WO2007094090A1 - アーク溶接の制御方法および溶接装置 - Google Patents

アーク溶接の制御方法および溶接装置 Download PDF

Info

Publication number
WO2007094090A1
WO2007094090A1 PCT/JP2006/311730 JP2006311730W WO2007094090A1 WO 2007094090 A1 WO2007094090 A1 WO 2007094090A1 JP 2006311730 W JP2006311730 W JP 2006311730W WO 2007094090 A1 WO2007094090 A1 WO 2007094090A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
welding
period
wire feed
wire
Prior art date
Application number
PCT/JP2006/311730
Other languages
English (en)
French (fr)
Inventor
Junji Fujiwara
Yasushi Mukai
Atsuhiro Kawamoto
Masaru Kowa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06766592.7A priority Critical patent/EP1985400B1/en
Priority to US11/571,106 priority patent/US8080763B2/en
Priority to CN2006800003376A priority patent/CN101151118B/zh
Publication of WO2007094090A1 publication Critical patent/WO2007094090A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0735Stabilising of the arc length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Definitions

  • the present invention relates to an arc welding control method and a welding apparatus that alternately repeat a short-circuit period and an arc period while feeding a welding wire.
  • FIG. 9 shows control of conventional arc welding.
  • the welding voltage Vw, welding current Iw, wire feed speed setting signal Fr, and wire tip feed speed Fs each change over time as shown in the figure. Since the time tl force is also shorter than the predetermined time T during the short-circuit period Ts of t2, the signal Fr remains at Ffr which sets the wire advance, and the wire is fed at the speed Ffs. The wire is fed at the speed Ffs even in the arc period Ta from t2 to t3 that follows.
  • the signal Fr remains at Ffr and the wire is fed at the speed Ffs from time t3 to time t4 after the elapse of time Tt.
  • the signal Fr switches to Frr, which sets the retreat of the wire, and the wire feed speed Fs decreases with a slope due to inertia.
  • the welding current Iw is reduced to a low value.
  • the wire feed speed Fs decreases and falls below 0, that is, retracts.
  • the wire tip moves away from the base metal, the short circuit is released, and the arc is regenerated.
  • the signal Fr switches to Ffr, and the wire feed speed Fs increases toward Ffs.
  • the welding current Iw is a value corresponding to the wire feed speed Ffs determined by the constant voltage characteristic of the welding voltage Vw and the arc load.
  • the present invention is a control method for arc welding in which a short-circuit period and an arc period are alternately repeated while feeding a welding wire.
  • the wire feed speed is lower than the basic feed speed.
  • the wire feed speed is the basic feed speed during the arc period.
  • the welding current is increased to a predetermined peak current by current control until the first predetermined time during arc generation, and constant voltage control is performed from the first predetermined time to the second predetermined time.
  • the welding current is output by the welding voltage, and the welding current is reduced to a predetermined base current lower than the peak current by current control from the second predetermined time to the end of the arc period.
  • FIG. 1 is a diagram showing an arc welding control method according to a first embodiment of the present invention.
  • FIG. 2 is a diagram in which the waveform of the wire feed speed WS is changed by the partial change of FIG.
  • FIG. 3 is a diagram in which the waveform of the wire feed speed WS is changed by the partial change of FIG.
  • FIG. 4 is a diagram showing an offset of the wire feed amount.
  • FIG. 5 is a diagram showing an offset of the wire feed amount.
  • FIG. 6 is a configuration diagram of the arc welding apparatus according to the first to third embodiments of the present invention.
  • FIG. 7 is a diagram showing an arc welding control method according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing an arc welding control method according to a third embodiment of the present invention.
  • FIG. 9 is a diagram showing a conventional arc welding control method.
  • FIG. 1 shows an arc welding control method according to Embodiment 1 of the present invention.
  • Welding current I, welding voltage V, wire feed speed WS, wire feed motor ON Z OFF (ONZOFF) command motor ONZOFF signal N, wire feed motor direction signal motor polarity signal K Each time changes as shown.
  • the welding current I is increased with a predetermined slope by current control. Further, the wire feed speed WS is reduced from the basic feed speed WS1 to WS2. Just before the end of the short-circuit period, the welding current I is sharply reduced by detecting the constriction of the molten welding wire.
  • the welding current I is increased with a predetermined slope by current control until the peak current IP of a separately determined value is reached. After reaching the peak current IP, the welding current I maintains the peak current IP until time t3. Also, set the wire feed speed WS to WS1 from WS2 force. [0013]
  • the value of the peak current IP is 200 A or more, but it is desirable to experimentally determine a value suitable for the target welding. If the value of the peak current IP is too low, micro-shorts that cause spattering are likely to occur, and if it is too high, the molten pool is dug down. Therefore, it is necessary to accurately control the welding current I.
  • the wire feed speed WS is still at a low speed close to WS2, so that the arc can be burned up without excessively increasing the peak current IP, and the micro short circuit is suppressed. Is done.
  • the welding voltage V is controlled at a constant voltage to the basic welding voltage VP, and the welding current I shown in the figure is output by this constant voltage.
  • the constant voltage it is possible to stably maintain an appropriate arc length, so that there is almost no micro short circuit.
  • the welding current I is decreased with a predetermined slope by current control until a base current IB having a separately determined value is reached. If the base current IB is 100 A or less, even if a short circuit occurs, almost no large grain spatter is generated. By reducing the welding current I with a predetermined slope, the rapid change in the arc state can be mitigated. It is desirable to experimentally determine the value of the base current IB suitable for the target welding.
  • the welding current I maintains the base current IB until time t6, ensuring a state in which the next short-circuit period is likely to occur.
  • the wire feeding speed WS can be decelerated from the basic feeding speed WS1 to WS2 with a predetermined inclination. In this way, sudden changes in the wire feed speed WS can be moderated.
  • the wire feed speed WS is decelerated to WS2 lower than the basic feed speed WS1, and during the arc period from time t2 to t6, the wire feed speed Speed Increase WS to WS4 or WS5 higher than WS1.
  • the wire feed rate WS decreases, so the wire feed rate decreases.
  • the wire feed rate WS increases, so the wire feed rate increases. It is important to obtain a stable wire feed amount regardless of changes in the number of shorts by offsetting the decrease and increase of the wire feed amount in order to obtain good welding quality.
  • FIG. 4 shows a first offset method.
  • a decrease in wire feed during the short-circuit period of the time tl force t2 is calculated.
  • the wire is fed at the speed WS4
  • the increase in wire feed is calculated in real time, and at time t8 when the decrease and increase in wire feed become equal, Wire feed speed WS is reduced to WS1.
  • Wire feed speed WS4 value should be determined appropriately experimentally U.
  • FIG. 5 shows a second offset method, where the time of the previous arc period, such as the time of the previous arc period or the average time of multiple previous arc periods, and the short circuit from time tl to t 2 are shown.
  • the wire feed speed WS5 that can offset the decrease and increase in wire feed is determined from the decrease in wire feed during the period.
  • FIG. 6 shows an arc welding apparatus according to the present embodiment.
  • AC voltage 1 is rectified by rectifier 2.
  • the rectified voltage passes through the switching element 3, the transformer 4, the rectifier 5, and the DC reactor 6, and is applied as a welding voltage between the wire 22 and the workpiece 25 for welding.
  • Current detector 9 detects the welding current.
  • the short-circuit Z arc detector 10 determines whether the welding process force is currently in the short-circuit period or the arc period based on the welding voltage detected by the welding voltage detector 8.
  • the wire feed motor controller 16 includes a wire feed speed controller 17, a second timer 18, a motor ONZOFF controller 19, a motor polarity controller 20, and a calculation unit 26.
  • the wire feed speed controller 17 instructs the wire feed speed WS 1
  • the motor ONZOFF controller 19 instructs ON
  • the motor polarity Controller 20 commands a forward movement.
  • the calculation unit 26 calculates the wire feed decrease during the short-circuit period. Furthermore, the calculation unit 26 calculates the wire feed increase in real time during the arc period, and instructs the wire feed speed to be WS1 when the shortage and the increase become the same value.
  • the calculation unit 26 calculates the wire feeding decrease during the short circuit period. Then, the calculation unit 26 calculates and instructs the wire feed speed WS5 based on the time data of the past arc period and the wire feed reduction amount.
  • the wire feed motor 21 feeds the wire in accordance with an instruction from the wire feed motor controller 16.
  • the timer 18 measures the delay time when delaying the increase in the wire feed speed.
  • the short circuit controller 11 controls the welding current I.
  • the arc controller 12 controls the welding current and the welding voltage V.
  • the arc controller 12 includes a first timer 13, a current controller 14, and a voltage controller 15.
  • the timer 13 measures each time shown in FIG.
  • the current controller 14 controls the welding current I between time t2 and t3 and between time t4 and t6.
  • the voltage controller 15 controls the welding voltage V between times t3 and t4.
  • the drive unit 7 controls the switching element 3 based on a signal from the short circuit controller 11 or the arc controller 12.
  • FIG. 7 shows an arc welding control method according to the second embodiment of the present invention.
  • the welding current I, welding voltage V, wire feed speed WS, motor ONZ OFF signal N that indicates ONZOFF of the wire feed motor, and motor polarity signal K that indicates the rotation direction of the wire feed motor are respectively shown. It changes with time as shown in the figure.
  • the difference from the first embodiment is that the wire feed speed WS is set to 0, that is, the wire feed is stopped during the short-circuit period from time tl to t2.
  • the other points are the same as in the first embodiment (see FIG. 1).
  • the wire feed speed WS can be changed with a predetermined inclination as in the first embodiment.
  • the offset between the decrease and the increase in wire feed can be performed in the same manner as in the first embodiment (see FIGS. 4 and 5).
  • the arc welding apparatus used in the present embodiment is the same as the arc welding apparatus described in the first embodiment.
  • the wire feed speed WS during the short-circuit period is set to 0, so that the number of micro short-circuits at the time of arc generation can be reduced compared to the first embodiment.
  • the wire can be sufficiently melted and an arc can be generated in a shorter short-circuit period.
  • FIG. 8 shows an arc welding control method according to the third embodiment of the present invention.
  • Welding current I, welding voltage V, wire feed speed WS, motor ONZ OFF signal N indicating wire feed motor ONZOFF, and motor polarity signal K indicating the rotation direction of the wire feed motor are shown in the figure. It changes with time.
  • Embodiment 1 The difference from Embodiment 1 is that the wire feed speed WS is set in the reverse direction during the short-circuit period from time tl to t2.
  • the other points are the same as in the first embodiment (see FIG. 1).
  • the wire feed speed WS can be changed with a predetermined inclination.
  • the arc welding apparatus used in the present embodiment is the same as the arc welding apparatus described in the first embodiment.
  • the wire feed speed WS in the short-circuit period is set to reverse.
  • the short-circuit at the time of arc generation can be further reduced as compared with the first or second embodiment.
  • the wire can be sufficiently melted in a shorter short-circuit period to generate an arc.
  • the arc welding control method of the present invention can reduce spatter, it is industrially useful as an arc welding apparatus and its control method.

Abstract

 ワイヤ送給速度を、短絡期間には基本ワイヤ送給速度より低い速度とし、アーク期間には基本ワイヤ送給速度とする。アーク期間では、アーク発生時から第1の所定時間まで、電流制御で溶接電流を所定のピーク電流に増加し、第1の所定時間から第2の所定時間まで、定電圧制御した溶接電圧により溶接電流を出力し、第2の所定時間からアーク期間の終了まで、電流制御で溶接電流を所定のベース電流に減少する。

Description

明 細 書
アーク溶接の制御方法および溶接装置
技術分野
[0001] 本発明は、溶接ワイヤを送給しながら短絡期間とアーク期間とを交互に繰返すァー ク溶接の制御方法および溶接装置に関する。
背景技術
[0002] 図 9は、従来のアーク溶接の制御を示す。溶接電圧 Vw、溶接電流 Iw、ワイヤの送 給速度設定信号 Fr、ワイヤ先端の送給速度 Fsは、それぞれ図示のように時間変化 する。時刻 tl力も t2の短絡期間 Tsでは、 Tsは予め定めた時間 T り短いので、信 号 Frはワイヤの前進を設定する Ffrのままで、ワイヤは速度 Ffsで送給される。続く時 刻 t2から t3のアーク期間 Taでも、ワイヤは速度 Ffsで送給される。
[0003] 時刻 t3力 始まる短絡期間では、時刻 t3から時間 Tt経過後の時刻 t4までは、信号 Frは Ffrのままで、ワイヤは速度 Ffsで送給される。時刻 t4において、信号 Frはワイ ャの後退を設定する Frrに切り換わり、ワイヤ送給速度 Fsは慣性によるスロープで減 少する。同時に、溶接電流 Iwを低い値に減少させる。
[0004] ワイヤ送給速度 Fsは、減少して 0より下、すなわち後退となる。時刻 t5においてワイ ャ先端が母材から離れ、短絡が解除されてアークが再発生する。同時に、信号 Frは Ffrに切り換わり、ワイヤ送給速度 Fsは Ffsへ向って増加する。そして、溶接電流 Iw は、溶接電圧 Vwの定電圧特性とアーク負荷とで定まるワイヤ送給速度 Ffsに応じた 値となる。
[0005] 上記従来のアーク溶接の制御では、時刻 tlから t2の通常の短絡期間と、時刻 t3か ら t5の通常より非常に長い短絡期間とが存在するので、アークの安定性に問題があ る。上記従来のアーク溶接の制御については、例えば日本特許出願特開 2004— 2 98924号公報に開示されている。
発明の開示
[0006] 本発明は、溶接ワイヤを送給しながら短絡期間とアーク期間とを交互に繰り返すァ ーク溶接の制御方法である。短絡期間では、ワイヤ送給速度を基本送給速度より低 い速度とし、アーク期間では、ワイヤ送給速度を基本送給速度とする。アーク期間で は、アーク発生時力 第 1の所定時間までは、電流制御により所定のピーク電流に溶 接電流を増加し、第 1の所定時間から第 2の所定時間までは、定電圧制御された溶 接電圧により溶接電流を出力し、第 2の所定時間からアーク期間終了までは、電流 制御によりピーク電流よりも低い所定のベース電流に溶接電流を減少する。
図面の簡単な説明
[0007] [図 1]図 1は、本発明の実施の形態 1のアーク溶接制御方法を示す図である。
[図 2]図 2は、図 1の部分変更で、ワイヤ送給速度 WSの波形を変更した図である。
[図 3]図 3は、図 1の部分変更で、ワイヤ送給速度 WSの波形を変更した図である。
[図 4]図 4は、ワイヤ送給量のオフセットを示す図である。
[図 5]図 5は、ワイヤ送給量のオフセットを示す図である。
[図 6]図 6は、本発明の実施の形態 1から 3のアーク溶接装置の構成図である。
[図 7]図 7は、本発明の実施の形態 2のアーク溶接制御方法を示す図である。
[図 8]図 8は、本発明の実施の形態 3のアーク溶接制御方法を示す図である。
[図 9]図 9は、従来のアーク溶接制御方法を示す図である。
符号の説明
[0008] I 溶接電流
V 溶接電圧
WS ワイヤ送給速度
IP ピーク電流
IB ベース電流
3 スイッチング素子
7 駆動部
8 溶接電圧検出器
9 溶接電流検出器
10 短絡 Zアーク検出器
11 短絡制御器
12 アーク制御器 13 第 1の計時器
14 アーク定電流制御器
15 アーク定電圧制御器
16 ワイヤ送給モータ制御器
17 ワイヤ送給速度制御器
18 第 2の計時器
19 モータ ONZOFF制御器
20 モータ極性制御器
21 ワイヤ送給モータ
22 ワイヤ
24 アーク
25 被溶接物
26 演算部
発明を実施するための最良の形態
[0009] 以下、本発明の実施の形態について、図 1から図 8を用いて説明する。
[0010] (実施の形態 1)
図 1は、本発明の実施の形態 1のアーク溶接制御方法を示す。溶接電流 I、溶接電 圧 V、ワイヤ送給速度 WS、ワイヤ送給モータのオン Zオフ(ONZOFF)を指示する モータ ONZOFF信号 N、ワイヤ送給モータの回転方向を指示するモータ極性信号 Kは、それぞれ図示のように時間変化する。
[0011] 時刻 tlから t2の短絡期間では、電流制御により、溶接電流 Iを、所定の傾きで上昇 させる。また、ワイヤ送給速度 WSを基本送給速度 WS1から WS2に減速する。短絡 期間の終端直前で、溶融した溶接ワイヤのくびれを検知して溶接電流 Iを急峻に低 減する。
[0012] 時刻 t2力 t3のアーク期間では、電流制御により、溶接電流 Iを、別途定める値の ピーク電流 IPに達するまで所定の傾きで上昇させる。溶接電流 Iは、ピーク電流 IPに 達した後は時刻 t3までピーク電流 IPを維持する。また、ワイヤ送給速度 WSを WS2 力ら WS1に;^す。 [0013] ピーク電流 IPの値は、 200A以上であるが、対象とする溶接に適する値を実験的に 定めることが望ましい。ピーク電流 IPの値は、低すぎるとスパッタの原因となる微小短 絡が発生しやすくなり、高すぎると溶融プールが掘り下げられるので、溶接電流 Iを正 確に電流制御することが必要である。
[0014] 時刻 t2、すなわちアーク発生直後は、ワイヤ送給速度 WSはまだ WS2近くの低速 にあるので、ピーク電流 IPを過剰に高くしなくてもアークは燃え上がることができ、微 小短絡は抑制される。
[0015] 時刻 t3力も t4のアーク期間では、溶接電圧 Vを、基本溶接電圧 VPに定電圧制御 し、この定電圧により図示の溶接電流 Iを出力する。定電圧制御をすることにより、適 正なアーク長を安定して維持することができるので、微小短絡は殆ど発生しな 、。
[0016] 時刻 t4力 t5のアーク期間では、電流制御により、溶接電流 Iを、別途定める値の ベース電流 IBに達するまで所定の傾きで減少させる。ベース電流 IBが 100A以下で あれば、たとえ微小短絡しても大粒スパッタは殆ど発生しない。溶接電流 Iを所定の 傾きで減少させることにより、アークの状態の急激な変化を緩和できる。ベース電流 I Bの値は、対象とする溶接に適する値を実験的に定めることが望ましい。
[0017] 時刻 t5力 t6のアーク期間では、定電流制御により、溶接電流 Iは時刻 t6まで基底 電流 IBを維持し、次の短絡期間が発生しやすい状態を確保する。
[0018] 本実施の形態のアーク溶接制御方法は、上記した短絡期間とアーク期間とを交互 に繰り返す。
[0019] ここで、ワイヤ送給速度 WSを変化させる時の勾配と遅延時間について説明する。
図 2に示すように、ワイヤ送給速度 WSを基本送給速度 WS1から WS2に所定の傾き で減速することは可能である。このようにして、ワイヤ送給速度 WSの急激な変化を緩 禾ロすることができる。
[0020] また、図 3に示すように、ワイヤ送給速度 WSを WS2から WS1に所定の傾きで増速 することは可能である。このようにして、アーク状態の急激な変化を緩和することがで きるとともに、アーク発生直後の微小短絡を少なくすることができる。
[0021] さらに、ワイヤ送給速度 WSを WS2から WS1に増速する際に、図 2に示すように、 t 2から所定時間遅延した時刻 t7力 増速を開始することは可能である。遅延時間の 間、ワイヤ送給速度 WSは低速の WS2に保たれるので、ピーク電流 IPを過剰に高く しなくてもアークを燃え上がらせることができ、微小短絡の発生は抑制される。
[0022] 次に、ワイヤ送給量のオフセットを説明する。図 4、図 5に示すように、時刻 tlから t2 の短絡期間は、ワイヤ送給速度 WSを基本送給速度 WS1より低い WS2に減速し、時 刻 t2から t6のアーク期間は、ワイヤ送給速度 WSを WS1より高い WS4または WS5に 増速する。短絡期間はワイヤ送給速度 WSが低 ヽのでワイヤ送給量は減少するが、 アーク期間はワイヤ送給速度 WSが高 、のでワイヤ送給量は増加する。ワイヤ送給 量の減少分と増加分とをオフセットして、短絡回数の変化に関せず安定したワイヤ送 給量を得ることが、良好な溶接品質を得るために重要である。
[0023] 図 4は第 1のオフセット方法を示し、まず時刻 tl力 t2の短絡期間のワイヤ送給の 減少分を算出する。時刻 t2力 t6のアーク期間では、ワイヤを速度 WS4で送給する とともに、ワイヤ送給の増加分をリアルタイムに算出し、ワイヤ送給の減少分と増加分 とが同値になった時刻 t8で、ワイヤ送給速度 WSを WS1に減速する。ワイヤ送給速 度 WS4の値は、実験的に適切に定めることが望ま U、。
[0024] 図 5は第 2のオフセット方法を示し、一つ前のアーク期間の時間または先立つ複数 回のアーク期間の平均時間などの、先立つアーク期間の時間データと、時刻 tlから t 2の短絡期間のワイヤ送給の減少分とから、ワイヤ送給の減少分と増加分とをオフセ ットできるワイヤ送給速度 WS5を定める。
[0025] 図 6は、本実施の形態のアーク溶接装置を示す。 AC電圧 1は整流器 2で整流され る。整流電圧は、スイッチング素子 3、トランス 4、整流器 5、 DCリアクタ 6、を経て、ワイ ャ 22と被溶接物 25とを溶接するために両者の間に溶接電圧として印加される。電流 検出器 9は溶接電流を検出する。
[0026] 短絡 Zアーク検出器 10は、溶接電圧検出器 8が検出する溶接電圧に基づいて、 溶接プロセス力 現在、短絡期間とアーク期間のいずれにあるかを判定する。
[0027] ワイヤ送給モータ制御器 16は、ワイヤ送給速度制御器 17、第 2の計時器 18、モー タ ONZOFF制御器 19、モータ極性制御器 20、演算部 26を有する。
[0028] 短絡 Zアーク検出器 10が、短絡期間と判定する場合は、ワイヤ送給速度制御器 1 7はワイヤ送給速度 WS 2を指示する。 WS2>0なら、モータ ONZOFF制御器 19は ONを指示し、モータ極性制御器 20は前進を指示する。 WS2 = 0なら、モータ ONZ OFF制御器 19は OFFを指示し、モータ極性制御器 20は前進を指示する。 WS2< 0なら、モータ ONZOFF制御器 19は ONを指示し、モータ極性制御器 20は後進を 指示する。
[0029] 短絡 Zアーク検出器 10が、アーク期間と判定する場合は、ワイヤ送給速度制御器 17はワイヤ送給速度 WS 1を指示し、モータ ONZOFF制御器 19は ONを指示し、 モータ極性制御器 20は前進を指示する。
[0030] 上記したワイヤ送給の減少分と増加分とのオフセットに関しては(図 4、 5参照)、図 4の場合は、演算部 26は、短絡期間のワイヤ送給減少分を演算する。さらに、演算 部 26は、アーク期間において、ワイヤ送給増加分をリアルタイムで演算し、不足分と 増加分とが同値となった時点でワイヤ送給速度を WS1とすることを指示する。
[0031] 図 5の場合は、演算部 26は、短絡期間のワイヤ送給減少分を演算する。そして、演 算部 26は、過去のアーク期間の時間データと上記ワイヤ送給減少分とに基づいて、 ワイヤ送給速度 WS5を演算し指示する。
[0032] ワイヤ送給モータ 21は、ワイヤ送給モータ制御器 16からの指示に従ってワイヤを 送給する。計時器 18は、ワイヤ送給速度の増速を遅延する場合の遅延時間を計時 する。
[0033] 短絡期間中は、短絡制御器 11が溶接電流 Iを制御する。アーク期間中は、アーク 制御器 12が溶接電流ほたは溶接電圧 Vを制御する。アーク制御器 12は、第 1の計 時器 13、電流制御器 14、電圧制御器 15を有する。計時器 13は、図 1に示す各時刻 を計時する。電流制御器 14は、時刻 t2と t3の間および時刻 t4と t6の間の溶接電流 I を制御する。電圧制御器 15は、時刻 t3と t4の間の溶接電圧 Vを制御する。駆動部 7 は、短絡制御器 11またはアーク制御器 12からの信号に基づいてスイッチング素子 3 を制御する。
[0034] (実施の形態 2)
図 7は、本発明の実施の形態 2のアーク溶接制御方法を示す。溶接電流 I、溶接電 圧 V、ワイヤ送給速度 WS、ワイヤ送給モータの ONZOFFを指示するモータ ONZ OFF信号 N、ワイヤ送給モータの回転方向を指示するモータ極性信号 Kは、それぞ れ図示のように時間変化する。
[0035] 実施の形態 1と異なる点は、時刻 tlから t2の短絡期間に、ワイヤ送給速度 WSを 0、 すなわちワイヤ送給を停止することである。その他の点は、実施の形態 1と同じである (図 1参照)。
[0036] ワイヤ送給速度 WSは、実施の形態 1と同様に、所定の傾きで変化することができる
(図 2、 3参照)。さらに、ワイヤ送給速度 WSの変化を遅延することもできる(図 2参照)
[0037] また、ワイヤ送給の減少分と増加分とのオフセットは、実施の形態 1と同様に行うこと ができる(図 4、 5参照)。
[0038] 本実施の形態で使用するアーク溶接装置は、実施の形態 1で説明したアーク溶接 装置と同じである。
[0039] 本実施の形態の溶接制御方法は、短絡期間のワイヤ送給速度 WSを 0とするので、 実施の形態 1よりアーク発生時の微小短絡を少なくすることができる。また、より短い 短絡期間で十分ワイヤを溶融し、アークを発生することができる。
[0040] (実施の形態 3)
図 8は、本発明の実施の形態 3のアーク溶接制御方法を示す。溶接電流 I、溶接電 圧 V、ワイヤ送給速度 WS、ワイヤ送給モータの ONZOFFを指示するモータ ONZ OFF信号 N、ワイヤ送給モータの回転方向を指示するモータ極性信号 Kは、それぞ れ図示のように時間変化する。
[0041] 実施の形態 1と異なる点は、時刻 tlから t2の短絡期間に、ワイヤ送給速度 WSを後 進方向にする点である。その他の点は、実施の形態 1と同じである(図 1参照)。
[0042] ワイヤ送給速度 WSは、実施の形態 1と同様に、所定の傾きで変化することができる
(図 2、 3参照)。さらに、ワイヤ送給速度 WSの変化を遅延することもできる(図 2参照) 。また、ワイヤ送給の減少分と増加分とのオフセットは、実施の形態 1と同様に行うこと ができる(図 4、 5参照)。
[0043] 本実施の形態で使用するアーク溶接装置は、実施の形態 1で説明したアーク溶接 装置と同じである。
[0044] 本実施の形態の溶接制御方法は、短絡期間のワイヤ送給速度 WSを後進とするの で、実施の形態 1または 2よりさらにアーク発生時の微小短絡を少なくすることができ る。また、より短い短絡期間で十分ワイヤを溶融し、アークを発生することができる。 産業上の利用可能性
本発明のアーク溶接制御方法は、スパッタを低減することができるので、アーク溶 接装置とその制御方法として産業上有用である。

Claims

請求の範囲
[1] 溶接ワイヤを送給しながら短絡期間とアーク期間とを交互に繰返すアーク溶接にお いて、
前記短絡期間では、ワイヤ送給速度を基本送給速度より低!ヽ速度に減速し、 前記アーク期間では、前記ワイヤ送給速度を前記基本送給速度に増速し、 前記アーク期間では、アーク発生時力 第 1の所定時間までは電流制御により所定 のピーク電流に溶接電流を増加し、
前記第 1の所定時間から第 2の所定時間までは溶接電圧を定電圧制御してこの定電 圧により溶接電流を出力し、
前記第 2の所定時間力 アーク期間終了までは電流制御により前記ピーク電流よりも 低い所定のベース電流に溶接電流を減少するアーク溶接制御方法。
[2] 前記短絡期間では、前記ワイヤ送給速度を 0とする請求項 1に記載のアーク溶接制 御方法。
[3] 前記短絡期間では、前記ワイヤ送給速度を後進方向とする請求項 1に記載のアーク 溶接制御方法。
[4] 前記短絡期間において、前記ワイヤ送給速度を所定の傾きで減速する請求項 1から
3の 、ずれか 1項に記載のアーク溶接制御方法。
[5] 前記アーク期間において、前記ワイヤ送給速度をアーク発生時力 所定の傾きで増 速する請求項 1から 3のいずれか 1項に記載のアーク溶接制御方法。
[6] 前記アーク期間において、前記ワイヤ送給速度の増速をアーク発生時力 所定の遅 延時間後に開始する請求項 1から 3のいずれ力 1項に記載のアーク溶接制御方法。
[7] 前記アーク期間において、前記溶接電流を所定の傾きで所定のベース電流に減少 することをアーク発生時力 所定時間後に開始する請求項 1から 3のいずれか 1項に 記載のアーク溶接制御方法。
[8] 前記短絡期間の前記ワイヤ送給速度を前記基本送給速度よりも減速することにより 生じるワイヤ送給減少分と、前記アーク期間に前記ワイヤ送給速度を増速することに より生じるワイヤ送給増加分とが等しくなるように、前記アーク期間の前記ワイヤ送給 速度を設定する請求項 1から 3のいずれか 1項に記載のアーク溶接制御方法。
[9] 前記短絡期間の前記ワイヤ送給速度を前記基本送給速度とし、前記アーク期間の 前記ワイヤ送給速度を前記基本送給速度よりも所定速度高!ゝ速度とし、前記ワイヤ 送給増加分と前記ワイヤ送給減少とが等しくなつた時点で、前記アーク期間の前記ヮ ィャ送給速度を前記基本送給速度に減速する請求項 8に記載のアーク溶接制御方 法。
[10] 前記短絡期間の前記ワイヤ送給減少分と、先立つアーク期間の時間データとに基づ いて、前記ワイヤ送給減少分と等しい前記ワイヤ送給増加分を得るための、前記ァ ーク期間中の前記ワイヤ送給速度を決定する請求項 8に記載のアーク溶接制御方 法。
[11] 溶接ワイヤを送給するワイヤ送給モータと、
溶接出力を制御するスイッチング素子と、
溶接電圧を検出する溶接電圧検出器と、
前記溶接電圧に基づいて、溶接プロセスが短絡期間である力アーク期間であるかを 検出する短絡 Zアーク検出器と、
前記短絡期間中の溶接を制御する短絡制御器と、
前記アーク期間中の溶接を制御するアーク制御器と、
前記短絡制御器または前記アーク制御器からの信号に基づいて前記スイッチング素 子を制御する駆動部と、
前記短絡 Zアーク検出器からの信号に基づいて前記ワイヤ送給モータを制御するヮ ィャ送給モータ制御器とを備え、
前記アーク制御器は、時間を計時する第 1の計時器と、前記第 1の計時器力 の信 号に基づ 1、て夫々溶接電流と溶接電圧を制御する電流制御器と電圧制御器とを有 し、
前記ワイヤ送給モータ制御器は、ワイヤ送給速度制御器と、時間を計時する第 2の計 時器と、前記ワイヤ送給モータの ONZOFFを指示するモータ ONZOFF制御器と 、前記ワイヤ送給モータの回転方向を指示するモータ極性制御器とを有するアーク 溶接装置。
PCT/JP2006/311730 2006-02-17 2006-06-12 アーク溶接の制御方法および溶接装置 WO2007094090A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06766592.7A EP1985400B1 (en) 2006-02-17 2006-06-12 Method of controlling arc welding and welding device
US11/571,106 US8080763B2 (en) 2006-02-17 2006-06-12 Method of controlling arc welding and welding apparatus
CN2006800003376A CN101151118B (zh) 2006-02-17 2006-06-12 电弧熔接的控制方法及熔接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006040565A JP4211793B2 (ja) 2006-02-17 2006-02-17 アーク溶接制御方法およびアーク溶接装置
JP2006-040565 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007094090A1 true WO2007094090A1 (ja) 2007-08-23

Family

ID=38371280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311730 WO2007094090A1 (ja) 2006-02-17 2006-06-12 アーク溶接の制御方法および溶接装置

Country Status (5)

Country Link
US (1) US8080763B2 (ja)
EP (1) EP1985400B1 (ja)
JP (1) JP4211793B2 (ja)
CN (1) CN101151118B (ja)
WO (1) WO2007094090A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008394A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
US8993925B2 (en) 2009-07-29 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
EP2058078B2 (fr) 2007-11-06 2019-07-24 Air Liquide Welding France Procédé de soudage à l'arc par court-circuit avec électrode fusible
US10919100B2 (en) * 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211793B2 (ja) 2006-02-17 2009-01-21 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
US9895760B2 (en) * 2007-09-26 2018-02-20 Lincoln Global, Inc. Method and system to increase heat input to a weld during a short-circuit arc welding process
JP5392750B2 (ja) * 2008-10-22 2014-01-22 株式会社ダイヘン 溶接ワイヤ送給機及び溶接装置
CN102056699B (zh) * 2009-01-28 2013-10-09 松下电器产业株式会社 交流脉冲电弧焊接方法
AT508494B1 (de) * 2009-06-18 2015-05-15 Fronius Int Gmbh Verfahren zum wechseln eines schweissprozesses während eines schweissverfahrens und zur wärmeeinbringung vor einem schweissverfahren
EP2292364B1 (en) * 2009-06-19 2016-01-06 Panasonic Intellectual Property Management Co., Ltd. Consumable electrode arc welding method and consumable electrode arc welding device
US8723080B2 (en) 2009-07-10 2014-05-13 Panasonic Corporation Arc welding control method and arc welding apparatus
WO2011024380A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP5502414B2 (ja) * 2009-09-30 2014-05-28 株式会社ダイヘン アーク溶接方法およびアーク溶接システム
EP2407266B1 (en) 2009-11-25 2017-05-10 Panasonic Intellectual Property Management Co., Ltd. Welding method and welding device
JP2012035284A (ja) * 2010-08-05 2012-02-23 Daihen Corp アーク溶接装置
US8901454B2 (en) * 2010-09-10 2014-12-02 Panasonic Corporation Arc welding control method
CN102441722B (zh) * 2010-09-30 2015-05-27 株式会社大亨 电弧焊接方法
JP5026603B2 (ja) * 2010-09-30 2012-09-12 株式会社ダイヘン アーク溶接方法
WO2012046411A1 (ja) 2010-10-07 2012-04-12 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
US9162308B2 (en) * 2010-10-22 2015-10-20 Lincoln Global, Inc. Apparatus and method for pulse welding with AC waveform
CN102834213B (zh) * 2010-10-28 2015-01-14 松下电器产业株式会社 焊丝进给装置
JP5802048B2 (ja) * 2011-04-28 2015-10-28 株式会社ダイヘン 短絡期間の溶接電流制御方法
FR2977818B1 (fr) 2011-07-11 2014-05-23 Air Liquide Welding France Procede de soudage a l'arc avec electrode consommable
JP5879503B2 (ja) * 2011-07-15 2016-03-08 パナソニックIpマネジメント株式会社 アーク溶接制御方法およびアーク溶接装置
JP5785812B2 (ja) * 2011-08-08 2015-09-30 株式会社ダイヘン 2ワイヤ溶接制御方法
JP5770047B2 (ja) * 2011-08-25 2015-08-26 株式会社ダイヘン 溶接装置
JP5912356B2 (ja) * 2011-09-14 2016-04-27 株式会社ダイヘン 溶接装置
US20130119032A1 (en) * 2011-11-11 2013-05-16 Lincoln Global, Inc. System and method for welding materials of different conductivity
US9050676B2 (en) * 2012-03-02 2015-06-09 Lincoln Global, Inc. Apparatus and method for starting arc welding process
JP6043969B2 (ja) * 2012-03-07 2016-12-14 パナソニックIpマネジメント株式会社 溶接方法
WO2013136643A1 (ja) * 2012-03-16 2013-09-19 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
WO2013145569A1 (ja) 2012-03-27 2013-10-03 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
EP2905102B2 (en) 2012-10-01 2020-01-15 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
JP6040419B2 (ja) * 2012-10-01 2016-12-07 パナソニックIpマネジメント株式会社 アーク溶接制御方法
SG11201503457XA (en) * 2012-11-02 2015-05-28 Esab Ab Method for starting a submerged arc welding process and welding apparatus
CN104582888B (zh) * 2012-11-07 2016-08-17 松下知识产权经营株式会社 电弧焊接装置以及电弧焊接控制方法
US9550248B2 (en) 2013-03-07 2017-01-24 Lincoln Global, Inc. Electric arc welder using high frequency pulses and negative polarity
US10040142B2 (en) 2013-03-15 2018-08-07 Lincoln Global, Inc. Variable polarity pulse with constant droplet size
JP2014184451A (ja) * 2013-03-22 2014-10-02 Daihen Corp アーク溶接用電源装置及びアーク溶接用電源装置の制御方法
JP5974984B2 (ja) * 2013-06-07 2016-08-23 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
US20150072323A1 (en) 2013-09-11 2015-03-12 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
JP6308651B2 (ja) * 2013-12-05 2018-04-11 株式会社ダイヘン アンチスティック制御方法
EP3020498B1 (en) 2014-02-14 2018-05-09 Panasonic Intellectual Property Management Co., Ltd. Arc welding method
US10406622B2 (en) 2014-02-18 2019-09-10 Daihen Corporation Arc-welding power supply
KR102251668B1 (ko) * 2014-03-10 2021-05-12 가부시키가이샤 다이헨 아크 용접 제어 방법
US10343231B2 (en) * 2014-05-28 2019-07-09 Awds Technologies Srl Wire feeding system
JP6695030B2 (ja) * 2014-10-17 2020-05-20 パナソニックIpマネジメント株式会社 アーク溶接の制御方法
EP3219428B1 (en) * 2014-11-11 2021-06-23 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
CN104766727B (zh) * 2015-02-13 2017-04-05 广州市精源电子设备有限公司 喷金电源的控制方法和系统
JP6577879B2 (ja) * 2015-02-13 2019-09-18 リンカーン グローバル,インコーポレイテッド 短絡アーク溶接工程中に溶接部への入熱を増加させる方法およびシステム
JP6524412B2 (ja) * 2015-03-13 2019-06-05 パナソニックIpマネジメント株式会社 アーク溶接制御方法
US10350696B2 (en) 2015-04-06 2019-07-16 Awds Technologies Srl Wire feed system and method of controlling feed of welding wire
EP3508297B1 (en) 2016-09-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
US10682719B2 (en) 2017-01-27 2020-06-16 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US11110536B2 (en) * 2017-01-27 2021-09-07 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10744584B2 (en) 2017-01-27 2020-08-18 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
US10722967B2 (en) 2017-01-27 2020-07-28 Lincoln Global, Inc. Apparatus and method for welding with AC waveform
CN107009000B (zh) * 2017-06-01 2019-03-19 石惟一 一种交替送丝与抽丝的焊机及其电源控制方法
US11247287B2 (en) * 2018-05-08 2022-02-15 Illinois Tool Works Inc. Systems and methods for buffer sensing in a controlled short circuit welding system
US11420285B2 (en) * 2019-04-30 2022-08-23 Illinois Tool Works Inc. Systems and methods for automated cleaning of wire electrodes after welding
EP4342617A2 (en) * 2019-05-22 2024-03-27 Panasonic Intellectual Property Management Co., Ltd. Arc welding method
JP7396779B2 (ja) 2019-11-22 2023-12-12 株式会社ダイヘン アーク溶接制御方法
US11174121B2 (en) 2020-01-20 2021-11-16 Awds Technologies Srl Device for imparting a torsional force onto a wire
US11278981B2 (en) 2020-01-20 2022-03-22 Awds Technologies Srl Device for imparting a torsional force onto a wire
CN112276298B (zh) * 2020-09-09 2022-05-24 中船重工鹏力(南京)智能装备系统有限公司 一种垂直气电立焊控制方法和系统
CN114559133B (zh) * 2022-04-27 2022-07-29 苏芯物联技术(南京)有限公司 一种普适焊接起弧连续性实时检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054924A1 (fr) * 1999-03-18 2000-09-21 Kabushiki Kaisha Yaskawa Denki Procede de soudage a l'arc a electrode fusible et dispositif associe
JP2004298924A (ja) * 2003-03-31 2004-10-28 Daihen Corp 短絡を伴うアーク溶接の送給制御方法
JP2005528223A (ja) * 2002-06-03 2005-09-22 ユニバーシテイ・オブ・ウオロンゴング 金属アーク溶接用制御方法とシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187468A (ja) 1984-03-07 1985-09-24 Mitsubishi Heavy Ind Ltd シヨ−トア−ク溶接法
JPS626775A (ja) 1985-07-02 1987-01-13 Matsushita Electric Ind Co Ltd 消耗電極式ア−ク溶接機
CN1158777A (zh) * 1996-03-05 1997-09-10 郑宝英 低飞溅二氧化碳保护焊接装置
JP4036960B2 (ja) * 1998-03-31 2008-01-23 株式会社ダイヘン 消耗電極パルス溶接のアーク長制御方法
US20050189335A1 (en) * 2002-07-23 2005-09-01 Gerd Huismann Method and apparatus for feeding wire to a welding arc
JP4411911B2 (ja) * 2003-09-10 2010-02-10 Nok株式会社 密封装置
WO2005042199A1 (de) * 2003-10-23 2005-05-12 Fronius International Gmbh Verfahren zum steuern und/oder regeln eines schweissprozesses und schweissgerät zur durchführung eines schweissprozesses
AT501995B1 (de) 2005-05-24 2009-07-15 Fronius Int Gmbh Kalt-metall-transfer-schweissverfahren sowie schweissanlage
JP4211793B2 (ja) 2006-02-17 2009-01-21 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054924A1 (fr) * 1999-03-18 2000-09-21 Kabushiki Kaisha Yaskawa Denki Procede de soudage a l'arc a electrode fusible et dispositif associe
JP2005528223A (ja) * 2002-06-03 2005-09-22 ユニバーシテイ・オブ・ウオロンゴング 金属アーク溶接用制御方法とシステム
JP2004298924A (ja) * 2003-03-31 2004-10-28 Daihen Corp 短絡を伴うアーク溶接の送給制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058078B2 (fr) 2007-11-06 2019-07-24 Air Liquide Welding France Procédé de soudage à l'arc par court-circuit avec électrode fusible
US8993925B2 (en) 2009-07-29 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus
WO2013008394A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
CN103260807A (zh) * 2011-07-12 2013-08-21 松下电器产业株式会社 电弧焊接控制方法及电弧焊接装置
JP5278634B2 (ja) * 2011-07-12 2013-09-04 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
US10919100B2 (en) * 2016-03-29 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Also Published As

Publication number Publication date
CN101151118A (zh) 2008-03-26
US20080314884A1 (en) 2008-12-25
CN101151118B (zh) 2010-12-08
EP1985400A1 (en) 2008-10-29
US8080763B2 (en) 2011-12-20
JP2007216268A (ja) 2007-08-30
EP1985400A4 (en) 2009-12-09
JP4211793B2 (ja) 2009-01-21
EP1985400B1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2007094090A1 (ja) アーク溶接の制御方法および溶接装置
JP5293884B2 (ja) アーク溶接制御方法
JP5927433B2 (ja) アーク溶接方法およびアーク溶接装置
JP3844004B1 (ja) パルスアーク溶接制御方法及びパルスアーク溶接装置
JP7365598B2 (ja) アーク溶接制御方法
JP6800865B2 (ja) アーク溶接装置およびアーク溶接方法
JP5998355B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP2017094380A (ja) アーク溶接装置
JP5557245B2 (ja) パルスアーク溶接の終了制御方法
JP5160961B2 (ja) 消耗電極アーク溶接の送給制御方法
JP2006305584A (ja) 消耗電極アーク溶接終了制御方法
JP7017291B2 (ja) 正逆送給アーク溶接のアークスタート制御方法
JP2016026880A (ja) パルスアーク溶接の出力制御方法
JP7396779B2 (ja) アーク溶接制御方法
JP2013132658A (ja) 消耗電極アーク溶接のアークスタート制御方法
JP5888943B2 (ja) パルスアーク溶接の終了制御方法
JP2016128186A (ja) パルスアーク溶接の出力制御方法
JP2007216303A (ja) アークスタート制御方法
JP6663617B2 (ja) アーク溶接制御方法
JP2020131200A (ja) アーク溶接方法
WO2020235620A1 (ja) アーク溶接方法およびアーク溶接装置
JP6055663B2 (ja) 溶接電源の出力制御方法
WO2020235294A1 (ja) アーク溶接方法およびアーク溶接装置
JP2012130961A (ja) パルスアーク溶接の終了制御方法
JP6593923B2 (ja) アーク溶接制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680000337.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11571106

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2006766592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006766592

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE