WO2007077886A1 - 金属用研磨液及び被研磨膜の研磨方法 - Google Patents

金属用研磨液及び被研磨膜の研磨方法 Download PDF

Info

Publication number
WO2007077886A1
WO2007077886A1 PCT/JP2006/326106 JP2006326106W WO2007077886A1 WO 2007077886 A1 WO2007077886 A1 WO 2007077886A1 JP 2006326106 W JP2006326106 W JP 2006326106W WO 2007077886 A1 WO2007077886 A1 WO 2007077886A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
metal
acid
polished
polishing liquid
Prior art date
Application number
PCT/JP2006/326106
Other languages
English (en)
French (fr)
Inventor
Yutaka Nomura
Hiroshi Nakagawa
Sou Anzai
Fumiko Tobita
Takafumi Sakurada
Katsumi Mabuchi
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2007552965A priority Critical patent/JP4952584B2/ja
Priority to US12/159,419 priority patent/US8791019B2/en
Priority to KR1020117006918A priority patent/KR101260597B1/ko
Priority to CN2006800494170A priority patent/CN101346806B/zh
Publication of WO2007077886A1 publication Critical patent/WO2007077886A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to a metal polishing liquid and a polishing method for a film to be polished.
  • CMP chemical mechanical polishing
  • a general method of CMP of metal is to apply a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal polishing liquid, and press the surface on which the metal film of the substrate is formed.
  • the polishing platen is turned with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the metal film on the convex portion is formed by mechanical friction between the polishing liquid and the convex portion of the metal film. It will be removed.
  • Metal polishing liquids used in CMP generally have an oxidizing agent and abrasive particle force, and a metal oxide solubilizer, a metal anticorrosive, and the like are further added as necessary.
  • the basic mechanism is to oxidize the surface of the metal film by oxidation and scrape the oxide layer with abrasive particles. Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and the effect of polishing off by the abrasive particles is not exerted, the metal layer of the projection is removed with the progress of CMP, and the substrate surface is flattened.
  • Journal 'Ob' Elect Mouth Chemical See Society 138-11 (published in 1991), pages 3460-3464).
  • a metal oxide solubilizer made of aminoacetic acid or amide sulfate such as glycine is used to suppress the occurrence of dishing, erosion and polishing flaws and to form LSI wiring with high reliability.
  • a method of using a metal polishing liquid containing a protective film forming agent such as BTA (benzotriazole) has been proposed (see, for example, JP-A-8-83780).
  • BTA benzotriazole
  • a method for solving the poor flatness due to the effect of forming a protective film such as BTA may be unfavorable because the force polishing rate that can suppress the occurrence of dating and erosion is significantly reduced.
  • removal of abrasive particles adhering to the substrate by CMP treatment is mainly performed by physical cleaning with a polyvinyl alcohol brush or ultrasonic waves.
  • abrasive particles adhering to the substrate become finer, it becomes difficult to effectively apply physical force to the abrasive particles.
  • a polishing liquid for metal films particularly copper or a metal mainly composed of copper
  • a polishing liquid substantially free of abrasive particles is disclosed in, for example, Japanese Patent No. 3371775.
  • a buried metal wiring can be formed by applying mechanical friction to the metal surface using a polishing liquid containing a film forming agent.
  • a method of forming a copper wiring with a polishing solution containing substantially no abrasive particles containing hydrogen peroxide, citrate, and benzotriazole is described as an example, and the above-mentioned (a) to (d) The problem has been solved.
  • the polishing rate under normal polishing conditions is 80 to 150 nmZ and 300 gZcm 2 or more. There is a problem that the polishing rate is saturated and does not exceed 200 nmZ even when a polishing load is applied.
  • polishing flaws, erosion, and the need for removal of polishing barrels after polishing with a metal-polishing liquid that does not contain polishing barrels or that contains a very small amount of polishing barrels problems such as the cost of the grains themselves and cost increase due to waste liquid treatment, and the problem of polishing speed for the purpose of improving throughput can be solved, but it is difficult to reduce dating that greatly contributes to wiring reliability and performance Met.
  • the present invention removes abrasive particles remaining on the substrate surface after polishing, (a) generation of polishing flaws derived from solid particles, (b) generation of flatness such as dating and erosion, etc. (D) Metal polishing liquid that can be CMPed at a high Cu polishing rate, and solves problems such as the complexity of the cleaning process, (d) the cost of solid abrasive grains itself and the cost increase caused by waste liquid treatment.
  • the present invention provides a metal polishing liquid capable of forming a buried Cu wiring at a level of 130 nm or more at a technology node and a polishing method for a film to be polished using the same.
  • the present invention comprises (1) a metal oxidant, a metal oxide solubilizer, a metal anticorrosive, and a water-soluble polymer having a ionic functional group having a weight average molecular weight of 8,000 or more, and a pH
  • the present invention relates to a metal-polishing liquid characterized in that is 1 or more and 3 or less.
  • the present invention provides (2) one or more kinds wherein the metal oxidizing agent is selected from hydrogen peroxide, ammonium persulfate, nitric acid, potassium periodate, hypochlorous acid, and ozone hydraulic power.
  • the metal oxidizing agent is selected from hydrogen peroxide, ammonium persulfate, nitric acid, potassium periodate, hypochlorous acid, and ozone hydraulic power.
  • the present invention provides (3) an inorganic acid, an organic acid, or a salt thereof, wherein the metal oxide solubilizer has a first-stage acid dissociation constant of less than 3.7 at 25 ° C.
  • the present invention also provides: (4) the metal oxide solubilizer is malonic acid, citrate, malic acid, glycolic acid, glutamic acid, glyconic acid, oxalic acid, tartaric acid, picolinic acid, nicotinic acid, mande It is one or more metal oxide solubilizers selected from phosphoric acid, acetic acid, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid, formic acid, lactic acid, phthalic acid, fumaric acid, maleic acid, aminoacetic acid, amidosulfuric acid and salts thereof
  • the present invention relates to the metal polishing slurry according to any one of (1) to (3).
  • the present invention provides (5) wherein the metal anticorrosive is at least one metal anticorrosive selected from nitrogen-containing cyclic compounds and ionic surfactants.
  • the metal polishing slurry according to any one of the above.
  • the present invention provides: (6) the water-soluble polymer having a terionic functional group is at least one anionic functional group of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or a salt thereof.
  • the metal-polishing liquid according to any one of (1) to (5), wherein the metal-polishing liquid is a water-soluble polymer.
  • the present invention is as described in any one of (1) to (6) above, wherein (7) less than 1% by weight of abrasive particles is added to the weight of the metal polishing slurry.
  • This relates to a metal polishing slurry.
  • the present invention is also characterized in that (8) the abrasive particles are one or more types of abrasive particles selected from silica, alumina, ceria, titer, zirconium, germania force. 1 ) To (7).
  • the present invention relates to the metal polishing slurry according to one item.
  • the present invention is also characterized in that (9) the metal to be polished which is an object to be polished by the metal polishing liquid is at least one metal selected from copper, a copper alloy and a copper compound.
  • Any one of (1) to (8) is related to the metal polishing liquid according to one item.
  • the present invention provides (10) a film to be polished while supplying the metal polishing liquid according to any one of (1) to (9) above on a polishing cloth of a polishing surface plate.
  • a polishing method for a film to be polished is characterized in that polishing is performed by relatively driving the polishing platen and the substrate while the substrate is pressed against the polishing cloth.
  • the above problems (a) to (d) can be solved, and low dishing, that is, technology one at a high polishing rate. It is possible to form embedded Cu wiring at the level required after node 130nm.
  • Figure 1 shows the relationship between pH and polymer diameter of an aqueous solution in which the water-soluble polymer having an anionic functional group is polycarboxylic acid and the metal oxide solubilizer is sulfuric acid, and the metal oxidizer is peroxidized. This is a graph plotting the relationship between ⁇ and dating of a metal polishing slurry in which hydrogen, a metal oxide solubilizer is sulfuric acid, a metal anticorrosive is benzotriazole, and a water-soluble polymer having an ionic functional group is a polycarboxylic acid. is there.
  • the present inventors in a sufficiently low pH range, have a metal anticorrosive and a weight average.
  • a water-soluble polymer having an ionic functional group with an average molecular weight of 8,000 or more By using a water-soluble polymer having an ionic functional group with an average molecular weight of 8,000 or more, a sufficiently high polishing rate applicable to CMP can be achieved, and the level required after Technology Node 130 ⁇ m We found that it was possible to form embedded Cu wiring with the amount of dicing.
  • the metal polishing slurry of the present invention contains a metal oxidizer, a metal oxide solubilizer, a metal anticorrosive, and a water-soluble polymer having an anionic functional group having a weight average molecular weight of 8,000 or more, p H is 1 or more and 3 or less.
  • the pH of the metal polishing slurry of the present invention is 1 or more and 3 or less, preferably 1.5 or more and 2. 8 or less, and more preferably 1.8 or more and 2.5 or less.
  • the pH can be adjusted by, for example, the amount of metal oxide solubilizer added to the metal polishing slurry. It is also possible to adjust by using a base such as ammonia or potassium hydroxide in combination with a metal oxide solubilizer.
  • the pH in the present invention can be measured with a pH meter (for example, Model pH81, manufactured by Yokogawa Electric Corporation).
  • the measurement method consists of two points using a standard buffer (phthalate pH buffer pH: 4.21 (25 ° C), neutral phosphate pH buffer pH 6.86 (25 ° C). The value after the electrode was put in the polishing liquid and stabilized after 2 minutes or more was defined as the pH of the polishing liquid.
  • Examples thereof include ammonium, ammonium persulfate, hypochlorous acid, and ozone water.
  • hydrogen peroxide is preferred.
  • These oxidizing agents can be used alone or in combination of two or more. If the substrate is a silicon substrate containing integrated circuit elements, contamination by alkali metals, alkaline earth metals, halides, etc. is not desirable. Therefore, an oxidant that does not contain non-volatile components is the most desirable aspect of stability. Preference is given to hydrogen peroxide and hydrogen peroxide.
  • the blending amount of the oxidizing agent in the present invention is appropriately selected, but it is preferably 3 to 20% by weight and more preferably 5 to 15% by weight with respect to the total weight of the polishing liquid. When the blending amount of the oxidizing agent is less than 3% by weight, a sufficient polishing rate tends not to be obtained, and when it exceeds 20% by weight, a sufficient polishing rate tends not to be obtained.
  • the metal oxide solubilizer in the present invention has an inorganic acid or organic acid whose first-stage acid dissociation index (pKl) at 25 ° C is preferably less than 3.7, more preferably 2.0 to 3.7. One or more water-soluble acid / metal solubilizers selected from acids or their salts.
  • malic acid, citrate, malic acid, glycolic acid, glutamic acid, daliconic acid, oxalic acid, tartaric acid, picolinic acid, nicotinic acid, mandelic acid, acetic acid, sulfuric acid examples thereof include nitric acid, phosphoric acid, hydrochloric acid, formic acid, lactic acid, phthalic acid, fumaric acid, maleic acid, aminoacetic acid, amidosulfuric acid, and its ammonium salt and potassium salt.
  • metal oxide solubilizers are preferable in that a balance with the protective curtain forming agent is easily obtained.
  • malic acid, tartaric acid, citrate, phosphoric acid, and sulfuric acid are preferred because malic acid, tartaric acid, citrate, phosphoric acid, and sulfuric acid are preferred because the etching rate can be effectively suppressed while maintaining a practical CMP rate. Is more preferable.
  • These metal oxide solubilizers can be used alone or in combination of two or more.
  • the present invention it is necessary to suppress dissociation of the ionic functional group of the water-soluble polymer in order to achieve high polishing rate and low dicing. It is effective to add an acid having a low acid dissociation index in the first stage in order to suppress the dissociation of the char-on functional group. Specifically, the acid dissociation index in the first stage is less than 3.7. It has been found that a certain water-soluble metal oxide solubilizer is useful for suppressing the dissociation of the water-soluble polymer's ionic functional group.
  • the acid dissociation index in the present invention is a logarithmic value of the reciprocal of the acid dissociation constant. For example, the 4th edition of “Basic Study Guide for Basic Studies” (issued on September 30, 1993), Maruzen Co., Ltd. — Detailed description on pages 317-321
  • the compounding amount of the metal oxide solubilizer in the present invention is appropriately selected, but is preferably 0.05 to 3.0% by weight with respect to the total weight of the polishing liquid. More preferably, it is 0% by weight.
  • the blending amount of the metal oxide solubilizer is less than 0.05% by weight, a sufficient polishing speed tends to be not obtained, and when it exceeds 3.0% by weight, practical flatness is obtained. There is no tendency.
  • the metal anticorrosive in the present invention is considered to form a protective film on the oxide layer on the surface of the metal film and prevent dissolution of the acid layer in the polishing liquid.
  • ammonia dimethylamine Alkylamines such as trimethylamine, triethylamine and propylenediamine, Amines such as range amine tetraacetic acid (EDTA), sodium jetyldithiocarbamate, chitosan, etc .
  • dithizone cuproin (2,2'-biquinoline), neocuproine (2,9 dimethyl-1,10 phenanthorin) 2, 9 Dimethinore 4, 7 Diphenol 1, 10-phenantorin), cuperazone (biscyclohexanone oxalylhydrazone), etc .
  • benzimidazole 2-thiol triazine dithiol, triazine trithiol, 2- [2- (Benzothiazolyl)] thiopropionic acid, 2- [
  • nitrogen-containing cyclic compounds and ionic surfactants are suitable for reducing the etching rate and achieving high polishing rate, and nitrogen-containing cyclic compounds are more preferred.
  • an ionic surfactant an ion whose ionic group has one or more of sulfonic acid group, carboxylic acid group, phosphoric acid group, and phenolic hydroxyl group, and whose hydrophobic group has 6 or more carbon atoms.
  • a surfactant is preferred.
  • the compounding amount of the metal anticorrosive in the present invention is appropriately selected, but it is preferably 0.05 to 3.0% by weight with respect to the total weight of the polishing liquid. It is better to have it.
  • the amount of the metal anticorrosive is less than 0.05% by weight, sufficient anticorrosive effect cannot be obtained, and etching tends to increase and the flatness tends to deteriorate. In this case, there is a tendency that a practical polishing rate cannot be obtained.
  • the weight average molecular weight of the water-soluble polymer having an anionic functional group in the present invention is 8,000 or more, preferably ⁇ is 8,000 or more and 200,000 or less, and more preferably ⁇ is 20,000 or more and 100. , 000 or less, particularly preferably 40,000 or more and 80,000 or less.
  • the upper limit of the weight average molecular weight is not particularly limited. For example, if it exceeds 200,000, no significant decrease in the polishing rate is observed, but there is a large variation in the polishing rate distribution within the polished wafer surface. As a result, dating tends to increase.
  • the weight average molecular weight of the water-soluble polymer having an anionic functional group in the present invention was measured by gel permeation chromatography. The measurement conditions are as shown below.
  • the water-soluble polymer having a ergonal functional group is a water-soluble polymer having at least one of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or a salt thereof.
  • a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group are preferable, and a sulfonic acid group and a carboxylic acid group are more preferable.
  • the salt include an alkali metal salt, an alkaline earth metal salt, a halide, and an ammonium salt.
  • the substrate to which the polishing liquid is applied is a silicon substrate for a semiconductor integrated circuit, etc.
  • Water-soluble polymers having a strong ionic group include polystyrene sulfonic acid, polyacrylamidomethylpropane sulfonic acid, polymalic acid, polyacrylic acid, polymethacrylic acid, polycrotonic acid, polyitaconic acid, polymaleic acid, polyfumaric acid.
  • polycarboxylic acids examples thereof include acids, polyvinyl sulfonic acid, polyaspartic acid, polyglutamic acid, polyphosphoric acid, polymetaphosphoric acid, or ammonium salts, alkali metal salts, alkaline earth metal salts thereof, and the like.
  • polycarboxylic acids are used for prizes.
  • the polycarboxylic acid refers to a water-soluble polymer having a powerful oxyl group as a functional group.
  • a high polishing rate and good dating can be obtained by adding a water-soluble polymer having a ergonal functional group.
  • the amount of the water-soluble polymer to be used is suitably selected. It is preferably 0.05 to 2.0% by weight, based on the total weight of the polishing liquid, and 0.1 to 0.8% by weight. It is more preferable.
  • the blending amount of the water-soluble polymer having a ergonal functional group is less than 0.05% by weight, it is in the “tilt port where a practical polishing rate cannot be obtained”.
  • Fig. 1 shows the relationship between pH and the particle size and dishing of water-soluble polymers with key functional groups.
  • the particle size of the water-soluble polymer having an anionic functional group was measured by adjusting the pH of the water-soluble polymer having an anionic functional group with the addition amount of an acid metal dissolving agent.
  • the water-soluble polymer having a eron functional group was a polycarboxylic acid, and sulfuric acid was used as the metal oxide solubilizer.
  • Dating is also a water-soluble polymer having a metal oxidizer, metal oxide solubilizer, metal anticorrosive, and char-on functional group, and its pH is adjusted by the amount of acid metal solubilizer added.
  • the metal oxidant is hydrogen peroxide
  • the metal oxide solubilizer is sulfuric acid
  • the metal anticorrosive is benzotriazole
  • the water-soluble polymer having a ionic functional group is polycarboxylic acid.
  • the particle size of the water-soluble polymer having a ergonal functional group is a value obtained by a laser diffraction particle size distribution meter, and is taken as a guideline indicating the spread of the polymer chain in an aqueous solution.
  • the particle size shown is the median diameter. The lower the pH, the smaller the polymer diameter. I understand.
  • the protective film formed on the metal to be polished is a metal anticorrosive or polymer adsorbing layer in the metal polishing liquid, or a metal anticorrosive or polymer and the metal to be polished or its ions are coordinated or ion-bonded. It is considered a layer of reactants bound by covalent bonds or the like.
  • the metal anticorrosive is very effective in suppressing dishing because it forms a dense and strong protective film, but the polishing rate is lowered by increasing the amount of addition.
  • the metal polishing liquid to which a water-soluble polymer is added reduces the effect of suppressing the increase in force dating that can avoid a decrease in the polishing rate. This exists in a state where the water-soluble polymer chain is extended in the metal polishing liquid, and the protective film formed by this polymer chain becomes a rough protective film, which reduces the effect of suppressing the increase in dating. it is conceivable that.
  • the metal-polishing liquid of the present invention has a dense water-soluble polymer in which polymer chains are shrunk by using a low pH region, that is, a dense water-soluble polymer efficiently coats the metal to be polished. It is believed that a protective film is formed to suppress the increase in dateing.
  • the polishing speed is increased, but it becomes difficult to obtain flatness of the surface to be polished.
  • the polymer molecular weight is small, flatness of the surface to be polished is obtained, but polishing is difficult. It tends to be slow.
  • polishing speed and flatness of the surface to be polished can be achieved.
  • a high polishing rate has been achieved by forming a soft protective film that is denser than a strong protective film such as a metal anticorrosive.
  • a metal anticorrosive and a water-soluble polymer together, a soft protective film is formed compared to using the metal anticorrosive alone; W polishing speed is improved, but flatness of the polished surface is not obtained .
  • a specific pH region using a metal anticorrosive and a water-soluble polymer having a weight average molecular weight of 8000 or more a high polishing rate and flatness of the surface to be polished can be achieved.
  • the water-soluble polymer in an aqueous solution adjusted in pH with an acid-metal solubilizer used in the present invention was measured with a laser diffraction particle size distribution meter.
  • Measuring device ZETASIZER3000HS manufactured by MALVERN
  • the polishing rate can be further improved by adding abrasive particles which may be added to the metal polishing slurry.
  • the amount of abrasive particles added is appropriately selected within a range that does not affect the effects of the present invention.
  • the amount of abrasive particles added is preferably less than 1% by weight, more preferably 0.001 to 1% by weight, and particularly preferably 0.03 to 1% by weight, based on the weight of the polishing liquid.
  • the lower limit of the addition amount of the abrasive particles is not particularly limited. For example, if it is less than 0.001% by weight, the addition effect tends not to be expected without contributing to the improvement of the polishing rate.
  • abrasive particles for example, inorganic abrasive grains such as silica, alumina, titer, ceria, zircoure, germania, etc., organic abrasive grains such as polystyrene, polyacryl, polyvinyl chloride vinyl and the like can be mentioned.
  • organic abrasive grains such as polystyrene, polyacryl, polyvinyl chloride vinyl and the like
  • colloidal silica and Z or colloidal silica which are preferred to silica, alumina and ceria, are more preferred.
  • colloidal silica refers to those based on colloidal silica, with a small amount of metal species added during the sol-gel reaction, and those with surface silanol groups chemically modified, etc. There is no. These abrasive particles can be used alone or in combination of two or more.
  • the primary particle size of the abrasive particles is a force that is appropriately adjusted according to the type of metal to be polished, the type of abrasive particles, etc., preferably 200 nm or less, more preferably 5 to 200 nm, particularly preferably 5 to 150 nm, and most preferably Is 5 to 100 nm.
  • the primary particle size exceeds 200 nm, the flatness of the polished surface tends to deteriorate. Care should be taken when selecting a primary particle size of less than 5 nm as the CMP rate may be reduced.
  • the secondary particle diameter is preferably 200 nm or less, more Preferably it is 10-200 nm, Especially preferably, it is 10-150 nm, Most preferably, 10-: LOOnm.
  • the secondary particle diameter exceeds 200 nm, the flatness of the polished surface tends to deteriorate.
  • care must be taken because the mechanical reaction layer removal capability of abrasive particles is insufficient and the CMP rate may be reduced.
  • the primary particle diameter of the abrasive particles in the present invention can be measured using a transmission electron microscope (for example, S4700 manufactured by Hitachi, Ltd.).
  • the secondary particle diameter can be measured using a light diffraction / scattering particle size distribution analyzer (for example, COULTER N4SD manufactured by COULTER Electronics).
  • the metal polishing liquid of the present invention contains additives generally added to the polishing liquid, such as colorants such as dyes and pigments, pH adjusters, and solvents other than water. It may be added in a range without impairing the action and effect of the polishing liquid.
  • the method for polishing a film to be polished according to the present invention comprises a substrate having a metal film to be polished pressed against the polishing cloth while supplying the metal polishing liquid of the present invention onto the polishing cloth of a polishing surface plate. It is characterized in that the metal film to be polished is polished by relatively driving the polishing surface plate and the substrate.
  • the metal film to be polished which is an object to be polished, may be a single layer or a multilayer.
  • the metal film include one or more of metals such as copper, aluminum, tungsten, tantalum, and titanium, alloys of these metals, and oxides and nitrides of these metals or metal alloys. Among these, copper, a copper alloy, and a copper compound are preferable.
  • the metal film is formed by a known method such as a sputtering method or a plating method.
  • an insulating layer is formed on a semiconductor substrate such as a substrate for manufacturing a semiconductor device, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, or a semiconductor substrate at a stage where a circuit element is formed.
  • a semiconductor substrate such as a substrate for manufacturing a semiconductor device, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, or a semiconductor substrate at a stage where a circuit element is formed. Examples include substrates.
  • a polishing apparatus that can be used in the polishing method of the present invention, for example, a holder that holds a substrate having a metal film to be polished and a polishing cloth (pad) can be attached, and a motor that can change the number of rotations.
  • a general polishing apparatus having an attached polishing surface plate can be used.
  • MIRRA manufactured by Applied Materials can be used.
  • polishing cloth on the polishing surface plate there are no particular restrictions on general nonwoven fabrics and foamed polyurethanes. Or porous fluorine resin can be used.
  • the polishing conditions are not particularly limited, but it is preferable to reduce the rotation speed of the surface plate to 200 rpm or less so that the substrate does not fly out.
  • the polishing pressure of the substrate having the metal film to be polished on the polishing cloth is 5 to: LOOkPa, preferably from the viewpoint of uniformity in the surface of the metal film to be polished and the flatness of the pattern. It is preferable to be 0-50kPa! /.
  • polishing may be performed by rotating or swinging the holder. Further, a polishing method in which a polishing surface plate is rotated on a planetary surface, a polishing method in which a belt-like polishing cloth is moved linearly in one direction in the longitudinal direction, and the like can be mentioned.
  • the holder may be in a fixed, rotating, or swinging state.
  • the metal polishing liquid to the polishing cloth with a pump or the like.
  • the supply amount is not limited, but it is preferable that the surface of the polishing cloth is always covered with the polishing liquid. Specifically, it is preferable to supply 0.3 to 0.9 milliliter per lcm 2 of the polishing cloth area.
  • the semiconductor substrate after polishing is thoroughly washed in running water and then force-dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.
  • Hydrogen peroxide solution (special grade, 30% aqueous solution) 30% by weight, polishing agent weight, metal oxide solubilizers shown in Table 1, 0.4% by weight of benzotriazole, key-on functionality shown in Table 1
  • a water-soluble polymer having a group of 0.4% by weight, and the remaining part was mixed with pure water so that the total amount would be 100% by weight, and the polishing liquids (A) to (F) of Examples 1 to 6 and Comparative Examples 1 to 2 Polishing liquids (I) to (J) were prepared.
  • the pH of the polishing liquid was adjusted to the value shown in Table 1 depending on the amount of metal oxide solubilizer added. Arranged.
  • Hydrogen peroxide solution (special grade, 30% aqueous solution) 30% by weight, polishing agent weight, metal oxide solubilizers shown in Table 1, 0.4% by weight of benzotriazole, key-on functionality shown in Table 1.
  • the water-soluble polymer having a base of 0.4% by weight, colloidal silica barrels having a median diameter of 60 nm, 0.05% by weight, and the remainder is blended with pure water so that the total amount is 100% by weight.
  • the polishing liquids (G) to (H) and the polishing liquid (K) of Comparative Example 3 were prepared. The pH of the polishing liquid was adjusted to the value shown in Table 1 depending on the addition amount of the acid-metal solubilizer.
  • Hydrogen peroxide solution (reagent grade, 30% aqueous solution) 30% by weight, metal oxide solubilizer shown in Table 1, 0.4% by weight of benzotriazole, and 100% by weight in total. Pure water was added to the part to prepare a polishing liquid (L) of Comparative Example 4. The pH of the polishing liquid was adjusted to the value shown in Table 1 depending on the amount of the metal oxide solubilizer added.
  • Hydrogen peroxide solution (special grade, 30% aqueous solution) 30% by weight with respect to the polishing liquid weight, metal oxide solubilizer shown in Table 1, 0.4% by weight of benzotriazole, water-soluble polymer (power) Polylysine, which is a thione polymer) 0.4% by weight, and the balance was mixed with pure water so that the total amount was 100% by weight.
  • the pH of the polishing liquid was adjusted to the value shown in Table 1 depending on the amount of metal oxide solubilizer added.
  • Hydrogen peroxide solution (special grade, 30% aqueous solution) 30% by weight with respect to the polishing liquid weight, metal oxide solubilizers shown in Table 1, 0.4% by weight of benzotriazole, and water-soluble polymers shown in Table 1.
  • the remaining part was mixed with pure water so that the total amount was 4% by weight, and the polishing liquid (N) of Comparative Example 6 was prepared.
  • the pH of the polishing liquid was adjusted to the value shown in Table 1 depending on the addition amount of the acidic metal solubilizer.
  • No-turn silicon substrate A silicon dioxide insulating film layer is formed on the surface of the silicon substrate, a 15 nm TaN film, a 1 Onm Ta film, and a 1 OOnm copper film are formed by sputtering. We used a substrate to be polished on which 1.3 m of copper was deposited by the debonding method.
  • Silicon substrate with no-turn After forming a silicon dioxide insulating film layer on the silicon substrate surface and forming a wiring groove in the silicon dioxide insulating film layer with a SEMATECH854 mask pattern, a sputtering method Then, a 15 nm TaN film, lOnm Ta film, and lOOnm copper film were formed, and a substrate to be polished on which 1.:m copper was deposited by electrolytic plating was used.
  • the wiring groove depth is 500 mm.
  • polishing device MIRRA manufactured by Applied Materials
  • Copper polishing rate While supplying each of the polishing liquids (A) to (N) prepared above onto a polishing cloth, the silicon substrate without pattern was polished for 60 seconds under the above polishing conditions. The difference in copper film thickness before and after polishing was calculated from the electrical resistance value. The results are shown in Table 1.
  • Dishing amount The silicon substrate with the above pattern was polished under the above polishing conditions while supplying each of the polishing liquids (A) to (N) prepared above onto a polishing cloth. The polishing was performed for 30 seconds with the force on the wafer and the excess copper completely removed, and the force was over-polished (additional polishing). Using a contact-type step meter (DECKTAK V200—Si manufactured by Veeco), the amount of reduction of the wiring metal part relative to the insulating film part was determined. The results are shown in Table 1.
  • polishing flaws were confirmed by visual inspection, optical microscope observation, and electron microscope observation of the substrate after CMP treatment. As a result, in all of the examples and comparative examples, no significant polishing scratches were observed.
  • the polishing liquid (I) of Comparative Example 1 having a pH of 3.5 is the polishing liquid (A) of Example 1 having a pH of 2.2 or the polishing liquid having a pH of 2.7. It can be seen that the amount of dishing is larger than the polishing liquid (B) in Example 2.
  • the polishing liquid (J) of Comparative Example 2 having a pH of 3.5 is the polishing liquid (C) of Example 3 having a pH of 2.2 or the polishing liquid of Example 2 having a pH of 2.7. It can be seen that the amount of dating is larger than (D).
  • the polishing liquid (K) of Comparative Example 3 in which the weight average molecular weight of the water-soluble polymer is as small as 7000 is the polishing liquid (G) of Example 7 or the polishing liquid of Example (8) in which the weight average molecular weight of the water-soluble polymer is large. It can be seen that the polishing rate is low and the dishing amount is large compared to liquid (H). It can also be seen that the polishing solution (L) of Comparative Example 4 having a pH of 2.2 and no water-soluble polymer has a low polishing rate and a large dishing amount. Further, it can be seen that the polishing liquid (M) of Comparative Example 5 using a cationic polymer has a low polishing rate and a large dishing amount. It can also be seen that the polishing liquid (N) of Comparative Example 6 having a small weight average molecular weight of the water-soluble polymer of 7000 has a low polishing rate and a large dishing amount.
  • polishing liquids (A) to (H) of Examples 1 to 8 have a high polishing rate and a small amount of dating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 (a)固体粒子に由来する研磨傷の発生、(b)ディッシング、エロージョン等の平坦性悪化の発生、(c)研磨後の基板表面に残留する研磨粒子を除去するための洗浄工程の複雑性、(d)固体砥粒そのものの原価や廃液処理に起因するコストアップ等の問題を解決し、かつ高いCu研磨速度でCMP可能な金属用研磨液及びこれを用いた被研磨膜の研磨方法を提供する。金属の酸化剤、酸化金属溶解剤、金属防食剤及び重量平均分子量が8000以上のアニオン性官能基を有する水溶性ポリマを含有し、pHが1以上3以下である金属用研磨液並びに研磨定盤の研磨布上に前記の金属用研磨液を供給しながら、被研磨金属膜を有する基板を研磨布に押圧した状態で研磨定盤と基板を相対的に動かして研磨することを特徴とする被研磨膜の研磨方法。

Description

明 細 書
金属用研磨液及び被研磨膜の研磨方法
技術分野
[0001] 本発明は、金属用研磨液及び被研磨膜の研磨方法に関する。
背景技術
[0002] 近年、半導体集積回路 (以下、 LSIと記す。 )の高集積化、高性能化に伴って新た な微細加工技術が開発されている。化学機械研磨 (以下、 CMPと記す。)法もその 一つであり、 LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、 金属プラグ形成、埋め込み配線形成等において頻繁に利用される技術であり、例え ば、米国特許第 4, 944, 836号明細書に開示されている。
[0003] また、最近は LSIを高性能化するために、配線材料として銅合金の利用が試みられ ている。しかし、銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたド ライエッチング法による微細加工が困難である。そこで、例えば、あら力じめ溝を形成 してある絶縁膜上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金薄膜を C MPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されお り、例えば、特開平 2— 278822号公報に開示されている。
[0004] 金属の CMPの一般的な方法は、円形の研磨定盤 (プラテン)上に研磨パッドを貼り 付け、研磨パッド表面を金属用研磨液で浸し、基板の金属膜を形成した面を押し付 けて、その裏面から所定の圧力(以下、研磨圧力と記す。 )を加えた状態で研磨定盤 を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するも のである。
[0005] CMPに用いられる金属用研磨液は、一般には酸化剤及び研磨粒子力 なってお り、必要に応じてさらに酸化金属溶解剤、金属防食剤等が添加される。まず酸化によ つて金属膜表面を酸化し、その酸ィ匕層を研磨粒子によって削り取るのが基本的なメ 力-ズムと考えられている。凹部の金属表面の酸ィ匕層は研磨パッドにあまり触れず、 研磨粒子による肖り取りの効果が及ばないので、 CMPの進行とともに凸部の金属層 が除去されて基板表面は平坦ィ匕される(例えば、ジャーナル'ォブ 'エレクト口ケミカル ソサエティ誌,第 138 卷 11号(1991年発行), 3460〜3464頁参照)。
[0006] し力しながら、従来の研磨粒子を含む金属用研磨液を用いて CMPによる埋め込み 配線形成を行う場合には、(a)固体粒子に由来する研磨傷の発生、お埋め込まれ た金属配線の表面中央部分が等方的に研磨されて皿のように窪む現象 (以下、ディ ッシングと記す。)、配線金属と共に層間絶縁膜が研磨されて窪む現象 (以下、エロ 一ジョンと記す。)、等の平坦性悪ィ匕の発生、(c)研磨後の基板表面に残留する研磨 粒子を除去するための洗浄工程の複雑性、 (d)固体砥粒そのものの原価や廃液処 理に起因するコストアップ、等の問題が生じる。
[0007] 平坦性悪ィ匕の解決としてディッシング、エロージョン、研磨傷の発生を抑制し、信頼 性の高 、LSI配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸力 なる 酸化金属溶解剤、 BTA (ベンゾトリァゾール)等の保護膜形成剤を含有する金属用 研磨液を用いる方法などが提唱されている(例えば、特開平 8— 83780号公報参照 )。しかし、 BTAなどの保護膜形成効果により平坦性悪ィ匕を解決する方法は、デイツ シング及びエロージョンの発生を抑制できる力 研磨速度が顕著に低下し好ましくな い場合がある。
[0008] 一方、 CMP処理により基板に付着した研磨粒子の除去は、ポリビニールアルコー ル製ブラシや超音波による物理的な洗浄で主に行われている。し力しながら、基板に 付着する研磨粒子が微細化するにつれ、研磨粒子に対して物理力を有効に作用さ せることが困難になってきて 、る。
[0009] これに対して金属膜、特に銅もしくは銅を主体とした金属の研磨液として、実質的 に研磨粒子を含まない研磨液が、例えば、特許第 3371775号明細書に開示されて いる。それによれば、被研磨金属膜を酸化するための酸化性物質と、前記酸化性物 質で酸化された酸化物を水溶性化する有機酸と、水と、必要であれば防食性物質( 保護膜形成剤)を含む研磨液を用いて、金属表面に機械的な摩擦をかけることにより 埋め込み金属配線を形成することができる。例えば、過酸化水素とクェン酸とベンゾ トリァゾールを含む実質的に研磨粒子を含まな!/ヽ研磨液で銅配線を形成する方法が 一例として記載されており、前述の(a)〜(d)の問題は解決されている。しかし、この 方法では通常の研磨条件における研磨速度が 80〜150nmZ分で、 300gZcm2以 上の高 、研磨荷重をかけても研磨速度が飽和して 200nmZ分を超えな 、と 、う問 題があり、この問題に対して、酸化性物質、リン酸、有機酸、保護膜形成剤及び水を 含み実質的に研磨粒子を含まない金属研磨液を用いて、金属表面に機械的な摩擦 をかけることにより埋め込み金属配線を形成する方法が提案されている(特開 2002 50595号公報参照)。この方法では前述の(a)〜(d)の問題を解決し、かつ研磨 速度の高速化(700nmZ分以上)を実現でき、デイツシングゃェロージヨンが約 50η m以下となる形状に加工できると記載がある。実質的に研磨砲粒を含まな 、金属用 研磨液の為、エロージョンの発生量はごく僅かであった。
[0010] 一方で、配線幅や配線密度に関する記載はなぐ我々の実験によればこの研磨液 で研磨した SEMATECH854パターンマスクウェハの Cu配線幅/配線スペース = 100 μ m/100 μ m部における Cu配線部のディッシングは lOOnm以上であり、テク ノロジーノード 130nm以降(hp 130)のレベルの埋め込み Cu配線を形成する為の金 属用研磨液としては用いることができないものであった。ここで、テクノロジーノードと は半導体の技術世代を示し、 DRAMのワード線'ビット線の最小配線ピッチの半分( ハーフピッチ)で表現される(例えば、米国 SEMATECH (Semiconductor Manu facturing Technology Institute)力ら発表 れている、 ITRS (International Technology Roadmap for Semiconductors)の 2003年度版参照)。
[0011] 上述のように、研磨砲粒をまったく含まない、もしくは極微量の研磨砲粒を添加した 金属用研磨液によって研磨傷、エロージョン、研磨後の研磨砲粒除去の必要性、固 体砲粒そのものの原価や廃液処理に起因するコストアップなどの問題、またスループ ット向上を目的とした研磨速度の問題は解決されるが、配線の信頼性や性能に大きく 寄与するデイツシングの低減が困難であった。主に幅広配線部におけるデイツシング が大きぐテクノロジーノード 130nm以降のレベルの埋め込み Cu配線を形成する為 の金属用研磨液としては用いることができない問題があった。
[0012] 本発明は、 (a)固体粒子に由来する研磨傷の発生、(b)デイツシング、エロージョン 等の平坦性悪化の発生、(c)研磨後の基板表面に残留する研磨粒子を除去するた めの洗浄工程の複雑性、 (d)固体砥粒そのものの原価や廃液処理に起因するコスト アップ等の問題を解決し、かつ高い Cu研磨速度で CMP可能な金属用研磨液、すな わちテクノロジーノード 130nm以降のレベルの埋め込み Cu配線を形成可能とする 金属用研磨液及びこれを用いた被研磨膜の研磨方法を提供するものである。
発明の開示
[0013] 本発明は、(1)金属の酸化剤、酸化金属溶解剤、金属防食剤及び重量平均分子 量が 8, 000以上のァ-オン性官能基を有する水溶性ポリマを含有し、 pHが 1以上 3 以下であることを特徴とする金属用研磨液に関する。
[0014] また、本発明は、(2)前記金属の酸化剤が、過酸化水素、過硫酸アンモニゥム、硝 酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水力ゝら選ばれる 1種類以上の酸化剤 であることを特徴とする前記(1)記載の金属用研磨液に関する。
[0015] また、本発明は、(3)前記酸化金属溶解剤が、 25°Cにおける第一段の酸解離定数 が 3. 7未満である無機酸、有機酸、もしくはその塩カゝら選ばれる 1種類以上の酸ィ匕金 属溶解剤であることを特徴とする前記(1)又は(2)記載の金属用研磨液に関する。
[0016] また、本発明は、(4)前記酸化金属溶解剤が、マロン酸、クェン酸、リンゴ酸、グリコ ール酸、グルタミン酸、グリコン酸、シユウ酸、酒石酸、ピコリン酸、ニコチン酸、マンデ ル酸、酢酸、硫酸、硝酸、燐酸、塩酸、ギ酸、乳酸、フタル酸、フマル酸、マレイン酸、 ァミノ酢酸、アミド硫酸及びその塩から選ばれる 1種類以上の酸化金属溶解剤である ことを特徴とする前記(1)〜(3)の ヽずれか一項に記載の金属用研磨液に関する。
[0017] また、本発明は、(5)前記金属防食剤が、含窒素環状化合物及びイオン性界面活 性剤から選ばれる 1種類以上の金属防食剤であることを特徴とする前記(1)〜 (4)の V、ずれか一項に記載の金属用研磨液に関する。
[0018] また、本発明は、(6)前記ァ-オン性官能基を有する水溶性ポリマが、スルホン酸 基、カルボン酸基、リン酸基、またはその塩の少なくとも 1種類のアンオン性官能基を 有する水溶性ポリマであることを特徴とする前記(1)〜(5)の 、ずれか一項に記載の 金属用研磨液に関する。
[0019] また、本発明は、(7)金属用研磨液重量に対して、 1重量%未満の研磨粒子を添 加してなる前記(1)〜(6)の ヽずれか一項に記載の金属用研磨液に関する。
[0020] また、本発明は、(8)前記研磨粒子が、シリカ、アルミナ、セリア、チタ-ァ、ジルコ 二了、ゲルマニア力 選ばれる 1種類以上の研磨粒子であることを特徴とする前記(1 )〜(7)の ヽずれか一項に記載の金属用研磨液に関する。
[0021] また、本発明は、(9)金属用研磨液の研磨対象である被研磨金属が、銅、銅合金 及び銅化合物から選ばれる少なくとも 1種類以上の金属であることを特徴とする前記
(1)〜(8)の ヽずれか一項に記載の金属用研磨液関する。
[0022] また、本発明は、(10)研磨定盤の研磨布上に前記(1)〜(9)のいずれか一項に記 載の金属用研磨液を供給しながら、被研磨膜を有する基板を研磨布に押圧した状 態で研磨定盤と基板を相対的に動力ゝして研磨することを特徴とする被研磨膜の研磨 方法にする。
[0023] 本発明の金属用研磨液及び被研磨膜の研磨方法によれば、上記 (a)〜 (d)の問 題を解決することができ、かつ高い研磨速度で低いディッシング、すなわちテクノロジ 一ノード 130nm以降に必要とされるレベルの埋め込み Cu配線を形成することができ る。
図面の簡単な説明
[0024] [図 1]図 1は、ァニオン性官能基を有する水溶性ポリマがポリカルボン酸で、酸化金属 溶解剤が硫酸である水溶液の pHとポリマ径の関係及び金属の酸化剤が過酸化水素 、酸化金属溶解剤が硫酸、金属防食剤がベンゾトリァゾール、ァ-オン性官能基を 有する水溶性ポリマがポリカルボン酸である金属用研磨液の ρΗとデイツシングの関 係でプロットしたグラフである。
発明を実施するための最良の形態
[0025] 以下に、本発明の金属用研磨液について詳細に説明する。
[0026] 従来、実質的に研磨砥粒を含まな!/ヽ金属用研磨液は、研磨速度を減少させな!/ヽ為 に金属防食剤の添加量を最低限に抑制することが求められていた。し力しながら、金 属防食剤の添加量を減らすと研磨布との接触面のみならず、凹部においても等方的 なエッチングが進みディッシングの発生を十分に抑制できな力つた。これに対し、種 々の金属用研磨液が検討され、エッチングの抑制と研磨速度の向上を達成している 力 テクノロジーノード 130nm以降に必要とされるレベルのデイツシング量の埋め込 み Cu配線の形成は困難であった。
[0027] これに対して本発明者らは、十分に低 、pHの領域にぉ 、て、金属防食剤と重量平 均分子量が 8, 000以上のァ-オン性官能基を有する水溶性ポリマを併用することに よって、 CMPに適用できる十分に高い研磨速度の達成と、テクノロジーノード 130η m以降に必要とされるレベルのデイツシング量の埋め込み Cu配線の形成が可能であ ることを見出した。
[0028] 本発明の金属用研磨液は、金属の酸化剤、酸化金属溶解剤、金属防食剤及び重 量平均分子量が 8, 000以上のァニオン性官能基を有する水溶性ポリマを含有し、 p Hが 1以上 3以下であることを特徴とする。
[0029] 本発明の金属用研磨液の pHは 1以上 3以下であり、好ましくは 1. 5以上 2. 8以下 、さらに好ましくは 1. 8以上 2. 5以下である。 pHが 3を超えるとデイツシングが増加し 、また、 pHが 1未満では配線金属の腐食やエッチングに起因すると思われるディッシ ングが増加してしまう。 pHは、例えば、金属用研磨液に添加する酸化金属溶解剤の 量で調整することができる。また、アンモニア、水酸化カリウム等の塩基を酸化金属溶 解剤と併用することにより調整することも可能である。
[0030] 本発明における pHは、 pHメータ (例えば、横河電機株式会社製、 Model pH81) で測定することができる。測定方法は、標準緩衝液 (フタル酸塩 pH緩衝液 pH : 4. 21 (25°C)、中性りん酸塩 pH緩衝液 pH6. 86 (25°C)を用いて 2点構成した後、電極を 研磨液に入れて、 2分以上経過して安定した後の値を研磨液の pHとした。
[0031] 本発明における金属の酸化剤としては、過酸化水素 O )、硝酸、過ヨウ素酸力
2 2
リウム、過硫酸アンモニゥム、次亜塩素酸、オゾン水等が挙げられ、これらの中でも過 酸ィ匕水素が好ましい。これら酸化剤は 1種類単独で、もしくは 2種類以上を組み合わ せて使用することができる。基板が集積回路用素子を含むシリコン基板である場合、 アルカリ金属、アルカリ土類金属、ハロゲンィ匕物などによる汚染は望ましくないので、 不揮発成分を含まない酸化剤が望ましぐなかでも安定性の面力ゝら過酸ィ匕水素が好 ましい。
[0032] 本発明における酸化剤の配合量は適宜選択されるが、研磨液全重量に対して、 3 〜20重量%であることが好ましぐ 5〜 15重量%であることがより好ましい。酸化剤の 配合量が 3重量%未満である場合は、十分な研磨速度が得られない傾向にあり、 20 重量%を超える場合にも同様にも十分な研磨速度が得られない傾向にある。 [0033] 本発明における酸化金属溶解剤は、 25°Cにおける第一段の酸解離指数 (pKl)が 好ましくは 3. 7未満、さらに好ましくは 2. 0〜3. 7である無機酸または有機酸、もしく はその塩カゝら選ばれる 1種類以上の水溶性の酸ィ匕金属溶解剤である。カゝかる酸ィ匕金 属溶解剤は、例えば、マロン酸、クェン酸、リンゴ酸、グリコール酸、グルタミン酸、ダリ コン酸、シユウ酸、酒石酸、ピコリン酸、ニコチン酸、マンデル酸、酢酸、硫酸、硝酸、 燐酸、塩酸、ギ酸、乳酸、フタル酸、フマル酸、マレイン酸、ァミノ酢酸、アミド硫酸、も しくはそのアンモ-ゥム塩ゃカリウム塩などが挙げられる。これらの酸化金属溶解剤 は保護幕形成剤とのバランスが得やすい点で好ましい。これらのなかでも、実用的な CMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点で、リンゴ酸 、酒石酸、クェン酸、リン酸、硫酸が好ましぐリンゴ酸、リン酸、硫酸がより好ましい。 これら酸化金属溶解剤は 1種類単独で、もしくは 2種類以上を組み合わせて使用す ることがでさる。
[0034] 本発明にお 、て、高 、研磨速度と低!ヽデイツシングを達成する為には水溶性ポリマ のァ-オン性官能基の解離を抑制する必要がある。ァ-オン性官能基の解離を抑制 するには第一段の酸解離指数が低い酸を添加するのが効果的であり、具体的には 第一段の酸解離指数が 3. 7未満である水溶性の酸化金属溶解剤が水溶性ポリマの ァ-オン性官能基の解離の抑制に有用であることが分力つた。なお、本発明におけ る酸解離指数は、酸解離定数の逆数の対数値で、例えば「ィ匕学便覧基礎編」改定 4 版 (平成 5年 9月 30日発行)、丸善株式会社、 Π— 317〜321頁に詳細な記載がある
[0035] 本発明における酸化金属溶解剤の配合量は適宜選択されるが、研磨液全重量に 対して、 0. 05-3. 0重量%であることが好ましぐ 0. 1〜1. 0重量%であることがよ り好ましい。酸化金属溶解剤の配合量が 0. 05重量%未満である場合は、十分な研 磨速度が得られない傾向にあり、 3. 0重量%を超える場合は、実用的な平坦性が得 られない傾向にある。
[0036] 本発明における金属防食剤は、金属膜表面の酸化層上に保護膜を形成し、酸ィ匕 層の研磨液中への溶解を防止するものと考えられ、例えば、アンモニア;ジメチルアミ ン、トリメチルァミン、トリエチルァミン、プロピレンジァミン等のアルキルアミンゃ、ェチ レンジアミンテトラ酢酸 (EDTA)、ジェチルジチォカルバミン酸ナトリウム、キトサン等 のァミン;ジチゾン、クプロイン(2, 2'—ビキノリン)、ネオクプロイン(2, 9 ジメチル - 1, 10 フエナント口リン)、バソクプロイン(2, 9 ジメチノレー 4, 7 ジフエ-ノレ一 1 , 10—フエナント口リン)、キュペラゾン(ビスシクロへキサノンォキサリルヒドラゾン)等 のィミン;ベンズイミダゾールー 2—チオール、トリアジンジチオール、トリァジントリチ オール、 2- [2—(ベンゾチアゾリル)]チォプロピオン酸、 2— [2—(ベンゾチアゾリ ル)]チォブチル酸、 2 メルカプトべンゾチアゾール、 1, 2, 3 トリァゾール、 1, 2, 4 トリア:/一ノレ、 3 アミノー 1H— 1, 2, 4 トリア:/一ノレ、ベン:/トリア:/一ノレ、 1—ヒ ドロキシベンゾトリァゾール、 1—ジヒドロキシプロピルべンゾトリァゾール、 2, 3 ジカ ルボキシプロピルべンゾトリァゾール、 4ーヒドロキシベンゾトリァゾール、 4 カルボキ シノレ一 1H べンゾトリァゾーノレ、 4一力ノレボキシノレ 1H べンゾトリァゾーノレメチノレ エステル、 4 カルボキシルー 1H—べンゾトリアゾールブチルエステル、 4 カルボ キシルー 1H べンゾトリァゾールォクチルエステル、 5 へキシルベンゾトリアゾール 、N— (1, 2, 3 ベンゾトリアゾリル一 1—メチル)一 N— (1, 2, 4 トリァゾリル一 1— メチル)—2—ェチルへキシルァミン、トリルトリァゾール、ナフトトリァゾール、ビス [ (1 -ベンゾトリアゾリル)メチル]ホスホン酸等のァゾール;ノ-ルメルカプタン、ドデシル メルカプタン等のメルカプタン;並びにグルコース、セルロース、ドデシルベンゼンス ルホン酸、ドデシル硫酸及びその塩等が挙げられる。これらの中でも含窒素環状ィ匕 合物、イオン性界面活性剤がエッチング速度の抑制と高 、研磨速度の両立に好適 であり、含窒素環状化合物がより好適である。イオン性界面活性剤としては、イオン性 基がスルホン酸基、カルボン酸基、リン酸基、フ ノール性水酸基のいずれか一つも しくは複数力 なり、疎水性基が炭素数 6以上力 なるイオン性界面活性剤が好まし い。これら金属防食剤は 1種類単独で、もしくは 2種類以上を組み合わせて使用する ことができる。
本発明における金属防食剤の配合量は適宜選択されるが、研磨液全重量に対し て、 0. 05-3. 0重量%であることが好ましぐ 0. 1〜1. 0重量%であることがより好 ましい。金属防食剤の配合量が 0. 05重量%未満である場合は、十分な防食効果が 得られずエッチングが増加し平坦性が悪ィ匕する傾向にあり、 3. 0重量%を超える場 合は、実用的な研磨速度が得られな 、傾向にある。
本発明におけるァニオン性官能基を有する水溶性ポリマの重量平均分子量は 8, 0 00以上であり、好まし <は 8, 000以上 200, 000以下であり、より好まし <は 20, 000 以上 100, 000以下であり、特に好ましくは 40, 000以上 80, 000以下である。重量 平均分子量が 8, 000未満の場合は、研磨速度が低下し、かつ、デイツシングが増加 してしまう。また、重量平均分子量の上限については特に制限はないが、例えば、 20 0, 000を超えると、研磨速度の大幅な低下は認められないが、研磨ウェハ面内の研 磨速度分布のばらつきが大きくなり、デイツシングが増加する傾向がある。
[0038] 本発明におけるァニオン性官能基を有する水溶性ポリマの重量平均分子量の測定 は、ゲル浸透クロマトグラフ法で行った。測定条件等は以下に示すとおりである。
[0039] ポンプ:株式会社日立製作所製 L— 6000型
検出器:株式会社日立製作所製 L- 3300型 R1検出器
カラム:株式会社日立製作所製 Gelpack GL—W500
カラムサイズ: 10. 7mm ( ) X 300mm
溶離液: lOOmMリン酸緩衝液 (pH = 6. 8)Zァセトニトリル = 90ZlO (Vol%) 液送圧力: 17kgfZcm2
溶離液流量: 1. Oml/min
測定サンプル量:50 1
検量線: PEGZPEO
ァ-オン性官能基を有する水溶性ポリマは、スルホン酸基、カルボン酸基、リン酸 基、またはその塩の少なくとも 1種を有する水溶性ポリマである。力かるァ-オン性官 能基としては、スルホン酸基、カルボン酸基、リン酸基が好ましぐスルホン酸基、カル ボン酸基がより好ましい。また、塩としては、アルカリ金属塩、アルカリ土類金属塩、ハ ロゲン化物、アンモ-ゥム塩などが例示されるが、研磨液を適用する基板が半導体集 積回路用シリコン基板などの場合は、アルカリ金属、アルカリ土類金属、ハロゲンィ匕 物等による汚染は望ましくないためアンモ-ゥム塩が望ましい。水溶性ポリマはかか るァ-オン性官能基を少なくとも一種類有しており、 2種類以上含有していてもよい。 また、ァニオン性官能基が異なる水溶性ポリマを 2種類以上使用することができる。 [0040] 力かるァ-オン性基を有する水溶性ポリマとして、ポリスチレンスルホン酸、ポリアク リルアミドメチルプロパンスルホン酸、ポリリンゴ酸、ポリアクリル酸、ポリメタクリル酸、 ポリクロトン酸、ポリイタコン酸、ポリマレイン酸、ポリフマル酸、ポリビニルスルホン酸、 ポリアスパラギン酸、ポリグルタミン酸、ポリリン酸、ポリメタリン酸、またはそのアンモ- ゥム塩、アルカリ金属塩、アルカリ土類金属塩等を挙げることができる。これらのなか でも、ポリカルボン酸が賞用される。なお、ここでポリカルボン酸とは、官能基として力 ルポキシル基を有する水溶性ポリマのことである。
[0041] これらァ-オン性官能基を有する水溶性ポリマは、従来法に基づ!/、て製造すること ができる。
[0042] 本発明では、ァ-オン性官能基を有する水溶性ポリマを添加することにより、高い 研磨速度と良好なデイツシングを得ることができる。力かる水溶性ポリマの配合量は適 宜選択される力 研磨液全重量に対して、 0. 05〜2. 0重量%であることが好ましぐ 0. 1〜0. 8重量%であることがより好ましい。ァ-オン性官能基を有する水溶性ポリ マの配合量が 0. 05重量%未満である場合は、実用的な研磨速度が得られない傾 I口」にある。
図 1に pHとァ-オン性官能基を有する水溶性ポリマの粒径及びディッシングの関 係を示す。ァニオン性官能基を有する水溶性ポリマの粒径は、ァニオン性官能基を 有する水溶性ポリマを酸ィ匕金属溶解剤の添加量で pH調整したものを測定した。
[0043] ァ-オン性官能基を有する水溶性ポリマは、ポリカルボン酸であり、酸化金属溶解 剤は硫酸を用いた。
[0044] デイツシングは、金属の酸化剤、酸化金属溶解剤、金属防食剤及びァ-オン性官 能基を有する水溶性ポリマ力もなり、その pHは酸ィ匕金属溶解剤の添加量で調整した
[0045] 金属の酸化剤は、過酸化水素、酸化金属溶解剤は、硫酸、金属防食剤はべンゾト リアゾール、ァ-オン性官能基を有する水溶性ポリマはポリカルボン酸である。なお、 ここでァ-オン性官能基を有する水溶性ポリマの粒径とは、レーザ回折式粒度分布 計にて得られた値であり、水溶液中でのポリマ鎖の広がりを示す指針として捉えてい る。また示した粒径はメジアン径である。 pHが低くなる程、ポリマ径が小さくなることが 分かる。これは pHが低くなるとァ-オン性官能基の解離が抑制されてァ-オン性官 能基間の静電反発が低下してポリマ鎖が収縮した為と考えている。また、 pHが低くな るに従ってデイツシングが抑制されていることが分かる。
[0046] 被研磨金属上に形成される保護膜は、金属研磨液中の金属防食剤やポリマの吸 着層又は金属防食剤やポリマと被研磨金属もしくはそのイオンが配位結合、イオン結 合、共有結合等によって結合した反応物の層と考えられる。
[0047] 金属防食剤は、緻密且つ強固な保護膜を形成する為にディッシング抑止には非常 に効果的であるが、添加量の増加によって研磨速度を低下させる。一方、水溶性ポリ マを添加した金属用研磨液では、研磨速度の低下を回避できる力 デイツシングの 増加抑制効果が低減する。これは、金属用研磨液中で水溶性のポリマ鎖が伸びた 状態で存在し、このポリマ鎖によって形成された保護膜は粗雑な保護膜となり、これ がデイツシングの増加抑制効果を低下させていると考えられる。
[0048] 本発明の金属用研磨液は、低 pH領域を用いることでポリマ鎖が収縮した水溶性ポ リマ、すなわち緻密な水溶性ポリマが被研磨金属上を効率的に被覆することによって 緻密な保護膜を形成しデイツシングの増加を抑止すると考えている。一般的にポリマ の分子量が大きいものは研磨速度は速くなるが、被研磨面の平坦性が得られ難くな り、逆にポリマの分子量が小さいものは被研磨面の平坦性は得られるが研磨速度が 遅くなる傾向にある。本発明では重量平均分子量 8000以上の水溶性ポリマを用い て特定の pH領域に設定することにより、水溶性ポリマのポリマ鎖が収縮しポリマ粒径 力 、さくなつてきると考えられ、その結果、高研磨速度と被研磨面の平坦性を達成で きる。加えて金属防食剤のような強固な保護膜ではなぐ緻密ではあるが軟質な保護 膜を形成することで高い研磨速度を得ていると考えている。一般的に金属防食剤と 水溶性ポリマを併用することで、金属防食剤単独使用に比べて軟質な保護膜が形成 さ; W磨速度は向上するが、被研磨面の平坦性が得られない。本発明では金属防 食剤と重量平均分子量 8000以上の水溶性ポリマを用いて特定の pH領域に設定す ることにより、高研磨速度と被研磨面の平坦性を達成できる。
[0049] (水溶性ポリマ粒径測定方法)
本発明で用いられる酸ィ匕金属溶解剤で pHを調整した水溶液中の水溶性ポリマの 粒径 (実施例ではメジアン径と記す。)を、レーザ回折式粒度分布計で測定した。
[0050] 測定装置: MALVERN社製 ZETASIZER3000HS
測定条件:温度 25°C
分散媒の屈折率 1. 33
分散媒の粘度 0. 89cP
本発明では、金属用研磨液に研磨粒子を添加してもよぐ研磨粒子を添加すること によって研磨速度をさらに向上させることができる。但し、研磨粒子を添加することに よりディッシングが増加する可能性がある為、研磨粒子の添加量は本発明の効果に 影響を及ぼさない範囲で適宜選択される。研磨粒子の添加量は、研磨液重量に対し て、 1重量%未満が好ましぐ 0. 001〜1重量%がより好ましぐ 0. 03〜1重量%が 特に好ましい。研磨粒子の添加量が 1重量%を超えるとデイツシングが悪ィ匕する傾向 にある。研磨粒子の添加量の下限は特に制限されないが、例えば、 0. 001重量% 未満では研磨速度の向上に寄与せず添加する効果が望めない傾向にある。
[0051] 研磨粒子としては、例えば、シリカ、アルミナ、チタ-ァ、セリア、ジルコユア、もゲル マニア等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩ィ匕ビニル等の有機砥粒等 が挙げられ、これらのなかでもシリカ、アルミナ、セリアが好ましぐコロイダルシリカ及 び Z又はコロイダルシリカ類がより好ましい。さらに前記研磨粒子に微量金属種の添 加や、表面修飾を施し、電位を調整したものを使用することもできる。その手法に特 に制限はない。ここで、コロイダルシリカ類とはコロイダルシリカを基として、ゾル 'ゲル 反応時にお ヽて金属種を微量添加したもの、表面シラノール基へ化学修飾などを施 したもの等を指し、その手法に特に制限はない。これら研磨粒子は 1種類単独で、も しくは 2種類以上を組み合わせて使用することができる。
[0052] 研磨粒子の一次粒子径は、被研磨金属の種類や研磨粒子の種類等により適宜調 整される力 好ましくは 200nm以下、より好ましくは 5〜200nm、特に好ましくは 5〜 150nm、極めて好ましくは 5〜100nmである。一次粒子径が 200nmを超えると、研 磨面の平坦性が悪ィ匕する傾向にある。また 5nm未満の一次粒子径を選択する場合 は、 CMP速度が低くなる可能性があるので注意が必要である。
[0053] また、研磨粒子が会合している場合、二次粒子径は、好ましくは 200nm以下、より 好ましくは 10〜200nm、特に好ましくは 10〜150nm、極めて好ましくは 10〜: LOOn mである。二次粒子径が 200nmを超えると、研磨面の平坦性が悪化する傾向にある 。また 10nm未満の二次粒子径を選択する場合は、研磨粒子によるメカ-カルな反 応層除去能力が不十分となり CMP速度が低くなる可能性があるので注意が必要で ある。
[0054] 本発明における研磨粒子の一次粒子径は、透過型電子顕微鏡 (例えば、株式会 社日立製作所製の S4700)を用いて測定することができる。また、二次粒子径は、光 回折散乱式粒度分布計(例えば、 COULTER Electronics社製の COULTER N4SD)を用いて測定することができる。
[0055] 本発明の金属用研磨液は、上述した成分の他に、染料、顔料等の着色剤や、 pH 調整剤、水以外の溶媒などの、一般に研磨液に添加される添加剤を、研磨液の作用 効果を損なわな 、範囲で添加しても良 、。
[0056] 本発明の被研磨膜の研磨方法は、研磨定盤の研磨布上に上記本発明の金属用 研磨液を供給しながら、被研磨金属膜を有する基板を研磨布に押圧した状態で研 磨定盤と基板を相対的に動力ゝして被研磨金属膜を研磨することを特徴とする。
[0057] 研磨対象である被研磨金属膜は単層でも積層でも構わない。金属膜としては、銅、 アルミニウム、タングステン、タンタル、チタンなどの金属、それらの金属の合金、それ ら金属または金属合金の酸化物や窒化物などの化合物のいずれか 1種類以上が例 示される。これらのなかでも、銅、銅合金、銅化合物が好ましく。金属膜はスパッタ法 ゃメツキ法などの公知の方法により成膜される。基板としては、半導体装置製造に係 る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子 が形成された段階の半導体基板等の半導体基板上に、絶縁層が形成された基板な どが挙げられる。
[0058] 本発明の研磨方法において使用できる研磨装置としては、例えば、被研磨金属膜 を有する基板を保持するホルダーと研磨布 (パッド)を貼り可能で、回転数が変更可 能なモータなどを取り付けてある研磨定盤とを有する一般的な研磨装置が使用でき る。例えば、アプライドマテリアルズ社製 MIRRAが使用できる。
[0059] 研磨定盤上の研磨布としては、特に制限はなぐ一般的な不織布、発泡ポリウレタ ン、多孔質フッ素榭脂等が使用できる。研磨条件は、特に制限はないが、基板が飛 び出さな 、ように定盤の回転速度を 200rpm以下の低回転にすることが好ま 、。
[0060] 被研磨金属膜を有する基板の研磨布への研磨圧力は 5〜: LOOkPaであることが好 ましぐ研磨速度の被研磨金属膜面内の均一性及びパターンの平坦性の見地から 1 0〜50kPaであることが好まし!/、。
[0061] 基板の被研磨金属膜を研磨布に押圧した状態で研磨布と被研磨金属膜とを相対 的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動力せば良い。 研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研 磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線 状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれ の状態でも良い。これらの研磨方法は、研磨布と被研磨金属膜とを相対的に動かす のであれば、被研磨面や研磨装置により適宜選択できる。
[0062] 研磨している間、研磨布には金属用研磨液をポンプなどで連続的に供給すること が好ましい。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われてい ることが好ましい。具体的には、研磨布面積 lcm2当たり、 0. 3〜0. 9ミリリットル供給 されることが好ましい。
[0063] 研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤなどを用いて半 導体基板上に付着した水滴を払い落として力 乾燥させることが好ましい。
実施例
[0064] 以下、実施例により本発明を説明する。本発明はこれらの実施例により制限するも のではない。
[0065] (金属用研磨液の作製)
実施例 1〜6及び比較例 1〜 2
研磨液重量に対して、過酸化水素水 (試薬特級、 30%水溶液) 30重量%、表 1〖こ 示す酸化金属溶解剤、ベンゾトリアゾール 0. 4重量%、表 1に示すァ-オン性官能 基を有する水溶性ポリマ 0. 4重量%、計 100重量%になるように残部に純水を配合 して、実施例 1〜6の研磨液 (A)〜 (F)及び比較例 1〜2の研磨液 (I)〜 (J)を作製し た。なお、研磨液の pHは、酸化金属溶解剤の添加量で表 1に示す値になるように調 整した。
[0066] 実施例 7〜8及び比較例 3
研磨液重量に対して、過酸化水素水 (試薬特級、 30%水溶液) 30重量%、表 1〖こ 示す酸化金属溶解剤、ベンゾトリアゾール 0. 4重量%、表 1に示すァ-オン性官能 基を有する水溶性ポリマ 0. 4重量%、メジアン径が 60nmのコロイダルシリカ砲粒 0. 05重量%、計 100重量%になるように残部に、純水を配合して実施例 7〜8の研磨 液 (G)〜 (H)及び比較例 3の研磨液 (K)を作製した。なお、研磨液の pHは、酸ィ匕金 属溶解剤の添加量で表 1に示す値になるように調整した。
[0067] 比較例 4
研磨液重量に対して、過酸化水素水 (試薬特級、 30%水溶液) 30重量%、表 1〖こ 示す酸化金属溶解剤、ベンゾトリアゾール 0. 4重量%、計 100重量%になるように残 部に純水を配合して、比較例 4の研磨液 (L)を作製した。なお、研磨液の pHは、酸 化金属溶解剤の添加量で表 1に示す値になるように調整した。
[0068] 比較例 5
研磨液重量に対して、過酸化水素水 (試薬特級、 30%水溶液) 30重量%、表 1〖こ 示す酸化金属溶解剤、ベンゾトリアゾール 0. 4重量%、表 1に示す水溶性ポリマ (力 チオン性ポリマであるポリリジン) 0. 4重量%、計 100重量%になるように残部に純水 を配合して、比較例 5の研磨液 (M)を作製した。なお、研磨液の pHは、酸化金属溶 解剤の添加量で表 1に示す値になるように調整した。
[0069] 比較例 6
研磨液重量に対して、過酸化水素水 (試薬特級、 30%水溶液) 30重量%、表 1〖こ 示す酸化金属溶解剤、ベンゾトリアゾール 0. 4重量%、表 1に示す水溶性ポリマ 0. 4 重量%、計 100重量%になるように残部に純水を配合して、比較例 6の研磨液 (N)を 作製した。なお、研磨液の pHは、酸ィ匕金属溶解剤の添加量で表 1に示す値になるよ うに調整した。
[0070] (銅配線が形成された被研磨用基板)
ノターン無しシリコン基板:シリコン基板表面に、二酸ィ匕ケィ素絶縁膜層を作製し、 スパッタ法により 15nmの TaN膜と 1 Onmの Ta膜と 1 OOnmの銅膜を形成した後、電 解メツキ法により 1. 3 mの銅を堆積した被研磨用基板を用いた。
[0071] ノターン付きシリコン基板:シリコン基板表面に、二酸ィ匕ケィ素絶縁膜層を成膜し、 SEMATECH854マスクパターンで二酸ィ匕ケィ素絶縁膜層に配線溝を形成した後 、スパッタ法により 15nmの TaN膜と lOnmの Ta膜と lOOnmの銅膜を形成し、電解メ ツキ法により 1.: mの銅を堆積した被研磨用基板を用いた。なお、配線溝の深さは 500應である。
[0072] (CMP研磨条件)
研磨装置:アプライドマテリアルズ社製 MIRRA
研磨圧力: 13. 8kPa
研磨液供給量: 200mlZ分
(CMP後洗浄)
CMP処理後は、ポリビュルアルコール製ブラシ、超音波水による洗浄を行った後、 スピンドライヤにて乾燥を行った。
[0073] (研磨品評価項目)
銅研磨速度:上記で作製した各研磨液 (A)〜 (N)を研磨布上に供給しながら上記 パターン無しシリコン基板を上記研磨条件により 60秒間研磨した。研磨前後での銅 膜厚差を電気抵抗値から換算して求めた。結果を表 1に示す。
[0074] デイツシング量:上記で作製した各研磨液 (A)〜 (N)を研磨布上に供給しながら上 記パターン付きシリコン基板を上記研磨条件により研磨した。なお、研磨はウェハ上 力も余剰の銅が完全に除去されて力もオーバー研磨 (追加研磨)として 30秒行った。 接触式段差計 (Veeco製 DECKTAK V200— Si)を用いて、絶縁膜部に対する配 線金属部の膜減り量を求めた。結果を表 1に示す。
[0075] なお、 CMP処理後の基板の目視、光学顕微鏡観察及び電子顕微鏡観察により研 磨傷発生の有無を確認した。その結果、すべての実施例及び比較例において顕著 な研磨傷の発生は認められな力つた。
[表 1] 表 1
Figure imgf000018_0001
表 1に示すように、 pHが 3. 5である比較例 1の研磨液 (I)は、 pHが 2. 2である実施 例 1の研磨液 (A)または pHが 2. 7である実施例 2の研磨液 (B)と比べてデイツシング 量が大きいことが分かる。また、 pHが 3. 5である比較例 2の研磨液 (J)は、 pHが 2. 2 である実施例 3の研磨液 (C)または pHが 2. 7である実施例 2の研磨液 (D)と比べて デイツシング量が大きいことが分かる。また、水溶性ポリマの重量平均分子量が 7000 と小さい比較例 3の研磨液 (K)は、水溶性ポリマの重量平均分子量が大きい実施例 7の研磨液 (G)または実施例(8)の研磨液 (H)と比べて研磨速度が低くディッシング 量も大きいことが分かる。また、 pHが 2. 2で水溶性ポリマを用いない比較例 4の研磨 液 (L)は研磨速度が遅くディッシング量も大きいことが分かる。また、カチオン性ポリ マを用いた比較例 5の研磨液 (M)は研磨速度が遅くディッシング量も大き!/、ことが分 かる。また、水溶性ポリマの重量平均分子量が 7000と小さい比較例 6の研磨液 (N) は研磨速度が遅くディッシング量も大きいことが分かる。
これに対し、実施例 1〜8の研磨液 (A)〜(H)は研磨速度が高ぐデイツシング量が 小さいことがわかる。

Claims

請求の範囲
[1] 金属の酸化剤、酸化金属溶解剤、金属防食剤及び重量平均分子量が 8, 000以 上のァ-オン性官能基を有する水溶性ポリマを含有し、 pHが 1以上 3以下であること を特徴とする金属用研磨液。
[2] 前記金属の酸化剤が、過酸化水素、過硫酸アンモニゥム、硝酸、過ヨウ素酸力リウ ム、次亜塩素酸及びオゾン水力ゝら選ばれる 1種類以上の酸化剤であることを特徴とす る請求項 1記載の金属用研磨液。
[3] 前記酸化金属溶解剤が、 25°Cにおける第一段の酸解離指数が 3. 7未満である無 機酸または有機酸、もしくはその塩カゝら選ばれる 1種類以上の酸ィ匕金属溶解剤であ ることを特徴とする請求項 1又は 2記載の金属用研磨液。
[4] 前記酸化金属溶解剤が、マロン酸、クェン酸、リンゴ酸、グリコール酸、グルタミン酸
、シユウ酸、酒石酸、硫酸、硝酸、燐酸、塩酸、ギ酸、乳酸、フタル酸、フマル酸、マレ イン酸、ァミノ酢酸、アミド硫酸及びその塩カゝら選ばれる 1種類以上の酸ィ匕金属溶解 剤であることを特徴とする請求項 1〜3のいずれか一項に記載の金属用研磨液。
[5] 前記金属防食剤が、含窒素環状化合物及びイオン性界面活性剤から選ばれる 1 種類以上の金属防食剤であることを特徴とする請求項 1〜4のいずれか一項に記載 の金属用研磨液。
[6] 前記ァ-オン性官能基を有する水溶性ポリマが、スルホン酸基、カルボン酸基、リ ン酸基、またはその塩の少なくとも 1種類のァ-オン性官能基を有する水溶性ポリマ であることを特徴とする請求項 1〜5のいずれか一項に記載の金属用研磨液。
[7] 金属用研磨液重量に対して、 1重量%未満の研磨粒子を添加してなる請求項 1〜
6の 、ずれか一項に記載の金属用研磨液。
[8] 前記研磨粒子が、シリカ、ァノレミナ、セリア、チタ-ァ、ジルコユア、ゲノレマニアから 選ばれる 1種類以上の研磨粒子であることを特徴とする請求項 1〜7のいずれか一項 に記載の金属用研磨液。
[9] 金属用研磨液の研磨対象である被研磨金属が、銅、銅合金及び銅化合物から選 ばれる 1種類以上の金属であることを特徴とする請求項 1〜8のいずれか一項に記載 の金属用研磨液。 研磨定盤の研磨布上に請求項 1〜9のいずれか一項に記載の金属用研磨液を供 給しながら、被研磨金属膜を有する基板を研磨布に押圧した状態で研磨定盤と基板 を相対的に動力して被研磨金属膜を研磨することを特徴とする被研磨膜の研磨方法
PCT/JP2006/326106 2005-12-27 2006-12-27 金属用研磨液及び被研磨膜の研磨方法 WO2007077886A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007552965A JP4952584B2 (ja) 2005-12-27 2006-12-27 金属用研磨液及び被研磨膜の研磨方法
US12/159,419 US8791019B2 (en) 2005-12-27 2006-12-27 Metal polishing slurry and method of polishing a film to be polished
KR1020117006918A KR101260597B1 (ko) 2005-12-27 2006-12-27 금속용 연마액 및 피연마막의 연마 방법
CN2006800494170A CN101346806B (zh) 2005-12-27 2006-12-27 金属用研磨液以及被研磨膜的研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005374753 2005-12-27
JP2005-374753 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007077886A1 true WO2007077886A1 (ja) 2007-07-12

Family

ID=38228241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326106 WO2007077886A1 (ja) 2005-12-27 2006-12-27 金属用研磨液及び被研磨膜の研磨方法

Country Status (6)

Country Link
US (1) US8791019B2 (ja)
JP (2) JP4952584B2 (ja)
KR (2) KR101260597B1 (ja)
CN (1) CN101346806B (ja)
TW (1) TWI343945B (ja)
WO (1) WO2007077886A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280229A (ja) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd 表面修飾二酸化ケイ素粒子の製造法及び研磨液
WO2009017095A1 (ja) * 2007-07-30 2009-02-05 Hitachi Chemical Co., Ltd. 金属用研磨液及び研磨方法
JP2009269104A (ja) * 2008-05-01 2009-11-19 Jsr Corp 化学機械研磨用水系分散体および該化学機械研磨用水系分散体を調製するためのキット、ならびに化学機械研磨方法
EP2190947A1 (en) * 2007-08-28 2010-06-02 Cabot Microelectronics Corporation Copper cmp composition containing ionic polyelectrolyte and method
JP2020002356A (ja) * 2018-06-28 2020-01-09 ケーシーテック カンパニー リミテッド 研磨用スラリー組成物
CN114213978A (zh) * 2021-12-23 2022-03-22 广东欣科兴五金制品有限公司 一种铜合金表面抛光液及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273537A4 (en) 2008-04-15 2012-07-25 Hitachi Chemical Co Ltd POLISHING SOLUTION FOR METALLIC FILMS AND METHOD OF POLISHING USING THE SAME
KR101279968B1 (ko) * 2008-12-31 2013-07-17 제일모직주식회사 Cmp 슬러리 조성물
KR20150014924A (ko) * 2012-04-18 2015-02-09 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물
JPWO2015146468A1 (ja) * 2014-03-28 2017-04-13 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
JP2016035040A (ja) * 2014-08-01 2016-03-17 株式会社フジミインコーポレーテッド 研磨用組成物
JP2016056292A (ja) * 2014-09-10 2016-04-21 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法、研磨方法、並びに基板及びその製造方法
KR101682085B1 (ko) * 2015-07-09 2016-12-02 주식회사 케이씨텍 텅스텐 연마용 슬러리 조성물
KR101715050B1 (ko) * 2015-11-05 2017-03-13 주식회사 케이씨텍 텅스텐 연마용 슬러리 조성물
SG11201901590SA (en) * 2016-09-21 2019-03-28 Fujimi Inc Composition for surface treatment
US11319460B2 (en) 2017-03-23 2022-05-03 Fujimi Incorporated Polishing composition
KR102611598B1 (ko) * 2017-04-27 2023-12-08 주식회사 동진쎄미켐 화학-기계적 연마용 슬러리 조성물
US11401441B2 (en) 2017-08-17 2022-08-02 Versum Materials Us, Llc Chemical mechanical planarization (CMP) composition and methods therefore for copper and through silica via (TSV) applications
US10465096B2 (en) 2017-08-24 2019-11-05 Versum Materials Us, Llc Metal chemical mechanical planarization (CMP) composition and methods therefore
CN108527012A (zh) * 2018-05-21 2018-09-14 浙江工业大学 一种利用液态金属抛光液进行大平面抛光的装置
KR20200032601A (ko) * 2018-09-18 2020-03-26 주식회사 케이씨텍 연마용 슬러리 조성물
US20200277514A1 (en) 2019-02-28 2020-09-03 Versum Materials Us, Llc Chemical Mechanical Polishing For Copper And Through Silicon Via Applications
CN110238746B (zh) * 2019-06-28 2021-04-20 大连理工大学 一种fv520b材料叶轮叶片的化学机械抛光方法与抛光液
CN110434680A (zh) * 2019-07-19 2019-11-12 大连理工大学 一种螺旋桨的化学机械抛光液及抛光方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127019A (ja) * 1999-10-29 2001-05-11 Hitachi Chem Co Ltd 金属用研磨液及びそれを用いた基板の研磨方法
WO2003094216A1 (fr) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Fluide de polissage et procede de polissage
JP2004311565A (ja) * 2003-04-03 2004-11-04 Hitachi Chem Co Ltd 金属用研磨液及び研磨方法
JP2005502188A (ja) * 2001-05-18 2005-01-20 ロデール ホールディングス インコーポレイテッド ケミカルメカニカル研磨組成物およびそれに関する方法
JP2005191544A (ja) * 2003-11-13 2005-07-14 Rohm & Haas Electronic Materials Cmp Holdings Inc 銅を研磨するための組成物及び方法
JP2005217396A (ja) * 2003-12-22 2005-08-11 Rohm & Haas Electronic Materials Cmp Holdings Inc 銅の低ダウンフォース圧力研磨のための組成物及び方法
JP2006287207A (ja) * 2005-03-09 2006-10-19 Jsr Corp 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
US4954142A (en) 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
JP3397501B2 (ja) 1994-07-12 2003-04-14 株式会社東芝 研磨剤および研磨方法
JP3371775B2 (ja) 1997-10-31 2003-01-27 株式会社日立製作所 研磨方法
EP1150341A4 (en) * 1998-12-28 2005-06-08 Hitachi Chemical Co Ltd MATERIALS FOR METAL POLLING LIQUID, METAL POLISHING LIQUID, THEIR PRODUCTION AND POLISHING METHOD
TWI265567B (en) * 1999-08-26 2006-11-01 Hitachi Chemical Co Ltd Polishing medium for chemical-mechanical polishing, and polishing method
JP2002050595A (ja) * 2000-08-04 2002-02-15 Hitachi Ltd 研磨方法、配線形成方法及び半導体装置の製造方法
JP2007088379A (ja) * 2005-09-26 2007-04-05 Fujifilm Corp 水系研磨液、及び、化学機械的研磨方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127019A (ja) * 1999-10-29 2001-05-11 Hitachi Chem Co Ltd 金属用研磨液及びそれを用いた基板の研磨方法
JP2005502188A (ja) * 2001-05-18 2005-01-20 ロデール ホールディングス インコーポレイテッド ケミカルメカニカル研磨組成物およびそれに関する方法
WO2003094216A1 (fr) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Fluide de polissage et procede de polissage
JP2004311565A (ja) * 2003-04-03 2004-11-04 Hitachi Chem Co Ltd 金属用研磨液及び研磨方法
JP2005191544A (ja) * 2003-11-13 2005-07-14 Rohm & Haas Electronic Materials Cmp Holdings Inc 銅を研磨するための組成物及び方法
JP2005217396A (ja) * 2003-12-22 2005-08-11 Rohm & Haas Electronic Materials Cmp Holdings Inc 銅の低ダウンフォース圧力研磨のための組成物及び方法
JP2006287207A (ja) * 2005-03-09 2006-10-19 Jsr Corp 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280229A (ja) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd 表面修飾二酸化ケイ素粒子の製造法及び研磨液
WO2009017095A1 (ja) * 2007-07-30 2009-02-05 Hitachi Chemical Co., Ltd. 金属用研磨液及び研磨方法
US8288282B2 (en) 2007-07-30 2012-10-16 Hitachi Chemical Co., Ltd. Polishing liquid for metal and method of polishing
JP5327050B2 (ja) * 2007-07-30 2013-10-30 日立化成株式会社 金属用研磨液及び研磨方法
KR101472617B1 (ko) * 2007-07-30 2014-12-15 히타치가세이가부시끼가이샤 금속용 연마액 및 연마 방법
EP2190947A1 (en) * 2007-08-28 2010-06-02 Cabot Microelectronics Corporation Copper cmp composition containing ionic polyelectrolyte and method
EP2190947A4 (en) * 2007-08-28 2013-04-24 Cabot Microelectronics Corp CMP COMPOSITION OF COPPER CONTAINING IONIC POLYELECTROLYTE AND METHOD OF CMP
JP2009269104A (ja) * 2008-05-01 2009-11-19 Jsr Corp 化学機械研磨用水系分散体および該化学機械研磨用水系分散体を調製するためのキット、ならびに化学機械研磨方法
JP2020002356A (ja) * 2018-06-28 2020-01-09 ケーシーテック カンパニー リミテッド 研磨用スラリー組成物
US11279851B2 (en) 2018-06-28 2022-03-22 Kctech Co., Ltd. Polishing slurry composition
CN114213978A (zh) * 2021-12-23 2022-03-22 广东欣科兴五金制品有限公司 一种铜合金表面抛光液及其制备方法
CN114213978B (zh) * 2021-12-23 2022-08-02 广东欣科兴五金制品有限公司 一种铜合金表面抛光液及其制备方法

Also Published As

Publication number Publication date
KR101260597B1 (ko) 2013-05-06
JPWO2007077886A1 (ja) 2009-06-11
KR20110048563A (ko) 2011-05-11
CN101346806A (zh) 2009-01-14
US8791019B2 (en) 2014-07-29
JP2012119697A (ja) 2012-06-21
TWI343945B (en) 2011-06-21
US20100178765A1 (en) 2010-07-15
KR20080070074A (ko) 2008-07-29
CN101346806B (zh) 2010-09-29
TW200730614A (en) 2007-08-16
JP4952584B2 (ja) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2007077886A1 (ja) 金属用研磨液及び被研磨膜の研磨方法
KR100720985B1 (ko) 연마액 및 연마방법
KR101069472B1 (ko) 칼코게나이드 물질의 화학 기계적 평탄화 방법
KR101031446B1 (ko) 칼코게나이드 물질의 화학 기계적 평탄화를 위한 방법
JP5327050B2 (ja) 金属用研磨液及び研磨方法
JP4775260B2 (ja) 金属用研磨液及びこれを用いた研磨方法
JP5760317B2 (ja) Cmp研磨液及びこのcmp研磨液を用いた研磨方法
JP2009503910A (ja) 金属フィルム平坦化用高スループット化学機械研磨組成物
US20070293048A1 (en) Polishing slurry
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
JP4206233B2 (ja) 研磨剤および研磨方法
JP2005294798A (ja) 研磨剤および研磨方法
WO2009119485A1 (ja) 金属用研磨液及びこの研磨液を用いた研磨方法
JP2008112969A (ja) 研磨液及びこの研磨液を用いた研磨方法
JP5585220B2 (ja) Cmp研磨液及びこのcmp研磨液を用いた研磨方法
JP2010010717A (ja) 研磨剤および研磨方法
JP6638208B2 (ja) 研磨剤、研磨剤用貯蔵液及び研磨方法
JP2008118099A (ja) 金属用研磨液及びこの研磨液を用いた被研磨膜の研磨方法
JP3902896B2 (ja) 金属用研磨液及びそれを用いた基板の研磨方法
KR100762091B1 (ko) 구리 다마신 공정용 화학 기계적 연마 슬러리 조성물
JP2001127027A (ja) 金属研磨方法
JP4062903B2 (ja) 金属用研磨液及び研磨方法
JP2009259950A (ja) Cmp用研磨液及びこれを用いた基板の研磨方法
WO2011077887A1 (ja) パラジウム研磨用cmp研磨液及び研磨方法
JP2005116873A (ja) Cmp研磨材および基板の研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049417.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007552965

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087014873

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12159419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020117006918

Country of ref document: KR