WO2007063960A1 - プリプレグ、プリプレグの製造方法、基板および半導体装置 - Google Patents

プリプレグ、プリプレグの製造方法、基板および半導体装置 Download PDF

Info

Publication number
WO2007063960A1
WO2007063960A1 PCT/JP2006/323994 JP2006323994W WO2007063960A1 WO 2007063960 A1 WO2007063960 A1 WO 2007063960A1 JP 2006323994 W JP2006323994 W JP 2006323994W WO 2007063960 A1 WO2007063960 A1 WO 2007063960A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
preda
substrate
thickness
Prior art date
Application number
PCT/JP2006/323994
Other languages
English (en)
French (fr)
Inventor
Takeshi Hosomi
Maroshi Yuasa
Kazuya Hamaya
Takayuki Baba
Original Assignee
Sumitomo Bakelite Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006216432A external-priority patent/JP5157103B2/ja
Application filed by Sumitomo Bakelite Company Limited filed Critical Sumitomo Bakelite Company Limited
Priority to US12/085,782 priority Critical patent/US8044505B2/en
Priority to CN200680045072.1A priority patent/CN101321813B/zh
Publication of WO2007063960A1 publication Critical patent/WO2007063960A1/ja
Priority to US12/853,773 priority patent/US8110444B2/en
Priority to US13/170,470 priority patent/US20110256367A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/005Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8121Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • PREPREDER PREPREDER MANUFACTURING METHOD, BOARD AND SEMICONDUCTOR DEVICE
  • the present invention relates to a pre-preda, a pre-preda manufacturing method, a substrate, and a semiconductor device.
  • a circuit board is formed by using a pre-predder obtained by impregnating a sheet-like base material such as a glass fiber base material with a thermosetting resin.
  • a pre-predder obtained by impregnating a sheet-like base material such as a glass fiber base material with a thermosetting resin.
  • the prepreader disclosed in Japanese Patent Application Laid-Open No. 2004-216784 is obtained by a method of immersing a glass fiber substrate having a thickness of about 50 to 200 m in a thermosetting varnish varnish.
  • this prepredder has a configuration in which a resin layer having the same thickness and made of the resin composition having the same composition is provided on both sides of the glass fiber substrate.
  • circuit wiring portion circuit wiring portion
  • a circuit wiring pattern is formed on one surface of a pre-preder, and the circuit wiring pattern is laminated on the other side of the other pre-preparer. It is carried out in the burial.
  • the pre-preder is required to have a tight adhesion force for forming a circuit wiring pattern on one surface, and to have an embedding property (formability) for embedding a gap in the circuit wiring pattern on the other surface side.
  • a circuit wiring pattern is embedded in both of the two resin layers of the pre-preda.
  • An object of the present invention is to provide a pre-preder that can deal with a thin film substrate and that can be provided with different uses, functions, performances, characteristics, and the like on both sides of the pre-preder.
  • an object of the present invention is to provide a pre-preda that can cope with a thin film substrate and that can set the amount of the resin composition in accordance with an embedded circuit wiring pattern.
  • an object of the present invention is to provide a method for producing the pre-preda, a substrate having the pre-preda, and a semiconductor device.
  • the pre-preda of the present invention includes a core layer including a sheet-like substrate.
  • the composition of the first resin composition and the second resin composition are different, and a conductor layer is formed on the first resin layer and used. It is preferable.
  • the peel strength between the first resin layer and the conductor layer is preferably 0.5 kNZm or more.
  • the first resin layer has a thickness of 3 to 15 m.
  • the first rosin composition preferably contains a curable rosin.
  • the curable resin contains cyanate resin.
  • the cyanate resin preferably includes a novolac-type cyanate resin! /.
  • the first resin composition further contains a curing agent.
  • the hardener preferably contains an imidazole compound.
  • the first rosin composition further includes a second rosin having a different type from the curable rosin.
  • the second rosin preferably contains a phenoxy-based rosin.
  • the first resin layer has a thickness smaller than that of the second resin layer.
  • the composition of the first resin composition and the second resin composition is the same, and the thickness of the first resin layer and the second resin layer is the same.
  • the thickness of the sheet-like substrate is preferably 25 ⁇ m or less.
  • the thickness of the prepreader is preferably 35 ⁇ m or less.
  • the rosin composition preferably contains a curable rosin.
  • the curable resin contains cyanate resin.
  • the resin composition further contains an inorganic filler.
  • the method for producing a pre-preda is a method for producing the pre-preda, wherein the core sheet and the first sheet material provided with the first resin composition in a layer form on one surface are provided.
  • the first sheet material and the second sheet material are superposed and joined to each other, and a laminated body is obtained, and air bubbles are removed from the laminated body.
  • the pre-preparer can be manufactured easily and inexpensively.
  • the core layer, the first sheet material, and the second sheet material are joined under reduced pressure.
  • the bubbles are removed from the laminate by a heat treatment.
  • the heat treatment includes a higher melting point of the first resin composition and the second resin composition, the melting point of the other resin composition. It is preferable to be performed at the above temperature.
  • the first sheet is preferably made of a conductive material! /.
  • each of the first sheet material and the second sheet material is composed of a resin sheet, and a step of removing air bubbles from the laminate. Thereafter, it is preferable to have a step of removing the laminated sheet strength and the resin sheet.
  • the surface of the resin sheet to which the resin composition is applied is subjected to a peeling treatment! /.
  • the substrate of the present invention is characterized by having the pre-preder and a circuit wiring portion embedded in the second resin layer of the pre-preder.
  • the differential force between TO and tl is 5 ⁇ m.
  • the coefficient of thermal expansion in the plane direction of the pre-preda is preferably 16 ppm or less.
  • the substrate of the present invention is obtained by laminating the above pre-preder.
  • a semiconductor device of the present invention includes the substrate and a semiconductor element mounted on the substrate.
  • a semiconductor device of the present invention includes the above substrate.
  • FIG. 1 is a cross-sectional view showing an example (first embodiment) of a pre-preder according to the present invention.
  • FIG. 2 is a cross-sectional view for explaining the thickness of the second resin layer of the prepreader of the first embodiment.
  • FIG. 3 is a process diagram showing an example of a process for producing the pre-preda of the present invention.
  • FIG. 4 is a cross-sectional view showing an example (second embodiment) of the pre-preder of the present invention.
  • FIG. 5 is a cross-sectional view for explaining the relationship between the thicknesses of two resin layers of the prepreader of the second embodiment.
  • FIG. 6 is a cross-sectional view showing an example of the substrate of the present invention.
  • FIG. 7 is a cross-sectional view showing an example of a semiconductor device of the present invention.
  • the pre-preda of the present invention includes a core layer including a sheet-like substrate, a first resin layer provided on one surface side of the core layer and configured with a first resin composition, A second resin layer composed of a second resin composition, provided on the other surface side of the core layer, used by forming a conductor layer on the first resin layer, It is characterized in that at least one of the thickness of the first and second resin layers and the composition of the first and second resin compositions are different.
  • the core layer, the first sheet material in which the first resin composition is applied in a layer form on one surface, and the second resin composition are formed in a layer form.
  • a substrate of the present invention is characterized by having the pre-preder described above and a circuit wiring portion embedded in the second resin layer of the pre-preder.
  • a semiconductor device of the present invention includes the above-described substrate and a semiconductor element mounted on the substrate.
  • FIG. 1 is a cross-sectional view showing an example (first embodiment) of the pre-preder of the present invention.
  • the pre-preda (resin film for forming a multilayer wiring board) 10 includes a core layer 11 including a sheet-like substrate (fiber substrate) 1 and a first resin layer formed on one side of the core layer 11 2 and the second resin layer 3 formed on the other surface side.
  • the yarn composition of the first resin composition constituting the first resin layer 2 and the second resin composition constituting the second resin layer 3 are different. Yes.
  • the pre-preder 10 shown in Fig. 1 is used by forming a conductor layer on the first resin layer 2 (upper side in Fig. 1). Therefore, the first resin layer 2 is designed to have excellent adhesion to the conductor layer. In addition, the second resin layer 3 is designed so as to satisfy the characteristics and the like that are different from those of the first resin layer 2.
  • the core layer 11 is mainly composed of a sheet-like substrate 1.
  • the core layer 11 has a function of improving the strength of the pre-preder 10.
  • the core layer 11 may be composed of the sheet-like substrate 1 alone, or the sheet-like substrate 1 is impregnated with a part of the first and second resin layers 2 and 3 described above. It's okay.
  • Examples of such a sheet-like substrate 1 include glass fiber substrates such as glass woven fabric and glass nonwoven fabric, polyamides such as polyamide resin fiber, aromatic polyamide resin fiber and wholly aromatic polyamide resin fiber.
  • Synthetic fiber substrate composed of non-woven fabric, kraft paper, cotton linter paper, fiber substrate such as organic fiber substrate such as paper substrate mainly composed of linter and kraft pulp mixed paper, polyester, polyimide, etc.
  • a glass fiber base material is preferable. Thereby, the strength of the pre-preder 10 can be improved. In addition, the thermal expansion coefficient of the pre-preda 10 can be reduced.
  • Examples of the glass constituting such a glass fiber substrate include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, and H glass. Among these, S glass or T glass is preferable. Thereby, the thermal expansion coefficient of a glass fiber base material can be made small, and, thereby, the thermal expansion coefficient of a pre-preda can be made small.
  • the thickness of the sheet-like substrate (fiber substrate) 1 is not particularly limited, but a thin prepreader 10 is obtained. In this case, it is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and most preferably 10 to 20 ⁇ m. When the thickness of the sheet-like substrate 1 is within the above range, the thin film can be formed while maintaining the strength of the substrate described later. Sarakuko is able to obtain Prepreda 10 that is excellent in processability and reliability of interlayer connection.
  • connection refers to the relationship between upper and lower circuit wiring patterns when manufacturing a circuit board having a multilayer structure (hereinafter sometimes simply referred to as “multilayer board”). It means that the connection can be made easily (simple).
  • interlayer connection reliability means that the upper and lower circuit wiring patterns are securely connected to each other after the multilayer substrate is fabricated, and This means that there is no short-circuit between the wall or via wall.
  • the first resin layer 2 is formed on one side of the core layer 11 (upper side in FIG. 1).
  • the first resin layer 2 is composed of the first resin composition, and is designed with a resin composition that is excellent in adhesion to the conductor layer.
  • the first resin composition having excellent adhesion to the conductor layer includes a curable resin, and, for example, a curing aid (for example, a curing agent, a curing accelerator, etc.), if necessary, It contains at least one of inorganic fillers.
  • a curing aid for example, a curing agent, a curing accelerator, etc.
  • a method of using a curable resin excellent in adhesion to the conductor layer a curing aid (for example, a curing agent, Curing accelerators, etc.), a method using an acid-soluble material as an inorganic filler, a method using an inorganic filler and an organic filler in combination, and the like.
  • a curing aid for example, a curing agent, Curing accelerators, etc.
  • Examples of the curable resin having excellent adhesion to the conductor layer include urea (urea) resin, melamine resin, bismaleimide resin, polyurethane resin, resin having a benzoxazine ring, and cyanate.
  • Thermosetting resin such as ester resin, bisphenol S-type epoxy resin, bisphenol F-type epoxy resin and copolymer epoxy resin of bisphenol S and bisphenol F is preferably used.
  • cyanate resin including cyanate resin prepolymers.
  • Thermosetting resin (especially cyanate) By using the oil, the coefficient of thermal expansion of the prepreader 10 can be reduced (hereinafter also referred to as “low thermal expansion”). Furthermore, it is possible to improve the electrical characteristics (low dielectric constant, low dielectric tangent) of the pre-preda 10 and the like.
  • the cyanate resin can be obtained, for example, by reacting a halogen cyanide compound with phenols and, if necessary, prepolymerization by a method such as heating.
  • bisphenol-type cyanate resins such as novolac-type cyanate resin, bisphenol A-type cyanate resin, bisphenol E-type cyanate resin, and tetramethylbisphenol F-type cyanate resin can be mentioned. .
  • novolac type sene resin is preferable.
  • the crosslink density of the first resin composition after curing increases after the substrate is produced, so that the heat resistance and flame retardancy of the first resin layer 2 (the substrate obtained) after curing are improved. be able to.
  • the improvement in heat resistance is thought to be due to the formation of a triazine ring after the novolac-type cyanate resin has undergone a curing reaction.
  • the flame retardancy is improved because the novolac-type cyanate resin has a high proportion of benzene rings due to its structure, and the benzene ring is carbonized (graphite). This is probably due to the formation of carbonized parts.
  • the pre-preder 10 is thinned (for example, a thickness of 35 ⁇ m or less), excellent rigidity can be imparted to the pre-preder 10. Since cyanate resin or a cured product thereof is particularly excellent in rigidity at the time of heating, the obtained substrate is particularly excellent in reliability at the time of mounting a semiconductor element.
  • novolak cyanate resin for example, one represented by the formula (I) can be used.
  • n is an arbitrary integer
  • the average repeating unit n of the novolak cyanate resin represented by the formula (I) is particularly limited. Although 1-10 is preferred, 2-7 is particularly preferred. When the average repeating unit n is less than the lower limit, the novolak cyanate resin tends to be easily crystallized, and the solubility in a general-purpose solvent is relatively lowered. For this reason, depending on the content of the novolac-type cyanate resin, it may be difficult to handle the varnish containing the first resin composition (the first resin layer forming varnish).
  • the pre-preder 10 when the pre-preder 10 is manufactured, tackiness is generated, and when the pre-preders 10 come into contact with each other, they adhere to each other, or the first resin composition of one pre-predder 10 moves to the other pre-predder 10 (transfer) May occur.
  • the average repeating unit n exceeds the above upper limit, the melt viscosity of the first resin composition becomes too high, and the efficiency (formability) when producing the pre-preder 10 may be lowered.
  • the weight average molecular weight of the cyanate resin can be measured, for example, by GPC.
  • the cyanate resin a prepolymerized one can also be used. That is, the cyanate resin may be used alone, or may be used in combination with a cyanate resin having a different weight average molecular weight, or may be used in combination with the cyanate resin and its prepolymer.
  • the prepolymer is usually obtained by, for example, adding 3 amounts of cyanate resin to a heat reaction or the like, and is preferable for adjusting the moldability and fluidity of the resin composition. It is what is used.
  • the prepolymer is not particularly limited.
  • a prepolymer having a trimerization rate of 20 to 50% by weight can be used.
  • This three-quantity ratio can be obtained, for example, using an infrared spectroscopic analyzer.
  • phenol novolac Oil-modified resole phenolic resin modified with novolak type phenolic resin, unmodified resole phenolic resin, paulownia oil, armor oil, talmi oil, etc.
  • thermosetting resins such as novolak type epoxy resin such as silicone resin, epoxy resin such as biphenyl type epoxy resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, etc. It can also be used.
  • thermosetting resin for example, an ultraviolet curable resin, an anaerobic curable resin, and the like can be used as the curable resin.
  • the content of the curable rosin is not particularly limited, but is preferably 5 to 50% by weight, particularly preferably 10 to 40% by weight, based on the entire first rosin composition. If the content is less than the lower limit value, it may be difficult to form the pre-preder 10 depending on the melt viscosity of the first resin composition. On the other hand, when the above upper limit is exceeded, the strength of the prepreader 10 may decrease depending on the type of curable resin, the weight average molecular weight, and the like.
  • Curing aids eg, curing agents, curing accelerators, etc.
  • Curing aids that improve the adhesion to the conductor layer include tertiary amines such as triethylamine, tributylamine, diazabicyclo [2, 2, 2] octane, etc.
  • 2-ethyl 4-ethyl imidazole 2-phenol 4-methyl imidazole, 2-ferro- 4-methyl 5-hydroxymethyl imidazole, 2-ferro- 4,5-dihydroxymethyl imidazole, 2, 4 diamino 1 6 — [2'—Methylimidazolyl 1 (1,)] Ethyl-s triazine, 2, 4 diamino-6 — (2, -Undecylimidazolyl) —Ethyl s triazine, 2, 4 diamino 1 6— [2, 1 Examples include imidazole compounds such as ethyl 4-methylimidazolyl (1,)]-ethyl-triazine, 1-benzyl-2-phenylimidazole and the like.
  • imidazole compounds having two or more functional groups selected from among aliphatic hydrocarbon groups, aromatic hydrocarbon groups, hydroxyalkyl groups and cyanoalkyl groups are particularly preferred. Lou 4,5 dihydroxymethylimidazole is preferred.
  • the heat resistance of the first resin composition can be improved, and the first resin layer 2 formed from the first resin composition has a low thermal expansion property. (Low expansion coefficient due to heat, properties) and low water absorption.
  • a curable resin having excellent adhesion to the conductor layer in addition to the curing aid that improves the adhesion to the conductor layer, for example, naphthenic acid is used.
  • Organometallic salts such as monotocobalt ( ⁇ ) and trisacetylacetonate cobalt (III), phenolic compounds such as phenol, bisphenol A and nourphenol, acetic acid, benzoic acid, salicylic acid, p-toluenesulfonic acid A combination of organic acids such as these can be used.
  • the content thereof is not particularly limited, but 0.01 to 3% by weight of the whole first rosin composition is preferable, and 0.1 to 1% by weight is particularly preferable. preferable. If the content is less than the lower limit, the effect of promoting the curing of the curable resin (first resin composition) may not be sufficiently exhibited depending on the type of the curing aid. On the other hand, when the upper limit is exceeded, the stability (storage stability) of the pre-preder 10 during storage may be reduced.
  • the combination of the curable resin having excellent adhesion with the conductor layer and the curing aid for improving the adhesion with the conductor layer is used for the first resin layer 2. This is preferred because it can provide better adhesion to the conductor layer.
  • the first resin composition preferably contains an inorganic filler.
  • an inorganic filler for example, a thickness of 35 m or less.
  • Examples of the inorganic filler include talc, alumina, glass, silica, my strength, hydroxide-aluminum, and hydroxide-magnesium. Of these, fused silica (especially spherical fused silica), which is preferable for silica, is preferred because of its excellent low thermal expansion.
  • the inorganic filler has a crushed shape and a spherical shape, and the shape is appropriately selected according to the purpose of use. For example, in order to surely impregnate the sheet-like base material 1 with the first resin composition, it is preferable to lower the melt viscosity of the first resin composition, but in this case, the inorganic filler has a spherical shape. Silica is preferably used.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 5.0 / zm, particularly preferably 0.2 to 2.0 m. If the particle size of the inorganic filler is less than the lower limit, depending on the content of the inorganic filler, etc., the viscosity (melt viscosity) at the time of melting of the first resin composition increases. It may affect workability. On the other hand, if the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the first varnish for varnish formation. By setting the average particle size of the inorganic filler within the above range, the effect of using the inorganic filler can be exhibited with a good balance. [0089] The average particle diameter can be measured, for example, by a particle size distribution meter (manufactured by HORIBA, LA-500).
  • spherical silica (especially spherical fused silica) having an average particle size of 5.0 ⁇ m or less is preferred, particularly the average particle size of 0.01 to 2. O ⁇ m, most preferably 0.0. It is preferable to use spherical fused silica of 1 to 0.5 m. Thereby, the filling property (filling density) of the inorganic filler in the first resin layer 2 can be improved. Further, the upper surface of the first resin layer 2 can be made into a fine roughened state (surface roughness is relatively small).
  • the conductor layer can be formed on the first resin layer 2 with good adhesion, so that it is easy to form a circuit wiring pattern (circuit wiring portion) having a high arrangement density (high density circuit formation). Become. In addition, it is possible to form a circuit wiring pattern suitable for high-speed signal transmission.
  • the inorganic filler used in the first resin composition is not particularly limited, but it is preferable that the average particle size is smaller than that of the inorganic filler used in the second resin composition described later. This makes it easy to form a dense roughened state on the upper surface of the first resin layer 2.
  • an acid-soluble inorganic filler may be used as the inorganic filler.
  • Examples of the acid-soluble inorganic filler include metal oxides such as calcium carbonate, zinc oxide, and iron oxide.
  • the inorganic filler and the organic filler may be used in combination.
  • organic filler examples include resin fillers such as liquid crystal polymer and polyimide.
  • the content thereof is not particularly limited, but 20 to 70% by weight of the entire first resin composition is preferable, and 30 to 60% by weight is particularly preferable. If the content of the inorganic filler is less than the lower limit, the effect of imparting low thermal expansion and low water absorption by the inorganic filler to the first resin layer 2 is reduced depending on the type of the inorganic filler. There are cases. In addition, if the upper limit is exceeded, the fluidity of the first rosin composition is reduced. In some cases, the moldability of the first resin layer 2 (pre-predder 10) is lowered. In addition, when the content of the inorganic filler is within the above range, the effect S due to the use of the inorganic filler can be exhibited with a good balance.
  • a cyanate resin particularly a novolac-type cyanate resin
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include phenol novolac type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, arylene type epoxy resin, and the like.
  • arylene type epoxy resin is preferable.
  • the arylene-type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit, such as xylylene-type epoxy resin, biphenyldimethylene-type epoxy resin, and the like. Is mentioned. Of these, biphenyldimethylene type epoxy resin is preferable.
  • the biphenyldimethylene type epoxy resin can be represented by, for example, the formula (II).
  • n is an arbitrary integer
  • the average repeating unit n of the bibutyl-dimethylene type epoxy resin represented by the formula (II) is not particularly limited, but 1 to 10 is preferable, and 2 to 5 is particularly preferable.
  • the average repeating unit n is less than the lower limit, the bibutyl-dimethylene type epoxy resin tends to be easily crystallized. For this reason, biphenyldimethylene type epoxy resin has a relatively low solubility in general-purpose solvents, and as a result, it may be difficult to handle the first resin layer varnish.
  • the average repeating unit n exceeds the upper limit, the fluidity of the first resin composition in the molten state may be reduced, which may cause molding failure of the pre-preder 10.
  • the epoxy resin When the epoxy resin is used in combination, its content is not particularly limited. 1 to 55% by weight of the total composition of the rosin is preferred, and 2 to 40% by weight is particularly preferred. When the content is less than the lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the obtained first resin layer 2 may decrease. On the other hand, when the upper limit is exceeded, the heat resistance of the first resin layer 2 may be reduced depending on the type of epoxy resin.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 300 to 20,000 force, particularly 500 to 5,000 force ⁇ preferably! / ⁇ . If the weight average molecular weight force is less than the lower limit, tackiness may occur in the prepreader 10 depending on the environmental temperature or the like. On the other hand, when the above upper limit is exceeded, depending on the type of epoxy resin, the impregnating property of the first resin composition into the sheet-like substrate 1 (core layer 11) is reduced during the preparation of the pre-preda 10 and uniform. It may not be possible to obtain a thick and uniform pre-preda 10.
  • the weight average molecular weight of the epoxy resin can be measured, for example, by GPC.
  • a component that improves the adhesion to the conductor layer may be added to the first resin composition.
  • the component that can be used include phenoxy resin, polybulc alcohol resin, and a coupling agent that improves adhesion to the metal constituting the conductor layer.
  • phenoxy resin examples include phenoxy resin having a bisphenol skeleton, phenoxy resin having a naphthalene skeleton, and phenoxy resin having a biphenyl skeleton. It is also possible to use a phenoxy resin having a structure having a plurality of these skeletons.
  • a phenolic resin having a biphenyl skeleton and a bisphenol S skeleton it is preferable to use.
  • the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion with the metal constituting the conductor layer of the phenoxy resin can be improved by the bisphenol S skeleton. be able to.
  • the heat resistance of the first resin layer 2 can be improved, and the adhesion of the plating metal to the first resin layer 2 can be improved when manufacturing a multilayer substrate (multilayer printed wiring board). It can be made.
  • the combination ratio (weight) ) Is not particularly limited.
  • the molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, and more preferably 10,000 to 60,000. If the weight average molecular weight of the phenoxy resin is less than the lower limit, depending on the type of phenoxy resin, the film forming property (ease of film formation) is improved in the first coconut resin composition. It may not be possible to provide sufficient effects. On the other hand, when the above upper limit is exceeded, the solubility of phenoxy resin may decrease depending on the type of solvent used. In addition, when the weight average molecular weight of the phenoxy resin is within the above range, the effect of using the phenoxy resin is exhibited in a balanced manner.
  • the content thereof is not particularly limited, but it is preferably 1 to 40% by weight, particularly preferably 5 to 30% by weight, based on the whole first resin composition. If the content of the phenoxy resin is less than the lower limit, depending on the type of phenoxy resin, the film forming property (ease of film formation) is improved in the first resin composition. In some cases, it is not possible to provide sufficient effects. On the other hand, when the upper limit is exceeded, the content of curable resin is relatively reduced. Therefore, when cyanate resin is used as the curable resin, the type of cyanate resin, the type of phenoxy resin, etc. Depending on the case, the effect of imparting low thermal expansibility to the first resin layer 2 may be reduced. In addition, when the content of the phenoxy resin is within the above range, the effect balance by the use of the phenoxy resin is exhibited with a good balance.
  • a coupling agent is added (mixed) to the first resin composition.
  • the coupling agent improves the wettability of the interface between the curable resin and the inorganic filler. Has the function to raise. For this reason, the curable resin and the inorganic filler can be uniformly fixed to the sheet-like substrate 1 by adding the coupling agent to the first resin composition. For this reason, it is possible to improve the heat resistance of the first resin layer 2, particularly the solder heat resistance (moisture absorption solder heat resistance) after moisture absorption in the cured first resin layer 2.
  • the coupling agent for example, an epoxy silane coupling agent, a titanate-based coupling agent, an aminosilane coupling agent, and one or more coupling agents selected from medium strength of silicone oil coupling agents are used. It is preferable to do. Thereby, the wettability of the interface between the curable resin and the inorganic filler can be particularly enhanced, and the heat resistance of the first resin layer 2 can be further improved.
  • the content thereof is not particularly limited, but is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the inorganic filler. A double part is preferred. If the content is less than the lower limit, the surface of the inorganic filler may not be sufficiently covered with the coupling agent depending on the type of coupling agent and the type, shape, size, etc. of the inorganic filler. 1 The effect of improving the heat resistance of the resin layer 2 may be reduced. On the other hand, if the upper limit is exceeded, depending on the type of curable resin, etc., it may affect the curing reaction of the curable resin, and in the first resin layer 2 (the resulting substrate) after curing, the bending strength, etc. May decrease. In addition, when the content of the coupling agent is within the above range, the balance of the effect due to the use of the coupling agent is exhibited.
  • the first greave composition may contain additives such as an antifoaming agent, a leveling agent, a pigment, and an antioxidant as necessary.
  • the thickness of the first resin layer 2 composed of the first resin composition is not particularly limited, but is 3 to 15 111 cells, particularly 5 to: LO / zm is preferred. When the thickness is within the above range, the thickness of the entire pre-preda 10 can be reduced.
  • the surface roughness of the upper surface of the first resin layer 2 (after the roughening treatment) is not particularly limited, but the following is preferable, and the following is particularly preferable. Within the above range, the top surface of the first resin layer 2 is particularly excellent in adhesion to the resist used to define the shape of the circuit wiring pattern when forming the circuit wiring pattern. Therefore, a fine circuit wiring pattern can be formed on the first resin layer 2.
  • Examples of the conductor layer formed on the first resin layer 2 include metal foils such as copper foil and aluminum foil, and plated copper. Of these, copper is preferred. Thereby, a fine circuit wiring pattern can be easily formed on the first resin layer 2.
  • the peel strength between the first resin layer 2 and the conductor layer (circuit wiring pattern) is preferably 0.5 kN / m or more, more preferably 0.6 kNZm or more. Thereby, the connection reliability in the obtained substrate (multilayer substrate) can be further improved.
  • the second resin layer 3 is formed on the other side of the core layer 11 (lower side in FIG. 1).
  • such a second resin layer 3 is composed of a second resin composition having a composition different from that of the first resin composition, and has characteristics different from those of the first resin layer 2 (for example, It is designed to have circuit wiring pattern embedding etc.!
  • the second rosin composition includes a curable resin, and includes at least one of a curing agent, a curing accelerator, a filler, and the like as necessary.
  • curable resin examples include novolak-type phenolic resins such as phenol novolac resin, cresol novolac resin, bisphenol A novolac resin, unmodified resorenol resin, tung oil, and amateur oil.
  • novolak-type phenolic resins such as phenol novolac resin, cresol novolac resin, bisphenol A novolac resin, unmodified resorenol resin, tung oil, and amateur oil.
  • Phenolic resin such as resol type phenolic resin such as oil-modified resole phenolic resin modified with talmi oil, etc., bisphenol type epoxy resin such as bisphenol A epoxy resin, bisphenol F epoxy resin, novolac Epoxy resin such as epoxy resin, novolak epoxy resin such as cresol novolac epoxy resin, epoxy resin such as biphenyl epoxy resin, triazine ring such as urea (urea) resin and melamine resin Fat, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silico Down ⁇ , ⁇ with Benzookisajin ring, thermosetting ⁇ such Shianeto ⁇ is preferably used.
  • bisphenol type epoxy resin such as bisphenol A epoxy resin, bisphenol F epoxy resin, novolac Epoxy resin such as epoxy resin, novolak epoxy resin such as cresol novolac epoxy resin, epoxy resin such as biphenyl epoxy resin, triazine ring such as urea (urea) resin
  • cyanate resin including cyanate resin prepolymers
  • thermosetting resin especially cyanate resin
  • the expansion coefficient can be reduced.
  • the pre-preder 10 can be made excellent in electrical characteristics (low dielectric constant, low dielectric loss tangent) and the like.
  • the cyanate resin can be obtained, for example, by reacting a halogen cyanide compound with phenols and, if necessary, prepolymerization by a method such as heating.
  • bisphenol-type cyanate resins such as novolac-type cyanate resin, bisphenol A-type cyanate resin, bisphenol E-type cyanate resin, and tetramethylbisphenol F-type cyanate resin can be mentioned. .
  • novolac type sene resin is preferable. This increases the crosslink density of the second resin composition after curing after the substrate is produced, so that the heat resistance and flame retardancy of the second resin layer 3 (the resulting substrate) after curing are improved. be able to.
  • the improvement in heat resistance is thought to be due to the formation of a triazine ring after the novolac-type cyanate resin has undergone a curing reaction.
  • the flame retardancy is improved because the novolac-type cyanate resin has a high proportion of benzene rings due to its structure, and the benzene ring is carbonized (graphite). This is probably due to the formation of carbonized parts.
  • the pre-preder 10 is thinned (for example, a thickness of 35 ⁇ m or less), excellent rigidity can be imparted to the pre-preder 10. Since cyanate resin or a cured product thereof is particularly excellent in rigidity at the time of heating, the obtained substrate is particularly excellent in reliability at the time of mounting a semiconductor element.
  • novolak cyanate resin for example, one represented by the formula (I) can be used.
  • Formula (I) n is an arbitrary integer
  • the average repeating unit n of the novolak-type cyanate resin represented by the formula (I) is not particularly limited, but 1 to 10 is preferable, and 2 to 7 is particularly preferable. Average repeat unit n is above If it is less than the limit value, the novolak cyanate resin tends to be easily crystallized, and the solubility in general-purpose solvents is relatively lowered. For this reason, depending on the content of the novolak-type cyanate resin, it may be difficult to handle the varnish containing the second resin composition (second resin layer forming varnish). On the other hand, if the average repeating unit n exceeds the upper limit, the melt viscosity of the second rosin composition becomes too high, and the efficiency (formability) when preparing the pre-preder 10 may be lowered.
  • the weight average molecular weight of the cyanate resin is not particularly limited, but the weight average molecular weight is preferably 500 to 4,500, more preferably 600 to 3,000. If the weight average molecular weight force is less than the lower limit, tackiness occurs when the prepreader 10 is produced, and when the prepreader 10 contacts, they adhere to each other, or transfer of the second rosin composition occurs. There is a case. On the other hand, when the weight average molecular weight exceeds the above upper limit, the reaction of cyanate resin becomes too fast, and when it is used as a substrate (particularly a circuit board), molding defects may occur or the interlayer peel strength may decrease. There is.
  • the weight average molecular weight of the cyanate resin can be measured by GPC, for example.
  • cyanate resin cyanate resins having different weight average molecular weights may be used in combination. As a result, the tackiness of the pre-preder 10 may be improved.
  • thermosetting resin for example, an ultraviolet curable resin, an anaerobic curable resin, and the like can be used as the curable resin.
  • the content of the curable resin is not particularly limited! However, 5 to 50% by weight of the entire second resin composition is preferable, and 20 to 40% by weight is particularly preferable. If the content is less than the lower limit, it may be difficult to form the pre-preder 10 depending on the melt viscosity or the like of the second resin composition. On the other hand, when the above upper limit is exceeded, the strength of the prepreader 10 may decrease depending on the type of curable resin, the weight average molecular weight, and the like.
  • the second resin composition preferably contains an inorganic filler.
  • Examples of the inorganic filler include talc, alumina, glass, silica, my strength, hydroxide, and the like. Examples thereof include aluminum and magnesium hydroxide. Of these, fused silica (especially spherical fused silica), which is preferable for silica, is preferred because of its excellent low thermal expansion.
  • the inorganic filler has a crushed shape and a spherical shape, and the shape is appropriately selected according to the purpose of use. For example, in order to reliably impregnate the sheet material 1 with the second resin composition, it is preferable to lower the melt viscosity of the second resin composition, but in this case, spherical silica is used as the inorganic filler. Preferably used.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 5.0 / zm, more preferably 0.2 to 2.0 m. If the particle size of the inorganic filler is less than the lower limit value, depending on the content of the inorganic filler, etc., the melt viscosity of the second rosin composition will be high, which will affect the workability during the preparation of the prepredder 10. There is a case. On the other hand, when the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the second varnish for varnish formation.
  • This average particle size can be measured by, for example, a particle size distribution meter (manufactured by HORIBA, LA-500).
  • spherical fused silica having an average particle diameter of 5.0 ⁇ m or less is preferred, especially spherical fused silica having an average particle diameter of 0.01 to 2.0 m. It is preferable to use it. Thereby, the filling property (filling density) of the inorganic filler in the second resin layer 3 can be improved.
  • the content thereof is not particularly limited, but 40 to 80% by weight of the entire second resin composition is preferred, more preferably 50 to 70% by weight, and 60 to 60%. More preferred is 70% by weight.
  • the content is within the above range, particularly excellent low thermal expansion and low water absorption can be imparted to the second resin layer 3.
  • a cyanate resin particularly a novolac-type cyanate resin
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include phenol novolac type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, arylene type epoxy resin, and the like.
  • arylene type epoxy resin is preferable.
  • the arylene-type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit. Examples thereof include xylylene type epoxy resin, biphenyldimethylene type epoxy resin. Among these, biphenyl dimethylene type epoxy resin is preferable.
  • the biphenyldimethylene type epoxy resin can be represented by, for example, the formula (II).
  • the average repeating unit n of the bibutyl-dimethylene type epoxy resin represented by the formula (II) is not particularly limited, but 1 to 10 is preferable, and 2 to 5 is particularly preferable.
  • the average repeating unit n is less than the lower limit value, the bibutyl-dimethylene type epoxy resin tends to be easily crystallized. For this reason, biphenyldimethylene type epoxy resin has a relatively low solubility in general-purpose solvents, and as a result, it may be difficult to handle the varnish for forming the second resin composition.
  • the average repeating unit n exceeds the above upper limit, the fluidity at the time of melting of the second resin composition is lowered, which may cause a molding failure of the pre-preder 10.
  • the content thereof is not particularly limited, but 1 to 55% by weight of the entire second resin composition is preferable, and 2 to 40% by weight is particularly preferable. If the content is less than the lower limit, the reactivity of cyanate resin may be reduced, or the moisture resistance of the resulting prepreg 10 may be reduced. On the other hand, if the upper limit is exceeded, the heat resistance of the prepredder 10 may decrease depending on the type of epoxy resin.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 500 to 20,000, particularly preferably 800 to 15,000. If the weight average molecular weight force is less than the above lower limit value, tackiness may occur in the prepreader 10 depending on the environmental temperature or the like. On the other hand, when the above upper limit is exceeded, depending on the type of epoxy resin, the impregnating property of the second resin composition into the sheet-like substrate 1 (core layer 11) is reduced during the preparation of the pre-preda 10 and is uniform. Thick and homogeneous prepreader 10 may not be obtained. [0146] The weight average molecular weight of the epoxy resin can be measured, for example, by GPC.
  • cyanate resin particularly novolac-type cyanate resin
  • phenol resin examples include novolak type phenolic resin, resol type phenolic resin, arylene alkylene type phenolic resin, and the like. Of these, arylene-type phenol resin is preferable. As a result, the moisture absorption solder heat resistance can be further improved in the cured second resin layer 3 (obtained substrate).
  • Examples of the arylene-type phenolic resin include xylylene-type phenolic resin, biphenyldimethylene-type phenolic resin, and the like.
  • the biphenyldimethylene type phenol resin can be represented, for example, by the formula (III).
  • the repeating unit n of the biphenyldimethylene type phenol resin represented by the formula (III) is not particularly limited, but 1 to 12 is preferable, and 2 to 8 is particularly preferable.
  • the average repeating unit n is less than the lower limit, the heat resistance of the second resin layer 3 may be lowered depending on the content of biphenyldimethylene type phenol resin.
  • the above upper limit is exceeded, biphenyldimethylene type phenol resin tends to be less compatible with other resin (curable resin), and the workability at the time of preparing Prepreda 10 is reduced. There is a case.
  • the combination of the above-mentioned cyanate resin (especially novolac-type cyanate resin) and arylene-type phenol resin can control the cross-linking density of the second resin composition after curing.
  • the adhesion between the wiring pattern (metal) and the cured second resin layer 3 (second resin composition) can be improved.
  • the content is not particularly limited, but 1 to 55% by weight of the entire second resin composition is preferable, and 5 to 40% by weight is particularly preferable. If the content is less than the lower limit, the heat resistance of the second resin layer 3 may be lowered depending on the type of phenol resin. On the other hand, if the upper limit is exceeded, the type of phenolic resin In some cases, the low thermal expansibility of the second resin layer 3 may be impaired.
  • the weight average molecular weight of the phenol resin is not particularly limited, but the weight average molecular weight is preferably 400 to 18,000, and particularly preferably 500 to 15,000. If the weight average molecular weight force is less than the lower limit, tackiness may occur in the prepreader 10 depending on the environmental temperature. On the other hand, when the upper limit is exceeded, depending on the type of phenolic resin, the impregnating property of the second resinous composition into the sheet-like substrate 1 (core layer 11) decreases during the preparation of the prepreg 10, and it is uniform. It may not be possible to obtain a thick and uniform pre-preda 10.
  • the weight average molecular weight of the phenol rosin can be measured, for example, by GPC.
  • cyanate resin especially novolac-type cyanate resin
  • phenol resin especially novolac-type cyanate resin
  • a substrate particularly a combination of an arylene alkylene type resin, especially biphenyldimethylene type phenolic resin) and the above epoxy resin (arylene type epoxy resin, especially biphenyldimethylene type epoxy resin)
  • arylene type epoxy resin especially biphenyldimethylene type epoxy resin
  • the coupling agent has a function of improving the wettability of the interface between the curable resin and the inorganic filler. For this reason, the curable resin and the inorganic filler can be uniformly fixed to the sheet-like substrate 1 by adding the coupling agent to the second resin composition. For this reason, it is possible to improve the heat resistance of the second resin layer 3, particularly the solder heat resistance (moisture absorption solder heat resistance) after moisture absorption in the cured second resin layer 3.
  • any commonly used coupling agent can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and a silicone can be used. It is preferable to use one or more coupling agents that also select the intermediate strength of the oil-type coupling agent. As a result, the wettability between the curable resin and the interface between the inorganic filler can be increased, whereby the heat resistance of the second resin layer 3 can be further improved.
  • the amount of addition depends on the surface area of the inorganic filler and is not particularly limited, but is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the inorganic filler. Particularly preferred is 0.1 to 2 parts by weight.
  • the content is less than the lower limit, the force
  • the surface of the inorganic filler may not be sufficiently covered by the coupling agent, and the effect of improving the heat resistance of the second resin layer 3 May decrease.
  • the curing reaction of the curable resin may be affected depending on the type of the curable resin, and the bending strength of the cured second resin layer 3 (obtained substrate) Etc. may decrease.
  • a curing accelerator may be added (mixed) to the second resin composition, if necessary.
  • a well-known thing can be used as said hardening accelerator.
  • strong curing accelerators include zinc naphthenate, cobalt naphthenate, tin octylate, octyl acid conol, bisacetyl acetate toner cobalt ( ⁇ ), and trisacetyl acetate toner cobalt (III).
  • Organometallic salts such as triethylamine, tributylamine, diazabicyclo [2, 2, 2] octane, etc., 2-phenyl-methyl 4-methylimidazole, 2-ethyl 4-ethyl imidazole, 2-phenol -Lu 4-Methylimidazole, 2-Fe-Lu 4-Methyl-5-Hydroxyimidazole, 2-I-FuLu 4,5-Dihydroxyimidazole and other imidazoles, Phenols, Bisphenol A, Norfenol and other phenols Examples thereof include compounds, organic acids such as acetic acid, benzoic acid, salicylic acid, and paratoluenesulfonic acid, and mixtures thereof.
  • the content thereof is not particularly limited, but 0.05 to 5% by weight of the whole second resin composition is preferable, and 0.2 to 2% by weight is particularly preferable. preferable.
  • the content is less than the lower limit, the effect of promoting the curing reaction of the curable resin may not be sufficiently exhibited depending on the type of the curable resin.
  • the upper limit is exceeded, depending on the type of curing accelerator, the storage stability of the prepredder 10 may be reduced.
  • thermoplastic resins such as phenoxy resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, etc. It is also possible to use coagulant together.
  • additives other than the above-described components such as pigments and antioxidants may be added to the second resin composition as necessary.
  • the thickness of the second resin layer 3 is the thickness of the embedded inner layer circuit (circuit wiring pattern).
  • the thickness of t2 represented by the following formula 1) is preferably 0.1 to 5 m, and more preferably 1 to 3 m.
  • the pre-preda 10 can be obtained in which the inner layer circuit (circuit wiring portion 4) is particularly excellent in embeddability (formability) and the overall thickness is thin.
  • the thickness of the second resin layer 3 is Bl [m]
  • the thickness of the circuit wiring portion (inner layer circuit) 4 is 1 [ ⁇ m] and the remaining copper ratio are S [%]
  • the thickness from the upper surface 41 of the circuit wiring part 4 to the upper surface 31 of the second resin layer 3 is t2.
  • the thermal expansion coefficient in the surface (X, Y) direction of the second resin layer 3 is not particularly limited, but 2 Oppm or less is preferable, and 5 to 16 ppm is particularly preferable.
  • the pre-preder 10 is particularly excellent in connection reliability, and the obtained substrate is excellent in mounting reliability of semiconductor elements and the like.
  • Such a pre-preder 10 can be manufactured as follows, for example.
  • the carrier material (first sheet material) is coated (applied) with the first resin composition in layers, and the carrier material 2a and the second resin composition are layered on the carrier film (second sheet material).
  • the carrier material 3a coated (applied) on the substrate is manufactured.
  • a laminate is obtained by laminating (superimposing) these carrier materials 2a and 3a on the sheet-like substrate 1 (or the core layer 11).
  • each resin layer is formed on both surfaces of the prepreader 10 by peeling each carrier film (first sheet material and second sheet material) from the obtained laminate.
  • Prepreda 10 having a different composition of the rosin composition can be obtained.
  • FIG. 3 is a process diagram showing an example of a process for producing the pre-preder of the present invention.
  • a carrier material 2a having a sheet-like substrate 1 (or a core layer 11) and a resin layer (first resin layer 2) made of the first resin composition as described above and A carrier material 3a having a resin layer (second resin layer 3) composed of the second resin composition as described above is prepared.
  • the carrier materials 2a and 3a are, for example, varnishes containing the first and second rosin compositions, respectively, in the carrier film (the first varnish for forming the mortar layer and the second varnish for forming the mortar layer) ).
  • the resin layers (first resin composition and second resin composition) are respectively formed from both surfaces of the sheet-like substrate 1 under reduced pressure.
  • the carrier materials 2 a and 3 a are overlapped so as to come into contact with the substrate 1 and bonded by the laminating roll 81.
  • the sheet-like substrate 1 and the carrier materials 2a and 3a may be joined under normal pressure, but preferably under reduced pressure.
  • By joining under reduced pressure even if there is an unfilled part inside the sheet-like base material 1 or at the joint part between each carrier material 2a, 3a and the sheet-like base material 1, this is a reduced-pressure void.
  • a vacuum box device As another device for joining the sheet-like substrate 1 and the carrier materials 2a and 3a under such a reduced pressure, for example, a vacuum box device or the like can be used.
  • the hot oil dryer 9 is used to make the carrier materials 2a and 3a.
  • Heat treatment is performed at a temperature equal to or higher than the melting temperature of the second resin composition having the higher melting point.
  • the other heat treatment method can be carried out using, for example, an infrared heating device, a heating roll device, a flat plate-like hot platen pressing device, or the like.
  • removal of medium-strength bubbles in the obtained laminate can be performed by, for example, applying ultrasonic vibrations to the laminate in addition to heat treatment. Alternatively, heat treatment and supersonic vibration may be applied in combination.
  • the obtained laminated body resin sheet is removed. As a result, the pre-preder 10 is obtained.
  • the surface of the carrier film to which the resin composition is applied is preferably subjected to a peeling treatment.
  • the laminate strength carrier film can be peeled (removed) more easily and reliably.
  • the pre-preda 10 has a force carrier material 2a in which a conductor layer is provided on the upper surface of the first resin layer 2.
  • Laminate strength may be used as a conductor layer without peeling.
  • the pre-preder 10 can be easily obtained even when the sheet-like substrate 1 having a thickness of 25 m or less is used.
  • a sheet shape having a thickness of 30 m or less It was difficult to obtain a pre-preda by carrying a resin material on a base material. That is, when a sheet-like substrate having a small thickness is immersed in a thermosetting resin and passed through a large number of conveying rolls, or when adjusting the amount of the resin material impregnated into the sheet-like substrate, In some cases, stress was applied to the sheet-like substrate, and the sheet-like substrate was opened (enlarged), or the sheet-like substrate was cut when it was taken out.
  • the carrier materials 2a and 3a can be supported even on the sheet-like substrate 1 having a relatively thin thickness (for example, a thickness of 25 m or less).
  • a relatively thin thickness for example, a thickness of 25 m or less.
  • the thickness of the pre-preder 10 after forming the substrate can be made 35 m or less between the conductor circuit layers (between the upper and lower circuit wiring patterns).
  • the thickness between the conductor circuit layers can be reduced to 35 m or less, the final thickness of the substrate can be reduced.
  • it is applied to one surface of the sheet-like substrate 1 with a low viscosity first varnish for forming a resin layer, dried and first
  • the pre-preda 10 can also be obtained by forming the resin layer 2, applying to the second resin layer forming varnish, and drying to form the second resin layer 3.
  • the coefficient of thermal expansion in the plane direction of such a pre-preda 10 is not particularly limited, but is preferably 16 ppm or less, more preferably 12 ppm or less, and more preferably 5 to: LOppm. preferable. When the thermal expansion coefficient is within the above range, crack resistance to repeated thermal shocks can be improved in the obtained substrate.
  • the thermal expansion coefficient in the plane direction can be evaluated by raising the temperature at 10 ° CZ for example using a TMA apparatus (TA Instruments).
  • the thickness of such a pre-preder 10 is not particularly limited. However, in the prepreader 10 of this embodiment, the thickness is preferably 20 to 80 ⁇ m, and particularly preferably 30 to 60 ⁇ m. When the thickness is within the above range, the thickness of the finally obtained substrate can be particularly reduced.
  • the sheet-like substrate 1 may be unevenly distributed in the thickness direction of the pre-preder 10, as in the second embodiment. That is, the thickness of the first resin layer 2 and the second resin layer 3 may be different.
  • the amount of the fat composition can be adjusted.
  • the thickness of the first resin layer 2 is set to be smaller than the thickness of the second resin layer 3. Is preferred. Thereby, since the rigidity of the first resin layer 2 can be increased, the conductor layer can be formed more easily and reliably.
  • 4 and 5 are cross-sectional views showing an example (second embodiment) of the pre-preda of the present invention.
  • the prepreader 10 of the second embodiment is the same as that of the prepreader 10 of the first embodiment.
  • the composition is the same as that of the composition, and the first and second resin layers 2 and 3 are different in thickness.
  • the prepreader 10 of the second embodiment is configured such that a resin composition is supported on both sides of a sheet-like substrate (fiber substrate) 1, and The sheet-like substrate 1 (or core layer 11) is unevenly distributed in the thickness direction (A direction) of the pre-preda 10! /
  • the state in which the sheet-like base material 1 (or the core layer 11) is unevenly distributed with respect to the pre-predder 10 means that the pre-predder 10 as shown in FIGS. 4 (a) and 4 (b). This means that the center of the sheet-like substrate 1 is shifted from the center line A—A in the thickness direction.
  • the lower surface (lower side in Fig. 4) of the sheet-like substrate 1 is the lower side of the pre-preder 10 (see
  • the sheet-like base material 1 is disposed between the center line AA and the lower surface (the lower side in FIG. 4) of the pre-preder 10. Note that the sheet-like substrate 1 partially overlaps the center line A—A!
  • the state in which the sheet-like base material 1 is unevenly distributed in the thickness direction of the prepreader 10 may be any of FIGS. 4 (a) and (b), but the state shown in FIG. 4 (b). That is, the state shown in FIG. 5 is preferable.
  • the thickness of the resin layer (the second resin layer 3) B1 [ ⁇ m] of thickness (large,) The ratio (B2ZB1) force 0 ⁇ B2ZB1 ⁇ 1 when the thickness B2 [m] of the thin (small) resin layer (first resin layer 2) is satisfied.
  • the thickness B1 of the thick resin layer (the lower resin layer in FIG. 5) and the thickness of the thin resin layer (the upper resin layer in FIG. 5) is not particularly limited, but is preferably 0.5 or less, particularly preferably 0.2 to 0.4. When the ratio is within the above range, the waviness of the sheet-like substrate 1 can be particularly reduced, and thereby the flatness of the pre-preda 10 can be further improved.
  • the value of the thickness B2 is not particularly limited, but the surface of the prepreader 10 (the upper surface in FIG. 5) On the other hand, when the purpose is mainly to provide adhesive adhesion, 5 to 15 m is preferable.
  • 8 to 10 m is preferable. As a result, it is possible to reliably impart a sticking adhesion to the upper surface (one surface) of the pre-preder 10.
  • the sheet-like substrate 1 has a thickness of 25 ⁇ m or less. As a result, the thickness of the prepreader 10 can be reduced.
  • the thickness of the sheet-like substrate 1 is preferably 20 ⁇ m or less, particularly preferably 10 to 15 ⁇ m. If the thickness of the sheet-like substrate 1 is within the above range, the thin film can be formed while maintaining the strength of the substrate described later. Sarakuko is able to obtain a pre-pre- dder 10 that has excellent processability and reliability for interlayer connection.
  • the sheet-like substrate (fiber substrate) 1 As the sheet-like substrate (fiber substrate) 1, the same one as in the first embodiment can be used.
  • the same resin composition as the second resin composition of the first embodiment can be used.
  • the pre-preder 10 of the present embodiment can also be manufactured in the same manner as in the first embodiment.
  • the composition of the first resin composition and the second resin composition are the same, and the thickness of the resin layer of the carrier material 2a is the carrier material 3a.
  • the thickness is set to be thinner than the thickness of the resin layer.
  • the pre-preder 10 in which the sheet-like substrate 1 having a relatively small thickness (for example, a thickness of 25 m or less) is unevenly distributed in the thickness direction of the pre-preder 10.
  • a relatively small thickness for example, a thickness of 25 m or less
  • the thickness of the prepreg 10 can be easily reduced to 35 ⁇ m or less by changing the thickness of the resin layer of the carrier materials 2a and 3a. If the thickness of the pre-preda 10 is 35 ⁇ m or less, even a multilayer substrate can be made thin. Thereby, the finally obtained semiconductor device can be made thin.
  • the thickness of the pre-preda 10 is not particularly limited! However, in the prepreg 10 of this embodiment, the thickness is preferably 30 ⁇ m or less, and particularly preferably 20 to 25 ⁇ m or less. When the thickness is within the above range, the substrate can be maintained in a thin state even when the number of layers is increased to 6 or more, and a thin semiconductor device can be finally obtained. [0215] Here, in the conventional method for producing a pre-preda, the resin composition was applied to both sides of the sheet-like substrate. That is, the conventional prepreader has a resin layer having the same thickness on both surfaces of a sheet-like substrate.
  • the circuit wiring pattern of both resin layers is different.
  • the amount of the resin composition required to fill the gap was different, it was difficult to cope with it.
  • the resin composition constituting the pre-predder may protrude, or the resin thread and the composition necessary for filling the gaps in the circuit wiring pattern may be insufficient.
  • the sheet-like substrate 1 is unevenly distributed in the thickness direction of the pre-preder 10, so that the circuit wiring pattern to be built up (both the resin layers are embedded)
  • the circuit wiring pattern to be built up both the resin layers are embedded
  • the thickness of the pre-preda 10 is simply thin, and the amount of the resin composition of the pre-preda 10 can be adjusted according to the remaining copper ratio of the circuit wiring pattern, etc. This is a force that eliminates the need to provide a thick resin layer.
  • the resin composition (second resin layer 3) provided on the surface side can be made to have a different composition.
  • compositions of the rosin compositions differ is the same as described in the first embodiment.
  • a resin layer can be designed according to the required performance (characteristics), and the range of selection of the resin composition can be increased. Can be spread.
  • the resin composition constituting the resin layer is made a flexible composition in consideration of the embedding property, while the resin layer on the opposite side In consideration of rigidity, the resin composition constituting the resin layer can be made to have a hard composition. This gives different functions to both sides of Prepreda 10. can do.
  • the substrate 100 includes a core substrate 101, a three-layer pre-preder (10a, 10b, 10c) provided on the upper side of the core substrate 101 (upper side in FIG. 6), a core 3 layers of pre-preparators (10d, 10e, 10f) provided on the lower side of the substrate 101 (lower side in FIG. 6).
  • a predetermined circuit wiring portion 4 is formed between the core substrate 101 and the pre-preders 10a and 10b and between the pre-pre- ders (10a and 10b, 10b and 10c, 10d and 10e, and 10e and 10f).
  • a pad portion 5 is provided on the surfaces of the pre-preders 10c and 10f.
  • prepreg 10 for example, prepreg 10 having a thickness of 35 / zm or less
  • prepreg 10 having a thickness of 35 / zm or less for at least one (preferably all) of the prepregs 10a to 10f.
  • the thickness of the substrate (circuit substrate) 100 can be reduced.
  • Each circuit wiring portion 4 is electrically connected via a filled via portion 6 provided through each of the pre-preders 10a to 10f.
  • each of the pre-preders 10a to 10: L0f constituting the substrate 100 includes the circuit wiring portion 4 (conductor layer).
  • the first resin composition constituting the first resin layer 2 on the side to be formed (the upper side in FIG. 6 of each of the pre-preders 10a to 10c and the lower side in FIG. 6 of 10d to 10f) and the second resin on the opposite side
  • the composition is different from that of the second resin composition constituting the resin layer 3.
  • the first resin composition that constitutes the first resin layer 2 has a composition that improves the adhesion to the conductor layer.
  • the first resin layer 2 is excellent in adhesion with the conductor layer.
  • the second resin composition constituting the second resin layer 3 has a composition that improves the embedding property of the circuit wiring portion 4. Further, the second resin layer 3 has a composition that can achieve low thermal expansion.
  • the thickness of the first resin layer 2 is set to the minimum necessary for improving the adhesion to the conductor layer, and the thickness of the second resin layer 3 is used for embedding the circuit wiring portion 4.
  • the thickness of the substrate 100 can be reduced by adjusting the thickness to the minimum necessary.
  • each of the pre-preders 10a to 10f constituting the substrate 100: Because it is unevenly distributed in the thickness direction, the height of the embedded circuit wiring part (inner layer conductor circuit) 4 It is possible to reduce such restrictions, thereby increasing the degree of freedom in designing the circuit wiring section 4. That is, it becomes easy to form the circuit wiring portion 4. Furthermore, the circuit wiring portion 4 can be designed to be embedded (arranged) in the thicker second resin layer 3. For this reason, the malfunction which arises when the circuit wiring part 4 and the sheet-like base material 1 contact can also be reduced.
  • the resin composition (second resin layer 3) on the opposite side of the sheet-like base material 1 of the pre-predder 10 is unevenly distributed, Wiring part 4 is buried.
  • a part of the resin composition (second resin layer 3) is embedded (filled) between the wirings constituting the circuit wiring part 4 (gap part).
  • tl and tl are not particularly limited, but is preferably 35 ⁇ m or less, particularly 10 to 30 ⁇ m. As a result, even if the substrate 100 is thin, its insulation reliability can be sufficiently maintained (secured).
  • t3 is from the upper surface 41 (upper surface in FIG. 5) of the circuit wiring section 4 to the upper surface 21 (upper surface in FIG. 5) of the pre-preda 10 (first resin layer 2). Corresponds to the thickness of
  • the thickness of the thick resin layer (second resin layer 3) is set to Bl [
  • the thickness of the circuit wiring part 4 is tl [m] and the remaining copper ratio is S [%], and the sheet-like base material 1 (the first substrate 1) from the upper surface 41 (upper side in FIG. 5) of the circuit wiring part 4 2
  • the thickness of t2 is not particularly limited, but is preferably 0 to 15 m. Further, when there is a concern about a decrease in insulation in the circuit wiring part 4 due to contact between the circuit wiring part 4 and the sheet-like substrate 1, t2 is preferably set to 3 to 15 m. On the other hand, when the thickness of the substrate 100 is reduced, it is preferable to set t2 to 0 to 5 / ⁇ ⁇ . To achieve both insulation and thinness, t2 is set to 3 to 5 m. It is preferable to do. As a result, it is possible to provide high insulation reliability with excellent embedding property in the circuit wiring portion 4 on one surface side of the pre-preda 10.
  • the semiconductor device 200 is obtained by mounting the semiconductor element 7 by connecting the bump 71 of the semiconductor element 7 and the pad portion 5 of the substrate 100 to the substrate 100. Can it can.
  • the thickness of the first resin layer 2 and the second resin layer 3 is adjusted to the optimum thickness, so that the entire thickness of the substrate 100 is optimized. be able to. As a result, it is possible to obtain a semiconductor device 200 having a minimum thickness necessary for required characteristics.
  • FIGS. 6 and 7 a six-layer substrate has been described.
  • the substrate of the present invention is not limited to this, and a multi-layer substrate of three layers, four layers, five layers, etc., or seven layers, eight layers, etc. It can also be suitably used for (multi-layer wiring board).
  • pre-preders 10 can be used in combination, and these pre-preders 10 can be used in combination with the pre-preders that have been used in the past!
  • the pre-preder 10 of the second embodiment When the pre-preder 10 of the second embodiment is used, the pre-preder 10 having the sheet-like base material 1 in various uneven positions (the pre-preder 10 having different degrees of uneven distribution of the sheet-like base material 1) is also used. It doesn't matter.
  • Cyanate resin (manufactured by Lonza Japan, Primaset PT-30, weight average molecular weight of about 2,600) 24% by weight as thermosetting resin, biphenyldimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) NC-3000, epoxy equivalent 275) 24% by weight, a copolymer of bisphenol A type epoxy resin and bisphenol F type epoxy resin as a phenolic resin, the terminal part having an epoxy group Phenoxy resin (made by Japan Epoxy Resin Co., Ltd. ⁇ 4275, weight average molecular weight 60, 000) 11. 8% by weight, imidazole compound (Shikoku Kasei Kogyo Co., Ltd.
  • carrier material 2a was obtained.
  • a glass woven fabric (cross type # 1015, width 360 mm, thickness 15 ⁇ m, basis weight 17 gZm 2 ) was used as a sheet-like base material, and a pre-preda was produced using a vacuum laminating apparatus and a hot air drying apparatus shown in FIG.
  • the carrier material 2a and the carrier material 3a are superposed on both surfaces of the glass woven fabric so as to be positioned at the center in the width direction of the glass woven fabric, respectively, Under the conditions, a laminate was obtained by bonding using an 80 ° C. laminate roll.
  • the bonded laminate was heat-treated without applying pressure by passing it through a horizontal conveyance type hot air drying apparatus set at 120 ° C for 2 minutes.
  • the two carrier films were peeled off from the laminate and removed to a thickness of 30 m (first resin layer: 5 m, glass woven fabric: 15 m, second resin layer: 10 m) ) was obtained.
  • a pre-preda was obtained in the same manner as in Example 1 except that the following varnish for forming the first resin layer was used.
  • thermosetting resin without using cyanate resin as thermosetting resin, biphenyldimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 275) 24% by weight, liquid screw phenol type epoxy ⁇ (Dainippon ink Co., 830S) and 17.5 wt 0/0, a copolymer of bisphenol S epoxy ⁇ as off enoxy ⁇ , the end piece E port alkoxy group Phenoxy resin (Yep-8100 manufactured by Japan Epoxy Resin Co., Ltd., weight average molecular weight 30,000) 18% by weight and imidazole compound (Shikoku Kasei Co., Ltd.
  • the thickness of the obtained prepredder was 30 m (first resin layer: 5 m, glass woven fabric: 15 ⁇ m, second resin layer: 10 m).
  • Example 2 The same as Example 1 except that the following were used as the varnish for forming the second resin layer Thus, a pre-preda was obtained.
  • the thickness of the obtained prepredder was 30 111 (first resin layer: 5 111, glass woven fabric: 15 m, second resin layer: 10 m).
  • a pre-preda was obtained in the same manner as in Example 1 except that the thickness of the resin layer of the carrier material 2a was changed to 14 m and the thickness of the resin layer of the carrier material 3a was changed to 14 m.
  • the thickness of the obtained prepredder was 35 111 (first resin layer: 10 111, glass woven fabric: 15 ⁇ m, second resin layer: 10 m).
  • a pre-preda was obtained in the same manner as in Example 1 except that the sheet-like substrate and the carrier materials 2a and 3a were changed as follows.
  • a glass woven fabric (cross type # 1037, thickness 24 ⁇ m, basis weight 24 gZm 2 ) was used as a sheet-like substrate.
  • the thickness of the resin layer of the carrier material 2a was 12 m, and the thickness of the resin layer of the carrier material 3a was 18 / zm.
  • the thickness of the obtained prepredder was 40 m (first resin layer: 5 m, glass woven fabric: 24 ⁇ m, second resin layer: 11 m).
  • Example 6 A pre-preda was obtained in the same manner as in Example 1 except that the sheet-like substrate and the carrier materials 2a and 3a were changed as follows.
  • a glass woven fabric (cross type # 1080, thickness 42 ⁇ m, basis weight 48 gZm 2 ) was used as a sheet-like substrate.
  • the thickness of the resin layer of the carrier material 2a was 20 ⁇ m, and the thickness of the resin layer of the carrier material 3a was 22 ⁇ m.
  • the thickness of the obtained prepredder was 60 111 (first resin layer: 8111, glass woven fabric: 42 m, second resin layer: 10 m).
  • a pre-preda was obtained in the same manner as in Example 1 except that the first resin layer forming varnish of Example 1 was used as the second resin layer forming varnish.
  • compositions of the first and second rosin compositions were the same.
  • the thickness of the obtained prepredder was 30 m (first resin layer: 5 m, glass woven fabric: 15 ⁇ m, second resin layer: 10 m).
  • a pre-preda was obtained in the same manner as in Example 1 except that the first varnish for forming a resin layer of Example 1 was used as the first varnish for forming a resin layer.
  • compositions of the first and second rosin compositions were the same.
  • the thickness of the obtained prepredder was 30 m (first resin layer: 5 m, glass woven fabric: 15 ⁇ m, second resin layer: 10 m).
  • Polyethylene terephthalate film (SFB-38, thickness 38 / ⁇ ⁇ , width 480m, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) was used as the carrier film, and the above-mentioned varnish for forming the resin layer was applied using a comma coater, and 170 ° C After drying for 3 minutes, the resin layer with a thickness of 8 / ⁇ ⁇ and a width of 360 mm (final resin layer that will eventually become the first resin layer) is located at the center of the carrier film in the width direction. Thus, carrier material 2a was obtained.
  • SFB-38 Polyethylene terephthalate film
  • the above-mentioned varnish for forming the resin layer was applied using a comma coater, and 170 ° C After drying for 3 minutes, the resin layer with a thickness of 8 / ⁇ ⁇ and a width of 360 mm (final resin layer that will eventually become the first resin layer) is located at the center of the carrier film in the width direction.
  • carrier material 2a
  • a glass woven fabric (cross type # 1015, width 360 mm, thickness 15 ⁇ m, basis weight 17 gZm 2 ) was used as a sheet-like substrate, and a pre-preda was produced by a vacuum laminating apparatus and a hot air drying apparatus shown in FIG.
  • the carrier material 2a and the carrier material 3a are overlapped on both sides of the glass woven fabric so as to be positioned at the center in the width direction of the glass woven fabric, and under a reduced pressure condition of 750 Torr, Bonding was performed using a laminate roll at 80 ° C. to obtain a laminate.
  • the resin layers of the carrier material 2a and the carrier material 3a are joined to both sides of the glass woven fabric, respectively, and the width direction of the glass woven fabric is In the outer region of the dimensions, the resin layers of the carrier material 2a and the carrier material 3a were bonded to each other.
  • the bonded laminate was placed in a horizontal conveyance type hot air drying apparatus set at 120 ° C.
  • Heat treatment was carried out without applying pressure by passing for 2 minutes.
  • the two carrier films were peeled off and removed from the laminate, and the thickness was 30 m (first resin) Layer: 4 m, glass woven fabric: 15 m, second resin layer: 11 m).
  • a pre-preda was obtained in the same manner as in Example 9 except that the thickness of the resin layer of the carrier material 2a was changed to 8 ⁇ m and the thickness of the resin layer of the carrier material 3a was changed to 20 ⁇ m.
  • the thickness of the obtained prepredder was 35 111 (first resin layer: 4 111, glass woven fabric: 15 m, second resin layer: 16 m).
  • a pre-preda was obtained in the same manner as in Example 9 except that the sheet-like substrate and the carrier materials 2a and 3a were changed as follows.
  • a glass woven fabric (cross type # 1037, thickness 24 ⁇ m, basis weight 24 gZm 2 ) was used as a sheet-like substrate.
  • the thickness of the resin layer of the carrier material 2a was 11 m, and the thickness of the resin layer of the carrier material 3a was 20 ⁇ m.
  • the thickness of the obtained prepredder was 40 111 (first resin layer: 4 111, glass woven fabric: 24 m, second resin layer: 12 m).
  • a prepreg was obtained in the same manner as in Example 9 except that the following was used as the varnish for forming the resin layer.
  • Epoxy resin (“Ep5048” manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight as thermosetting resin, 2 parts by weight of curing agent (dicyandiamide) and curing accelerator (2-ethyl-4-methylimidazole) 0 1 part by weight was dissolved in 100 parts by weight of methyl cellosolve to obtain a varnish for forming a resin layer.
  • the thickness of the obtained prepredder was 35 111 (first resin layer: 4111, glass woven fabric: 15 m, second resin layer: 16 m).
  • a pre-preder was obtained in the same manner as in Example 9 except that the carrier materials 2a and 3a were changed as follows.
  • the thickness of the resin layer of carrier material 2a is 8 ⁇ m, and the thickness of the resin layer of carrier material 3a is 25 ⁇ m. It was.
  • the thickness of the obtained prepredder was 40 111 (first resin layer: 4111, glass woven fabric: 15 m, second resin layer: 21 m).
  • a pre-preda was obtained in the same manner as in Example 9 except that the sheet-like substrate and the carrier materials 2a and 3a were changed as follows.
  • a glass woven fabric (cross type # 1080, thickness 55 ⁇ m, basis weight 47 gZm 2 ) was used as a sheet-like substrate.
  • the thickness of the resin layer of the carrier material 2a was 25 ⁇ m, and the thickness of the resin layer of the carrier material 3a was 25 ⁇ m.
  • the thickness of the obtained prepredder was 75 m (first resin layer: 10 m, glass woven fabric: 55 ⁇ m, second resin layer: 10 m).
  • a pre-preda was obtained in the same manner as in Example 9 except that the sheet-like substrate and the carrier materials 2a and 3a were changed as follows.
  • a glass woven fabric (cross type # 1037, thickness 24 ⁇ m, basis weight 24 gZm 2 ) was used as a sheet-like substrate.
  • the thickness of the resin layer of the carrier material 2a was 16 ⁇ m, and the thickness of the resin layer of the carrier material 3a was 16 ⁇ m.
  • the thickness of the obtained prepredder was 40 m (first resin layer: 8 m, glass woven fabric: 24 ⁇ m, second resin layer: 8 m).
  • the cross-sectional force of the obtained pre-preder was also measured for the thickness of each layer.
  • the elastic modulus of the obtained prepredder was measured under the condition of a temperature increase rate of 5 ° C. Z using a resonance frequency shift mode of DMA (DMA 983 manufactured by TA Instruments).
  • each of the pre-preders in each Example had a small thermal expansion coefficient and a high elastic modulus. As a result, the obtained substrate is expected to have excellent connection reliability.
  • the substrate multiple 10 layer substrates
  • 10 semiconductor devices were produced.
  • a core substrate having a comb-like pattern with a conductor spacing of 50 ⁇ m on the surface and a residual copper ratio of 50% with a predetermined circuit thickness was prepared.
  • the cross-sectional force of the obtained substrate (multilayer substrate) was also measured for thickness t3 (thickness from the upper surface 41 of the circuit wiring part 4 to the upper surface 21 of the first resin layer 2).
  • the cross-sectional force of the obtained substrate was also measured for thickness t2 (thickness from the upper surface 41 of the circuit wiring part 4 to the upper surface 31 of the second resin layer 3).
  • thickness t2 thickness from the upper surface 41 of the circuit wiring part 4 to the upper surface 31 of the second resin layer 3.
  • the difference from the design value is shown.
  • the cross section of the comb pattern was observed with a microscope.
  • the embedding property of the resin layer was evaluated according to the following four criteria.
  • the resin layer is not sufficiently embedded, and there are voids.
  • the plating copper peel strength was measured. Then, the adhesion of the first resin layer (upper resin layer) was evaluated according to the following four criteria.
  • insulation reliability was evaluated using the following four criteria.
  • the insulation resistance was measured under the conditions of an applied voltage of 100 VX and an applied time of 1 minute.
  • TC temperature cycle
  • connection reliability was evaluated according to the following four criteria.
  • Force after 1000 cycles of TC test The number of disconnection defects was 5 or more. After 800 cycles of TC test, the number of disconnection defects was SO. ⁇ : After 1000 cycles of TC test, the number of disconnection failures was 10 and after 800 cycles of TC test, the number of disconnection failures was 5 or more. It is.
  • the prepregs obtained in Examples 1 to 6 and Examples 9 to 13 were difficult to achieve both embeddability and tight adhesion when using a conventional prepreader. It became an excellent one.
  • the multilayer substrate and the semiconductor device using the prepreg obtained in Examples 1 to 6 and Examples 9 to 13 have the second insulating layer made of a resin composition having excellent embedding property and low thermal expansion. As a result, the insulation reliability of the multilayer substrate and the connection reliability as a semiconductor device are excellent.
  • the multilayer substrate using the pre-preder obtained in Example 6 had a thickness slightly exceeding 200 m, but the pre-pre- der obtained in each of the other examples. It was shown that all multi-layer substrates using sapphire have a thickness of 200 m or less and that a thin multi-layer substrate can be obtained. In addition, no protrusion of the rosin composition was confirmed.
  • a pre-preda capable of setting the amount of the fat composition can be provided.
  • excellent adhesion and embedding can be imparted to both sides of the pre-preda.
  • a pre-preda having an amount of the rosin composition necessary and sufficient for filling is possible to obtain a pre-preda having an amount of the rosin composition necessary and sufficient for filling.
  • a pre-preda of the present invention can be produced easily and inexpensively.
  • a substrate and a semiconductor device having the above-described pre-predator can be provided, whereby a thin and thick substrate and a semiconductor device can be obtained. Then, the obtained substrate (particularly, a multilayer circuit board) has excellent insulation reliability, and the obtained semiconductor device has excellent connection reliability.
  • the pre-preda of the present invention is suitably used for the production of a circuit board and a semiconductor device having a multilayer structure that requires high density and thinning. Therefore, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 薄膜化に対応することが可能であり、かつプリプレグの両面に異なる用途、機能、性能または特性等が付与したり、埋設される回路配線パターンに応じて樹脂組成物の量を設定可能なプリプレグを提供する。また、上記プリプレグの製造方法、上記プリプレグを有する基板および半導体装置を提供する。本発明のプリプレグは、シート状基材を含むコア層と、該コア層の一方の面側に設けられ、第1樹脂組成物で構成された第1樹脂層と、前記コア層の他方の面側に設けられ、第2樹脂組成物で構成された第2樹脂層とを有し、前記第1樹脂層上に導体層を形成して使用され、前記第1樹脂層と前記第2樹脂層との厚さ、および前記第1樹脂組成物と前記第2樹脂組成物との組成の少なくとも一方が異なっていることを特徴とする。

Description

明 細 書
プリプレダ、プリプレダの製造方法、基板および半導体装置
技術分野
[0001] 本発明は、プリプレダ、プリプレダの製造方法、基板および半導体装置に関する。
背景技術
[0002] ガラス繊維基材等のシート状基材に、熱硬化性榭脂を含浸して得られるプリプレダ を用いて、回路基板が形成されている。例えば、特開 2004— 216784号公報に開 示されたプリプレダは、厚さ 50〜200 m程度のガラス繊維基材を熱硬化性榭脂の ワニスに浸漬する方法等によって得られる。
[0003] この方法で得られるプリプレダは、ガラス繊維基材を中心として榭脂組成物が対象 に担持される。換言すれば、このプリプレダは、ガラス繊維基材の両側に、同一組成 の榭脂組成物で構成された同一の厚さを有する榭脂層が設けられた構成となる。
[0004] ところで、近年の電子部品'電子機器等の小型化 ·薄膜ィ匕等に伴って、それに用い られる回路基板等にも小型化 ·薄膜ィ匕が要求される。それに伴い、回路基板には、よ り高密度の回路配線パターン(回路配線部)を形成することが必要となってきている。
[0005] このような高密度の回路配線パターンを形成するために、多層構造の回路基板を 用い、その各層を薄くすることが行なわれている。
[0006] 一般に、多層構造の回路基板を薄くするためには、プリプレダの一方の面に回路 配線パターンを形成し、当該回路配線パターンを、このプリプレダに積層する他のプ リプレダの他方の面側に埋設することが行われる。
[0007] この場合、プリプレダには、一方の面に回路配線パターンを形成するためのメツキ 密着性力 他方の面側に回路配線パターンの間隙を埋め込むための埋め込み性( 成形性)が要求される。
[0008] し力しながら、特許文献 1に記載のプリプレダは、その両側の面に、同一の榭脂組 成物で榭脂層が形成される。このため、特許文献 1に記載のプリプレダでは、榭脂層 を構成する榭脂組成物として、メツキ密着性と埋め込み性との両方の特性を満足する ようなものを選択することが困難である。なお、かかる問題は、プリプレダの薄型化を 図る場合に、特に顕著となる。
[0009] また、プリプレダの 2つの榭脂層の双方に、回路配線パターンを埋設する場合もあ る。
[0010] し力しながら、特許文献 1に記載のプリプレダでは、埋設される 2つの回路配線パタ ーンのサイズ (回路厚さ等)が異なる場合、回路配線パターンを構成する配線同士の 間隙(回路配線パターンの間隙)に充填すべき榭脂組成物の量に過不足が生じるこ とがある。その結果、作製された基板において、側方への榭脂組成物のはみ出しが 生じたり、回路配線パターンを榭脂層に確実に埋設できな力 たり等するという問題 が生じる。
[0011] このように、特許文献 1に記載のプリプレダでは、 A:メツキ密着性と埋め込み性との 両方の特性を付与すること、 B:埋設される回路配線パターンに応じた榭脂組成物の 量を設定することのいずれもが困難である。
[0012] また、これまで、厚さの薄 、ガラス繊維基材を含むプリプレダを製造することは、困 難であった。
発明の開示
[0013] 本発明の目的は、薄膜ィ匕に対応することが可能であり、かつプリプレダの両面に異 なる用途、機能、性能または特性等が付与することができるプリプレダを提供すること にある。
[0014] また、本発明の目的は、薄膜ィ匕に対応することが可能であり、かつ埋設される回路 配線パターンに応じて樹脂組成物の量を設定可能なプリプレダを提供することにある
[0015] さらに、本発明の目的は、上記プリプレダの製造方法、上記プリプレダを有する基 板および半導体装置を提供することにある。
[0016] 上記目的を達成するために、本発明のプリプレダは、シート状基材を含むコア層と
、該コア層の一方の面側に設けられ、第 1榭脂組成物で構成された第 1榭脂層と、 前記コア層の他方の面側に設けられ、第 2榭脂組成物で構成された第 2榭脂層とを 有し、前記第 1榭脂層と前記第 2榭脂層との厚さ、および前記第 1榭脂組成物と前記 第 2榭脂組成物との組成の少なくとも一方が異なっているこことを特徴とする。 [0017] これにより、薄膜ィヒに対応することが可能であり、かつプリプレダの両面に異なる用 途、機能、性能または特性等を付与したり、埋設される回路配線パターンに応じて榭 脂組成物の量を設定可能なプリプレダを提供することができる。
[0018] 本発明のプリプレダでは、前記第 1榭脂組成物と前記第 2榭脂組成物との組成が異 なっており、前記第 1榭脂層上に導体層を形成して使用されることが好ましい。
[0019] 本発明のプリプレダでは、前記第 1榭脂層に前記導体層を接合したとき、前記第 1 榭脂層と、前記導体層とのピール強度は、 0. 5kNZm以上であることが好ましい。
[0020] 本発明のプリプレダでは、前記第 1榭脂層の厚さが、 3〜15 mであることが好まし い。
[0021] 本発明のプリプレダでは、前記第 1榭脂組成物は、硬化性榭脂を含むものであるこ とが好ましい。
[0022] 本発明のプリプレダでは、前記硬化性榭脂は、シァネート榭脂を含むものであるこ とが好ましい。
[0023] 本発明のプリプレダでは、前記シァネート榭脂は、ノボラック型シァネート榭脂を含 むものであることが好まし!/、。
[0024] 本発明のプリプレダでは、前記第 1榭脂組成物は、さらに硬化剤を含むものである ことが好ましい。
[0025] 本発明のプリプレダでは、前記硬ィ匕剤は、イミダゾール系化合物を含むものである ことが好ましい。
[0026] 本発明のプリプレダでは、前記第 1榭脂組成物は、さらに前記硬化性榭脂と種類の 異なる第 2榭脂を含むものであることが好ま 、。
[0027] 本発明のプリプレダでは、前記第 2榭脂は、フエノキシ系榭脂を含むものであること が好ましい。
[0028] 本発明のプリプレダでは、前記第 1榭脂層は、その厚さが前記第 2榭脂層の厚さよ り薄 、ものであることが好まし 、。
[0029] 本発明のプリプレダでは、前記第 1榭脂組成物と前記第 2榭脂組成物との組成が同 一、かつ、前記第 1榭脂層と前記第 2榭脂層との厚さが異なっており、前記シート状 基材の厚さが 25 μ m以下であることが好ましい。 [0030] 本発明のプリプレダでは、前記プリプレダの厚さは、 35 μ m以下であることが好まし い。
[0031] 本発明のプリプレダでは、前記榭脂組成物は、硬化性榭脂を含むものであることが 好ましい。
[0032] 本発明のプリプレダでは、前記硬化性榭脂は、シァネート榭脂を含むものであるこ とが好ましい。
[0033] 本発明のプリプレダでは、前記榭脂組成物は、さらに無機充填材を含むものである ことが好ましい。
[0034] また、本発明のプリプレダの製造方法は、上記プリプレダを製造する方法であって、 前記コア層と、一方の面に前記第 1榭脂組成物が層状に付与された第 1シート材と、 第 2榭脂組成物が層状に付与された第 2シート材とを用意する工程と、前記コア層に 、前記第 1榭脂組成物および前記第 2榭脂組成物が接触するように、前記第 1シート 材および前記第 2シート材を重ね合わせて接合することにより積層体を得る工程と、 前記積層体中から気泡を除去する工程とを有することを特徴とする。
これにより、上記プリプレダを容易かつ安価に製造することができる。
[0035] 本発明のプリプレダの製造方法では、前記コア層と、前記第 1シート材および前記 第 2シート材との接合は、減圧下に行われることが好ましい。
[0036] 本発明のプリプレダの製造方法では、前記積層体中からの気泡の除去は、加熱処 理により行われることが好ま 、。
[0037] 本発明のプリプレダの製造方法では、前記加熱処理は、前記第 1榭脂組成物およ び前記第 2榭脂組成物のうち、融点の高!、方の榭脂組成物の融点以上の温度で行 われることが好ましい。
[0038] 本発明のプリプレダの製造方法では、前記第 1シートは、導電材料で構成されてい るものであることが好まし!/、。
[0039] 本発明のプリプレダの製造方法では、前記第 1シート材および前記第 2シート材は 、それぞれ榭脂シートで構成されているものであり、前記積層体中から気泡を除去す る工程の後、前記積層体力 前記榭脂シートを除去する工程を有することが好ましい [0040] 本発明のプリプレダの製造方法では、前記榭脂シートは、前記榭脂組成物が付与 される面に剥離処理が施されて!/、るものであることが好まし!/、。
[0041] また、本発明の基板は、上記プリプレダと、該プリプレダの前記第 2榭脂層に埋設さ れた回路配線部とを有することを特徴とする。
これにより、薄い厚さの基板が得られる。
[0042] 本発明の基板では、前記プリプレダ全体の厚さを TO [ μ m]とし、前記回路配線部 の高さを tl [ μ m]としたとき、 TOと tlとの差力 5 μ m以下であることが好まし!/、。
[0043] 本発明の基板では、前記プリプレダの面方向の熱膨張係数力 16ppm以下である ことが好ましい。
[0044] また、本発明の基板は、上記プリプレダを積層して得られることを特徴とする。
これにより、薄い厚さの基板が得られる。
[0045] また、本発明の半導体装置は、上記基板と、該基板に搭載された半導体素子とを 有することを特徴とする。
これにより、薄い厚さの半導体装置が得られる。
[0046] また、本発明の半導体装置は、上記基板を有することを特徴とする。
これにより、薄い厚さの半導体装置が得られる。
図面の簡単な説明
[0047] [図 1]図 1は、本発明のプリプレダの一例 (第 1実施形態)を示す断面図である。
[図 2]図 2は、第 1実施形態のプリプレダが有する第 2榭脂層の厚さについて説明する ための断面図である。
[図 3]図 3は、本発明のプリプレダを製造する工程の一例を示す工程図である。
[図 4]図 4は、本発明のプリプレダの一例 (第 2実施形態)を示す断面図である。
[図 5]図 5は、第 2実施形態のプリプレダが有する 2つの榭脂層の厚さの関係を説明 するための断面図である。
[図 6]図 6は、本発明の基板の一例を示す断面図である。
[図 7]図 7は、本発明の半導体装置の一例を示す断面図である。
発明を実施するための最良の形態
[0048] 以下、本発明のプリプレダ、プリプレダの製造方法、基板および半導体装置にっ ヽ て説明する。
[0049] 本発明のプリプレダは、シート状基材を含むコア層と、該コア層の一方の面側に設 けられ、第 1榭脂組成物で構成された第 1榭脂層と、前記コア層の他方の面側に設 けられ、第 2榭脂組成物で構成された第 2榭脂層とを有し、前記第 1榭脂層上に導体 層を形成して使用され、前記第 1榭脂層と前記第 2榭脂層との厚さ、および前記第 1 榭脂組成物と前記第 2榭脂組成物との組成の少なくとも一方が異なっていることを特 徴とする。
[0050] また、本発明のプリプレダの製造方法は、前記コア層と、一方の面に前記第 1榭脂 組成物が層状に付与された第 1シート材と、第 2榭脂組成物が層状に付与された第 2 シート材とを用意する工程と、前記コア層に、前記第 1榭脂組成物および第 2榭脂組 成物が接触するように、前記第 1シート材および前記第 2シート材を重ねて接合する ことにより積層体を得る工程と、前記積層体中から気泡を除去する工程とを有するこ とを特徴とする。
[0051] また、本発明の基板は、上記に記載のプリプレダと、このプリプレダの第 2榭脂層に 埋設された回路配線部とを有することを特徴とする。
[0052] また、本発明の半導体装置は、上記に記載の基板と、この基板に搭載された半導 体素子とを有することを特徴とする。
[0053] <第 1実施形態 >
まず、本発明のプリプレダの好適な実施形態 (第 1実施形態)について図面に基づ いて説明する。
[0054] 図 1は、本発明のプリプレダの一例 (第 1実施形態)を示す断面図である。
なお、以下の説明では、図 1 (以下の各図において同様)中の上側を「上」、下側を「 下」として説明する。
[0055] プリプレダ (多層配線基板形成用榭脂フィルム) 10は、シート状基材 (繊維基材) 1 を含むコア層 11と、コア層 11の一方面側に形成される第 1榭脂層 2および他方の面 側に形成される第 2榭脂層 3と有している。そして、本実施形態のプリプレダ 10では、 第 1榭脂層 2を構成する第 1榭脂組成物と、第 2榭脂層 3を構成する第 2榭脂組成物 との糸且成が異なっている。 [0056] これにより、各層に要求される特性等に応じた榭脂組成物の処方を設計することが できるようになり、その結果として各層に要求される特性を維持した状態でプリプレダ 10全体の厚さを薄くすることもできる。
[0057] 図 1で示されるプリプレダ 10では、第 1榭脂層 2上に(図 1上側)に導体層を形成し て使用される。そのため、第 1榭脂層 2は、導体層との密着性に優れるように設計され る。また、第 2榭脂層 3は、第 1榭脂層 2と異なる特性等が要求されるために、それを 満足するように設計される。
[0058] 以下、各層につ 、て説明する。
[0059] (コア層)
コア層 11は、主としてシート状基材 1で構成されている。コア層 11は、プリプレダ 10 の強度を向上する機能を有して 、る。
[0060] このコア層 11は、シート状基材 1単独で構成されていても良いし、シート状基材 1に 上記の第 1榭脂層 2および第 2榭脂層 3の一部が含浸して 、ても良 、。
[0061] このようなシート状基材 1としては、ガラス織布、ガラス不織布等のガラス繊維基材、 ポリアミド榭脂繊維、芳香族ポリアミド榭脂繊維、全芳香族ポリアミド榭脂繊維等のポ リアミド系榭脂繊維、ポリエステル榭脂繊維、芳香族ポリエステル榭脂繊維、全芳香 族ポリエステル榭脂繊維等のポリエステル系榭脂繊維、ポリイミド榭脂繊維、フッ素榭 脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、 コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有 機繊維基材等の繊維基材、ポリエステル、ポリイミド等の樹脂フィルム等が挙げられる 。これらの中でもガラス繊維基材が好ましい。これにより、プリプレダ 10の強度を向上 することができる。また、プリプレダ 10の熱膨張係数を小さくすることができる。
[0062] このようなガラス繊維基材を構成するガラスとしては、例えば Eガラス、 Cガラス、 Aガ ラス、 Sガラス、 Dガラス、 NEガラス、 Tガラス、 Hガラス等が挙げられる。これらの中で も Sガラス、または、 Tガラスが好ましい。これにより、ガラス繊維基材の熱膨張係数を 小さくすることができ、それによつてプリプレダの熱膨張係数を小さくすることができる
[0063] シート状基材 (繊維基材) 1の厚さは、特に限定されないが、薄いプリプレダ 10を得 る場合には、 30 μ m以下が好ましぐ特に 25 μ m以下が好ましぐ最も 10〜20 μ m が好ましい。シート状基材 1の厚さが前記範囲内であると、後述する基板の強度を維 持しつつ、その薄膜ィ匕を図ることができる。さら〖こは、層間接続の加工性や信頼性に も優れるプリプレダ 10が得られる。
[0064] ここで、「層間接続の加工性」とは、多層構造の回路基板 (以下、単に「多層基板」と 言うこともある。)を作製する際に、上下の回路配線パターン同士での接続を容易(簡 便)に行うことができることを言う。
[0065] また、「層間接続の信頼性 (接続信頼性)」とは、多層基板を作製した後にお ヽて、 上下の回路配線パターン同士での接続が確実になされていること、およびスルーホ ールあるいはビア壁間で短絡しな 、ことを言う。
[0066] (第 1榭脂層)
図 1に示すように第 1榭脂層 2は、コア層 11の一方面側(図 1上側)に形成されてい る。
[0067] 第 1榭脂層 2は、第 1榭脂組成物で構成されており、導体層との密着性に優れるよう な榭脂組成で設計される。
[0068] このような導体層との密着性に優れる第 1榭脂組成物は、硬化性榭脂を含み、必要 に応じて、例えば、硬化助剤 (例えば硬化剤、硬化促進剤等)、無機充填材等のうち の少なくとも 1種を含んで 、る。
[0069] 導体層との密着性を向上させるには、導体層との密着性に優れる硬化性榭脂を使 用する方法、導体層との密着性を向上させる硬化助剤 (例えば硬化剤、硬化促進剤 等)を使用する方法、無機充填材として酸に可溶なものを用いる方法、無機充填材と 有機充填材とを併用する方法等が挙げられる。
[0070] 導体層との密着性に優れる硬化性榭脂としては、例えばユリア (尿素)榭脂、メラミ ン榭脂、ビスマレイミド榭脂、ポリウレタン榭脂、ベンゾォキサジン環を有する榭脂、シ ァネートエステル榭脂、ビスフエノール S型エポキシ榭脂、ビスフエノール F型ェポキ シ榭脂およびビスフエノール Sとビスフエノール Fとの共重合エポキシ榭脂等の熱硬 化性榭脂が好適に用いられる。これらの中でも、特に、シァネート榭脂 (シァネート榭 脂のプレボリマーを含む)を用いるのが好ましい。熱硬化性榭脂(特に、シァネート榭 脂)を用いることにより、プリプレダ 10の熱膨張係数を小さくすること (以下、「低熱膨 張化」と言うこともある。)ができる。さらに、プリプレダ 10の電気特性 (低誘電率、低誘 電正接)等の向上を図ることもできる。
[0071] 前記シァネート榭脂は、例えばハロゲンィ匕シアンィ匕合物とフエノール類とを反応さ せ、必要に応じて加熱等の方法でプレボリマー化することにより得ることができる。具 体的には、ノボラック型シァネート榭脂、ビスフエノール A型シァネート榭脂、ビスフエ ノール E型シァネート榭脂、テトラメチルビスフエノール F型シァネート榭脂等のビスフ ェノール型シァネート樹脂等を挙げることができる。これらの中でもノボラック型シァネ ート榭脂が好ましい。これにより、基板作製後において、硬化後の第 1榭脂組成物の 架橋密度が増加するので、硬化後の第 1榭脂層 2 (得られる基板)の耐熱性および難 燃性の向上を図ることができる。耐熱性の向上は、ノボラック型シァネート榭脂が硬化 反応後にトリアジン環を形成することによるものであると考えられる。また、難燃性の向 上は、ノボラック型シァネート榭脂がその構造上ベンゼン環の割合が高ぐこのベン ゼン環が炭化 (グラフアイト化)しゃすいため、硬化後の第 1榭脂層 2中に炭化した部 分が生じること〖こよるものであると考えられる。さら〖こ、プリプレダ 10を薄膜化 (例えば 、厚さ 35 μ m以下)した場合であってもプリプレダ 10に優れた剛性を付与することが できる。シァネート榭脂またはその硬化物は、特に加熱時における剛性に優れるので 、得られる基板は、半導体素子実装時の信頼性にも特に優れたものとなる。
[0072] 前記ノボラック型シァネート榭脂としては、例えば式 (I)で示されるものを使用するこ とがでさる。
[0073] [化 1]
式( I )
Figure imgf000011_0001
nは任意の整数
[0074] 前記式 (I)で示されるノボラック型シァネート榭脂の平均繰り返し単位 nは、特に限定 されないが、 1〜10が好ましぐ特に 2〜7が好ましい。平均繰り返し単位 nが前記下 限値未満であると、ノボラック型シァネート榭脂は、結晶化しやすくなる傾向を示し、 汎用溶媒に対する溶解性が比較的低下する。このため、ノボラック型シァネート榭脂 の含有量等によっては、第 1榭脂組成物を含むワニス (第 1榭脂層形成用ワニス)の 取り扱いが困難となる場合がある。また、プリプレダ 10を作製した場合にタック性が生 じ、プリプレダ 10同士が接触したとき互いに付着したり、一方のプリプレダ 10の第 1榭 脂組成物が他方のプリプレダ 10に移行する現象 (転写)が生じたりする場合がある。 一方、平均繰り返し単位 nが前記上限値を超えると、第 1榭脂組成物の溶融粘度が 高くなりすぎ、プリプレダ 10を作製する際の効率 (成形性)が低下する場合がある。
[0075] 前記シァネート榭脂等の重量平均分子量は、例えば GPCで測定することができる
[0076] なお、前記シァネート榭脂としては、これをプレボリマー化したものも用いることがで きる。すなわち、前記シァネート榭脂を単独で用いてもよいし、重量平均分子量の異 なるシァネート榭脂を併用したり、前記シァネート榭脂とそのプレボリマーとを併用し たりすることちでさる。
[0077] 前記プレボリマーとは、通常、前記シァネート榭脂を加熱反応などにより、例えば 3 量ィ匕することで得られるものであり、榭脂組成物の成形性、流動性を調整するために 好ましく使用されるものである。
[0078] 前記プレポリマーとしては、特に限定されないが、例えば 3量化率が 20〜50重量 %であるものを用いることができる。この 3量ィ匕率は、例えば赤外分光分析装置を用 いて求めることができる。
[0079] また、後述する導体層との密着性を向上させる硬化剤または硬化促進剤を併用す る場合には、上述の導体層との密着性に優れる硬化性榭脂以外に、例えばフエノー ルノボラック榭脂、クレゾ一ルノボラック榭脂、ビスフエノール Aノボラック榭脂等のノボ ラック型フエノール榭脂、未変性のレゾールフエノール榭脂、桐油、アマ-油、タルミ 油等で変性した油変性レゾールフエノール榭脂等のレゾール型フエノール榭脂等の フエノール榭脂、ビスフエノール Aエポキシ榭脂、ビスフエノール Fエポキシ榭脂等の ビスフエノール型エポキシ榭脂、ノボラックエポキシ榭脂、クレゾ一ルノボラックェポキ シ榭脂等のノボラック型エポキシ榭脂、ビフエ-ル型エポキシ榭脂等のエポキシ榭脂 、不飽和ポリエステル榭脂、ジァリルフタレート榭脂、シリコーン榭脂等の他の熱硬化 性榭脂を用いることもできる。
[0080] さらに、硬化性榭脂には、熱硬化性榭脂の他、例えば、紫外線硬化性榭脂、嫌気 硬化性榭脂等を用いることもできる。
[0081] 前記硬化性榭脂の含有量は、特に限定されないが、前記第 1榭脂組成物全体の 5 〜50重量%が好ましぐ特に 10〜40重量%が好ましい。含有量が前記下限値未満 であると、第 1榭脂組成物の溶融粘度等によっては、プリプレダ 10を形成するのが困 難となる場合がある。一方、前記上限値を超えると、硬化性榭脂の種類や重量平均 分子量等によっては、プリプレダ 10の強度が低下する場合がある。
[0082] 導体層との密着性を向上させる硬化助剤 (例えば硬化剤、硬化促進剤等)としては 、例えばトリェチルァミン、トリブチルァミン、ジァザビシクロ [2, 2, 2]オクタン等の 3級 アミン類、 2 ェチルー 4ーェチルイミダゾール、 2 フエ-ルー 4 メチルイミダゾー ル、 2—フエ-ルー 4—メチル 5 ヒドルキシメチルイミダゾール、 2—フエ-ルー 4, 5 ジヒドロキシメチルイミダゾール、 2, 4 ジァミノ一 6—〔2'—メチルイミダゾリル一 (1,)〕 ェチル—s トリァジン、 2, 4 ジァミノ— 6— (2,—ゥンデシルイミダゾリル) —ェチルー s トリァジン、 2, 4 ジァミノ一 6—〔2,一ェチル 4—メチルイミダゾリ ルー(1,)〕—ェチルー s トリアジン、 1—ベンジル— 2—フエ-ルイミダゾール等のィ ミダゾ一ルイ匕合物が挙げられる。これらの中でも、脂肪族炭化水素基、芳香族炭化 水素基、ヒドロキシアルキル基およびシァノアルキル基の中力 選ばれる官能基を 2 個以上有しているイミダゾールイ匕合物が好ましぐ特に 2 フエ-ルー 4, 5 ジヒドロ キシメチルイミダゾールが好ましい。このようなイミダゾールイ匕合物の使用により、第 1 榭脂組成物の耐熱性を向上させることができると共に、この第 1榭脂組成物で形成さ れる第 1榭脂層 2に低熱膨張性 (熱による膨張率が低 、性質)や、低吸水性を付与す ることがでさる。
[0083] また、前記硬化性榭脂として、導体層との密着性に優れる硬化性榭脂を用いる場 合は、上述の導体層との密着性を向上させる硬化助剤以外に、例えばナフテン酸亜 鉛、ナフテン酸コバルト、ォクチル酸スズ、ォクチル酸コバルト、ビスァセチルァセトナ 一トコバルト(π)、トリスァセチルァセトナートコバルト(III)等の有機金属塩、フエノー ル、ビスフエノール A、ノユルフェノール等のフエノール化合物、酢酸、安息香酸、サリ チル酸、パラトルエンスルホン酸等の有機酸等を組み合わせて用いることができる。
[0084] 前記硬化助剤を用いる場合、その含有量は、特に限定されないが、前記第 1榭脂 組成物全体の 0. 01〜3重量%が好ましぐ特に 0. 1〜1重量%が好ましい。含有量 が前記下限値未満であると、硬化助剤の種類等によっては、硬化性榭脂 (第 1榭脂 組成物)の硬化を促進する効果が十分に現れない場合がある。一方、前記上限値を 超えるとプリプレダ 10の保存時の安定性 (保存安定性)が低下する場合がある。
[0085] なお、導体層との密着性に優れる前記硬化性榭脂と、導体層との密着性を向上さ せる前記硬化助剤を併用することが、第 1榭脂層 2に対して、より優れた導体層との 密着性を付与し得る点で好まし ヽ。
[0086] また、前記第 1榭脂組成物は、無機充填材を含むことが好ましい。これにより、プリ プレダ 10を薄膜化 (例えば、厚さ 35 m以下)にしても、強度に優れるプリプレダ 10 を得ることができる。さらに、プリプレダ 10の低熱膨張ィ匕を向上することもできる。
[0087] 前記無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイ力、水酸ィ匕 アルミニウム、水酸ィ匕マグネシウム等を挙げることができる。これらの中でもシリカが好 ましぐ溶融シリカ (特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。無機 充填材の形状には、破砕状、球状のものがあるが、その使用目的に応じて、その形 状が適宜選択される。例えば、第 1榭脂組成物をシート状基材 1へ確実に含浸するた めには、第 1榭脂組成物の溶融粘度を下げることが好ましいが、この場合、無機充填 材には、球状シリカが好適に使用される。
[0088] 前記無機充填材の平均粒子径は、特に限定されないが、 0. 01〜5. 0 /z mが好ま しぐ特に 0. 2〜2. 0 mが好ましい。無機充填材の粒径が前記下限値未満である と、無機充填材の含有量等によっては、第 1榭脂組成物の溶融時の粘度 (溶融粘度) が高くなるため、プリプレダ 10作製時の作業性に影響を与える場合がある。一方、前 記上限値を超えると、第 1榭脂層形成用ワニス中で無機充填剤の沈降等の現象が起 こる場合がある。なお、無機充填材の平均粒径を前記範囲内とすることで、無機充填 材の使用による効果力 Sバランスよく発揮される。 [0089] この平均粒子径は、例えば粒度分布計 (HORIBA製、 LA— 500)により測定する ことができる。
[0090] 更に、無機充填材としては、平均粒子径 5. 0 μ m以下の球状シリカ(特に球状溶融 シリカ)が好ましぐ特に平均粒子径 0. 01〜2. O ^ m,最も 0. 1〜0. 5 mの球状 溶融シリカを用いるのが好ましい。これにより、第 1榭脂層 2における無機充填材の充 填性 (充填密度)を向上させることができる。さらに、第 1榭脂層 2の上面を緻密な粗 化状態 (表面粗さを比較的小さく)とすることができる。これにより、第 1榭脂層 2上に 導体層を密着性よく形成することができるので、配設密度の高い回路配線パターン( 回路配線部)を形成すること (高密度回路形成)が容易となる。また、さらに高速信号 の伝送に適した回路配線パターンを形成することが可能となる。
[0091] 前記第 1榭脂組成物に用いる無機充填材は、特に限定されないが、後述する第 2 榭脂組成物に用いる無機充填材よりも平均粒子径が小さいほうが好ましい。これによ り、第 1榭脂層 2の上面に、緻密な粗化状態を形成するのが容易となる。
[0092] また、第 1榭脂層 2と導体層との密着性を向上するために、前記無機充填材として 酸に可溶な無機充填材を用いても良い。これにより、導体層を第 1榭脂層 2上にメッ キ法で形成した場合に、その導体層の第 1榭脂層 2に対する密着性 (メツキ密着性) を向上することができる。
[0093] 前記酸に可溶な無機充填材としては、例えば炭酸カルシウム、酸化亜鉛、酸ィ匕鉄 等の金属酸化物等が挙げられる。
[0094] また、第 1榭脂層 2と導体層との密着性を向上するために、前記無機充填材と有機 充填材とを併用しても良い。
[0095] 前記有機充填材としては、例えば液晶ポリマー、ポリイミド等の榭脂系充填材等が 挙げられる。
[0096] 前記無機充填材を用いる場合、その含有量は、特に限定されないが、前記第 1榭 脂組成物全体の 20〜70重量%が好ましぐ特に 30〜60重量%が好ましい。無機充 填材の含有量が前記下限値未満であると、無機充填材の種類等によっては、第 1榭 脂層 2に無機充填材による低熱膨脹性、低吸水性を付与する効果が低下する場合 がある。また、前記上限値を超えると、第 1榭脂組成物の流動性が低下することにより 、第 1榭脂層 2 (プリプレダ 10)の成形性が低下する場合がある。なお、前記無機充填 材の含有量を前記範囲内とすることで、無機充填材の使用による効果力 Sバランスよく 発揮される。
[0097] 前記硬化性榭脂としてシァネート榭脂(特にノボラック型シァネート榭脂)を用いる 場合は、エポキシ榭脂 (実質的にハロゲン原子を含まな ヽ)を併用することが好ま ヽ 。前記エポキシ榭脂としては、例えばフエノールノボラック型エポキシ榭脂、ビスフエノ ール型エポキシ榭脂、ナフタレン型エポキシ榭脂、ァリールアルキレン型エポキシ榭 脂等が挙げられる。これらの中でもァリールアルキレン型エポキシ榭脂が好ましい。こ れにより、硬化後の第 1榭脂層 2 (得られる基板)において、吸湿半田耐熱性 (吸湿後 の半田耐熱性)および難燃性を向上させることができる。
[0098] 前記ァリールアルキレン型エポキシ榭脂とは、繰り返し単位中に一つ以上のァリー ルアルキレン基を有するエポキシ榭脂をいい、例えばキシリレン型エポキシ榭脂、ビ フエ二ルジメチレン型エポキシ榭脂等が挙げられる。これらの中でもビフエ-ルジメチ レン型エポキシ榭脂が好ましい。ビフエ-ルジメチレン型エポキシ榭脂は、例えば式( II)で示すことができる。
[0099] [化 2]
Figure imgf000016_0001
nは任意の整数
[0100] 前記式 (II)で示されるビフヱ-ルジメチレン型エポキシ榭脂の平均繰り返し単位 nは 、特に限定されないが、 1〜 10が好ましぐ特に 2〜5が好ましい。平均繰り返し単位 n が前記下限値未満であると、ビフヱ-ルジメチレン型エポキシ榭脂は、結晶化しやす くなる傾向を示す。このため、ビフエ二ルジメチレン型エポキシ榭脂は、汎用溶媒に対 する溶解性が比較的低下し、結果として、第 1榭脂層形成用ワニスの取り扱いが困難 となる場合がある。一方、平均繰り返し単位 nが前記上限値を超えると、第 1榭脂組成 物の溶融状態での流動性が低下し、プリプレダ 10の成形不良等の原因となる場合が ある。
[0101] 前記エポキシ榭脂を併用する場合、その含有量は、特に限定されないが、前記第 1 榭脂組成物全体の 1〜55重量%が好ましぐ特に 2〜40重量%が好ましい。含有量 が前記下限値未満であると、シァネート榭脂の反応性が低下したり、得られる第 1榭 脂層 2の耐湿性が低下したりする場合がある。一方、前記上限値を超えると、ェポキ シ榭脂の種類等によっては、第 1榭脂層 2の耐熱性が低下する場合がある。
[0102] 前記エポキシ榭脂の重量平均分子量は、特に限定されないが、重量平均分子量 3 00〜20, 000力好ましく、特に 500〜5, 000力 ^好まし!/ヽ。重量平均分子量力前記下 限値未満であると、環境温度等によっては、プリプレダ 10にタック性が生じる場合が 有る。一方、前記上限値を超えると、エポキシ榭脂の種類等によっては、プリプレダ 1 0作製時、第 1榭脂組成物のシート状基材 1 (コア層 11)への含浸性が低下し、均一 な厚さかつ均質なプリプレダ 10が得られない場合がある。
[0103] 前記エポキシ榭脂の重量平均分子量は、例えば GPCで測定することができる。
[0104] また、前記第 1榭脂組成物に導体層との密着性が向上するような成分 (榭脂等を含 む)を添加しても良い。力かる成分としては、例えば、フエノキシ榭脂、ポリビュルアル コール系榭脂、導体層を構成する金属との密着性を向上させるカップリング剤等が 挙げられる。
[0105] 前記フエノキシ榭脂としては、例えばビスフエノール骨格を有するフエノキシ榭脂、 ナフタレン骨格を有するフヱノキシ榭脂、ビフヱニル骨格を有するフヱノキシ榭脂等が 挙げられる。また、これらの骨格を複数種類有した構造のフエノキシ榭脂を用いること ちでさる。
[0106] これらの中でも、ビフヱ-ル骨格およびビスフエノール S骨格を有するフヱノキシ榭 脂を用いることが好ましい。これにより、ビフエニル骨格が有する剛直性により、フエノ キシ榭脂のガラス転移温度を高くすることができると共に、ビスフエノール S骨格により 、フエノキシ榭脂の導体層を構成する金属との密着性を向上させることができる。その 結果、第 1榭脂層 2の耐熱性の向上を図ることができるとともに、多層基板 (多層プリ ント配線板)を製造する際に、第 1榭脂層 2に対するメツキ金属の付着性を向上させる ことができる。
[0107] また、ビスフエノール A骨格およびビスフエノール F骨格を有するフエノキシ榭脂を 用いることも好ましい。これにより、多層プリント配線板の製造時に、回路配線パター ン(内層回路)の第 1榭脂層 2への密着性をさらに向上させることができる。
[0108] さらに、前記ビフヱ-ル骨格およびビスフ ノール S骨格を有するフヱノキシ榭脂と、 ビスフエノール A骨格およびビスフエノール F骨格を有するフエノキシ榭脂とを、併用 することが好ましい。これにより、プリプレダ 10に、これらの特性をバランスよく発現さ せることができる。
[0109] 前記ビスフエノール A骨格およびビスフエノール F骨格を有するフヱノキシ榭脂(1) と、前記ビフヱニル骨格およびビスフエノール S骨格を有するフヱノキシ榭脂(2)とを 併用する場合、その併用比率 (重量)としては特に限定されないが、例えば、(1): (2 ) = 2 : 8〜9: 1とすることができる。
[0110] 前記フエノキシ榭脂の分子量は、特に限定されないが、重量平均分子量が 5, 000 〜70, 000であること力 子ましく、特に 10, 000〜60, 000力 子まし!/、。前記フエノキ シ榭脂の重量平均分子量が前記下限値未満であると、フエノキシ榭脂の種類等によ つては、第 1榭脂組成物に、製膜性 (製膜のし易さ)を向上させる効果を充分に付与 することができない場合がある。一方、前記上限値を超えると、用いる溶媒の種類等 によっては、フエノキシ榭脂の溶解性が低下する場合がある。なお、前記フエノキシ榭 脂の重量平均分子量を上記範囲内とすることにより、フエノキシ榭脂の使用による効 果がバランスよく発揮される。
[0111] フエノキシ榭脂を用いる場合、その含有量は、特に限定されないが、前記第 1榭脂 組成物全体の 1〜40重量%であることが好ましぐ特に 5〜30重量%が好ましい。前 記フエノキシ榭脂の含有量が前記下限値未満であると、フエノキシ榭脂の種類等によ つては、第 1榭脂組成物に、製膜性 (製膜のし易さ)を向上させる効果を充分に付与 することができない場合がある。一方、前記上限値を超えると、相対的に硬化性榭脂 の含有量が少なくなるため、硬化性榭脂としてシァネート榭脂を用いる場合、シァネ ート榭脂の種類やフエノキシ榭脂の種類等によっては、第 1榭脂層 2に低熱膨張性を 付与する効果が低下することがある。なお、フエノキシ榭脂の含有量を前記範囲内と することにより、フヱノキシ榭脂の使用による効果力バランスよく発揮される。
[0112] また、前記第 1榭脂組成物には、カップリング剤を添加(混合)することが好ましい。
前記カップリング剤は、前記硬化性榭脂と、前記無機充填材との界面の濡れ性を向 上させる機能を有している。このため、カップリング剤を第 1榭脂組成物に添加するこ とにより、シート状基材 1に対して硬化性榭脂および無機充填材を均一に定着させる ことができる。このため、第 1榭脂層 2の耐熱性、特に、硬化後の第 1榭脂層 2におけ る吸湿後の半田耐熱性(吸湿半田耐熱性)を改良することができる。
[0113] 前記カップリング剤としては、例えばエポキシシランカップリング剤、チタネート系力 ップリング剤、アミノシランカップリング剤、及び、シリコーンオイル型カップリング剤の 中力も選ばれる 1種以上のカップリング剤を使用すること好ましい。これにより、硬化 性榭脂と無機充填材との界面の濡れ性を特に高めることができ、第 1榭脂層 2の耐熱 '性をより向上させることができる。
[0114] 前記カップリング剤を用いる場合、その含有量は、特に限定されないが、前記無機 充填材 100重量部に対して 0. 05〜3重量部であることが好ましぐ特に 0. 1〜2重 量部が好ましい。含有量が前記下限値未満であると、カップリング剤の種類や、無機 充填材の種類、形状、寸法等によっては、カップリング剤により無機充填材の表面を 十分に被覆できないことがあり、第 1榭脂層 2の耐熱性を向上する効果が低下する場 合がある。一方、前記上限値を超えると、硬化性榭脂の種類等によっては、硬化性榭 脂の硬化反応に影響を与え、硬化後の第 1榭脂層 2 (得られる基板)において、曲げ 強度等が低下する場合がある。なお、カップリング剤の含有量を前記範囲内とするこ とで、カップリング剤の使用による効果力バランスよく発揮される。
[0115] また、前記第 1榭脂組成物は、以上に説明した成分のほか、必要に応じて消泡剤、 レべリング剤、顔料、酸化防止剤等の添加剤を含有することができる。
[0116] このような第 1榭脂組成物で構成されている第 1榭脂層 2の厚さは、特に限定されな いが、 3〜15 111カ 子ましく、特に 5〜: LO /z mが好ましい。厚さが前記範囲内である と、特にプリプレダ 10全体の厚さを薄くすることができる。
[0117] 第 1榭脂層 2 (粗ィ匕処理後)の上面の表面粗さは、特に限定されないが、 以下 が好ましぐ特に 0. 以下が好ましい。前記範囲内であると、第 1榭脂層 2の上面 は、回路配線パターンを形成する際において、回路配線パターンの形状を規定する ために使用するレジストに対する密着性に特に優れたものとなる。したがって、第 1榭 脂層 2上に、微細な回路配線パターンを形成することが可能となる。 [0118] このような第 1榭脂層 2上に形成される導体層としては、例えば銅箔、アルミ箔等の 金属箔、メツキ銅等が挙げられる。これらの中でもメツキ銅が好ましい。これにより、第 1榭脂層 2上に微細な回路配線パターンを容易に形成することができる。
[0119] このような第 1榭脂層 2と導体層(回路配線パターン)とのピール強度は、 0. 5kN/ m以上であるのが好ましぐ 0. 6kNZm以上であるのがより好ましい。これにより、得 られる基板 (多層基板)における接続信頼性をより向上させることができる。
[0120] (第 2榭脂層)
図 1に示すように第 2榭脂層 3は、コア層 11の他方面側(図 1下側)に形成されてい る。本実施形態では、このような第 2榭脂層 3は、前記第 1榭脂組成物と異なる組成の 第 2榭脂組成物で構成されており、第 1榭脂層 2と異なる特性 (例えば回路配線バタ ーンの埋め込み性等)等を有するように設計されて!、る。
[0121] ここで、「榭脂組成物同士の組成が異なる」とは、それぞれの榭脂組成物を構成する 榭脂、充填材等の種類、榭脂、充填材等の含有量、榭脂の分子量等の少なくとも 1 つが異なることを言う。
[0122] 第 2榭脂組成物は、硬化性榭脂を含み、必要に応じて、例えば硬化剤、硬化促進 剤、充填材等のうちの少なくとも 1種を含んでいる。
[0123] 前記硬化性榭脂としては、例えばフエノールノボラック榭脂、クレゾ一ルノボラック榭 脂、ビスフエノール Aノボラック榭脂等のノボラック型フエノール榭脂、未変性のレゾー ルフエノール榭脂、桐油、アマ-油、タルミ油等で変性した油変性レゾールフエノー ル榭脂等のレゾール型フヱノール榭脂等のフエノール榭脂、ビスフエノール Aェポキ シ榭脂、ビスフエノール Fエポキシ榭脂等のビスフエノール型エポキシ榭脂、ノボラッ クエポキシ榭脂、クレゾ一ルノボラックエポキシ榭脂等のノボラック型エポキシ榭脂、 ビフエ-ル型エポキシ榭脂等のエポキシ榭脂、ユリア (尿素)榭脂、メラミン榭脂等のト リアジン環を有する榭脂、不飽和ポリエステル榭脂、ビスマレイミド榭脂、ポリウレタン 榭脂、ジァリルフタレート榭脂、シリコーン榭脂、ベンゾォキサジン環を有する榭脂、 シァネート榭脂等の熱硬化性榭脂が好適に用いられる。
[0124] これらの中でも、特に、シァネート榭脂(シァネート榭脂のプレボリマーを含む)が好 ましい。熱硬化性榭脂 (特に、シァネート榭脂)を用いることにより、プリプレダ 10の熱 膨張係数を小さくすることができる。さらに、プリプレダ 10を、電気特性 (低誘電率、低 誘電正接)等にも優れたものとすることができる。
[0125] 前記シァネート榭脂は、例えばハロゲンィ匕シアンィ匕合物とフエノール類とを反応さ せ、必要に応じて加熱等の方法でプレボリマー化することにより得ることができる。具 体的には、ノボラック型シァネート榭脂、ビスフエノール A型シァネート榭脂、ビスフエ ノール E型シァネート榭脂、テトラメチルビスフエノール F型シァネート榭脂等のビスフ ェノール型シァネート樹脂等を挙げることができる。これらの中でもノボラック型シァネ ート榭脂が好ましい。これにより、基板作製後において、硬化後の第 2榭脂組成物の 架橋密度が増加するので、硬化後の第 2榭脂層 3 (得られる基板)の耐熱性および難 燃性の向上を図ることができる。耐熱性の向上は、ノボラック型シァネート榭脂が硬化 反応後にトリアジン環を形成することによるものであると考えられる。また、難燃性の向 上は、ノボラック型シァネート榭脂がその構造上ベンゼン環の割合が高ぐこのベン ゼン環が炭化 (グラフアイト化)しゃすいため、硬化後の第 2榭脂層 3中に炭化した部 分が生じること〖こよるものであると考えられる。さら〖こ、プリプレダ 10を薄膜化 (例えば 、厚さ 35 μ m以下)した場合であってもプリプレダ 10に優れた剛性を付与することが できる。シァネート榭脂またはその硬化物は、特に加熱時における剛性に優れるので 、得られる基板は、半導体素子実装時の信頼性にも特に優れたものとなる。
[0126] 前記ノボラック型シァネート榭脂としては、例えば式 (I)で示されるものを使用するこ とがでさる。
[0127] [化 3]
式( I )
Figure imgf000021_0001
nは任意の整数 前記式 (I)で示されるノボラック型シァネート榭脂の平均繰り返し単位 nは、特に限定 されないが、 1〜10が好ましぐ特に 2〜7が好ましい。平均繰り返し単位 nが前記下 限値未満であると、ノボラック型シァネート榭脂は、結晶化しやすくなる傾向を示し、 汎用溶媒に対する溶解性が比較的低下する。このため、ノボラック型シァネート榭脂 の含有量等によっては、第 2榭脂組成物を含むワニス (第 2榭脂層形成用ワニス)の 取り扱いが困難となる場合がある。一方、平均繰り返し単位 nが前記上限値を超える と、第 2榭脂組成物の溶融粘度が高くなりすぎ、プリプレダ 10を作製する際の効率( 成形性)が低下する場合がある。
[0129] 前記シァネート榭脂の重量平均分子量は、特に限定されないが、重量平均分子量 500〜4, 500力好ましく、特に 600〜3, 000力 ^好まし!/ヽ。重量平均分子量力前記下 限値未満であると、プリプレダ 10を作製した場合にタック性が生じ、プリプレダ 10同 士が接触したとき互いに付着したり、第 2榭脂組成物の転写が生じたりする場合があ る。一方、重量平均分子量が前記上限値を超えると、シァネート榭脂の反応が速くな りすぎ、基板 (特に回路基板)とした場合に、成形不良が生じたり、層間ピール強度が 低下したりする場合がある。
[0130] 前記シァネート榭脂等の重量平均分子量は、例えば GPCで測定することができる
[0131] また、前記シァネート榭脂として、重量平均分子量が異なるシァネート榭脂を併用 しても良い。これにより、プリプレダ 10のタック性を改良できる場合がある。
[0132] なお、硬化性榭脂には、熱硬化性榭脂の他、例えば、紫外線硬化性榭脂、嫌気硬 化性榭脂等を用いることもできる。
[0133] 前記硬化性榭脂の含有量は、特に限定されな!、が、前記第 2榭脂組成物全体の 5 〜50重量%が好ましぐ特に 20〜40重量%が好ましい。含有量が前記下限値未満 であると、第 2榭脂組成物の溶融粘度等によっては、プリプレダ 10を形成するのが困 難となる場合がある。一方、前記上限値を超えると、硬化性榭脂の種類や重量平均 分子量等によっては、プリプレダ 10の強度が低下する場合がある。
[0134] また、前記第 2榭脂組成物は、無機充填材を含むことが好ましい。これにより、プリ プレダ 10を薄膜化 (例えば、厚さ 35 m以下)にしても、強度に優れるプリプレダ 10 を得ることができる。さらに、プリプレダ 10の低熱膨張ィ匕を向上することもできる。
[0135] 前記無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイ力、水酸ィ匕 アルミニウム、水酸ィ匕マグネシウム等を挙げることができる。これらの中でもシリカが好 ましぐ溶融シリカ (特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。無機 充填材の形状には、破砕状、球状のものがあるが、その使用目的に応じて、その形 状が適宜選択される。例えば、第 2榭脂組成物をシート基材 1へ確実に含浸するため には、第 2榭脂組成物の溶融粘度を下げることが好ましいが、この場合、無機充填材 には、球状シリカが好適に使用される。
[0136] 前記無機充填材の平均粒子径は、特に限定されないが、 0. 01〜5. 0 /z mが好ま しぐ特に 0. 2〜2. 0 mが好ましい。無機充填材の粒径が前記下限値未満である と、無機充填材の含有量等によっては、第 2榭脂組成物の溶融粘度が高くなるため、 プリプレダ 10作製時の作業性に影響を与える場合がある。一方、前記上限値を超え ると、第 2榭脂層形成用ワニス中で無機充填剤の沈降等の現象が起こる場合がある。
[0137] この平均粒子径は、例えば粒度分布計 (HORIBA製、 LA— 500)により測定する ことができる。
[0138] 更に、無機充填材としては、平均粒子径 5. 0 μ m以下の球状シリカ(特に球状溶融 シリカ)が好ましぐ特に平均粒子径 0. 01〜2. 0 mの球状溶融シリカを用いるのが 好ましい。これにより、第 2の榭脂層 3における無機充填剤の充填性 (充填密度)を向 上させることができる。
[0139] 前記無機充填材を用いる場合、その含有量は、特に限定されないが、前記第 2榭 脂組成物全体の 40〜80重量%が好ましぐ 50〜70重量%カより好ましく、 60〜70 重量%がさらに好ましい。含有量が前記範囲内であると、第 2榭脂層 3に、特に優れ た低熱膨張性および低吸水性を付与することができる。
[0140] 前記硬化性榭脂としてシァネート榭脂(特にノボラック型シァネート榭脂)を用いる 場合は、エポキシ榭脂 (実質的にハロゲン原子を含まな ヽ)を併用することが好ま ヽ 。前記エポキシ榭脂としては、例えばフエノールノボラック型エポキシ榭脂、ビスフエノ ール型エポキシ榭脂、ナフタレン型エポキシ榭脂、ァリールアルキレン型エポキシ榭 脂等が挙げられる。これらの中でもァリールアルキレン型エポキシ榭脂が好ましい。こ れにより、硬化後の第 2榭脂層 3 (得られる基板)において、吸湿半田耐熱性 (吸湿後 の半田耐熱性)および難燃性を向上させることができる。 [0141] 前記ァリールアルキレン型エポキシ榭脂とは、繰り返し単位中に一つ以上のァリー ルアルキレン基を有するエポキシ榭脂をいう。例えばキシリレン型エポキシ榭脂、ビフ ェ-ルジメチレン型エポキシ榭脂等が挙げられる。これらの中でもビフエ-ルジメチレ ン型エポキシ榭脂が好ましい。ビフエ二ルジメチレン型エポキシ榭脂は、例えば式 (II )で示すことができる。
[0142] [化 4]
Figure imgf000024_0001
[0143] 前記式 (II)で示されるビフヱ-ルジメチレン型エポキシ榭脂の平均繰り返し単位 nは 、特に限定されないが、 1〜 10が好ましぐ特に 2〜5が好ましい。平均繰り返し単位 n が前記下限値未満であると、ビフヱ-ルジメチレン型エポキシ榭脂は結晶化しやすく なる傾向を示す。このため、ビフエ二ルジメチレン型エポキシ榭脂は、汎用溶媒に対 する溶解性が比較的低下し、結果として、第 2榭脂組成物形成用ワニスの取り扱いが 困難となる場合がある。一方、平均繰り返し単位 nが前記上限値を超えると、第 2榭脂 組成物の溶融時の流動性が低下し、プリプレダ 10の成形不良等の原因となる場合 がある。
[0144] 前記エポキシ榭脂を併用する場合、その含有量は、特に限定されないが、前記第 2 榭脂組成物全体の 1〜55重量%が好ましぐ特に 2〜40重量%が好ましい。含有量 が前記下限値未満であると、シァネート榭脂の反応性が低下したり、得られるプリプ レグ 10の耐湿性が低下したりする場合がある。一方、前記上限値を超えると、ェポキ シ榭脂の種類等によっては、プリプレダ 10の耐熱性が低下する場合がある。
[0145] 前記エポキシ榭脂の重量平均分子量は、特に限定されないが、重量平均分子量 5 00〜20, 000力好ましく、特に 800〜15, 000力 ^好まし!/ヽ。重量平均分子量力前記 下限値未満であると、環境温度等によっては、プリプレダ 10にタック性が生じる場合 が有る。一方、前記上限値を超えると、エポキシ榭脂の種類等によっては、プリプレダ 10作製時、第 2榭脂組成物のシート状基材 1 (コア層 11)への含浸性が低下し、均一 な厚さかつ均質なプリプレダ 10が得られない場合がある。 [0146] 前記エポキシ榭脂の重量平均分子量は、例えば GPCで測定することができる。
[0147] また、前記熱硬化性榭脂としてシァネート榭脂 (特にノボラック型シァネート榭脂)を 用いる場合は、フエノール榭脂を併用することが好ましい。前記フエノール榭脂として は、例えばノボラック型フエノール榭脂、レゾール型フエノール榭脂、ァリールアルキ レン型フ ノール榭脂等が挙げられる。これらの中でもァリールアルキレン型フエノー ル榭脂が好ましい。これにより、硬化後の第 2榭脂層 3 (得られる基板)において、さら に吸湿半田耐熱性を向上させることができる。
[0148] 前記ァリールアルキレン型フエノール榭脂としては、例えばキシリレン型フエノール 榭脂、ビフエ-ルジメチレン型フエノール榭脂等が挙げられる。ビフエ-ルジメチレン 型フエノール榭脂は、例えば式 (III)で示すことができる。
[0149] [化 5] 式 (I I I )
Figure imgf000025_0001
[0150] 前記式 (III)で示されるビフエ二ルジメチレン型フエノール榭脂の繰り返し単位 nは、 特に限定されないが、 1〜12が好ましぐ特に 2〜8が好ましい。平均繰り返し単位 n が前記下限値未満であると、ビフエ-ルジメチレン型フエノール榭脂の含有量等によ つては、第 2榭脂層 3の耐熱性が低下する場合がある。一方、前記上限値を超えると 、ビフエ-ルジメチレン型フエノール榭脂は、他の榭脂 (硬化性榭脂)との相溶性が低 下する傾向を示し、プリプレダ 10作製時の作業性が低下する場合がある。
[0151] 前述のシァネート榭脂(特にノボラック型シァネート榭脂)とァリールアルキレン型フ エノール榭脂との組合せにより、硬化後の第 2榭脂組成物の架橋密度をコントロール することができ、回路配線パターン (金属)と硬化後の第 2榭脂層 3 (第 2榭脂組成物) との密着性を向上することができる。
[0152] 前記フエノール榭脂を併用する場合、その含有量は、特に限定されないが、前記第 2榭脂組成物全体の 1〜55重量%が好ましぐ特に 5〜40重量%が好ましい。含有 量が前記下限値未満であると、フエノール榭脂の種類等によっては、第 2榭脂層 3の 耐熱性が低下する場合がある。一方、前記上限値を超えると、フエノール榭脂の種類 等によっては、第 2榭脂層 3の低熱膨張性が損なわれる場合がある。
[0153] 前記フエノール榭脂の重量平均分子量は、特に限定されないが、重量平均分子量 400〜18, 000力好ましく、特に 500〜15, 000力 ^好まし!/ヽ。重量平均分子量力前 記下限値未満であると、環境温度等によっては、プリプレダ 10にタック性が生じる場 合が有る。一方、前記上限値を超えると、フエノール榭脂の種類等によっては、プリプ レグ 10作製時、第 2榭脂組成物のシート状基材 1 (コア層 11)への含浸性が低下し、 均一な厚さかつ均質なプリプレダ 10が得られない場合がある。
[0154] 前記フエノール榭脂の重量平均分子量は、例えば GPCで測定することができる。
[0155] 更に、前記シァネート榭脂 (特にノボラック型シァネート榭脂)と前記フエノール榭脂
(ァリールアルキレン型フエノール榭脂、特にビフエ-ルジメチレン型フエノール榭脂) と前記エポキシ榭脂(ァリールアルキレン型エポキシ榭脂、特にビフエ-ルジメチレン 型エポキシ榭脂)との組合せを用いて基板 (特に回路基板)を作製した場合、特に優 れた寸法安定性を有するプリプレダ 10を得ることが出来る。
[0156] また、前記第 2榭脂組成物には、カップリング剤を添加(混合)することが好ま 、。
前記カップリング剤は、前記硬化性榭脂と、前記無機充填材との界面の濡れ性を向 上させる機能を有している。このため、カップリング剤を第 2榭脂組成物に添加するこ とにより、シート状基材 1に対して硬化性榭脂および無機充填材を均一に定着させる ことができる。このため、第 2榭脂層 3の耐熱性、特に、硬化後の第 2榭脂層 3におけ る吸湿後の半田耐熱性(吸湿半田耐熱性)を改良することができる。
[0157] 前記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的 にはエポキシシランカップリング剤、カチォニックシランカップリング剤、アミノシラン力 ップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の 中力も選ばれる 1種以上のカップリング剤を使用することが好ましい。これにより、硬 化性榭脂と無機充填材の界面との濡れ性を高くすることができ、それによつて、第 2 の榭脂層 3の耐熱性をより向上させることできる。
[0158] 前記カップリング剤を用いる場合、その添加量は、前記無機充填材の表面積に依 存するので特に限定されないが、無機充填材 100重量部に対して 0. 05〜3重量部 が好ましぐ特に 0. 1〜2重量部が好ましい。含有量が前記下限値未満であると、力 ップリング剤の種類や、無機充填材の種類、形状、寸法等によっては、カップリング剤 により無機充填材の表面を十分に被覆できないことがあり、第 2榭脂層 3の耐熱性を 向上する効果が低下する場合がある。一方、前記上限値を超えると、硬化性榭脂の 種類等によっては、硬化性榭脂の硬化反応に影響を与え、硬化後の第 2の榭脂層 3 (得られる基板)において、曲げ強度等が低下する場合がある。
[0159] また、前記第 2榭脂組成物には、必要に応じて硬化促進剤を添加 (混合)するように してもよい。前記硬化促進剤としては、公知の物を用いることが出来る。力かる硬化促 進剤としては、例えばナフテン酸亜鉛、ナフテン酸コバルト、ォクチル酸スズ、ォクチ ル酸コノ ルト、ビスァセチルァセトナートコバルト(Π)、トリスァセチルァセトナートコバ ルト(III)等の有機金属塩、トリェチルァミン、トリブチルァミン、ジァザビシクロ [2, 2, 2]オクタン等の 3級ァミン類、 2—フエ-ルー 4ーメチルイミダゾール、 2—ェチルー 4 —ェチルイミダゾール、 2—フエ-ルー 4—メチルイミダゾール、 2—フエ-ルー 4—メ チル— 5—ヒドロキシイミダゾール、 2—フエ-ルー 4, 5—ジヒドロキシイミダゾール等 のイミダゾール類、フエノール、ビスフエノール A、ノ-ルフエノール等のフエノール化 合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸等、またはこ の混合物が挙げられる。
[0160] 前記硬化促進剤を用いる場合、その含有量は、特に限定されないが、前記第 2榭 脂組成物全体の 0. 05〜5重量%が好ましぐ特に 0. 2〜2重量%が好ましい。含有 量が前記下限値未満であると、硬化性榭脂の種類等によっては、硬化性榭脂の硬化 反応を促進する効果が十分に現れない場合がある。一方、前記上限値を超えると、 硬化促進剤の種類等によっては、プリプレダ 10の保存安定性が低下する場合がある
[0161] なお、前記第 1榭脂組成物および第 2榭脂組成物では、フエノキシ榭脂、ポリイミド 榭脂、ポリアミドイミド榭脂、ポリフエ二レンオキサイド榭脂、ポリエーテルスルホン榭脂 等の熱可塑性榭脂を併用しても良 、。
[0162] また、前記第 2榭脂組成物には、必要に応じて、顔料、酸化防止剤等の上記成分 以外の添加物を添カ卩しても良い。
[0163] このような第 2榭脂層 3の厚さは、埋設される内層回路(回路配線パターン)の厚さ に依存するために特に限定されないが、下記式 1)で示される t2の厚さが 0. 1〜5 mとなることが好ましぐ特に 1〜3 mとなることが好ましい。厚さが前記範囲内であ ると、特に内層回路(回路配線部 4)の埋め込み性 (成形性)に優れ、かつ全体の厚さ の薄 、プリプレダ 10を得ることができる。
[0164] 式 1) Bl =tl X (l -S/100) +t2
[0165] ここで、図 1に示すように、第 2榭脂層 3の厚さを Bl [ m]とし、図 2に示すように、回 路配線部(内層回路) 4の厚さを 1 [ μ m]およびその残銅率を S [%]とし、回路配線 部 4の上面 41から第 2榭脂層 3の上面 31までの厚さを t2とする。
[0166] なお、図 1では、第 2榭脂層 3の厚さ Bl >第 1樹脂層 2の厚さ B2となっているように 記載されている力 本実施形態では、 B1 = B2であってもよぐ B1 < B2となっていて ちょい。
[0167] このような第 2榭脂層 3の面 (X、 Y)方向の熱膨張係数は、特に限定されないが、 2 Oppm以下が好ましぐ特に 5〜16ppmが好ましい。熱膨張係数が前記範囲内であ ると、プリプレダ 10は、特に接続信頼性に優れたものとなり、得られる基板は、半導体 素子等の実装信頼性に優れたものとなる。
[0168] 次に、このようなプリプレダ 10は、例えば、次のようにして製造することができる。
[0169] まず、第 1榭脂組成物をキャリアフィルム (第 1シート材)に層状に塗布 (付与)したキ ャリア材料 2aおよび第 2榭脂組成物をキャリアフィルム (第 2シート材)に層状に塗布 ( 付与)したキャリア材料 3aとを製造する。
[0170] 次に、これらのキャリア材料 2a、 3aをシート状基材 1 (またはコア層 11)にラミネート( 重ね合わせて)接合することにより積層体を得る。
[0171] 次に、必要に応じて、得られた積層体から、各キャリアフィルム (第 1シート材および 第 2シート材)を剥離することにより、プリプレダ 10の両面で各榭脂層を構成する榭脂 組成物の組成が異なるプリプレダ 10を得ることができる。
[0172] ここで、予め榭脂組成物がキャリアフィルムに塗布されたキャリア材料 2a、 3aを製造 し、このキャリア材料 2a、 3aをシート状基材 1にラミネートした後、キャリアフィルムを剥 離する方法について、図 3を用いて具体的に説明する。図 3は、本発明のプリプレダ を製造する工程の一例を示す工程図である。 [0173] まず、シート状基材 1 (またはコア層 11)と、上述したような第 1榭脂組成物で構成さ れた榭脂層(第 1榭脂層 2)を有するキャリア材料 2aおよび上述したような第 2榭脂組 成物で構成された榭脂層 (第 2榭脂層 3)を有するキャリア材料 3aとを用意する。
[0174] キャリア材料 2a、 3aは、例えばキャリアフィルムに、それぞれ第 1榭脂組成物、第 2 榭脂組成物を含むワニス (第 1榭脂層形成用ワニス、第 2榭脂層形成用ワニス)を塗 ェする方法等により得ることができる。
[0175] 次に、真空ラミネート装置 8を用いて、減圧下でシート状基材 1の両面から、それぞ れ、榭脂層 (第 1榭脂組成物および第 2榭脂組成物)がシート状基材 1に接触するよう に、キャリア材料 2aおよび 3aを重ね合わせて、ラミネートロール 81で接合する。
[0176] なお、シート状基材 1とキャリア材料 2aおよび 3aとの接合は、常圧下で行うようにし てもよいが、減圧下で行うようにするのが好ましい。減圧下で接合することにより、シー ト状基材 1の内部または各キャリア材料 2a、 3aとシート状基材 1との接合部位に非充 填部分が存在しても、これを減圧ボイドある ヽは実質的な真空ボイドとすることができ る。ゆえに、最終的に得られるプリプレダ 10はボイド (気泡)等の発生がなぐ良好な 成形状態にすることができる。なぜなら、減圧ボイドまたは真空ボイドは、後述する気 泡除去工程 (例えば、加熱処理)で消し去ることができるからである。
[0177] このような減圧下でシート状基材 1とキャリア材料 2a、 3aとを接合する他の装置とし ては、例えば真空ボックス装置等を用いることができる。
[0178] 次に、シート状基材 1と各キャリア材料 2a、 3aとを接合した後、熱風乾燥装置 9で各 キャリア材料 2a、 3aを構成する榭脂組成物 (第 1榭脂組成物および第 2榭脂組成物 のうち、融点の高い方の榭脂組成物)の溶融以上の温度で加熱処理する。これにより 、前記減圧下での接合工程で発生していた減圧ボイド等を消し去ることができる。す なわち、得られた積層体中から気泡の除去を行うことができる。
[0179] 前記加熱処理する他の方法は、例えば赤外線加熱装置、加熱ロール装置、平板 状の熱盤プレス装置等を用いて実施することができる。
[0180] なお、得られた積層体中力 の気泡の除去は、加熱処理の他、例えば、積層体に 対して超音波振動を与えること等によっても行うことができる。また、加熱処理と超音 波振動の付与とを組み合わせて行うようにしてもょ 、。 [0181] 次に、キャリア材料 2a、 3aのキャリアフィルム力 それぞれ榭脂シートで構成されて いる場合、得られた積層体力 榭脂シートを除去する。これにより、プリプレダ 10が得 られる。
[0182] この場合、キャリアフィルムの榭脂組成物が付与される面には、それぞれ剥離処理 が施されているのが好ましい。これにより、積層体力 キャリアフィルムをより容易かつ 確実に剥離 (除去)することができる。
[0183] また、プリプレダ 10は、第 1榭脂層 2の上面に導体層が設けられる力 キャリア材料 2aのキャリアフィルム (第 1シート材)が導電材料で構成されている場合、このキャリア フィルムを積層体力 剥離することなぐ導体層として用いるようにしてもよい。これに より、プリプレダ 10 (第 1榭脂層 2)の上面に、別途、導体層を設ける必要がない。この ため、基板 (積層基板)の製造コストの削減、ひいては、半導体装置の製造コストの削 減を図ることができる。
[0184] 上述の方法によると、厚さ 25 m以下のシート状基材 1を用いてもプリプレダ 10を 容易に得ることができるようになる。
[0185] ここで、従来のプリプレダの製造方法 (例えば通常の塗工装置を用いて、シート状 基材を榭脂ワニスに浸漬含浸 '乾燥させる方法)では、厚さが 30 m以下のシート状 基材に榭脂材料を担持してプリプレダを得るのが困難であった。すなわち、厚さが薄 いシート状基材を熱硬化性榭脂に浸漬して多数の搬送ロールを通したり、シート状 基材に含浸させる榭脂材料の量を調整したりする際に、シート状基材に応力が作用 し、シート状基材の目が開いてしまったり(拡大してしまったり)、引き取る際にシート 状基材が切断してしまったりする場合があった。
[0186] これに対して、上述の方法では、厚さが比較的薄い (例えば、厚さ 25 m以下)の シート状基材 1に対してもキャリア材料 2a、 3aを担持することができ、それによつて通 常の厚さのプリプレダ 10のみならず、厚さが 35 μ m以下(比較的薄型)のプリプレダ 10を容易に得ることができる。
[0187] その結果、基板を成形した後のプリプレダ 10の厚さが導体回路層間(上下の回路 配線パターン同士の間)で 35 m以下にもできる。このように、導体回路層間の厚さ を 35 m以下にできると、最終的に得られる基板の厚さを薄くすることができる。 [0188] また、このようなプリプレダ 10を得る他の方法としては、例えばシート状基材 1の一 方の面に粘度の低い第 1榭脂層形成用ワニスに付与し、乾燥して第 1榭脂層 2を形 成し、さらに、第 2榭脂層形成用ワニスに付与し、乾燥して第 2榭脂層 3を形成するこ とにより、プリプレダ 10を得ることもできる。
[0189] このようなプリプレダ 10の面方向の熱膨張係数は、特に限定されないが、 16ppm 以下であることが好ましぐ 12ppm以下であることがより好ましぐ 5〜: LOppmであるこ とがさらに好ましい。熱膨張係数が前記範囲内であると、得られる基板において、繰り 返しの熱衝撃に対する耐クラック性を向上することができる。
[0190] 前記面方向の熱膨張係数は、例えば TMA装置 (TAインスツルメント社製)を用い て、 10°CZ分で昇温して評価することができる。
[0191] なお、このようなプリプレダ 10の厚さは、特に限定されない。ただし、本実施形態の プリプレダ 10では、その厚さが 20〜80 μ mであることが好ましぐ特に 30〜60 μ m であることが好ましい。厚さが前記範囲内であると、最終的に得られる基板の厚さを 特に薄くすることができる。
[0192] なお、本実施形態のプリプレダ 10では、次の第 2実施形態と同様に、シート状基材 1がプリプレダ 10の厚さ方向に対して偏在していてもよい。すなわち、第 1榭脂層 2と 第 2榭脂層 3との厚さが異なっていてもよい。これにより、例えば、第 1榭脂層 2と第 2 榭脂層 3との両方に回路配線パターンを埋設する場合等には、プリプレダ 10に埋設 (接合)される回路配線パターンに応じて、榭脂組成物の量を調整することができる。
[0193] また、特に、第 1榭脂層 2上に導体層(回路配線パターン)を形成する場合、第 1榭 脂層 2の厚さを第 2の榭脂層 3の厚さより薄く設定するのが好ましい。これにより、第 1 榭脂層 2の剛性を高めることができるので、導体層をより容易かつ確実に形成するこ とがでさる。
[0194] <第 2実施形態 >
次に、プリプレダの好適な実施形態 (第 2実施形態)について図面に基づいて説明 する。
[0195] 以下、第 2実施形態のプリプレダについて、前記第 1実施形態のプリプレダとの相 違点を中心に説明し、同様の事項については、その説明を省略する。 [0196] 図 4および図 5は、本発明のプリプレダの一例 (第 2実施形態)を示す断面図である
。なお、図 4は、図 5と上下が反対になっている。
[0197] 第 2実施形態のプリプレダ 10は、前記第 1実施形態のプリプレダ 10において、第 1 榭脂層 2および第 2榭脂層 3をそれぞれ構成する第 1榭脂組成物と第 2榭脂組成物と の組成が同一であり、かつ第 1榭脂層 2と第 2榭脂層 3との厚さが異なっている。
[0198] 換言すれば、第 2実施形態のプリプレダ 10は、図 4に示すように、シート状基材 (繊 維基材) 1の両側の面に榭脂組成物が担持されて構成され、かつシート状基材 1 (ま たはコア層 11)がプリプレダ 10の厚さ方向(A方向)に対して偏在して!/、る。
[0199] ここで、「シート状基材 1 (またはコア層 11)がプリプレダ 10に対して偏在している状 態」とは、図 4 (a)、(b)に示すように、プリプレダ 10の厚さ方向の中心線 A— Aに対し て、シート状基材 1の中心がずれて配置されて 、ることを意味する。
[0200] 図 4 (a)では、シート状基材 1の下側(図 4中下側)の面が、プリプレダ 10の下側(図
4中下側)の面とほぼ一致するようになっている。
[0201] また、図 4 (b)では、シート状基材 1が中心線 A— Aと、プリプレダ 10の下側(図 4中 下側)の面との間に配置されている。なお、シート状基材 1が中心線 A— Aに一部重 なるようになって!/、ても良!、。
[0202] なお、シート状基材 1がプリプレダ 10の厚さ方向に偏在している状態は、図 4 (a)、 ( b)のうちのいずれでもよいが、図 4 (b)に示す状態、すなわち、図 5に示す状態が好 ましい。
[0203] 具体的には、図 4 (b)に示すように、厚さの厚 、 (大き 、)の榭脂層(第 2榭脂層 3)の 厚さ B1 [ μ m]とし、厚さの薄 、 (小さ 、)の榭脂層(第 1榭脂層 2)の厚さ B2 [ m]と したときの比(B2ZB1)力 0<B2ZB1< 1を満たせば良い。
[0204] また、厚さの厚い榭脂層(図 5中、下側の榭脂層)の厚さ B1と、厚さの薄い榭脂層( 図 5中、上側の榭脂層)の厚さ B2との比(B2ZB1)は、特に限定されないが、 0. 5以 下であることが好ましぐ特に 0. 2〜0. 4が好ましい。比が前記範囲内であると、特に シート状基材 1の波打ちを低減でき、それによつてプリプレダ 10の平坦性をより向上 できる。
[0205] 前記厚さ B2の値は、特に限定されないが、プリプレダ 10の表面(図 5中の上面)に 対して、主にメツキ密着性を付与することを目的とする場合は、 5〜15 mが好ましく
、特に 8〜 10 mが好ましい。これにより、プリプレダ 10の上面(一方の面)にメツキ密 着性を確実に付与することができる。
[0206] また、本実施形態では、シート状基材 1は、その厚さが 25 μ m以下とされている。こ れにより、プリプレダ 10の厚さを薄くすることができる。
[0207] このシート状基材 1の厚さは、具体的には 20 μ m以下が好ましぐ特に 10〜15 μ mが好ましい。シート状基材 1の厚さが前記範囲内であると、後述する基板の強度を 維持しつつ、その薄膜ィ匕を図ることができる。さら〖こは、層間接続の加工性や信頼性 にも優れるプリプレダ 10が得られる。
[0208] なお、シート状基材 (繊維基材) 1には、前記第 1実施形態と同様のものを用いること ができる。
[0209] また、榭脂組成物には、前記第 1実施形態の第 2榭脂組成物と同様のものを用いる ことができる。
[0210] 本実施形態のプリプレダ 10も、前記第 1実施形態と同様にして製造することができ る。
[0211] なお、本実施形態の場合、前記第 1榭脂組成物と前記第 2榭脂組成物との組成を 同一とし、キャリア材料 2aが有する榭脂層の厚さを、キャリア材料 3aが有する榭脂層 の厚さよりも薄くなるように設定する。
[0212] このようにして、厚さが比較的薄い (例えば、厚さ 25 m以下)のシート状基材 1が プリプレダ 10の厚さ方向に偏在しているプリプレダ 10を得ることができる。
[0213] また、キャリア材料 2a、 3aが有する榭脂層の厚さを変えることにより、容易にプリプ レグ 10の厚さを 35 μ m以下とすることもできる。プリプレダ 10の厚さが 35 μ m以下で あると、多層基板であっても、薄くすることができる。これにより、最終的に得られる半 導体装置を薄型にすることができる。
[0214] なお、このプリプレダ 10の厚さは、特に限定されな!、。ただし、本実施形態のプリプ レグ 10では、その厚さが 30 μ m以下であることが好ましぐ特に 20〜25 μ m以下で あることが好ましい。厚さが前記範囲内であると、特に 6層以上に多層化しても基板を 薄い状態に維持でき、最終的に薄い半導体装置を得ることができる。 [0215] ここで、従来のプリプレダの製造方法では、シート状基材の両面に榭脂組成物が対 象に付与されていた。すなわち、従来のプリプレダは、シート状基材の両面に同一厚 さの榭脂層を有するものである。しかし、この場合、プリプレダの 2つの榭脂層に埋設 する回路配線パターンが異なる場合 (特に、回路配線パターンの残銅率が異なる場 合)には、両方の榭脂層で、回路配線パターンの間隙を充填するのに必要な榭脂組 成物の量が異なるが、それに対応することができな力つた。その結果、基板を製造す る際に、プリプレダを構成する榭脂組成物がはみ出したり、回路配線パターンの間隙 を埋めるのに必要な榭脂糸且成物が不足したりすることがあった。
[0216] これに対して、本実施形態のプリプレダ 10では、シート状基材 1をプリプレダ 10の 厚さ方向で偏在させるので、ビルドアップする回路配線パターン(両方の榭脂層の埋 設される回路配線パターン)に応じて、必要かつ十分な榭脂組成物の量を有するプリ プレダ 10を設計することが可能となる。さらに、厚さが 35 m以下という薄いプリプレ グ 10を製造することが可能となり、かつシート状基材 1をプリプレダ 10の厚さ方向で 偏在させることにより、最終的に得られる半導体装置の厚さを薄くすることもできる。こ れは、プリプレダ 10の厚さが単純に薄いことにカ卩え、回路配線パターンの残銅率等 に対応して、プリプレダ 10の榭脂組成物の量を調整することができるので、余分な榭 脂層を設ける必要が無くなる力 である。
[0217] なお、本実施形態のプリプレダ 10では、前記第 1実施形態と同様に、シート状基材 1の一方の面側に設けられる榭脂組成物 (第 1榭脂層 2)と、他の面側に設けられる榭 脂組成物 (第 2榭脂層 3)とを異なる組成とすることもできる。
[0218] ここで、「榭脂組成物同士の組成が異なる」とは、前記第 1実施形態で説明したのと 同様である。
[0219] プリプレダ 10の両面で組成の異なる榭脂組成物とすることができると、要求される 性能 (特性)に応じた榭脂層の設計が可能となり、榭脂組成物の選択の幅を広げるこ とができる。例えば、内層回路(回路配線パターン)を埋設する榭脂層は、埋め込み 性を考慮して、当該榭脂層を構成する榭脂組成物を柔軟な組成にし、一方、反対側 の榭脂層は、剛性を考慮して、当該榭脂層を構成する榭脂組成物を硬い組成にす る等とすることができる。これにより、プリプレダ 10の両面に対して、異なる機能を付与 することができる。
[0220] 次に、このようなプリプレダ 10を有する基板および半導体装置について説明する。
[0221] 図 6に示すように、基板 100は、コア基板 101と、コア基板 101の上側(図 6中の上 側)に設けられた 3層のプリプレダ(10a、 10b、 10c)と、コア基板 101の下側(図 6中 の下側)に設けられた 3層のプリプレダ(10d、 10e、 10f)と、で構成されている。コア 基板 101とプリプレダ 10aおよび 10bとの間、各プリプレダ間(10aと 10b、 10bと 10c 、 10dと 10eおよび 10eと 10f)には、所定の回路配線部 4が形成されている。また、プ リプレダ 10cおよび 10fの表面には、パッド部 5が設けられている。このようなプリプレ グ 10a〜10fの少なくとも 1枚 (好ましくは全部)に、上述したプリプレダ 10 (例えば、厚 さ 35 /z m以下のプリプレダ 10)を用いることが好ましい。これにより、基板(回路基板) 100の厚さを薄くすることができる。
[0222] 各回路配線部 4は、各プリプレダ 10a〜10fを貫通して設けられたフィルドビア部 6 を介して電気的に接続されて!ヽる。
[0223] I:各プリプレダ 10a〜: L0fに、前記第 1実施形態のプリプレダ 10を適用した場合 この場合、基板 100を構成する各プリプレダ 10a〜: L0fは、回路配線部 4 (導体層) が形成される側(各プリプレダ 10a〜10cの図 6中上側と、 10d〜10fの図 6中下側) の第 1榭脂層 2を構成する第 1榭脂組成物と、反対側の第 2榭脂層 3を構成する第 2 榭脂組成物との組成が異なっている。第 1榭脂層 2を構成する第 1榭脂組成物は、導 体層との密着性を向上するような組成になっている。これにより、第 1榭脂層 2は導体 層との密着性に優れている。また、第 2榭脂層 3を構成する第 2榭脂組成物は、回路 配線部 4の埋め込み性を向上するような組成になっている。さらに第 2榭脂層 3により 、低熱膨張ィ匕が図れるような組成になっている。
[0224] さらに、第 1榭脂層 2の厚さを導体層との密着性を向上するために必要最低限な厚 さとし、第 2榭脂層 3の厚さを回路配線部 4の埋め込みに必要最低限な厚さとなるよう に調整することにより、基板 100の厚さを薄くすることもできるようになつている。
[0225] II:各プリプレダ 10a〜10fに、前記第 2実施形態のプリプレダ 10を適用した場合 この場合、基板 100を構成する各プリプレダ 10a〜: L0fは、シート状基材 1が各プリ プレダの厚さ方向で偏在しているので、埋設する回路配線部(内層導体回路) 4の高 さ等の制限を少なくすることができ、それによつて回路配線部 4の設計の自由度が増 える。すなわち、回路配線部 4を形成するのが容易となる。さらに、回路配線部 4を厚 さの厚い方の第 2榭脂層 3に埋設 (配置)するように設計できる。このため、回路配線 部 4とシート状基材 1とが接触することによって生じる不具合も低減することができる。
[0226] 図 5に示すように、プリプレダ 10 (例えば、プリプレダ 10c)のシート状基材 1が偏在 しているのと反対側の榭脂組成物 (第 2榭脂層 3)には、回路配線部 4が埋設されて いる。換言すれば、榭脂組成物 (第 2榭脂層 3)の一部が、回路配線部 4を構成する 配線同士の間 (空隙部)に埋め込まれ (充填され)ている。
[0227] ここで、図 4に示すように、プリプレダ 10全体の厚さを TO [ m]とし、図 5に示すよう に、回路配線部 4の高さを tl [ m]としたとき、 TOと tlの差 (特に、 t3)は、特に限定 されないが、 35 μ m以下であることが好ましぐ特に 10〜30 μ mであることが好まし い。これにより、基板 100の厚さが薄くても、その絶縁信頼性を十分に維持 (確保)す ることがでさる。
[0228] ここで、 t3は、回路配線部 4の上面 41 (図 5中の上側の面)から、プリプレダ 10 (第 1 榭脂層 2)の上面 21 (図 5中の上側の面)までの厚さに該当する。
[0229] また、図 4および図 5に示すように、厚さの厚い榭脂層(第 2榭脂層 3)の厚さを Bl [
/z m]とし、回路配線部 4の厚さを tl [ m]およびその残銅率を S [%]とし、回路配線 部 4の上面 41 (図 5中上側)からシート状基材 1 (第 2榭脂層 3の上面 31)までの厚さ を ΐ2[ /ζ πι]としたとき、 Β2く B1であり、かつ Bl =t2+tl X (1— SZ100)である関 係を満たすことが好ましい。
[0230] ここで、 t2の厚さは、特に限定されないが、 0〜15 mが好ましい。また、回路配線 部 4とシート状基材 1との接触による回路配線部 4での絶縁性の低下等が懸念される 場合は、 t2を 3〜15 mとすることが好ましい。一方、基板 100の厚さを薄くする場合 には、 t2を 0〜5 /ζ πιとすることが好ましぐさらに絶縁性と薄さを両立するためには、 t 2を 3〜5 mとすることが好ましい。これにより、プリプレダ 10の一方の面側に回路配 線部 4への埋め込み性に優れ、かつ高 、絶縁信頼性を付与することができる。
[0231] また、図 7に示すように、この基板 100に、半導体素子 7のバンプ 71と基板 100のパ ッド部 5とを接続して半導体素子 7を搭載することにより半導体装置 200を得ることが できる。
[0232] 各プリプレダ 10a〜10fにおいて、それぞれ第 1榭脂層 2および第 2榭脂層 3の厚さ を最適な厚さに調整することにより、基板 100全体の厚さを最適なものとすることがで きる。その結果、要求される特性に必要な最低限の厚さの半導体装置 200を得ること ができる。
[0233] 図 6および図 7では、 6層の基板について説明したが、本発明の基板はこれに限定 されず、 3層、 4層、 5層等、または 7層、 8層等の多層基板 (多層配線基板)にも好適 に用いることができる。
[0234] また、本発明の基板 100では、上述したような第 1および第 2実施形態のプリプレダ
10を組み合わせて用いてもよぐさらに、これらのプリプレダ 10と、従来から用いられ て!、たプリプレダとを併用しても構わな!/、。
[0235] なお、第 2実施形態のプリプレダ 10を用いる場合、シート状基材 1を種々の偏在位 置に有するプリプレダ 10 (シート状基材 1の偏在の程度が異なるプリプレダ 10)を併 用しても構わない。
実施例
[0236] 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれ に限定されるものではない。まず、プリプレダの実施例について説明する。
[0237] (実施例 1)
1.第 1榭脂層形成用ワニスの調製
熱硬化性榭脂としてシァネート榭脂(ロンザジャパン社製、プリマセット PT— 30、 重量平均分子量約 2, 600) 24重量%、エポキシ榭脂としてビフエ二ルジメチレン型 エポキシ榭脂(日本化薬社製、 NC— 3000、エポキシ当量 275) 24重量%、フエノキ シ榭脂としてビスフエノール A型エポキシ榭脂とビスフエノール F型エポキシ榭脂との 共重合体であり、末端部はエポキシ基を有しているフエノキシ榭脂(ジャパンエポキシ レジン社製 ·ΕΡ— 4275、重量平均分子量 60, 000) 11. 8重量%、硬化触媒として イミダゾールイ匕合物(四国化成工業社製'「2—フエ-ルー 4, 5—ジヒドロキシメチルイ ミダゾ一ル」) 0. 2重量%をメチルェチルケトンに溶解させた。さらに、無機充填材とし て球状溶融シリカ(アドマテックス社製、 SO— 25Η、平均粒径 0. 5 ^ πι) 39. 8重量 %とエポキシシラン型カップリング剤 (日本ュ-カー社製、 A- 187) 0. 2重量%を添 カロして、高速攪拌装置を用いて 60分間攪拌した。これにより、固形分 60重量%の第 1榭脂層形成用ワニスを調製した。
[0238] 2.第 2榭脂層形成用ワニスの調製
熱硬化性榭脂としてノボラック型シァネート榭脂(ロンザジャパン社製、プリマセット PT— 30、重量平均分子量約 2, 600) 15重量0 /0、エポキシ榭脂としてビフエ-ルジメ チレン型エポキシ榭脂(日本化薬社製、 NC— 3000、エポキシ当量 275) 8. 7重量 %、フエノール榭脂としてビフエ-ルジメチレン型フエノール榭脂(日本ィ匕薬社製、 G PH— 65、水酸基当量 200) 6. 3重量%をメチルェチルケトンに溶解させた。さらに、 無機充填材として球状溶融シリカ(アドマテックス社製、 SO— 25H、平均粒径 0. 5 μ m) 69. 7重量0 /0とエポキシシラン型カップリング剤 (日本ュ-カー社製、 A— 187) 0 . 3重量%を添加して、高速攪拌装置を用いて 60分間攪拌した。これ〖こより、固形分 60重量%の第 2榭脂層形成用ワニスを調製した。
[0239] 3.キャリア材料の製造
キャリアフィルムとしてポリエチレンテレフタレートフィルム(三菱化学ポリエステル社 製、 SFB— 38、厚さ 38 mm、幅 480mm)を用い、上述の第 1榭脂層形成用ワニス をコンマコーター装置で塗工し、 170°Cの乾燥装置で 3分間乾燥させ、厚さ 9 /ζ πι、 幅 410mmの榭脂層(最終的に第 1榭脂層となる榭脂層)が、キャリアフィルムの幅方 向の中心に位置するように形成してキャリア材料 2aを得た。
[0240] また、同様の方法で塗工する第 2榭脂層形成用ワニスの量を調整して、厚さ 14 m 、幅 360mmの榭脂層(最終的に第 2榭脂層となる榭脂層)が、キャリアフィルムの幅 方向の中心に位置するように形成してキャリア材料 3aを得た。
[0241] 4.プリプレダの製造
シート状基材としてガラス織布(クロスタイプ # 1015、幅 360mm、厚さ 15 μ m、坪 量 17gZm2)を用い、図 3に示す真空ラミネート装置および熱風乾燥装置によりプリ プレダを製造した。
[0242] 具体的には、ガラス織布の両面に前記キャリア材料 2aおよびキャリア材料 3aがガラ ス織布の幅方向の中心に位置するように、それぞれ重ね合わせ、 1330Paの減圧条 件下で、 80°Cのラミネートロールを用いて接合して、積層体を得た。
[0243] ここで、ガラス織布の幅方向寸法の内側領域にお!、ては、キャリア材料 2aおよびキ ャリア材料 3aの榭脂層をガラス織布の両面側にそれぞれ接合するとともに、ガラス織 布の幅方向寸法の外側領域にぉ 、ては、キャリア材料 2aおよびキャリア材料 3aの榭 脂層同士を接合した。
[0244] 次いで、上記接合した積層体を、 120°Cに設定した横搬送型の熱風乾燥装置内を 2分間通すことによって、圧力を作用させることなく加熱処理した。
[0245] 次 、で、積層体から 2つのキャリアフィルムを剥離、除去して、厚さ 30 m (第 1榭脂 層: 5 m、ガラス織布: 15 m、第 2榭脂層: 10 m)のプリプレダを得た。
[0246] (実施例 2)
第 1榭脂層形成用ワニスとして、以下のものを用いた以外は、前記実施例 1と同様 にして、プリプレダを得た。
[0247] 熱硬化性榭脂としてシァネート榭脂を用いずに、エポキシ榭脂としてビフエ二ルジメ チレン型エポキシ榭脂(日本化薬社製、 NC— 3000、エポキシ当量 275) 24重量% 、液状ビスフエノール型エポキシ榭脂(大日本インキ社製、 830S) 17. 5重量0 /0と、フ エノキシ榭脂としてビスフエノール Sエポキシ榭脂との共重合体であり、末端部はェポ キシ基を有しているフエノキシ榭脂(ジャパンエポキシレジン社製、 YX-8100,重量 平均分子量 30, 000) 18重量%と、硬化触媒としてイミダゾール化合物(四国化成ェ 業社製 ·「2—フエ-ルー 4, 5—ジヒドロキシメチルイミダゾール」) 0. 2重量0 /0とをメチ ルェチルケトンに溶解させた。さらに、無機充填材として球状溶融シリカ(アドマテック ス社製、 SO— 25H、平均粒径 0. 5 m) 39. 8重量0 /0とエポキシシラン型カップリン グ剤(日本ュ-カー社製、 A— 187) 0. 2重量%を添加して、高速攪拌装置を用いて 60分間攪拌した。これにより、固形分 60重量%の第 1榭脂層形成用ワニスを調製し た。
[0248] なお、得られたプリプレダの厚さは、 30 m (第 1榭脂層: 5 m、ガラス織布 : 15 ^ m、第 2榭脂層: 10 m)であった。
[0249] (実施例 3)
第 2榭脂層形成用ワニスとして、以下のものを用いた以外は、前記実施例 1と同様 にして、プリプレダを得た。
[0250] 熱硬化性榭脂としてエポキシ榭脂としてビフエ二ルジメチレン型エポキシ榭脂(日本 化薬社製、 NC— 3000、エポキシ当量 275) 17. 5重量0 /0、フエノール榭脂としてビ フエ二ルジメチレン型フエノール榭脂(日本ィ匕薬社製、 GPH— 65、水酸基当量 200) 12重量%、イミダゾール(四国化成社製、 2P4MHZ) 0. 5重量%ぉよびカップリング 剤としてエポキシシラン型カップリング剤 (日本ュ-カー社製、 A- 187)を、後述する 無機充填材 100重量部に対して 0. 3重量部をメチルェチルケトンに常温で溶解し、 無機充填材として球状溶融シリカ SFP— 10X (電気化学工業社製、平均粒径 0. 3 μ m) 20重量%ぉよび球状溶融シリカ SO— 32R (アドマテックス社製、平均粒径 1. 5 m) 50重量%を添加し、高速攪拌機を用いて 10分間攪拌した。これにより、第 2榭 脂層形成用ワニスを調製した。
[0251] なお、得られたプリプレダの厚さは、 30 111 (第1榭脂層:5 111、ガラス織布: 15 m、第 2榭脂層: 10 m)であった。
[0252] (実施例 4)
キャリア材料 2aの榭脂層の厚さを 14 m、キャリア材料 3aの榭脂層の厚さを 14 mに変更した以外は、前記実施例 1と同様にして、プリプレダを得た。
[0253] なお、得られたプリプレダの厚さは、 35 111 (第1榭脂層:10 111、ガラス織布: 15 μ m、第 2榭脂層: 10 m)であった。
[0254] (実施例 5)
シート状基材およびキャリア材料 2a、 3aを、以下のように変更した以外は、前記実 施例 1と同様にして、プリプレダを得た。
[0255] シート状基材としてガラス織布(クロスタイプ # 1037、厚さ 24 μ m、坪量 24gZm2) を用いた。
[0256] また、キャリア材 2aの榭脂層の厚さを 12 mとし、キャリア材料 3aの榭脂層の厚さ を 18 /z mとした。
[0257] なお、得られたプリプレダの厚さは、 40 m (第 1榭脂層: 5 m、ガラス織布: 24 μ m、第 2榭脂層: 1 1 m)であった。
[0258] (実施例 6) シート状基材およびキャリア材料 2a、 3aを、以下のように変更した以外は、前記実 施例 1と同様にして、プリプレダを得た。
[0259] シート状基材としてガラス織布(クロスタイプ # 1080、厚さ 42 μ m、坪量 48gZm2) を用いた。
[0260] また、キャリア材料 2aの榭脂層の厚さを 20 μ mとし、キャリア材料 3aの榭脂層の厚 さを 22 μ mとした。
[0261] なお、得られたプリプレダの厚さは、 60 111 (第1榭脂層:8 111、ガラス織布: 42 m、第 2榭脂層: 10 m)であった。
[0262] (実施例 7)
第 2榭脂層形成用ワニスとして、前記実施例 1の第 1榭脂層形成用ワニスを用いた 以外は、前記実施例 1と同様にして、プリプレダを得た。
すなわち、第 1榭脂組成物と第 2榭脂組成物との組成を同一とした。
[0263] なお、得られたプリプレダの厚さは、 30 m (第 1榭脂層: 5 m、ガラス織布 : 15 ^ m、第 2榭脂層: 10 m)であった。
[0264] (実施例 8)
第 1榭脂層形成用ワニスとして、前記実施例 1の第 2榭脂層形成用ワニスを用いた 以外は、前記実施例 1と同様にして、プリプレダを得た。
すなわち、第 1榭脂組成物と第 2榭脂組成物との組成を同一とした。
[0265] なお、得られたプリプレダの厚さは、 30 m (第 1榭脂層: 5 m、ガラス織布 : 15 ^ m、第 2榭脂層: 10 m)であった。
[0266] (実施例 9)
1.榭脂層形成用ワニスの調整
熱硬化性榭脂としてノボラック型シァネート榭脂(ロンザジャパン社製、プリマセット PT— 30、重量平均分子量約 2, 600) 15重量0 /0、エポキシ榭脂としてビフエ-ルジメ チレン型エポキシ榭脂(日本化薬社製、 NC— 3000P、エポキシ当量 275) 8重量% 、フエノール榭脂としてビフエ-ルジメチレン型フエノール榭脂(明和化成社製、 ME H— 7851— S、水酸基当量 203) 7重量%およびカップリング剤としてエポキシシラン 型カップリング剤 (日本ュ-カー社製、 A— 187)を、後述する無機充填材 100重量 部に対して 0. 3重量部をメチルェチルケトンに常温で溶解し、無機充填材として球状 溶融シリカ SFP—10X(電気化学工業社製、平均粒径 0. 3 m) 20重量%および球 状溶融シリカ SO— 32R (アドマテックス社製、平均粒径 1. 5 m) 50重量0 /0を添加し 、高速攪拌機を用いて 10分間攪拌した。これにより、榭脂層形成用ワニスを調製した
[0267] 2.キャリア材料の製造
キャリアフィルムとしてポリエチレンテレフタレートフィルム(三菱化学ポリエステル社 製、 SFB— 38、厚さ 38 /ζ πι、幅 480m)を用い、上述の榭脂層形成用ワニスをコンマ コーター装置で塗工し、 170°Cの乾燥装置で 3分間乾燥させ、厚さ 8 /ζ πι、幅 360m mの榭脂層(最終的に第 1榭脂層となる榭脂層)が、キャリアフィルムの幅方向の中心 に位置するように形成してキャリア材料 2aを得た。
[0268] また、同様の方法で塗工する榭脂材料ワニスの量を調整して、厚さ 15 m、幅 410 mmの榭脂層(最終的に第 2榭脂層となる榭脂層)が、キャリアフィルムの幅方向の中 心に位置するように形成してキャリア材料 3aを得た。
[0269] 3.プリプレダの製造
シート状基材としてガラス織布(クロスタイプ # 1015、幅 360mm、厚さ 15 μ m、坪 量 17gZm2)を用い、図 4に示す真空ラミネート装置および熱風乾燥装置によりプリ プレダを製造した。
[0270] 具体的には、ガラス織布の両面に前記キャリア材料 2aおよびキャリア材料 3aがガラ ス織布の幅方向の中心に位置するように、それぞれ重ね合わせ、 750Torrの減圧条 件下で、 80°Cのラミネートロールを用いて接合して、積層体を得た。
[0271] ここで、ガラス織布の幅方向寸法の内側領域においては、キャリア材料 2aおよびキ ャリア材料 3aの榭脂層をガラス織布の両面側にそれぞれ接合するとともに、ガラス織 布の幅方向寸法の外側領域にぉ 、ては、キャリア材料 2aおよびキャリア材料 3aの榭 脂層同士を接合した。
[0272] 次いで、上記接合した積層体を、 120°Cに設定した横搬送型の熱風乾燥装置内を
2分間通すことによって、圧力を作用させることなく加熱処理した。
[0273] 次いで、積層体から 2つのキャリアフィルムを剥離、除去して、厚さ 30 m (第 1榭脂 層: 4 m、ガラス織布: 15 m、第 2榭脂層: 11 m)のプリプレダを得た。
[0274] (実施例 10)
キャリア材料 2aの榭脂層の厚さを 8 μ m、キャリア材料 3aの榭脂層の厚さを 20 μ m に変更した以外は、前記実施例 9と同様にして、プリプレダを得た。
[0275] なお、得られたプリプレダの厚さは、 35 111 (第1榭脂層:4 111、ガラス織布: 15 m、第 2榭脂層: 16 m)であった。
[0276] (実施例 11)
シート状基材およびキャリア材料 2a、 3aを、以下のように変更した以外は、前記実 施例 9と同様にして、プリプレダを得た。
[0277] シート状基材としてガラス織布(クロスタイプ # 1037、厚さ 24 μ m、坪量 24gZm2) を用いた。
[0278] また、キャリア材料 2aの榭脂層の厚さを 11 m、キャリア材料 3aの榭脂層の厚さを 20 μ mとした。
[0279] なお、得られたプリプレダの厚さは、 40 111 (第1榭脂層:4 111、ガラス織布: 24 m、第 2榭脂層: 12 m)であった。
[0280] (実施例 12)
榭脂層形成用ワニスとして、以下のものを用いた以外は、前記実施例 9と同様にし て、プリプレダを得た。
[0281] 熱硬化性榭脂としてエポキシ榭脂(ジャパンエポキシレジン社製'「Ep5048」 ) 100 重量部、硬化剤(ジシアンジアミド) 2重量部および硬化促進剤(2—ェチルー 4ーメ チルイミダゾール) 0. 1重量部をメチルセルソルブ 100重量部に溶解させて、榭脂層 形成用ワニスを得た。
[0282] なお、得られたプリプレダの厚さは、 35 111 (第1榭脂層:4 111、ガラス織布: 15 m、第 2榭脂層: 16 m)であった。
[0283] (実施例 13)
キャリア材料 2a、 3aを、以下のように変更した以外は、前記実施例 9と同様にして、 プリプレダを得た。
[0284] キャリア材料 2aの榭脂層の厚さを 8 μ m、キャリア材料 3aの榭脂層の厚さを 25 μ m とした。
[0285] なお、得られたプリプレダの厚さは、 40 111 (第1榭脂層:4 111、ガラス織布: 15 m、第 2榭脂層: 21 m)であった。
[0286] (比較例 1)
シート状基材およびキャリア材料 2a、 3aを、以下のように変更した以外は、前記実 施例 9と同様にして、プリプレダを得た。
[0287] シート状基材としてガラス織布(クロスタイプ # 1080、厚さ 55 μ m、坪量 47gZm2) を用いた。
[0288] また、キャリア材料 2aの榭脂層の厚さを 25 μ m、キャリア材料 3aの榭脂層の厚さを 25 μ mとした。
[0289] なお、得られたプリプレダの厚さは、 75 m (第 1榭脂層: 10 m、ガラス織布: 55 μ m、第 2榭脂層: 10 m)であった。
[0290] (比較例 2)
シート状基材およびキャリア材料 2a、 3aを、以下のように変更した以外は、前記実 施例 9と同様にして、プリプレダを得た。
[0291] シート状基材としてガラス織布(クロスタイプ # 1037、厚さ 24 μ m、坪量 24gZm2) を用いた。
[0292] また、キャリア材料 2aの榭脂層の厚さを 16 μ m、キャリア材料 3aの榭脂層の厚さを 16 μ mとした。
[0293] なお、得られたプリプレダの厚さは、 40 m (第 1榭脂層: 8 m、ガラス織布: 24 μ m、第 2榭脂層: 8 m)であった。
[0294] 各実施例および各比較例で得られたプリプレダについて、それぞれ、以下の評価 を行なった。
[0295] 1.第 1榭脂層の厚さと第 2榭脂層の厚さとの比
得られたプリプレダの断面力も各層の厚さを測定した。
[0296] 2.プリプレダの面方向の熱膨張係数
プリプレダの面方向の熱膨張係数は、 TMA装置 (TAインスツルメント社製)を用い て、 10°CZ分で昇温して測定した。 [0297] 3.プリプレダの弾性率
得られたプリプレダの弾性率を、 DMA(TAインスツルメント社製 DMA983)の共鳴 周波数ズリモードを用いて、昇温速度 5°CZ分の条件で測定した。
[0298] これらの評価結果を、評価項目とともに表 1に示す。
[0299] [表 1] 表 1
Figure imgf000045_0001
[0300] 表 1から明らかなように実施例 1〜3および 5〜13のプリプレダは、いずれも、第 1榭 脂層と第 2榭脂層との厚さが異なっており、シート状基材が偏在していることが示され た。したがって、回路配線パターンの残銅率、回路厚さ(回路高さ)等に応じてプリプ レグの榭脂層を形成することができることが示された。
[0301] また、各実施例のプリプレダは、いずれも、熱膨張係数が小さぐ弾性率も高カゝつた 。これにより、得られる基板は、接続信頼性に優れたものになることが予想される。
[0302] I.厚さの測定、成形性およびメツキ密着性の評価
各実施例および各比較例で得られたプリプレダを用いて、次のようにして、基板 (多 層基板)および半導体装置を、それぞれ 10個ずつ作製した。
[0303] 表面に導体間隔 50 μ mのくし形パターンを有し、所定の回路厚さで残銅率 50%の コア基板を用意した。
[0304] 次いで、このコア基板に、各実施例でおよび各比較例得られたプリプレダをそれぞ れ重ね、さらに最外層に銅箔を重ねて、加熱、加圧成形(3MPa、 200°C、 90分間) して多層基板を得た。
[0305] そして、最外層の銅箔 (厚さ 12 m)に回路を形成した後、半導体素子を搭載して 半導体装置を得た。
[0306] 各実施例および各比較例のプリプレダを用いて作製された基板 (多層基板)および 半導体装置について、以下の評価を行なった。
[0307] 1.厚さ t3 (層間厚さ)
得られた基板 (多層基板)の断面力も厚さ t3 (回路配線部 4の上面 41から第 1榭脂 層 2の上面 21までの厚さ)を測定した。
[0308] 2.厚さ t2
得られた基板 (多層基板)の断面力も厚さ t2 (回路配線部 4の上面 41から第 2榭脂 層 3の上面 31までの厚さ)を測定した。併せて設計値との差を示す。
[0309] 3.埋め込み性
得られた基板において、くし形パターンの断面を顕微鏡で観察した。そして、榭脂 層の埋め込み性を、以下の 4段階の基準にしたがって評価した。
[0310] ◎:全てのサンプルにつ 、て埋め込み性に優れて!/、た。
〇:ガラス織布への回路配線の接触が一部有るが、実用上問題無し。 △:ガラス織布への回路配線の接触が一部有り、実用不可。
X:榭脂層の埋め込みが、不十分でボイド等有り。
[0311] 4.メツキ密着性
メツキ銅ピール強度を測定した。そして、第 1榭脂層(上側の榭脂層)のメツキ密着 性を、以下の 4段階の基準にしたがって評価した。
[0312] 6kNZm以上
0 :0. 5kNZm以上、 0. 6kNZm未満 Δ :0. 4kNZm以上、 0. 5kNZm未満
X :0. 4kNZm未満
[0313] II.絶縁信頼性の評価
次に、各実施例および各比較例で得られたプリプレダを用いて、内外層に導体間 隔 50 mのくし形パターンを有する、絶縁信頼性試験用の 4層プリント配線板を、そ れぞれ 10個ずつ作製した。
[0314] そして、これらの絶縁抵抗を自動超絶縁抵抗計 (ADVANTEST社製)で測定した 後、 PCT— 130°CZ85%の雰囲気中で、直流電圧 50Vを印加、 96時間経過後の 絶縁抵抗を測定した。
[0315] 測定された絶縁抵抗の値に基づいて、絶縁信頼性を、以下の 4段階の基準にした 力 て評価した。なお、絶縁抵抗の測定条件は、印加電圧 100VX印加時間 1分とし た。
[0316] (§) : 1 X 109Q以上
〇:1 Χ 108Ω以上、 1 Χ 109Ω未満
△ : 1 Χ 107Ω以上、 1 Χ 108Ω未満
X : 1 Χ 107Ω未満
[0317] III.接続信頼性 (温度サイクル (TC)試験)の評価
各実施例および各比較例で得られたプリプレダを用いて、 300個のバンプを介して 半導体素子と基板とを接続するデイジ一チ ーン型の評価用半導体装置を、それぞ れ 10個ずつ作製した。
[0318] 上述の評価用半導体装置の導通を確認後、—50°Cで 10分、 125°Cで 10分を 1サ イタルとする温度サイクル (TC)試験を実施した。そして、 TC試験 100サイクル毎に、 断線不良が発生した評価用半導体装置の個数 (断線不良個数)を確認した。
[0319] 断線不良個数に基づいて、接続信頼性を、以下の 4段階の基準にしたがって評価 した。
[0320] (§) :TC試験 1000サイクル後においても、断線不良個数が 0個であった。
〇:TC試験 1000サイクル後において、断線不良個数が 5個以上であった力 TC 試験 800サイクル後において、断線不良個数力 SO個であった。 △ :TC試験 1000サイクル後において、断線不良個数が 10個、 TC試験 800サイク ル後において、断線不良個数が 5個以上であつたが、 TC試験 600サイクル後におい て、断線不良個数力^個である。
X: TC試験 800サイクルまでに、断線不良個数が 10個であり、 TC試験 600サイク ル後において、断線不良個数が 5個以上であった。
[0321] 以上の測定結果および評価結果を、評価項目とともに、それぞれ表 2および表 3に 示す。
[0322] [表 2] 表 2
Figure imgf000048_0001
[0323] [表 3] 表 3
Figure imgf000049_0001
[0324] 表 3から明らかなように、特に、実施例 1〜6および実施例 9〜13で得られたプリプ レグは、従来のプリプレダを用いた場合では、両立が困難な埋め込み性とメツキ密着 性に優れたものとなった。また、実施例 1〜6および実施例 9〜13で得られたプリプレ グを用いた多層基板および半導体装置は、第 2の絶縁層を、埋め込み性に優れ、低 熱膨張の榭脂組成物で構成したため、多層基板の絶縁信頼性、半導体装置として の接続信頼性に優れるものとなった。
[0325] また、表 2から明らかなように、実施例 6で得られたプリプレダを用いた多層基板は、 その厚さが若干 200 mを超えたものの、その他の各実施例で得られたプリプレダを 用いた多層基板は、いずれも厚さが 200 m以下であり薄い多層基板が得られるこ と力示された。また、榭脂組成物のはみ出し等も確認されなカゝつた。
[0326] また、各実施例で得られたプリプレダを用いた半導体装置は、 V、ずれも正常に作動 することが確認された。 [0327] これに対して、各比施例で得られたプリプレダを用いた多層基板および半導体装 置は、いずれも絶縁信頼性および接続信頼性に劣り、正常に作動しなかった。 産業上の利用可能性
[0328] 本発明よれば、薄膜ィヒに対応することが可能であり、かつプリプレダの両面に異な る用途、機能、性能または特性等を付与したり、埋設される回路配線パターンに応じ て榭脂組成物の量を設定可能なプリプレダを提供することができる。例えば、第 1榭 脂組成物と第 2榭脂組成物との組み合わせを適宜設定することにより、プリプレダの 両面に優れたメツキ密着性と埋め込み性とを付与することができる。また、例えば、回 路配線パターンの残銅率、回路厚さ(回路高さ)等に応じてシート状基材をプリプレダ の厚さ方向に偏在させることにより、埋設される回路配線パターンの間隙を充填する のに必要かつ十分な榭脂組成物の量を有するプリプレダを得ることができる。また、 本発明のプリプレダの製造方法を用いることにより、かかるプリプレダを容易かつ安価 に製造することができる。また、本発明によれば、上記プリプレダを有する基板および 半導体装置を提供することができ、それによつて薄 、厚さの基板および半導体装置 を得ることができる。そして、得られる基板 (特に、多層構造の回路基板)は、絶縁信 頼性に優れるものとなり、得られる半導体装置は、接続信頼性に優れるものとなる。こ のようなことから、本発明のプリプレダは、高密度化、薄型化を要求される多層構造の 回路基板、半導体装置の製造に好適に用いられるものである。したがって、産業上 の利用可能性を有する。

Claims

請求の範囲
[I] シート状基材を含むコア層と、
該コア層の一方の面側に設けられ、第 1榭脂組成物で構成された第 1榭脂層と、 前記コア層の他方の面側に設けられ、第 2榭脂組成物で構成された第 2榭脂層とを 有し、
前記第 1榭脂層と前記第 2榭脂層との厚さ、および前記第 1榭脂組成物と前記第 2 榭脂組成物との組成の少なくとも一方が異なっていることを特徴とするプリプレダ。
[2] 前記第 1榭脂組成物と前記第 2榭脂組成物との組成が異なっており、
前記第 1榭脂層上に導体層を形成して使用される請求項 1に記載のプリプレダ。
[3] 前記第 1榭脂組成物と前記第 2榭脂組成物との組成が同一、かつ、前記第 1榭脂層 と前記第 2榭脂層との厚さが異なっており、
前記シート状基材の厚さが 25 μ m以下である請求項 1に記載のプリプレダ。
[4] 前記第 1榭脂層に前記導体層を接合したとき、前記第 1榭脂層と、前記導体層とのピ ール強度は、 0. 5kNZm以上である請求項 2に記載のプリプレダ。
[5] 前記第 1榭脂層の厚さが、 3〜15 mである請求項 2に記載のプリプレダ。
[6] 前記第 1榭脂組成物は、硬化性榭脂を含むものである請求項 2に記載のプリプレダ。
[7] 前記硬化性榭脂は、シァネート榭脂を含むものである請求項 6に記載のプリプレダ。
[8] 前記シァネート榭脂は、ノボラック型シァネート榭脂を含むものである請求項 7に記載 のプリプレダ。
[9] 前記第 1榭脂組成物は、さらに硬化剤を含むものである請求項 2に記載のプリプレダ [10] 前記硬化剤は、イミダゾール系化合物を含むものである請求項 9に記載のプリプレダ
[II] 前記第 1榭脂組成物は、さらに前記硬化性榭脂と種類の異なる第 2榭脂を含むもの である請求項 2に記載のプリプレダ。
[12] 前記第 2榭脂は、フエノキシ系榭脂を含むものである請求項 11に記載のプリプレダ。
[13] 前記第 1榭脂層は、その厚さが前記第 2榭脂層の厚さより薄いものである請求項 2に 記載のプリプレダ。 [14] 前記プリプレダの厚さは、 35 μ m以下である請求項 3に記載のプリプレダ。
[15] 前記榭脂組成物は、硬化性榭脂を含むものである請求項 3に記載のプリプレダ。
[16] 前記硬化性榭脂は、シァネート榭脂を含むものである請求項 15に記載のプリプレダ
[17] 前記榭脂組成物は、さらに無機充填材を含むものである請求項 3に記載のプリプレ グ。
[18] 請求項 1に記載のプリプレダを製造するプリプレダの製造方法であって、
前記コア層と、一方の面に前記第 1榭脂組成物が層状に付与された第 1シート材と
、第 2榭脂組成物が層状に付与された第 2シート材とを用意する工程と、
前記コア層に、前記第 1榭脂組成物および前記第 2榭脂組成物が接触するように、 前記第 1シート材および前記第 2シート材を重ね合わせて接合することにより積層体 を得る工程と、
前記積層体中から気泡を除去する工程とを有することを特徴とするプリプレダの製 造方法。
[19] 前記コア層と、前記第 1シート材および前記第 2シート材との接合は、減圧下に行わ れる請求項 18に記載のプリプレダの製造方法。
[20] 前記積層体中からの気泡の除去は、加熱処理により行われる請求項 18に記載のプ リプレダの製造方法。
[21] 前記加熱処理は、前記第 1榭脂組成物および前記第 2榭脂組成物のうち、融点の高 い方の榭脂組成物の融点以上の温度で行われる請求項 20に記載のプリプレダの製 造方法。
[22] 前記第 1シートは、導電材料で構成されているものである請求項 18に記載のプリプレ グの製造方法。
[23] 前記第 1シート材および前記第 2シート材は、それぞれ榭脂シートで構成されて!、る ものであり、
前記積層体中から気泡を除去する工程の後、前記積層体から前記榭脂シートを除 去する工程を有する請求項 18に記載のプリプレダの製造方法。
[24] 前記榭脂シートは、前記榭脂組成物が付与される面に剥離処理が施されているもの である請求項 23に記載のプリプレダの製造方法。
[25] 請求項 1に記載のプリプレダと、
該プリプレダの前記第 2榭脂層に埋設された回路配線部とを有することを特徴とす る基板。
[26] 前記プリプレダ全体の厚さを TO [ m]とし、前記回路配線部の高さを tl [ m]とし たとき、 TOと tlとの差が 35 μ m以下である請求項 25に記載の基板。
[27] 前記プリプレダの面方向の熱膨張係数力 16ppm以下である請求項 25に記載の基 板。
[28] 請求項 1に記載のプリプレダを積層して得られることを特徴とする基板。
[29] 請求項 25に記載の基板と、該基板に搭載された半導体素子とを有することを特徴と する半導体装置。
[30] 請求項 28に記載の基板を有することを特徴とする半導体装置。
PCT/JP2006/323994 2005-12-01 2006-11-30 プリプレグ、プリプレグの製造方法、基板および半導体装置 WO2007063960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/085,782 US8044505B2 (en) 2005-12-01 2006-11-30 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
CN200680045072.1A CN101321813B (zh) 2005-12-01 2006-11-30 预成型料、预成型料的制造方法、基板及半导体装置
US12/853,773 US8110444B2 (en) 2005-12-01 2010-08-10 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
US13/170,470 US20110256367A1 (en) 2005-12-01 2011-06-28 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005348546 2005-12-01
JP2005-348546 2005-12-01
JP2006216432A JP5157103B2 (ja) 2006-08-09 2006-08-09 プリプレグ、基板および半導体装置
JP2006-216432 2006-08-09

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/085,782 A-371-Of-International US8044505B2 (en) 2005-12-01 2006-11-30 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
US12/853,773 Division US8110444B2 (en) 2005-12-01 2010-08-10 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
US13/170,470 Division US20110256367A1 (en) 2005-12-01 2011-06-28 Prepreg, method for manufacturing prepreg, substrate, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2007063960A1 true WO2007063960A1 (ja) 2007-06-07

Family

ID=38092293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323994 WO2007063960A1 (ja) 2005-12-01 2006-11-30 プリプレグ、プリプレグの製造方法、基板および半導体装置

Country Status (5)

Country Link
US (3) US8044505B2 (ja)
KR (2) KR101025055B1 (ja)
MY (1) MY146044A (ja)
TW (2) TW201341439A (ja)
WO (1) WO2007063960A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051989A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd プリプレグ、基板および半導体装置
JP2012054323A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd プリプレグ、基板および半導体装置
WO2012140907A1 (ja) * 2011-04-14 2012-10-18 住友ベークライト株式会社 積層板、回路基板、半導体パッケージおよび積層板の製造方法
JP2014045018A (ja) * 2012-08-24 2014-03-13 Ibiden Co Ltd プリント配線板
CN105500789A (zh) * 2014-10-08 2016-04-20 三星电机株式会社 半固化片及其制造方法
CN108127932A (zh) * 2016-11-30 2018-06-08 日东电工(上海松江)有限公司 耐热性复合片及其制造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973146B (zh) * 2005-09-30 2012-09-26 住友电木株式会社 带有载体的预浸料及其制造工艺、薄双面板及其制造工艺和多层印刷电路板的制造工艺
KR20090109114A (ko) * 2007-02-14 2009-10-19 스미토모 베이클리트 컴퍼니 리미티드 캐리어 재료 부착 층간 절연막 및 이것을 이용하는 다층 프린트 회로판
JP5080234B2 (ja) * 2007-12-19 2012-11-21 新光電気工業株式会社 配線基板およびその製造方法
CN102164743A (zh) * 2008-09-26 2011-08-24 住友电木株式会社 层压板、电路板和半导体器件
TW201220977A (en) * 2010-07-01 2012-05-16 Sumitomo Bakelite Co Preppreg, circuit board, and semiconductor device
WO2012029275A1 (ja) * 2010-09-01 2012-03-08 住友ベークライト株式会社 積層シートの製造方法および製造装置
GB2485525A (en) * 2010-10-28 2012-05-23 Timothy John Sweatman Resin coated natural fibre mat
WO2013012053A1 (ja) * 2011-07-20 2013-01-24 パナソニック株式会社 プリント配線板
US9101061B2 (en) 2011-09-22 2015-08-04 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
JP5682838B2 (ja) * 2011-11-29 2015-03-11 三菱レイヨン株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料とその製造方法
JP2013149941A (ja) * 2011-12-22 2013-08-01 Ngk Spark Plug Co Ltd 多層配線基板及びその製造方法
WO2013100024A1 (ja) * 2011-12-28 2013-07-04 日本ゼオン株式会社 プリプレグ、積層体及びプリプレグの製造方法
JPWO2013190748A1 (ja) 2012-06-22 2016-02-08 株式会社ニコン 基板、撮像ユニットおよび撮像装置
JP2015038911A (ja) * 2012-09-27 2015-02-26 イビデン株式会社 プリント配線板及びプリント配線板の製造方法
WO2014065384A1 (ja) 2012-10-26 2014-05-01 住友ベークライト株式会社 裏板用組成物、裏板、ブレーキパッドおよびキャリパ装置
KR101449204B1 (ko) * 2012-12-27 2014-10-13 주식회사 포스코 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
JP6161380B2 (ja) * 2013-04-17 2017-07-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9997491B2 (en) * 2013-07-08 2018-06-12 Sony Corporation Method of determining curing conditions, method of producing circuit device, and circuit device
CN106063394B (zh) * 2014-07-08 2018-10-19 松下知识产权经营株式会社 配线板的制造方法
KR102306718B1 (ko) 2014-11-26 2021-09-30 삼성전기주식회사 프리프레그
KR20170033709A (ko) * 2015-09-17 2017-03-27 삼성전기주식회사 프리프레그 및 이의 제조방법
JP6705718B2 (ja) 2016-08-09 2020-06-03 新光電気工業株式会社 配線基板及びその製造方法
JP7138398B2 (ja) * 2016-08-15 2022-09-16 昭和電工マテリアルズ株式会社 層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム及びプリント配線板
TR201722994A2 (tr) * 2017-12-29 2019-07-22 Kordsa Teknik Tekstil As Bi̇r sicak eri̇yi̇k epoksi̇ reçi̇ne si̇stemi̇ ve yapimi i̇çi̇n proses
JP7135364B2 (ja) * 2018-03-23 2022-09-13 三菱マテリアル株式会社 絶縁回路基板、及び、絶縁回路基板の製造方法
WO2020196746A1 (ja) * 2019-03-26 2020-10-01 三菱マテリアル株式会社 絶縁回路基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251757A (ja) * 2002-02-28 2003-09-09 Mitsubishi Gas Chem Co Inc 積層用耐熱フィルム基材入りbステージ樹脂組成物シート。
JP2003340952A (ja) * 2002-05-28 2003-12-02 Mitsubishi Gas Chem Co Inc アディティブ用繊維布基材入りbステージ樹脂組成物シートの製造方法。
JP2006160899A (ja) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd 電気絶縁性基材および配線基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862770B2 (ja) * 1995-09-07 2006-12-27 日立化成工業株式会社 金属張積層板の製造方法
US6866919B2 (en) * 2002-02-21 2005-03-15 Mitsubishi Gas Chemical Company, Inc. Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
KR101184139B1 (ko) 2004-03-29 2012-09-18 스미토모 베이클라이트 가부시키가이샤 수지 조성물, 수지 부착 금속박, 기재 부착 절연시트 및다층 프린트 배선판

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251757A (ja) * 2002-02-28 2003-09-09 Mitsubishi Gas Chem Co Inc 積層用耐熱フィルム基材入りbステージ樹脂組成物シート。
JP2003340952A (ja) * 2002-05-28 2003-12-02 Mitsubishi Gas Chem Co Inc アディティブ用繊維布基材入りbステージ樹脂組成物シートの製造方法。
JP2006160899A (ja) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd 電気絶縁性基材および配線基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051989A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd プリプレグ、基板および半導体装置
JP2012054323A (ja) * 2010-08-31 2012-03-15 Sumitomo Bakelite Co Ltd プリプレグ、基板および半導体装置
WO2012140907A1 (ja) * 2011-04-14 2012-10-18 住友ベークライト株式会社 積層板、回路基板、半導体パッケージおよび積層板の製造方法
JP2012228879A (ja) * 2011-04-14 2012-11-22 Sumitomo Bakelite Co Ltd 積層板、回路基板、半導体パッケージおよび積層板の製造方法
KR20140023979A (ko) * 2011-04-14 2014-02-27 스미토모 베이클리트 컴퍼니 리미티드 적층판, 회로 기판, 반도체 패키지 및 적층판의 제조 방법
KR101953404B1 (ko) * 2011-04-14 2019-05-31 스미토모 베이클리트 컴퍼니 리미티드 적층판, 회로 기판, 반도체 패키지 및 적층판의 제조 방법
JP2014045018A (ja) * 2012-08-24 2014-03-13 Ibiden Co Ltd プリント配線板
CN105500789A (zh) * 2014-10-08 2016-04-20 三星电机株式会社 半固化片及其制造方法
CN105500789B (zh) * 2014-10-08 2019-06-04 三星电机株式会社 半固化片及其制造方法
CN108127932A (zh) * 2016-11-30 2018-06-08 日东电工(上海松江)有限公司 耐热性复合片及其制造方法

Also Published As

Publication number Publication date
KR101014919B1 (ko) 2011-02-15
US20090302462A1 (en) 2009-12-10
US20110256367A1 (en) 2011-10-20
KR20080066877A (ko) 2008-07-16
US8110444B2 (en) 2012-02-07
TW200726796A (en) 2007-07-16
KR101025055B1 (ko) 2011-03-25
MY146044A (en) 2012-06-15
KR20100023978A (ko) 2010-03-04
US8044505B2 (en) 2011-10-25
TW201341439A (zh) 2013-10-16
TWI415880B (zh) 2013-11-21
US20100300619A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
WO2007063960A1 (ja) プリプレグ、プリプレグの製造方法、基板および半導体装置
JP5331781B2 (ja) プリプレグ、基板および半導体装置
JP5243715B2 (ja) プリプレグ、基板および半導体装置
KR101360531B1 (ko) 땜납 레지스트 재료 및 그것을 이용한 배선판 및 반도체 패키지
KR101298354B1 (ko) 캐리어 장착 프리프레그의 제조방법, 캐리어 장착 프리프레그, 박형 양면판의 제조방법, 박형 양면판, 및 다층 프린트 배선판의 제조방법
KR101103451B1 (ko) 적층체, 기판의 제조 방법, 기판 및 반도체 장치
KR20130089235A (ko) 프리프레그, 배선판 및 반도체 장치
KR20090108636A (ko) 적층체, 적층체를 포함하는 회로 기판, 반도체 패키지 및 적층체의 제조 방법
JP5157103B2 (ja) プリプレグ、基板および半導体装置
JP4983190B2 (ja) プリプレグ、回路基板および半導体装置
WO2007108087A1 (ja) 絶縁樹脂層、キャリア付き絶縁樹脂層および多層プリント配線板
JP2008244189A (ja) 回路基板および半導体装置
JPWO2009051120A1 (ja) 半導体素子搭載基板
JP2004277671A (ja) プリプレグおよびそれを用いたプリント配線板
JP2013057065A (ja) プリプレグ、基板および半導体装置
JP2009070891A (ja) 半導体装置
JP5140959B2 (ja) 樹脂組成物、プリプレグ及びそれを用いたプリント配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045072.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087013845

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06833797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12085782

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020107003486

Country of ref document: KR