WO2011024380A1 - アーク溶接方法およびアーク溶接装置 - Google Patents

アーク溶接方法およびアーク溶接装置 Download PDF

Info

Publication number
WO2011024380A1
WO2011024380A1 PCT/JP2010/004711 JP2010004711W WO2011024380A1 WO 2011024380 A1 WO2011024380 A1 WO 2011024380A1 JP 2010004711 W JP2010004711 W JP 2010004711W WO 2011024380 A1 WO2011024380 A1 WO 2011024380A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
wire
predetermined
arc
output
Prior art date
Application number
PCT/JP2010/004711
Other languages
English (en)
French (fr)
Inventor
川本篤寛
向井康士
藤原潤司
古和将
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011528626A priority Critical patent/JP5141826B2/ja
Priority to CN2010800104570A priority patent/CN102341207B/zh
Priority to US13/391,061 priority patent/US9050677B2/en
Priority to EP10811439.8A priority patent/EP2402105B1/en
Publication of WO2011024380A1 publication Critical patent/WO2011024380A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Definitions

  • the present invention relates to a consumable electrode type arc welding method in which welding is performed by generating an arc between a welding wire as a consumable electrode and a base material as a welding object while feeding the welding wire as a consumable electrode, and
  • the present invention relates to an arc welding apparatus.
  • FIG. 4 is a diagram showing a schematic configuration of a conventional arc welding apparatus.
  • the primary side rectifying element 3 rectifies the electric power input from the input power supply 1.
  • the switching element 4 performs switching so that the output of the primary side rectifying element 3 becomes an output suitable for welding.
  • the main transformer 2 converts the output of the switching element 4 into an output suitable for welding.
  • the secondary side rectifying element 6 rectifies the output of the main transformer 2.
  • the reactor 5 smoothes the output of the secondary side rectifying element 6 to a current suitable for welding.
  • the welding current detection unit 8 detects a welding current.
  • the welding voltage detector 9 detects the welding voltage.
  • the short-circuit / arc detection unit 10 determines whether the welding state is a short-circuit state in which the wire 16 and the base material 15 are short-circuited by the welding voltage detection signal, or an arc state in which the short-circuit is open and an arc is generated. It is determined whether it is.
  • the welding activation instructing unit 35 inputs welding activation and welding end signals from outside the welding power source 14.
  • the welding end determination unit 34 determines the welding end point based on the input from the welding start instruction unit 35.
  • the accumulating unit 30 accumulates the welding current starting from the time immediately after the short-circuit opening at the welding end part.
  • the threshold setting unit 31 sets a threshold for comparison with the integrated value of the welding current.
  • the comparison unit 32 compares the integrated value of the welding current with a threshold value.
  • the output control unit 36 outputs a welding output control signal.
  • the drive unit 33 outputs a signal for driving the switching element 4 in order to control the welding output.
  • the welding voltage detector 9 is connected between the output terminals of the welding power source 14 and outputs a signal corresponding to the detected voltage.
  • the short-circuit / arc detection unit 10 determines whether the welding output voltage is equal to or higher than a certain value based on the signal from the welding voltage detection unit 9. Then, the short-circuit / arc detection unit 10 determines whether the wire 16 is short-circuited by contact with the base material 15 that is the workpiece to be welded according to the determination result, or whether it is in the arc-state in a non-contact state. Determine and output a determination signal.
  • FIG. 5 is a diagram showing waveforms of the wire feed speed Wf, welding current Aw, and welding voltage Vw in conventional arc welding.
  • the welding end determining unit 34 detects a time point at which welding end control is started. Then, the wire feeding speed is decelerated at a predetermined inclination toward the stop. The time point when the short-circuit / arc detection unit 10 switches from the short-circuit determination to the arc determination is detected at time T ⁇ b> 2 as the transition of the droplet at the tip of the wire 16 to the base material 15. Starting from time T2, the integration of the output current is started in the integration unit 30, and the integration value is compared with the threshold set in the threshold setting unit 31 by the comparison unit 32.
  • a predetermined current value set in advance by the output control unit 36 is output for a predetermined time t1, and a droplet is formed at the tip of the wire 16 to produce a welding output. Stop (see, for example, Patent Document 1).
  • the shape of the wire tip can be controlled to be uniform without variation.
  • an attempt is made to control the size of the ball formed at the tip of the wire 16 eg, about 1.1 to 1.3 times the wire diameter
  • sticks or droplets may be caused by vibration of the molten pool.
  • the molten pool is sucked up, and a droplet having a desired size may not be formed.
  • the welding wire when a welding end signal is input during an arc, the welding wire is accelerated to cause a short circuit between the welding wire and the base material, and then the welding wire is fed back to obtain a predetermined value.
  • the wire reverse feed speed is reached, the wire feed speed is controlled to a predetermined wire reverse feed speed and the feed wire is reversely fed for a predetermined time, and then the welding wire feed is stopped.
  • a predetermined predetermined welding current is output for a predetermined welding time starting from the time when the short circuit is generated, and then the welding output is stopped.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing waveforms of the wire feeding speed, welding voltage, and welding current of the arc welding apparatus.
  • FIG. 3 is a diagram showing waveforms of the wire feed speed, the welding voltage, and the welding current in the second embodiment of the present invention.
  • FIG. 4 is a diagram showing a schematic configuration of a conventional arc welding apparatus.
  • FIG. 5 is a view showing waveforms of wire feed speed, welding voltage, and welding current in arc welding of the arc welding apparatus.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing waveforms of a wire feed speed, a welding voltage, and a welding current of the arc welding apparatus.
  • the primary side rectifying element 3 rectifies the power input from the input power source 1.
  • the switching element 4 controls the output of the primary side rectifying element 3 to be an output suitable for welding.
  • the main transformer 2 converts the output of the switching element 4 into an output suitable for welding.
  • the secondary side rectifying element 6 rectifies the output of the main transformer 2.
  • the reactor 5 smoothes the output of the secondary side rectifying element 6 to a current suitable for welding.
  • the welding current detection unit 8 detects a welding current.
  • the welding voltage detector 9 detects the welding voltage.
  • the short circuit / arc detection unit 10 determines whether the welding state is a short circuit state in which the wire 16 and the base material 15 are short-circuited by the welding voltage detection signal, that is, the output of the welding voltage detection unit 9, or the short circuit is opened. Then, it is determined whether or not the arc state where the arc 17 is generated.
  • the wire 16 means a welding wire that is a consumable electrode.
  • the base material 15 is a workpiece.
  • the output control unit 11 controls the welding output.
  • the welding activation instructing unit 12 instructs activation or stop of welding output.
  • the wire feed speed control unit 13 controls the wire feed speed.
  • the chip 20 is attached to the torch 18.
  • an operator sets welding conditions such as a welding current or a welding voltage. That is, the output control unit 11 controls the switching element 4 so as to have a predetermined current waveform or voltage waveform based on the set current set in the welding condition setting unit 23 and the output of the short circuit / arc detection unit 10. To do.
  • examples of the welding start instruction unit 12 include a remote controller connected to the welding power source 14 or a torch switch of the torch 18.
  • a robot control device in which a robot operation program is stored may be used.
  • examples of the welding condition setting unit 23 include a remote controller connected to the welding power source 14.
  • a robot control device in which a robot operation program is stored or a teaching pendant connected to the robot control device may be used.
  • FIG. 2 is a diagram showing changes over time of the wire feed speed Wf, the welding voltage Vw that is the welding output voltage, and the welding current Aw that is the welding output current.
  • the time T1 shown in FIG. 2 is the time when the signal for turning off the welding output is input by the welding activation instructing unit 12, and the wire feed speed Wf, the welding current Aw, and the welding voltage Vw are controlled by the welding end processing. Be started.
  • the wire feed speed Wf is accelerated with a predetermined amplitude and period (frequency) and then decelerated.
  • the reverse feed control is performed from the forward feed control, and when the predetermined wire reverse feed speed Wf1 is reached, the predetermined wire reverse feed speed Wf1 is continued for the predetermined reverse feed time t4, and when the reverse feed time t4 elapses. It becomes 0 and feeding stops.
  • the short circuit is forcibly generated by forward feeding, and then the reverse circuit is forcibly opened (time T6), and the wire 16 is pulled up and pulled away from the base material 15.
  • the predetermined wire reverse feed speed Wf1 is approximately 1 m / min to 20 m / min
  • the predetermined reverse feed time t4 is approximately 10 msec to 30 msec.
  • the predetermined amplitude of the wire feed speed Wf is approximately 2 m / min to 25 m / min
  • the predetermined period is approximately 40 to 100 times per second. That is, the frequency is approximately 40 Hz to 100 Hz, and therefore the period is approximately 10 ms to 25 ms.
  • the predetermined welding current A1 is output for a predetermined welding current time t2 from the time T6 as a time starting point, and the shape of the tip of the wire 16 is controlled to a desired size.
  • the predetermined welding current A1 for melting the wire 16 is approximately 30A to 100A, and the predetermined welding current time t2 is, for example, 10 msec to 30 msec.
  • the predetermined welding current A1 and the predetermined welding current time t2 vary depending on the diameter of the wire 16 and the like.
  • the distance between the wire tip portion and the base material is set so as to be approximately 3 mm to 8 mm by adding the melted portion of the wire 16 to the distance pulled up by reverse feeding. Since the wire 16 is melted in the state where the wire 16 is pulled up, the distance between the wire tip portion and the base material can be secured even when the tip shape of the wire 16 is reduced. Therefore, it is possible to prevent the tip of the wire 16 from coming into contact with the molten pool after the stick and welding output are stopped, and the droplets to be transferred to the molten pool.
  • the wire feed speed stop time does not coincide with the welding output stop time, and the welding output stop time is described later than the wire feed speed stop time. However, they may be matched, and even if the welding output stop time is set to be earlier, there is no problem, and the relationship varies depending on the diameter of the wire 16 and the like.
  • the welding current is sharply reduced in a short time (approximately 2 msec) from the time T6 when the short circuit is opened. Therefore, the predetermined welding current time t2 is measured from time T6.
  • a welding end signal for turning off the welding output is input from the welding activation instructing unit 12 to the output control unit 11 and the wire feed speed control unit 13.
  • the wire feed speed control unit 13 accelerates the wire feed speed with a predetermined period and amplitude, and then decelerates. Then, the wire 16 is fed back at a predetermined wire reverse feed speed Wf1 for a predetermined reverse feed time t4 to stop feeding the wire 16.
  • the wire feed speed control unit 13 outputs a signal for controlling the wire feed speed to the wire feed unit 19 to control the wire feed speed.
  • the waveform shape of the wire feed speed may be changed to a sine wave shape according to a preset period and amplitude as shown in FIG. 2, for example, or may be changed to a trapezoidal wave shape.
  • the wire feed speed control unit 13 includes a storage unit 21 and a wire feed speed determination unit 22.
  • the storage unit 21 associates parameters such as a set current, an average wire feed speed of the wire feed speed, a cycle (frequency) of the wire feed speed, an amplitude of the wire feed speed, and a reverse feed time t4. Stores formulas or tables.
  • the wire feed speed determination unit 22 determines an average wire feed speed, a frequency, and an amplitude of the wire feed speed from the storage unit 21 based on the set current set by the welding condition setting unit 23.
  • the wire feed speed control unit 13 inputs the output of the short circuit / arc detection unit 10 and the output of the wire feed speed determination unit 22 and periodically repeats the wire feed speed in the forward feed and the reverse feed. Control.
  • the welding output control of the welding current and the welding voltage is as follows.
  • the output control unit 11 uses the welding current parameter selected by the welding setting current and the welding setting voltage set in the welding condition setting unit 23 to determine the welding current using the appropriate parameter for the short-circuit period, or the welding current or Outputs a signal that controls the welding voltage.
  • a signal for controlling the welding current or the welding voltage is output using parameters appropriate for the arc period.
  • the welding output is controlled by inputting the output signal to the switching element 4.
  • a short-circuit / open-circuit signal is output from the short-circuit / arc detection unit 10 at time T6 when the short-circuit is opened.
  • the output control unit 11 controls the size of the distal end portion of the wire 16 by controlling to output a predetermined predetermined welding current A1 for a predetermined welding current time t2 from the time T6 as a time starting point.
  • the arc welding apparatus is a consumable electrode that performs welding by generating the arc 17 between the welding wire 16 that is a consumable electrode and the base material 15 that is a workpiece. It is a formula.
  • the arc welding apparatus includes a welding condition setting unit 23, a switching element 4, a welding voltage detection unit 9, a welding activation instruction unit 12, a short circuit / arc detection unit 10, an output control unit 11, a storage unit 21, and a wire feed speed determination unit. 22 and a wire feed speed control unit 13.
  • the wire feed speed control unit 13 of the arc welding apparatus accelerates the wire 16 with a predetermined period and amplitude, thereby short-circuiting the wire 16 and the base material 15. generate. Then, the wire 16 is reversely fed at a predetermined cycle and amplitude, and when a predetermined wire reverse speed is reached, the wire feed speed is controlled to a predetermined wire reverse speed and reversely fed for a predetermined time. Thereafter, the supply of the wire 16 is stopped, and the output control unit 11 outputs a predetermined predetermined welding current for a predetermined welding time from the time of opening the short circuit that occurs during the reverse feeding of the wire 16, and then stops the welding output.
  • the shape of the tip of the wire 16 can be obtained without variation, and a sufficient distance between the tip of the wire 16 and the base material 15 to prevent welding between the base material 15 and the base material 15 can be obtained, thereby preventing production stoppage. can do.
  • the acceleration of the wire 16 of the arc welding apparatus according to the first embodiment of the present invention is performed with a predetermined cycle and amplitude, and the reverse feed of the welding wire 16 is also performed with a predetermined cycle and amplitude. Therefore, the average distance between the wire tip and the melt pool is as long as about 1 mm or more in the current range of 200 A or more where the short circuit occurrence state during welding is irregular and the number of short circuits is about 80 times per minute or less. As a result of this acceleration, it is possible to reliably generate a short circuit, and the subsequent reverse feed of the wire 16 can be performed at an early stage, and the distance between the wire tip portion and the base material can be obtained in a short time.
  • the end time that is 100 msec to 200 msec in the conventional control shown in the background art as the time required for the end of welding can be completed by one short circuit.
  • the time required for the end of welding can be shortened to approximately 30 to 50 msec, production tact can be shortened, and productivity can be improved.
  • the wire 16 is periodically fed and accelerated when a welding end signal is input during the arc period.
  • the wire feed speed control unit 13 does not accelerate the wire 16 until the short circuit is opened.
  • the wire feed speed control unit 13 may periodically feed and accelerate the wire 16 with a predetermined period and amplitude, and cause the wire 16 and the base material 15 to be short-circuited.
  • the short-circuit occurrence state during welding is regular and the number of times is about 80 to 100 times per minute, which is as high as 200 A or less, and the average distance between the wire tip and the melt pool is as short as about 1 mm or less.
  • the example which feeds the wire 16 after a welding completion signal is input periodically (it may be less than one period) by a predetermined period (frequency) and an amplitude is shown. It was. However, not limited to periodic feeding, the wire 16 is accelerated after a welding end signal is input, the wire 16 and the base material 15 are short-circuited, and the wire 16 is reversely fed after the short-circuit and the wire 16 and the base material are short-circuited. You may make it control feeding of the wire 16 so that the short circuit with 15 may be open
  • the same components as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and only different points will be described.
  • the main difference from the first embodiment is that the wire feed speed is decelerated by a predetermined inclination from the time when the signal for turning off the welding output is input.
  • the difference is that the welding output is turned off, that is, after the welding end signal is inputted, the wire 16 is reversely fed when the first short-circuit occurs, and this reverse feeding is continued for a predetermined time to open the short-circuit, and the wire 16 is pulled up. It is to finish welding.
  • the wire feed speed may be reduced by a predetermined inclination from the time when the signal for turning off the welding output is input, and the following may be performed. That is, the normal wire feeding speed up to that time is maintained without deceleration, and the wire 16 is reversely fed when the first short-circuit occurs after the signal for turning off the welding output is input.
  • FIG. 3 is a diagram showing waveforms of the wire feed speed, welding voltage, and welding current according to the second embodiment of the present invention.
  • Time T1 shown in FIG. 3 is a time when a signal for stopping (off) the welding output is input, and control for the welding end process is started with respect to the wire feed speed Wf, the welding current Aw, and the welding voltage Vw.
  • the wire feed speed Wf is decelerated with a predetermined inclination, and decreases toward the welding speed 0 until the first short circuit occurs.
  • first short circuit occurs at time T5 after the signal for turning off the welding output is input
  • reverse feeding of the wire feed speed is started.
  • the wire 16 is reversely fed at a constant speed for a predetermined time t3 at a predetermined wire reverse feed speed Wf2, and then the feeding of the wire 16 is stopped, so that the distance between the wire tip portion and the base material is sufficient (approximately 3 mm to 8 mm).
  • the predetermined wire reverse feed speed Wf2 is approximately 1 m / min to 20 m / min
  • the predetermined time t3 is approximately 10 msec to 30 msec.
  • a predetermined welding current A1 (generally 30A to 100A) for melting the wire 16 is output for a predetermined welding current time t2 from time T6 as a time starting point.
  • the size of the droplet formed at the tip of the wire 16 is controlled. Since the tip of the wire 16 is melted by passing a welding current, the distance between the tip of the wire and the base material becomes long. For this reason, the distance between the wire tip portion and the base material is equal to or greater than the distance in which the wire 16 is fed back, and the distance between the wire tip portion and the base material is greater than 3 mm to 8 mm.
  • the wire feed speed stop time and the welding output stop time do not match, and the welding output stop time is described later than the wire feed speed stop time. However, they may be matched, or may be set so that the welding output stop time is earlier.
  • the welding current is sharply reduced in a short time (approximately 2 msec) from time T6 in order to make it easy to control the shape of the tip of the wire 16, so that the predetermined time t2 is set from time T6. It is timing.
  • a welding end signal of welding activation off is input from the welding activation instruction unit 12 to the output control unit 11 and the wire feed speed control unit 13.
  • the wire feed speed control unit 13 reduces the wire feed speed until the first short circuit occurs after the welding end signal of the welding start-off is input toward the welding speed 0 with a predetermined deceleration slope.
  • the predetermined deceleration of the wire feed speed is approximately 0.5 m / sec 2 to 2 m / sec 2 .
  • the wire feed speed control unit 13 starts reverse feed at a predetermined wire reverse feed speed Wf2. Then, after the predetermined wire reverse feed speed Wf2 is maintained for the predetermined reverse feed time t3 and reversely fed, the feeding of the wire 16 is stopped.
  • the wire feed speed control unit 13 outputs a signal for controlling the wire feed speed to the wire feed unit 19 to control the wire feed speed.
  • the waveform shape of the wire feed may be changed steeply to a predetermined wire reverse feed speed Wf1 as shown in FIG. 2, for example, or may be changed like a half cycle of a sine wave, or a trapezoidal wave shape. You may make it change to.
  • the wire feed speed control unit 13 includes a storage unit 21 and a wire feed speed determination unit 22.
  • the storage unit 21 stores parameters such as a set current or average wire feed speed, a slope of deceleration of the wire feed speed after the welding end signal is input, a predetermined welding current time t2, and a reverse feed time t3.
  • the associated relational expression or table is stored.
  • the wire feed speed determination unit 22 is based on the set current set in the welding condition setting unit 23, and the inclination of the wire feed speed deceleration after the welding end signal is input from the storage unit 21, and the predetermined welding current time t2. , And parameters such as the reverse feed time t3.
  • the welding output control of the welding current and the welding voltage is as follows.
  • the output control unit 11 uses the welding current parameter selected by the welding setting current and the welding setting voltage set in the welding condition setting unit 23 to determine the welding current using the appropriate parameter for the short-circuit period, or the welding current or Outputs a signal that controls the welding voltage.
  • a signal for controlling the welding current or the welding voltage is output using parameters appropriate for the arc period.
  • the welding output is controlled by inputting the output signal to the switching element 4.
  • a welding end signal of welding start-off is input from the welding start instruction unit 12 to the output control unit 11, and when the first short circuit is released, a short-circuit / open-circuit signal is output from the short-circuit / arc detection unit 10. Accordingly, the output control unit 11 controls to output the predetermined welding current A1 during the predetermined welding current time t2 after the short circuit is opened in order to control the size of the tip end portion of the wire 16.
  • the arc welding apparatus is a consumable electrode that performs welding by generating an arc 17 between a welding wire 16 that is a consumable electrode and a base material 15 that is a workpiece. It is a formula.
  • the arc welding apparatus includes a welding condition setting unit 23, a switching element 4, a welding voltage detection unit 9, a welding activation instruction unit 12, a short circuit / arc detection unit 10, an output control unit 11, a storage unit 21, and a wire feed speed determination unit. 22 and a wire feed speed control unit 13. Further, the wire feed speed control unit 13 of the arc welding apparatus does not feed the wire 16 until the first short circuit between the wire 16 and the base material 15 after the welding end signal is input during the arc 17.
  • the normal feed speed up to is maintained.
  • the feeding of the wire 16 is reduced by a predetermined deceleration from the previous normal feeding speed.
  • the wire feed speed control unit 13 starts the reverse feed of the wire 16 and reverses the wire 16 at a predetermined wire reverse feed speed for a predetermined time. Thereafter, the wire feeding speed control unit 13 stops feeding the wire 16.
  • the output control unit 11 stops the welding output after outputting a predetermined predetermined welding current for a predetermined welding time, starting from a time when the short circuit is opened during reverse feeding of the wire 16.
  • the tip shape of the wire 16 having an appropriate size is not varied, and a sufficient distance between the tip of the wire 16 and the base material 15 for preventing welding between the tip of the wire 16 and the base material 15 can be obtained. Production stoppage can be prevented.
  • the end time required for the end of welding can be completed by a single short circuit, which is an end time of 100 to 200 msec in the conventional control shown in the background art. As a result, the time required for the end of welding can be shortened to approximately 30 to 50 msec, production tact can be shortened, and productivity can be improved.
  • the welding end signal is input during the arc period.
  • the wire 16 is fed from the input time. May be sent back.
  • the distance between the wire tip and the base material can be obtained in a short time because the feed is reversely sent during the short circuit at the time of input.
  • the present invention it is industrially useful as a method and apparatus for performing arc welding while continuously feeding a welding wire as a consumable electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

アーク中に溶接終了信号が入力されると溶接用ワイヤを加速させて溶接用ワイヤと母材との短絡を発生させ、その後に溶接用ワイヤを逆送させて所定のワイヤ逆送速度に達すると、ワイヤ送給速度を所定のワイヤ逆送速度に一定制御して所定時間逆送させた後に溶接用ワイヤの送給を停止させ、溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止するアーク溶接方法。

Description

アーク溶接方法およびアーク溶接装置
 本発明は、消耗電極である溶接ワイヤを送給しながら消耗電極である溶接用ワイヤと溶接対象物である母材との間にアークを発生させて溶接を行う消耗電極式のアーク溶接方法およびアーク溶接装置に関する。
 近年、溶接業界では、生産性向上のための溶接時間の短縮、および溶接結果の高品質化のためのアークスタート性能向上といった要求が高まってきている。溶接時間の短縮の方法のひとつとして、溶接終了処理時間の短縮がある。またアークスタート性能向上の方法のひとつとして、溶接終了時のワイヤ先端形状の適正化がある。いずれも溶接終了時の制御が関係している。
 図4は、従来のアーク溶接装置の概略構成を示す図である。一次側整流素子3は、入力電源1から入力した電力を整流する。スイッチング素子4は、一次側整流素子3の出力を溶接に適した出力になるようにスイッチングする。主変圧器2は、スイッチング素子4の出力を溶接に適した出力に変換する。二次側整流素子6は、主変圧器2の出力を整流する。リアクトル5は、二次側整流素子6の出力を溶接に適した電流に平滑する。溶接電流検出部8は、溶接電流を検出する。溶接電圧検出部9は、溶接電圧を検出する。短絡/アーク検出部10は、溶接電圧検出信号により溶接状態がワイヤ16と母材15とが接触して短絡している短絡状態であるのか、短絡が開放してアークが発生しているアーク状態であるのかを判定する。溶接起動指示部35は、溶接電源14の外部から溶接起動及び溶接終了信号を入力する。溶接終了判定部34は、溶接起動指示部35からの入力により溶接終了時点を判定する。積算部30は、溶接終了部の短絡開放直後を時間起点として溶接電流を積算する。しきい値設定部31は、溶接電流の積算値と比較するためのしきい値を設定する。比較部32は、溶接電流の積算値としきい値とを比較する。出力制御部36は、溶接出力制御用の信号を出力する。駆動部33は、溶接出力を制御するためにスイッチング素子4を駆動するための信号を出力する。
 溶接電圧検出部9は溶接電源14の出力端子間に接続され、検出した電圧に対応した信号を出力する。短絡/アーク検出部10は、溶接電圧検出部9からの信号に基づいて、溶接出力電圧が一定値以上か未満かを判定する。そして短絡/アーク検出部10は、この判定結果によりワイヤ16が被溶接物である母材15に接触短絡して短絡状態となっているのか、あるいは非接触状態でアーク状態となっているのかを判定して判定信号を出力する。
 図5は、従来のアーク溶接におけるワイヤ送給速度Wfと溶接電流Awと溶接電圧Vwの波形を示す図である。
 図4と図5とを用いて、従来のアーク溶接制御について説明する。溶接起動指示部35により時刻T1に溶接終了信号が入力されると、溶接終了判定部34において溶接終了制御を開始する時点を検出する。そして、ワイヤ送給速度は停止に向かって所定の傾きにおいて減速される。短絡/アーク検出部10の短絡判定から、アーク判定に切り替わる時点をワイヤ16の先端の溶滴の母材15への移行時として時刻T2において検出する。時刻T2を時間起点とし、出力電流の積算を積算部30において開始し、この積算値としきい値設定部31において設定されたしきい値とを比較部32により比較する。積算値がしきい値に到達した時点から、出力制御部36により予め設定されている所定の電流値を所定時間t1の間出力し、ワイヤ16の先端部に溶滴を形成して溶接出力を停止する(例えば、特許文献1参照)。
 これにより、溶接終了時にワイヤ先端部の形状をバラツキ無く均一の大きさに制御することができ、次のアークスタート時にスラグの影響を抑制して良好なアークスタートを実現することができる。
 上述した従来の溶接制御方法によれば、ワイヤ先端部の形状をバラツキ無く均一の大きさに制御することできる。しかし、ワイヤ16の先端に形成される玉の大きさを小さくなるように制御しようとすると(例えばワイヤ径の1.1~1.3倍程度)、溶融プールの振動等によりスティックあるいは溶滴が溶融プールに吸い取られてしまう場合が生じ、所望の大きさの溶滴が形成されない場合があった。
特開2002-292464号公報
 本発明のアーク溶接方法は、アーク中に溶接終了信号が入力されると溶接用ワイヤを加速させて溶接用ワイヤと母材との短絡を発生させ、その後に溶接用ワイヤを逆送させて所定のワイヤ逆送速度に達すると、ワイヤ送給速度を所定のワイヤ逆送速度に一定制御して所定時間逆送させた後に溶接用ワイヤの送給を停止させ、溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止する。
 その結果、アークスタート性を良好にするために適正な大きさのワイヤ先端形状をばらつきなく得ることができ、所望の大きさの溶滴を形成することができる。
図1は、本発明の実施の形態1のアーク溶接装置の概略構成を示す図である。 図2は、同アーク溶接装置のワイヤ送給速度と溶接電圧と溶接電流の波形を示す図である。 図3は、本発明の実施の形態2におけるワイヤ送給速度と溶接電圧と溶接電流の波形を示す図である。 図4は、従来のアーク溶接装置の概略構成を示す図である。 図5は、同アーク溶接装置のアーク溶接におけるワイヤ送給速度と溶接電圧と溶接電流の波形を示す図である。
 以下、本発明の実施の形態について添付図面を用いて説明する。
 (実施の形態1)
 図1は本発明の実施の形態1のアーク溶接装置の概略構成を示す図、図2は同アーク溶接装置のワイヤ送給速度と溶接電圧と溶接電流の波形を示す図である。
 図1において、一次側整流素子3は、入力電源1から入力した電力を整流する。スイッチング素子4は、一次側整流素子3の出力を溶接に適した出力になるように制御する。主変圧器2は、スイッチング素子4の出力を溶接に適した出力に変換する。二次側整流素子6は、主変圧器2の出力を整流する。リアクトル5は、二次側整流素子6の出力を溶接に適した電流に平滑する。溶接電流検出部8は、溶接電流を検出する。溶接電圧検出部9は、溶接電圧を検出する。短絡/アーク検出部10は、溶接電圧検出信号、すなわち溶接電圧検出部9の出力により、溶接状態がワイヤ16と母材15とが接触して短絡している短絡状態であるのか、短絡が開放してアーク17が発生しているアーク状態であるのかを判定する。ここでワイヤ16とは、消耗電極である溶接用ワイヤを意味する。また母材15は、被溶接物である。
 出力制御部11は、溶接出力を制御する。溶接起動指示部12は、溶接出力の起動あるいは停止を指示する。ワイヤ送給速度制御部13は、ワイヤ送給速度を制御する。、チップ20は、トーチ18に取り付けられている。溶接条件設定部23は、作業者が溶接電流あるいは溶接電圧等の溶接条件を設定する。すなわち出力制御部11は、溶接条件設定部23において設定された設定電流と、短絡/アーク検出部10の出力とに基づいて予め定められた電流波形あるいは電圧波形となるようにスイッチング素子4を制御する。
 なお、溶接起動指示部12の例としては、溶接電源14に接続されるリモコンまたはトーチ18のトーチスイッチ等が挙げられる。溶接ロボットを使用する場合には、ロボットの動作プログラムが記憶されたロボット制御装置等が挙げられる。
 また、溶接条件設定部23の例としては、溶接電源14に接続されるリモコン等が挙げられる。溶接ロボットを使用する場合には、ロボットの動作プログラムが記憶されたロボット制御装置またはロボット制御装置に接続されたティーチングペンダント等が挙げられる。
 また図2は、ワイヤ送給速度Wf、溶接出力電圧である溶接電圧Vw、溶接出力電流である溶接電流Awの時間変化を波形により示した図である。
 図2に示す時刻T1は、溶接起動指示部12により溶接出力をoffする信号が入力された時刻であり、ワイヤ送給速度Wfと溶接電流Awと溶接電圧Vwは、溶接終了処理用の制御が開始される。ワイヤ送給速度Wfは、所定の振幅と周期(周波数)とにより加速し、その後減速する。このことにより正送制御から逆送制御を実施し、所定のワイヤ逆送速度Wf1に達すると、この所定のワイヤ逆送速度Wf1を所定の逆送時間t4継続し、逆送時間t4が経過すると0となり送給は停止する。このように正送することにより強制的に短絡を発生させ、その後逆送することにより強制的に短絡を開放(時刻T6)させ、ワイヤ16を母材15から引き上げて引き離す。ここで所定のワイヤ逆送速度Wf1とは、概ね1m/min~20m/minであり、所定の逆送時間t4とは、概ね10msec~30msecである。また、ワイヤ送給速度Wfの所定の振幅とは概ね2m/min~25m/minであり、所定の周期とは概ね1秒間あたり40回~100回である。すなわち、周波数が概ね40Hz~100Hzであり、故に、周期は、概ね10msから25msである。
 逆送中の短絡開放時は、ワイヤ16の先端部の溶滴が溶融プールに移行した直後なのでワイヤ16の先端部は最も小さい形状であり、ばらつきがない。このため、時刻T6を時間起点として所定溶接電流時間t2の間、一定の所定溶接電流A1を出力してワイヤ16の先端部の形状を所望の大きさに制御する。ワイヤ16を溶融するための所定溶接電流A1は概ね30A~100Aであり、所定溶接電流時間t2は例えば10msec~30msecである。所定溶接電流A1および所定溶接電流時間t2は、ワイヤ16の径等により異なる。ワイヤ先端部-母材間距離は、逆送により引き上げた距離にワイヤ16の溶融分が加えられて概ね3mm~8mmになるように設定される。そして、ワイヤ16を引き上げた状態においてワイヤ16を溶融するので、ワイヤ16の先端形状を小さくするような場合でも、ワイヤ先端部-母材間距離を確保できる。そのためスティックおよび溶接出力停止後に、ワイヤ16の先端が溶融プールと接触し、溶滴が溶融プールに移行してしまうことを防ぐことができる。
 なお、本実施の形態1では、ワイヤ送給速度の停止時刻と溶接出力停止時刻とが一致しておらず、溶接出力停止時刻の方がワイヤ送給速度停止時刻よりも遅く記載している。しかし、一致させても良いし、溶接出力停止時刻のほうが早くなるように設定しても問題なく、ワイヤ16の径等により関係は異なる。
 また、本実施の形態1では、ワイヤ16の先端の形状を制御し易くするため、短絡開放の時刻T6から短時間(概ね2msec程度)に急峻に溶接電流を低減している。そのため、時刻T6から所定溶接電流時間t2を計時している。
 ここで、上記のような消耗電極式のアーク溶接制御を行うためのアーク溶接装置について、図1を用いて説明する。図1において、溶接出力をoffする溶接終了信号が、溶接起動指示部12から出力制御部11とワイヤ送給速度制御部13とに入力される。ワイヤ送給速度制御部13は、所定の周期と振幅とによりワイヤ送給速度を加速し、その後減速する。そして所定のワイヤ逆送速度Wf1により所定の逆送時間t4の間、ワイヤ16を逆送してワイヤ16の送給を停止する。
 なお、ワイヤ送給速度制御部13は、ワイヤ送給速度を制御する信号をワイヤ送給部19に出力してワイヤ送給速度を制御する。なお、このワイヤ送給速度の波形形状は、例えば図2に示すような予め設定した周期及び振幅によって正弦波状に変化させても良いし、台形波形状に変化させても良い。
 ワイヤ送給速度制御部13は、記憶部21と、ワイヤ送給速度決定部22とを備えている。ここで記憶部21は、設定電流、ワイヤ送給速度の平均ワイヤ送給速度、ワイヤ送給速度の周期(周波数)、ワイヤ送給速度の振幅、逆送時間t4等といったパラメータを対応付けた関係式あるいはテーブル(表)を記憶している。ワイヤ送給速度決定部22は、溶接条件設定部23によって設定された設定電流に基づいて記憶部21からワイヤ送給速度の平均ワイヤ送給速度と、周波数と、振幅とを決定する。ワイヤ送給速度制御部13は、短絡/アーク検出部10の出力と、ワイヤ送給速度決定部22の出力とを入力してワイヤ送給速度を正送と逆送とに周期的に繰り返して制御する。
 一方、溶接電流と溶接電圧との溶接出力制御については、以下の通りである。出力制御部11は、溶接条件設定部23において設定される溶接設定電流と溶接設定電圧とによって選定される溶接波形パラメータによって、短絡期間であれば短絡期間に適正なパラメータを用いて溶接電流、あるいは溶接電圧を制御する信号を出力する。またアーク期間であればアーク期間に適正なパラメータを用いて溶接電流、あるいは溶接電圧を制御する信号を出力する。そして、その出力信号をスイッチング素子4に入力することにより溶接出力を制御する。また、溶接起動指示部12から溶接起動offの溶接終了信号が出力制御部11に入力されると、短絡開放時に短絡/アーク検出部10から短絡開放の信号が時刻T6において出力される。出力制御部11では、時刻T6を時間起点として所定溶接電流時間t2の間、一定の所定溶接電流A1を出力するように制御してワイヤ16先端部の大きさを制御する。
 このように本発明の実施の形態1のアーク溶接装置は、消耗電極である溶接用のワイヤ16と、被溶接物である母材15との間においてアーク17を発生させて溶接を行う消耗電極式である。そしてアーク溶接装置は、溶接条件設定部23、スイッチング素子4、溶接電圧検出部9、溶接起動指示部12、短絡/アーク検出部10、出力制御部11、記憶部21、ワイヤ送給速度決定部22、およびワイヤ送給速度制御部13を備えている。さらにアーク溶接装置のワイヤ送給速度制御部13は、アーク17中に溶接終了信号が入力されると、所定の周期と振幅とによりワイヤ16を加速させてワイヤ16と母材15との短絡を発生させる。そして、所定の周期と振幅とによりワイヤ16を逆送させて、所定のワイヤ逆送速度に達すると、ワイヤ送給速度を所定のワイヤ逆送速度に一定制御して所定時間逆送させる。その後、ワイヤ16の送給を停止させ、出力制御部11はワイヤ16の逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止する。
 これらによって、ワイヤ16先端が小さい形状であっても、ワイヤ先端部-母材間距離を確保でき、スティックを防止して溶接出力停止後に溶融プールと接触することがない。そのため、ワイヤ16先端形状はばらつきなく得られ、ワイヤ16の先端部と母材15との溶着を防止するのに十分なワイヤ先端部-母材間距離を得ることができ、生産稼動停止を防止することができる。
 また本発明の実施の形態1のアーク溶接装置のワイヤ16の加速は、所定の周期と振幅とにより行い、溶接用のワイヤ16の逆送も所定の周期と振幅とにより行っている。そのため、溶接中の短絡発生状態が不規則で短絡回数が1分間あたり約80回以下である200A以上の電流域ではワイヤ先端と溶融プ-ルの平均距離が約1mm以上と長いので、ワイヤ16の加速により確実に短絡を発生させることが可能となり、その後のワイヤ16の逆送を早期に実施でき短時間でワイヤ先端部-母材間距離をえることができる。
 また、溶接終了にかかる時間として例えば背景技術で示した従来の制御では100msec~200msecかかっていた終了時間を、1回の短絡により終了処理を完了させることができる。そのため、溶接終了にかかる時間を概ね30msec~50msecに短縮でき、生産タクト短縮が可能となり、生産性を向上することができる。
 なお、本実施の形態1では、アーク期間中に溶接終了信号が入力された場合にワイヤ16を周期的に送給して加速する例を示した。しかし、短絡中に溶接終了信号が入力された場合、ワイヤ送給速度制御部13は短絡が開放されるまではワイヤ16の加速を行わない。短絡が開放されてからワイヤ送給速度制御部13は、所定の周期と振幅とによりワイヤ16を周期的に送給して加速させ、ワイヤ16と母材15との短絡をさせても良い。そのため、溶接中の短絡発生状態が規則的で回数が1分間あたり約80~100回程度と多い200A以下の電流域ではワイヤ先端と溶融プ-ルの平均距離が約1mm以下と短いので、溶接終了信号が入力されてワイヤ16を加速して短絡発生させるとかえって溶融プ-ルにワイヤ16を突っ込ませるため短絡開放するのに時間が長くなる。このためワイヤ16の加速を行わなくても早期に短絡発生するのでワイヤ16の加速を行わないまま短絡させることでその後のワイヤ16の逆送を早期に実施でき短時間でワイヤ先端部-母材間距離をえることができる。
 また、本実施の形態1では、溶接終了信号が入力された後のワイヤ16の送給を所定の周期(周波数)と振幅とにより周期的(1周期未満の場合もある)に行う例を示した。しかし、周期的な送給に限らず、溶接終了信号が入力された後にワイヤ16を加速してワイヤ16と母材15とを短絡させ、短絡後にワイヤ16を逆送してワイヤ16と母材15との短絡を開放するように、ワイヤ16の送給を制御するようにしても良い。
 (実施の形態2)
 本実施の形態2では、実施の形態1と同一の構成要素については同一の符号を付して詳細な説明を省略し、異なる点のみを説明する。実施の形態1と異なる主な点は、溶接出力をoffする信号が入力された時刻からワイヤ送給速度を所定の傾きにより減速させる。異なる点は溶接出力をoffする、すなわち溶接終了信号が入力されてから、初回の短絡発生においてワイヤ16を逆送し、この逆送を所定時間継続して短絡を開放させ、ワイヤ16を引き上げて溶接を終了する事である。
 なお、溶接出力をoffする信号が入力された時刻からワイヤ送給速度を所定の傾きにより減速することに替えて以下のようにしても良い。すなわち、減速せずにそれまでの正送のワイヤ送給速度を維持し、溶接出力をoffする信号が入力されてから初回の短絡発生においてワイヤ16を逆送する。
 図3は、本発明の実施の形態2のワイヤ送給速度と溶接電圧と溶接電流の波形を示す図である。
 図3に示す時刻T1は、溶接出力を停止(off)する信号が入力された時刻であり、ワイヤ送給速度Wfと溶接電流Awと溶接電圧Vwに対して溶接終了処理用の制御が開始される。
 ワイヤ送給速度Wfは、所定の傾きにより減速し、溶接速度0に向かって初回の短絡が発生するまで低減する。溶接出力をoffする信号が入力されてから初回の短絡が時刻T5において発生すると、ワイヤ送給速度の逆送を開始する。そして所定のワイヤ逆送速度Wf2において所定時間t3の間、一定速度によって逆送させ、その後にワイヤ16の送給を停止させ、ワイヤ先端部-母材間距離を十分(概ね3mm~8mm)に確保する。ここで所定のワイヤ逆送速度Wf2とは、概ね1m/min~20m/minであり、所定時間t3とは、概ね10msec~30msecである。
 なお、この逆送期間中に時刻T6において短絡が開放するので、時刻T6を時間起点としてワイヤ16を溶融させるための所定溶接電流A1(概ね30A~100A)を所定溶接電流時間t2の間出力し、ワイヤ16の先端部に形成される溶滴の大きさを制御する。溶接電流を流すことによりワイヤ16先端部を溶融するので、ワイヤ先端部-母材間距離が長くなる。そのため、ワイヤ16を逆送させた距離以上のワイヤ先端部-母材間距離となり、ワイヤ先端部-母材間距離は3mm~8mmよりも大きくなる。
 なお、本実施の形態2では、ワイヤ送給速度の停止時刻と溶接出力停止時刻とが一致しておらず、溶接出力停止時刻の方がワイヤ送給速度停止時刻よりも遅く記載している。しかし、一致させても良いし、溶接出力停止時刻の方が早くなるように設定してもよい。
 また、本実施の形態2では、ワイヤ16先端の形状を制御し易くするために時刻T6から短時間(概ね2msec程度)に急峻に溶接電流を低減しているため、時刻T6から所定時間t2を計時している。
 ここで、以上のような消耗電極式のアーク溶接制御を行うためのアーク溶接装置について、図1を用いて説明する。図1において、溶接起動offの溶接終了信号が溶接起動指示部12から出力制御部11とワイヤ送給速度制御部13とに入力される。ワイヤ送給速度制御部13は、所定の減速の傾きにより溶接速度0に向かって溶接起動offの溶接終了信号が入力された後の初回の短絡が発生するまでワイヤ送給速度を低減する。ここでワイヤ送給速度の所定の減速の傾きとは、概ね0.5m/秒2~2m/秒2である。溶接終了信号入力後の初回の短絡発生が短絡/アーク検出部10から入力されると、ワイヤ送給速度制御部13は、所定のワイヤ逆送速度Wf2により逆送を開始する。そして、所定のワイヤ逆送速度Wf2を所定の逆送時間t3の間維持して逆送させた後、ワイヤ16の送給を停止させる。ワイヤ送給速度制御部13は、ワイヤ送給速度を制御する信号をワイヤ送給部19に出力してワイヤ送給速度を制御する。ワイヤ送給の波形形状は、例えば図2に示すような所定のワイヤ逆送速度Wf1に急峻に変化させても良いし、正弦波の半周期のように変化させても良いし、台形波形状に変化させるようにしても良い。
 なお、ワイヤ送給速度制御部13は、記憶部21と、ワイヤ送給速度決定部22とを備えている。ここで記憶部21は、設定電流あるいは平均ワイヤ送給速度と、溶接終了信号が入力された後のワイヤ送給速度の減速の傾き、所定溶接電流時間t2、および逆送時間t3等のパラメータを対応付けた関係式あるいはテーブル(表)を記憶している。ワイヤ送給速度決定部22は、溶接条件設定部23において設定された設定電流に基づき、記憶部21から溶接終了信号が入力された後のワイヤ送給速度の減速の傾き、所定溶接電流時間t2、および逆送時間t3等のパラメータを決定する。
 一方、溶接電流と溶接電圧との溶接出力制御については、以下の通りである。出力制御部11は、溶接条件設定部23において設定される溶接設定電流と溶接設定電圧とによって選定される溶接波形パラメータによって、短絡期間であれば短絡期間に適正なパラメータを用いて溶接電流、あるいは溶接電圧を制御する信号を出力する。またアーク期間であればアーク期間に適正なパラメータを用いて溶接電流、あるいは溶接電圧を制御する信号を出力する。そして、その出力信号をスイッチング素子4に入力することにより溶接出力を制御する。
 そして、溶接起動指示部12から溶接起動offの溶接終了信号が出力制御部11に入力され、初回の短絡が開放されると、短絡/アーク検出部10から短絡開放の信号が出力される。これにより、出力制御部11は、ワイヤ16先端部の大きさを制御するために、短絡開放後の所定溶接電流時間t2の間、所定溶接電流A1を出力するように制御する。
 このように本発明の実施の形態2のアーク溶接装置は、消耗電極である溶接用のワイヤ16と、被溶接物である母材15との間においてアーク17を発生させて溶接を行う消耗電極式である。そしてアーク溶接装置は、溶接条件設定部23、スイッチング素子4、溶接電圧検出部9、溶接起動指示部12、短絡/アーク検出部10、出力制御部11、記憶部21、ワイヤ送給速度決定部22、およびワイヤ送給速度制御部13を備えている。さらにアーク溶接装置のワイヤ送給速度制御部13は、アーク17中に溶接終了信号が入力された後のワイヤ16と母材15との初回の短絡の発生までは、ワイヤ16の送給をそれまでの正送速度のままとする。あるいは、ワイヤ16の送給をそれまでの正送速度から所定の減速により低減させる。そしてワイヤ送給速度制御部13は、溶接終了信号が入力された後の初回の短絡が発生すると、ワイヤ16の逆送を開始して所定のワイヤ逆送速度により所定時間逆送させる。その後、ワイヤ送給速度制御部13はワイヤ16の送給を停止させる。出力制御部11は、ワイヤ16の逆送中に生じる短絡開放時を時間起点とし、一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止する。
 これらによって、適正な大きさのワイヤ16の先端形状をばらつきなく、またワイヤ16先端部と母材15間の溶着を防止するのに十分なワイヤ先端部-母材間距離を得ることができ、生産稼動停止を防止できる。また、溶接終了にかかる時間として例えば背景技術で示した従来制御では100msec~200msecかかっていた終了時間を、1回の短絡により終了処理を完了させることができる。そのため、溶接終了にかかる時間を概ね30msec~50msecに短縮でき、生産タクト短縮が可能となり、生産性を向上することができる。
 なお、本実施の形態2では、アーク期間中に溶接終了信号が入力された場合について説明したが、短絡中に溶接終了信号が入力された場合には、入力された時点からワイヤ16の送給を逆送するようにしても良い。
 そのため、入力された時点の短絡中に逆送するので短時間でワイヤ先端部-母材間距離をえることができる。
 本発明によれば、消耗電極である溶接ワイヤを連続的に送給しながらアーク溶接を行う方法および装置として産業上有用である。
1  入力電源
2  主変圧器
3  一次側整流素子
4  スイッチング素子
5  リアクトル
6  二次側整流素子
8  溶接電流検出部
9  溶接電圧検出部
10  短絡/アーク検出部
11  出力制御部
12  溶接起動指示部
13  ワイヤ送給速度制御部
14  溶接電源
15  母材
16  ワイヤ
17  アーク
18  トーチ
19  ワイヤ送給部
20  チップ
21  記憶部
22  ワイヤ送給速度決定部
23  溶接条件設定部

Claims (9)

  1. アーク中に溶接終了信号が入力されると溶接用ワイヤを加速させて前記溶接用ワイヤと母材との短絡を発生させ、その後に前記溶接用ワイヤを逆送させて所定のワイヤ逆送速度に達するとワイヤ送給速度を所定の前記ワイヤ逆送速度に一定制御して所定時間逆送させた後に前記溶接用ワイヤの送給を停止させ、前記溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止することを特徴とするアーク溶接方法。
  2. 前記溶接用ワイヤの加速は所定の周期と振幅とにより行い、前記溶接用ワイヤの逆送も前記所定の周期と振幅とにより行うことを特徴とする請求項1記載のアーク溶接方法。
  3. 前記短絡中に前記溶接終了信号が入力された場合、前記短絡が開放されるまでは前記溶接用ワイヤの加速を行わず、前記短絡が開放されてから前記溶接用ワイヤを加速させて前記短絡を発生させることを特徴とする請求項1または2記載のアーク溶接方法。
  4. アーク中に溶接終了信号が入力された後の溶接用ワイヤと母材との初回の短絡発生までは、前記溶接用ワイヤの送給を前記溶接終了信号が入力されるまでの正送速度のままとする、あるいは、前記溶接用ワイヤの送給を前記溶接終了信号が入力されるまでの正送速度から所定の減速により低減させ、前記短絡が発生すると前記溶接用ワイヤの逆送を開始して所定のワイヤ逆送速度で所定時間逆送させた後に前記溶接用ワイヤの送給を停止させ、前記溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定溶接時間出力してから溶接出力を停止することを特徴とするアーク溶接方法。
  5. 前記短絡中に前記溶接終了信号が入力された場合には、前記溶接終了信号が入力された時点から前記溶接用ワイヤの逆送を開始することを特徴とする請求項4記載のアーク溶接方法。
  6. 消耗電極である溶接用ワイヤと被溶接物である母材との間においてアークを発生させて溶接を行う消耗電極式のアーク溶接装置であって、
    溶接条件を設定するための溶接条件設定部と、
    溶接出力を制御するスイッチング素子と、
    溶接電圧を検出する溶接電圧検出部と、
    前記溶接出力の起動あるいは停止を指示するための溶接起動指示部と、
    前記溶接電圧検出部の出力に基づいて前記溶接用ワイヤと前記母材との溶接状態が短絡状態であるのかアーク状態であるのかを検出する短絡/アーク検出部と、
    前記溶接条件設定部において設定された設定電流と前記短絡/アーク検出部の出力とに基づいて予め定められた電流波形あるいは電圧波形となるように前記スイッチング素子を制御する出力制御部と、
    前記設定電流とワイヤ送給速度の周波数と前記ワイヤ送給速度の振幅と前記ワイヤ送給速度の平均ワイヤ送給速度とを対応付けて記憶する記憶部と、
    前記設定電流に基づいて前記記憶部から前記平均ワイヤ送給速度と前記周波数と前記振幅とを決定するワイヤ送給速度決定部と、
    前記短絡/アーク検出部の出力と前記ワイヤ送給速度決定部の出力とを入力して前記ワイヤ送給速度を正送と逆送とに周期的に繰り返して制御するワイヤ送給速度制御部とを備え、
    前記ワイヤ送給速度制御部は前記アーク中に溶接終了信号が入力されると所定の周期と振幅とにより前記溶接用ワイヤを加速させて前記溶接用ワイヤと前記母材との短絡を発生させ、前記所定の周期と振幅とにより前記溶接用ワイヤを逆送させて所定のワイヤ逆送速度に達すると前記ワイヤ送給速度を所定の前記ワイヤ逆送速度に一定制御して所定時間逆送させた後に前記溶接用ワイヤの送給を停止させ、
    前記出力制御部は前記溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定時間出力してから前記溶接出力を停止することを特徴とするアーク溶接装置。
  7. 前記短絡中に前記溶接終了信号が入力された場合、前記ワイヤ送給速度制御部は前記短絡が開放されるまでは前記溶接用ワイヤの加速を行わず、前記短絡が開放されてから所定の周期と振幅とにより前記溶接用ワイヤを加速させて前記溶接用ワイヤと前記母材との短絡を発生させることを特徴とする請求項6記載のアーク溶接装置。
  8. 消耗電極である溶接用ワイヤと被溶接物である母材との間においてアークを発生させて溶接を行う消耗電極式のアーク溶接装置であって、
    溶接条件を設定するための溶接条件設定部と、
    溶接出力を制御するスイッチング素子と、
    溶接電圧を検出する溶接電圧検出部と、
    前記溶接出力の起動あるいは停止を指示するための溶接起動指示部と、
    前記溶接電圧検出部の出力に基づいて前記溶接用ワイヤと前記母材との溶接状態が短絡状態であるのかアーク状態であるのかを検出する短絡/アーク検出部と、
    前記溶接条件設定部において設定された設定電流と前記短絡/アーク検出部の出力とに基づいて予め定められた電流波形あるいは電圧波形となるように前記スイッチング素子を制御する出力制御部と、
    前記設定電流と溶接終了信号が入力された後の前記溶接用ワイヤのワイヤ送給速度とを対応付けて記憶する記憶部と、
    前記設定電流に基づいて前記記憶部から前記ワイヤ送給速度を決定するワイヤ送給速度決定部と、
    前記短絡/アーク検出部の出力と前記ワイヤ送給速度決定部の出力とを入力して前記ワイヤ送給速度を制御するワイヤ送給速度制御部とを備え、
    前記ワイヤ送給速度制御部は前記アーク中に前記溶接終了信号が入力された後の前記溶接用ワイヤと前記母材との初回の前記短絡の発生までは、前記溶接用ワイヤの送給をそれまでの正送速度のままとする、あるいは、前記溶接用ワイヤの送給をそれまでの正送速度から所定の減速により低減させ、前記溶接終了信号が入力された後の初回の前記短絡が発生すると前記溶接用ワイヤの逆送を開始して所定のワイヤ逆送速度により所定時間逆送させた後に前記溶接用ワイヤの送給を停止させ、前記出力制御部は前記溶接用ワイヤの逆送中に生じる短絡開放時を時間起点として一定の所定溶接電流を所定時間出力してから前記溶接出力を停止することを特徴とするアーク溶接装置。
  9. 前記短絡中に前記溶接終了信号が入力された場合、前記ワイヤ送給速度制御部は前記溶接終了信号が入力された時点から前記溶接用ワイヤの逆送を開始することを特徴とする請求項8記載のアーク溶接装置。
PCT/JP2010/004711 2009-08-28 2010-07-23 アーク溶接方法およびアーク溶接装置 WO2011024380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011528626A JP5141826B2 (ja) 2009-08-28 2010-07-23 アーク溶接方法およびアーク溶接装置
CN2010800104570A CN102341207B (zh) 2009-08-28 2010-07-23 电弧焊接方法及电弧焊接装置
US13/391,061 US9050677B2 (en) 2009-08-28 2010-07-23 Arc welding method and arc welding apparatus
EP10811439.8A EP2402105B1 (en) 2009-08-28 2010-07-23 Arc welding method and arc welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009197841 2009-08-28
JP2009-197841 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024380A1 true WO2011024380A1 (ja) 2011-03-03

Family

ID=43627502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004711 WO2011024380A1 (ja) 2009-08-28 2010-07-23 アーク溶接方法およびアーク溶接装置

Country Status (5)

Country Link
US (1) US9050677B2 (ja)
EP (1) EP2402105B1 (ja)
JP (1) JP5141826B2 (ja)
CN (1) CN102341207B (ja)
WO (1) WO2011024380A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071154A (ja) * 2011-09-28 2013-04-22 Daihen Corp アーク溶接方法およびアーク溶接システム
WO2013136643A1 (ja) * 2012-03-16 2013-09-19 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
JP2014034031A (ja) * 2012-08-07 2014-02-24 Daihen Corp 消耗電極アーク溶接制御方法
JP2015030017A (ja) * 2013-08-05 2015-02-16 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
WO2016117228A1 (ja) * 2015-01-19 2016-07-28 株式会社ダイヘン アーク溶接制御方法
JP2016147267A (ja) * 2015-02-10 2016-08-18 株式会社ダイヘン アーク溶接制御方法
TWI562851B (en) * 2012-01-12 2016-12-21 Daihen Corp Arc welding apparatus
JP2019155418A (ja) * 2018-03-13 2019-09-19 パナソニックIpマネジメント株式会社 アーク溶接制御方法
US10518348B2 (en) 2012-03-27 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method and arc welding device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500667B2 (en) * 2009-04-08 2019-12-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding apparatus for adjusting a welding current waveform responsive to a setting voltage adjustment
US9050676B2 (en) * 2012-03-02 2015-06-09 Lincoln Global, Inc. Apparatus and method for starting arc welding process
US20140076860A1 (en) * 2012-09-13 2014-03-20 Bob Morrow Sensing Apparatus for Resistance Welding and Related Method
FR2997646B1 (fr) * 2012-11-05 2015-03-27 Snecma Procede de rechargement d'au moins un bras de carter intermediaire d'une turbomachine
JP5974984B2 (ja) * 2013-06-07 2016-08-23 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
US9481045B2 (en) 2013-09-16 2016-11-01 Lincoln Global, Inc. TIG welding system
JP6007879B2 (ja) * 2013-09-19 2016-10-12 株式会社安川電機 アーク溶接装置、アーク溶接方法、及びアーク溶接システム
JP6308651B2 (ja) * 2013-12-05 2018-04-11 株式会社ダイヘン アンチスティック制御方法
US11014186B2 (en) * 2014-02-14 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps
JP6287598B2 (ja) * 2014-06-05 2018-03-07 株式会社安川電機 アーク溶接システム、アーク溶接方法および溶接品の製造方法
CN106660155B (zh) * 2014-08-18 2019-06-07 株式会社达谊恒 电弧焊接控制方法
EP3192607B1 (en) * 2014-09-08 2020-05-27 Daihen Corporation Arc welding control method
AT516636B1 (de) * 2014-12-23 2020-09-15 Fronius Int Gmbh Brenner für ein Schweißgerät
US10384291B2 (en) * 2015-01-30 2019-08-20 Lincoln Global, Inc. Weld ending process and system
JPWO2016125540A1 (ja) * 2015-02-02 2017-11-09 株式会社ダイヘン アーク溶接制御方法
JP6395644B2 (ja) * 2015-02-27 2018-09-26 株式会社神戸製鋼所 アーク溶接方法、アーク溶接装置およびアーク溶接用制御装置
US11491573B2 (en) * 2015-08-17 2022-11-08 Illinois Tool Works Inc. Portable advanced process module
US10821535B2 (en) * 2017-03-16 2020-11-03 Lincoln Global, Inc. Short circuit welding using self-shielded electrode
JP6517871B2 (ja) * 2017-04-25 2019-05-22 ファナック株式会社 溶接ロボットの教示システムおよび教示方法
CN107775150B (zh) * 2017-09-22 2019-06-21 深圳市麦格米特焊接技术有限公司 一种熔化电极气体保护焊接结束过程的控制方法
CN108890084B (zh) * 2018-07-18 2020-07-14 唐山松下产业机器有限公司 焊接设备、焊接控制装置及焊接控制方法
US11420285B2 (en) * 2019-04-30 2022-08-23 Illinois Tool Works Inc. Systems and methods for automated cleaning of wire electrodes after welding
EP4342617A2 (en) * 2019-05-22 2024-03-27 Panasonic Intellectual Property Management Co., Ltd. Arc welding method
JP7360987B2 (ja) * 2020-04-01 2023-10-13 株式会社ダイヘン 溶接条件調整装置
JP7309671B2 (ja) * 2020-08-17 2023-07-18 株式会社神戸製鋼所 溶接電源、溶接システム、溶接電源の制御方法及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102276A (ja) * 1983-11-09 1985-06-06 Hitachi Seiko Ltd ア−ク溶接機
JPS60221175A (ja) * 1984-03-22 1985-11-05 Mitsubishi Electric Corp 消耗電極式ア−ク溶接方法及び装置
JPH03238171A (ja) * 1990-02-16 1991-10-23 Kobe Steel Ltd 溶接電源の出力制御方法
JPH04111972A (ja) * 1990-08-31 1992-04-13 Daihen Corp 消耗電極アーク溶接方法及び溶接装置
JPH04210872A (ja) * 1990-12-10 1992-07-31 Daihen Corp 消耗電極アーク溶接制御方法
JPH11267828A (ja) * 1998-02-17 1999-10-05 Illinois Tool Works Inc <Itw> 溶接プロセスを停止させる方法および溶接装置
JP2000000665A (ja) * 1998-06-17 2000-01-07 Matsushita Electric Ind Co Ltd 溶接終了制御方法及びアーク溶接機
JP2002292464A (ja) 2001-03-29 2002-10-08 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機とその制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283617A (en) * 1976-02-03 1981-08-11 Merrick Welding International, Inc. Automatic pipe welding system
GB1572847A (en) * 1977-03-18 1980-08-06 Rolls Royce Plasma arc welding
US4288682A (en) * 1979-11-28 1981-09-08 Union Carbide Corporation Welding system with reversible drive motor control
US4780594A (en) * 1987-10-08 1988-10-25 Dimetrics Inc. Method and apparatus for improved control of supply of filler material to a welding location
JP4940449B2 (ja) * 1999-03-18 2012-05-30 株式会社安川電機 消耗電極式アーク溶接方法及び装置
US6103994A (en) * 1999-04-12 2000-08-15 Illinois Tool Works Welding device with remote device detection
AUPS274002A0 (en) * 2002-06-03 2002-06-20 University Of Wollongong, The Control method and system for metal arc welding
US7102099B2 (en) * 2002-07-23 2006-09-05 Illinois Tool Works Inc. Method and apparatus for feeding wire to a welding arc
JP3841091B2 (ja) * 2004-07-08 2006-11-01 松下電器産業株式会社 消耗電極式溶接方法
AT501489B1 (de) * 2005-02-25 2009-07-15 Fronius Int Gmbh Verfahren zum steuern und/oder regeln eines schweissgerätes und schweissgerät
JP4211793B2 (ja) * 2006-02-17 2009-01-21 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
JP4965311B2 (ja) * 2007-03-12 2012-07-04 株式会社ダイヘン 消耗電極交流アーク溶接のくびれ検出制御方法
CN101428368A (zh) * 2008-12-12 2009-05-13 北京工业大学 一种短路过渡焊接系统的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102276A (ja) * 1983-11-09 1985-06-06 Hitachi Seiko Ltd ア−ク溶接機
JPS60221175A (ja) * 1984-03-22 1985-11-05 Mitsubishi Electric Corp 消耗電極式ア−ク溶接方法及び装置
JPH03238171A (ja) * 1990-02-16 1991-10-23 Kobe Steel Ltd 溶接電源の出力制御方法
JPH04111972A (ja) * 1990-08-31 1992-04-13 Daihen Corp 消耗電極アーク溶接方法及び溶接装置
JPH04210872A (ja) * 1990-12-10 1992-07-31 Daihen Corp 消耗電極アーク溶接制御方法
JPH11267828A (ja) * 1998-02-17 1999-10-05 Illinois Tool Works Inc <Itw> 溶接プロセスを停止させる方法および溶接装置
JP2000000665A (ja) * 1998-06-17 2000-01-07 Matsushita Electric Ind Co Ltd 溶接終了制御方法及びアーク溶接機
JP2002292464A (ja) 2001-03-29 2002-10-08 Matsushita Electric Ind Co Ltd 消耗電極式アーク溶接機とその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402105A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071154A (ja) * 2011-09-28 2013-04-22 Daihen Corp アーク溶接方法およびアーク溶接システム
TWI562851B (en) * 2012-01-12 2016-12-21 Daihen Corp Arc welding apparatus
EP2826584A4 (en) * 2012-03-16 2015-12-16 Panasonic Ip Man Co Ltd ARC WELDING CONTROL METHOD AND ARC WELDING DEVICE
CN103974799A (zh) * 2012-03-16 2014-08-06 松下电器产业株式会社 电弧焊接控制方法及电弧焊接装置
JPWO2013136643A1 (ja) * 2012-03-16 2015-08-03 パナソニックIpマネジメント株式会社 アーク溶接制御方法およびアーク溶接装置
CN107008998B (zh) * 2012-03-16 2020-03-17 松下知识产权经营株式会社 电弧焊接控制方法及电弧焊接装置
US10537955B2 (en) 2012-03-16 2020-01-21 Panasonic Intellectual Property Management Co., Ltd. Method for controlling arc welding and arc welding device
JP2016179503A (ja) * 2012-03-16 2016-10-13 パナソニックIpマネジメント株式会社 アーク溶接制御方法およびアーク溶接装置
WO2013136643A1 (ja) * 2012-03-16 2013-09-19 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
CN103974799B (zh) * 2012-03-16 2017-07-11 松下知识产权经营株式会社 电弧焊接控制方法及电弧焊接装置
CN107008998A (zh) * 2012-03-16 2017-08-04 松下知识产权经营株式会社 电弧焊接控制方法及电弧焊接装置
EP3342521A1 (en) * 2012-03-16 2018-07-04 Panasonic Intellectual Property Management Co., Ltd. Arc welding device
US10518348B2 (en) 2012-03-27 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method and arc welding device
JP2014034031A (ja) * 2012-08-07 2014-02-24 Daihen Corp 消耗電極アーク溶接制御方法
JP2015030017A (ja) * 2013-08-05 2015-02-16 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
WO2016117228A1 (ja) * 2015-01-19 2016-07-28 株式会社ダイヘン アーク溶接制御方法
JP2016147267A (ja) * 2015-02-10 2016-08-18 株式会社ダイヘン アーク溶接制御方法
JP2019155418A (ja) * 2018-03-13 2019-09-19 パナソニックIpマネジメント株式会社 アーク溶接制御方法
JP7113329B2 (ja) 2018-03-13 2022-08-05 パナソニックIpマネジメント株式会社 アーク溶接制御方法

Also Published As

Publication number Publication date
JPWO2011024380A1 (ja) 2013-01-24
EP2402105A4 (en) 2015-05-20
EP2402105A1 (en) 2012-01-04
EP2402105B1 (en) 2016-02-10
CN102341207B (zh) 2013-10-09
US9050677B2 (en) 2015-06-09
JP5141826B2 (ja) 2013-02-13
US20120145690A1 (en) 2012-06-14
CN102341207A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5141826B2 (ja) アーク溶接方法およびアーク溶接装置
EP2455177B1 (en) Arc welding control method
JP4807474B2 (ja) 消耗電極式アーク溶接方法および消耗電極式アーク溶接装置
JP3844004B1 (ja) パルスアーク溶接制御方法及びパルスアーク溶接装置
JP6695030B2 (ja) アーク溶接の制御方法
CN107008998B (zh) 电弧焊接控制方法及电弧焊接装置
EP2216125B1 (en) Arc start control methods
WO2011004586A1 (ja) アーク溶接制御方法およびアーク溶接装置
JP6596669B2 (ja) アーク溶接の制御方法
EP2206574B1 (en) Arc start control method
JP4702375B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP2014140869A (ja) アーク溶接制御方法およびアーク溶接装置
JP5879503B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP6268360B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP6019387B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP6112991B2 (ja) 溶接終了時のワイヤ先端粒径の検出方法及びこれを用いたアークスタート制御方法
WO2018070364A1 (ja) アーク溶接方法およびアーク溶接装置
WO2021140970A1 (ja) アーク溶接制御方法及びアーク溶接装置
JP2023042642A (ja) 消耗電極アーク溶接の溶接終了制御方法
JP2023062926A (ja) 消耗電極アーク溶接の溶接終了制御方法
JP2015016487A (ja) 溶接終了時のワイヤ先端粒径の検出方法及びこれを用いたアークスタート制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010457.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2047/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011528626

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010811439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391061

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE