加えることで、ケイ素に起因する高容量化と、グラファイトに起因する良好なサイクル特性とを両方得ることができる。
(配合組成)
 本負極において、バインダーの含有量は、本負極活物質100質量部に対して1~15質量部、特に2質量部以上或いは10質量部以下であるのが好ましい。
 また、導電材を配合する場合には、導電材の含有量は、本負極活物質100質量部に対して1~10質量部、特に2質量部以上或いは5質量部以下であるのが好ましい。
 また、負極活物質としてグラファイトを配合する場合には、グラファイトの含有量は、本負極活物質とグラファイトとの混合質量比は0.5:95~50:50、特に10:90であることが好ましい。
(本負極の製造方法)
 本負極は、上記本負極活物質(粒子状)と、バインダーと、導電材と、溶媒とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布して乾燥させることで負極活物質層を形成し、その後、必要に応じて活物質層をプレスして形成することができる。
 負極合剤を集電体の表面に塗布した後の乾燥は、非酸素雰囲気、例えばアルゴン雰囲気下において、1時間~10時間、特に1時間~7時間乾燥を行うのが好ましい。
 ここで、バインダーとしてポリイミドを用いた場合の本負極の製造方法について説明する。
 先ず、本負極活物質(粒子状)と、ポリイミドの前駆体化合物と、N-メチル-2-ピロリドン等の有機溶媒、必要に応じて、金属微粉やアセチレンブラック等の導電材とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布する。
 この際、ポリイミドの前駆体化合物としては、ポリアミック酸(ポリアミド酸)を用いることができる。
 負極合剤を集電体の表面に塗布したら、好ましくは300℃を超える温度、特に310℃以上、中でも好ましくは315℃以上に加熱して有機溶剤を揮発させるとともに、ポリイミドの前駆体化合物を重合させてポリイミドとすることができる。
 この際、当該前駆体化合物の重合条件を調整することで、活物質粒子の表面にポリイミドを面状に固着させることができ、ポリイミドからなる連結部位を介して活物質を数珠状に連結することができる。
 前駆体化合物の重合条件として、多段階の加熱を行うことが有利であることが、本発明者らの検討の結果判明した。特に、少なくとも2段階、好適には少なくとも3段階、さらに好ましくは4段階の加熱を行うことが有利である。例えば、2段階の加熱を行う場合には、1段階目の加熱を100~150℃で行うことが好ましく、2段階目の加熱を300℃を超える温度、例えば310~400℃で行うことが好ましい。
 加熱時間に関しては、1段階目の加熱時間を2段階目の加熱時間と同じか又はそれよりも長くすることが好ましい。例えば、1段階目の加熱時間を120~300分、特に180分以上或いは240分以下に設定し、2段階目の加熱時間を30~120分、特に30~60分に設定することが好ましい。
 3段階の加熱を行う場合には、上述した2段階の加熱において、1段階目と2段階目の中間の加熱温度を採用することが好ましい。
 この中間の加熱は、150~190℃で行うことが好ましい。加熱時間は、1段階目及び2段階目の時間と同じか又は1段階目と2段階目の中間の時間とすることが好ましい。つまり、3段階の加熱を行う場合には、各段階で加熱時間を同じにするか、又は段階が進むにつれて加熱時間を短くすることが好ましい。
 さらに4段階の加熱を行う場合には、3段階目よりも高い加熱温度を採用することが好ましい。
 加熱を何段階で行うかにかかわらず、加熱はアルゴン等の不活性雰囲気中で行うことが好ましく、最終段階では300℃を超える温度、特に310℃以上に加熱するのが好ましい。
 また、加熱処理のときには、活物質層をガラス板等の押さえ部材で押さえることも好ましい。こうすることで、有機溶媒が潤沢な状態で、つまりポリアミック酸が有機溶媒中にあたかも飽和したような状態で、該ポリアミック酸を重合させることができるので、生成するポリイミドの分子鎖どうしが絡まりやすくなるからである。
 以上の多段階加熱を行うことで、負極合剤に含まれている有機溶媒を徐々に揮発させることができ、それによってポリアミドの前駆体化合物を十分に高分子量化させることができるとともに、活物質粒子の表面の広い範囲にわたりポリイミドを固着させることができ、活物質層中にはその厚み方向全域にわたる三次元網目状の空隙を形成することができる。
 なお、ポリアミドやポリアミドイミドを用いる場合も、上述したポリイミドと同様に、熱処理することができる。但し、ポリアミド又はポリアミドイミドを用いる場合には、ポリアミド又はポリアミドイミド及び活物質の粒子を含む負極合剤を集電体の表面に塗布し、その後Tg-100℃~Tg+100℃(該Tgはポリアミド又はポリアミドイミドのガラス転移点を表す)の温度範囲、特にTg-100℃~Tgの温度範囲で塗膜を加熱乾燥することで活物質層を形成することが好ましい。このような乾燥を行うことでサイクル特性が一層向上することが、本発明者らの検討の結果判明した。サイクル特性の更に一層の向上は、前記の乾燥をTg-50℃~Tg+50℃、中でも特にTg-50℃~Tgm、その中でも300℃を超える温度、例えば310℃以上の温度範囲で行うと一層顕著なものとなる。
 ポリアミド又はポリアミドイミドのガラス転移点は、TG-DTA6200(SII(株)社製)を用いて、アルゴン雰囲気下、走査速度を5℃/minに設定して測定される。
<非水電解液二次電池>
 本実施形態に係る非水電解液二次電池(「本二次電池」と称する)は、本負極と、正極と、セパレータと、非水電解液等とから構成することができ、所謂リチウム二次電池として使用することができる。
(正極)
 正極は、例えば集電体の少なくとも一面に正極活物質層が形成されてなるものである。
 正極活物質層には正極活物質が含まれている。正極活物質としては、当該技術分野において従来知られているものを特に制限なく用いることができる。例えば各種のリチウム遷移金属複合酸化物を用いることができる。そのような物質としては、例えばLiCoO2、LiNiO2、LiMnO2、LiMn24、LiCo1/3Ni1/3Mn1/32、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12、Li(LixMn2xCo1-3x)O2(式中、0<x<1/3である)、LiFePO4、LiMn1-zzPO(式中、0<z≦0.1であり、MはCo、Ni、Fe、Mg、Zn及びCuからなる群から選ばれる少なくとも1種の金属元素である。)などが挙げられる。
(セパレータ)
 負極及び正極とともに用いられるセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等のポリオレフィン、又はポリテトラフルオロエチレンの多孔質フィルム等が好ましく用いられる。
(非水電解液)
 非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート系有機溶媒、フルオロエチレンカーボネート等の前記カーボネート系有機溶媒の一部をフッ素化したフッ素系有機溶媒等の1種又は2種以上の組み合わせが用いられる。具体的には、フルオロエチレンカーボネート、ジエチルフルオロカーボネート、ジメチルフルオロカーボネート等を用いることができる。リチウム塩としては、CF3SO3Li、(CF3SO2)NLi、(C25SO22NLi、LiClO4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiCl、LiBr、LiI、LiC49SO3等が例示される。これらは単独で又は2種以上を組み合わせて用いることができる。
<用語の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
<実施例1>
(1)負極活物質の製造
 ケイ素(Si)のインゴットを粗粉砕し、さらに窒素雰囲気(大気1%未満、残部は液化窒素からの気化窒素(純度99.999%以上)下で、ジェットミル粉砕機を用いて粒度調整を行い、不定形状を呈するケイ素微粉末を得た。
 得られたケイ素微粉末の不純物含有量を測定したところ、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量は0.64質量%であった。
 また、得られたケイ素微粉末の表面水分量を測定すると、表面水分量(200-300℃)は25ppmであり、該ケイ素微粉末の比表面積は4.3m2/gであり、単位比表面積当たりの表面水分量(200-300℃)は5.8ppm/(m2/g)であった。
 上記で得られたケイ素粉末100質量部と、表面処理剤としてアルミネート系カップリング剤(味の素ファインテクノ株式会社 プレンアクトAL-M)1.0質量部と、溶媒としてのイソプロピルアルコール1.4質量部とをカッターミル(岩谷産業株式会社製ミルサー720G)を用いて混合した。次いで、混合したケイ素粉末を真空下で100℃1時間の熱処理を行うことで、表面処理ケイ素粉末を得た(D50:3.2μm、比表面積4.4m2/g)。
(2)負極合剤の調製
 上記で得られた表面処理ケイ素粉末100質量部と、導電材(アセチレンブラック)5質量部と、ポリイミドの前駆体化合物(ポリアミック酸)5質量部と、N-メチル-2-ピロリドン100質量部とを混合して負極合剤を得た。
(3)負極の作製
 上記の如く調製した負極合剤を、電解銅箔上に塗膜厚12μmとなるように片面塗布した。次いで、減圧アルゴン雰囲気下において塗膜を加熱して前駆体化合物の重合を行って負極を作製した。
 なお、加熱は4段階で行った。1段階目の加熱は120℃で4時間、2段階目の加熱は150℃で1時間、3段階目の加熱は200℃で1時間、4段階目の加熱は310℃で1時間行った。加熱の間、塗膜が形成された集電体を、2枚のガラス板に挟持しておいた。
 このように作製した負極において、活物質層の縦断面における集電体の界面付近を走査型顕微鏡で観察したところ、ケイ素からなる活物質粒子(コア部)の表面に部分的に表面層が存在しており、活物質粒子(コア部)の表面にアルミニウム(Al)が点在していた。また、該表面層をEDXで分析したところ、酸素とアルミニウムと炭素を含有することが分かった。
 また、ケイ素からなる活物質粒子の表面にポリイミドが面状に固着していた。また、隣り合う活物質粒子どうしが互いに接触すると共に、ポリイミドからなる連結部位によって隣り合う活物質粒子どうしが連結し、数珠状になっていた。さらに、活物質粒子と集電体も、ポリイミドからなる連結部位によって連結していた。
<実施例2>
 表面処理剤として、アルミネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトAL-M)の代わりに、チタネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトKR-44)を用いた以外は、実施例1と同様に、表面処理ケイ素粉末(D50:3.3μm、比表面積4.5m2/g)、負極合剤及び負極を得た。
 このように作製した負極において、活物質層の縦断面における集電体の界面付近を走査型顕微鏡で観察したところ、ケイ素からなる活物質粒子(コア部)の表面に部分的に表面層が存在しており、活物質粒子(コア部)の表面にチタンが点在していた。また、該表面層をEDXで分析したところ、酸素とチタンと炭素を含有することが分かった。
 また、ケイ素からなる活物質粒子の表面にポリイミドが面状に固着していた。また、隣り合う活物質粒子どうしが互いに接触すると共に、ポリイミドからなる連結部位によって隣り合う活物質粒子どうしが連結し、数珠状になっていた。さらに、活物質粒子と集電体も、ポリイミドからなる連結部位によって連結していた。
<比較例1>
 実施例1と同様に、表面処理前ケイ素微粉末(D50:3.2μm、比表面積4.3m2/g)を作製してこれを負極活物質とした以外は、実施例1と同様に負極合剤及び負極を得た。
<実施例3>
(1)負極活物質の製造
 ケイ素(Si)のインゴットを加熱溶融させ、1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。ケイ素の溶融液13gずつ混合ノズル2内に滴下(自由落下)させた。このときの冷却速度は、先に述べた推定方法に従うと106K/s~108K/sと推定された。この時、ホウ素を添加し、その固溶量は、ケイ素100質量部に対して5質量部とした。
 上記水蒸気爆発アトマイズで得たケイ素粉末を、さらに窒素雰囲気(大気1%未満、残部は液化窒素からの気化窒素(純度99.999%以上)下でジェットミル粉砕機を用いて粒度調整を行い、負極活物質としてのケイ素微粉末を得た。
 得られたケイ素微粉末の不純物含有量を測定したところ、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の合計含有量は0.77質量%であった。
 また、得られたケイ素微粉末の表面水分量を測定すると、表面水分量(200-300℃)は18ppmであり、該ケイ素微粉末の比表面積は2.7m2/gであり、単位比表面積当たりの表面水分量(200-300℃)は6.7ppm/(m2/g)であった。
 上記で得られたケイ素粉末100質量部と、表面処理剤としてチタネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトKR-44)1質量部と、溶媒としてのイソプロピルアルコール1.4質量部をカッターミル(岩谷産業株式会社製ミルサー720G)を用いて混合した。次いで、混合したケイ素粉末を真空下で100℃1時間の熱処理を行うことで、表面処理ケイ素粉末を得た(D50:3.4μm、比表面積2.8m2/g)。
(2)(3)負極合剤及び負極の作製
 このようにして得た表面処理ケイ素粉末を用いて、実施例1と同様に、負極合剤及び負極を得た。
 このように作製した負極において、活物質層の縦断面における集電体の界面付近を走査型顕微鏡で観察したところ、ケイ素からなる活物質粒子(コア部)の表面に部分的に表面層が存在しており、活物質粒子(コア部)の表面にチタンが点在していた。また、該表面層をEDXで分析したところ、酸素とチタンと炭素を含有することが分かった。
 また、ケイ素からなる活物質粒子の表面にポリイミドが面状に固着していた。また、隣り合う活物質粒子どうしが互いに接触すると共に、ポリイミドからなる連結部位によって隣り合う活物質粒子どうしが連結し、数珠状になっていた。さらに、活物質粒子と集電体も、ポリイミドからなる連結部位によって連結していた。
<実施例4>
 表面処理剤として、チタネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトKR-44)を用いる代わりに、チタネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトKR-46B)を用いた。また、得られたケイ素粉末100質量部と、該チタネート系カップリング剤1質量部と、溶媒としてのイソプロピルアルコール1.4質量部をカッターミル(岩谷産業株式会社製ミルサー720G)を用いて混合し、混合したケイ素粉末を真空下で100℃、1時間の熱処理を行った後、さらに窒素雰囲気下で500℃2時間の処理を行って表面処理ケイ素粉末を得た(D50:3.5μm、比表面積2.6m2/g)。これ以外の点は、実施例3と同様に、負極合剤及び負極を得た。
 このように作製した負極において、活物質層の縦断面における集電体の界面付近を走査型顕微鏡で観察したところ、ケイ素からなる活物質粒子(コア部)の表面に部分的に表面層が存在しており、活物質粒子(コア部)の表面にチタンが点在していた。また、該表面層をEDXで分析したところ、酸素とチタンと炭素を含有することが分かった。
 また、ケイ素からなる活物質粒子の表面にポリイミドが面状に固着していた。また、隣り合う活物質粒子どうしが互いに接触すると共に、ポリイミドからなる連結部位によって隣り合う活物質粒子どうしが連結し、数珠状になっていた。さらに、活物質粒子と集電体も、ポリイミドからなる連結部位によって連結していた。
<実施例5>
 表面処理剤として、チタネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトKR-44)を用いる代わりに、アルミネート系カップリング剤(味の素ファインテクノ株式会社プレンアクトAL-M)を用いて表面処理ケイ素粉末を得た(D50:3.5μm、比表面積2.7m2/g)を得た以外は、実施例4と同様に、負極合剤及び負極を得た。
 このように作製した負極において、活物質層の縦断面における集電体の界面付近を走査型顕微鏡で観察したところ、ケイ素からなる活物質粒子(コア部)の表面に部分的に表面層が存在しており、活物質粒子(コア部)の表面にアルミニウム(Al)が点在していた。また、該表面層をEDXで分析したところ、酸素とアルミニウムと炭素を含有することが分かった。
 また、ケイ素からなる活物質粒子の表面にポリイミドが面状に固着していた。また、隣り合う活物質粒子どうしが互いに接触すると共に、ポリイミドからなる連結部位によって隣り合う活物質粒子どうしが連結し、数珠状になっていた。さらに、活物質粒子と集電体も、ポリイミドからなる連結部位によって連結していた。
<比較例2>
 実施例3と同様に、表面処理前ケイ素微粉末(D50:3.3μm、比表面積2.7m2/g)を作製してこれを負極活物質とした以外は、実施例3と同様に負極合剤及び負極を得た。
<不純物量の測定方法>
 実施例及び比較例で得たケイ素微粉末(カップリング処理前)について、発光分光分析(ICP)装置及び酸素窒素分析装置(堀場製作所EMGA-620W)を用いて、鉄(Fe)、カルシウム(Ca)、リン(P)および酸素(O)の含有量を測定した。
<表面層中の炭素量の測定>
 実施例及び比較例で得たケイ素微粉末(カップリング処理前)と負極活物質(カップリング処理後)のそれぞれについて炭素硫黄分析装置(堀場製作所EMIA-920V)を用いて炭素(C)の含有量を測定し、両者の差から表面層中の炭素量を算出した。
<D50の測定>
 実施例及び比較例で得られたサンプル(粉体)について、レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、サンプル(粉体)を0.414MPaの圧力で分散させることで、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布(乾式法)を測定し、得られた体積基準粒度分布のチャートからD50を求めた。
 なお、測定の粒子透過性条件を反射、形状を非球形とし、測定レンジを0.133~704.0μm、測定時間を30秒とし、2回測定した平均値をD50とした。
<比表面積>
 測定サンプル(粉体)について、サンプル(粉体)0.5gを流動方式ガス吸着法比表面積測定装置MONOSORBLOOP(ユアサアイオニクス株式会社製「製品名MS‐18」)用ガラスセルに秤量し、前記MONOSORBLOOP用前処理装置にて、30mL/minのガス量にて5分間窒素ガスでガラスセル内を置換した後、前記窒素ガス雰囲気中で250℃10分間、熱処理を行った。その後、前記MONOSORBLOOPを用い、サンプル(粉体)をBET一点法にて測定した。
 なお、測定時の吸着ガスは、窒素30%:ヘリウム70%の混合ガスを用いた。
<カールフィッシャー法による水分量の測定>
 実施例・比較例で得たケイ素微粉末(カップリング処理前)の表面水分量については、下記カールフィッシャー水分計を用いて、下記条件の下、200℃~300℃までケイ素微粉末を加熱した際に放出される水分量を測定し、200~300℃での水分量を求めた。
 装置:水分気化装置「KEMADP-611」/カールフィッシャー水分計「MKC-610-DJ」
 測定:200℃の水分量を測定後、300℃まで昇温し、200℃~300℃までの水分量を測定し、200℃~300℃での水分量を求めた。
 昇温:10℃/min
 流量:アルゴンを70mL/min
 試薬:ハイドラナール・クローマットAGとハイドラナール・クローマットCG
 他方、実施例・比較例で得た負極活物質(粉末)の表面水分量については、下記カールフィッシャー水分計を用いて、下記条件の下、120℃~300℃まで負極活物質(粉末)を加熱した際に放出される水分量を測定し、120℃~300℃での水分量を求め、表中に「120-300℃水分量(ppm)」として示した。
 装置:水分気化装置「KEMADP-611」/カールフィッシャー水分計「MKC-610-DJ」
 測定:120℃の水分量を測定後、300℃まで昇温し、120℃~300℃までの水分量を測定し、120℃~300℃での水分量を求めた。
 昇温:10℃/min
 流量:アルゴンを70mL/min
 試薬:ハイドラナール・クローマットAGとハイドラナール・クローマットCG
<電池特性の評価>
 実施例及び比較例で得られた負極を用いてリチウム二次電池を作製し、常温で充放電を繰り返したときのサイクル特性(容量維持率)を測定した。
(電池の作製)
 電解液として、エチレンカーボネートとジエチルカーボネートの1:1体積比混合溶媒に1mol/lのLiPF6を溶解した溶液を用いた。
 セパレータとして、ポリプロピレン製多孔質フィルムを用いた。得られた負極を、直径14mmの円形に打ち抜き、160℃で6時間真空乾燥を施した。そして、アルゴン雰囲気下のグローブボックス内で、2032コインセルを組み立てた。
 対極としては金属リチウムを用いた。電解液としては、エチレンカーポネートとジエチルカーポネートの1:1体積比混合溶媒に1moL/LのLiPF6を溶解した溶液を用いた。セバレータとしては、ポリプロピレン製多孔質フィルムを用いた。
(充放電条件)
 充電は、定電流・定電圧充電方式で電池電圧が0.001Vまで定電流で、その後は定電圧充電制御により低下する電流値が0.02Cとなったところで充電完了とした。
 放電は定電流で電池電圧が1.5Vまで行った。
 充電及び放電は、常温下で行い、そのサイクルにおけるレートは、実施例1~5及び比較例1~2については、1回目は0.1C、2回目以降は0.2Cとした。
 充放電サイクル特性の評価においては、実施例1~5及び比較例1~2については2サイクル目放電容量を、それぞれ100%とした場合の20サイクル目の放電容量を容量維持率(Capacity Retention)として比較した。
 なお、実施例1~5及び比較例1~2については、6.93mAを1Cとした。その1Cの電流値を基に各々のCレートの電流値を算出し、容量維持率の評価に用いた。
Figure JPOXMLDOC01-appb-T000001
(考察)
 実施例、比較例で得られた負極活物質の測定結果を表1に示した。
 表1から明らかなように、各実施例で得られた負極活物質を用いると、比較例で得られた負極活物質を用いた場合よりも、容量維持率が高まることが分かった。

Claims (11)

  1.  ケイ素を含有する非水電解液二次電池用負極活物質であって、活物質表面の全面又は一部に、炭素とチタン又はアルミニウムとを含有する表面層を備えた負極活物質粒子を含む非水電解液二次電池用負極活物質。
  2.  前記表面層におけるチタン又はアルミニウムの含有量が0.002~0.5質量%であることを特徴とする請求項1記載の非水電解液二次電池用負極活物質。
  3.  前記表面層における炭素の含有量が0.004~0.5質量%であることを特徴とする請求項1又は2に記載の非水電解液二次電池用負極活物質。
  4.  チタン又はアルミニウムを含有するカップリング剤を用いて表面処理して得られる請求項1~3の何れかに記載の非水電解液二次電池用負極活物質。
  5.  チタン又はアルミニウムを含有するカップリング剤を用いて表面処理した後、300~500℃に加熱して得られる請求項1~3の何れかに記載の非水電解液二次電池用負極活
    物質。
  6.  側鎖にアミノ基を有するカップリング剤を用いて表面処理することを特徴とする請求項4又は5に記載の非水電解液二次電池用負極活物質。
  7.  レーザー回折散乱式粒度分布測定法により測定されるD50が0.1μm~5.0μmであることを特徴とする請求項1~6の何れかに記載の非水電解液二次電池用負極活物質。
  8.  請求項1~7の何れかに記載の非水電解液二次電池用活物質とバインダーとを含む非水電解液二次電池用負極。
  9.  第1負極活物質としての請求項1~7の何れかに記載の非水電解液二次電池用活物質と、第2負極活物質のグラファイトと、バインダーとを含む非水電解液二次電池用負極。
  10.  前記バインダーが、ポリイミドであることを特徴とする請求項8又は9に記載の非水電解液二次電池用負極。
  11.  請求項8~10の何れかに記載の負極を備えた非水電解液二次電池。
PCT/JP2013/068597 2012-07-06 2013-07-08 非水電解液二次電池用負極活物質 WO2014007393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147034405A KR102063590B1 (ko) 2012-07-06 2013-07-08 비수 전해액 이차전지용 음극 활물질
GB1500087.0A GB2520193B (en) 2012-07-06 2013-07-08 Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2013556927A JP5674964B2 (ja) 2012-07-06 2013-07-08 非水電解液二次電池用負極活物質
US14/412,854 US10483531B2 (en) 2012-07-06 2013-07-08 Negative electrode active material for nonaqueous electrolyte secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-152128 2012-07-06
JP2012152128 2012-07-06

Publications (1)

Publication Number Publication Date
WO2014007393A1 true WO2014007393A1 (ja) 2014-01-09

Family

ID=49882143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068597 WO2014007393A1 (ja) 2012-07-06 2013-07-08 非水電解液二次電池用負極活物質

Country Status (5)

Country Link
US (1) US10483531B2 (ja)
JP (2) JP5674964B2 (ja)
KR (1) KR102063590B1 (ja)
GB (1) GB2520193B (ja)
WO (1) WO2014007393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225690A (ja) * 2014-05-26 2015-12-14 山陽特殊製鋼株式会社 蓄電デバイス用Si系合金負極材料の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990566B (zh) * 2015-02-03 2019-02-22 微宏动力系统(湖州)有限公司 氧化镍复合负极材料及其制备方法
JP6111453B2 (ja) * 2015-02-26 2017-04-12 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
KR102537225B1 (ko) * 2015-10-23 2023-05-30 삼성전자주식회사 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
KR102164252B1 (ko) 2017-05-04 2020-10-12 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
KR102250897B1 (ko) 2018-01-30 2021-05-10 주식회사 엘지화학 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293942A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
WO2007094240A1 (ja) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. 導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池
JP2008210618A (ja) * 2007-02-26 2008-09-11 Hitachi Maxell Ltd 非水電解質二次電池
JP2010157405A (ja) * 2008-12-26 2010-07-15 Toda Kogyo Corp 非水電解質二次電池用ポリアニオン系正極活物質及びその製造方法、並びに非水電解質二次電池
JP2010170878A (ja) * 2009-01-23 2010-08-05 Nec Tokin Corp リチウムイオン電池
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池
JP2012124057A (ja) * 2010-12-09 2012-06-28 Nec Corp リチウムイオン二次電池及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250896A (ja) 1998-02-27 1999-09-17 Sii Micro Parts:Kk 化学電池
JPH11354104A (ja) 1998-04-09 1999-12-24 Denso Corp 非水電解液二次電池及び電極の製造方法
JP4457429B2 (ja) 1999-03-31 2010-04-28 パナソニック株式会社 非水電解質二次電池とその負極
EP1285710B1 (en) 2000-04-21 2012-04-04 Central Research Institute of Electric Power Industry Method for producing fine particles
JP4623283B2 (ja) * 2004-03-26 2011-02-02 信越化学工業株式会社 珪素複合体粒子及びその製造方法並びに非水電解質二次電池用負極材
CN101026234A (zh) * 2007-02-12 2007-08-29 范正刚 锌镍电池负极片
WO2010143641A1 (ja) * 2009-06-08 2010-12-16 住友化学株式会社 電極合剤、電極合剤ペースト、電極および非水電解質二次電池
JP5215978B2 (ja) * 2009-10-28 2013-06-19 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
CN102484247B (zh) * 2010-07-01 2016-03-02 松下知识产权经营株式会社 非水电解质二次电池
US9478800B2 (en) * 2012-05-15 2016-10-25 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293942A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
WO2007094240A1 (ja) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. 導電性複合粒子およびその製造方法、並びにそれを用いた電極板、リチウムイオン二次電池
JP2008210618A (ja) * 2007-02-26 2008-09-11 Hitachi Maxell Ltd 非水電解質二次電池
JP2010157405A (ja) * 2008-12-26 2010-07-15 Toda Kogyo Corp 非水電解質二次電池用ポリアニオン系正極活物質及びその製造方法、並びに非水電解質二次電池
JP2010170878A (ja) * 2009-01-23 2010-08-05 Nec Tokin Corp リチウムイオン電池
JP2012124057A (ja) * 2010-12-09 2012-06-28 Nec Corp リチウムイオン二次電池及びその製造方法
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225690A (ja) * 2014-05-26 2015-12-14 山陽特殊製鋼株式会社 蓄電デバイス用Si系合金負極材料の製造方法

Also Published As

Publication number Publication date
JPWO2014007393A1 (ja) 2016-06-02
US20150194669A1 (en) 2015-07-09
KR102063590B1 (ko) 2020-02-11
JP5674964B2 (ja) 2015-02-25
GB2520193A (en) 2015-05-13
JP2015065173A (ja) 2015-04-09
US10483531B2 (en) 2019-11-19
GB2520193B (en) 2015-11-04
KR20150035580A (ko) 2015-04-06

Similar Documents

Publication Publication Date Title
JP5513689B1 (ja) 非水電解液二次電池用負極活物質
US10164251B2 (en) Negative active material and lithium battery including negative active material
KR101612066B1 (ko) 비수전해액 이차전지용 음극 활물질
JP5674964B2 (ja) 非水電解液二次電池用負極活物質
JP6601937B2 (ja) 負極活物質、それを採用した負極及び該リチウム電池、並びに該負極活物質の製造方法
KR20170132620A (ko) 음극 활물질 및 이의 제조 방법
JP2017224499A (ja) リチウムイオン電池用負極活物質およびリチウムイオン電池
JP2014051418A (ja) 複合材料及びその製造方法、正極活物質、正極、並びに非水電解質二次電池
JP5760871B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極部材、リチウムイオン二次電池、及びリチウムイオン二次電池用正極材料の製造方法
JP5604962B2 (ja) 二次電池用正極活物質及び二次電池
JP2020205268A (ja) Si系負極活物質
WO2015163398A1 (ja) 非水電解液二次電池用負極活物質
JP2019179731A (ja) 全固体電池負極及び全固体型リチウム二次電池
JP6177652B2 (ja) リチウム二次電池の製造方法
WO2024095901A1 (ja) リチウムイオン電池用の負極材料粉末
WO2024190760A1 (ja) リチウムイオン電池負極活物質
WO2022260110A1 (ja) リチウムイオン電池用負極活物質
CN117999672A (zh) 锂离子电池用的负极材料粉末

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013556927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034405

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412854

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1500087

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130708

WWE Wipo information: entry into national phase

Ref document number: 1500087.0

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812678

Country of ref document: EP

Kind code of ref document: A1