WO2013008394A1 - アーク溶接制御方法およびアーク溶接装置 - Google Patents

アーク溶接制御方法およびアーク溶接装置 Download PDF

Info

Publication number
WO2013008394A1
WO2013008394A1 PCT/JP2012/004122 JP2012004122W WO2013008394A1 WO 2013008394 A1 WO2013008394 A1 WO 2013008394A1 JP 2012004122 W JP2012004122 W JP 2012004122W WO 2013008394 A1 WO2013008394 A1 WO 2013008394A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
wire
feed
speed
arc
Prior art date
Application number
PCT/JP2012/004122
Other languages
English (en)
French (fr)
Inventor
潤司 藤原
篤寛 川本
将 古和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280004258.8A priority Critical patent/CN103260807B/zh
Priority to EP12811337.0A priority patent/EP2732901B1/en
Priority to JP2013509376A priority patent/JP5278634B2/ja
Priority to US13/820,557 priority patent/US20130299476A1/en
Publication of WO2013008394A1 publication Critical patent/WO2013008394A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced

Definitions

  • the present invention relates to an arc welding control method and an arc welding apparatus for performing short-circuit welding while continuously feeding a welding wire as a consumable electrode.
  • FIG. 8 is an output time waveform showing a conventional welding method for controlling the welding wire feeding in arc welding, in which welding wire is fed periodically and is short-circuited.
  • FIG. 8 specifically shows temporal changes in the wire feed speed WS, the welding current I, and the welding voltage V.
  • the time point P1 indicates the time point when the short circuit is started.
  • the arc welding apparatus outputs the initial short-circuit current for a predetermined time, and then outputs the increase slope di / dt of the first stage of the short-circuit current as the welding current I.
  • the increasing gradient di / dt in the second stage is output.
  • the arc welding apparatus instantaneously shifts the welding current I to a low current.
  • Time point P2 indicates a time point at which the constriction of the droplets is released, the short-circuit state is finished, and an arc is generated.
  • the arc welding apparatus outputs a welding current having a peak current immediately after the occurrence of the arc, and then shifts from the peak current IP to the base current IB.
  • This arc period is a period that can be controlled by either current control or voltage control, and waits for the next short circuit at the stage of transition to the base current.
  • Time P3 indicates the time when the next short circuit occurs.
  • wire feed control is performed that periodically repeats forward feed and reverse feed in a sine wave as a basic waveform at a predetermined frequency and a predetermined velocity amplitude. Then, a short circuit occurs around the time point P1 at the peak on the forward side, and an arc occurs around the time point P2 at the peak on the reverse side. In addition, at the peak of forward feeding after time P2, the next short circuit occurs around time P3. As described above, the period from the time point P1 to the time point P3 is defined as one cycle WF of control, and this is repeated to perform welding.
  • the occurrence of a short-circuit state or an arc state basically depends on wire feed control that periodically repeats forward feed and reverse feed of the wire feed speed.
  • the above-described conventional control uses a control method in which welding is performed by periodically generating a short-circuit state and an arc state by periodically repeating a forward feed and a reverse feed in a sinusoidal manner. Yes.
  • This control method can cope with a low current to a high current by setting a frequency and a speed amplitude with reference to an average feed speed of a wire feed speed suitable for each set current (for example, Patent Documents). 1).
  • the forward and reverse feeds of the wire feed speed are sinusoidal, unlike the rectangular wave, the burden on the motor peripheral parts such as the wire feed motor and gear is small, compared to the rectangular wave These lifetimes can be extended.
  • a short circuit occurs around the time point P1 at the peak time on the forward side, and an arc occurs around the time point P2 at the peak time on the reverse side. Become.
  • the next short circuit occurs around the time point P3 at the peak of forward feeding after the time point P2.
  • the short-circuit period 20: 80 (20 to 80) to 30 : Ratio in the range up to 70 (30 to 70).
  • the ratio of the short-circuit period is as high as 50% and the ratio of the arc period is low compared to general short-circuit welding. It is difficult to increase the welding voltage. Therefore, the welding result is such that the heat input to the workpiece is low, the bead width is narrow, and the penetration amount is shallow.
  • a conventional arc welding control method that periodically performs forward feeding and reverse feeding eliminates arc instability and can improve bead defects, increased spatter, poor penetration (penetration variation), and the like.
  • penetration variation penetration variation
  • the present invention provides an arc welding control method and an arc welding apparatus capable of appropriately increasing a welding voltage and ensuring a wide bead width and a deep penetration amount in periodic feeding control of a welding wire.
  • the arc welding control method of the present invention is a consumable electrode type arc welding control method in which short-circuit welding is performed by alternately repeating short-circuiting and arcing while automatically feeding a welding wire.
  • the arc welding control method of the present invention periodically forwards and reverses feeding of the welding wire at a predetermined frequency and a predetermined speed amplitude with reference to the basic wire feeding speed according to the set current. Repeatedly to generate a short circuit state and an arc state.
  • the arc welding control method of the present invention is a method for controlling the feeding speed of the welding wire so that the feeding waveform is different between the forward feeding side and the reverse feeding side of the periodic feeding of the welding wire. .
  • This method can appropriately increase the welding voltage, and can ensure a wide bead width and deep penetration.
  • the arc welding apparatus of the present invention is an arc welding apparatus that performs welding by repeatedly generating and short-circuiting an arc between a welding wire that is a consumable electrode and a workpiece.
  • the arc welding apparatus of the present invention includes a welding condition setting unit, a wire feed motor, a switching unit, a welding voltage detection unit, a short circuit / arc detection unit, a short circuit control unit, an arc control unit, and a drive. And a wire feed motor control unit.
  • the welding condition setting unit sets at least a set current.
  • the wire feeding motor feeds the welding wire.
  • the switching unit controls the welding output.
  • the welding voltage detector detects the welding voltage.
  • the short-circuit / arc detection unit detects whether the short-circuit state or the arc state is based on the output of the welding voltage detection unit.
  • the short-circuit control unit outputs a welding output control signal when in a short-circuit state.
  • the arc control unit outputs a welding output control signal when in an arc state.
  • the driving unit controls the switching unit based on a signal from the short circuit control unit or the arc control unit.
  • the wire feed motor control unit controls the wire feed motor so as to periodically repeat the forward feed and the reverse feed of the welding wire at a predetermined frequency and a predetermined speed amplitude.
  • the wire feed motor control unit includes a basic wire feed speed control unit, a motor polarity switching control unit, a wire speed amplitude control unit, and a wire speed frequency control unit.
  • the basic wire feed speed control unit outputs a basic wire feed speed corresponding to a set current, which is a reference for periodically feeding the welding wire.
  • the motor polarity switching control unit outputs a signal indicating the rotation direction of the wire feed motor related to the forward feed or reverse feed of the welding wire.
  • the wire speed amplitude control unit outputs a reverse-feed speed amplitude based on the basic wire feed speed and a forward-feed speed amplitude smaller than the reverse-feed speed amplitude.
  • the wire speed frequency control unit outputs a wire feeding frequency corresponding to the set current.
  • the wire feed motor control unit includes the basic wire feed speed, a signal indicating the rotation direction of the wire feed motor, the speed amplitude on the reverse feed side of the welding wire, and the forward feed side of the welding wire.
  • the wire feed motor is controlled on the basis of the speed amplitude and the wire feed frequency.
  • the arc welding apparatus of the present invention controls the welding wire feeding speed so that the feeding waveform is different between the forward feeding side and the reverse feeding side of the periodic feeding of the welding wire. It is configured to do.
  • FIG. 1 shows wire feed speed, welding current, and welding when conventional periodic wire feed control is performed when the speed amplitude on the forward feed side and the speed amplitude on the reverse feed side are the same. It is a figure which shows the time waveform of a voltage.
  • FIG. 2 is a diagram showing time waveforms of the wire feed speed, the welding current, and the welding voltage in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship of the amplitude amount on the forward feeding side with respect to the ratio between the short-circuit period and the arc period in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a construction example of arc welding in the first embodiment of the present invention together with a short-circuit welding and a comparative example with conventional control.
  • FIG. 1 shows wire feed speed, welding current, and welding when conventional periodic wire feed control is performed when the speed amplitude on the forward feed side and the speed amplitude on the reverse feed side are the same. It is a figure which shows the time waveform
  • FIG. 5 is a diagram showing a schematic configuration of the arc welding apparatus in the first and second embodiments of the present invention.
  • FIG. 6 shows the wire feeding speed, welding current, and welding when the conventional periodic wire feeding control is performed when the velocity amplitude on the forward feeding side and the velocity amplitude on the reverse feeding side are the same. It is a figure which shows the time waveform of a voltage.
  • FIG. 7 is a diagram showing time waveforms of the wire feed speed, the welding current, and the welding voltage in the second embodiment of the present invention.
  • FIG. 8 shows the wire feeding speed, welding current, and welding when the conventional periodic wire feeding control is performed when the velocity amplitude on the forward feeding side and the velocity amplitude on the backward feeding side of the welding wire feeding are equal. It is a figure which shows the time waveform of a voltage.
  • FIG. 1 shows wire feed speed, welding current, and welding when conventional periodic wire feed control is performed when the speed amplitude on the forward feed side and the speed amplitude on the reverse feed side are the same. It is a figure which shows the time waveform of a voltage.
  • FIG. 2 is an output waveform diagram showing an arc welding control method by the arc welding apparatus with a short circuit according to the first embodiment of the present invention.
  • FIG. 2 shows time waveforms of the wire feed speed, welding current, and welding voltage in Embodiment 1 of the present invention. The effect of FIG. 2 showing the control of the first embodiment will be described by comparing with FIG. 1 showing the conventional control.
  • FIG. 1 and FIG. 2 show temporal changes of the wire feed speed WS, the welding voltage V, and the welding current I.
  • the wire feed control shown in FIG. 1 is basically performed as follows. In the short-circuit period from time t1 to time t2 shown in FIG. 1, reverse feed is performed from the wire feed speed WS2 on the forward feed side to the wire feed speed WS3 on the reverse feed side, based on the average wire feed speed WS0. . Further, during the arc period from time t2 to time t3 shown in FIG. 1, forward feed is performed from the wire feed speed WS3 to the wire feed speed WS2.
  • the wire feed control shown in FIG. 2 is basically performed as follows.
  • the short-circuit period from time t11 to time t2 shown in FIG. 2 is based on the basic wire feed speed WS1 determined according to the set current, and the wire feed speed WS4 on the forward feed side to the wire feed on the reverse feed side. Reverse feed to speed WS3.
  • forward feeding is performed from the wire feeding speed WS3 to the wire feeding speed WS4.
  • the basic wire feeding speed WS1 is determined according to the set current.
  • the set current, the wire feed speed and the wire feed amount set before the start of welding are in a proportional relationship. Therefore, the basic wire feed speed WS1 may be determined according to the set wire feed speed or the set wire feed amount instead of the set current.
  • time t1 is when the welding wire and the molten pool are reliably short-circuited. Then, toward time t2, the feed control shifts from the wire feed speed WS2 to the wire feed speed WS3 to the backward feed so that the short circuit can be opened smoothly.
  • the welding current I is increased at a predetermined slope by the current control from time t1 when the short circuit occurs. Note that immediately before the end of the short-circuit period, that is, immediately before time t2, as is conventionally known, the welding current I is sharply reduced by detecting the constriction of the molten welding wire in order to reduce spatter. So that it is controlled.
  • time t2 is when an arc is generated (short circuit is opened). Then, toward time t3, the feed control shifts from the wire feed speed WS3 to the wire feed speed WS2 so as to easily cause a short circuit.
  • the welding current I is increased at a predetermined slope by current control from time t2 when the arc is generated. Thereafter, voltage control is performed, and the welding current I is output so that the basic welding voltage VP can be output. That is, the welding current I is output as a result of the voltage control. Since the arc length can be maintained by performing voltage control, it is possible to maintain an arc state in which a minute short circuit is unlikely to occur.
  • the control is switched from voltage control to current control after a predetermined time from the start of the arc, and the current value is reduced to a base current IB of 100 A or less, which is a current value at which large-scale sputtering hardly occurs even when the welding current I is slightly short-circuited.
  • the rapid change in the arc state can be mitigated by reducing the welding current I with a predetermined slope so that the welding current I becomes the base current IB after a predetermined time from the start of the arc.
  • the value of the base current IB may be set to a value that is suitable for the object to be welded, for example, through experiments.
  • the conventional arc welding control method periodically repeats the cycle of the short circuit period and the arc period described above.
  • FIG. 2 is based on the basic wire feed speed WS1 corresponding to the set current, the speed amplitude on the reverse side is defined as the speed amplitude WV2, and the speed amplitude WV1 on the forward side is set to 0. 0 of the speed amplitude WV2 on the reverse side.
  • the velocity amplitude WV1 is a velocity amplitude on the forward feeding side when the basic wire feeding speed WS1 is used as a reference.
  • the speed amplitude WV2 is a speed amplitude on the reverse side when the basic wire feeding speed WS1 is used as a reference.
  • a short circuit period will be from the time t1 to the time t2.
  • the speed amplitude WV1 on the forward feed side is smaller than the speed amplitude indicated by the broken line
  • the wire feed speed WS4 on the forward feed side is indicated by the broken line. It is lower than the feeding speed WS2. Therefore, the timing at which a short circuit occurs can be delayed from time t1 to time t11. Therefore, the short circuit period is from time t11 to time t2 as shown in FIG. 2, and is shorter than the short circuit period from time t1 to time t2 in the case of FIG. 1 showing the conventional control.
  • the arc period is from time t2 to time t13 as shown in FIG. 2, and the arc period becomes longer than in the case of FIG.
  • FIG. 3 shows the ratio of the short-circuit period: the arc period when the forward-feed-side speed amplitude WV1 based on the basic wire feed speed WS1 is adjusted to be smaller than the reverse-feed-side speed amplitude WV2. That is, in FIG. 3, the horizontal axis represents the ratio between the short circuit period and the arc period. The vertical axis represents the amount of amplitude on the forward transmission side, and is displayed as a magnification (1 or less) of the speed amplitude on the forward transmission side with respect to the speed amplitude on the reverse transmission side.
  • FIG. 3 shows an example of the relationship of the amplitude amount on the forward feed side with respect to the ratio between the short-circuit period and the arc period when the welding method is MAG welding and the diameter of the welding wire is ⁇ 1.2.
  • a short-circuit period Is about 50:50.
  • the short-circuit period is about 40:60.
  • the velocity amplitude WV1 is 0.5 times the velocity amplitude WV2
  • the short-circuit period is about 30:70.
  • the velocity amplitude WV1 is 0.25 times the velocity amplitude WV2
  • the short-circuit period is approximately 25:75.
  • the magnification for reducing the speed amplitude WV1 on the forward feed side from the speed amplitude WV2 on the reverse feed side based on the basic wire feed speed WS1 is set current, wire diameter of the welding wire to be fed, wire type, wire It is good also as a method set based on at least one of the protrusion length of this, and the shielding gas to supply. By this method, the welding voltage can be appropriately increased, and a wide bead width and a deep penetration amount can be secured.
  • magnification may be obtained in advance as a table or a mathematical formula, a value obtained by an experiment or the like based on such welding conditions.
  • the forward feed speed amplitude WV1 is smaller than the reverse feed speed amplitude WV2 based on the basic wire feed speed WS1, that is, the forward feed is smaller as the magnification for obtaining the speed amplitude WV1 is smaller.
  • the wire feeding speed WS4 on the side becomes smaller. Therefore, in order to make the average feed speed when the wire feed speed WS4 on the forward feed side is small equal to the average feed speed when the speed amplitude on the forward feed side is not made small, the basic wire feed speed is WS1 needs to be increased. As is clear from FIG. 2, the basic wire feed speed WS1 is not an average feed speed.
  • the basic wire feed speed WS1 is 4.8 m / min in the conventional control, but this In the control of the first embodiment, the speed is 5.4 m / min.
  • the magnification of the speed amplitude on the forward side with respect to the speed amplitude on the reverse side is set. When 0.5 times, it will be 5 m / min or more and 15 m / min or less.
  • the speed amplitude WV1 on the forward feed side with reference to the basic wire feed speed WS1 is multiplied by 1, and the speed amplitude WV2 on the reverse feed side is multiplied by a factor larger than 1 on the speed amplitude WV1 on the forward feed side. May be determined. This also makes it possible to make the speed amplitude WV1 on the forward transmission side smaller than the speed amplitude WV2 on the reverse transmission side.
  • FIG. 4 is a diagram showing a construction example of arc welding in the first embodiment of the present invention together with a short-circuit welding and a comparative example with conventional control.
  • FIG. 4 shows a bead appearance and a cross-sectional macro photograph when welding is performed with a bead on plate with a set current of 200 A by MAG welding using a mild steel ⁇ 1.2 welding wire.
  • arc period is 50:50, which is the conventional control (control in which periodic feed control is performed and the speed amplitudes on the forward and reverse sides are the same).
  • the short-circuit period when the speed amplitude WV1 on the forward feed side is 0.5 times smaller than the speed amplitude WV2 on the reverse feed side, which is the control of the first embodiment, and the bead when the arc period is 30:70 The width is about 1.3 times wider and the amount of penetration can be about 1.5 times deeper.
  • the bead appearance here, the beat is performed by the general short-circuit welding of the constant feed so far not performing the periodic feed control shown in FIG. 4). Width and almost the same amount of penetration can be obtained.
  • the speed amplitude WV1 on the forward feeding side is adjusted based on the basic wire feeding speed WS1.
  • the present invention is not limited to this, and the ratio between the short-circuit period and the arc period can be adjusted by making the reverse-feed-side wire feed speed waveform different from the forward-feed-side wire feed speed waveform.
  • the forward feed may be a sine wave and the reverse feed may be a trapezoidal wave.
  • the arc welding control method of the first embodiment is a consumable electrode type arc welding control method in which short-circuit welding is performed by alternately repeating short-circuiting and arcing while automatically feeding a welding wire. Then, the arc welding control method of the first embodiment is based on the basic wire feed speed corresponding to the set current, and forward and reverse feeding of the welding wire at a predetermined frequency and a predetermined speed amplitude. Are periodically repeated to generate a short circuit state and an arc state. And the arc welding control method of this Embodiment 1 is a method for controlling the feeding speed of the welding wire so that the feeding waveform is different between the forward feeding side and the reverse feeding side of the periodic feeding of the welding wire. Consists of.
  • the forward-feed-side speed amplitude WV1 based on the basic wire feed speed WS1 is made smaller than the reverse-feed-side speed amplitude WV2, thereby reducing the ratio of the short-circuit period and increasing the ratio of the arc period.
  • an appropriate welding voltage can be raised and heat input can also be raised.
  • the weldability can be equal to or higher than conventional short-circuit welding with a constant feed, which is not performed periodically, a wide bead width and a deep penetration amount can be ensured.
  • the welding wire feeding speed control may be performed so that the speed amplitude is different between the forward feeding side and the reverse feeding side of the periodic feeding of the welding wire.
  • the welding voltage can be appropriately increased, and a wide bead width and a deep penetration amount can be secured.
  • the speed amplitude on the forward feed side of the welding wire may be smaller than the speed amplitude on the reverse feed side of the welding wire.
  • the reverse-side speed amplitude by multiplying the reverse-side speed amplitude by a factor smaller than 1 is set as the forward-side speed amplitude, and by setting the forward-side speed amplitude smaller than the reverse-side speed amplitude, the short circuit period and the arc period It is good also as a method of performing welding by adjusting the ratio. By this method, the welding voltage can be appropriately increased, and a wide bead width and a deep penetration amount can be secured.
  • FIG. 5 is a diagram showing a schematic configuration of the arc welding apparatus in the first embodiment of the present invention. The description will be focused on the portion related to the wire feed control.
  • the arc welding apparatus includes a primary rectification unit 2 that rectifies power input from an input power supply 1, a switching unit 3, a transformer 4, a secondary rectification unit 5 and a DCL 6, and a drive unit 7.
  • the switching part 3 converts the output of the primary rectification part 2 into alternating current.
  • the transformer 4 transforms the output of the switching unit 3.
  • Secondary rectifier 5 and DCL 6 rectify the output of transformer 4.
  • the drive unit 7 controls the switching unit 3.
  • the welding voltage detector 8 detects the welding voltage.
  • the welding current detection unit 9 detects a welding current.
  • the short circuit / arc detection unit 10 detects whether the welding state is a short circuit state or an arc state based on at least one of the output of the welding voltage detection unit 8 and the output of the welding current detection unit 9.
  • the short-circuit control unit 11 performs welding output control in a short-circuit state.
  • the arc control unit 12 performs welding output control in the arc state.
  • the wire feed motor control unit 13 performs feed control of the welding wire 19.
  • the welding condition setting unit 18 sets welding conditions such as a set current, a welding wire diameter, and a welding wire material.
  • the wire feed motor control unit 13 includes a basic wire feed speed control unit 14, a motor polarity switching control unit 15, a wire speed amplitude control unit 16, and a wire speed frequency control unit 17. Consists of
  • the welding wire 19 is fed by the wire feeding motor 23.
  • the welding wire 19 is supplied with electric power via the tip 20, and a welding arc 21 is generated between the welding wire 19 and the workpiece 22 to be welded.
  • the tip 20 may be provided on a welding torch (not shown), and this welding torch may be attached to a manipulator constituting an industrial robot (not shown), and the welding torch may be moved by the operation of the manipulator.
  • straightening part 2 to the welding condition setting part 18 may be provided in the inside of the robot control apparatus not shown which comprises an industrial robot and controls operation
  • the welding voltage detection unit 8 is connected between the welding power output terminals and outputs a signal corresponding to the detected voltage.
  • the short circuit / arc detection unit 10 determines whether the welding output voltage is equal to or higher than a certain value based on the signal from the welding voltage detection unit 8. Then, the short-circuit / arc detection unit 10 determines whether the welding wire 19 is in contact short-circuit with the workpiece 22 or the welding arc 21 is generated in a non-contact state based on the determination result, and outputs a determination signal. To do.
  • the wire feed motor control unit 13 includes a basic wire feed speed control unit 14, a motor polarity switching control unit 15, a wire speed amplitude control unit 16, and a wire speed frequency control unit 17.
  • the basic wire feed speed control unit 14 outputs a basic wire feed speed WS1 that is a reference for periodic feeding of the welding wire.
  • the basic wire feed speed control unit 14 has a table or a calculation formula in which the set current and the basic wire feed speed WS1 are associated with each other, and based on the set current set by the welding condition setting unit 18.
  • the wire feed speed WS1 is determined. Note that the relationship between the set current and the basic wire feed speed WS1 may be obtained in advance, for example, through experiments.
  • the wire speed amplitude control unit 16 outputs a reverse-feed-side speed amplitude WV2 based on the basic wire feed speed WS1 and a forward-feed-side speed amplitude WV1 based on the basic wire feed speed WS1. .
  • the wire speed amplitude control unit 16 has a table or a calculation formula in which the set current is associated with the reverse feed side wire feed speed WS3, that is, the reverse feed speed amplitude WV2.
  • the wire speed amplitude control unit 16 determines the reverse-feed-side wire feed speed WS3, that is, the reverse-feed-side speed amplitude WV2 based on the set current set by the welding condition setting unit 18. Note that the relationship between the set current and the wire feed speed WS3 on the reverse feed side, that is, the speed amplitude WV2 on the reverse feed side, may be obtained in advance by, for example, experiments.
  • the wire velocity amplitude control unit 16 determines the velocity amplitude WV1 on the forward transmission side by multiplying the determined velocity amplitude WV2 on the reverse transmission side by a factor smaller than 1. That is, the speed amplitude WV1 on the forward transmission side is smaller than the speed amplitude WV2 on the reverse transmission side.
  • This magnification is at least one of a set current which is a welding condition set by the welding condition setting unit 18, a wire diameter of a welding wire to be fed, a type of wire, a protruding length of the wire, and a shielding gas to be supplied. To be determined.
  • the wire speed amplitude control unit 16 has a table or a calculation formula in which the magnification and the welding condition set by the welding condition setting unit 18 are associated with each other, and the welding condition set by the welding condition setting unit 18 is set.
  • the magnification is determined based on the above. Then, the relationship between the magnification and the welding condition set by the welding condition setting unit 18 may be obtained in advance by an experiment or the like, for example.
  • the wire speed frequency control unit 17 outputs a frequency of periodic wire feeding between forward feeding and backward feeding.
  • the wire speed frequency control unit 17 has a table or a calculation formula in which the set current and the periodic feeding frequency are associated with each other, and determines the frequency based on the set current set by the welding condition setting unit 18. To do. Note that the relationship between the set current and the frequency may be obtained in advance by an experiment or the like, for example.
  • the motor polarity switching control unit 15 has a time measuring function, and based on the frequency determined by the wire speed frequency control unit 17 and the elapsed time, the wire feed motor 23 related to the forward feed or the reverse feed of the welding wire 19. A signal indicating the rotation direction is output.
  • the basic wire feed speed WS1 the signal indicating the rotation direction of the wire feed motor 23, the speed amplitude WV2 on the reverse feed side of the welding wire 19, the speed amplitude WV1 on the forward feed side of the welding wire 19, and the cycle
  • the actual feeding frequency is determined based on the welding conditions set by the welding condition setting unit 18 before welding.
  • the wire feed motor control unit 13 determines the basic wire feed speed WS1, the signal indicating the rotation direction of the wire feed motor 23, the speed amplitude WV2 on the reverse feed side of the welding wire 19, and the normality of the welding wire 19.
  • the wire feed motor 23 is controlled based on the speed amplitude WV1 on the sending side and the frequency of periodic feeding.
  • the arc welding apparatus controls the feeding speed of the welding wire 19 so that the speed amplitude is different between the forward feeding side and the backward feeding side of the welding wire 19 to perform periodic feeding control. Is configured to be performed.
  • the welding speed is controlled such that the feeding waveform is different between the forward feeding side and the reverse feeding side with reference to the basic wire feeding speed of the periodic feeding of the welding wire 19, thereby enabling welding.
  • the ratio of the welding short-circuit period and the arc period can be changed.
  • weldability such as bead width and penetration amount equivalent to short-circuit welding in which welding wire 19 is fed at a constant speed without performing periodic feeding control of welding wire 19 can be realized.
  • the speed amplitude on the forward feed side is obtained by multiplying the speed amplitude on the reverse feed side by a factor smaller than 1, and the speed amplitude on the forward feed side is changed to be smaller than the speed amplitude on the reverse feed side.
  • the ratio may be adjusted to perform welding. With this configuration, an appropriate welding voltage can be increased in the periodic feeding control of the welding wire 19, and a wide bead width and a deep penetration amount can be ensured.
  • the welding wire 19 is sent to the wire feed speed WS3 by the wire feed motor 23 that has received the signal from the wire feed motor control unit 13.
  • the feed speed is reduced so that
  • the welding wire 19 is sent to the wire feed speed WS4 by the wire feed motor 23 that has received the signal from the wire feed motor control unit 13.
  • the feeding speed is accelerated so that
  • each component part which comprises an arc welding apparatus may each be comprised independently, and you may make it comprise combining a some component part.
  • the speed amplitude WV1 on the forward feed side based on the basic wire feed speed WS1 is set higher than the speed amplitude WV2 on the reverse feed side. Make it smaller. Thereby, it can adjust so that the ratio of a short circuit period may be made small and the ratio of an arc period may be lengthened. And an appropriate welding voltage can be raised and heat input can also be raised.
  • weldability can be equal to or higher than that of conventional short-circuit welding with constant feeding, which does not perform periodic feeding, a wide bead width and deep penetration can be ensured.
  • FIG. 6 shows the wire feeding speed, welding current, and current when the conventional periodic wire feeding control is performed when the velocity amplitude on the forward feeding side and the velocity amplitude on the reverse feeding side of the welding wire 19 are equal. It is a figure which shows the time waveform of a welding voltage.
  • FIG. 7 is a diagram showing time waveforms of the wire feed speed, the welding current, and the welding voltage in the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of the arc welding apparatus in the second embodiment of the present invention. In the second embodiment, the main difference from the first embodiment is that the wire feeding waveform is not a periodic sine wave but a periodic trapezoidal wave.
  • control is to periodically repeat the forward feed and the reverse feed at a predetermined frequency and speed amplitude with reference to the basic wire feed speed WS1, even if the wire feed waveform is trapezoidal, The same effect can be produced.
  • FIG. 6 shows waveforms of the wire feed speed WS, the welding current I, and the welding voltage V when the wire feed waveform is trapezoidal in the conventional periodic feed control.
  • FIG. 7 shows time waveforms of the wire feed speed WS, the welding current I, and the welding voltage V in the second embodiment.
  • the short-circuit period is from time t1 to time t2.
  • the speed amplitude WV1 on the forward feed side is smaller than the speed amplitude WV2 on the reverse feed side as shown in FIG. 7, and the wire feed speed WS4 is It is lower than the wire feed speed WS2. Therefore, the timing at which a short circuit occurs is delayed from time t1 to time t11, the short circuit period is from time t11 to time t2, and the short circuit period is shorter than in the case of conventional control.
  • the arc period is delayed in the timing at which a short circuit occurs from time t3 to time t13.
  • the arc period is from time t2 to time t13, and the arc period becomes longer than in the case of the conventional control.
  • the short circuit period: arc period is 50:50 (50:50), but in the second embodiment, it can be set to, for example, 30:70 (30:70).
  • the ratio of the short-circuit period: the arc period can be changed, The welding voltage and heat input can be adjusted.
  • the feed waveform of the welding wire 19 is changed to a sinusoidal waveform, or the feed waveform of the welding wire 19 is changed to a trapezoidal waveform to feed the weld wire 19. It is good also as a method of performing. By this method, the welding voltage can be appropriately increased, and a wide bead width and a deep penetration amount can be secured.
  • each component part which comprises the arc welding apparatus shown in FIG. 5 may each be comprised independently, and you may make it comprise combining a some component part.
  • the feeding speed is controlled so that the feeding waveform is different between the forward feeding side and the reverse feeding side based on the basic wire feeding speed of the periodic feeding of the welding wire.

Abstract

溶接ワイヤを自動送給しながら短絡とアークとを交互に繰り返して短絡溶接を行う消耗電極式のアーク溶接である。設定電流に応じた基本ワイヤ送給速度を基準にして所定の周波数と所定の速度振幅とで溶接ワイヤの送給の正送と逆送とを周期的に繰り返して短絡状態とアーク状態とを発生させる。溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように溶接ワイヤの送給速度の制御を行う。

Description

アーク溶接制御方法およびアーク溶接装置
 本発明は、消耗電極である溶接ワイヤを連続的に送給しながら短絡溶接を行うアーク溶接制御方法およびアーク溶接装置に関する。
 図8は、溶接ワイヤの周期的な送給を行い、短絡を伴う従来のアーク溶接の溶接ワイヤ送給制御方法を示す出力の時間波形である。図8は、具体的にはワイヤ送給速度WS、溶接電流Iおよび溶接電圧Vの時間変化を示す。
 図8に示すように、時点P1は、短絡を開始した時点を示している。時点P1以降の短絡期間では、アーク溶接装置は、短絡初期電流を所定時間出力した後、溶接電流Iとして短絡電流の第1段目の増加傾きdi/dtを出力し、続けて、短絡電流の第2段目の増加傾きdi/dtを出力する。その後、溶融プールと溶接ワイヤ先端との間に出来た溶滴のくびれを検出すると、アーク溶接装置は溶接電流Iを低電流に瞬時に移行させる。時点P2は、溶滴のくびれが離れ、短絡状態が終了してアークが発生した時点を示している。
 時点P2からのアーク期間において、アーク溶接装置はアーク発生直後にピーク電流の溶接電流を出力し、その後、ピーク電流IPからベース電流IBへ移行する。このアーク期間は、電流制御でも電圧制御でもどちらの制御でも可能な期間であり、ベース電流に移行した段階で次の短絡を待つことになる。時点P3は、次の短絡が発生した時点を示している。
 また、所定の周波数と所定の速度振幅で、基本波形である正弦波状に正送と逆送とを周期的に繰り返すワイヤ送給制御を行っている。そして、正送側のピーク時では時点P1周辺で短絡が発生し、逆送側のピーク時では時点P2周辺でアークが発生することになる。また、時点P2の後の正送のピーク時に、時点P3周辺で次の短絡が発生する。以上のように、時点P1から時点P3までを制御の1周期WFとし、これを繰り返して溶接が行われる。
 このように、短絡状態またはアーク状態の発生は、基本的には、ワイヤ送給速度の正送と逆送とを周期的に繰り返すワイヤ送給制御に依存するものである。
 上述の従来の制御は、ワイヤ送給速度が正送と逆送とを正弦波状に周期的に繰り返すことにより、短絡状態とアーク状態とを周期的に発生させて溶接を行う制御方法を用いている。この制御方法は、設定電流毎に適したワイヤ送給速度の平均送給速度を基準にして周波数および速度振幅を設定することにより、低電流から高電流まで対応することができる(例えば、特許文献1参照)。
 また、ワイヤ送給速度の正送と逆送は正弦波状であることから、矩形波状とは異なり、ワイヤ送給モータやギヤなどのモータ周辺部品への負担が小さく、矩形波状の場合に比べてこれらの寿命を長くすることができる。
 上述の従来の送給制御方法では、図8に示すように、正送側のピーク時では時点P1周辺で短絡が発生し、逆送側のピーク時では時点P2周辺でアークが発生することになる。また、時点P2の後の正送のピーク時に時点P3周辺で次の短絡が発生する。このように、時点P1から時点P3までを制御の1周期WFとし、これを繰り返して溶接を行う。そのため、(時刻t1から時刻t2までの短絡期間):(時刻t2から時刻t3までのアーク期間)=50:50(時間比率が50対50)になる。これに対し、溶接ワイヤの周期的な送給は行わない、これまでの溶接ワイヤの一定送給を行う一般的な短絡溶接では、短絡期間:アーク期間=20:80(20対80)から30:70(30対70)までの範囲の比率である。
 このように、従来の正送と逆送を周期的に行うアーク溶接制御方法では、一般的な短絡溶接に比べて短絡期間の占める比率が50%と高く、アーク期間の占める比率が低くなるため、溶接電圧を上げることが困難である。従って、被溶接物への入熱が低く、ビード幅が細く、溶け込み量が浅いという溶接結果になる。従来の正送と逆送を周期的に行うアーク溶接制御方法は、アーク不安定をなくし、ビード欠陥、スパッタ増加、溶け込み不良(溶け込みのバラツキ)等の改善はできる。しかし、溶接電圧を上げることが困難なので、これまでの一般的な短絡溶接と同等の広いビード幅や深い溶け込み量を確保できないという課題があった。
国際公開第2011/013321号
 本発明は、溶接ワイヤの周期的な送給制御において、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できるアーク溶接制御方法およびアーク溶接装置を提供する。
 上記課題を解決するために、本発明のアーク溶接制御方法は、溶接ワイヤを自動送給しながら短絡とアークを交互に繰り返して短絡溶接を行う消耗電極式のアーク溶接制御方法である。そして、本発明のアーク溶接制御方法は、設定電流に応じた基本ワイヤ送給速度を基準にして所定の周波数と所定の速度振幅で上記溶接ワイヤの送給の正送と逆送とを周期的に繰り返して短絡状態とアーク状態とを発生させる。そして、本発明のアーク溶接制御方法は、上記溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように上記溶接ワイヤの送給速度制御を行う方法である。
 この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 また、本発明のアーク溶接装置は、消耗電極である溶接ワイヤと被溶接物との間でアークの発生と短絡とを繰り返して溶接を行うアーク溶接装置である。そして、本発明のアーク溶接装置は、溶接条件設定部と、ワイヤ送給モータと、スイッチング部と、溶接電圧検出部と、短絡/アーク検出部と、短絡制御部と、アーク制御部と、駆動部と、ワイヤ送給モータ制御部とを備えている。ここで、溶接条件設定部は、少なくとも設定電流を設定する。ワイヤ送給モータは、溶接ワイヤを送給する。スイッチング部は、溶接出力を制御する。溶接電圧検出部は、溶接電圧を検出する。短絡/アーク検出部は、溶接電圧検出部の出力に基づいて短絡状態であるのかアーク状態であるのかを検出する。短絡制御部は、短絡状態であるときの溶接出力制御信号を出力する。アーク制御部は、アーク状態であるときの溶接出力制御信号を出力する。駆動部は、短絡制御部またはアーク制御部からの信号に基づいて前記スイッチング部を制御する。ワイヤ送給モータ制御部は、所定の周波数と所定の速度振幅で溶接ワイヤの送給の正送と逆送とを周期的に繰り返すようにワイヤ送給モータを制御する。そして、上記ワイヤ送給モータ制御部は、基本ワイヤ送給速度制御部と、モータ極性切換制御部と、ワイヤ速度振幅制御部と、ワイヤ速度周波数制御部とを有する。ここで、基本ワイヤ送給速度制御部は、溶接ワイヤの周期的な送給の基準であり設定電流に応じた基本ワイヤ送給速度を出力する。モータ極性切換制御部は、溶接ワイヤの正送あるいは逆送に関するワイヤ送給モータの回転方向を示す信号を出力する。ワイヤ速度振幅制御部は、基本ワイヤ送給速度を基準にした逆送側の速度振幅と逆送側の速度振幅よりも小さい正送側の速度振幅とを出力する。ワイヤ速度周波数制御部は、設定電流に応じたワイヤ送給周波数を出力する。そして、ワイヤ送給モータ制御部が、上記基本ワイヤ送給速度と、上記ワイヤ送給モータの回転方向を示す信号と、上記溶接ワイヤの逆送側の速度振幅と、上記溶接ワイヤの正送側の速度振幅と、上記ワイヤ送給周波数とに基づいて、上記ワイヤ送給モータを制御する。これにより、本発明のアーク溶接装置は、上記溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように上記溶接ワイヤの送給速度を制御して溶接を行う構成としている。
 この構成により、溶接ワイヤの周期的な送給制御において、適正な溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保することができる。
 また、この構成により、短絡溶接と同等のビード幅や溶け込み量といった溶接性を備えたアーク溶接装置を実現することができる。
図1は、溶接ワイヤの送給の正送側の速度振幅と逆送側の速度振幅が等しい時に、従来の周期的なワイヤ送給制御を行った場合のワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。 図2は、本発明の実施の形態1におけるワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。 図3は、本発明の実施の形態1における短絡期間とアーク期間の比率に対する正送側の振幅量の関係を示す図である。 図4は、本発明の実施の形態1におけるアーク溶接の施工事例を短絡溶接や従来の制御との比較事例とともに示す図である。 図5は、本発明の実施の形態1および実施の形態2におけるアーク溶接装置の概略構成を示す図である。 図6は、溶接ワイヤの送給の正送側の速度振幅と逆送側の速度振幅が等しい時に、従来の周期的なワイヤ送給制御を行った場合のワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。 図7は、本発明の実施の形態2におけるワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。 図8は、溶接ワイヤの送給の正送側の速度振幅と逆送側の速度振幅が等しい時に、従来の周期的なワイヤ送給制御を行った時のワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。
 以下、本発明の一実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。
 (実施の形態1)
 図1は、溶接ワイヤの送給の正送側の速度振幅と逆送側の速度振幅が等しい時に、従来の周期的なワイヤ送給制御を行った場合のワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。図2は、本発明の実施の形態1における短絡を伴うアーク溶接装置によるアーク溶接制御方法を示す出力波形図である。図2は、本発明の実施の形態1におけるワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す。従来の制御を示す図1と比較することで、本実施の形態1の制御を示す図2の効果を説明する。
 図1と図2は、ワイヤ送給速度WS、溶接電圧Vおよび溶接電流Iの時間変化を示す。
 図1に示すワイヤ送給制御は、基本的に以下のように行われている。図1に示す時刻t1から時刻t2までの短絡期間は、平均ワイヤ送給速度WS0を基準に、正送側のワイヤ送給速度WS2から逆送側のワイヤ送給速度WS3へと後退送給する。また、図1に示す時刻t2から時刻t3までのアーク期間では、ワイヤ送給速度WS3からワイヤ送給速度WS2へと前進送給する。
 また、図2に示すワイヤ送給制御は、基本的に以下のように行われている。図2に示す時刻t11から時刻t2までの短絡期間は、設定電流に応じて決定される基本ワイヤ送給速度WS1を基準に、正送側のワイヤ送給速度WS4から逆送側のワイヤ送給速度WS3へと後退送給する。また、図2に示す時刻t2から時刻t13までのアーク期間では、ワイヤ送給速度WS3からワイヤ送給速度WS4へと前進送給する。なお、基本ワイヤ送給速度WS1は設定電流に応じて決定される。ここで、溶接開始前に設定される設定電流、ワイヤ送給速度およびワイヤ送給量は、比例の関係にあることは明らかである。従って、設定電流ではなく、設定されたワイヤ送給速度あるいは設定されたワイヤ送給量に応じて基本ワイヤ送給速度WS1を決定するようにしてもよい。
 なお、先ず、図1に示す従来の周期的な送給制御について説明し、その後、図2に示す本発明の実施の形態1の周期的な送給制御について説明する。
