WO2020235620A1 - アーク溶接方法およびアーク溶接装置 - Google Patents
アーク溶接方法およびアーク溶接装置 Download PDFInfo
- Publication number
- WO2020235620A1 WO2020235620A1 PCT/JP2020/020066 JP2020020066W WO2020235620A1 WO 2020235620 A1 WO2020235620 A1 WO 2020235620A1 JP 2020020066 W JP2020020066 W JP 2020020066W WO 2020235620 A1 WO2020235620 A1 WO 2020235620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- welding
- welding wire
- short circuit
- control
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 424
- 238000000034 method Methods 0.000 title claims description 23
- 239000000463 material Substances 0.000 claims abstract description 100
- 239000010953 base metal Substances 0.000 claims description 62
- 238000001514 detection method Methods 0.000 claims description 47
- 230000010354 integration Effects 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 11
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
- B23K9/0732—Stabilising of the arc current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
- B23K9/091—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
- B23K9/092—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0953—Monitoring or automatic control of welding parameters using computing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0956—Monitoring or automatic control of welding parameters using sensing means, e.g. optical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
Definitions
- the technology disclosed here relates to arc welding technology.
- Patent Document 1 discloses a pulse arc welding control method for supplying a welding current that repeatedly includes a peak current and a base current in a pulse shape between a welding wire and a welding base material.
- This pulse arc welding control method increases the welding current when a short circuit between the welding wire and the welding base material is detected. Droplets form between the welding wire and the welding base during the short circuit. A constriction is formed in the droplet just before the short circuit is opened. The above method reduces the welding current when the constricted portion of the droplet is detected.
- the technique disclosed here aims to provide an arc welding technique capable of suppressing instability of the welding current cycle due to a short circuit between the welding wire and the base metal.
- the technique disclosed herein is to feed a welding wire, which is a consumable electrode, toward a base material, and generate a pulsed welding current including a peak current and a base current smaller than the peak current alternately with the welding wire.
- the present invention relates to an arc welding method in which an electric current is generated between the welding wire and the base metal by flowing an electric current between the base metal and the base metal to weld the base metal.
- This arc welding method includes a short-circuit detection step for detecting a short circuit between the welding wire and the base metal, and after the short-circuit detection step detects a short circuit between the welding wire and the base metal, the welding wire
- the feeding speed is changed from the first feeding speed to the second feeding speed, which is negative to the first feeding speed when the speed in the direction of the welding wire toward the base metal is positive. It is equipped with a feed rate change step.
- the welding wire which is a consumable electrode
- the wire feeding unit is fed to the base material by the wire feeding unit, and the peak current and the peak current are more than the peak current between the welding wire and the base material.
- the present invention relates to an arc welding apparatus that welds the base metal by generating an arc between the welding wire and the base metal by passing a pulsed welding current containing a small base current alternately.
- the feeding speed of the welding wire is increased.
- the wire changes from the first feeding speed to the second feeding speed which is negative to the first feeding speed when the speed in the direction of the welding wire toward the base metal is positive. It includes a control unit that controls the feeding unit.
- FIG. 1 illustrates the configuration of the arc welding system 1 of the embodiment.
- an arc A1 is generated between the welding wire W1 which is a consumable electrode and the base metal B1 to weld the base metal B1.
- the arc welding system 1 includes an arc welding device 10, a wire feeding unit 21, a welding torch 22, and a setting unit 30.
- the wire feeding unit 21 feeds the welding wire W1 to the welding torch 22.
- the welding torch 22 holds the welding wire W1 so that the welding wire W1 fed from the wire feeding unit 21 and the base metal B1 face each other.
- the welding torch 22 is provided with a welding tip 22a for supplying electric power from the arc welding device 10 to the welding wire W1.
- the wire feeding unit 21 is provided with a feeding speed detecting unit (not shown) for detecting the feeding speed Wf of the welding wire W1.
- the welding torch 22 is held by a robot (not shown).
- the feeding speed Wf (specifically, the detection signal indicating the feeding speed Wf) of the welding wire W1 detected by the feeding speed detecting unit is transmitted to the control unit 14 described later.
- the robot moves the welding torch 22 at a predetermined welding speed along a predetermined welding target area in the base material B1.
- the setting unit 30 is used to set welding conditions.
- the arc welding apparatus 10 causes an arc A1 to be generated between the welding wire W1 and the base material B1 by passing a welding current iwa suitable for welding through the welding wire W1 and the base material B1 to weld the base material B1.
- the arc welding apparatus 10 constitutes a consumable electrode type DC pulse arc welding machine.
- the welding current iw is a pulsed current, and is alternately included in the peak current ip and the base current ib.
- the arc welding device 10 includes a power conversion unit 11, a welding current detection unit 12, a welding voltage detection unit 13, and a control unit 14.
- the power conversion unit 11 is electrically connected to the power supply S1 and uses the power supplied from the power supply S1 to generate a welding voltage Vw suitable for welding. Further, the power conversion unit 11 is electrically connected to the welding wire W1 via the welding tip 22a of the welding torch 22, and is electrically connected to the base metal B1. Then, the power conversion unit 11 applies a welding voltage Vw between the welding wire W1 and the base material B1 to cause a welding current iw to flow through the welding wire W1 and the base material B1.
- the power conversion unit 11 includes a first rectifier unit 101, a first switching unit 102, a transformer 103, a second rectifier unit 104, a second switching unit 105, a resistor 106, and a reactor 107.
- the first rectifying unit 101 rectifies the output of the power supply S1.
- the first switching unit 102 adjusts the output of the first rectifying unit 101 by a switching operation.
- the transformer 103 converts the output of the first switching unit 102 into an output suitable for welding.
- the second rectifying unit 104 rectifies the output of the transformer 103.
- the second switching unit 105 adjusts the output of the second rectifying unit 104 by a switching operation.
- the resistor 106 is connected in parallel with the second switching unit 105.
- the reactor 107 is connected in series with the second switching unit 105 to smooth the output of the second switching unit 105.
- the output of the reactor 107 is supplied to the welding wire W1 and the base metal B1 via the welding tip 22a of the welding torch 22.
- the welding voltage Vw is applied between the welding wire W1 and the base metal B1
- the welding current iw flows between the welding wire W1 and the base metal B1.
- the welding current detection unit 12 detects the welding current iw.
- the welding voltage detection unit 13 detects the welding voltage Vw.
- Welding current iw (specifically, a detection signal indicating welding current iw) detected by the welding current detection unit 12 and welding voltage Vw (specifically, a detection signal indicating welding voltage Vw) detected by the welding voltage detection unit 13. ) Is transmitted to the control unit 14.
- the control unit 14 is a device outside the arc welding device 10 (in this example, the first switching unit 102, the second switching unit 105, the welding current detection unit 12, and the welding voltage detection unit 13) and the arc welding device 10.
- a signal is transmitted between the wire feeding unit 21 and the setting unit 30).
- the control unit 14 controls each part of the arc welding device 10 and the device outside the arc welding device 10 based on the signals transmitted from each part of the arc welding device 10 and the device outside the arc welding device 10. To do.
- the control unit 14 controls the first switching unit 102 and the second switching unit 105 of the arc welding device 10, the wire feeding unit 21, and the robot (not shown) that holds the welding torch 22.
- the control unit 14 includes a processor and a memory that is electrically connected to the processor and stores programs and information for operating the processor.
- the control unit 14 performs a short-circuit detection operation, a constriction detection operation, and a short-circuit open detection operation.
- the control unit 14 detects a short circuit between the welding wire W1 and the base material B1. Specifically, the control unit 14 determines that a short circuit between the welding wire W1 and the base material B1 has occurred when the welding voltage Vw detected by the welding voltage detection unit 13 falls below a predetermined short circuit generation threshold value. ..
- the short circuit occurrence threshold value is set to the welding voltage Vw when it can be considered that a short circuit between the welding wire W1 and the base metal B1 has occurred.
- constriction detection operation the control unit 14 detects that the droplets formed between the welding wire W1 and the base metal B1 are constricted. Specifically, when the amount of change in the welding voltage Vw detected by the welding voltage detecting unit 13 per unit time exceeds a predetermined constriction threshold value, the control unit 14 between the welding wire W1 and the base metal B1. It is determined that a constriction has occurred in the droplets formed in.
- the constriction threshold value is set to the amount of change in the welding voltage Vw per unit time when it can be considered that the droplets formed between the welding wire W1 and the base metal B1 are constricted.
- the short-circuit opening detection operation the control unit 14 detects the opening of the short-circuit between the welding wire W1 and the base material B1. Specifically, the control unit 14 determines that the short circuit between the welding wire W1 and the base metal B1 has been opened when the welding voltage Vw detected by the welding voltage detection unit 13 exceeds a predetermined short circuit opening threshold value. ..
- the short-circuit opening threshold value is set to the welding voltage Vw when it can be considered that the short-circuit between the welding wire W1 and the base metal B1 is open.
- control unit 14 controls the operation of the power conversion unit 11 (specifically, the operation of the first switching unit 102 and the second switching unit 105) to control the welding current iwa.
- the control unit 14 selectively performs normal current control and short-circuit current control. When returning from the short-circuit current control to the normal current control, the control unit 14 performs the return control as necessary.
- the normal current control is a control performed during a period in which a short circuit between the welding wire W1 and the base metal B1 does not occur.
- the control unit 14 puts the second switching unit 105 in a conductive state, and controls the switching operation of the first switching unit 102 so that the welding current iw alternates between the peak current ip and the base current ib. Then, the welding current iw is controlled.
- the frequency of the welding current iw (output timing of the peak current ip and the base current ib) in the normal current control is a frequency (output timing) corresponding to a predetermined frequency.
- the control unit 14 After the short circuit between the welding wire W1 and the base material B1 is detected in the normal current control, the control unit 14 ends the normal current control and starts the short circuit current control. For example, the control unit 14 may start the short circuit current control upon receiving the detection of the short circuit between the welding wire W1 and the base material B1. The control unit 14 measures the elapsed time from the time when the short circuit between the welding wire W1 and the base material B1 is detected. In this example, in the short-circuit current control, short-circuit initial control, current increase control, and current decrease control are performed.
- Short circuit initial control After the short circuit between the welding wire W1 and the base material B1 is detected in the normal current control (immediately after in this example), the control unit 14 starts the short circuit initial control. In the short-circuit initial control, the control unit 14 controls the operation of the power conversion unit 11 (specifically, the switching operation of the first switching unit 102) so that the welding current iw becomes a predetermined short-circuit initial current is. Welding current iw is controlled. In the short-circuit initial control, the second switching unit 105 is maintained in a conductive state.
- ⁇ Current increase control (current increase step) >> After a predetermined short circuit standby time has elapsed from the time when the short circuit between the welding wire W1 and the base material B1 is detected (that is, the time when the initial short circuit control is started) (immediately after in this example), the control unit 14 , Ends the short-circuit initial control and starts the current increase control.
- the control unit 14 may start the current increase control in response to the elapse of the short circuit standby time.
- the control unit 14 controls the operation of the power conversion unit 11 (specifically, the switching operation of the first switching unit 102) so that the welding current iw increases at a predetermined current increase rate. Welding current iw is controlled.
- the second switching unit 105 is maintained in a conductive state.
- the short-circuit standby time is preferably set to, for example, a time of 100 ⁇ sec or more and 3000 ⁇ sec or less. The setting of the short circuit standby time will be described in detail later.
- ⁇ Return control> After the short-circuit current control is started and then the opening of the short-circuit between the welding wire W1 and the base metal B1 is detected (immediately after in this example), the control unit 14 ends the short-circuit current control, if necessary. The return control is performed, and then the normal current control is started. For example, the control unit 14 may start the return control upon detecting the opening of the short circuit between the welding wire W1 and the base material B1. The return control is performed to form a molten mass (droplet) for the next droplet transfer.
- control unit 14 controls the operation of the power conversion unit 11 (specifically, the switching operation of the first switching unit 102) so that the welding current iw becomes a predetermined current, and the welding current iw. To control. In the return control, the second switching unit 105 is maintained in the conductive state.
- the control unit 14 controls the operation of the wire feeding unit 21 to control the feeding speed Wf of the welding wire W1.
- the control unit 14 performs the feed rate change control and the feed rate return control.
- the control unit 14 controls the feed rate change after the short circuit between the welding wire W1 and the base material B1 is detected in the normal current control.
- the control unit 14 performs the feed rate change control after the current increase control is started in the short-circuit current control (specifically, at the same time as the start of the current increase control).
- the control unit 14 may start the current increase control in response to the elapse of the short circuit standby time.
- the control unit 14 controls the wire feed unit 21 to perform welding so that the feed rate Wf of the welding wire W1 changes from the first feed rate Wf1 to the second feed rate Wf2.
- the feeding speed Wf of the wire W1 is controlled.
- the first feed rate Wf1 becomes a positive value when the speed in the direction of the welding wire W1 toward the base material B1 is positive. That is, when the feeding speed Wf of the welding wire W1 is set to the first feeding speed Wf1, the welding wire W1 is fed in the normal feeding direction, which is the direction toward the base material B1.
- the second feed rate Wf2 is a feed rate that is on the negative side of the first feed rate Wf1 when the speed in the direction toward the base material B1 is positive.
- the second feed rate Wf2 is a positive value (a positive value smaller than the first supply rate Wf1) and the feed rate Wf of the welding wire W1 is set to the second feed rate Wf2, the normal feed rate Wf2 is set.
- the welding wire W1 supplied in the direction decelerates.
- the second feeding speed Wf2 is zero and the feeding speed Wf of the welding wire W1 is set to the second feeding speed Wf2, the feeding of the welding wire W1 is stopped.
- the reverse feed direction (forward feed direction) is the direction away from the base material B1.
- the welding wire W1 is returned in the opposite direction to the above.
- the control unit 14 performs the feed rate return control after the short circuit opening of the welding wire W1 and the base material B1 is detected in the short circuit current control (immediately after in this example). For example, the control unit 14 may start the feed rate return control upon detecting the opening of the short circuit between the welding wire W1 and the base material B1. In the feed rate return control, the control unit 14 controls the wire feed unit 21 to perform welding so that the feed rate Wf of the welding wire W1 changes from the second feed rate Wf2 to the first feed rate Wf1. The feeding speed Wf of the wire W1 is controlled.
- control unit 14 controls the operation of a robot (not shown) that holds the welding torch 22 to control the moving speed (that is, the welding speed) of the welding torch 22.
- a short circuit between the welding wire W1 and the base metal B1 is detected at the time point t12.
- time point t14 it is detected that the droplets formed between the welding wire W1 and the base metal B1 are constricted.
- time point t15 the opening of a short circuit between the welding wire W1 and the base metal B1 is detected.
- the time point t13 is a time point after the short circuit standby time has elapsed from the time point t12. That is, the time length of the period from the time point t12 to the time point t13 corresponds to the short circuit standby time.
- the welding current iw gradually increases from the base current ib to the peak current ip in the period from the time point t1 to the time point t2, and is maintained at the peak current ip in the period from the time point t2 to the time point t3. Then, the welding current iw gradually decreases from the peak current ip to the base current ib in the period from the time point t3 to the time point t4, and is maintained at the base current ib in the period from the time point t4 to the time point t5.
- the short circuit initial current is maintained at the short-circuit initial current is during the period from the time point t12 to the time point t13.
- the short-circuit initial current is may be a current lower than the base current ib, or may be the same current as the base current ib.
- the short-circuit initial control ends and the current increase control is started, and the current increase control is continued in the period from the time point t13 to the time point t14.
- the welding current iw gradually increases from the short-circuit initial current is at a predetermined current increase rate.
- the feeding speed change control is performed, and the feeding speed Wf of the welding wire W1 is switched from the first feeding speed Wf1 to the second feeding speed Wf2.
- the second feed rate Wf2 may be maintained from the time when the feed rate change control is performed until the feed rate return control is performed.
- the second feed rate Wf2 may be constant in time or may change in time.
- the current increase control ends and the current decrease control starts.
- the welding current iw sharply decreases from the first current i1 at the time point t14 to the second current i2 (current lower than the first current i1).
- the current reduction control is continued in the period from the time point t14 to the time point t15.
- the welding current iw is maintained at the second current i2 during the period from the time point t14 to the time point t15.
- the second current i2 which is the lower limit of the welding current iw in the current reduction control, may be a current higher than the base current ib, may be the same current as the base current ib, or may be the same as the base current ib.
- the current may be lower than.
- the feeding speed return control is performed, and the feeding speed Wf of the welding wire W1 is changed from the second feeding speed Wf2 to the first.
- the feed rate is switched to Wf1.
- the first feed rate Wf1 may be maintained from the time when the feed rate return control is performed until the feed rate change control is performed.
- the first feed rate Wf1 may be constant in time or may change in time.
- the output timing of the peak current ip after the time point t16 is a timing corresponding to a predetermined frequency of the welding current iw.
- the feeding speed of the welding wire W1 is set to the first feeding speed Wf1 (a positive value which is the feeding speed in the normal feeding direction).
- the feed rate Wf of the welding wire W1 can be changed. It can be changed to the negative side of the first feed rate Wf1.
- the welding wire W1 fed to the base metal B1 is decelerated. Can be done. That is, the feeding speed of the welding wire W1 fed toward the base material B1 can be made slower than the first feeding speed Wf1.
- the second feed rate Wf2 is zero, the feed of the welding wire W1 can be stopped.
- the second feed rate Wf2 is a negative value, the welding wire W1 can be fed in the reverse feed direction, which is the direction away from the base material B1.
- the distance between the welding wire W1 and the base metal B1 can be lengthened, so that welding can be performed. It is possible to promote the opening of a short circuit between the wire W1 and the base material B1. As a result, the time from the start of the short circuit to the opening of the short circuit (short circuit time) can be shortened, so that the period of the welding current iw (the period from the start of the peak current to the end of the base current following the peak current) can be set. It becomes easier to keep it constant. Therefore, it is possible to suppress the instability of the period of the welding current iw due to the short circuit between the welding wire W1 and the base material B1.
- the feed rate Wf of the welding wire W1 is set to the first feed rate Wf1 (a positive value feed rate which is the feed rate in the forward feed direction).
- the weld wire W1 can be fed in the direction in which the welding wire W1 is separated from the base material B1. ..
- the welding wire W1 can be reliably separated from the base metal B1, so that buckling of the welding wire W1 (particularly the aluminum welding wire W1) due to contact between the welding wire W1 and the base metal B1 is prevented. be able to.
- the feeding wire is changed by controlling the feeding speed.
- the short-circuit contact state between W1 and the base material B1 is relatively light and the short-circuit time, which is the time from the start of the short-circuit to the opening of the short-circuit, is relatively short (for example, immediately after the start of the short-circuit)
- the feed rate change control is performed. It can be prevented from being done. As a result, the feed rate change control can be effectively performed.
- the feed rate change control is performed by preventing the feed rate change control from being performed.
- the short-circuit time which is the time from the start of the short-circuit to the opening of the short-circuit
- the short-circuit opening of the welding wire W1 and the base material B1 is performed by controlling the feeding speed change. Can be promoted.
- the short circuit time is as short as possible.
- the reason for this is as follows. For example, when the welding speed is high and the arc length is long, undercut tends to occur. Therefore, by lowering the voltage, shortening the arc length and causing a light short circuit, the effect of suppressing undercut can be expected. However, if the short-circuit time becomes long, the cycle of the current waveform becomes irregular and welding becomes unstable. Therefore, when a short circuit occurs, the short circuit time should be short.
- the feed rate change control is not performed. The reason is that if unnecessary feed rate change control is performed, the target feed amount of the welding wire W1 is reduced. Therefore, it is preferable not to perform the feed rate change control when the short circuit is opened before the elapse of the short circuit standby time, and to perform the feed rate change control when the short circuit is not opened before the elapse of the short circuit standby time.
- the feeding speed Wf of the welding wire W1 is returned from the second feeding speed Wf2 to the first feeding speed Wf1.
- the feeding speed Wf of the welding wire W1 can be restored. As a result, it is possible to prevent insufficient feeding of the welding wire W1 due to a decrease in the feeding speed Wf of the welding wire W1.
- the arc welding apparatus 10 of the modification 1 of the embodiment is different from the arc welding apparatus 10 of the embodiment in the details of the current increase control.
- Other configurations and operations of the arc welding apparatus 10 of the first modification of the embodiment are the same as the configurations and operations of the arc welding apparatus 10 of the embodiment.
- the current increase control includes a first current increase control and a second current increase control performed after the first current increase control.
- the first current increase control is continued in the period from the time point t13 to the time point t13a
- the second current increase control is continued in the period from the time point t13a to the time point t14.
- the control in the other period of the example of FIG. 3 is the same as the control shown in FIG.
- First current increase control (first current increase step)
- the control unit 14 waits after a predetermined short circuit standby time elapses from the time when the short circuit between the welding wire W1 and the base material B1 is detected in the normal current control (that is, the time when the initial short circuit control is started) (this example). Immediately after that), the first current increase control is performed.
- the control unit 14 operates the power conversion unit 11 (specifically, the switching operation of the first switching unit 102) so that the welding current iw increases at a predetermined first current increase rate. ) Is controlled to control the welding current iw.
- the second switching unit 105 is maintained in a conductive state.
- the first current increase control is continued in the period from the time point t13 to the time point t13a, and the welding current iw gradually increases from the short-circuit initial current is at the first current increase rate.
- Second current increase control After the first current increase control, the control unit 14 performs the second current increase control. Specifically, the control unit 14 receives after the welding current iw reaches a predetermined switching current in the first current increase control (immediately after the welding current iw reaches the third current i3 in the example of FIG. 3). , Second current increase control is performed. For example, the control unit 14 may detect the welding current iw and start the second current increase control in response to the welding current iw reaching the switching current. In the second current increase control, the control unit 14 operates the power conversion unit 11 so that the welding current iw increases at a predetermined second current increase rate (current increase rate lower than the first current increase rate). (Specifically, the switching operation of the first switching unit 102) is controlled to control the welding current iw. In the second current increase control, the second switching unit 105 is maintained in a conductive state.
- the second current increase control is continued in the period from the time point t13a to the time point t14, and the welding current iw gradually increases from the third current i3 to the second current increase rate.
- the feed rate change control may be performed after the second current increase control is started (immediately after in this example). That is, the control unit 14 of the wire feeding unit 21 so that the wire feeding speed Wf changes from the first feeding speed Wf1 to the second feeding speed Wf2 after the second current increase control is started. It may control the operation. For example, the control unit 14 may execute the feed rate change control in response to the arrival of the welding current iw at the switching current.
- the feed rate change control is performed after the first current increase control is started (after the short circuit standby time elapses from the time when the short circuit between the welding wire W1 and the base material B1 is detected).
- the feed rate change control is performed. It can be prevented from being broken. As a result, the feed rate change control can be effectively performed.
- the arc welding device 10 of the second modification of the embodiment has a different timing of the feed rate change control from the arc welding device 10 of the embodiment.
- Other configurations and operations of the arc welding apparatus 10 of the second modification of the embodiment are the same as the configurations and operations of the arc welding apparatus 10 of the embodiment.
- the feed rate change control is performed after the current reduction control is started (for example, immediately after). That is, the control unit 14 operates the wire feeding unit 21 so that the wire feeding speed Wf changes from the first feeding speed Wf1 to the second feeding speed Wf2 after the current reduction control is started. Control.
- the control unit 14 may execute the feeding speed change control upon receiving the detection of the constriction.
- the control unit 14 performs a power integration operation instead of the constriction detection operation.
- the control unit 14 derives the power integration value obtained by integrating the power supplied to the welding wire W1 and the base material B1 from the time when the short circuit between the welding wire W1 and the base material B1 is detected. To do.
- the electric power supplied to the welding wire W1 and the base metal B1 can be calculated based on the product of the welding current iw and the welding voltage Vw.
- the control unit 14 performs current reduction control based on the power integration value derived by the power integration operation instead of the droplet constriction detected by the constriction detection operation. Specifically, the control unit 14 starts the current increase control, and then starts the power integration operation. The control unit 14 determines whether the power integration value is larger than a predetermined power integration threshold value. The control unit 14 starts the current reduction control after the power integration value reaches the power integration threshold value (for example, immediately after).
- the power integration threshold value is set to the power integration value when it can be considered that the short circuit between the welding wire W1 and the base material B1 is about to be opened.
- the power integration threshold value may be a fixed value.
- the feed rate change control is performed after the short-circuit standby time elapses and the current increase control is started (for example, immediately after). That is, the control unit 14 operates the wire feeding unit 21 so that the wire feeding speed Wf changes from the first feeding speed Wf1 to the second feeding speed Wf2 after the current increase control is started. Control.
- the current reduction control is performed based on the integrated power value obtained by integrating the power supplied to the welding wire W1 and the base material B1 from the time when the short circuit between the welding wire W1 and the base material B1 is detected.
- the short circuit between the welding wire W1 and the base material B1 is opened as compared with the case where the current reduction control is performed based on the presence or absence of the constriction of the droplets formed between the welding wire W1 and the base material B1.
- the current reduction control can be performed accurately immediately before.
- the influence of other welding in response to this, disturbances such as noise may occur.
- the welding wire W1 is a material having a low resistance value including aluminum or copper, the voltage change may be small. In such a case, it is difficult to accurately detect the voltage, and it is difficult to accurately detect the constriction.
- the current reduction control can be accurately performed immediately before the short circuit between the welding wire W1 and the base material B1 is opened. it can.
- the welding is performed by performing the feeding speed change control.
- the feeding speed change control is not performed. can do. As a result, the feed rate change control can be effectively performed.
- the arc welding device 10 of the modified example 4 of the embodiment has a different timing of the feed rate change control from the arc welding device 10 of the embodiment.
- Other configurations and operations of the arc welding apparatus 10 of the modified example 4 of the embodiment are the same as the configurations and operations of the arc welding apparatus 10 of the embodiment.
- the feed rate change control is performed after a predetermined short circuit standby time has elapsed from the time when the short circuit between the welding wire W1 and the base material B1 is detected. That is, in the control unit 14, the wire feeding speed Wf is changed from the first feeding speed Wf1 to the first after the short-circuit waiting time elapses (for example, immediately after) from the time when the short circuit between the welding wire W1 and the base material B1 is detected. 2
- the operation of the wire feeding unit 21 is controlled so as to change to the feeding speed Wf2.
- the feed rate change control may be executed independently of the control related to the welding current such as the current increase control, the current decrease control and the return control.
- the short circuit between the welding wire W1 and the base material B1 is performed by controlling the feeding speed change after the short circuit standby time elapses from the time when the short circuit between the welding wire W1 and the base material B1 is detected.
- the feeding speed change control can be prevented.
- the feed rate change control can be effectively performed.
- the short-circuit standby time may be set according to the characteristics (material, diameter, etc.) of the welding wire W1 or may be set according to the current range of the welding current iw.
- the short-circuit standby time may be set to an optimum time for each material of the welding wire W1, or may be set to an optimum time for each current range of the welding current iw.
- the optimum time for such a short-circuit standby time can be obtained by experiments or the like.
- the slope (increasing speed) of the welding current iw in the current increase control is set according to the characteristics (material, diameter, etc.) of the welding wire W1, the current range of the welding current iw, the customer's request, and the like. You may. For example, when the reduction of spatter is more strongly required than the stability of welding, it is preferable to reduce the slope of the welding current iw in the current increase control.
- the welding current iw in the current increase control is "100 A / ms"
- the welding current iw in the current increase control may be smaller than the normal inclination (for example, 10 A / ms), or the inclination of the welding current iw in the current increase control may be set to zero so that the current increase control is not performed.
- the second feed rate Wf2 it is preferable to set the second feed rate Wf2 to a negative value (reverse feed) in order to promote short-circuit opening.
- the magnitude (absolute value) of the second feed rate Wf2 is set to 1.5, which is the size of the first feed rate Wf1 which is a normal feed rate. It is preferable to double or more.
- the second feed rate Wf2 may increase in the negative direction.
- the first feed rate Wf1 increases in the positive direction, when a short circuit occurs between the welding wire W1 and the base material B1, the contact between the welding wire W1 and the base material B1 becomes more likely to come into close contact. .. Further, as the second feeding speed Wf2 increases in the negative direction, the welding wire W1 is quickly separated from the base material B1. Therefore, as the first feeding speed Wf1 increases in the positive direction, the second feeding speed Wf2 increases in the negative direction, so that a short circuit occurs between the welding wire W1 and the base material B1. At that time, the welding wire W1 can be effectively separated from the base material B1.
- the second feed rate Wf2 may be set according to the type of the material constituting the welding wire W1.
- the welding wire W1 when the welding wire W1 is composed of a material having a relatively low resistance value (hereinafter referred to as "low resistance material") such as aluminum, an aluminum alloy, copper, or a copper alloy, the resistance value of the welding wire W1 becomes low. Therefore, even if a welding current is applied to the welding wire W1, the welding wire W1 is less likely to generate Joule heat, and the welding wire W1 is less likely to receive heat. Therefore, even if the welding current is continuously applied to the welding wire W1, the tip of the welding wire W1 is difficult to melt, so that the welding wire W1 tends to buckle due to the contact between the welding wire W1 and the base metal B1.
- low resistance material a material having a relatively low resistance value
- the second feed rate Wf2 is set to a negative value, and the welding wire W1 is set in the reverse feed direction, which is the direction away from the base material B1 in the feed rate change control. Is preferred. As a result, the occurrence of buckling of the welding wire W1 can be prevented, and the opening of the short circuit between the welding wire W1 and the base metal B1 can be promoted.
- the resistance value of the welding wire W1 is relatively high.
- the welding wire W1 tends to generate Joule heat, and the welding wire W1 tends to receive heat. Therefore, since the tip of the welding wire W1 is easily melted, buckling of the welding wire W1 is unlikely to occur. Therefore, when the welding wire W1 is composed of a high resistance material, the second feed rate Wf2 is set to a positive value (a positive value smaller than the first feed rate Wf1) or zero, and the feed rate change control is performed. It is preferable to decelerate or stop the welding wire W1 fed toward the base material B1. Thereby, the opening of the short circuit between the welding wire W1 and the base material B1 can be effectively promoted.
- the short-circuit standby time is set according to at least one of the type of material constituting the welding wire W1 and the feeding speed Wf (specifically, the first feeding speed Wf1) of the welding wire W1. May be done.
- the short-circuit waiting time when the welding wire W1 is composed of the high resistance material may be longer than the short-circuit waiting time when the welding wire W1 is composed of the low resistance material.
- the short circuit standby time is preferably set to a time of 100 ⁇ sec or more and 1000 ⁇ sec or less.
- the short circuit standby time is preferably set to 100 ⁇ sec or more and 3000 ⁇ sec or less, and in particular, 2000 ⁇ sec or more and 3000 ⁇ sec or less in consideration of sputtering reduction. It is preferably set to time.
- the short-circuit standby time When the short-circuit standby time is lengthened, the preheating time for the welding wire W1 becomes long, so that the short-circuit opening current (welding current iw at the time of short-circuit opening) can be reduced. For example, if the short circuit standby time is changed from 100 ⁇ sec to 2000 ⁇ sec, the short circuit open current drops from 300 A to 200 A. By reducing the short-circuit open current in this way, sputtering can be reduced. If the short-circuit standby time is made too long, the time from the start of the short-circuit to the opening of the short-circuit varies and welding becomes unstable. Therefore, the short-circuit standby time is preferably 3000 ⁇ sec or less.
- the short-circuit standby time may be shortened as the feed rate Wf (specifically, the first feed rate Wf1) of the welding wire W1 increases.
- Wf the feed rate of the welding wire W1
- buckling of the welding wire W1 due to contact between the welding wire W1 and the base material B1 tends to occur. Therefore, the occurrence of buckling of the welding wire W1 can be suppressed by shortening the short-circuit standby time as the feeding speed Wf of the welding wire W1 increases.
- FIG. 4 illustrates a short-circuit standby time according to the type of material constituting the welding wire W1 and the feeding speed Wf of the welding wire W1.
- the short circuit standby time is set to "1000 ⁇ sec". Will be done.
- the feed rate change control is performed after a predetermined time (for example, short circuit standby time) has elapsed from the time when the short circuit between the welding wire W1 and the base material B1 is detected is given as an example.
- the feed rate change control may be performed immediately after the short circuit between the welding wire W1 and the base metal B1 is detected. Needless to say, the feed rate change control is performed (started) before the short circuit between the welding wire W1 and the base material B1 is opened. Further, the feed control return control is started at the time when the opening of the short circuit between the welding wire W1 and the base metal B1 is detected, immediately after the time when the opening of the short circuit is detected, or when the opening of the short circuit is detected. It is preferably in the vicinity after.
- the technology disclosed here is useful as an arc welding technology.
- Arc welding system W1 Wire B1 Base material S1 Power supply 10 Arc welding device 11 Power conversion unit 12 Welding current detection unit 13 Welding voltage detection unit 14 Control unit 21 Wire feeding unit 22 Welding torch 30 Setting unit iw Welding current Vw Welding voltage Wf Feeding speed Wf1 1st feeding speed Wf2 2nd feeding speed
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Arc Welding Control (AREA)
- Arc Welding In General (AREA)
Abstract
Description
図1は、実施形態のアーク溶接システム1の構成を例示する。アーク溶接システム1では、消耗電極である溶接ワイヤW1と母材B1との間にアークA1を発生させて母材B1の溶接を行う。この例では、アーク溶接システム1は、アーク溶接装置10と、ワイヤ送給部21と、溶接トーチ22と、設定部30とを備える。
ワイヤ送給部21は、溶接トーチ22に溶接ワイヤW1を送給する。溶接トーチ22は、ワイヤ送給部21から送給された溶接ワイヤW1と母材B1とが互いに対向するように、溶接ワイヤW1を保持する。溶接トーチ22には、アーク溶接装置10からの電力を溶接ワイヤW1に供給するための溶接チップ22aが設けられる。また、ワイヤ送給部21には、溶接ワイヤW1の送給速度Wfを検出する送給速度検出部(図示を省略)が設けられる。また、溶接トーチ22は、ロボット(図示を省略)により保持される。送給速度検出部により検出された溶接ワイヤW1の送給速度Wf(具体的には送給速度Wfを示す検出信号)は、後述する制御部14に送信される。ロボットは、母材B1において予め定められた溶接対象領域に沿うように、溶接トーチ22を予め定められた溶接速度で移動させる。
設定部30は、溶接条件を設定するために用いられる。
アーク溶接装置10は、溶接に適した溶接電流iwを溶接ワイヤW1と母材B1に流すことにより、溶接ワイヤW1と母材B1との間にアークA1を発生させて母材B1を溶接する。この例では、アーク溶接装置10は、消耗電極式の直流のパルスアーク溶接機を構成する。溶接電流iwは、パルス状の電流であり、ピーク電流ipとベース電流ibとに交互に含む。具体的には、アーク溶接装置10は、電力変換部11と、溶接電流検出部12と、溶接電圧検出部13と、制御部14とを備える。
電力変換部11は、電源S1と電気的に接続され、電源S1から供給された電力を用いて溶接に適した溶接電圧Vwを生成する。また、電力変換部11は、溶接トーチ22の溶接チップ22aを経由して溶接ワイヤW1と電気的に接続され、母材B1と電気的に接続される。そして、電力変換部11は、溶接電圧Vwを溶接ワイヤW1と母材B1との間に印加することで、溶接電流iwを溶接ワイヤW1と母材B1とに流す。
溶接電流検出部12は、溶接電流iwを検出する。溶接電圧検出部13は、溶接電圧Vwを検出する。溶接電流検出部12により検出された溶接電流iw(具体的には溶接電流iwを示す検出信号)および溶接電圧検出部13により検出された溶接電圧Vw(具体的には溶接電圧Vwを示す検出信号)は、制御部14に送信される。
制御部14は、アーク溶接装置10の各部(この例では第1スイッチング部102と第2スイッチング部105と溶接電流検出部12と溶接電圧検出部13)およびアーク溶接装置10の外部にある装置(この例ではワイヤ送給部21と設定部30)との間において信号の伝送を行う。そして、制御部14は、アーク溶接装置10の各部およびアーク溶接装置10の外部にある装置から送信された信号に基づいて、アーク溶接装置10の各部およびアーク溶接装置10の外部にある装置を制御する。この例では、制御部14は、アーク溶接装置10の第1スイッチング部102および第2スイッチング部105と、ワイヤ送給部21と、溶接トーチ22を保持するロボット(図示を省略)を制御する。例えば、制御部14は、プロセッサと、プロセッサと電気的に接続されてプロセッサを動作させるためのプログラムや情報を記憶するメモリとにより構成される。
次に、制御部14の検出動作について説明する。制御部14は、短絡検出動作と、くびれ検出動作と、短絡開放検出動作とを行う。
短絡検出動作では、制御部14は、溶接ワイヤW1と母材B1との短絡を検出する。具体的には、制御部14は、溶接電圧検出部13により検出される溶接電圧Vwが予め定められた短絡発生閾値を下回ると、溶接ワイヤW1と母材B1との短絡が発生したと判定する。短絡発生閾値は、溶接ワイヤW1と母材B1との短絡が発生しているとみなせるときの溶接電圧Vwに設定される。
くびれ検出動作では、制御部14は、溶接ワイヤW1と母材B1との間に形成される溶滴にくびれが生じていることを検出する。具体的には、制御部14は、溶接電圧検出部13により検出される溶接電圧Vwの単位時間当たりの変化量が予め定められたくびれ閾値を上回ると、溶接ワイヤW1と母材B1との間に形成される溶滴にくびれが生じていると判定する。くびれ閾値は、溶接ワイヤW1と母材B1との間に形成される溶滴にくびれが生じているとみなせるときの溶接電圧Vwの単位時間当たりの変化量に設定される。
短絡開放検出動作、制御部14は、溶接ワイヤW1と母材B1との短絡の開放を検出する。具体的には、制御部14は、溶接電圧検出部13により検出される溶接電圧Vwが予め定められた短絡開放閾値を上回ると、溶接ワイヤW1と母材B1との短絡が開放されたと判定する。短絡開放閾値は、溶接ワイヤW1と母材B1との短絡が開放されているとみなせるときの溶接電圧Vwに設定される。
また、制御部14は、電力変換部11の動作(具体的には第1スイッチング部102と第2スイッチング部105の動作)を制御して溶接電流iwを制御する。この例では、制御部14は、通常電流制御と短絡電流制御とを選択的に行う。なお、制御部14は、短絡電流制御から通常電流制御へ復帰する場合に、復帰制御を必要に応じて行う。
通常電流制御は、溶接ワイヤW1と母材B1との短絡が発生していない期間に行われる制御である。通常電流制御では、制御部14は、第2スイッチング部105を導通状態にし、溶接電流iwがピーク電流ipとベース電流ibとに交互に変化するように、第1スイッチング部102のスイッチング動作を制御して溶接電流iwを制御する。なお、通常電流制御における溶接電流iwの周波数(ピーク電流ipおよびベース電流ibの出力タイミング)は、予め定められた周波数に応じた周波数(出力タイミング)となっている。
通常電流制御において溶接ワイヤW1と母材B1との短絡が検出された以後に、制御部14は、通常電流制御を終了して短絡電流制御を開始する。例えば、制御部14は、溶接ワイヤW1と母材B1との短絡の検出を受けて、短絡電流制御を開始してもよい。制御部14は、溶接ワイヤW1と母材B1との短絡が検出された時点からの経過時間を計時する。この例では、短絡電流制御において、短絡初期制御と、電流増加制御と、電流減少制御とが行われる。
通常電流制御において溶接ワイヤW1と母材B1との短絡が検出された以後(この例では直後)に、制御部14は、短絡初期制御を開始する。短絡初期制御では、制御部14は、溶接電流iwが予め定められた短絡初期電流isとなるように、電力変換部11の動作(具体的には第1スイッチング部102のスイッチング動作)を制御して溶接電流iwを制御する。なお、短絡初期制御では、第2スイッチング部105は、導通状態のまま維持される。
溶接ワイヤW1と母材B1との短絡が検出された時点(すなわち短絡初期制御が開始された時点)から予め定められた短絡待機時間が経過した以後(この例では直後)に、制御部14は、短絡初期制御を終了して電流増加制御を開始する。例えば、制御部14は、短絡待機時間の経過を受けて、電流増加制御を開始してもよい。電流増加制御では、制御部14は、溶接電流iwが予め定められた電流増加速度で増加するように、電力変換部11の動作(具体的には第1スイッチング部102のスイッチング動作)を制御して溶接電流iwを制御する。なお、短絡初期制御では、第2スイッチング部105は、導通状態のまま維持される。また、短絡待機時間は、例えば、100μsec以上で且つ3000μsec以下の時間に設定されることが好ましい。短絡待機時間の設定については、後で詳しく説明する。
電流増加制御が開始され、その後、溶接ワイヤW1と母材B1との間に形成される溶滴にくびれが生じていることが検出された以後(この例では直後)に、制御部14は、電流増加制御を終了して電流減少制御を開始する。例えば、制御部14は、くびれの検出を受けて、電流減少制御を開始してもよい。電流減少制御では、制御部14は、溶接電流iwが急峻に減少するように、電力変換部11の動作を制御して溶接電流iwを制御する。具体的には、制御部14は、第2スイッチング部105を導通状態から遮断状態に切り換えることで、溶接電流iwを急峻に減少させる。
短絡電流制御が開始され、その後、溶接ワイヤW1と母材B1との短絡の開放が検出された以後(この例では直後)に、制御部14は、短絡電流制御を終了し、必要に応じて復帰制御を行い、その後、通常電流制御を開始する。例えば、制御部14は、溶接ワイヤW1と母材B1との短絡の開放の検出を受けて、復帰制御を開始してもよい。復帰制御は、次の溶滴移行のための溶融塊(溶滴)を形成するために行われる。復帰制御では、制御部14は、溶接電流iwが予め定められた電流となるように、電力変換部11の動作(具体的には第1スイッチング部102のスイッチング動作)を制御して溶接電流iwを制御する。なお、復帰制御では、第2スイッチング部105は、導通状態のまま維持される。
また、制御部14は、ワイヤ送給部21の動作を制御して溶接ワイヤW1の送給速度Wfを制御する。この例では、制御部14は、送給速度変更制御と送給速度復帰制御とを行う。
制御部14は、通常電流制御において溶接ワイヤW1と母材B1との短絡が検出された以後に、送給速度変更制御を行う。この例では、制御部14は、短絡電流制御において電流増加制御が開始された以後(具体的には電流増加制御の開始と同時)に、送給速度変更制御を行う。例えば、制御部14は、短絡待機時間の経過を受けて、電流増加制御を開始してもよい。送給速度変更制御では、制御部14は、溶接ワイヤW1の送給速度Wfが第1送給速度Wf1から第2送給速度Wf2へ変化するように、ワイヤ送給部21を制御して溶接ワイヤW1の送給速度Wfを制御する。
制御部14は、短絡電流制御において溶接ワイヤW1と母材B1との短絡の開放が検出された以後(この例では直後)に、送給速度復帰制御を行う。例えば、制御部14は、溶接ワイヤW1と母材B1との短絡の開放の検出を受けて、送給速度復帰制御を開始してもよい。送給速度復帰制御では、制御部14は、溶接ワイヤW1の送給速度Wfが第2送給速度Wf2から第1送給速度Wf1へ変化するように、ワイヤ送給部21を制御して溶接ワイヤW1の送給速度Wfを制御する。
また、制御部14は、溶接トーチ22を保持するロボット(図示を省略)の動作を制御して溶接トーチ22の移動速度(すなわち溶接速度)を制御する。
次に、図2を参照して、実施形態のアーク溶接装置10の動作について説明する。図2の例では、時点t12において溶接ワイヤW1と母材B1との短絡が検出される。時点t14において溶接ワイヤW1と母材B1との間に形成される溶滴にくびれが生じていることが検出される。時点t15において溶接ワイヤW1と母材B1との短絡の開放が検出される。また、時点t13は、時点t12から短絡待機時間が経過した後の時点である。すなわち、時点t12から時点t13までの期間の時間長さは、短絡待機時間に相当する。
以上のように、溶接ワイヤW1と母材B1との短絡が検出された以後に、溶接ワイヤW1の送給速度を第1送給速度Wf1(正送方向の送給速度である正の値の送給速度)から第2送給速度Wf2(第1送給速度Wf1よりも負側となる送給速度)に変化させる送給速度変更制御を行うことにより、溶接ワイヤW1の送給速度Wfを第1送給速度Wf1よりも負側に変化させることができる。
実施形態の変形例1のアーク溶接装置10は、電流増加制御の詳細が実施形態のアーク溶接装置10と異なる。実施形態の変形例1のアーク溶接装置10のその他の構成および動作は、実施形態のアーク溶接装置10の構成および動作と同様である。
制御部14は、通常電流制御において溶接ワイヤW1と母材B1との短絡が検出された時点(すなわち短絡初期制御が開始された時点)から予め定められた短絡待機時間が経過した以後(この例では直後)に、第1電流増加制御を行う。第1電流増加制御では、制御部14は、溶接電流iwが予め定められた第1電流増加速度で増加するように、電力変換部11の動作(具体的には第1スイッチング部102のスイッチング動作)を制御して溶接電流iwを制御する。なお、第1電流増加制御では、第2スイッチング部105は、導通状態のまま維持される。
第1電流増加制御の後に、制御部14は、第2電流増加制御を行う。具体的には、制御部14は、第1電流増加制御において溶接電流iwが予め定められた切換電流に到達した以後(図3の例では溶接電流iwが第3電流i3に到達した直後)に、第2電流増加制御を行う。例えば、制御部14は、溶接電流iwを検出し、溶接電流iwが切替電流に到達したことを受けて第2電流増加制御を開始してもよい。第2電流増加制御では、制御部14は、溶接電流iwが予め定められた第2電流増加速度(第1電流増加速度よりも低い電流増加速度)で増加するように、電力変換部11の動作(具体的には第1スイッチング部102のスイッチング動作)を制御して溶接電流iwを制御する。なお、第2電流増加制御では、第2スイッチング部105は、導通状態のまま維持される。
なお、図5に示すように、送給速度変更制御は、第2電流増加制御が開始された以後(この例では直後)に行われてもよい。すなわち、制御部14は、第2電流増加制御が開始された以後に、ワイヤ送給速度Wfが第1送給速度Wf1から第2送給速度Wf2に変化するように、ワイヤ送給部21の動作を制御するものであってもよい。例えば、制御部14は、溶接電流iwが切替電流に到達したことを受けて送給速度変更制御を実行してもよい。
以上のように、第1電流増加制御が開始された以後(溶接ワイヤW1と母材B1との短絡が検出された時点から短絡待機時間が経過した時点以降)に、送給速度変更制御を行うことにより、溶接ワイヤW1と母材B1との短絡の接触状態が比較的に軽度であり短絡開始から短絡開放までの時間(短絡時間)が比較的に短い場合に、送給速度変更制御が行われないようにすることができる。これにより、送給速度変更制御を効果的に行うことができる。
実施形態の変形例2のアーク溶接装置10は、送給速度変更制御のタイミングが実施形態のアーク溶接装置10と異なる。実施形態の変形例2のアーク溶接装置10のその他の構成および動作は、実施形態のアーク溶接装置10の構成および動作と同様である。
以上のように、電流減少制御が開始された以後(溶接ワイヤW1と母材B1との短絡が検出された時点から短絡待機時間が経過した時点以降)に、送給速度変更制御を行うことにより、溶接ワイヤW1と母材B1との短絡の接触状態が比較的に軽度であり短絡開始から短絡開放までの時間(短絡時間)が比較的に短い場合に、送給速度変更制御が行われないようにすることができる。これにより、送給速度変更制御を効果的に行うことができる。
実施形態の変形例3のアーク溶接装置10は、制御部14の動作が実施形態のアーク溶接装置10と異なる。実施形態の変形例3のアーク溶接装置10のその他の構成および動作は、実施形態のアーク溶接装置10の構成および動作と同様である。
実施形態の変形例3では、制御部14は、くびれ検出動作の代わりに、電力積算動作を行う。電力積算動作では、制御部14は、溶接ワイヤW1と母材B1との短絡が検出された時点から溶接ワイヤW1と母材B1とに供給された電力を積算して得られる電力積算値を導出する。なお、溶接ワイヤW1と母材B1とに供給される電力は、溶接電流iwと溶接電圧Vwとの積に基づいて算出することが可能である。
また、実施形態の変形例3では、制御部14は、くびれ検出動作により検出される溶滴のくびれの代わりに、電力積算動作により導出される電力積算値に基づいて、電流減少制御を行う。具体的には、制御部14は、電流増加制御を開始し、その後、電力積算動作を開始する。制御部14は、電力積算値が予め定められた電力積算閾値よりも大きいかを決定する。制御部14は、電力積算値が電力積算閾値に到達した以後(例えば直後)に、制御部14は、電流減少制御を開始する。なお、電力積算閾値は、溶接ワイヤW1と母材B1との間の短絡が開放される直前であるとみなすことができるときの電力積算値に設定される。電力積算閾値は、固定値であってもよい。
また、実施形態の変形例3では、送給速度変更制御は、短絡待機時間が経過して電流増加制御が開始された以後(例えば直後)に行われる。すなわち、制御部14は、電流増加制御が開始された以後に、ワイヤ送給速度Wfが第1送給速度Wf1から第2送給速度Wf2に変化するように、ワイヤ送給部21の動作を制御する。
以上のように、溶接ワイヤW1と母材B1との短絡が検出された時点から溶接ワイヤW1と母材B1とに供給された電力を積算して得られる電力積算値に基づいて、電流減少制御を行うことにより、溶接ワイヤW1と母材B1との間に形成される溶滴のくびれの有無に基づいて電流減少制御が行われる場合よりも、溶接ワイヤW1と母材B1との短絡の開放の直前に電流減少制御を正確に行うことができる。
実施形態の変形例4のアーク溶接装置10は、送給速度変更制御のタイミングが実施形態のアーク溶接装置10と異なる。実施形態の変形例4のアーク溶接装置10のその他の構成および動作は、実施形態のアーク溶接装置10の構成および動作と同様である。
以上のように、溶接ワイヤW1と母材B1との短絡が検出された時点から短絡待機時間が経過した以後に、送給速度変更制御を行うことより、溶接ワイヤW1と母材B1との短絡の接触状態が比較的に軽度であり短絡開始から短絡開放までの時間(短絡時間)が比較的に短い場合に、送給速度変更制御が行われないようにすることができる。これにより、送給速度変更制御を効果的に行うことができる。
以上の説明において、電流増加制御における溶接電流iwの傾き(増加速度)は、溶接ワイヤW1の特徴(材質や径など)や、溶接電流iwの電流域や、顧客の要望などに応じて設定されてもよい。例えば、溶接の安定性よりもスパッタの低減をより強く求められている場合は、電流増加制御における溶接電流iwの傾きを小さくすることが好ましい。例えば、電流増加制御における溶接電流iwの通常の傾きが「100A/ms」であるとすると、溶接の安定性よりもスパッタの低減をより強く求められている場合、電流増加制御における溶接電流iwの傾きを通常の傾きよりも小さい傾き(例えば10A/ms)にしてもよいし、電流増加制御における溶接電流iwの傾きをゼロにして電流増加制御が行われないようにしてもよい。ただし、このような場合は、ジュール発熱による短絡開放が期待できないので、短絡開放を促進させるために第2送給速度Wf2を負の値(逆送)とすることが好ましい。特に、電流増加制御が行われないようにする場合は、第2送給速度Wf2の大きさ(絶対値)を、通常の送給速度である第1送給速度Wf1の大きさの1.5倍以上にすることが好ましい。
W1 ワイヤ
B1 母材
S1 電源
10 アーク溶接装置
11 電力変換部
12 溶接電流検出部
13 溶接電圧検出部
14 制御部
21 ワイヤ送給部
22 溶接トーチ
30 設定部
iw 溶接電流
Vw 溶接電圧
Wf 送給速度
Wf1 第1送給速度
Wf2 第2送給速度
Claims (11)
- 消耗電極である溶接ワイヤを母材へ向けて送給し、ピーク電流と前記ピーク電流よりも小さなベース電流とを交互に含むパルス状の溶接電流を前記溶接ワイヤと前記母材とに流すことにより、前記溶接ワイヤと前記母材との間にアークを発生させて前記母材を溶接するアーク溶接方法であって、
前記溶接ワイヤと前記母材との短絡を検出する短絡検出ステップと、
前記短絡検出ステップにより前記溶接ワイヤと前記母材との短絡が検出された以後に、前記溶接ワイヤの送給速度を、第1送給速度から、前記溶接ワイヤが前記母材へ向かう方向の速度を正とした場合に前記第1送給速度よりも負側となる第2送給速度へ変化させる送給速度変更ステップとを備える
ことを特徴とするアーク溶接方法。 - 請求項1において、
前記短絡検出ステップにより前記溶接ワイヤと前記母材との短絡が検出された時点から予め定められた短絡待機時間が経過した以後に、前記溶接電流を増加させる電流増加ステップを備え、
前記送給速度変更ステップは、前記電流増加ステップが開始された以後に行われる
ことを特徴とするアーク溶接方法。 - 請求項2において、
前記電流増加ステップは、
前記短絡検出ステップにより前記溶接ワイヤと前記母材との短絡が検出された時点から前記短絡待機時間が経過した以後に、予め定められた第1電流増加速度で前記溶接電流を増加させる第1電流増加ステップと、
前記第1電流増加ステップの後に、前記第1電流増加速度よりも低い第2電流増加速度で前記溶接電流を増加させる第2電流増加ステップとを含み、
前記送給速度変更ステップは、前記第2電流増加ステップが開始された以後に行われることを特徴とするアーク溶接方法。 - 請求項2または3において、
前記溶接ワイヤと前記母材との間に形成される溶滴にくびれが生じていることを検出するくびれ検出ステップと、
前記電流増加ステップが開始され、その後、前記くびれ検出ステップにより前記くびれが検出された以後に、前記溶接電流を減少させる電流減少制御ステップとを備える
ことを特徴とするアーク溶接方法。 - 請求項2または3において、
前記短絡検出ステップにより前記溶接ワイヤと前記母材との短絡が検出された時点から前記溶接ワイヤと前記母材とに供給された電力を積算して得られる電力積算値を検出する電力積算ステップと、
前記電流増加ステップが開始され、その後、前記電力積算ステップにより導出される前記電力積算値が予め定められた電力積算閾値に到達した以後に、前記溶接電流を減少させる電流減少制御ステップとを備える
ことを特徴とするアーク溶接方法。 - 請求項5において、さらに、前記電力積算値が前記所定の閾値よりも大きいかどうかを決定するステップを備え、
前記所定の閾値は、固定値であるアーク溶接方法。 - 請求項1において、
前記送給速度変更ステップは、前記短絡検出ステップにより前記溶接ワイヤと前記母材との短絡が検出された時点から予め定められた短絡待機時間が経過した以後に行われる
ことを特徴とするアーク溶接方法。 - 請求項1~7のいずれか1つにおいて、
前記溶接ワイヤと前記母材との短絡の開放を検出する短絡開放検出ステップと、
前記短絡開放検出ステップにより前記溶接ワイヤと前記母材との短絡の開放が検出された以後に、前記溶接ワイヤの送給速度を前記第2送給速度から前記第1送給速度に戻す送給速度復帰ステップとを備えている
ことを特徴とするアーク溶接方法。 - 請求項1~8のいずれか1つにおいて、
前記第1送給速度が正の方向に大きくなるに連れて、前記第2送給速度が負の方向に大きくなる
ことを特徴とするアーク溶接方法。 - 消耗電極である溶接ワイヤがワイヤ送給部により母材へ向けて送給され、前記溶接ワイヤと前記母材との間に、ピーク電流と前記ピーク電流よりも小さなベース電流とを交互に含むパルス状の溶接電流を流すことにより、前記溶接ワイヤと前記母材との間にアークを発生させて前記母材を溶接するアーク溶接装置であって、
前記溶接ワイヤと前記母材とに前記溶接電流を流す電力変換部と、
前記溶接ワイヤと前記母材との短絡を検出した以後に、前記溶接ワイヤの送給速度が、第1送給速度から、前記溶接ワイヤが前記母材へ向かう方向の速度を正とした場合に前記第1送給速度よりも負側となる第2送給速度へ変化するように前記ワイヤ送給部を制御する制御部とを備える
ことを特徴とするアーク溶接装置。 - 請求項10において、
前記制御部は、
前記溶接ワイヤの短絡を検出した後に前記溶接電流が増加するように前記電力変換部を制御し、
前記溶接ワイヤの短絡を検出した後に前記溶接ワイヤに供給された電力を積算して電力積算値を算出し、前記電力積算値が、固定された閾値よりも大きいかどうかを決定し、
前記電力積算値が前記固定された閾値よりも大きいという決定の後に、前記溶接電流が低下するように前記電力変換部を制御する、アーク溶接装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20810167.5A EP3974092B1 (en) | 2019-05-22 | 2020-05-21 | Arc welding method |
CN202080036142.7A CN113825580B (zh) | 2019-05-22 | 2020-05-21 | 电弧焊接方法以及电弧焊接装置 |
JP2021520836A JP7489582B2 (ja) | 2019-05-22 | 2020-05-21 | アーク溶接方法およびアーク溶接装置 |
EP24156013.5A EP4342617A3 (en) | 2019-05-22 | 2020-05-21 | Arc welding method |
US17/520,767 US20220055134A1 (en) | 2019-05-22 | 2021-11-08 | Arc welding method and arc welding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-096032 | 2019-05-22 | ||
JP2019096032 | 2019-05-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/520,767 Continuation US20220055134A1 (en) | 2019-05-22 | 2021-11-08 | Arc welding method and arc welding device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020235620A1 true WO2020235620A1 (ja) | 2020-11-26 |
Family
ID=73458855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020066 WO2020235620A1 (ja) | 2019-05-22 | 2020-05-21 | アーク溶接方法およびアーク溶接装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220055134A1 (ja) |
EP (2) | EP3974092B1 (ja) |
JP (1) | JP7489582B2 (ja) |
CN (1) | CN113825580B (ja) |
WO (1) | WO2020235620A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129388A1 (ja) | 2005-05-31 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | パルスアーク溶接制御方法及びパルスアーク溶接装置 |
JP2012081501A (ja) * | 2010-10-13 | 2012-04-26 | Panasonic Corp | アーク溶接制御方法およびアーク溶接装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4211793B2 (ja) * | 2006-02-17 | 2009-01-21 | パナソニック株式会社 | アーク溶接制御方法およびアーク溶接装置 |
US8513568B2 (en) * | 2009-06-19 | 2013-08-20 | Panasonic Corporation | Consumable electrode arc welding method and consumable electrode arc welding device |
CN102264500B (zh) * | 2009-07-10 | 2013-07-10 | 松下电器产业株式会社 | 电弧焊接控制方法以及电弧焊接装置 |
US9050677B2 (en) * | 2009-08-28 | 2015-06-09 | Panasonic Intellectual Property Management Co., Ltd. | Arc welding method and arc welding apparatus |
JP5408364B2 (ja) * | 2011-06-03 | 2014-02-05 | パナソニック株式会社 | アーク溶接制御方法およびアーク溶接装置 |
US9533366B2 (en) * | 2013-03-14 | 2017-01-03 | Lincoln Global, Inc. | Apparatus and method for welding with AC waveform |
US11014186B2 (en) * | 2014-02-14 | 2021-05-25 | Panasonic Intellectual Property Management Co., Ltd. | Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps |
US12005530B2 (en) * | 2016-10-24 | 2024-06-11 | Daihen Corporation | AC pulse arc welding control method |
-
2020
- 2020-05-21 WO PCT/JP2020/020066 patent/WO2020235620A1/ja active Application Filing
- 2020-05-21 EP EP20810167.5A patent/EP3974092B1/en active Active
- 2020-05-21 EP EP24156013.5A patent/EP4342617A3/en active Pending
- 2020-05-21 CN CN202080036142.7A patent/CN113825580B/zh active Active
- 2020-05-21 JP JP2021520836A patent/JP7489582B2/ja active Active
-
2021
- 2021-11-08 US US17/520,767 patent/US20220055134A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129388A1 (ja) | 2005-05-31 | 2006-12-07 | Matsushita Electric Industrial Co., Ltd. | パルスアーク溶接制御方法及びパルスアーク溶接装置 |
JP2012081501A (ja) * | 2010-10-13 | 2012-04-26 | Panasonic Corp | アーク溶接制御方法およびアーク溶接装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7489582B2 (ja) | 2024-05-24 |
EP4342617A2 (en) | 2024-03-27 |
US20220055134A1 (en) | 2022-02-24 |
CN113825580B (zh) | 2023-10-24 |
EP3974092A1 (en) | 2022-03-30 |
EP3974092B1 (en) | 2024-04-17 |
EP4342617A3 (en) | 2024-06-19 |
CN113825580A (zh) | 2021-12-21 |
JPWO2020235620A1 (ja) | 2020-11-26 |
EP3974092A4 (en) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1985400B1 (en) | Method of controlling arc welding and welding device | |
US9533366B2 (en) | Apparatus and method for welding with AC waveform | |
CN111989182B (zh) | 电弧焊接控制方法 | |
JP2006247710A (ja) | 消耗電極アーク溶接のくびれ検出時電流制御方法 | |
CN108883486B (zh) | 电弧焊接控制方法 | |
WO2006129388A1 (ja) | パルスアーク溶接制御方法及びパルスアーク溶接装置 | |
US20220063009A1 (en) | Arc welding control method and arc welding device | |
JP2024099058A (ja) | アーク溶接方法及びアーク溶接装置 | |
WO2020235294A1 (ja) | アーク溶接方法およびアーク溶接装置 | |
JP5545996B2 (ja) | 消耗電極アーク溶接のくびれ検出制御方法 | |
WO2020235620A1 (ja) | アーク溶接方法およびアーク溶接装置 | |
JP5851798B2 (ja) | 消耗電極アーク溶接のくびれ検出時電流制御方法 | |
JP2023122461A (ja) | アーク溶接制御方法 | |
JP5871360B2 (ja) | 消耗電極アーク溶接のくびれ検出制御方法 | |
JP2004268081A (ja) | 消耗電極パルスアーク溶接の磁気吹き対処制御方法 | |
JPS60223662A (ja) | ア−ク溶接法 | |
JP2001252768A (ja) | 多電極パルスアーク溶接制御方法及び溶接装置 | |
JP2022134272A (ja) | アーク溶接装置 | |
JP2023183971A (ja) | パルスアーク溶接の極性制御方法 | |
JP2023172986A (ja) | パルスアーク溶接制御方法 | |
JP2001287031A (ja) | 多電極パルスアーク溶接制御方法及び溶接装置 | |
JPS60177963A (ja) | ア−ク溶接法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20810167 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021520836 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202147054724 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2020810167 Country of ref document: EP Effective date: 20211222 |