 従来の制御を示す図1の時刻t1から時刻t2までの短絡期間において、時刻t1は、溶接ワイヤと溶融プールが確実に短絡した時である。そして、時刻t2に向けて、短絡開放を円滑に行えるように、送給制御はワイヤ送給速度WS2からワイヤ送給速度WS3へと後退送給へ移行する。
 また、短絡期間の溶接制御(電流制御のみ)は、短絡発生時の時刻t1から、電流制御により、溶接電流Iを所定の傾きで上昇させる。なお、短絡期間の終端直前、すなわち、時刻t2の直前においては、従来から知られているように、スパッタの削減のため、溶融した溶接ワイヤのくびれを検知して溶接電流Iを急峻に低減させるように制御している。
 時刻t2から時刻t3までのアーク期間において、時刻t2は、アークが発生(短絡が開放)した時である。そして、時刻t3に向けて、短絡が発生しやすいように、送給制御はワイヤ送給速度WS3からワイヤ送給速度WS2へと前進送給へ移行する。
 また、アーク期間の溶接制御(電流制御と電圧制御を併用)は、アーク発生時の時刻t2から、電流制御により、溶接電流Iを所定の傾きで上昇させる。その後、電圧制御を行い、基本溶接電圧VPを出力できるように溶接電流Iが出力される。すなわち、電圧制御の結果、溶接電流Iが出力される。そして、電圧制御を行うことによりアーク長を維持できるので、微小短絡が発生し難いアーク状態を維持することができる。その後、アーク開始から所定時間後に電圧制御から電流制御に制御を切り換え、電流制御により溶接電流Iを微小短絡しても大粒スパッタが発生しにくい電流値である100A以下のベース電流IBに低減させる。
 このように、アーク開始時から所定時間後に溶接電流Iがベース電流IBとなるように所定の傾きをもって減少させることにより、アーク状態の急激な変化を緩和することができる。なお、ベース電流IBの値は、例えば実験等により溶接対象に適するような値とすればよい。そして、溶接電流Iをベース電流IBの状態に保つことで、短絡が発生しやすい状態を確保すると共に、微小短絡が発生したとしても溶接電流Iが低いため大粒スパッタが発生しにくいという効果がある。
 従来のアーク溶接制御方法は、上述した短絡期間とアーク期間とのサイクルを周期的に繰り返すものである。
 次に、図2に示す本実施の形態1における制御について、従来の制御を示す図1も用いながら比較して説明する。
 図2は、設定電流に応じた基本ワイヤ送給速度WS1を基準にして、逆送側の速度振幅を速度振幅WV2とし、正送側の速度振幅WV1を逆送側の速度振幅WV2の0.5倍の大きさに小さくした場合におけるワイヤ送給速度WS、溶接電流Iおよび溶接電圧Vの時間波形の一例である。なお、速度振幅WV1は、基本ワイヤ送給速度WS1を基準とした場合の正送側の速度振幅である。また、速度振幅WV2は、基本ワイヤ送給速度WS1を基準とした場合の逆送側の速度振幅である。
 溶接制御は、図1を用いて説明した従来の制御と同一であるため説明を省略し、ワイヤ送給制御に関して説明する。
 従来のワイヤ送給速度であれば、図1に示すように、短絡期間は時刻t1から時刻t2までとなる。しかし、図2に示す本実施の形態1のワイヤ送給速度であれば、正送側の速度振幅WV1が破線で示す速度振幅より小さく、正送側のワイヤ送給速度WS4が破線で示すワイヤ送給速度WS2より低い。そのため、短絡が発生するタイミングを、時刻t1から時刻t11へと遅らせることができる。従って、短絡期間は、図2に示すように時刻t11から時刻t2までとなり、従来の制御を示す図1の場合の時刻t1から時刻t2までの短絡期間と比べて短くなる。
 一方、アーク期間は、正送側の速度振幅WV1を小さくしたことにより、図2に示すように時刻t3から時刻t13へと短絡が発生するタイミングが遅れる。これに伴い、アーク期間は図2に示すように時刻t2から時刻t13までとなり、図1の場合と比べてアーク期間が長くなる。
 上述のように、ワイヤ送給送度の速度振幅を制御することにより、図1に示す従来の制御では短絡期間:アーク期間(短絡期間対アーク期間の比)が50:50(50対50=1)であったものを、図2に示す本実施の形態1の制御では、30:70(30対70=3/7)と変更することができる。
 このように、基本ワイヤ送給速度WS1に対して、逆送側の速度振幅WV2より正送側の速度振幅WV1を小さく調整することで、短絡期間:アーク期間(短絡期間対アーク期間の比率)を変えることができる。そして、適正な溶接電圧および入熱を高く調整することができる。
 ここで、図3に、基本ワイヤ送給速度WS1を基準とする正送側の速度振幅WV1を、逆送側の速度振幅WV2より小さく調整した場合の、短絡期間:アーク期間の比率を示す。すなわち図3において、横軸は、短絡期間とアーク期間との比率である。縦軸は、正送側の振幅量であり、逆送側の速度振幅に対する正送側の速度振幅の倍率(1以下)で表示している。なお、図3は、溶接法がMAG溶接、溶接ワイヤの径がΦ1.2とした場合の、短絡期間とアーク期間との比率に対する正送側の振幅量の関係の一例を示す。
 図3に示すように、基本ワイヤ送給速度WS1を基準とした正送側の速度振幅WV1が、逆送側の速度振幅WV2と同じである1.0倍の時は、短絡期間:アーク期間は約50:50となる。速度振幅WV1が速度振幅WV2の0.75倍の時は、短絡期間:アーク期間は約40:60となる。速度振幅WV1が速度振幅WV2の0.5倍の時は、短絡期間:アーク期間は約30:70となる。速度振幅WV1が速度振幅WV2の0.25倍の時は、短絡期間:アーク期間は約25:75となる。
 なお、基本ワイヤ送給速度WS1を基準にした逆送側の速度振幅WV2より正送側の速度振幅WV1を小さくする倍率は、設定電流、送給する溶接ワイヤのワイヤ径、ワイヤの種類、ワイヤの突出長および供給するシールドガスのうちの少なくとも一つに基づいて設定される方法としてもよい。この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 そして、倍率は、このような溶接条件に基づいて実験等により求めた値を、表や数式として予め求めておくようにしても良い。
 なお、当然ながら、基本ワイヤ送給速度WS1を基準にした逆送側の速度振幅WV2より正送側の速度振幅WV1が小さい程、すなわち、速度振幅WV1を求めるための倍率が小さい程、正送側のワイヤ送給速度WS4が小さくなる。そのため、正送側のワイヤ送給速度WS4が小さくした場合の平均送給速度を、正送側の速度振幅を小さくしない場合の平均送給速度と同一にするためには、基本ワイヤ送給速度WS1を高くする必要がある。なお、図2からも明らかように、基本ワイヤ送給速度WS1は平均送給速度ではない。
 例えば、軟鋼φ1.2の溶接ワイヤを使用したMAG溶接において、設定電流200Aの場合の例として、基本ワイヤ送給速度WS1は、従来の制御では4.8m/minであるのに対して、本実施の形態1の制御では5.4m/minとなる。
 また、速度振幅WV1は、従来の制御において10m/min以上、30m/min以下である場合、本実施の形態1の制御においては、逆送側の速度振幅に対する正送側の速度振幅の倍率を0.5倍とすると、5m/min以上、15m/min以下となる。
 従って、平均送給速度を同一にするために基本ワイヤ送給速度WS1が高くなってしまっても、正送側の速度振幅WV1を小さくすることによる短絡発生のタイミングを遅らせることの効果は大きい。
 なお、基本ワイヤ送給速度WS1を基準にした正送側の速度振幅WV1を1倍とし、この正送側の速度振幅WV1に1より大きい倍率を乗算することにより、逆送側の速度振幅WV2を決定するようにしてもよい。このようにすることでも、正送側の速度振幅WV1を逆送側の速度振幅WV2よりも小さくすることができる。
 ここで、本実施の形態1の制御による効果を示す施工事例について、図4を用いて説明する。図4は、本発明の実施の形態1におけるアーク溶接の施工事例を短絡溶接や従来の制御との比較事例とともに示す図である。
 図4は、軟鋼φ1.2の溶接ワイヤを使用し、MAG溶接で設定電流200Aのビードオンプレートで溶接を行った時のビード外観と断面マクロ写真を示している。
 図4に示すように、従来の制御(周期的な送給制御を行い正送側と逆送側との速度振幅が同じ制御)である短絡期間:アーク期間が50:50の場合と比べる。本実施の形態1の制御である逆送側の速度振幅WV2に対して正送側の速度振幅WV1を0.5倍に小さくした場合の短絡期間:アーク期間が30:70の場合では、ビード幅が約1.3倍に広くなり、溶け込み量は約1.5倍に深くすることができる。
 そして、本実施の形態1の制御を行った場合、同じく図4に示す周期的な送給制御を行わないこれまでの一定送給の一般的な短絡溶接で行ったビード外観(ここでは、ビート幅)および溶け込み量とほとんど同等の結果を得ることができる。
 なお、本実施の形態1の制御では、基本ワイヤ送給速度WS1を基準にして正送側の速度振幅WV1を調整する例を示した。しかし、これに限らず、逆送側のワイヤ送給速度波形と正送側のワイヤ送給速度波形を異なる波形にすることで、短絡期間とアーク期間との比率を調整することも可能である。例えば、正送側の送給を正弦波状とし、逆送側の送給を台形波状とするようにしてもよい。
 すなわち、本実施の形態1のアーク溶接制御方法は、溶接ワイヤを自動送給しながら短絡とアークとを交互に繰り返して短絡溶接を行う消耗電極式のアーク溶接制御方法である。そして、本実施の形態1のアーク溶接制御方法は、設定電流に応じた基本ワイヤ送給速度を基準にして、所定の周波数と所定の速度振幅で溶接ワイヤの送給の正送と逆送とを周期的に繰り返して短絡状態とアーク状態とを発生させる。そして、本実施の形態1のアーク溶接制御方法は、溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように前記溶接ワイヤの送給速度制御を行う方法からなる。
 この方法により、基本ワイヤ送給速度WS1を基準にした正送側の速度振幅WV1を逆送側の速度振幅WV2よりも小さくすることにより、短絡期間の比率を小さくしてアーク期間の比率を長くするように調整することができる。そして、適正な溶接電圧を高めることができ、入熱も高めることができる。また、周期的な送給を行わない、これまでの一定送給の一般的な短絡溶接と溶接性を同等以上にできることで、広いビード幅や深い溶け込み量を確保することができる。
 また、溶接ワイヤの周期的な送給の正送側と逆送側とで、速度振幅が異なるように溶接ワイヤの送給速度制御を行う方法としてもよい。この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 また、溶接ワイヤの正送側の速度振幅が、溶接ワイヤの逆送側の速度振幅よりも小さい方法としてもよい。この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 また、逆送側の速度振幅に1より小さい倍率を乗算したものを正送側の速度振幅とし、正送側の速度振幅を逆送側の速度振幅より小さく設定することにより短絡期間とアーク期間との比率の調整を行って溶接を行う方法としてもよい。この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 次に、以上のようなアーク溶接制御を行うための本実施の形態1のアーク溶接装置について、図5を用いて説明する。図5は、本発明の実施の形態1におけるアーク溶接装置の概略構成を示す図である。なお、ワイヤ送給制御に関する部分を中心に説明する。
 図5に示すように、アーク溶接装置は、入力電源1から入力した電力を整流する1次整流部2と、スイッチング部3と、トランス4と、2次整流部5およびDCL6と、駆動部7と、溶接電圧検出部8と、溶接電流検出部9と、短絡/アーク検出部10と、短絡制御部11と、アーク制御部12と、ワイヤ送給モータ制御部13と、溶接条件設定部18と、を備えている。ここで、スイッチング部3は、1次整流部2の出力を交流に変換する。トランス4は、スイッチング部3の出力を変圧する。2次整流部5およびDCL6は、トランス4の出力を整流する。駆動部7は、スイッチング部3を制御する。溶接電圧検出部8は、溶接電圧を検出する。溶接電流検出部9は、溶接電流を検出する。短絡/アーク検出部10は、溶接電圧検出部8の出力および溶接電流検出部9の出力のうちの少なくともいずれかに基づいて溶接状態が短絡状態であるのかアーク状態であるのかを検出する。短絡制御部11は、短絡状態である場合の溶接出力制御を行う。アーク制御部12は、アーク状態である場合の溶接出力制御を行う。ワイヤ送給モータ制御部13は、溶接ワイヤ19の送給制御を行う。溶接条件設定部18は、設定電流や溶接ワイヤ径や溶接ワイヤ材質等の溶接条件を設定する。
 なお、ワイヤ送給モータ制御部13は、図5に示すように基本ワイヤ送給速度制御部14と、モータ極性切換制御部15と、ワイヤ速度振幅制御部16と、ワイヤ速度周波数制御部17とから構成される。
 また、溶接ワイヤ19は、ワイヤ送給モータ23により送給される。そして、溶接ワイヤ19は、チップ20を介して電力が供給され、被溶接物22との間で溶接アーク21が発生して溶接が行われる。
 なお、例えば、チップ20は図示しない溶接トーチに設けられ、この溶接トーチは図示しない産業用ロボットを構成するマニピュレータに取り付けられ、マニピュレータの動作により溶接トーチを移動させるようにしても良い。そして、産業用ロボットを構成しマニピュレータの動作を制御する図示しないロボット制御装置の内部に、1次整流部2から溶接条件設定部18までの各構成要素が設けられるようにしてもよい。
 溶接電圧検出部8は、溶接用電源出力端子間に接続され、検出した電圧に対応した信号を出力する。短絡/アーク検出部10は、溶接電圧検出部8からの信号に基づいて、溶接出力電圧が一定値以上であるのか未満であるのかを判定する。そして、短絡/アーク検出部10は、この判定結果により溶接ワイヤ19が被溶接物22に接触短絡しているか、それとも非接触状態で溶接アーク21を発生しているかを判定して判定信号を出力する。
 次に、ワイヤ送給モータ制御部13による溶接ワイヤ19の送給制御について説明する。
 ワイヤ送給モータ制御部13は、基本ワイヤ送給速度制御部14と、モータ極性切換制御部15と、ワイヤ速度振幅制御部16と、ワイヤ速度周波数制御部17と、から構成されている。
 基本ワイヤ送給速度制御部14は、溶接ワイヤの周期的な送給の基準である基本ワイヤ送給速度WS1を出力するものである。この基本ワイヤ送給速度制御部14は、設定電流と基本ワイヤ送給速度WS1とを対応付けた表あるいは計算式を有しており、溶接条件設定部18で設定された設定電流に基づいて基本ワイヤ送給速度WS1を決定するものである。なお、設定電流と基本ワイヤ送給速度WS1との関係は、例えば実験等により予め求めておくようにしても良い。
 ワイヤ速度振幅制御部16は、基本ワイヤ送給速度WS1を基準にした逆送側の速度振幅WV2と、基本ワイヤ送給速度WS1を基準にした正送側の速度振幅WV1を出力するものである。このワイヤ速度振幅制御部16は、設定電流と逆送側のワイヤ送給速度WS3すなわち逆送側の速度振幅WV2とを対応付けた表あるいは計算式を有している。ワイヤ速度振幅制御部16は、溶接条件設定部18で設定された設定電流に基づいて、逆送側のワイヤ送給速度WS3すなわち逆送側の速度振幅WV2を決定する。なお、設定電流と逆送側のワイヤ送給速度WS3すなわち逆送側の速度振幅WV2との関係は、例えば実験等により予め求めておくようにしても良い。
 また、ワイヤ速度振幅制御部16は、決定した逆送側の速度振幅WV2に1より小さい倍率を乗算することで、正送側の速度振幅WV1を決定する。すなわち、正送側の速度振幅WV1は、逆送側の速度振幅WV2より小さいものとなる。なお、この倍率は、溶接条件設定部18で設定される溶接条件である設定電流、送給する溶接ワイヤのワイヤ径、ワイヤの種類、ワイヤの突出長および供給するシールドガスのうちの少なくとも一つに基づいて決定される。ここで、ワイヤ速度振幅制御部16は、倍率と溶接条件設定部18で設定される溶接条件とを対応付けた表あるいは計算式を有しており、溶接条件設定部18で設定された溶接条件に基づいて倍率を決定するものである。そして、倍率と溶接条件設定部18で設定された溶接条件との関係は、例えば実験等により予め求めておくようにしても良い。
 ワイヤ速度周波数制御部17は、正送と逆送との周期的なワイヤ送給の周波数を出力するものである。このワイヤ速度周波数制御部17は、設定電流と周期的な送給の周波数を対応付けた表あるいは計算式を有しており、溶接条件設定部18で設定された設定電流に基づいて周波数を決定するものである。なお、設定電流と周波数との関係は、例えば実験等により予め求めておくようにしても良い。
 モータ極性切換制御部15は、計時機能を有しており、ワイヤ速度周波数制御部17で決定した周波数と、経過時間に基づいて、溶接ワイヤ19の正送あるいは逆送に関するワイヤ送給モータ23の回転方向を示す信号を出力するものである。
 なお、基本ワイヤ送給速度WS1と、ワイヤ送給モータ23の回転方向を示す信号と、溶接ワイヤ19の逆送側の速度振幅WV2と、溶接ワイヤ19の正送側の速度振幅WV1と、周期的な送給の周波数は、溶接を行う前に溶接条件設定部18で設定された溶接条件に基づいて決定されるものである。
 そして、ワイヤ送給モータ制御部13が、基本ワイヤ送給速度WS1と、ワイヤ送給モータ23の回転方向を示す信号と、溶接ワイヤ19の逆送側の速度振幅WV2と、溶接ワイヤ19の正送側の速度振幅WV1と、周期的な送給の周波数とに基づいて、ワイヤ送給モータ23を制御する。これにより、本実施の形態1のアーク溶接装置は、溶接ワイヤ19の正送側と逆送側とで速度振幅が異なるように溶接ワイヤ19の送給速度を制御して周期的な送給制御が行われる構成としている。
 この構成により、溶接ワイヤ19の周期的な送給の基本ワイヤ送給速度を基準とした正送側と逆送側とで送給波形が異なるように送給速度の制御を行うことで、溶接ワイヤ19の周期的な送給制御において、溶接の短絡期間とアーク期間の比率を変更することができる。
 そして、溶接ワイヤ19の周期的な送給制御において、適正な溶接電圧を高めることができ、入熱も高めることができ、その結果、広いビード幅や深い溶け込み量を確保することができる。
 また、溶接ワイヤ19の周期的な送給制御を行わずに溶接ワイヤの一定速度送給を行う短絡溶接と同等のビード幅や溶け込み量といった溶接性を実現することができる。
 なお、逆送側の速度振幅に1より小さい倍率を乗算したものを正送側の速度振幅とし、正送側の速度振幅を逆送側の速度振幅より小さく変更することで短絡期間とアーク期間との比率の調整を行って溶接を行う構成としてもよい。この構成により、溶接ワイヤ19の周期的な送給制御において、適正な溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保することができる。
 なお、図2に示すように、時刻t11から時刻t2までの短絡期間では、ワイヤ送給モータ制御部13からの信号を受信したワイヤ送給モータ23により、溶接ワイヤ19は、ワイヤ送給速度WS3となるように送給速度が減速されている。
 また、図2に示すように、時刻t2から時刻t13までのアーク期間では、ワイヤ送給モータ制御部13からの信号を受信したワイヤ送給モータ23により、溶接ワイヤ19は、ワイヤ送給速度WS4となるように送給速度が加速されている。
 本実施の形態1のアーク溶接装置は、上述したワイヤ送給制御により短絡期間とアーク期間とのサイクルを周期的に繰り返すものである。なお、アーク溶接装置を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。
 以上のように、本実施の形態1のアーク溶接装置およびアーク溶接制御方法によれば、基本ワイヤ送給速度WS1を基準にした正送側の速度振幅WV1を逆送側の速度振幅WV2よりも小さくする。これにより、短絡期間の比率を小さくしてアーク期間の比率を長くするように調整することができる。そして、適正な溶接電圧を高めることができ、入熱も高めることができる。
 また、周期的な送給を行わないこれまでの一定送給の一般的な短絡溶接と溶接性を同等以上にできることで、広いビード幅や深い溶け込み量を確保することができる。
 (実施の形態2)
 図6は、溶接ワイヤ19の送給の正送側の速度振幅と逆送側の速度振幅が等しい時に、従来の周期的なワイヤ送給制御を行った場合のワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。図7は、本発明の実施の形態2におけるワイヤ送給速度、溶接電流および溶接電圧の時間波形を示す図である。また、図5は、本発明の実施の形態2におけるアーク溶接装置の概略構成を示す図である。本実施の形態2において、実施の形態1と異なる主な点は、ワイヤ送給の波形が周期的な正弦波状ではなく、周期的な台形波状とした点である。
 基本ワイヤ送給速度WS1を基準にして所定の周波数と速度振幅で正送と逆送とを周期的に繰り返す制御であれば、このようにワイヤ送給の波形を台形波状にしても、正弦波状と同様の効果を出すことができる。
 図6に、従来の周期的な送給制御においてワイヤ送給の波形を台形波状とした場合の、ワイヤ送給速度WS、溶接電流Iおよび溶接電圧Vの波形を示す。また、図7に、本実施の形態2におけるワイヤ送給速度WS、溶接電流Iおよび溶接電圧Vの時間波形を示す。
 図6に示す従来の制御の場合、短絡期間は、時刻t1から時刻t2までとなる。しかし、図7に示す本実施の形態2のワイヤ送給速度の場合、図7に示すように正送側の速度振幅WV1が逆送側の速度振幅WV2よりも小さく、ワイヤ送給速度WS4がワイヤ送給速度WS2よりも低い。そのため、短絡が発生するタイミングが時刻t1から時刻t11へと遅れることになり、短絡期間は時刻t11から時刻t2までとなり、従来の制御の場合に比べて短絡期間が短くなる。
 また、本実施の形態2のワイヤ送給制御の場合、アーク期間は、時刻t3から時刻t13へと短絡が発生するタイミングが遅れる。これにより、アーク期間は時刻t2から時刻t13までとなり、従来の制御の場合に比べてアーク期間が長くなる。
 これは、従来の制御では短絡期間:アーク期間が50:50(50対50)であったものが、本実施の形態2では、例えば30:70(30対70)にすることができる。このように、基本ワイヤ送給速度WS1を基準にした逆送側の速度振幅WV2より正送側の速度振幅WV1を小さく調整することで、短絡期間:アーク期間の比率を変えることでき、適正な溶接電圧および入熱を調整することができる。
 また、基本ワイヤ送給速度を基準にして、溶接ワイヤ19の送給波形を正弦波状に変化させて、または、溶接ワイヤ19の送給波形を台形波状に変化させて、溶接ワイヤ19の送給を行う方法としてもよい。この方法により、適正に溶接電圧を高めることができ、広いビード幅や深い溶け込み量を確保できる。
 なお、アーク溶接装置の構成は、実施の形態1と同様に図5で示すもので良い。また、図5に示したアーク溶接装置を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。
 本発明によれば、溶接ワイヤの周期的な送給の基本ワイヤ送給速度を基準とした正送側と逆送側とで送給波形が異なるように送給速度の制御を行う。これにより、溶接ワイヤの周期的な送給制御において、溶接の短絡期間とアーク期間との比率を変更することができ、溶接ワイヤを周期的に送給することで溶接を行うアーク溶接制御方法およびアーク溶接装置として利用することができ、産業上有用である。
 1  入力電源
 2  1次整流部
 3  スイッチング部
 4  トランス
 5  2次整流部
 6  DCL
 7  駆動部
 8  溶接電圧検出部
 9  溶接電流検出部
 10  短絡/アーク検出部
 11  短絡制御部
 12  アーク制御部
 13  ワイヤ送給モータ制御部
 14  基本ワイヤ送給速度制御部
 15  モータ極性切換制御部
 16  ワイヤ速度振幅制御部
 17  ワイヤ速度周波数制御部
 18  溶接条件設定部
 19  溶接ワイヤ
 20  チップ
 21  溶接アーク
 22  被溶接物
 23  ワイヤ送給モータ

Claims (9)

  1. 溶接ワイヤを自動送給しながら短絡とアークとを交互に繰り返して短絡溶接を行う消耗電極式のアーク溶接制御方法であって、
    設定電流に応じた基本ワイヤ送給速度を基準にして、所定の周波数と所定の速度振幅で前記溶接ワイヤの送給の正送と逆送とを周期的に繰り返して短絡状態とアーク状態とを発生させ、
    前記溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように前記溶接ワイヤの送給速度制御を行うアーク溶接制御方法。
  2. 前記溶接ワイヤの周期的な送給の正送側と逆送側とで、速度振幅が異なるように前記溶接ワイヤの送給速度制御を行う請求項1記載のアーク溶接制御方法。
  3. 前記溶接ワイヤの正送側の前記速度振幅が、前記溶接ワイヤの逆送側の前記速度振幅よりも小さい請求項2記載のアーク溶接制御方法。
  4. 逆送側の速度振幅に1より小さい倍率を乗算したものを正送側の速度振幅とし、前記正送側の速度振幅を前記逆送側の速度振幅より小さく設定することにより短絡期間とアーク期間との比率の調整を行って溶接を行う請求項2のアーク溶接制御方法。
  5. 前記倍率は、設定電流、溶接ワイヤの径、溶接ワイヤの種類、溶接ワイヤの突出長および供給するシールドガスのうちの少なくとも一つに基づいて決定される請求項4記載のアーク溶接制御方法。
  6. 前記基本ワイヤ送給速度を基準にして、前記溶接ワイヤの前記送給波形を正弦波状に変化させて、または、前記溶接ワイヤの前記送給波形を台形波状に変化させて、前記溶接ワイヤの送給を行う請求項1から5のいずれか1項に記載のアーク溶接制御方法。
  7. 消耗電極である溶接ワイヤと被溶接物との間でアークの発生と短絡とを繰り返して溶接を行うアーク溶接装置であって、
    少なくとも設定電流を設定するための溶接条件設定部と、
    前記溶接ワイヤを送給するためのワイヤ送給モータと、
    溶接出力を制御するスイッチング部と、
    溶接電圧を検出する溶接電圧検出部と、
    前記溶接電圧検出部の出力に基づいて短絡状態であるのかアーク状態であるのかを検出する短絡/アーク検出部と、
    短絡状態であるときの溶接出力制御信号を出力する短絡制御部と、
    アーク状態であるときの溶接出力制御信号を出力するアーク制御部と、
    前記短絡制御部または前記アーク制御部からの信号に基づいて前記スイッチング部を制御する駆動部と、
    所定の周波数と所定の速度振幅とで前記溶接ワイヤの送給の正送と逆送とを周期的に繰り返すように前記ワイヤ送給モータを制御するワイヤ送給モータ制御部とを備え、
    前記ワイヤ送給モータ制御部は、
    前記溶接ワイヤの周期的な送給の基準であり前記設定電流に応じた基本ワイヤ送給速度を出力する基本ワイヤ送給速度制御部と、
    前記溶接ワイヤの正送あるいは逆送に関する前記ワイヤ送給モータの回転方向を示す信号を出力するモータ極性切換制御部と
    前記基本ワイヤ送給速度を基準にした逆送側の速度振幅と前記逆送側の速度振幅よりも小さい正送側の速度振幅とを出力するワイヤ速度振幅制御部と、
    前記設定電流に応じたワイヤ送給周波数を出力するワイヤ速度周波数制御部とを有し、
    前記ワイヤ送給モータ制御部が、前記基本ワイヤ送給速度、前記ワイヤ送給モータの回転方向を示す信号、前記溶接ワイヤの前記逆送側の速度振幅、前記溶接ワイヤの前記正送側の速度振幅および前記ワイヤ送給周波数に基づいて、前記ワイヤ送給モータを制御することにより、前記溶接ワイヤの周期的な送給の正送側と逆送側とで送給波形が異なるように前記溶接ワイヤの送給速度を制御して溶接を行うアーク溶接装置。
  8. 前記逆送側の速度振幅に1より小さい倍率を乗算したものを前記正送側の速度振幅とし、前記正送側の速度振幅を前記逆送側の速度振幅より小さく変更することで短絡期間とアーク期間との比率の調整を行って溶接を行う請求項7記載のアーク溶接装置。
  9. 前記倍率は、設定電流、送給する溶接ワイヤのワイヤ径、ワイヤの種類、ワイヤの突出長および供給するシールドガスのうちの少なくとも一つに基づいて決定される請求項8記載のアーク溶接装置。
PCT/JP2012/004122 2011-07-12 2012-06-26 アーク溶接制御方法およびアーク溶接装置 WO2013008394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280004258.8A CN103260807B (zh) 2011-07-12 2012-06-26 电弧焊接控制方法及电弧焊接装置
EP12811337.0A EP2732901B1 (en) 2011-07-12 2012-06-26 Arc welding control method and arc welding device
JP2013509376A JP5278634B2 (ja) 2011-07-12 2012-06-26 アーク溶接制御方法およびアーク溶接装置
US13/820,557 US20130299476A1 (en) 2011-07-12 2012-06-26 Arc welding control method and arc welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011153580 2011-07-12
JP2011-153580 2011-07-12

Publications (1)

Publication Number Publication Date
WO2013008394A1 true WO2013008394A1 (ja) 2013-01-17

Family

ID=47505705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004122 WO2013008394A1 (ja) 2011-07-12 2012-06-26 アーク溶接制御方法およびアーク溶接装置

Country Status (5)

Country Link
US (1) US20130299476A1 (ja)
EP (1) EP2732901B1 (ja)
JP (1) JP5278634B2 (ja)
CN (1) CN103260807B (ja)
WO (1) WO2013008394A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057179A (zh) * 2013-03-22 2014-09-24 株式会社大亨 电弧焊接用电源装置及电弧焊接用电源装置的控制方法
JP2014237155A (ja) * 2013-06-07 2014-12-18 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
JP2014237154A (ja) * 2013-06-07 2014-12-18 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
JP2015016482A (ja) * 2013-07-10 2015-01-29 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
JP2015058439A (ja) * 2013-09-17 2015-03-30 株式会社ダイヘン ワイヤ送給システム、及びワイヤ速度制御装置
EP2865476A3 (en) * 2013-09-19 2015-10-21 Kabushiki Kaisha Yaskawa Denki ARC welding apparatus, ARC welding method, ARC welding system, and welded article
JP2016007619A (ja) * 2014-06-24 2016-01-18 株式会社ダイヘン アーク溶接制御方法
KR20160130374A (ko) * 2014-03-17 2016-11-11 가부시키가이샤 다이헨 아크 용접 제어 방법
KR20170037941A (ko) * 2014-08-18 2017-04-05 가부시키가이샤 다이헨 아크 용접 제어 방법
WO2018025572A1 (ja) * 2016-08-02 2018-02-08 株式会社ダイヘン アーク溶接制御方法
JP2020015067A (ja) * 2018-07-26 2020-01-30 株式会社ダイヘン アーク溶接制御方法
WO2023223798A1 (ja) * 2022-05-16 2023-11-23 株式会社神戸製鋼所 ガスメタルアーク溶接の制御方法、溶接条件の設定方法、溶接制御装置、溶接電源、溶接システム、プログラム、ガスメタルアーク溶接方法及び付加製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807474B2 (ja) * 2009-06-19 2011-11-02 パナソニック株式会社 消耗電極式アーク溶接方法および消耗電極式アーク溶接装置
US10058947B2 (en) * 2009-11-25 2018-08-28 Panasonic Intellectual Property Management Co., Ltd. Welding method and welding device
US11014186B2 (en) * 2014-02-14 2021-05-25 Panasonic Intellectual Property Management Co., Ltd. Wire fed arc welding method having abnormal arc or abnormal short circuit welding steps
JP6618152B2 (ja) * 2015-01-19 2019-12-11 株式会社ダイヘン アーク溶接制御方法
JP6601870B2 (ja) * 2015-09-28 2019-11-06 株式会社ダイヘン 正逆送給交流アーク溶接方法
CN108025383B (zh) * 2015-09-30 2023-12-12 株式会社达谊恒 电弧焊接装置以及电弧焊接方法
US10500671B2 (en) * 2017-04-06 2019-12-10 Lincoln Global, Inc. System and method for arc welding and wire manipulation control
EP3744460B1 (en) * 2018-01-24 2024-04-03 Panasonic Intellectual Property Management Co., Ltd. Arc welding controlling method
JP7365598B2 (ja) * 2018-04-18 2023-10-20 パナソニックIpマネジメント株式会社 アーク溶接制御方法
JP7041034B2 (ja) * 2018-09-26 2022-03-23 株式会社神戸製鋼所 溶接電源、溶接システム、溶接電源の制御方法及びプログラム
JPWO2020235294A1 (ja) * 2019-05-22 2020-11-26
EP4119274A1 (de) * 2021-07-13 2023-01-18 FRONIUS INTERNATIONAL GmbH Kurzschlussschweissverfahren und schweissvorrichtung
CN115415647A (zh) * 2022-10-14 2022-12-02 唐山松下产业机器有限公司 熔化极气体保护焊接短弧控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626775A (ja) * 1985-07-02 1987-01-13 Matsushita Electric Ind Co Ltd 消耗電極式ア−ク溶接機
WO2007094090A1 (ja) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. アーク溶接の制御方法および溶接装置
JP2008542027A (ja) * 2005-05-24 2008-11-27 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング コールドメタルトランスファ溶接方法及び溶接設備
WO2011013321A1 (ja) 2009-07-29 2011-02-03 パナソニック株式会社 アーク溶接方法およびアーク溶接装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441012A (en) * 1981-12-14 1984-04-03 General Electric Company Method and apparatus for controlling heating power during the application of molten filler material to a workpiece
US4780594A (en) * 1987-10-08 1988-10-25 Dimetrics Inc. Method and apparatus for improved control of supply of filler material to a welding location
AUPS274002A0 (en) * 2002-06-03 2002-06-20 University Of Wollongong, The Control method and system for metal arc welding
US7102099B2 (en) * 2002-07-23 2006-09-05 Illinois Tool Works Inc. Method and apparatus for feeding wire to a welding arc
US9579742B2 (en) * 2006-01-09 2017-02-28 Lincoln Global, Inc. Series arc welder
US8895896B2 (en) * 2004-01-12 2014-11-25 Lincoln Global, Inc. Modified series arc welding and improved control of one sided series arc welding
US8759715B2 (en) * 2004-10-06 2014-06-24 Lincoln Global, Inc. Method of AC welding with cored electrode
US7166817B2 (en) * 2004-04-29 2007-01-23 Lincoln Global, Inc. Electric ARC welder system with waveform profile control for cored electrodes
US9393635B2 (en) * 2004-06-04 2016-07-19 Lincoln Global, Inc. Adaptive GMAW short circuit frequency control and high deposition arc welding
JP2006122957A (ja) * 2004-10-29 2006-05-18 Daihen Corp 溶接電源の出力制御方法
JP2006142317A (ja) * 2004-11-17 2006-06-08 Daihen Corp 極性切換短絡アーク溶接方法
EP2455177B1 (en) * 2010-09-10 2017-08-30 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626775A (ja) * 1985-07-02 1987-01-13 Matsushita Electric Ind Co Ltd 消耗電極式ア−ク溶接機
JP2008542027A (ja) * 2005-05-24 2008-11-27 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング コールドメタルトランスファ溶接方法及び溶接設備
WO2007094090A1 (ja) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. アーク溶接の制御方法および溶接装置
WO2011013321A1 (ja) 2009-07-29 2011-02-03 パナソニック株式会社 アーク溶接方法およびアーク溶接装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057179A (zh) * 2013-03-22 2014-09-24 株式会社大亨 电弧焊接用电源装置及电弧焊接用电源装置的控制方法
CN104057179B (zh) * 2013-03-22 2018-03-09 株式会社大亨 电弧焊接用电源装置及电弧焊接用电源装置的控制方法
JP2014237155A (ja) * 2013-06-07 2014-12-18 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
JP2014237154A (ja) * 2013-06-07 2014-12-18 株式会社安川電機 アーク溶接装置、アーク溶接システム及びアーク溶接方法
CN104227188A (zh) * 2013-06-07 2014-12-24 株式会社安川电机 电弧焊接装置、电弧焊接系统和电弧焊接方法
CN104227177A (zh) * 2013-06-07 2014-12-24 株式会社安川电机 电弧焊接装置、电弧焊接系统及电弧焊接方法
EP2810731A3 (en) * 2013-06-07 2015-09-02 Kabushiki Kaisha Yaskawa Denki ARC welding apparatus, ARC welding system, and ARC welding method
US10518350B2 (en) 2013-06-07 2019-12-31 Kabushiki Kaisha Yaskawa Denki Arc welding apparatus, arc welding system, and arc welding method
CN104227188B (zh) * 2013-06-07 2016-08-17 株式会社安川电机 电弧焊接装置、电弧焊接系统和电弧焊接方法
JP2015016482A (ja) * 2013-07-10 2015-01-29 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
JP2015058439A (ja) * 2013-09-17 2015-03-30 株式会社ダイヘン ワイヤ送給システム、及びワイヤ速度制御装置
US9770777B2 (en) 2013-09-19 2017-09-26 Kabushiki Kaisha Yaskawa Denki Arc welding apparatus, arc welding method, arc welding system, and welded article
EP2865476A3 (en) * 2013-09-19 2015-10-21 Kabushiki Kaisha Yaskawa Denki ARC welding apparatus, ARC welding method, ARC welding system, and welded article
JPWO2015141664A1 (ja) * 2014-03-17 2017-04-13 株式会社ダイヘン アーク溶接制御方法
KR20160130374A (ko) * 2014-03-17 2016-11-11 가부시키가이샤 다이헨 아크 용접 제어 방법
KR102224414B1 (ko) * 2014-03-17 2021-03-05 가부시키가이샤 다이헨 아크 용접 제어 방법
JP2016007619A (ja) * 2014-06-24 2016-01-18 株式会社ダイヘン アーク溶接制御方法
KR102233253B1 (ko) 2014-08-18 2021-03-26 가부시키가이샤 다이헨 아크 용접 제어 방법
KR20170037941A (ko) * 2014-08-18 2017-04-05 가부시키가이샤 다이헨 아크 용접 제어 방법
JPWO2018025572A1 (ja) * 2016-08-02 2019-05-30 株式会社ダイヘン アーク溶接制御方法
CN109070254A (zh) * 2016-08-02 2018-12-21 株式会社达谊恒 电弧焊接控制方法
EP3495084A4 (en) * 2016-08-02 2020-04-01 Daihen Corporation ARC WELDING CONTROL METHOD
CN109070254B (zh) * 2016-08-02 2020-11-13 株式会社达谊恒 电弧焊接控制方法
WO2018025572A1 (ja) * 2016-08-02 2018-02-08 株式会社ダイヘン アーク溶接制御方法
US11446753B2 (en) 2016-08-02 2022-09-20 Daihen Corporation Arc welding control method
JP2020015067A (ja) * 2018-07-26 2020-01-30 株式会社ダイヘン アーク溶接制御方法
JP7039413B2 (ja) 2018-07-26 2022-03-22 株式会社ダイヘン アーク溶接制御方法
WO2023223798A1 (ja) * 2022-05-16 2023-11-23 株式会社神戸製鋼所 ガスメタルアーク溶接の制御方法、溶接条件の設定方法、溶接制御装置、溶接電源、溶接システム、プログラム、ガスメタルアーク溶接方法及び付加製造方法

Also Published As

Publication number Publication date
EP2732901B1 (en) 2018-08-08
EP2732901A4 (en) 2015-11-11
JP5278634B2 (ja) 2013-09-04
US20130299476A1 (en) 2013-11-14
CN103260807B (zh) 2015-01-21
JPWO2013008394A1 (ja) 2015-02-23
CN103260807A (zh) 2013-08-21
EP2732901A1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5278634B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP5408364B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP6221076B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP5201266B2 (ja) アーク溶接方法およびアーク溶接装置
JP5293884B2 (ja) アーク溶接制御方法
JP6695030B2 (ja) アーク溶接の制御方法
JP5927433B2 (ja) アーク溶接方法およびアーク溶接装置
US20130015170A1 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
JP2012081501A (ja) アーク溶接制御方法およびアーク溶接装置
JP2015020185A (ja) アーク溶接用電源装置及びアーク溶接用電源装置の制御方法
WO2020067074A1 (ja) 溶接電源、溶接システム、溶接電源の制御方法及びプログラム
JP6524412B2 (ja) アーク溶接制御方法
JP5879503B2 (ja) アーク溶接制御方法およびアーク溶接装置
JP5120073B2 (ja) 交流パルスアーク溶接装置および制御方法
JP5918021B2 (ja) 交流パルスアーク溶接制御方法
WO2018070364A1 (ja) アーク溶接方法およびアーク溶接装置
JP5349152B2 (ja) 交流パルスアーク溶接制御方法
WO2023095623A1 (ja) アーク溶接方法及びアーク溶接装置
JP2011110600A (ja) プラズマミグ溶接方法
JP2014226708A (ja) アーク溶接制御方法およびアーク溶接装置
WO2023095562A1 (ja) アーク溶接方法及びアーク溶接装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509376

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012811337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13820557

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE