WO2007063760A1 - 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子 - Google Patents

有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子 Download PDF

Info

Publication number
WO2007063760A1
WO2007063760A1 PCT/JP2006/323330 JP2006323330W WO2007063760A1 WO 2007063760 A1 WO2007063760 A1 WO 2007063760A1 JP 2006323330 W JP2006323330 W JP 2006323330W WO 2007063760 A1 WO2007063760 A1 WO 2007063760A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
substituent
charge transport
transport material
Prior art date
Application number
PCT/JP2006/323330
Other languages
English (en)
French (fr)
Inventor
Koichiro Iida
Yuichiro Kawamura
Tomoyuki Ogata
Masayoshi Yabe
Misako Okabe
Masako Takeuchi
Kazuki Okabe
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP06833152A priority Critical patent/EP1956008B1/en
Priority to US12/095,024 priority patent/US8022617B2/en
Priority to KR1020087009361A priority patent/KR101395615B1/ko
Publication of WO2007063760A1 publication Critical patent/WO2007063760A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/26Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • Organic compound charge transport material, composition for charge transport material and organic electroluminescent device
  • the present invention relates to a novel organic compound, a charge transport material comprising the organic compound, and a composition for a charge transport material containing the charge transport material.
  • the present invention also relates to an organic electroluminescence device having high luminance, high efficiency and long life using a charge transport material such as this novel organic compound.
  • An electroluminescent device using an organic thin film has been developed.
  • An electroluminescent device using an organic thin film that is, an organic electroluminescent device, usually has an anode, a cathode, and an organic layer including at least a luminescent layer provided between these electrodes on a substrate.
  • As the organic layer in addition to the light emitting layer, a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like are used. Usually, these layers are stacked to be used as an organic electroluminescent device.
  • organic electroluminescent devices have used fluorescent light emission, but in an attempt to increase the light emission efficiency of the device, it has been studied to use phosphorescent light emission instead of fluorescent light. However, even if phosphorescence is used, sufficient luminous efficiency, luminance and lifetime are not yet obtained.
  • Non-Patent Document 1 proposes the following polymer compound (C-1) for the purpose of improving the solubility of polyaline, which is a conductive polymer.
  • the polymer material such as the compound (C-1) has the following problems.
  • Non-Patent Document 1 discloses the following compound (C2) as a model compound of the compound (C1).
  • the compound (C-2) since the compound (C-2) has a secondary amine moiety, the organic thin film containing the compound (C-2) having poor heat resistance and amorphous properties cannot be crystallized or aggregated. The problem is that it easily deteriorates due to factors such as In addition, since HOMO is localized at the secondary ammine site, the compound (C-2) has a problem of poor charge transportability.
  • Patent Document 1 proposes the use of the following compound (C3) as a charge transport material for an electrophotographic photoreceptor.
  • the compound such as the above compound (C-3) has a heat resistance because the group bonded to the nitrogen atom of the 1,3-dihydroimidazol-2-one ring has only an aromatic ring force.
  • the compound such as the above compound (C-3) has a heat resistance because the group bonded to the nitrogen atom of the 1,3-dihydroimidazol-2-one ring has only an aromatic ring force.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-246973
  • Non-patent literature l Macromolecules 2003, 36, 4368-4373
  • the present invention provides a charge transport material having excellent heat resistance and amorphousness and excellent charge transport capability, and further a composition for forming an organic electroluminescent device having high brightness, high efficiency and long life. It is an object to provide a product and an organic electroluminescent device using the same.
  • an organic compound represented by the following formula (I), a charge transport material comprising the compound, and a charge transport for an organic electroluminescent device represented by the following formula ( ⁇ ⁇ -2) A material and a composition for a charge transport material containing the material are provided.
  • the organic electroluminescent element having the anode, the cathode, and the light emitting layer provided between the two electrodes is provided on the substrate, and has a layer containing the charge transport material.
  • An organic electroluminescent device is provided.
  • Ar 1 may have a substituent, may be an aromatic hydrocarbon group, may have a substituent! /, May have! Aromatic aromatic heterocyclic group, or have a substituent, Of course, it represents an alkyl group.
  • Ar 2 represents an aromatic hydrocarbon group which may have a substituent, may be an aromatic hydrocarbon group, or may have a substituent.
  • Each of RR 2 independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • Q is represented by the following formula (I 1) or (I 2).
  • Ar 3 to Ar 5 each independently represents an aromatic hydrocarbon group which may have a substituent, or a substituent, which may represent an aromatic heterocyclic group.
  • Ar 3 and Ar 4 may be bonded to each other to form a ring.
  • Ring A 1 represents a benzene ring which may have a substituent, or a nitrogen-containing aromatic six-membered ring which may have a substituent.
  • Ar 9 each independently represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • This organic compound is excellent in heat resistance, amorphousness and charge transport ability, has high singlet and triplet excitation levels, and is excellent in solubility in an organic solvent.
  • the organic electroluminescence device using the charge transport material such as the organic compound and the composition for the charge transport material including the charge transport material made of the organic compound, high luminance, high efficiency and A long-life organic electroluminescent device is provided.
  • a charge transport material comprising the compound, and a composition for a charge transport material containing the material, a uniform organic thin film containing a material having a high charge transport ability is formed by a wet film forming method. This makes it easy to increase the area of the organic electroluminescent device. Furthermore, according to the organic electroluminescence device using the charge transport material of the present invention and the composition for a charge transport material containing the material, it is possible to emit light with low voltage and high efficiency.
  • the charge transport material of the present invention is applicable to both the vacuum deposition method and the wet film formation method because of its excellent film forming property, charge transporting property, light emitting property, and heat resistance.
  • the charge transport material of the present invention and the composition for a charge transport material containing the material are excellent. Depending on the layer structure of the element, it can be used as a hole injection material, a hole transport material, a light emitting material, a host material, an electron injection material, an electron transport material, etc. Applicable.
  • the organic electroluminescent device of the present invention using the charge transport material of the present invention and the composition for a charge transport material containing the material is a flat panel display (for example, for OA computer or wall-mounted television), an in-vehicle display device. It can be applied to light sources (for example, light sources for copiers, backlight sources for liquid crystal displays and instruments), display boards, and sign lamps that take advantage of the features of cell phone displays and surface light emitters. Is a big one.
  • the charge transport material of the present invention and the composition for a charge transport material containing the material have essentially excellent redox stability, and thus are not limited to organic electroluminescent devices, and other electrophotosensitive materials. It can also be used effectively for bodies, photoelectric conversion elements, organic solar cells, organic rectifier elements, and the like.
  • the organic compound of the present invention is represented by the following formula (I).
  • Ar 1 may have a substituent, may be an aromatic hydrocarbon group, may have a substituent! /, May have! Aromatic aromatic heterocyclic group, or have a substituent, Of course, it represents an alkyl group.
  • Ar 2 represents an aromatic hydrocarbon group which may have a substituent, may be an aromatic hydrocarbon group, or may have a substituent.
  • Each of RR 2 independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • Q is represented by the following formula (I 1) or (I 2).
  • Ar 3 to Ar 5 each independently represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • Ar 3 and Ar 4 may be bonded to each other to form a ring.
  • the organic compound of the present invention has a 5-membered ring (1,3-dihydroimidazol-2-one) structure containing a urea bond (—NR—CO—NR′—), it has an appropriate polarity and is amorphous. High quality and high heat resistance. Therefore, it is possible to form an amorphous organic thin film that is soluble in various organic solvents and does not easily crystallize. In addition, since the structure is a rigid planar structure, the organic compound of the present invention has high singlet and triplet excited levels.
  • the organic compound of the present invention has a tertiary amine moiety (—Ar 2 —N (Ar 3 ) —Ar 4 ) or two directly bonded aromatic groups (Ar 2 —Ar 5 ). Therefore, charge transportability and heat resistance are further improved.
  • the molecular weight of the organic compound of the present invention is usually 5000 or less, preferably 3000 or less, more preferably 2000 or less, and usually 300 or more, preferably 500 or more, more preferably 600 or more.
  • the molecular weight exceeds the upper limit, purification may be difficult due to the high molecular weight of impurities, and if the molecular weight is lower than the lower limit, the glass transition temperature, melting point, vaporization temperature, etc. will decrease. The heat resistance may be significantly impaired.
  • the organic compound of the present invention usually has a glass transition temperature of 40 ° C or higher, but from the viewpoint of heat resistance, it is preferably 80 ° C or higher, more preferably 110 ° C or higher.
  • the organic compound of the present invention usually has a vaporization temperature of 300 ° C or higher and 800 ° C or lower.
  • the organic compound of the present invention usually has an energy difference between an excited triplet state and a ground state of 2. OeV or more and 4. OeV or less, but has a viewpoint of improving the efficiency of an organic electroluminescence device using phosphorescence emission. Therefore, the energy difference between the excited triplet state and the ground state is preferably 2.3 eV or more, more preferably 2.6 eV or more, and even more preferably 2.9 eV or more.
  • the method for obtaining the energy difference between the excited triplet state and the ground state is, for example, as follows.
  • a solution in which a sample compound is dissolved in a spectroscopically purified solvent for example, 2-methyltetrahydrofuran
  • a spectroscopically purified solvent for example, 2-methyltetrahydrofuran
  • the phosphorescence emission and the fluorescence emission are separated by delaying the photoluminescence observation start time after the excitation light is incident.
  • N laser light source wavelength 337nm is used according to the absorption of the material.
  • R 2 each independently represents a hydrogen atom or an arbitrary substituent, and R ⁇ R 2 may be bonded to each other to form a ring.
  • Examples of the optional substituent include organic groups as exemplified below, and preferably a group having a molecular weight of 500 or less. Specific examples include the following.
  • alkyl group preferably a straight-chain or branched anolenoquinoyl group having 1 to 8 carbon atoms, such as methinole, ethynole, n-propyl, 2-propyl, n-butynole, isobutyl, may be substituted. And tert-butyl group).
  • a alkenyl group (preferably a alkenyl group having 2 to 9 carbon atoms, such as bur, allyl, 1-butenyl group, etc.), which may have a substituent.
  • alkynyl group (preferably an alkynyl group having 2 to 9 carbon atoms) may be substituted.
  • ethur, propargyl group and the like can be mentioned.
  • An aralkyl group (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group).
  • An amino group having a substituent preferably an alkylamino group having at least one alkyl group having 1 to 8 carbon atoms (for example, a methylamino-containing dimethylamine). Injecting jetylamino, dibenzylamino groups, etc.),
  • a heteroaryl amino group having a 5- or 6-membered aromatic heterocycle for example, a pyridylami-containing chenilamino-containing dichenilamino group, etc.
  • It may have a substituent, but may be an alkoxy group (preferably, it may have a substituent, which is an alkoxy group having 1 to 8 carbon atoms, and examples thereof include methoxy, ethoxy and butoxy groups.
  • an aryloxy group (preferably having an aromatic hydrocarbon group having 6 to 12 carbon atoms, such as phenyl, 1-naphthyloxy, 2-naphthyloxy group, etc.) ),
  • a substituent it may be a heteroaryloxy group (preferably having a 5- or 6-membered aromatic heterocyclic group, and examples thereof include a pyridyloxy group, a ceroxy group, and the like. ),
  • an acyl group preferably, it may have a substituent, an acyl group having 2 to 10 carbon atoms, such as formyl, acetyl, benzoyl group, etc. ⁇
  • It may have a substituent, but may be an alkoxy carbo group (preferably has a substituent! /, May be an alkoxy carbo group having 2 to 10 carbon atoms, for example, methoxy carbo , Ethoxycarbonyl groups, etc.), It may be substituted with a aryloxycarbol group (preferably with a substituent).
  • V may be an arylcarbonyl group having 7 to 13 carbon atoms, such as a phenoxy group sulfonyl group.
  • alkylcarbonyloxy group (preferably V having a substituent, or an alkylcarboxoxy group having 2 to 10 carbon atoms, such as an acetooxy group) ),
  • Halogen atoms especially fluorine or chlorine atoms
  • alkylthio group (preferably an alkylthio group having 1 to 8 carbon atoms, for example, a methylthio group, an ethylthio group, etc.), may have a substituent.
  • An arylthio group (preferably an arylothio group having 6 to 12 carbon atoms, such as a phenolthio group, a 1-naphthylthio group, etc.) may be used.
  • a sulfonyl group which may have (for example, a mesyl group, a tosyl group, etc.),
  • a silyl group which may have a substituent for example, trimethylsilyl group, triphenylsilyl group, etc.
  • a substituent such as a boryl group (for example, a dimesitylboryl group),
  • a phosphino group for example, a diphenylphosphino group
  • An aromatic hydrocarbon group which may have a substituent (e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene ring, fluoreoranthene A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring, such as a ring)
  • a substituent e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene ring, fluoreoranthene A monovalent group derived from a 5- or 6-membered monocyclic
  • An optionally substituted heterocyclic group e.g., furan ring, benzofuran ring, thiophene ring
  • substituent when the substituent further has a substituent, examples of the substituent include the above-described exemplified substituents.
  • R 2 from the viewpoint of improving the viewpoint and heat resistance improving electrochemical durability, a optionally substituted aromatic hydrocarbon group is preferred instrument substituent More preferred are unsubstituted or more preferred phenyl groups, or even more preferred are mono- or di-substituted phenol groups.
  • R 2 is preferably a methyl group, an ethyl group, an n-propyl group, an alkyl group which may have a substituent, from the viewpoint of further improving solubility and amorphousness.
  • a methyl group, an ethyl group, and an n-propyl group are more preferable, and an alkyl group having 1 to 4 carbon atoms such as a propyl group, an n-butyl group, an isobutyl group, and a tert-butyl group is more preferable.
  • R 2 is preferably a hydrogen atom from the viewpoint of preventing a decrease in triplet excited level.
  • RR 2 is that you have to form a ring is preferably bonded to each other.
  • Examples of the organic compound represented by the formula (I) when RR 2 is bonded to each other to form a ring are shown below, but the present invention is not limited thereto.
  • examples of R include the substituents exemplified as R 1 and R 2 or a hydrogen atom.
  • R 2 is able to form a benzene ring or a nitrogen-containing aromatic six-membered ring bonded to each other I like it. That is, the organic compound of the present invention is preferably represented by the following formula (II).
  • Ar 2 and Q have the same meanings as in formula (I).
  • Ring A 1 represents a benzene ring which may have a substituent, or a nitrogen-containing aromatic six-membered ring which may have a substituent.
  • Examples of the nitrogen-containing aromatic six-membered ring of ring A 1, a pyridine ring, a pyrazine ring, a pyrimidine ring, pyrid Jin ring, Toriajin ring.
  • a pyridine ring is preferable.
  • Examples of the substituent for ring A 1 include those exemplified as RR 2 , which is preferable! /
  • Ar 1 in the organic compound of the present invention is an aromatic hydrocarbon group which may have an arbitrary substituent, an aromatic heterocyclic group which may have an arbitrary substituent, or an arbitrary substituent.
  • Ar 2 represents an aromatic hydrocarbon group that may have an arbitrary substituent, or an aromatic group that may have an arbitrary substituent, and may be an aromatic group. Represents a heterocyclic group.
  • Ar 2 may have, examples of the substituent include the substituents exemplified as R 2 .
  • the substituents for Ar 1 and Ar 2 may be formed by linking a plurality of substituents exemplified as R 1 and R 2 . In addition, these substituents may be bonded to adjacent groups to form a ring.
  • Ar 1, including its substituents preferably has a molecular weight of 3000 or less, more preferably 1000 or less.
  • Ar 2 —Q, including its substituents preferably has a molecular weight of 3000 or less, preferably 1000 or less.
  • Ar 2 may have a substituent, and from the viewpoint of improving heat resistance, the substituent may have an aromatic hydrocarbon group, more preferably a substituent.
  • a group having a group may be an unsubstituted group, more preferably an unsubstituted group, or a mono- or di-substituted group.
  • an alkyl group which may have a substituent is more preferable from the viewpoint of further improving solubility and amorphousness.
  • Ar 2 may have a low singlet and triplet excited level as a substituent.
  • a group derived from a 1,3-dihydroimidazol 2-one ring is preferred because it further improves heat resistance and charge transport capability while preventing lowering.
  • Illustrative examples of the aromatic hydrocarbon group applicable to Ar 2 include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, tarisene ring, triphenyl ring.
  • aromatic heterocyclic groups applicable to Ar 2 include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, force rubazole ring , Pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, chenovirol ring, chenotiophen ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, 5 or 6 such as pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxa
  • alkyl groups applicable to Ar 1 include alkyls having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, 2 propyl, n-butyl, isobutyl, sec butyl group, tert butyl group, etc. Groups.
  • Ar 1 may have a substituent from the viewpoint of preventing a decrease in the triplet excitation level. It may be! / ⁇ A group derived from a benzene ring, or a pyridine ring optionally having a substituent A group having a benzene ring or a substituent, or a group in which a plurality of pyridine rings (for example, 2 to: LO) are linked (for example, biphenyl group, terphe- And the like, and the like.
  • Ar 1 is preferably the same as Ar 2-Q because it is easy to synthesize and tends to have a high triplet excitation level.
  • Ar 1 is preferably a group different from Ar 2 —Q from the viewpoint of improving solubility.
  • Ar 2 may have a substituent from the viewpoint of preventing a decrease in the triplet excited level. It may be! / ⁇ ⁇ A group derived from a benzene ring, or a pyridine ring optionally having a substituent Even if it has a substituent or
  • a divalent group for example, biphenyl, terphel, bibilidyl, terpyridyl, phenol
  • -Dipyridine derived from dipyridine, diphenylpyridine, dipyridylbenzene, etc.).
  • Ar 2 is further improved in electrochemical durability from the point of view of p-phenylene group, 4, 4, 1 biphenylene group, 4, 3, 1 biphenylene group, 3, 4, 1 More preferably, it is a biphenylene group.
  • Ar 2 is more preferably an m-phenylene group or a 3,3′-biphenylene group from the viewpoint of further improving the solubility.
  • the preferred tool Pirijinjiiru group include pyridine ring, or Bibirijiru, terpyridyl, phenylalanine pyridine, di phenylalanine pyridine, from dipyridyl benzene More preferably, it is a divalent group.
  • both Ar 1 and Ar 2 are groups derived from a benzene ring from the viewpoints of solubility and heat resistance, and prevention of lowering of the triplet excited level.
  • the organic compound of the present invention is preferably represented by the following formula (III).
  • R ⁇ R 2 and Q have the same meanings as in formula (I).
  • Ring B 1 may have a substituent and may represent a benzene ring, and ring C 1 may have a substituent other than Q! /! May represent a benzene ring.
  • ring have the ring C 1 is also O, examples and preferred that the substituent, examples, respectively, in front Symbol Ar 1, Ar 2 has, even I, similar to the substituent It is.
  • both Ar 1 and Ar 2 are groups derived from a pyridine ring. This is preferable from the viewpoint of preventing the lowering of the triplet excited level.
  • the organic compound of the present invention is preferably represented by the following formula ( ⁇ -2).
  • R ⁇ R 2 and Q have the same meanings as in formula (I).
  • Ring D 1 may have a substituent and may represent a pyridine ring, and ring E 1 may have a substituent other than Q! Or may represent a pyridine ring.
  • Q in the organic compound of the present invention represents a group whose formula (1-1) or (1-2) force is also selected.
  • Ar 3 to Ar 5 each independently represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • Ar 3 and Ar 4 may be bonded to each other to form a ring.
  • Ar 3 to Ar 5 may have, and examples of the substituent include those exemplified as RR 2 .
  • Ar 3 to Ar 5 have! /, May ! / Are preferred as substituents! /, For example, ⁇ Ar 2 has! / ⁇ The preference for substituents is the same as in the examples.
  • Examples of aromatic hydrocarbon groups and aromatic heterocyclic groups applicable to Ar 3 to Ar 5 are: This is the same as the examples of the aromatic hydrocarbon group and aromatic heterocyclic group applicable to Ar 2 .
  • Ar 3 and Ar 4 are more preferably substituted with an aromatic hydrocarbon group which may have a substituent.
  • a phenyl group which may have a group, more preferably an unsubstituted phenyl group, 1 or
  • Q is preferably represented by the formula (1-1).
  • Ar 3 and Ar 4 may be bonded to each other to form a ring that may have a substituent.
  • Preferred examples of Ar 3 Ar 4 N— when Ar 3 and Ar 4 are bonded to each other to form a ring are shown below. Of these, N-carbazolyl group is more preferable because it has a high triplet excited level.
  • Q is preferably represented by the formula (1-2).
  • Ar 5 has a substituent from the viewpoint of preventing a decrease in triplet excited level.
  • V or a group derived from a benzene ring or a group in which a plurality of benzene rings (for example, 2 to: LO) are connected (for example, biphenylene group, terfenylene group, etc.) is preferable.
  • the organic compound of the present invention is preferably represented by the following formula (IV) because it has all of high charge transporting ability, high electrochemical stability, and high triplet excited level.
  • Ar 2 to Ar 4 , R 1 and R 2 have the same meanings as in the formula (I) and the formula (I-1).
  • Ar 6 to Ar 8 each independently represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • Ar 7 and Ar 8 may be bonded to each other to form a ring.
  • Examples of Ar 6 and preferred examples are the same as those of Ar 2 , respectively.
  • Examples and preferred examples of Ar 7 and Ar 8 are the same as each, Ar 3 or Ar 4.
  • the site of Ar 1 to the onset Ming organic compounds, Ar 2 - sites of Q, the site of R 1 or R 2 it is preferable to have 1 or more, preferably 1 to 6, more preferably 2 to 4 N-force rubazolyl groups represented by the following formula (I-3).
  • the carbazolyl group may have a substituent, but is preferably unsubstituted.
  • the organic compound of the present invention can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • a 2-hydroxyimidazole derivative represented by the formula (i) and a halide (Ar 1 —X 1 ) are mixed with copper powder, copper halide (1), copper oxide (1), and palladium complex.
  • Transition metal catalysts about 0.001 to 5 equivalents to the halogen atom of the norogenide (A —X 1 )
  • potassium carbonate calcium carbonate, potassium phosphate, cesium carbonate, tert-butoxy sodium
  • a basic substance such as triethylamine (about 1 to 10 equivalents to the halogen atom of neurogen (Ar 1 —X 1 )) in an inert gas stream, no solvent or aromatic solvent, ether
  • a compound represented by the following formula (ii) can be obtained by stirring and mixing in a solvent such as a silver solvent at 20 to 300 ° C.
  • a compound represented by the following formula (ii) and a halide (X 2 —Ar 2 —Q) are converted into a transition metal such as copper powder, copper halide (I), copper oxide (I), or palladium complex.
  • the halide (X 2 —Ar 2 —Ar 5 ) can be synthesized using a known coupling reaction.
  • a known coupling method specifically, “Pallad mm in Heterocyclic Chemistry: A guide for tne Synthetic and hemistj (younger brother 2nd edition, 2 002, Jie Jack Li and Gordon W.
  • Gribble, Pergamon Organic synthesis pioneered by metals "Various reaction types and latest results” (1997, Tatsuro Nichiro, Kagaku Dojinsha), “Bolhard's Shore One Contemporary Organic Chemistry” (2004, KPCVollhardt, Kagaku Dojinsha)
  • a coupling reaction between rings such as a coupling reaction between a halogenated aryl and an aryl borate described or cited in the above can be used.
  • Usable reagents and the like are the same as in the step of synthesizing the compound represented by the formula (ii) from the compound represented by the above formula (i).
  • Ar 4 Ar 4 Purification methods of synthesized compounds include “Separation and purification technology handbook” (Year, Japan Chemical Society), “High-level separation of trace components and difficult-to-purify substances by chemical conversion method” (Year, Published by IPC Co., Ltd.), or the method described in the section “Separation and Purification” of “Experimental Chemistry Course (Ver.)” (Year, Japan Society of Social Sciences) Is available.
  • extraction including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption
  • Product chromatography and purity analysis methods include gas chromatograph (, high-performance liquid chromatograph, high-speed amino acid analyzer, capillary electrophoresis measurement, size exclusion chromatograph (, gel permeation chromatograph (, cross-fractionation chromatograph (mass spectrometry) (,, Nuclear magnetic resonance equipment
  • the organic compound of the present invention has a high charge transport property, an electron is used as a charge transport material. It can be suitably used for photographic photoreceptors, organic electroluminescent elements, photoelectric conversion elements, organic solar cells, organic rectifying elements and the like.
  • the organic compound and the charge transport material of the present invention are particularly suitable as an organic electroluminescent element material.
  • the charge transport material of the present invention is composed of the organic compound of the present invention, or the following formula (
  • Ring A 1 represents a benzene ring which may have a substituent, or a nitrogen-containing aromatic six-membered ring which may have a substituent.
  • Ar 9 each independently represents an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • ring A Ar 1 has the same meaning as A Ar 1 in formula (II), and the substituents and preferred examples thereof are also the same.
  • Ar 9 can be the same as Ar 1 , Ar
  • Ar 1 may have the same as the substituent.
  • the molecular weight of the charge transport material of the present invention represented by the above formula (II-2) is usually 5000 or less, preferably 3000 or less, more preferably 2000 or less, and usually 300 or more, preferably 500. Above, more preferably 600 or more. If the molecular weight exceeds the upper limit, purification may be difficult due to the high molecular weight of the impurities, and if the molecular weight is lower than the lower limit, the glass transition temperature, melting point, vaporization temperature, etc. will decrease. The heat resistance may be significantly impaired.
  • the charge transport material of the present invention usually has a glass transition temperature of 40 ° C or higher, but from the viewpoint of heat resistance, it is preferably 80 ° C or higher, more preferably 110 ° C or higher.
  • the charge transport material of the present invention usually has a vaporization temperature of 300 ° C or higher and 800 ° C or lower.
  • the charge transport material of the present invention usually has an energy difference between an excited triplet state and a ground state of 2. OeV or more and 4. OeV or less, but from the viewpoint of improving the efficiency of an organic electroluminescence device using phosphorescence.
  • the energy difference between the excited triplet state and the ground state is preferably 2.3 eV or more, more preferably 6 eV or more, and even more preferably 2.9 eV or more.
  • the hydrocarbon contained in the composition for charge transport material is preferably an aromatic hydrocarbon.
  • Toluene is listed as a representative example of aromatic hydrocarbons, and in the present invention, toluene is used as an index indicating the solubility of organic compounds (charge transport materials).
  • the layer constituting the organic electroluminescence device can be easily formed by a wet film forming method.
  • the upper limit of solubility is not particularly limited, but is usually about 50% by weight.
  • composition for a charge transport material of the present invention contains the above-described charge transport material of the present invention, usually contains the charge transport material of the present invention and a solvent, and more preferably contains a phosphorescent material. Preferably, it is used for organic electroluminescent elements.
  • the solvent contained in the composition for a charge transport material of the present invention is not particularly limited as long as it is a solvent in which the charge transport material of the present invention which is a solute dissolves well.
  • aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene, and tetralin
  • halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, carsol hue
  • Aromatic ethers such as netol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3dimethylasol, 2,4 dimethylasol
  • Aromatic esters such as methyl, ethyl benzoate, propyl benzoate, and n-butyl benzoate
  • Ketones having an alicyclic ring such as cyclo
  • organic electroluminescent devices use many materials such as cathodes that deteriorate significantly due to moisture, the presence of moisture in the composition causes moisture to remain in the dried film, resulting in device characteristics. The possibility of lowering is considered preferable.
  • Examples of the method for reducing the amount of water in the composition include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like.
  • a solvent having low water solubility because the solution film can prevent whitening by absorbing moisture in the atmosphere during the wet film-forming process.
  • the charge transport material composition to which the present embodiment is applied has, for example, a water solubility at 25 ° C. of 1% by weight or less, preferably 0.1% by weight or less. It is preferable to contain 10% by weight or more of a solvent in the composition.
  • the boiling point is 100 ° C or higher as the solvent of the composition for charge transport materials. It is effective to use a solvent having a boiling point of 150 ° C or higher, more preferably 200 ° C or higher. In order to obtain a more uniform film, it is necessary for the solvent to evaporate from the liquid film immediately after film formation at an appropriate rate.
  • the boiling point is usually 80 ° C or higher, preferably the boiling point is 100 ° C or higher.
  • the boiling point is 120 ° C or higher, usually the boiling point is less than 270 ° C, preferably the boiling point is 250 It is effective to use a solvent having a boiling point of less than ° C, more preferably less than 230 ° C.
  • a solvent that satisfies the above-mentioned conditions that is, the conditions of solute solubility, evaporation rate, and water solubility may be used alone, or two or more kinds of solvents may be mixed and used.
  • the charge transport material composition of the present invention particularly the charge transport material composition used as the charge transport material composition, preferably contains a light emitting material.
  • the light emitting material refers to a component that mainly emits light in the composition for a charge transport material of the present invention, and corresponds to a dopant component in an organic electroluminescent device. That is, the amount of light emitted from the charge transport material composition (unit: cdZm 2 ) is usually 10 to: LOO%, preferably
  • the light-emitting material a known material can be applied, and a fluorescent light-emitting material or a phosphorescent light-emitting material can be used alone or in combination. From the viewpoint of internal quantum efficiency, a phosphorescent light-emitting material is preferable. is there.
  • the maximum emission peak wavelength of the luminescent material is preferably in the range of 390 to 490 nm.
  • Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, P-bis (2-phenylethyl) benzene, and derivatives thereof.
  • Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives.
  • Examples of yellow fluorescent dyes include rubrene and perimidone derivatives.
  • Examples of red fluorescent dyes include DCM compounds, benzopyran derivatives, rhodamine derivatives, benzothixanthene derivatives, azabenzothixanthene, and the like.
  • Examples of the phosphorescent material include organometallic complexes containing a metal selected from Group 7 to Group 11 forces in the periodic table.
  • Periodic table 7 and metal in a phosphorescent organometallic complex containing a metal selected from group 11 Preferred examples thereof include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • Preferred examples of these organometallic complexes include compounds represented by the following general formula (V) or formula (VI).
  • M represents a metal
  • q represents the valence of the metal
  • L and L ′ represent bidentate ligands.
  • j represents 0, 1 or 2;
  • M d represents a metal
  • T represents represents a carbon or nitrogen.
  • R 92 to R 95 each independently represents a substituent. However, when T is nitrogen, there is no R 94 or R 95 .
  • the compound represented by formula (V) will be described first.
  • M represents an arbitrary metal, and specific examples of preferable ones include the metals described above as the metals for which the periodic table 7 and 11 group forces are also selected.
  • the bidentate ligands L and L ′ in the general formula (V) have the following partial structures, respectively.
  • the ligand to be shown is shown.
  • the ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and these may have a substituent.
  • Ring A2 represents a nitrogen-containing aromatic heterocyclic group, and these may have a substituent.
  • substituents include: a halogen atom such as a fluorine atom; an alkyl group such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group; a methoxy carb group Alkoxy group such as ethoxycarbol group; alkoxy group such as methoxy group and ethoxy group; aryloxy group such as phenoxy group and benzyloxy group; dialkylamino group such as dimethylamino group and jetylamino group; diphenylamino group A diarylamino group such as carbazolyl group; an acyl group such as acetyl group; a haloalkyl group such as trifluoromethyl group; a cyano group; an aromatic hydrocarbon group such as a phenol group, a naphthyl group, and a phenanthyl group.
  • a halogen atom such as a fluorine atom
  • an alkyl group such
  • the compound represented by the general formula (V) is more preferably the following general formula (Va), (Vb), (
  • M a represents the same metal as M, and w represents the valence of the metal.
  • Ring A1 may have a substituent and may represent an aromatic hydrocarbon group, and Ring A2 may have a substituent and may have a substituent! / ⁇ represents a nitrogen-containing aromatic heterocyclic group. .
  • M b represents the same metal as M, and w represents the valence of the metal.
  • Ring A1 may have a substituent, may have an aromatic hydrocarbon group or a substituent, and may represent a V ⁇ aromatic heterocyclic group, and ring A2 may have a substituent. Or a nitrogen-containing aromatic heterocyclic group.
  • M e represents the same metal as M, w represents the valence of the metal.
  • J represents 0, 1 or 2;
  • ring A1, ring A1 and ring A1 ′ may each independently have a substituent! / ⁇ ! / ⁇ may have an aromatic hydrocarbon group or substituent! / ⁇ ! ⁇
  • Ring A2 and Ring A2 ′ each independently represent a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • the group of ring A1 and ring Al ′ is preferably, for example, a phenyl group, a biphenyl group, a naphthyl group or an anthryl group.
  • Chael group, fu Examples include a ryl group, a benzochel group, a benzofuryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, and a carbazolyl group.
  • the group of ring A2 and ring A2 ' is preferably a pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzoimidazole group, quinolyl group, for example. Group, isoquinolyl group, quinoxalyl group, phenanthridyl group and the like.
  • the compounds represented by the general formulas (Va), (Vb), (Vc) may have a halogen atom such as a fluorine atom as a substituent; a methyl group, an ethyl group Alkyl groups such as vinyl groups; Alkyl groups such as vinyl groups; Alkoxycarbonyl groups such as methoxycarbon groups and ethoxycarbonyl groups; Alkoxy groups such as methoxy groups and ethoxy groups; Aryloxy groups such as phenoxy groups and benzyloxy groups A dialkylamino group such as a dimethylamino group or a jetylamino group; a diarylamino group such as a diphenylamino group; a carbazolyl group; an acyl group such as an acetyl group; a haloalkyl group such as a trifluoromethyl group; a cyano group;
  • a halogen atom such as a fluorine atom as a substituent
  • the carbon number is usually 1 or more and 6 or less. Furthermore, when the substituent is an alkenyl group, the carbon number is usually 2 or more and 6 or less. Further, when the substituent is an alkoxycarbo group, the carbon number is usually 2 or more and 6 or less. Furthermore, when the substituent is an alkoxy group, the carbon number is usually 1 or more and 6 or less. When the substituent is an aryloxy group, the carbon number is usually 6 or more and 14 or less. Further, when the substituent is a dialkylamino group, the carbon number is usually 2 or more and 24 or less.
  • the number of carbon atoms is usually 12 or more and 28 or less.
  • the number of carbon atoms is usually 1 or more and 14 or less.
  • the substituent is a haloalkyl group, the carbon number is usually 1 or more and 12 or less.
  • substituents may be linked to each other to form a ring.
  • substituent of ring A1 and the substituent of ring A2 are bonded, or the substituent of ring A1 ′ and the substituent of ring A2 ′ are bonded,
  • One condensed ring may be formed. Examples of such a condensed ring group include a 7,8-benzoquinoline group.
  • ring Al ring A1 ', ring A2 and ring A2'
  • alkyl preferably alkyl.
  • organometallic complex represented by the above general formula (V), (Va), (Vb) or (Vc) are shown below, but are not limited to the following compounds (in the following) , Ph represents a full group.
  • the ligands L and Z or L are 2-aryl pyridine ligands, that is, 2-aryl pyridines, those having an arbitrary substituent bonded thereto, and those having an arbitrary group condensed thereto. Preference is given to compounds having.
  • M d represents a metal, and specific examples thereof include the metals described above as metals for which the periodic table group 7 to 11 forces are also selected. Among these, ruthenium, rhodium, noradium, silver, rhenium, osmium, iridium, platinum or gold are preferable, and divalent metals such as platinum and palladium are particularly preferable.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarboxyl.
  • R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93.
  • R 94 and R 95 are absent.
  • R 92 to R 95 may further have a substituent, also.
  • the substituent that may be further added can be any group that is not particularly limited.
  • R 92 to R 95 may be bonded to each other to form a ring, and this ring may further have an arbitrary substituent.
  • T-1, T-10 to T-15 of the organometallic complex represented by the general formula (VI) are shown below, but are not limited to the following exemplified compounds.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • composition for a charge transport material of the present invention particularly the composition for a charge transport material used as the composition for a charge transport material, in addition to the solvent and the light emitting material described above, various other types can be used as necessary.
  • a solvent may be included. Examples of such other solvents include amides such as ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, and dimethyl sulfoxide.
  • a photocurable resin or a thermosetting resin may be contained for the purpose of curing and insolubilizing after film formation.
  • the solids concentration of the charge transport material composition, particularly the charge transport material, the luminescent material, and components that can be added as required (e.g. leveling agent) in the charge transport material composition is usually 0. 01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, more preferably 0.5% by weight or more, most preferably 1% by weight or more, usually 80% by weight or less, It is preferably 50% by weight or less, more preferably 40% by weight or less, further preferably 30% by weight or less, and most preferably 20% by weight or less. If this concentration is lower than the lower limit, it is difficult to form a thick film when forming a thin film, and if it exceeds the upper limit, it may be difficult to form a thin film.
  • the light-emitting material Z charge transport material has a weight mixing ratio of usually 0.1 / 99.9 or more. More preferably 0.5 / 99.5 or more, more preferably 1Z99 or more, most preferably 2 Z98 or more, usually 50Z50 or less, more preferably 40Z60 or less, More preferably, it is 30Z70 or less, and most preferably 20Z80 or less. If this ratio falls below the lower limit or exceeds the upper limit, the luminous efficiency may be significantly reduced.
  • the composition for a charge transport material of the present invention is a solute comprising a charge transport material, a light emitting material, and various additives such as a leveling agent and an antifoaming agent that can be added as necessary. Is dissolved in a suitable solvent. In order to shorten the time required for the dissolution process and to keep the solute concentration in the composition uniform, the solute is usually dissolved while stirring the solution. The dissolution step may be performed at room temperature, but if the dissolution rate is slow, it can be dissolved by heating. After completion of the dissolution process, a filtration process such as filtering may be performed as necessary.
  • the organic electroluminescent device is used for the charge transport material composition of the present invention (charge transport material composition).
  • charge transport material composition When a layer is formed by a wet film-forming method using), if moisture is present in the composition for charge transport material used, moisture is mixed into the formed film and the uniformity of the film is impaired. It is preferable that the water content in the composition for a charge transport material of the present invention, particularly the composition for a charge transport material, is as low as possible.
  • organic electroluminescent devices use many materials such as cathodes that deteriorate significantly due to moisture, when moisture is present in the composition for charge transport material, moisture remains in the dried film. It is preferable because there is a possibility of deteriorating the characteristics of the element.
  • the amount of water contained in the charge transport material composition of the present invention is usually 1 wt% or less, preferably 0.1 wt% or less, more preferably. Is less than 0.01 wt%.
  • the composition for a charge transport material of the present invention in order to improve the stability in a wet film forming process, for example, the ejection stability of the nozzle force in an ink jet film forming method, It is preferably a uniform liquid at room temperature.
  • a uniform liquid at room temperature means that the composition is a liquid having a uniform affinity and does not contain a particle component having a particle size of 0.1 m or more in the composition.
  • the viscosity of the charge transport material composition of the present invention especially the charge transport material composition, if the viscosity is extremely low, for example, the coating surface is uneven due to excessive liquid film flow in the film forming process. Ink jet film formation tends to cause nozzle discharge defects, and when the viscosity is extremely high, nozzle clogging or the like occurs easily in ink jet film formation. Therefore, the viscosity of the composition of the present invention at 25 ° C is usually 2 mPa's or more, preferably 3 mPa's or more, more preferably 5 mPa's or more, and usually lOOOOmPa's or less, preferably 100 mPa's. It is' s or less, more preferably 50 mPa's or less.
  • the surface tension of the composition for a charge transport material of the present invention is usually less than 50 mNZm, preferably less than 40 mNZm.
  • the vapor pressure of the composition for a charge transport material of the present invention is high, problems such as a change in solute concentration due to evaporation of the solvent may easily occur.
  • the vapor pressure at 25 ° C. of the composition of the present invention is usually 50 mmHg or less, preferably 10 mmHg or less, more preferably ImmHg or less.
  • the composition for a charge transport material of the present invention is preferably stored in a container capable of preventing the transmission of ultraviolet rays, for example, a brown glass bottle, and sealed.
  • the storage temperature is usually ⁇ 30 ° C or higher, preferably 0 ° C or higher, and usually 35 ° C or lower, preferably 25 ° C or lower.
  • the organic electroluminescent device of the present invention has an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate, and has a layer containing the charge transport material of the present invention. .
  • the layer containing the charge transport material is preferably formed using the charge transport material composition of the present invention.
  • the layer containing the charge transport material is preferably the light emitting layer.
  • an organometallic complex is doped in the layer containing the charge transport material. As this organometallic complex, those exemplified as the light emitting material can be used.
  • FIG. 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is A light emitting layer
  • 5 represents an electron injection layer
  • 6 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates or metal foils, plastic films or sheets, etc. are used.
  • a glass plate and a transparent synthetic resin plate such as polyester, polymetatalylate, polycarbonate, and polysulfone are preferable.
  • gas barrier properties it is necessary to pay attention to gas barrier properties. . If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas noria property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • An anode 2 is provided on the substrate 1.
  • the anode 2 plays a role of hole injection into the layer on the light emitting layer side (such as the hole injection layer 3 or the light emission layer 4).
  • This anode 2 is usually made of metal such as aluminum, gold, silver, nickel, iron ⁇ radium, platinum, metal oxide such as indium and z or tin, copper iodide, etc. It is composed of a metal halide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole or polyaline.
  • the anode 2 is usually formed by a sputtering method, a vacuum evaporation method, or the like.
  • a suitable noder is used.
  • the anode 2 can also be formed by dispersing it in a resin solution and applying it on the substrate 1.
  • a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett., 60 ⁇ , 2711, 1992).
  • the anode 2 usually has a single-layer structure, but if desired, it should have a laminated structure with multiple material forces.
  • the thickness of the anode 2 varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the anode is usually 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably about 500 nm or less. If it can be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • Impurities attached to the anode are removed, and the ion injection potential is adjusted to improve the hole injection property. It is preferable to treat the surface of the anode with ultraviolet (uv) Z ozone, oxygen plasma, or argon plasma for the purpose of improving the surface.
  • ultraviolet (uv) Z ozone, oxygen plasma, or argon plasma for the purpose of improving the surface.
  • the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 4, the hole injection layer 3 preferably contains a hole transporting compound.
  • a cationic radical in which one electron is removed from an electrically neutral compound accepts one electron from a nearby electrically neutral compound, whereby a hole is generated.
  • the hole transporting compound gives electrons to the anode 2 when energized, so that the cation of the hole transporting compound A radical is generated, and holes are transported by transferring electrons between the cation radical and an electrically neutral hole transporting compound.
  • the hole injection layer 3 contains a cation radical compound
  • cation radicals necessary for hole transport exist at a concentration higher than that generated by the acid generated by the anode 2, and the positive injection is present.
  • the hole injection layer 3 preferably contains a cation radical compound.
  • an electrically neutral hole transporting compound is present in the vicinity of the cation radical compound, electrons are transferred smoothly, and therefore the cationic radical compound and the hole transporting compound are combined in the hole injection layer 3. More preferably.
  • the cation radical compound is a cation radical that is a chemical species in which one electron is removed from a hole transport property, and an ion compound that has an anti-ion force.
  • V-holes free carriers
  • the hole injection layer 3 contains a hole transporting compound and an electron accepting compound.
  • the hole-injecting layer 3 contains a hole-transporting compound and an electron-accepting compound. It is even more preferable to include. Further, it is more preferable that the hole injection layer 3 contains a cation radical compound and a hole transport compound which preferably contain a cation radical compound. [0180] Further, as required, the hole injection layer 3 may contain a binder resin that hardly traps charges or a coating property improving agent.
  • the hole injection layer 3 only an electron-accepting compound or an electron-accepting compound and a hole-transporting compound is used to form a film on the anode 2 by a wet film-forming method.
  • the composition for a charge transport material of the present invention can also be laminated directly by coating or vapor deposition. In this case, a part or all of the charge transport material composition of the present invention interacts with the electron-accepting compound, whereby hole transport excellent in hole injecting property as shown in FIGS. Layer 10 is formed.
  • the hole transporting compound a compound having an ionization potential of 4.5 eV to 6. OeV is preferable.
  • Examples of the hole transporting compound include, in addition to the charge transporting material of the present invention, aromatic amine compounds, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, and the like. Of these, aromatic amine compounds are preferable from the viewpoint of amorphousness and visible light transmittance.
  • aromatic tertiary amine compounds such as the charge transport material of the present invention are particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of the surface smoothing effect, a polymer compound having a weight average molecular weight of 1000 or more and 1000000 or less (polymerization-type organic compound in which repeating units are connected). Compound) is more preferred.
  • Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following general formula (VII).
  • Ar 21 and Ar 22 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 23 to Ar 25 are each independently O 2 CH 2 and may have a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic ring which may have a substituent.
  • Y represents a linking group selected from the following linking group group.
  • two groups bonded to the same N atom among Ar 21 to Ar 25 may be bonded to each other to form a ring.
  • Ar 31 to Ar 41 are each independently 1 derived from an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent. Represents a divalent or divalent group.
  • R 1Cn and R 1C> 2 each independently represent a hydrogen atom or an optional substituent
  • Examples of the aromatic hydrocarbon ring include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a taricene ring, a triphenylene ring, a acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • Examples of the aromatic heterocyclic ring include a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, strong rubazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, chenoviolol.
  • Ar 23 to Ar 25 , Ar 31 to Ar 35 , Ar 37 to Ar 4 are derived from one or more of the aromatic hydrocarbon rings and Z or aromatic heterocycles exemplified above. Two or more divalent groups can be linked and used.
  • aromatic hydrocarbon ring and Z or aromatic heterocyclic group derived from Ar 21 to Ar 41 may further have a substituent.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • the type of the substituent is not particularly limited, and examples thereof include one or more selected from the following substituent group D force.
  • Groups such as phenylmethylamino groups, usually having 6 or more carbon atoms, preferably 7 or more, usually 25 or less, preferably 17 or less aryl alkylamino groups; acetyl groups, benzoyl groups, etc.
  • a halogen atom such as a fluorine atom or a chlorine atom; a trifluoromethyl group or the like
  • the carbon number is usually 1 or more, usually 8 or less, preferably 4 or less
  • Ar 21 and Ar 22 are monovalent derived from a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring from the viewpoint of the solubility, heat resistance, and hole injection 'transportability of the polymer compound. More preferred are a phenyl group and a naphthyl group.
  • Ar 23 to Ar 25 are divalent groups derived from a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring from the viewpoint of heat resistance and hole injection and transport properties including redox potential.
  • Preferred phenylene groups, biphenylene groups, and naphthylene groups are more preferable.
  • R 10 ⁇ R 1C> 2 a hydrogen atom or an arbitrary substituent is applicable. These may be the same or different from each other.
  • the type of the substituent is not particularly limited. Examples of applicable substituents include alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, silyl groups, siloxy groups, aromatic hydrocarbon groups, aromatic heterocyclic groups. And a halogen atom. Specific examples thereof include the groups exemplified in the above substituent group D.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the general formula (VII) include those described in WO2005Z089024, and preferred examples thereof are also included.
  • the compound (PB-1) represented by the following structural formula is exemplified, but the present invention is not limited thereto.
  • aromatic tertiary amine polymer compounds include, for example, the following general formula (VIII) and
  • Examples thereof include a polymer compound containing a repeating unit represented by Z or general formula (IX).
  • Ar 45 , Ar 47 and Ar 48 may each independently have a substituent.
  • Ar 44 and Ar 46 each independently represents a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent.
  • Ar 45 to Ar 48 two groups bonded to the same N atom may be bonded to each other to form a ring.
  • R m to R 113 each independently represents a hydrogen atom or an arbitrary substituent.
  • Ar 45 , Ar 47 , Ar 48 and Ar 44 , Ar 46 may include Ar 21 , Ar 22 and Ar 23 to Ar 25 .
  • R m to R 113 are preferably a hydrogen atom or a substituent described in [Substituent group D], more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, an aromatic hydrocarbon group, It is an aromatic hydrocarbon group.
  • aromatic tertiary amine polymer compound containing the repeating unit represented by the general formula (VIII) and Z or (IX) include those described in WO2005Z089024, and preferred examples thereof. Is the same, but is not limited thereto.
  • a hole transporting compound that is easily dissolved in various solvents is preferable.
  • the aromatic tertiary amine compound for example, a binaphthyl compound (Japanese Patent Laid-Open No. 2004-014187) and an asymmetric 1,4-phenylenediamine compound (Japanese Patent Laid-Open No. 2004-026732) are preferred.
  • aromatic amine compounds that have been conventionally used as thin film refining materials having hole injection and transport properties in organic electroluminescent devices, compounds that are easily dissolved in various solvents may be appropriately selected. Good.
  • aromatic amine compound applicable to the hole transporting compound of the hole injection layer for example, it has been conventionally used as a layer forming material for hole injection and transporting in organic electroluminescence devices. A well-known compound is mentioned.
  • aromatic diamine compounds in which tertiary aromatic amine units such as 1, 1 bis (4-di-P-triamylaminophenol) cyclohexane are linked JP-A-59-194393
  • 4 , 4'-bis [N- (1-naphthyl) -N-phenolamino] biphenyl, which contains two or more tertiary amines, and two or more condensed aromatic rings are attached to the nitrogen atom.
  • Substituted aromatic amine compounds JP-A-5-234681; derivatives of triphenylbenzene and aromatic triamine compounds having a starburst structure (US Pat. No.
  • N N, —Diphenyl—N, N, —Bis (3-methylphenol) bi-fluoro 4,4, aromatic diamine compounds such as diamine (US Pat. No. 4,764,625); ⁇ , ⁇ , ⁇ ', ⁇ , monotetramethyl ⁇ , ⁇ , monobis (4 di ( ⁇ tolyl) aminophenyl) - ⁇ xylene (Japanese Patent Laid-Open No.
  • a sterically asymmetric triphenylamine derivative as a whole molecule JP-A-4-129271; a compound in which a plurality of aromatic diamino groups are substituted on a pyrenyl group (JP-A-4-175395); ethylene Aromatic diamine compounds in which tertiary aromatic amine units are linked by a group (JP-A-4-264189); aromatic diamines having a styryl structure (JP-A-4-290851); thiophene groups Compound obtained by linking aromatic tertiary amine units (JP-A-4-304466); Starburst type aromatic triamine compound (JP-A-4-308688); benzylphenol compound (JP-A-4-308688) 4-364153); a compound in which a tertiary amine is linked by a fluorene group (JP-A-5-25473); a triamine compound (JP-A-5-239455); a bis-dip
  • phthalocyanine derivative or porphyrin derivative applicable to the hole transporting compound in the hole injection layer include porphyrin, 5, 10, 15, 20-tetraphenyl 21H. , 23H Porphyrin, 5, 10, 15, 20—Tetraphenol— 21H, 23H —Porphyrin cobalt (11), 5, 10, 15, 20—Tetraferro-Lu 21H, 23H Porphyrin copper (11), 5, 10 , 15, 20—Tetraphenol—21H, 23H Porphyrin zinc ( ⁇ ), 5, 10, 15, 20—Tetraferroic 21H, 23H Porphyrin vanadium (IV) oxide, 5, 10, 15, 20—Tetra (4 Pyridyl) -21H, 23H porphyrin, 29H, 31H phthalocyanine copper ( ⁇ ), phthalocyanine zinc (11), phthalocyanine titanium, phthalocyanine oxide magnesium, phthalocyanine lead, phthalocyanine copper (11), 4, 4, 4
  • examples thereof include oligothiophene derivatives (JP-A-6-256341).
  • a polythiophene derivative applicable as a hole-transporting compound in the present invention Preferred specific examples include poly (3,4-ethylenedioxythiophene) (PEDOT), poly (3-hexylthiophene) and the like.
  • the molecular weights of these hole transportable compounds are usually 9000 or less, preferably 5000 or less, except for polymer compounds (polymerizable compounds in which repeating units are linked).
  • the range is usually 200 or more, preferably 400 or more. If the molecular weight of the hole transporting compound is too high, synthesis and purification are difficult, which is not preferable. On the other hand, if the molecular weight is too low, the heat resistance may be lowered, which is also not preferable.
  • the hole transporting compound used as the material for the hole injection layer may contain one or more of these compounds, and may contain two or more kinds. Also good. When two or more kinds of hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one other hole transporting compound are used. Or it is preferable to use 2 or more types together.
  • An electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole-transporting compound. Specifically, a compound having an electron affinity of 4 eV or more is used. Preferred is a compound that is a compound of 5 eV or more.
  • Examples include 4-isopropyl-1,4'-methyldiphenyl-tetrakis (pentafluorophenol) borate and other organic group-substituted onium salts, salted iron (III) ( JP-A-11-251067), high-valence inorganic compounds such as ammonium peroxodisulfate, cyano-compounds such as tetracyanethylene, tris (pentafluorophenyl) borane (JP-A-2003-31365), etc. Aromatic boron compounds, fullerene derivatives, iodine and the like.
  • onium salts substituted with organic groups and high-valent inorganic compounds are soluble in various solvents and are applicable to wet coating because they have strong acid-like properties.
  • an organic salt-substituted onium salt, a cyan compound, and an aromatic boron compound are preferable.
  • organically substituted onium salts, cyan compounds, and aromatic boron compounds suitable as electron-accepting compounds include those described in WO2005Z089024, and preferred examples thereof are also included.
  • the compound (A-2) represented by the following structural formula is listed, but it is not limited thereto.
  • the cation radical compound is a cation radical that is a chemical species obtained by removing one electron from a hole transporting compound, and an ionic compound that also has an anti-ion force.
  • the cation radical when the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron of a repeating unit force of the polymer compound is removed.
  • the cation radical is a chemical compound obtained by removing one electron from the above-described compound in the hole transporting compound, and more preferably as a hole transporting compound which is preferably a chemical species. It is more preferable to be a chemical species from the viewpoints of amorphousness, visible light transmittance, heat resistance, and solubility.
  • the cation radical compound can be generated by mixing the hole transport compound and the electron acceptor compound described above. That is, by mixing the aforementioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical of the hole transporting compound is produced. A cationic ion compound with a counter-on force is generated.
  • Cationic labs derived from polymer compounds such as PEDOT / PSS Advanced Mater., 2000, 12 ⁇ , 481) Jameraldine hydrochloride (J. Phys. Chem., 1990, 94 ⁇ , 7716)
  • Dical compounds are also produced by acid-sodium polymerization (dehydrogenation polymerization), that is, by oxidizing a monomer chemically or electrochemically with peroxysulfate in an acidic solution. To do.
  • this oxidative polymerization dehydrogenation polymerization
  • the monomer is oxidized to increase the molecular weight, and one electron from a polymer repeating unit, which is a key ion derived from an acidic solution.
  • the removed cation radical is generated.
  • the hole injection layer 3 is formed on the anode 2 by a wet film forming method or a vacuum deposition method.
  • ITO indium stannate
  • ITO indium stannate
  • Ra roughness
  • the defect of the device due to the unevenness of the surface of the anode is generated compared to the case of forming by the vacuum deposition method. Has the advantage of reducing.
  • a predetermined amount of one or more of the above-mentioned materials is added, Do not become a trap of charge if necessary! / ⁇ Binder ⁇
  • a coating improver and dissolve in a solvent to prepare a coating solution, spin coat, spray coat, dip coat, die coat, flexo
  • the positive hole injection layer 3 is formed by applying on the anode by a wet film formation method such as printing, screen printing, or ink jet method, and drying.
  • the solvent used for the layer formation by the wet film-forming method the above-mentioned materials (hole transporting compound, electron accepting compound, cation radical compound) can be dissolved. If it is a solvent, the type is not particularly limited, but a deactivating substance that may deactivate each material (hole transporting compound, electron accepting compound, cation radical compound) used for the hole injection layer. Or prefer something that doesn't contain deactivating material.
  • Examples of preferable U and solvent that satisfy these conditions include ether solvents and ester solvents.
  • the ether solvent include aliphatic ethers such as ethylene glycolenoresmethinoleatenore, ethyleneglycololecinoleethenore, propylene glycol 1 monomethyl ether acetate (PGMEA); , 2-dimethoxybenzene, 1,3 dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 dimethylaninol, 2,4 dimethylarsole, etc.
  • ether solvent include aliphatic ethers such as ethylene glycolenoresmethinoleatenore, ethyleneglycololecinoleethenore, propylene glycol 1 monomethyl ether acetate (PGMEA); , 2-dimethoxybenzene, 1,3 dimethoxybenzene, anisole, phenetole
  • ester solvent examples include aliphatic ethers such as ethyl acetate, n-butyl acetate, ethyl acetate, and n-butyl lactate. Steal; aromatic esters such as acetate acetate, propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate. Any one of these may be used alone, or two or more may be used in any combination and ratio.
  • Solvents that can be used in addition to the ether solvents and ester solvents described above include, for example, aromatic hydrocarbon solvents such as benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethyl. Examples include amide solvents such as acetoamide, dimethyl sulfoxide and the like. Any of these may be used alone, or two or more may be used in any combination and ratio. Further, one or more of these solvents may be used in combination with one or more of the ether solvents and ester solvents described above.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethyl.
  • amide solvents such as acetoamide, dimethyl sulfoxide and the like. Any of these may be used alone, or two or more may be used in any combination and ratio. Further, one or more of these solvents may be used in combination with one or more of the
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene have low ability to dissolve electron-accepting compounds and cation radical compounds, so they are mixed with ether solvents and ester solvents. It is preferable to use it.
  • the concentration of the solvent in the coating solution is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.999% by weight or less, preferably 99.99%. It is in the range of not more than wt%, more preferably not more than 99.9 wt%. When two or more solvents are used as a mixture, the total force S of these solvents must satisfy this range.
  • one or more of the aforementioned materials are placed in a vacuum vessel.
  • Place the crucibles in the crucibles (in case of using more than 2 kinds of materials, put them in each crucible), evacuate the vacuum container to about 10 _4 Pa with a suitable vacuum pump, and then heat the crucibles
  • heat each crucible and evaporate by controlling the amount of evaporation (when using two or more materials, evaporate by independently controlling the amount of evaporation) and face the crucible
  • a hole injection layer is formed on the anode of the substrate placed on the substrate.
  • a mixture of them can be put in a crucible and heated and evaporated to form a hole injection layer.
  • the thickness of the hole injection layer 3 formed in this way is usually in the range of 5 nm or more, preferably 1 Onm or more, and usually lOOOnm or less, preferably 500 nm or less.
  • the hole injection layer 3 may be omitted as shown in FIG.
  • a light emitting layer 4 is usually provided on the hole injection layer 3.
  • the light-emitting layer 4 is a layer containing a light-emitting material. Between the electrodes to which an electric field is applied, holes injected from the anode 2 through the hole injection layer 3 and electrons injected from the cathode 6 through the electron transport layer 5 are used. It is a layer that is excited by recombination with the main light source.
  • the light emitting layer 4 preferably contains a light emitting material (dopant) and one or more host materials, and the light emitting layer 4 more preferably contains the charge transport material of the present invention as a host material. Although it may be formed by a method, a layer produced by a wet film-forming method using the composition for a charge transport material of the present invention is particularly preferred.
  • the wet film-forming method is a method for applying the composition for a charge transport material of the present invention containing the above-mentioned solvent by spin coating, spray coating, dip coating, die coating, flexographic printing, screen printing, or inkjet method. To form a film.
  • the light emitting layer 4 may contain other materials and components as long as the performance of the present invention is not impaired.
  • the organic layer such as the hole injection layer 3 and the electron transport layer 5 described later is provided in addition to the light emitting layer 4, the light emitting layer 4, the hole injection layer 3, the electron transport layer 5, etc.
  • the total film thickness combined with other organic layers is usually 30 nm or more, preferably 50 nm or more, more preferably 1 OO nm or more, usually lOOOnm or less, preferably 500 nm or less, more preferably 3 OOnm or less.
  • the conductivity of the hole injection layer 3 other than the light emitting layer 4 or the electron injection layer 5 described later is high, the amount of charge injected into the light emitting layer 4 increases.
  • the thickness of the light emitting layer 4 is usually 10 nm or more, preferably 20 nm or more, and usually 300 ⁇ m or less, preferably 200 nm or less.
  • the film thickness of the light emitting layer 4 is usually 30 nm or more, preferably 50 nm or more, usually 500 nm or less, preferably 300 nm or less. It is.
  • the electron injection layer 5 serves to efficiently inject electrons injected from the cathode 6 into the light emitting layer 4.
  • the material for forming the electron injection layer 5 is an alkali metal such as sodium or cesium, which is preferable for a metal having a low work function, or an alkaline earth metal such as norium or calcium.
  • the film thickness of the electron injection layer 5 is preferably 0.1 to 5 nm.
  • organic electron transport materials typified by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenantorin described later and aluminum complexes of 8-hydroxyquinoline are described as sodium.
  • Electron injection by doping with an alkali metal such as potassium, cesium, lithium, or rubidium (described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) It is preferable because the transportability is improved and excellent film quality can be achieved.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably lOOnm or less.
  • the electron injection layer 5 is formed by laminating on the light emitting layer 4 by a wet film forming method or a vacuum deposition method in the same manner as the light emitting layer 4.
  • the evaporation source is placed in a crucible or metal boat installed in a vacuum vessel, the inside of the vacuum vessel is evacuated to about 10 _4 Pa with an appropriate vacuum pump, and then the crucible or metal boat is heated. Then, it is evaporated to form an electron injection layer on the substrate placed facing the crucible or metal boat.
  • the alkali metal is deposited using an Al metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. Heating this dispenser in a vacuum vessel Thus, the alkali metal chromate is reduced and the alkali metal is evaporated.
  • an organic electron transport material and an alkali metal place the organic electron transport material in a crucible installed in a vacuum vessel and evacuate the vacuum vessel to about 10 _4 Pa with a suitable vacuum pump. Each crucible and dispenser are simultaneously heated and evaporated to form an electron injection layer on the substrate placed facing the crucible and dispenser.
  • the electron injection layer 5 may be omitted as shown in FIGS.
  • the cathode 6 serves to inject electrons into a layer on the light emitting layer side (such as the electron injection layer 5 or the light emitting layer 4).
  • the material used for the cathode 6 can be the material used for the anode 2, but a metal having a low work function is preferred for efficient electron injection.
  • Tin, magnesium, indium, calcium A suitable metal such as aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the film thickness of the cathode 6 is usually the same as that of the anode 2.
  • a cathode made of a low work function metal further laminating a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • the element having the layer structure shown in FIG. 1 has been mainly described.
  • an arbitrary layer may be provided, and any layer other than the light emitting layer 4 may be omitted.
  • Examples of the layer that may be included include the electron transport layer 7.
  • the electron transport layer 7 is provided between the light emitting layer 4 and the electron injection layer 5 as shown in FIG. 2 for the purpose of further improving the light emission efficiency of the element.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 6 between the electrodes to which an electric field is applied in the direction of the light emitting layer 4.
  • an electron transporting compound used for the electron transport layer 7 the electron injection efficiency from the cathode 6 or the electron injection layer 5 is high, and the injected electrons are transported efficiently with high electron mobility. It must be a compound that can
  • Metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenyl. Derivatives, silole derivatives, 3- or 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • quinoxaline compounds JP-A-6-207169
  • phantom phosphorus derivatives JP-A-5 331459
  • 2t-butinole 9 10-N, N, dicyananoanthraquinonediimine
  • n-type hydrogenated amorphous Examples include silicon carbide, n-type zinc sulfide, and n-type selenium zinc.
  • the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 10 nm.
  • the electron transport layer 7 is formed by laminating on the light emitting layer 4 by the wet film forming method or the vacuum vapor deposition method in the same manner as the hole injection layer 3. Usually, a vacuum deposition method is used.
  • the hole transport layer 10 which preferably has the hole transport layer 10 in the present invention preferably contains the charge transport material of the present invention.
  • the compounds exemplified as the hole transportability compound of the hole injection layer can also be used.
  • a polymer material such as polyarylene ether sulfone containing polybutacarbazole, polybutyltriamine, tetraphenylpentidine may be used.
  • the hole transport layer 10 is formed by laminating these materials on the hole injection layer by a wet film forming method or a vacuum deposition method.
  • the thickness of the hole transport layer 10 thus formed is usually 10 nm or more, preferably 30 nm. However, it is usually 300 nm or less, preferably lOOnm or less.
  • Hole blocking layer 8 is hole And has the function of confining the electrons in the light emitting layer 4 and improving the light emission efficiency. That is, the hole blocking layer 8 is generated by increasing the probability of recombination with electrons in the light emitting layer 4 by blocking the holes moving from the light emitting layer 4 from reaching the electron transport layer 7. There are a role of confining excitons in the light emitting layer 4 and a role of efficiently transporting electrons injected from the electron transport layer 8 toward the light emitting layer 4.
  • the hole blocking layer 8 serves to block the holes moving from the anode 2 from reaching the cathode 6, and efficiently transports the electrons injected from the cathode 6 toward the light emitting layer 4.
  • the compound that can be formed is laminated on the light emitting layer 4 so as to be in contact with the interface of the light emitting layer 4 on the cathode 6 side.
  • the physical properties required of the material constituting the hole blocking layer 8 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet levels. (T1) is high.
  • mixed ligands such as bis (2-methyl-8 quinolinolato) (phenolato) aluminum, bis (2-methyl-8 quinolinolato) (triphenylsilanolato) aluminum, etc.
  • metal complexes such as bis (2-methyl-8quinolato) aluminum 1 ⁇ -oxo-bis- (2 methyl-8quinolinato) aluminum binuclear metal complexes, and styryl compounds such as distyrylbiphenyl derivatives (JP-A-11 242996), 3 — (4 Biphenyl) — 4—Ferru 5 (4—tert-Butylphenol) — Triazole derivatives such as 1, 2, 4 Triazole (JP-A-7-41759), and anthroline such as bathocuproine Derivatives (Japanese Patent Laid-Open No. 10-79297).
  • styryl compounds such as distyrylbiphenyl derivatives (JP-A-11 242996), 3 — (4 Biphenyl) — 4—Ferru 5 (4—tert-Butylphenol) — Triazole derivatives such as 1, 2, 4 Triazole (JP-A-7-41759), and anthroline such as bathocupro
  • the thickness of the hole blocking layer 8 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually ⁇ m or less, preferably 50 nm or less.
  • the hole blocking layer 8 can also be formed by the same method as the hole injection layer 3, but usually a vacuum evaporation method is used.
  • the electron transport layer 7 and the hole blocking layer 8 may be provided as necessary. 1) Only the electron transport layer, 2) Only the hole block layer, 3) The hole block layer Z electron transport Layer stack, 4) not use, Etc., there is usage. Further, the electron injection layer 5 as shown in FIG. 7 may be omitted and the hole blocking layer 8 and the electron transport layer 7 may be laminated, or only the electron transport layer 7 as shown in FIG.
  • the hole blocking layer 8 it is also effective to provide an electron blocking layer 9 between the hole injection layer 3 and the light emitting layer 4 as shown in FIG.
  • the electron blocking layer 9 prevents the electrons moving from the light emitting layer 4 from reaching the hole injection layer 3, thereby increasing the probability of recombination with holes in the light emitting layer 4 and generating excitons. In the light emitting layer 4 and efficiently transports holes injected from the hole injection layer 3 in the direction of the light emitting layer 4.
  • the characteristics required for the electron blocking layer 9 include a high energy gap (difference between HOMO and LUMO) with high hole transportability and a high excited triplet level (T1). Further, when the light emitting layer 4 is formed by a wet film forming method, it is preferable that the electron blocking layer 9 is also formed by a wet film forming method because the device can be easily manufactured.
  • the electron blocking layer 9 also has wet film forming compatibility.
  • the material used for such an electron blocking layer 9 include dioctylfluorene and triphenyl represented by F8-TFB. -Lumamine copolymer (described in WO2004Z084260).
  • the structure opposite to that shown in Fig. 1, that is, the cathode 6, the electron injection layer 5, the light emitting layer 4, the hole injection layer 3, and the anode 2 can be laminated on the substrate 1 in this order.
  • the organic electroluminescent element of the present invention between two substrates, at least one of which has high transparency.
  • Sarako may have a structure in which a plurality of layers shown in FIG. 1 are stacked (a structure in which a plurality of light emitting units are stacked).
  • V 2 O is used as the charge generation layer (CGL).
  • the barrier between the stages is reduced, and the viewpoint power of the light emission efficiency 'drive voltage is more preferable.
  • the present invention is effective in shifting the organic electroluminescent element from a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode power are arranged in a Y matrix! However, it can be applied.
  • the glass transition temperature was determined by DSC measurement
  • the vaporization temperature was determined by TG DTA measurement
  • the melting point was determined by DSC measurement or TG-DTA measurement.
  • Target 1 (8. 01g), 2 Hydroxybenzimidazole (1.04g), Copper powder in nitrogen stream
  • This had a glass transition temperature of 146 ° C, a melting point of 355 ° C, and a vaporization temperature of 507 ° C.
  • the energy difference between the excited triplet state and the ground state of this product was 3.04 eV.
  • target 3 (4. 36 g), force rubazole (5.76 g), copper powder (1.88 g), carbonated lithium (8. 15 g), tetraglyme (20 ml), 210 ° Stir at C for 7.5 hours.
  • the reaction mixture was mixed with black mouth form and stirred.
  • the insoluble material was filtered off, added to methanol (200 ml), stirred, and the precipitate was collected by filtration.
  • the obtained solid content was converted into a silica gel column chromatograph.
  • the product was purified with a fee (toluene) and washed with a dichloromethane / methanol mixture solution to obtain the target compound 4 (2. 29 g).
  • the energy difference between the excited triplet state and the ground state of this product was 2.99 eV.
  • the glass transition temperature was 124 ° C, the melting point was not observed, and the vaporization temperature was 527 ° C. This dissolved in 5.0% by weight or more in toluene.
  • This product had a glass transition temperature of 56 ° C, a melting point of 150 ° C, and a vaporization temperature of 391 ° C. This product was dissolved by 5.0% by weight or more in Tolene.
  • target 8 (0. 860 g), target 7 (1.22 g), copper powder (0. 492 g), potassium carbonate (2.14 g), and tetraglyme (6 ml)
  • the mixture was stirred at 200 ° C for 14 hours and then allowed to cool.
  • chloroform was added, stirred for 30 minutes, insolubles were filtered off, the filtrate was concentrated, the precipitate was suspended and washed with ethanol, and silica gel column chromatography (n-hexane Z ethyl acetate mixed).
  • the product 9 (0. 465 g) was obtained by suspension washing with an ethyl acetate Z ethanol mixed solution.
  • the target product 12 (1.27 g) was obtained.
  • the energy difference between the excited triplet state and the ground state of this product was 2.96 eV.
  • Target 13 (1. 188 g), Target 10 (5. 125 g), CuI (2. 26 g), Carbonated Lithium (3.28 g), and anhydrous N, N-dimethylformamide ( 19 ml) was stirred for 6.2 hours under heating and reflux. Furthermore, the target product 10 (1.41 g), Cul (l. 15 g), and potassium carbonate (1.8 g) were further added thereto, and the mixture was stirred for 4.5 hours while heating under reflux. Methanol (30 ml) and water (30 ml) were added to the resulting solution, followed by filtration. The residue was poured into 150 ml of chloroform and stirred. Activated clay is added to the solution and stirred, followed by filtration.
  • the filtrate is concentrated and purified by column chromatography on neutral spherical silica gel (developing solvent: hexane Z salt methylene), and then suspended in methanol. Purification by cloudy washing and hot washing in a mixed solvent of ethyl acetate and ethanol gave the target product 14 (2.164 g).
  • This had a glass transition temperature of 126 ° C, a melting point of 282 ° C, and a vaporization temperature of 399 ° C.
  • the energy difference between the excited triplet state and the ground state of this product was 2.97 eV.
  • Target 15 (1. Og), N— (3-bromophenol) rubazole (6.8 g), Cul (2.8 g), potassium carbonate (4.2 g), and anhydrous in nitrogen stream
  • a mixed solution of N, N-dimethylformamide (10 ml) was stirred with heating under reflux for 6.2 hours.
  • the target product 10 (11.4 g), Cul (l. 15 g), and potassium carbonate (1.8 g) were further added thereto, and the mixture was stirred for 15 hours while heating under reflux.
  • the reaction mixture was diluted with dichloromethane, filtered, washed with brine, 1N hydrochloric acid and dried over sodium sulfate.
  • the product that became brown oil by concentration under reduced pressure was purified by silica gel column chromatography (developing solvent: toluene) and then purified by suspension washing in methanol to obtain the target product 16 (1. lg). Obtained.
  • the energy difference between the excited triplet state and the ground state of this product was 2.99 eV.
  • target 7 (1.6 g), 6, 6 "—jib mouth mor 2, 2 ,: 6, 2, 2" -terpyridine (1. Og), copper powder (0.35 g), Potassium carbonate (1.4 g) and tetraglyme (5 ml) were added to a 100 mL 4-necked flask, placed in a 170 ° C. oil bath, and stirred with heating for 13 hours.
  • the yellowish white solid obtained by diluting with dichloromethane, filtering, and then distilling off under reduced pressure was heated and washed with tetrahydrofuran to give the desired product 17 (0.9 g) as a white powder.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method.
  • Anode 2 was formed by patterning into stripes of width.
  • the patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, followed by drying with a nitrogen blow, and finally UV irradiation. Cleaning was performed.
  • a non-conjugated polymer compound (PB-2) having an aromatic amino group having the structural formula shown below is used as an electron-accepting compound (A-2) having the structural formula shown below.
  • Spin coating was performed under the following conditions.
  • Weight average molecular weight 48900
  • a uniform thin film having a thickness 30nm was formed by spin coating of the Next, the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus. After roughly exhausting the apparatus with an oil rotary pump, the apparatus was evacuated with a cryopump until the vacuum in the apparatus was 9.8 X 10 _5 Pa (about 7.5 X 10 "7 Torr) or less.
  • the arylene amine compound (H-1) of the following structural formula placed in a ceramic crucible placed in the above apparatus was heated with a tantalum wire heater around the crucible, and was deposited. The temperature of the crucible was controlled in the range of 300 to 314 ° C. Degree of vacuum during deposition 9.0 x 10 _5 Pa (about 6.9 x 10 " 7 Torr), Deposition rate was 0. InmZ seconds A hole transport layer 10 having a thickness of 40 nm was formed.
  • the target compound synthesized in Example 2 as the main component (host material) of the light-emitting layer 4 was used as a subcomponent (dopant) of the structural formula shown below.
  • the organic iridium complex (D-1) was placed in a separate ceramic crucible and deposited by the binary co-evaporation method.
  • the crucible temperature of the organic compound (EM-1) of the present invention is 270 to 284 ° C, the deposition rate is 0. In m / sec, and the crucible temperature of the organic iridium complex (D-1) is 230 to 237 ° C.
  • the light emitting layer 4 having a thickness of 30 nm and containing about 12.5 wt% of the organic iridium complex (D-1) was laminated on the hole transport layer 10 under the control of C.
  • the degree of vacuum during the deposition 7.4X10 _5 Pa (about 5.7X10 Torr) with a thickness 7 this o
  • a triarylbenzene derivative (HB-2) having the following structural formula was laminated at a crucible temperature of 343 to 350 ° C and a deposition rate of 0.09 nmZ seconds with a film thickness of lOnm. did.
  • the degree of vacuum during deposition was 7. lX10 _5 Pa (about 5.5X 10 _7 Torr).
  • a bath opening (ET-2) having the following structural formula was deposited as the electron transport layer 7 in the same manner.
  • Crucible temperature at this time of bathocuproine (ET- 2) is adjusted in the range of 160 ⁇ 172 ° C, the vacuum degree during vapor deposition 6.6 ⁇ 10 _5 Pa (about 5.1X10 “Torr), the deposition rate was 0. InmZ seconds, and the film thickness was 30 nm.
  • the substrate temperature during vacuum deposition of the hole transport layer 10, the light emitting layer 4, the hole blocking layer 8, and the electron transport layer 7 was kept at room temperature.
  • the element on which the electron transport layer 7 has been deposited is once taken out into the atmosphere from the vacuum deposition apparatus, and a 2 mm wide striped shadow mask is used as the cathode deposition mask.
  • the degree of vacuum in the apparatus is 2.8 X 10 _6 Torr (about 3.6 X 10 _ 4 Pa) was exhausted to below.
  • LiF lithium fluoride
  • a molybdenum Nboto deposition rate 0. 03NmZ seconds
  • a vacuum degree of 2. 8 X 10 _6 Torr about 3. 7 X 10 "4Pa
  • the cathode 6 was completed by forming an aluminum layer with a thickness of 80 nm at 3 ⁇ 10_3 Pa).
  • the substrate temperature at the time of vapor deposition of the above two-layered cathode 6 was kept at room temperature.
  • the electroluminescence of this device was blue-green light emission with a maximum wavelength of 473 nm and a half-value width of 67 nm, and it was identified as having an organic iridium complex (D-1) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced in the same manner as in Example 11 except that the light emitting layer 4 was formed by the method described below.
  • the target compound synthesized in Example 9 as the main component (host material) of the light-emitting layer 4 16 was placed in separate ceramic crucibles and deposited by the dual co-evaporation method.
  • the crucible temperature of the organic compound (EM-3) of the present invention is 400 to 407 ° C, the deposition rate is 0. In m / sec, and the crucible temperature of the organic iridium complex (D-1) is 201 to 207 ° C.
  • the light emitting layer 4 having a thickness of 30 nm and containing about 10.4 wt% of the organic iridium complex (D-1) was laminated on the hole transport layer 10 under the control of C.
  • the degree of vacuum during deposition is 4.6 X 10 _5 Pa (approximately 3.5 X 10 Torr).
  • the electroluminescence of this device was a blue-green light emission with a maximum wavelength of 471 nm and a half-value width of 53 nm, and was identified as having an organic iridium complex (D-1) power.
  • Example 11 An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method.
  • the organic iridium complex used in Example 11 as the subcomponent (dopant) of the organic compound (EM-4) of the present invention ( D-1) was placed in separate ceramic crucibles, and a film was formed by the binary co-evaporation method.
  • the crucible temperature of the organic compound (EM-4) of the present invention is 217 to 242 ° C
  • the deposition rate is 0.09 nmZ seconds
  • the crucible temperature of the organic iridium complex (D-1) is 213 to 216 ° C.
  • the light emitting layer 4 having a film thickness of 30 nm and containing about 13.1% by weight of the organic iridium complex (D-1) was laminated on the hole transport layer 10.
  • the degree of vacuum during deposition is 5.0 X 10 _5 Pa (approximately 4.0 X 10 Torr).
  • the electroluminescence of this device was blue-green light emission with a maximum wavelength of 472 nm and a half-value width of 53 nm, and was identified as having an organic iridium complex (D-1) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced in the same manner as in Example 11 except that the light emitting layer 4 was formed by the method described below.
  • the film was placed in a crucible and deposited by the binary simultaneous vapor deposition method.
  • the crucible temperature of the force rubazole derivative (CBP) was controlled to 411-406 ° C, the deposition rate was 0.08 nm / sec, and the crucible temperature of the organic iridium complex (D-1) was controlled to 204-209 ° C.
  • the light emitting layer 4 having a film thickness of 30 nm and containing about 13.1 wt% of the organic iridium complex (D-1) was laminated on the hole transport layer 10.
  • the degree of vacuum during deposition is 3.8 X 10 _5 Pa (approximately 2.9 X 10—Torr), 7 pieces o
  • the electroluminescence of this device was blue-green light emission with a maximum wavelength of 490 nm and a half-value width of 59 nm.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method.
  • Anode 2 was formed by patterning into stripes of width. Patterned ITO substrate is cleaned with acetone, washed with pure water, isopropyl alcohol. After cleaning in the order of ultrasonic cleaning with Cole, it was dried with nitrogen blow, and finally UV ozone cleaning was performed.
  • a non-conjugated polymer compound (PB-1) having an aromatic amino group represented by the following structural formula (weight average molecular weight: 29400, number average molecular weight: 12600) is used as a material for the hole injection layer 3.
  • the sample was spin-coated with the electron-accepting compound (A-2) used in Example 11 under the following conditions.
  • a uniform thin film having a thickness of 30 nm was formed by the above spin coating.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus. After roughly exhausting the apparatus with an oil rotary pump, the apparatus was evacuated with a cryopump until the vacuum in the apparatus was 9.0 X 10 _5 Pa (about 6.8 X 10 "7 Torr) or less.
  • the arylene amine compound (H-1) used in Example 11 placed in a ceramic crucible placed in the above apparatus was heated by a tantalum wire heater around the crucible, and was deposited. The temperature of the film was controlled in the range of 300 to 314 ° C. Degree of vacuum during deposition 9.3 X 10 _5 Pa (about 7.0 X 10 " 7 Torr), deposition rate was 0.1 nm / sec.
  • a hole transport layer 10 having a thickness of 40 nm was formed.
  • the target compound synthesized in Example 2 as the main component (host material) of the light-emitting layer 4 the organic compound (EM-1) of the present invention as a subcomponent (dopant) of the structural formula shown below Organic Iri
  • the film complex (D-2) was placed in a separate ceramic crucible and deposited by the binary co-evaporation method.
  • the crucible temperature of the organic compound (EM-1) of the present invention is 270 to 284 ° C
  • the deposition rate is 0. In m / sec
  • the crucible temperature of the organic iridium complex (D-2) is 245 to 246 °
  • the light emitting layer 4 having a thickness of 30 nm and containing about 5.9 wt% of the organic iridium complex (D-2) was laminated on the hole transport layer 10 under the control of C.
  • the degree of vacuum during deposition is 7.8 X 10 _5 Pa (approximately 5.9 X 10 "Torr).
  • a fluoro-lidine derivative (HB-1) having the structural formula shown below was formed at a crucible temperature of 343 to 350 ° C, a deposition rate of 0.09 nmZ seconds, and a film thickness of lOnm. It was stacked with. The degree of vacuum during deposition was 7. l X 10 _5 Pa (about 5. 5 X 10 _7 Torr).
  • tris (8-hydroxyquinolinato) aluminum (Alq3) having the following structural formula was deposited on the hole blocking layer 8 as the electron transport layer 7 in the same manner.
  • the temperature of the crucible of tris (8-hydroxyquinolinato) aluminum (Alq3) is controlled in the range of 296-300 ° C, and the degree of vacuum during deposition is 6.6 X 10 _5 Pa (about 5.1 X 10 _7 Torr), deposition rate is 0.15m
  • the film thickness was 30 nm in Z seconds.
  • the substrate temperature during vacuum deposition of the hole transport layer 10, the light emitting layer 4, the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
  • the electroluminescence of this device was green light with a maximum wavelength of 514 nm and a half-value width of 70 nm, and was identified as having an organic iridium complex (D-2) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced in the same manner as in the method shown in Example 14 except that the light emitting layer 4 was formed by the method described below.
  • the target compound synthesized in Example 6 as the main component (host material) of the light-emitting layer 4 11 The organic compound (EM-5) of the present invention was used as the secondary component (dopant) and the organic iridium complex (Example 14) D-2) was placed in separate ceramic crucibles, and a film was formed by the binary co-evaporation method.
  • the organic compound (EM-5) of the present invention was used as the secondary component (dopant) and the organic iridium complex (Example 14) D-2) was placed in separate ceramic crucibles, and a film was formed by the binary co-evaporation method.
  • the vapor deposition rate of the organic compound (EM-5) of the present invention was controlled at 0. InmZ seconds, and the crucible temperature of the organic iridium complex (D-2) was controlled at 257 to 255 ° C.
  • the light emitting layer 4 containing about 6.2% by weight of iridium complex (D-2) was laminated on the hole transport layer 10.
  • the degree of vacuum at the time of deposition was 1.5 X 10 _4 Pa.
  • the electroluminescence of this device was green light with a maximum wavelength of 513 nm and a half-value width of 68 nm, and was identified as having an organic iridium complex (D-2) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method in the same manner as in Example 14 except that the hole transport layer 10 and the light emitting layer 4 were formed by the method described below. did.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum deposition apparatus. After roughly evacuating the above device with an oil rotary pump, it was evacuated with a cryopump until the vacuum in the device was 5.3 X 10 _5 Pa (approximately 4.0 X 10 " 7 To rr) or less.
  • Deposition was carried out by heating an arylamine compound (PPD) of the following structural formula placed in a ceramic crucible located in the above apparatus with a tantalum wire heater around the crucible. The temperature of the film was controlled in the range of 260 to 272 ° C. Degree of vacuum during deposition 6.0 X 10 _5 Pa (about 4. 9 X 10 " ? Torr), deposition rate was 0.1 nm, second in film thickness A 40 nm hole transport layer 10 was formed.
  • PPD arylamine compound
  • the target compound synthesized in Example 1 as the main component (host material) of the light-emitting layer 4 The organic compound (EM-6) of the present invention used in Example 14 as the accessory component (dopant).
  • the complex (D-2) is placed in a separate ceramic crucible and deposited by the binary co-evaporation method.
  • the deposition rate of the organic compound (EM-6) of the present invention was 0. InmZ seconds, and the organic iridium complex
  • the crucible temperature of (D-2) was controlled at 268 to 270 ° C, respectively, and the light emitting layer 4 containing about 6.1% by weight of the organic iridium complex (D-2) with a film thickness of 30 nm was added to the hole transport layer. Laminated on top of 10. The degree of vacuum during vapor deposition 6. was 3 X 10 _5 Pa (about 4. 7 X 10 _7 Torr).
  • the electroluminescence of this device was green light with a maximum wavelength of 513 nm and a half-value width of 69 nm, and it was identified as having an organic iridium complex (D-2) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced in the same manner as in the method shown in Example 14 except that the light emitting layer 4 was formed by the method described below.
  • Separate ceramic crucibles are the power rubazole derivative (SiM CP) shown in the following structural formula as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-2) used in Example 14 as the subcomponent (dopant).
  • the film was formed by the binary simultaneous vapor deposition method.
  • the deposition rate of the strong rubazole derivative (SiMCP) was controlled at 0. InmZ seconds, and the crucible temperature of the organic iridium complex (D-2) was controlled at 268 to 270 ° C.
  • the light emitting layer 4 containing about 5.9% by weight of D-2) was laminated on the hole transport layer 10.
  • the degree of vacuum during vapor deposition 6. was 3 X 10 _5 Pa (about 4. 7 X 10 _7 Torr).
  • the electroluminescence of this device was a green light with a maximum wavelength of 513 nm and a half-value width of 70 nm, and was identified as having an organic iridium complex (D-2) power.
  • Table 4 shows the luminance after 40 seconds of energization, the luminance immediately after energization, and the value obtained by dividing the luminance value after 40 seconds of energization by the luminance value immediately after energization.
  • An organic electroluminescence device having the structure shown in FIG. 7 was produced by the following method in the same manner as in Example 14 except that the hole transport layer 10 and the light emitting layer 4 were formed by the method described below. did.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum deposition apparatus. After roughly evacuating the above device using an oil rotary pump, the device was evacuated using a cryopump until the vacuum inside the device was 7.5 X 10 _5 Pa (approximately 5.6 X 10 " ? To rr) or less.
  • the organic compound (EM-7) of the present invention is heated with a tantalum wire heater around the crucible. and. vacuum degree 7. 0 X 10 during the deposition _5 subjected to vapor deposition Pa, the deposition rate was obtained a hole transport layer 10 of thickness 40nm with 0. lnm / sec.
  • the organic iridium complex (D-2) used in Example 14 as a sub-component (dopant) was placed in a separate ceramic crucible, and a film was formed by a binary co-evaporation method.
  • Crucible temperature of force rubazole derivative (E-1) is 300-304 ° C
  • deposition rate is 0.08nm / sec
  • crucible temperature of organic iridium complex (D-2) is 239-242 ° C, respectively
  • the light emitting layer 4 having a thickness of 30 nm and containing 6.4 wt% of the organic iridium complex (D-2) was laminated on the hole transport layer 10.
  • the degree of vacuum during the deposition was 6.6 X 10 _5 Pa.
  • the electroluminescence of this device was green light with a maximum wavelength of 513 nm and a half-value width of 69 nm, and it was identified as having an organic iridium complex (D-2) power.
  • An organic electroluminescent element having the structure shown in FIG. 7 was produced in the same manner as in the method shown in Example 18 except that the hole transport layer 10 was formed by the method described below.
  • the arylene amine compound (PPD) having the structural formula shown below was placed in a ceramic crucible and heated by a tantalum wire heater around the crucible for vapor deposition. The degree of vacuum during the evaporation was 6. OX 10 _5 Pa, the deposition rate was controlled at 0. 08-0. 13nmZ seconds, to obtain a hole transport layer 10 having a thickness of 40 nm.
  • the electroluminescence of this device was green light with a maximum wavelength of 513 nm and a half-value width of 67 nm, and was identified as having an organic iridium complex (D-2) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method.
  • the target compound synthesized in Example 2 as the main component (host material) of the light-emitting layer 4 4 present
  • the organic iridium complex (Facial body: D-3, where Me is a methyl group) having the structural formula shown below is placed in a separate ceramic crucible as an accessory component (dopant).
  • the film was formed by the binary simultaneous vapor deposition method.
  • the crucible temperature of the organic compound (EM-1) of the present invention is 277 to 283 ° C
  • the deposition rate is 0.07 nm / sec
  • the crucible temperature of the organic iridium complex (D-3) is 279 to 281 ° C.
  • the light emitting layer 4 having a thickness of 30 nm and containing about 5.8 wt% of the organic iridium complex (D-3) was laminated on the hole transport layer 10 under the control of C.
  • the degree of vacuum during deposition is 5.0 X 10 _5 Pa (approximately 3.8 X 10 "Torr).
  • the hole blocking layer 8 only the organic compound (EM-1) of the present invention was laminated with a crucible temperature of 283 to 297 ° C and a film thickness of lOnm at a deposition rate of 0.09 nmZ seconds.
  • the degree of vacuum during deposition is 4. was 5 X 10 _5 Pa (about 3. 4 X 10 _7 Torr).
  • bathocuproine (ET-2) used in Example 11 was deposited on the hole blocking layer 8 as the electron transport layer 7 in the same manner.
  • the crucible temperature of bathocuproine (ET-2) at this time is controlled in the range of 162 to 183 ° C, and the vacuum during deposition is 4.4 X 10 _5 Pa (approximately 3.3 X 10 " 7 Torr).
  • the speed was set to 0.09 nmZ seconds and the film thickness was set to 30 nm.
  • the substrate temperature at the time of vacuum deposition of the hole transport layer 10, the light emitting layer 4, the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
  • the electroluminescence of this device was blue emission with a maximum wavelength of 403 nm, and it was identified as having an organic iridium complex (D-3) power.
  • An organic electroluminescent device having the structure shown in FIG. 7 was produced by the following method.
  • the target product synthesized in Example 6 as the main component (host material) of the light-emitting layer 4 11 present
  • the organic iridium complex (D-1) used in Example 11 was placed in a separate ceramic crucible as the organic compound (EM-5) of the invention as a subsidiary component (dopant), and a film was formed by binary co-evaporation. went.
  • the deposition rate of the organic compound (EM-5) of the present invention is 0. InmZ seconds, and the organic iridium complex is
  • the crucible temperature of (D-1) was controlled at 252 to 260 ° C, respectively, and the light-emitting layer 4 containing about 7.6% by weight of the organic iridium complex (D-1) with a film thickness of 33 nm was added to the hole transport layer. Laminated on top of 10. The degree of vacuum during deposition was 4.2 X 10 _5 Pa.
  • the ferruleidine derivative (HB-1) used in Example 14 was set to a crucible temperature of 340 to 341 ° C, and a deposition rate of 0.08 to 0.09 nmZ for 5 nm. Laminated with film thickness. The degree of vacuum at the time of deposition was 4.6 X 10 _5 Pa.
  • the electroluminescence of this device was blue-green light emission with a maximum wavelength of 471 nm and a half-value width of 66 nm, and was identified as having an organic iridium complex (D-1) power.
  • An organic electroluminescence device having the structure shown in FIG. 3 (however, an electron injection layer is not required! /) was fabricated by the following method.
  • ITO indium stannate oxide
  • Anode 2 was formed by patterning into stripes of width.
  • the patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, followed by drying with a nitrogen blow, and finally UV irradiation. Cleaning was performed.
  • the hole injection layer 3 was formed in the same manner as in Example 11 except that the drying conditions at the time of spin coating were 230 ° C and 180 minutes.
  • the light emitting layer 4 was formed on the hole injection layer 3 by a wet film forming method as follows.
  • the target compound synthesized in Example 2 was used as the material for the light-emitting layer 4.
  • the organic compound (EM-1) of the present invention and the organic iridium complex (D-1) used in Example 11 were used as a solvent.
  • a composition for an organic electroluminescence device was prepared by dissolving in Lwen, and spin coating was performed using the yarn composition for the organic electroluminescence device under the following conditions.
  • a uniform thin film having a thickness of 65 nm was formed by the above spin coating.
  • the electroluminescence of this device was blue-green light emission with a maximum wavelength of 471 nm and a half-value width of 67 nm, and it was identified as having an organic iridium complex (D-1) power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

 耐熱性、非晶質性および電荷輸送能に優れ、さらに、高い一重項および三重項励起準位を有し、有機溶媒への溶解性にも優れる有機化合物は、下記式(I)で表される有機化合物。  Ar1は置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、またはアルキル基;Ar2は置換基を有していてもよい芳香族炭化水素基、または芳香族複素環基;R1、R2は水素原子または置換基。R1とR2は互いに結合して環を形成していてもよい。Qは下記式(I-1)または(I-2)で表される。  式Ar3~Ar5は置換基を有していてもよい芳香族炭化水素基、または芳香族複素環基。Ar3とAr4は互いに結合して環を形成していてもよい。

Description

明 細 書
有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発 光素子
発明の分野
[0001] 本発明は、新規な有機化合物、この有機化合物からなる電荷輸送材料と、この電 荷輸送材料を含む電荷輸送材料用組成物に関する。
本発明はまた、この新規な有機化合物カゝらなる電荷輸送材料を用いた高輝度、高 効率かつ長寿命の有機電界発光素子に関するものである。
発明の背景
[0002] 有機薄膜を用いた電界発光素子の開発が行われて 、る。有機薄膜を用いた電界 発光素子、すなわち有機電界発光素子は、通常、基板上に、陽極、陰極、およびこ れら両極間に設けられた少なくとも発光層を含む有機層を有する。有機層としては、 発光層以外にも、正孔注入層、正孔輸送層、正孔阻止層、電子輸送層、電子注入 層等が用いられる。通常、これらの層を積層することにより、有機電界発光素子として 使用されている。従来、有機電界発光素子は、蛍光発光を利用してきたが、素子の 発光効率を上げる試みで、蛍光ではなく燐光発光を用いることが検討されている。し かしながら、燐光発光を用いたとしても、未だ、十分な発光効率、輝度および寿命は 得られていない。
[0003] 下記非特許文献 1には、導電性高分子であるポリア-リンの溶解性を向上させる目 的で、下記高分子化合物 (C—1)が提案されている。
[0004] [化 1]
Figure imgf000003_0001
[0005] し力しながら、上記化合物(C— 1)のような、高分子材料には以下のような問題があ る。
高分子材料は重合度や分子量分布を制御することが困難である。
連続駆動時に末端残基による劣化が起こる。
材料自体の高純度化が困難で、不純物を含む。
[0006] また、化合物(C— 1)に電荷輸送性を誘起するためには、酸化した後、プロトン酸を ドープする必要があり、ドープしたプロトン酸および対ァニオンが拡散するおそれが あるため、化合物 (C 1)は有機電界発光素子の電荷輸送材料として問題があると 推測される。
[0007] 非特許文献 1には、化合物(C 1)のモデルィ匕合物として、下記化合物(C 2)が 開示されている。
[0008] [化 2]
Figure imgf000004_0001
( C - 2 )
[0009] し力しながら、上記化合物(C— 2)は 2級ァミン部位を有するため、耐熱性および非 晶質性に乏しぐ化合物 (C— 2)を含む有機薄膜は、結晶化や凝集などにより容易 に劣化するという課題を有する。また、 2級ァミン部位に HOMOが局在化しているこ とから、化合物 (C - 2)は電荷輸送性が乏 、と 、う課題も有する。
[0010] 下記特許文献 1には、下記化合物(C 3)を電子写真感光体の電荷輸送材料とし て用いることが提案されて 、る。
[0011] [化 3]
Figure imgf000005_0001
(C- 3)
[0012] しかしながら、上記化合物(C— 3)のような化合物は、 1, 3—ジヒドロイミダゾールー 2—オン環の窒素原子に結合する基に、芳香族環力^つしかないため、耐熱性が低 ぐ有機電界発光素子の電荷輸送材料として問題がある場合がある。
[0013] このようなことから、耐熱性および非晶質性に優れる共に、電荷輸送能に優れる材 料が望まれていた。
特許文献 1:特開平 10— 246973号公報
非特許文献 l : Macromolecules 2003年, 36, 4368- 4373頁
発明の概要
[0014] 本発明は、耐熱性および非晶質性に優れ、電荷輸送能に優れる電荷輸送材料の 提供、更には高輝度、高効率かつ長寿命の有機電界発光素子を形成するための組 成物、およびそれを用いた有機電気発光素子を提供することを目的とする。
[0015] 本発明によれば、下記式 (I)で表される有機化合物、該化合物からなる電荷輸送材 料、下記式 (Π-2)で表される、有機電界発光素子用の電荷輸送材料、該材料を含 む電荷輸送材料用組成物が提供される。
[0016] 本発明によれば、基板上に、陽極、陰極、およびこれら両極間に設けられた発光層 を有する有機電界発光素子にぉ ヽて、この電荷輸送材料を含有してなる層を有する 有機電界発光素子が提供される。
[0017] [化 4]
Figure imgf000006_0001
Ar1は置換基を有して 、てもよ 、芳香族炭化水素基、置換基を有して!/、てもよ!ヽ芳 香族複素環基、または置換基を有して 、てもよ 、アルキル基を表す。
Ar2は置換基を有して 、てもよ 、芳香族炭化水素基、または置換基を有して ヽても よい芳香族複素環基を表す。
R R2は各々独立に、水素原子または置換基を表す。 R1と R2は互いに結合して環 を形成していてもよい。
Qは下記式 (I 1 )または(I 2)で表される。
[化 5]
Ar5
/
■N - Ar5 ( 1 - 2 )
\
Ar .4
Ar3〜Ar5は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して 、てもよ 、芳香族複素環基を表す。 Ar3と Ar4は互 、に結合して環を形 成していてもよい。
Figure imgf000006_0002
環 A1は、置換基を有していてもよいベンゼン環、または置換基を有していてもよい 含窒素芳香族六員環を表す。
Ar9は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。
図面の簡単な説明
[0019] [図 1]本発明の有機電界発光素子の一例を示した模式的断面図である。
[図 2]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 3]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 4]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 5]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 6]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 7]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 8]本発明の有機電界発光素子の別の例を示した模式的断面図である。
詳細な説明
[0020] 本発明者らは鋭意検討した結果、上記構造の有機化合物を見出した。この有機化 合物は、耐熱性、非晶質性および電荷輸送能に優れ、さらに、高い一重項および三 重項励起準位を有し、また、有機溶媒への溶解性にも優れる。
このため、この有機化合物カゝらなる電荷輸送材料、および、この有機化合物からな る電荷輸送材料を含む電荷輸送材料用組成物を用いた有機電界発光素子によれ ば、高輝度、高効率かつ長寿命な有機電界発光素子が提供される。
[0021] 本発明の有機化合物、該化合物からなる電荷輸送材料、該材料を含む電荷輸送 材料用組成物によれば、電荷輸送能が高い材料を含む均一な有機薄膜を湿式製膜 法によって形成することが可能であり、有機電界発光素子の大面積ィ匕が容易となる。 さらに、本発明の電荷輸送材料、該材料を含む電荷輸送材料用組成物を用いた有 機電界発光素子によれば、低い電圧、かつ高い効率で発光させることが可能となる。
[0022] また、本発明の電荷輸送材料は、優れた製膜性、電荷輸送性、発光特性、耐熱性 から、真空蒸着法にも湿式製膜法にも適用可能である。
[0023] また、本発明の電荷輸送材料、該材料を含む電荷輸送材料用組成物は、優れた 製膜性、電荷輸送性、発光特性、耐熱性から、素子の層構成に合わせて、正孔注入 材料、正孔輸送材料、発光材料、ホスト材料、電子注入材料、電子輸送材料などとし ても適用可能である。
[0024] 従って、本発明の電荷輸送材料、該材料を含む電荷輸送材料用組成物を用いた 本発明の有機電界発光素子はフラットパネル'ディスプレイ (例えば OAコンピュータ 用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生か した光源 (例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、 表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
[0025] 本発明の電荷輸送材料、該材料を含む電荷輸送材料用組成物は、本質的に優れ た酸化還元安定性を有することから、有機電界発光素子に限らず、その他、電子写 真感光体、光電変換素子、有機太陽電池、有機整流素子等にも有効に利用すること ができる。
[0026] 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説 明は、本発明の実施態様の一例 (代表例)であり、本発明はその要旨を超えない限り 、これらの内容に特定されない。
[0027] [有機化合物]
本発明の有機化合物は、下記式 (I)で表される。
[0028] [化 7]
Figure imgf000008_0001
Ar1は置換基を有して 、てもよ 、芳香族炭化水素基、置換基を有して!/、てもよ!ヽ芳 香族複素環基、または置換基を有して 、てもよ 、アルキル基を表す。
Ar2は置換基を有して 、てもよ 、芳香族炭化水素基、または置換基を有して ヽても よい芳香族複素環基を表す。 R R2は各々独立に、水素原子または置換基を表す。 R1と R2は互いに結合して環 を形成していてもよい。
Qは下記式 (I 1 )または(I 2)で表される。
[化 8]
Figure imgf000009_0001
Ar3〜Ar5は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。 Ar3と Ar4は互 、に結合して環を形 成していてもよい。
[0029] [1]構造上の特徴
本発明の有機化合物は、尿素結合(-NR— CO— NR' -)を含む 5員環(1, 3- ジヒドロイミダゾール— 2—オン)構造を有するため、適度な極性を有し、非晶質性が 高ぐ耐熱性が高い。このため、種々の有機溶媒に可溶であり、容易には結晶化しな い非晶質な有機薄膜を形成することが可能である。また、該構造は、リジットな平面構 造であるため、本発明の有機化合物は高い一重項および三重項励起準位を有する 。また、本発明の有機化合物は、該構造の他に、 3級ァミン部位(-Ar2-N (Ar3)— Ar4)または直接結合した 2つの芳香族基( Ar2— Ar5)を有するため、電荷輸送性 、耐熱性がさらに向上している。
[0030] [2]分子量範囲
本発明の有機化合物の分子量は、通常、 5000以下、好ましくは 3000以下、より好 ましくは 2000以下であり、また通常 300以上、好ましくは 500以上、より好ましくは 60 0以上である。
分子量が上記上限値を超えると、不純物の高分子量ィ匕によって精製が困難となる 場合があり、また分子量が上記下限値を下回ると、ガラス転移温度および、融点、気 化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
[0031] [3]物性 本発明の有機化合物は、通常 40°C以上のガラス転移温度を有するが、耐熱性の 観点から、 80°C以上であることが好ましぐ 110°C以上であることが更に好ましい。 本発明の有機化合物は、通常 300°C以上、 800°C以下の気化温度を有する。
[0032] 本発明の有機化合物は、通常 2. OeV以上 4. OeV以下の励起三重項状態と基底 状態のエネルギー差を有するが、燐光発光を用いた有機電界発光素子の効率を向 上させる観点から、励起三重項状態と基底状態のエネルギー差が 2. 3eV以上であ ることが好ましぐ 2. 6eV以上であることがより好ましぐ 2. 9eV以上であることが更に 好ましい。
[0033] この励起三重項状態と基底状態のエネルギー差 (最低三重項励起エネルギー)の 求め方は、例えば、以下の通りである。
最低三重項励起エネルギーには、試料化合物を分光用に精製された溶媒 (例えば 、 2—メチルテトラヒドロフラン)に溶力した溶液を筒状石英セルに入れ、液体窒素を 用いて 77Kに冷却してフォトルミネッセンスを測定し、その最大エネルギーの燐光発 光 (0, 0遷移ピーク形状)から求める。燐光発光と蛍光発光の分別は、励起光入射後 、フォトルミネッセンス観測開始時間を遅らせることによって行う。フォトルミネッセンス の測定は、材料の吸収に合わせて、 Nレーザー光源 (波長 337nm)を用い、これを
2
励起光として試料ィ匕合物に当てることによって行う。
Figure imgf000010_0001
R2は各々独立に、水素原子または任意の置換 基を表し、 R\ R2は互いに結合して環を形成していてもよい。
任意の置換基としては、以下に例示するような有機基等が挙げられ、好ましくは分 子量 500以下の基が挙げられる。具体的には、次のようなものが挙げられる。
置換基を有して 、てもよ 、アルキル基 (好ましくは炭素数 1〜8の直鎖または分岐の ァノレキノレ基であり、例えばメチノレ、ェチノレ、 n—プロピル、 2—プロピル、 n—ブチノレ、 イソブチル、 tert—ブチル基などが挙げられる。)、
置換基を有して 、てもよ ヽァルケ-ル基 (好ましくは、炭素数 2〜9のァルケ-ル基 であり、例えばビュル、ァリル、 1ーブテニル基などが挙げられる。)、
置換基を有して ヽてもよ 、アルキニル基 (好ましくは、炭素数 2〜9のアルキニル基 であり、例えばェチュル、プロパルギル基などが挙げられる。)、 置換基を有して 、てもよ 、ァラルキル基 (好ましくは、炭素数 7〜 15のァラルキル基 であり、例えばべンジル基などが挙げられる。)、
置換基を有して 、てもよ 、ァミノ基 [好ましくは、置換基を有して 、てもよ 、炭素数 1 〜8のアルキル基を 1つ以上有するアルキルアミノ基(例えばメチルアミ入ジメチルァ ミ入ジェチルァミノ、ジベンジルァミノ基などが挙げられる。 )、
置換基を有していてもよい炭素数 6〜12の芳香族炭化水素基を有するァリールァ ミノ基 (例えばフエ-ルアミ入ジフエ-ルアミ入ジトリルアミノ基などが挙げられる。)、 置換基を有して ヽてもよ ヽ、 5または 6員環の芳香族複素環を有するヘテロァリール アミノ基 (例えばピリジルアミ入チェニルアミ入ジチェニルァミノ基などが挙げられる 丄
置換基を有して ヽてもよ ヽ、炭素数 2〜: LOのァシル基を有するァシルァミノ基 (例え ばァセチルアミ入ベンゾィルァミノ基などが挙げられる。)]、
置換基を有して 、てもよ 、アルコキシ基 (好ましくは置換基を有して 、てもよ 、炭素 数 1〜8のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ基などが挙げられる 丄
置換基を有して 、てもよ 、ァリールォキシ基 (好ましくは炭素数 6〜 12の芳香族炭 化水素基を有するものであり、例えばフエ-ルォキシ、 1 ナフチルォキシ、 2—ナフ チルォキシ基などが挙げられる。 )、
置換基を有して 、てもよ 、ヘテロァリールォキシ基 (好ましくは 5または 6員環の芳 香族複素環基を有するものであり、例えばピリジルォキシ、チェ-ルォキシ基などが 挙げられる。 )、
置換基を有して 、てもよ!、ァシル基 (好ましくは、置換基を有して 、てもよ!、炭素数 2〜10のァシル基であり、例えばホルミル、ァセチル、ベンゾィル基などが挙げられる 丄
置換基を有して 、てもよ 、アルコキシカルボ-ル基 (好ましくは置換基を有して!/、て もよい炭素数 2〜 10のアルコキシカルボ-ル基であり、例えばメトキシカルボ-ル、ェ トキシカルボ-ル基などが挙げられる。)、 置換基を有して 、てもよ ヽァリールォキシカルボ-ル基 (好ましくは置換基を有して
V、てもよ 、炭素数 7〜 13のァリールォキシカルボ-ル基であり、例えばフエノキシ力 ルポニル基などが挙げられる。)、
置換基を有して 、てもよ 、アルキルカルボニルォキシ基 (好ましくは置換基を有して V、てもよ 、炭素数 2〜 10のアルキルカルボ-ルォキシ基であり、例えばァセトキシ基 などが挙げられる。)、
ハロゲン原子 (特に、フッ素原子または塩素原子)、
カルボキシル基、
シァノ基、
水酸基、
メノレカプト基、
置換基を有して 、てもよ 、アルキルチオ基 (好ましくは炭素数 1〜8のアルキルチオ 基であり、例えば、メチルチオ基、ェチルチオ基などが挙げられる。)、
置換基を有して 、てもよ 、ァリ一ルチオ基 (好ましくは炭素数 6〜 12のァリールチオ 基であり、例えば、フエ-ルチオ基、 1 ナフチルチオ基などが挙げられる。)、 置換基を有していてもよいスルホ -ル基 (例えば、メシル基、トシル基などが挙げら れる。)、
置換基を有していてもよいシリル基 (例えば、トリメチルシリル基、トリフエ-ルシリル 基などが挙げられる。)、
置換基を有して ヽてもよ ヽボリル基 (例えば、ジメシチルボリル基などが挙げられる。 )、
置換基を有して ヽてもよ ヽホスフイノ基 (例えば、ジフエ-ルホスフイノ基などが挙げ られる。)、
置換基を有していてもよい芳香族炭化水素基 (例えば、ベンゼン環、ナフタレン環、 アントラセン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン 環、タリセン環、トリフエ-レン環、フノレオランテン環などの、 5または 6員環の単環また は 2〜5縮合環由来の 1価の基が挙げられる。)
置換基を有していてもよい複素環基 (例えば、フラン環、ベンゾフラン環、チォフエ ン環、ベンゾチォフェン環、ピロール環、ピラゾール環、イミダゾール環、ォキサジァゾ ール環、インドール環、力ルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、 ピロロピロール環、チェノビロール環、チェノチォフェン環、フロピロール環、フロフラ ン環、チエノフラン環、ベンゾイソォキサゾール環、ベンゾイソチアゾール環、ベンゾィ ミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリ ン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環
、キナゾリン環、イミダゾリノン環、ベンゾイミダゾリノン環などの、 5または 6員環の単環 または 2〜4縮合環由来の 1価の基が挙げられる。)
[0035] また、上記置換基がさらに置換基を有する場合、その置換基としては、上記例示置 換基が挙げられる。
[0036] R2としては、電気化学的耐久性を向上させる観点および耐熱性を向上させる 観点から、置換基を有していてもよい芳香族炭化水素基が好ましぐ置換基を有して いてもよいフエ-ル基がより好ましぐ無置換のフエ-ル基、或いは 1または 2置換の フエ-ル基がさらに好まし 、。
[0037] R2としては、溶解性および非晶質性をさらに向上させる観点から、置換基を有 していてもよいアルキル基が好ましぐメチル基、ェチル基、 n—プロピル基、 2—プロ ピル基、 n—ブチル基、イソブチル基、 tert—ブチル基などの炭素数 1〜4のアルキ ル基がより好ましぐメチル基、ェチル基、 n—プロピル基がさらに好ましい。
[0038] また、
Figure imgf000013_0001
R2としては、三重項励起準位の低下を防止する観点から、水素原子が好 ましい。
[0039] 耐熱性をさらに向上させる観点から、 R R2は互いに結合して環を形成しているこ とが好ましい。 R R2が互いに結合して環を形成した場合の式 (I)で表される有機化 合物の例を下記に示すが、本発明はこれらに限定されるものではない。なお、以下 において、 Rとしては、 R1, R2として例示した置換基または水素原子が挙げられる。
[0040] [化 9]
Figure imgf000014_0001
Ar
- Ar2Q
Figure imgf000014_0002
Figure imgf000014_0003
Figure imgf000014_0004
[0041] 電気化学的耐久性を向上させる観点、三重項励起準位の低下を防ぐ観点から、 R] 、R2は互いに結合してベンゼン環または含窒素芳香族六員環を形成することが好ま しい。すなわち、本発明の有機化合物は下記式 (II)で表されることが好ましい。
[0042] [化 10]
Figure imgf000014_0005
Ar2、 Qは、前記式 (I)におけると同義である。
環 A1は、置換基を有していてもよいベンゼン環、または置換基を有していてもよい含 窒素芳香族六員環を表す。
[0043] 環 A1の含窒素芳香族六員環としては、ピリジン環、ピラジン環、ピリミジン環、ピリダ ジン環、トリァジン環が挙げられ、特に、ピリジン環が好ましい。
[0044] 環 A1の置換基の例としては、 R R2として例示した置換基が挙げられ、好まし!/、置
2として好ましい置換基と同様である。
Figure imgf000015_0001
本発明の有機化合物における Ar1は、任意の置換基を有していてもよい芳香族炭 化水素基、任意の置換基を有していてもよい芳香族複素環基、または任意の置換基 を有していてもよいアルキル基を表し、 Ar2は、任意の置換基を有していてもよい芳 香族炭化水素基、または任意の置換基を有して 、てもよ 、芳香族複素環基を表す。
[0046]
Figure imgf000015_0002
Ar2が有して 、てもよ 、置換基の例は、 R2として例示した置換基が挙げら れる。 Ar1および Ar2の置換基は、 R1および R2として例示した置換基を複数連結して なるものであってもよい。また、それら置換基は隣接する基と結合して、環を形成して いてもよい。 Ar1はその置換基も含めて、好ましくは分子量 3000以下、さらに好ましく は 1000以下である。 Ar2— Qは、その置換基も含めて、好ましくは分子量 3000以下 、好ましくは 1000以下である。
[0047] Ar2が有して 、てもよ 、置換基としては、耐熱性を向上させる観点から、置換 基を有して 、てもよ 、芳香族炭化水素基が好ましく、より好ましくは置換基を有して ヽ てもよぃフヱ-ル基であり、さらに好ましくは無置換のフエ-ル基、 1または 2置換のフ 工-ル基である。
[0048] Ar2が有していてもよい置換基としては、溶解性および非晶質性をさらに向上 させる観点から、置換基を有していてもよいアルキル基が好ましぐより好ましくはメチ ル基、ェチル基、 n プロピル基、 2—プロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基などの炭素数 1〜4のアルキル基、さらに好ましくはメチ ル基、ェチル基である。
[0049] Ar2が有して 、てもよ 、置換基としては、一重項および三重項励起準位の低 下を防ぎつつ、さらに耐熱性および電荷輸送能を向上させる点から、 1, 3 ジヒドロ イミダゾール 2—オン環由来の基が好ま U、。
[0050] Ar2に適用可能な芳香族炭化水素基を例示するならば、ベンゼン環、ナフタ レン環、アントラセン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベン ズピレン環、タリセン環、トリフエ-レン環、ァセナフテン環、フルオランテン環などの、 6員環の単環または 2〜5縮合環由来の基が挙げられる。
[0051] Ar2に適用可能な芳香族複素環基を例示するならば、フラン環、ベンゾフラン 環、チォフェン環、ベンゾチォフェン環、ピロール環、ピラゾール環、イミダゾール環、 ォキサジァゾール環、インドール環、力ルバゾール環、ピロロイミダゾール環、ピロロピ ラゾール環、ピロロピロール環、チェノビロール環、チェノチォフェン環、フロピロール 環、フロフラン環、チエノフラン環、ベンゾイソォキサゾール環、ベンゾイソチアゾール 環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリア ジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フエナントリジン環、ベ ンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、ァズレン環などの、 5または 6員環の単環または 2〜4縮合環由来の基が挙げられる。
[0052] Ar1に適用可能なアルキル基を例示するならば、メチル、ェチル、 n—プロピル、 2 プロピル、 n—ブチル、イソブチル、 sec ブチル基、 tert ブチル基などの炭素数 1〜4のアルキル基が挙げられる。
[0053] Ar1は、三重項励起準位の低下を防ぐ点から、置換基を有して!/ヽてもよ ヽベンゼン 環由来の基、置換基を有していてもよいピリジン環由来の基、置換基を有していても よ 、ベンゼン環または置換基を有して 、てもよ 、ピリジン環が複数 (例えば 2〜: LO個) 連結した基 (例えば、ビフエニル基、ターフェ-ル基、フエ-ルビリジル基、ビビリジル 基、ターピリジル基など)が好ましい。
Ar1は、合成が容易である点、三重項励起準位が高くなる傾向にある点から、 Ar 2— Qと同一であることが好まし 、。
Ar1は、溶解性が向上する点から、 Ar2—Qとは異なる基であることが好ましい。
[0054] Ar2は、三重項励起準位の低下を防ぐ点から、置換基を有して!/ヽてもよ ヽベンゼン 環由来の基、置換基を有していてもよいピリジン環由来の基、置換基を有していても よ 、ベンゼン環または置換基を有して 、てもよ 、ピリジン環が複数 (例えば 2〜: LO個) 連結した 2価の基(例えば、ビフエ-ル、ターフェ-ル、ビビリジル、ターピリジル、フエ -ルピリジン、ジフエニルピリジン、ジピリジルベンゼン由来の 2価の基など)が好まし い。
また、 Ar2は、電気化学的耐久性をさらに向上させる点から、 p—フエ-レン基、 4, 4 ,一ビフエ-レン基、 4, 3,一ビフエ-レン基、 3, 4,一ビフエ-レン基であることがさら に好ましい。
[0055] また、 Ar2は、溶解性をさらに向上させる点から、 m—フエ-レン基、 3, 3'—ビフエ 二レン基であることがさらに好ましい。
また、 Ar2は、電荷 (電子)輸送性をさらに向上させる点から、ピリジン環を含むこと が好ましぐピリジンジィル基、または、ビビリジル、ターピリジル、フエニルピリジン、ジ フエニルピリジン、ジピリジルベンゼン由来の 2価の基であることがさらに好ましい。
[0056] Ar1と Ar2がともに、ベンゼン環由来の基であることが、溶解性および耐熱性の点、 三重項励起準位の低下を防ぐ点から、好ましい。
すなわち、本発明の有機化合物は、下記式 (III)で表されることが好ましい。
[0057] [化 11]
Figure imgf000017_0001
R\ R2、 Qは、前記式 (I)におけると同義である。
環 B1は置換基を有して 、てもよ 、ベンゼン環を表し、環 C1は Q以外に置換基を有 して!/ヽてもよ!/ヽベンゼン環を表す。
[0058] 環 、環 C1が有して 、てもよ 、置換基の例およびその好ま 、例は、それぞれ、前 記 Ar1, Ar2が有して 、てもよ 、置換基と同様である。
[0059] また、 Ar1と Ar2がともに、ピリジン環由来の基であることが、電荷輸送性および耐熱 性の点、三重項励起準位の低下を防ぐ点から、好ましい。
すなわち、本発明の有機化合物は、下記式 (ΠΙ-2)で表されることが好ましい。
[化 12]
Figure imgf000018_0001
R\ R2、 Qは、前記式 (I)におけると同義である。
環 D1は置換基を有して 、てもよ 、ピリジン環を表し、環 E1は Q以外に置換基を有し て!、てもよ 、ピリジン環を表す。
[0061] 環 D 環 E1が有していてもよい置換基の例およびその好ましい例は、それぞれ、前 記 ΑΛ Ar2が有して 、てもよ 、置換基と同様である。
[0062] [6]Q
本発明の有機化合物における Qは、下記式 (1—1)または (1— 2)力も選ばれる基を 表す。
[0063] [化 13]
Figure imgf000018_0002
Ar3〜Ar5は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。 Ar3と Ar4は互 、に結合して環を形 成していてもよい。
[0064] Ar3〜Ar5が有して 、てもよ 、置換基の例は、 R R2として例示した置換基が挙げ られる。
[0065] Ar3〜Ar5が有して!/、てもよ!/、置換基として好まし!/、例は、 ΑΛ Ar2が有して!/ヽても ょ 、置換基の好ま 、例と同様である。
[0066] Ar3〜Ar5に適用可能な芳香族炭化水素基、芳香族複素環基の例は、
Figure imgf000019_0001
Ar2に 適用可能な芳香族炭化水素基、芳香族複素環基の例と同様である。
[0067] Ar3、 Ar4は、電気化学的耐久性を向上させる観点および耐熱性を向上させる観点 から、置換基を有していてもよい芳香族炭化水素基が好ましぐより好ましくは置換基 を有していてもよいフエ-ル基であり、さらに好ましくは無置換のフエ-ル基、 1または
2置換のフエ-ル基である。
[0068] 電荷輸送能をさらに向上させる点から、 Qは式 (1—1)で表されることが好ましい。
式 (1—1)において、 Ar3と Ar4は、互いに結合して、置換基を有していてもよい環を 形成していてもよい。 Ar3と Ar4が互いに結合して環を形成した場合の、 Ar3Ar4N— の好ましい例を下記に示す。これらのうち、高い三重項励起準位を有する点で、 N— カルバゾリル基がより好まし 、。
[0069] [化 14]
Figure imgf000019_0002
Figure imgf000019_0003
[0070] 耐熱性を向上させる点から、 Qは式 (1— 2)で表されることが好ま 、。
[0071] 式 (1— 2)において、 Ar5は、三重項励起準位の低下を防ぐ点から、置換基を有して
V、てもよ 、ベンゼン環由来の基、ベンゼン環が複数 (例えば 2〜: LO個)連結した基( 例えば、ビフエ二レン基、ターフェ二レン基など)が好ましい。
[0072] [7]好適構造
本発明の有機化合物は、高い電荷輸送能、高い電気化学的安定性、高い三重項 励起準位の全てを有する点から、下記式 (IV)で表されることが好ま 、。
[0073] [化 15]
(IV)
Figure imgf000020_0001
Ar2〜Ar4、 R1, R2は、前記式 (I)および式 (I— 1)におけると同義である。 Ar6〜Ar8は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。 Ar7と Ar8は互 、に結合して環を形 成していてもよい。
[0074] Ar6の例および好ましい例は、それぞれ、 Ar2と同様である。 Ar7および Ar8の例およ び好ましい例は、それぞれ、 Ar3或いは Ar4と同様である。
[0075] また、高い三重項励起準位を保ちつつ、耐熱性をさらに向上させる観点から、本発 明の有機化合物に Ar1の部位、 Ar2— Qの部位、 R1或いは R2の部位に、下記式 (I— 3)で表される N—力ルバゾリル基を 1個以上、好ましくは 1〜6個、さらに好ましくは 2 〜4個有することが好ましい。該カルバゾリル基は、置換基を有していてもよいが、無 置換であることが好ましい。
[0076] [化 16]
Figure imgf000021_0001
[0077] [8]例示
以下に、本発明の有機化合物として好ましい具体的な例を示すが、本発明はこれ らに限定されるものではない。
[0078] [化 17]
[8ΐ^ ] [6Ζ00]
Figure imgf000022_0001
£££Z£/900Zd /lDd 03 09.C90/.00Z OAV
Figure imgf000023_0001
[0080] [化 19] [OZ^ [1800]
Figure imgf000024_0001
Figure imgf000025_0001
[0082] [化 21]
Figure imgf000026_0001
Figure imgf000027_0001
[0084] [化 23]
Figure imgf000028_0001
[0085] [化 24]
Figure imgf000029_0001
[0086] [化 25]
[92^ ] [ 800]
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
[0089] [化 28]
Figure imgf000033_0001
[0090] [化 29]
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0003
Figure imgf000034_0004
Figure imgf000034_0005
Figure imgf000034_0006
οεεε / 90ozdf/ェ:) d ss θ9.ε9θ/.οοζ OAV [0091] [化 30]
Figure imgf000036_0001
Figure imgf000036_0002
Figure imgf000036_0003
Figure imgf000036_0004
£££Ζ£/900Ζάΐ/13ά 09.C90/.00Z OAV
Figure imgf000037_0001
[0093] [化 32]
Figure imgf000038_0001
[0094] [9]合成法
本発明の有機化合物は、 目的とする化合物の構造に応じて原料を選択し、公知の 手法を用いて合成することができる。
例えば、次のような手順で合成することができる。
[0095] まず、式 (i)で表される 2—ヒドロキシイミダゾール誘導体とハロゲンィ匕物 (Ar1—X1) とを、銅粉末、ハロゲン化銅 (1)、酸化銅 (1)、パラジウム錯体等の遷移金属触媒 (ノヽ ロゲン化物 (A —X1)のハロゲン原子に対して 0. 001〜5当量程度)、および、炭酸 カリウム、炭酸カルシウム、リン酸カリウム、炭酸セシウム、 tert—ブトキシナトリウム、ト リエチルァミン等の塩基性物質 (ノヽロゲンィ匕物 (Ar1—X1)のハロゲン原子に対して 1 〜10当量程度)の存在下、不活性ガス気流下、無溶媒または、芳香族溶媒、エーテ ル系溶媒などの溶媒中、 20〜300°Cで、 1〜60時間撹拌混合することによって、下 記式 (ii)で表される化合物が得られる。次に、下記式 (ii)で表される化合物とハロゲン 化物 (X2— Ar2— Q)とを、銅粉末、ハロゲン化銅 (I)、酸化銅 (I)、パラジウム錯体等 の遷移金属触媒(ノヽロゲン化物(X2—Ar2—Q)のハロゲン原子に対して 0. 001〜5 当量程度)、および、炭酸カリウム、炭酸カルシウム、リン酸カリウム、炭酸セシウム、 te rt—ブトキシナトリウム、トリェチルァミン等の塩基性物質 (ノヽロゲンィ匕物 (X2— Ar2— Q)のハロゲン原子に対して 1〜10当量程度)の存在下、不活性ガス気流下、無溶媒 または、芳香族溶媒、エーテル系溶媒などの溶媒中、 20〜300°Cで、 1〜60時間撹 拌混合することによって、下記式 (I)で表される本発明の有機化合物が得られる。な お、以下において、八 〜八!:5, R1, R2, Qは前記式 (I)におけると同義である。 X1, X 2はハロゲン原子を表す。
[0096] [化 33]
?H 9 ΗΝΛΝ NNAf≤Q
) >=(
R1 R2
Figure imgf000039_0001
R R2
( i ) (ϋ) ( I )
[0097] 上記式(ii)で表される化合物の合成法としては、 Tetrahedron 1999年, 55, 475-4 84頁、 Tetrahedron Letters 2000年, 41, 6387- 6391頁、 Tetrahedron 1990年, 46 , 1331— 1342頁、 European Journal of Organic Chemistry 1998年, 183—187、 Th e Journal of Organic Chemistry 2004年, 69, 7752- 7754頁に記載の尿素結合 を含む 5員環(1, 3 ジヒドロイミダゾール 2 オン)を形成する方法も適用可能で ある。
[0098] Q=Ar5の場合、ハロゲン化物(X2— Ar2— Ar5)は、公知のカップリング反応を用い て合成することが可能である。公知のカップリング手法としては、具体的には、「Pallad mm in Heterocyclic Chemistry:A guide for tne Synthetic し hemistj (弟二版、 2 002、 Jie Jack Li and Gordon W.Gribble、 Pergamon社)、「遷移金属が拓く有機合 成 その多彩な反応形式と最新の成果」(1997年、辻ニ郎、化学同仁社)、「ボルハル ト'ショァ一現代有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社)などに記載 または引用されている、ハロゲン化ァリールとァリールボレートとのカップリング反応な どの、環同士の結合 (カップリング)反応を用いることができる。
[0099] Q=NAr3Ar4の場合、ハロゲン化物(X2— Ar2—NAr3Ar4)は、下記式のように、 2 級ァミン化合物(Ar3Ar4NH)とジハロゲン化物(X2— Ar2— X3 (X2, X3=F, CI, Br, I) )から合成される。使用可能な試薬等は、上記式 (i)で表される化合物から、式 (ii) で表される化合物を合成する工程と同様である。
[0100] [化 34] X2— Ar2— X3
3 Cu or Pd cat. Ar3
HN —— ― ~~ - X2 - Α^-Ν'
Ar4 Ar4 合成された化合物の精製方法としては、「分離精製技術ハンドブック」( 年、 ( 財)日本化学会編)、「化学変換法による微量成分および難精製物質の高度分離」( 年、(株)アイ ピー シー発行)、或いは「実験化学講座 (第 版) 」( 年、 (財)日本ィ匕学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を 利用可能である。
具体的には、抽出 (懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着
、吸蔵、融解、晶析 (溶媒からの再結晶、再沈殿を含む)、蒸留 (常圧蒸留、減圧蒸 留)、蒸発、昇華 (常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸 透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各 種クロマトグラフィー (形状分類:カラム、ペーパー、薄層、キヤビラリ一。移動相分類: ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、 キレート、ゲル濾過、排除、ァフィユティー)などが挙げられる。
生成物の確認や純度の分析方法としては、ガスクロマトグラフ( 、高速液体クロ マトグラフ 、高速アミノ酸分析計 、キヤピラリー電気泳動測定 、 サイズ排除クロマトグラフ( 、ゲル浸透クロマトグラフ( 、交差分別クロマト グラフ( 質量分析( 、 、核磁気共鳴装置
) )、フーリエ変換赤外分光高度計 、紫外可 視近赤外分光高度計 、電子スピン共鳴装置 、透過型電子 顕微鏡 電子線マイクロアナライザー( 、金属元素分析 (ィォ ンクロマトグラフ、誘導結合プラズマ一発光分光 原子吸光分析 蛍光 線分析装置 、非金属元素分析、微量成分分析
等を必要に応じ、適用可能である。
有機化合物の用途
本発明の有機化合物は、高い電荷輸送性を有するため、電荷輸送材料として電子 写真感光体、有機電界発光素子、光電変換素子、有機太陽電池、有機整流素子等 に好適に使用できる。
また、高い三重項励起準位を有することから、本発明の有機化合物よりなる本発明 の電荷輸送材料を用いることにより、耐熱性に優れ、長期間安定に駆動 (発光)する 有機電界発光素子が得られるため、本発明の有機化合物および電荷輸送材料は有 機電界発光素子材料として、とりわけ好適である。
[0105] [電荷輸送材料]
本発明の電荷輸送材料は、本発明の有機化合物からなるもの、あるいは、下記式 (
II 2)で表されるものであり、好ましくは、トルエンに対して 2. 0重量%以上、より好ま しくは 5. 0重量%以上溶解する。
[0106] [化 35]
Figure imgf000041_0001
環 A1は、置換基を有していてもよいベンゼン環、または置換基を有していてもよい 含窒素芳香族六員環を表す。
Ar9は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。
[0107] 上記式 (II— 2)において、環 A Ar1は前記式 (II)における A Ar1と同義であり、 その置換基、その好適例も同様である。 Ar9としては Ar1と同様のものが挙げられ、 Ar
9が有して 、てもよ 、置換基にっ 、ても Ar1が有して 、てもよ 、置換基と同様である。
[0108] 上記式 (II— 2)で表される本発明の電荷輸送材料の分子量は、通常、 5000以下、 好ましくは 3000以下、より好ましくは 2000以下であり、また通常 300以上、好ましく は 500以上、より好ましくは 600以上である。 分子量が上記上限値を超えると、不純物の高分子量ィ匕によって精製が困難となる 場合があり、また分子量が上記下限値を下回ると、ガラス転移温度および、融点、気 化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
本発明の電荷輸送材料は、通常 40°C以上のガラス転移温度を有するが、耐熱性 の観点から、 80°C以上であることが好ましぐ 110°C以上であることが更に好ましい。 本発明の電荷輸送材料は、通常 300°C以上、 800°C以下の気化温度を有する。 本発明の電荷輸送材料は、通常 2. OeV以上 4. OeV以下の励起三重項状態と基 底状態のエネルギー差を有するが、燐光発光を用いた有機電界発光素子の効率を 向上させる観点から、励起三重項状態と基底状態のエネルギー差が 2. 3eV以上で あることが好ましぐ 2. 6eV以上であることがより好ましぐ 2. 9eV以上であることが更 に好ましい。
[0109] 後述する様に、電荷輸送材料用組成物に含まれる溶剤としては芳香族炭化水素が 好ましい。トルエンは、芳香族炭化水素の代表例として挙げており、本発明において は、有機化合物 (電荷輸送材料)の溶解性を示す指標として ヽる。
本発明の電荷輸送材料のトルエンに対する溶解度が 2. 0重量%以上であること〖こ より、湿式製膜法により有機電界発光素子を構成する層を容易に形成することができ 好ましい。この溶解度の上限には特に制限はないが、通常 50重量%程度である。
[0110] [電荷輸送材料用組成物]
本発明の電荷輸送材料用組成物は、前述の本発明の電荷輸送材料を含むもので あり、通常、本発明の電荷輸送材料と溶剤とを含み、更に好ましくは燐光発光材料を 含むものであり、好ましくは、有機電界発光素子用に使用される。
[0111] [1]溶剤
本発明の電荷輸送材料用組成物に含まれる溶剤としては、溶質である本発明の電 荷輸送材料等が良好に溶解する溶剤であれば特に限定されない。
[0112] 本発明の電荷輸送材料は溶解性が高いため、種々の溶剤が適用可能である。例 えば、トルエン、キシレン、メチシレン、シクロへキシルベンゼン、テトラリン等の芳香族 炭ィ匕水素;クロ口ベンゼン、ジクロロベンゼン、トリクロ口ベンゼン等のハロゲンィ匕芳香 族炭化水素; 1, 2—ジメトキシベンゼン、 1, 3—ジメトキシベンゼン、ァ-ソール、フエ ネトール、 2—メトキシトルエン、 3—メトキシトルエン、 4ーメトキシトルエン、 2, 3 ジメ チルァ-ソール、 2, 4 ジメチルァ-ソール等の芳香族エーテル;酢酸フエ-ル、プ ロピオン酸フ ニル、安息香酸メチル、安息香酸ェチル、安息香酸プロピル、安息香 酸 n ブチル等の芳香族エステル;シクロへキサノン、シクロォクタノン等の脂環を有 するケトン;メチルェチルケトン、ジブチルケトン等の脂肪族ケトン;メチルェチルケトン 、シクロへキサノール、シクロォクタノール等の脂環を有するアルコール;ブタノール、 へキサノール等の脂肪族アルコール;エチレングリコールジメチルエーテル、ェチレ ングリコーノレジェチノレエーテノレ、プロピレングリコーノレ 1 モノメチノレエーテノレァセ タート(PGMEA)等の脂肪族エーテル;酢酸ェチル、酢酸 n—ブチル、乳酸ェチル、 乳酸 n—ブチル等の脂肪族エステル等が利用できる。これらのうち、水の溶解度が低 い点、容易には変質しない点で、トルエン、キシレン、メチシレン、シクロへキシルベン ゼン、テトラリン等の芳香族炭化水素が好ましい。
[0113] 有機電界発光素子には、陰極等の水分により著しく劣化する材料が多く使用され ているため、組成物中の水分の存在は、乾燥後の膜中に水分が残留し、素子の特性 を低下させる可能性が考えられ好ましくな 、。
[0114] 組成物中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の 使用、溶剤を予め脱水する、水の溶解度が低い溶剤を使用する等が挙げられる。な かでも、水の溶解度が低い溶剤を使用する場合は、湿式製膜工程中に、溶液膜が 大気中の水分を吸収して白化する現象を防ぐことができるため好ましい。この様な観 点からは、本実施の形態が適用される電荷輸送材料用組成物は、例えば、 25°Cに おける水の溶解度が 1重量%以下、好ましくは 0. 1重量%以下である溶剤を、組成 物中 10重量%以上含有することが好ま 、。
[0115] また、湿式製膜時における組成物力ゝらの溶剤蒸発による、製膜安定性の低下を低 減するためには、電荷輸送材料用組成物の溶剤として、沸点が 100°C以上、好ましく は沸点が 150°C以上、より好ましくは沸点が 200°C以上の溶剤を用いることが効果的 である。また、より均一な膜を得るためには、製膜直後の液膜から溶剤が適当な速度 で蒸発することが必要で、このためには通常沸点 80°C以上、好ましくは沸点 100°C 以上、より好ましくは沸点 120°C以上で、通常沸点 270°C未満、好ましくは沸点 250 °C未満、より好ましくは沸点 230°C未満の溶剤を用いることが効果的である。
[0116] 上述の条件、即ち溶質の溶解性、蒸発速度、水の溶解度の条件を満足する溶剤を 単独で用いてもよいが、 2種類以上の溶剤を混合して用いることもできる。
[0117] [2]発光材料
本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物として用いられる 電荷輸送材料用組成物は、発光材料を含有することが好まし ヽ。
[0118] 発光材料とは、本発明の電荷輸送材料用組成物において、主として発光する成分 を指し、有機電界発光デバイスにおけるドーパント成分に当たる。即ち、電荷輸送材 料用組成物から発せられる光量 (単位: cdZm2)の内、通常 10〜: LOO%、好ましくは
20〜100%、より好ましくは 50〜100%、最も好ましくは 80〜100%力 ある成分材 料からの発光と同定される場合、それを発光材料と定義する。
[0119] 発光材料としては、公知材料を適用可能であり、蛍光発光材料或いは燐光発光材 料を単独若しくは複数を混合して使用できるが、内部量子効率の観点から、好ましく は、燐光発光材料である。
本発明の電荷輸送材料用組成物に使用する場合、この発光材料の最大発光ピー ク波長は 390〜490nmの範囲にあることが好ましい。
[0120] なお、溶剤への溶解性を向上させる目的で、発光材料分子の対称性や剛性を低 下させたり、或いはアルキル基などの親油性置換基を導入したりすることも、重要で ある。
[0121] 青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリン、 P- ビス(2—フエニルェテュル)ベンゼンおよびそれらの誘導体等が挙げられる。緑色蛍 光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素 としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、 DCM 系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチォキサンテン誘導体、 ァザべンゾチォキサンテン等が挙げられる。
[0122] 燐光発光材料としては、例えば周期表 7ないし 11族力 選ばれる金属を含む有機 金属錯体が挙げられる。
[0123] 周期表 7な ヽし 11族から選ばれる金属を含む燐光性有機金属錯体における金属と して好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジゥ ム、白金、金等が挙げられる。これらの有機金属錯体として、好ましくは下記一般式 ( V)または式 (VI)で表される化合物が挙げられる。
ML V (V)
一般式 (V)中、 Mは金属を表し、 qは上記金属の価数を表す。また、 Lおよび L'は 二座配位子を表す。 jは 0、 1または 2を表す。 )
[化 36]
Figure imgf000045_0001
(V I ) 一般式 (VI)中、 Mdは金属を表し、 Tは炭素または窒素を表す。 R92〜R95は、それ ぞれ独立に、置換基を表す。ただし、 Tが窒素の場合は、 R94および R95は無い。 以下、まず、一般式 (V)で表される化合物について説明する。
一般式 (V)中、 Mは任意の金属を表し、好ましいものの具体例としては、周期表 7 な!、し 11族力も選ばれる金属として前述した金属が挙げられる。
また、一般式 (V)中の二座配位子 Lおよび L'は、それぞれ、以下の部分構造を有 する配位子を示す。
[化 37]
Figure imgf000046_0001
Figure imgf000047_0001
[0129] 上記 L, L'の部分構造において、環 A1は、芳香族炭化水素基または芳香族複素 環基を表し、これらは置換基を有していてもよい。また、環 A2は、含窒素芳香族複素 環基を表し、これらは置換基を有していてもよい。
[0130] 環 Al, A2が置換基を有する場合、好ましい置換基としては、フッ素原子等のハロ ゲン原子;メチル基、ェチル基等のアルキル基;ビニル基等のアルケニル基;メトキシ カルボ-ル基、エトキシカルボ-ル基等のアルコキシカルボ-ル基;メトキシ基、エト キシ基等のアルコキシ基;フエノキシ基、ベンジルォキシ基などのァリールォキシ基; ジメチルァミノ基、ジェチルァミノ基等のジアルキルアミノ基;ジフエ-ルァミノ基等の ジァリールアミノ基;カルバゾリル基;ァセチル基等のァシル基;トリフルォロメチル基 等のハロアルキル基;シァノ基;フエ-ル基、ナフチル基、フエナンチル基等の芳香族 炭化水素基等が挙げられる。
[0131] 一般式 (V)で表される化合物として、さらに好ましくは、下記一般式 (Va)、 (Vb)、 (
Vc)で表される化合物が挙げられる。
[0132] [化 40]
Figure imgf000048_0001
一般式 (Va)中、 Maは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 環 A1は置換基を有して ヽてもよ 、芳香族炭化水素基を表し、環 A2は置換基を有し て!ヽてもよ!/ヽ含窒素芳香族複素環基を表す。
[0133] [化 41]
Figure imgf000049_0001
一般式 (Vb)中、 Mbは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 環 A1は置換基を有して 、てもよ 、芳香族炭化水素基または置換基を有して 、てもよ Vヽ芳香族複素環基を表し、環 A2は置換基を有して ヽてもよ ヽ含窒素芳香族複素環 基を表す。
[0134] [化 42]
Figure imgf000049_0002
一般式 (Vc)中、 Meは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 j は 0、 1または 2を表す。さら〖こ、環 A1および環 A1 'は、それぞれ独立に、置換基を有 して!/ヽてもよ!/ヽ芳香族炭化水素基または置換基を有して!/ヽてもよ!ヽ芳香族複素環基 を表す。また、環 A2および環 A2'は、それぞれ独立に、置換基を有していてもよい 含窒素芳香族複素環基を表す。
[0135] 上記一般式 (Va)、 (Vb) , (Vc)において、環 A1および環 Al 'の基としては、好ま しくは、例えばフエ-ル基、ビフヱ-ル基、ナフチル基、アントリル基、チェ-ル基、フ リル基、ベンゾチェ-ル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、 カルバゾリル基等が挙げられる。
[0136] また、環 A2、環 A2'の基としては、好ましくは、例えばピリジル基、ピリミジル基、ピ ラジル基、トリアジル基、ベンゾチアゾール基、ベンゾォキサゾール基、ベンゾイミダゾ ール基、キノリル基、イソキノリル基、キノキサリル基、フエナントリジル基等が挙げられ る。
[0137] 更に、一般式 (Va)、 (Vb)、 (Vc)で表される化合物が有して 、てもよ 、置換基とし ては、フッ素原子等のハロゲン原子;メチル基、ェチル基等のアルキル基;ビニル基 等のアルケ-ル基;メトキシカルボ-ル基、エトキシカルボ-ル基等のアルコキシカル ボニル基;メトキシ基、エトキシ基等のアルコキシ基;フエノキシ基、ベンジルォキシ基 などのァリールォキシ基;ジメチルァミノ基、ジェチルァミノ基等のジアルキルアミノ基 ;ジフエ-ルァミノ基等のジァリールアミノ基;カルバゾリル基;ァセチル基等のァシル 基;トリフルォロメチル基等のハロアルキル基;シァノ基等が挙げられる。
[0138] 上記置換基がアルキル基である場合は、その炭素数は通常 1以上 6以下である。さ らに、置換基がアルケニル基である場合は、その炭素数は通常 2以上 6以下である。 また、置換基がアルコキシカルボ-ル基である場合は、その炭素数は通常 2以上 6以 下である。さらに、置換基がアルコキシ基である場合は、その炭素数は通常 1以上 6 以下である。また、置換基がァリールォキシ基である場合は、その炭素数は通常 6以 上 14以下である。さらに、置換基がジアルキルアミノ基である場合は、その炭素数は 通常 2以上 24以下である。また、置換基がジァリールアミノ基である場合は、その炭 素数は通常 12以上 28以下である。さらに、置換基がァシル基である場合は、その炭 素数は通常 1以上 14以下である。また、置換基がハロアルキル基である場合は、そ の炭素数は通常 1以上 12以下である。
[0139] なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環 A1 が有する置換基と環 A2が有する置換基とが結合するか、または、環 A1 'が有する置 換基と環 A2'が有する置換基とが結合するかして、一つの縮合環を形成してもよい。 このような縮合環基としては、 7, 8—べンゾキノリン基等が挙げられる。
[0140] 中でも、環 Al、環 A1 '、環 A2および環 A2'の置換基として、より好ましくはアルキ ル基、アルコキシ基、芳香族炭化水素基、シァノ基、ハロゲン原子、ハロアルキル基、 ジァリールアミノ基、カルバゾリル基が挙げられる。
[0141] また、一般式 (Va)、 (Vb)、 (Vc)における Ma, Mb, Mcとして好ましくは、ルテユウ ム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げら れる。
[0142] 上記一般式 (V)、 (Va)、 (Vb)または (Vc)で示される有機金属錯体の具体例を以 下に示すが、下記の化合物に限定されるものではない(以下において、 Phはフ - ル基を表す。
[0143] [化 43]
^i [ o]
Figure imgf000052_0001
Figure imgf000053_0001
[0145] 上記一般式 (V)、 (Va)、 (Vb)、(Vc)で表される有機金属錯体の中でも、特に、配 位子 Lおよび Zまたは L,として 2—ァリールピリジン系配位子、即ち、 2—ァリールピリ ジン、これに任意の置換基が結合したもの、および、これに任意の基が縮合してなる ものを有する化合物が好まし 、。
また、 WO2005Z019373号公報に記載の化合物も使用することができる。
[0146] 次に、前記一般式 (VI)で表される化合物について説明する。
一般式 (VI)中、 Mdは金属を表し、具体例としては、周期表 7ないし 11族力も選ば れる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、 ノ ラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ま しくは、白金、パラジウム等の 2価の金属が挙げられる。
[0147] また、一般式 (VI)において、 R92および R93は、それぞれ独立に、水素原子、ハロゲ ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボ-ル基、カルボキシル基、アルコキシ基、アルキルアミノ基、ァラルキ ルァミノ基、ハロアルキル基、水酸基、ァリールォキシ基、芳香族炭化水素基または 芳香族複素環基を表す。
[0148] さらに、 Tが炭素の場合、 R94および R95は、それぞれ独立に、 R92および R93と同様 の例示物で表される置換基を表す。また、前述の如ぐ Tが窒素の場合は R94および R95は無い。
[0149] また、 R92〜R95はさらに置換基を有して 、てもよ 、。この場合のさらに有して ヽても よい置換基には特に制限はなぐ任意の基を置換基とすることができる。
さらに、 R92〜R95は互いに連結して環を形成してもよぐこの環が更に任意の置換 基を有していてもよい。
[0150] 一般式 (VI)で表される有機金属錯体の具体例 (T—1, T— 10〜T— 15)を以下に 示すが、下記の例示化合物に限定されるものではない。なお、以下において、 Meは メチル基を表し、 Etはェチル基を表す。
[0151] [化 45]
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
(T-14) (T-15)
[0152] [3]その他の成分
本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物として用いられる 電荷輸送材料用組成物中には、前述した溶剤および発光材料以外にも、必要に応 じて、各種の他の溶剤を含んでいてもよい。このような他の溶剤としては、例えば、 Ν , Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド等のアミド類、ジメチルスル ホキシド等が挙げられる。
また、レべリング剤や消泡剤等の各種添加剤を含んで 、てもよ 、。
[0153] また、 2層以上の層を湿式製膜法により積層する際に、これらの層が相溶することを 防ぐため、製膜後に硬化させて不溶化させる目的で光硬化性榭脂や、熱硬化性榭 脂を含有させておくこともできる。
[0154] [4]電荷輸送材料用組成物中の材料濃度と配合比
電荷輸送材料用組成物、特に電荷輸送材料用組成物中の電荷輸送材料、発光材 料および必要に応じて添加可能な成分 (レべリング剤など)などの固形分濃度は、通 常 0. 01重量%以上、好ましくは 0. 05重量%以上、より好ましくは 0. 1重量%以上、 さらに好ましくは 0. 5重量%以上、最も好ましくは 1重量%以上であり、通常 80重量 %以下、好ましくは 50重量%以下、より好ましくは 40重量%以下、さらに好ましくは 3 0重量%以下、最も好ましくは 20重量%以下である。この濃度が下限を下回ると、薄 膜を形成する場合、厚膜を形成するのが困難となり、上限を超えると、薄膜を形成す るのが困難となる恐れがある。
[0155] また、本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物にお!ヽて、 発光材料 Z電荷輸送材料の重量混合比は、通常、 0. 1/99. 9以上であり、より好 ましくは 0. 5/99. 5以上であり、更に好ましくは 1Z99以上であり、最も好ましくは 2 Z98以上で、通常、 50Z50以下であり、より好ましくは 40Z60以下であり、更に好 ましくは 30Z70以下であり、最も好ましくは 20Z80以下である。この比が下限を下 回ったり、上限を超えたりすると、著しく発光効率が低下する恐れがある。
[0156] [5]電荷輸送材料用組成物の調製方法
本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物は、電荷輸送材料 、発光材料、および必要に応じて添加可能なレべリング剤や消泡剤等の各種添加剤 よりなる溶質を、適当な溶剤に溶解させることにより調製される。溶解工程に要する時 間を短縮するため、および組成物中の溶質濃度を均一に保っため、通常、液を撹拌 しながら溶質を溶解させる。溶解工程は常温で行ってもよいが、溶解速度が遅い場 合は加熱して溶解させることもできる。溶解工程終了後、必要に応じて、フィルタリン グ等の濾過工程を経由してもよい。
[0157] [6]電荷輸送材料用組成物の性状、物性等
[水分濃度]
有機電界発光素子を、本発明の電荷輸送材料用組成物 (電荷輸送材料用組成物 )を用いた湿式製膜法により層形成して製造する場合、用いる電荷輸送材料用組成 物に水分が存在すると、形成された膜に水分が混入して膜の均一性が損なわれるた め、本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物中の水分含有 量はできるだけ少ない方が好ましい。また一般に、有機電界発光素子は、陰極等の 水分により著しく劣化する材料が多く使用されているため、電荷輸送材料用組成物 中に水分が存在した場合、乾燥後の膜中に水分が残留し、素子の特性を低下させる 可能性が考えられ好ましくな 、。
[0158] 具体的には、本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物中に 含まれる水分量は、通常 1重量%以下、好ましくは 0. 1重量%以下、より好ましくは 0 . 01重量%以下でぁる。
[0159] 電荷輸送材料用組成物中の水分濃度の測定方法としては、日本工業規格「化学 製品の水分測定法」(JIS K0068: 2001)に記載の方法が好ましぐ例えば、カー ルフィッシャー試薬法 (JIS K0211— 1348)等により分析することができる。
[0160] [均一性]
本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物は、湿式製膜プロ セスでの安定性、例えば、インクジェット製膜法におけるノズル力ゝらの吐出安定性を 高めるためには、常温で均一な液状であることが好ましい。常温で均一な液状とは、 組成物が均一相力 なる液体であり、かつ組成物中に粒径 0. 1 m以上の粒子成 分を含有しないことをいう。
[0161] [物性]
本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物の粘度につ!、ては 、極端に低粘度の場合は、例えば製膜工程における過度の液膜流動による塗面不 均一、インクジェット製膜におけるノズル吐出不良等が起こりやすくなり、極端に高粘 度の場合は、インクジェット製膜におけるノズル目詰まり等が起こりやすくなる。このた め、本発明の組成物の 25°Cにおける粘度は、通常 2mPa' s以上、好ましくは 3mPa ' s以上、より好ましくは 5mPa' s以上であり、通常 lOOOmPa ' s以下、好ましくは 100m Pa ' s以下、より好ましくは 50mPa' s以下である。
[0162] また、本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物の表面張力 が高い場合は、基板に対する製膜用液の濡れ性が低下する、液膜のレべリング性が 悪ぐ乾燥時の製膜面乱れが起こりやすくなる等の問題が発生する場合があるため、 本発明の組成物の 20°Cにおける表面張力は、通常 50mNZm未満、好ましくは 40 mNZm未満である。
[0163] 更に、本発明の電荷輸送材料用組成物、特に電荷輸送材料用組成物の蒸気圧が 高い場合は、溶剤の蒸発による溶質濃度の変化等の問題が起こりやすくなる場合が ある。このため、本発明の組成物の 25°Cにおける蒸気圧は、通常 50mmHg以下、 好ましくは lOmmHg以下、より好ましくは ImmHg以下である。
[0164] [7]電荷輸送材料用組成物の保存方法
本発明の電荷輸送材料用組成物は、紫外線の透過を防ぐことのできる容器、例え ば、褐色ガラス瓶等に充填し、密栓して保管することが好ましい。保管温度は、通常 — 30°C以上、好ましくは 0°C以上で、通常 35°C以下、好ましくは 25°C以下である。
[0165] [有機電界発光素子]
本発明の有機電界発光素子は、基板上に陽極、陰極、およびこれら両極間に設け られた発光層を有するものであって、本発明の電荷輸送材料を含有する層を有する ことを特徴とする。該電荷輸送材料を含有する層は、本発明の電荷輸送材料用組成 物を用いて形成されることが好ましい。該電荷輸送材料を含有する層は、該発光層 であることが好ましい。また、該電荷輸送材料を含有する層に、有機金属錯体がドー プされていることが好ましい。この有機金属錯体としては、前記発光材料として例示し たものを使用できる。
[0166] 図 1〜8は本発明の有機電界発光素子に好適な構造例を示す断面の模式図であり 、図 1において、 1は基板、 2は陽極、 3は正孔注入層、 4は発光層、 5は電子注入層 、 6は陰極を各々表す。
[0167] [1]基板
基板 1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板 や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエス テル、ポリメタタリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板 が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある 。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子 が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に 緻密なシリコン酸ィ匕膜等を設けてガスノリア性を確保する方法も好ましい方法の一つ である。
[0168] [2]陽極
基板 1上には陽極 2が設けられる。陽極 2は発光層側の層(正孔注入層 3または発 光層 4など)への正孔注入の役割を果たすものである。
[0169] この陽極 2は、通常、アルミニウム、金、銀、ニッケル、ノ《ラジウム、白金等の金属、ィ ンジゥムおよび zまたはスズの酸ィ匕物などの金属酸ィ匕物、ヨウ化銅などのハロゲン化 金属、カーボンブラック、或いは、ポリ(3—メチルチオフェン)、ポリピロール、ポリア- リン等の導電性高分子などにより構成される。
[0170] 陽極 2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い 。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金 属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適 当なノ インダー榭脂溶液に分散させて、基板 1上に塗布することにより陽極 2を形成 することもできる。さら〖こ、導電性高分子の場合は、電解重合により直接基板 1上に薄 膜を形成したり、基板 1上に導電性高分子を塗布して陽極 2を形成することもできる( Appl. Phys. Lett. , 60卷, 2711頁, 1992年)。
[0171] 陽極 2は通常は単層構造であるが、所望により複数の材料力もなる積層構造とする こと
も可能である。
[0172] 陽極 2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可 視光の透過率を、通常 60%以上、好ましくは 80%以上とすることが望ましい。この場 合、陽極の厚みは通常 5nm以上、好ましくは lOnm以上であり、また通常 lOOOnm 以下、好ましくは 500nm以下程度である。不透明でよい場合は陽極 2の厚みは任意 であり、陽極 2は基板 1と同一でもよい。また、さらには上記の陽極 2の上に異なる導 電材料を積層することも可能である。
[0173] 陽極に付着した不純物を除去し、イオンィ匕ポテンシャルを調整して正孔注入性を向 上させることを目的に、陽極表面を紫外線 (uv)Zオゾン処理したり、酸素プラズマ、 アルゴンプラズマ処理したりすることは好まし 、。
[0174] [3]正孔注入層
正孔注入層 3は陽極 2から発光層 4へ正孔を輸送する層であるため、正孔注入層 3 には正孔輸送性ィ匕合物を含むことが好まし 、。
[0175] 正孔注入層 3では、電気的に中性の化合物から電子が一つ除かれたカチオンラジ カルが、近傍の電気的に中性な化合物から一電子を受容することによって、正孔が 移動する。素子非通電時の正孔注入層 3にカチオンラジカルィ匕合物が含まれな 、場 合は、通電時に、正孔輸送性化合物が陽極 2に電子を与えることにより正孔輸送性 化合物のカチオンラジカルが生成し、このカチオンラジカルと電気的に中性な正孔輸 送性ィ匕合物との間で電子の授受が行われることにより正孔を輸送する。
[0176] 正孔注入層 3にカチオンラジカルィ匕合物が含まれると、陽極 2による酸ィ匕によって生 成する以上の濃度で正孔輸送に必要なカチオンラジカルが存在することになり、正 孔輸送性能が向上するため、正孔注入層 3にカチオンラジカルィ匕合物を含むことが 好ましい。カチオンラジカル化合物の近傍に電気的に中性な正孔輸送性化合物が 存在すると、電子の受け渡しがスムーズに行われるため、正孔注入層 3にカチオンラ ジカルイ匕合物と正孔輸送性ィ匕合物とを含むことがさらに好ましい。
[0177] ここで、カチオンラジカルィ匕合物とは、正孔輸送性ィ匕合物力 一電子取り除いたィ匕 学種であるカチオンラジカルと、対ァ-オン力 なるイオンィ匕合物であり、移動しやす Vヽ正孔 (フリーキャリア)を既に有して 、る。
[0178] また、正孔輸送性化合物に電子受容性化合物を混合することによって、正孔輸送 性ィ匕合物から電子受容性化合物への一電子移動が起こり、上述のカチオンラジカル 化合物が生成する。このため、正孔注入層 3に正孔輸送性化合物と電子受容性化合 物とを含むことが好ましい。
[0179] 以上の好ましい材料についてまとめると、正孔注入層 3に正孔輸送性ィ匕合物を含 むことが好ましぐ正孔輸送性ィ匕合物と電子受容性ィ匕合物とを含むことがさらに好ま しい。また、正孔注入層 3にカチオンラジカルィ匕合物を含むことが好ましぐカチオン ラジカルィ匕合物と正孔輸送性ィ匕合物とを含むことがさらに好ましい。 [0180] さらに、必要に応じて、正孔注入層 3には電荷のトラップになりにくいバインダー榭 脂や、塗布性改良剤を含んでいてもよい。
[0181] 但し、正孔注入層 3として、電子受容性化合物のみ、或いは電子受容性化合物と 正孔輸送性ィ匕合物を用いて湿式製膜法によって陽極 2上に製膜し、その上から直接 、本発明の電荷輸送材料用組成物を塗布、または蒸着によって積層することも可能 である。この場合、本発明の電荷輸送材料用組成物の一部または全部が電子受容 性ィ匕合物と相互作用することによって、図 7, 8に示す如ぐ正孔注入性に優れた正 孔輸送層 10が形成される。
[0182] [正孔輸送性化合物]
正孔輸送性化合物としては、 4. 5eV〜6. OeVのイオン化ポテンシャルを有する化 合物が好ましい。
[0183] 正孔輸送性化合物の例としては、本発明の電荷輸送材料の他、芳香族ァミン化合 物、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチォフェン誘導体、ポリチオフ ン誘導体等が挙げられる。中でも非晶質性、可視光の透過率の点から、芳香族アミ ン化合物が好ましい。
[0184] 芳香族アミンィ匕合物の中でも、特に、本発明の電荷輸送材料などの芳香族三級ァ ミンィ匕合物が好ましい。ここで、芳香族三級アミンィ匕合物とは、芳香族三級アミン構造 を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
[0185] 芳香族三級アミンィ匕合物の種類は特に制限されないが、表面平滑ィ匕効果の点から 、重量平均分子量が 1000以上、 1000000以下の高分子化合物(繰り返し単位が連 なる重合型有機化合物)が更に好ま ヽ。
[0186] 芳香族三級アミン高分子化合物の好ま 、例として、下記一般式 (VII)で表される 繰り返し単位を有する高分子化合物が挙げられる。
[0187] [化 46]
(VO)
Figure imgf000061_0001
一般式 (VII)中、 Ar21, Ar22は各々独立して、置換基を有していてもよい芳香族炭 化水素基、または置換基を有していてもよい芳香族複素環基を表す。 Ar23〜Ar25は 、各々独O CH立して、置換基を有していてもよい 2価の芳香族炭化水素基、または置換基 を有していてもよい 2価の芳香族複素環基を表す。 Yは、下記の連結基群の中から 選ばれる連結基を表す。また、 Ar21〜Ar25のうち、同一の N原子に結合する二つの 基は互 、に結合して環を形成してもよ 、。
OoSMn
[0188] [化 47]
0 Ar36
一 Ar31-C-Ar32— —— Ar33— S— Ar34— —— Ar35— P— Ar37
I I I I I I
0 0 AOPMI 0
—— Ar3。一
Figure imgf000062_0001
上記各式中、 Ar31〜Ar41は、各々独立して、置換基を有していてもよい芳香族炭 化水素環、または置換基を有していてもよい芳香族複素環由来の 1価または 2価の 基を表す。 R1Cnおよび R1C>2は、各々独立して、水素原子または任意の置換基を表す
[0189] Ar21〜Ar25および Ar31〜Ar41としては、任意の芳香族炭化水素環または芳香族複 素環由来の、 1価または 2価の基が適用可能である。これらは各々同一であっても、 互いに異なっていてもよい。また、任意の置換基を有していてもよい。
[0190] その芳香族炭化水素環としては、 5または 6員環の単環または 2〜5縮合環が挙げ られる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環 、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリセン環、トリフエ-レン環、 ァセナフテン環、フルオランテン環、フルオレン環などが挙げられる。 [0191] また、その芳香族複素環としては、 5または 6員環の単環または 2〜4縮合環が挙げ られる。具体例としては、フラン環、ベンゾフラン環、チォフェン環、ベンゾチォフェン 環、ピロール環、ピラゾール環、イミダゾール環、ォキサジァゾール環、インドール環、 力ルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チェ ノビロール環、チェノチォフェン環、フロピロール環、フロフラン環、チエノフラン環、 ベンゾイソォキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン 環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、 シノリン環、キノキサリン環、フエナントリジン環、ベンゾイミダゾール環、ペリミジン環、 キナゾリン環、キナゾリノン環、ァズレン環などが挙げられる。
[0192] また、 Ar23〜Ar25、 Ar31〜Ar35、 Ar37〜Ar4としては、上に例示した 1種類または 2 種類以上の芳香族炭化水素環および Zまたは芳香族複素環由来の 2価の基を 2つ 以上連結して用いることもできる。
[0193] Ar21〜Ar41の芳香族炭化水素環および Zまたは芳香族複素環由来の基は、更に 置換基を有していてもよい。置換基の分子量としては、通常 400以下、中でも 250以 下程度が好ましい。置換基の種類は特に制限されないが、例としては、次の置換基 群 D力 選ばれる 1種または 2種以上が挙げられる。
[0194] [置換基群 D]
メチル基、ェチル基等の、炭素数が通常 1以上、通常 10以下、好ましくは 8以下の アルキル基;ビニル基等の、炭素数が通常 2以上、通常 11以下、好ましくは 5以下の アルケニル基;ェチニル基等の、炭素数が通常 2以上、通常 11以下、好ましくは 5以 下のアルキニル基;メトキシ基、エトキシ基等の、炭素数が通常 1以上、通常 10以下、 好ましくは 6以下のアルコキシ基;フエノキシ基、ナフトキシ基、ピリジルォキシ基等の 、炭素数が通常 4以上、好ましくは 5以上、通常 25以下、好ましくは 14以下のァリー ルォキシ基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常 2以上 、通常 11以下、好ましくは 7以下のアルコキシカルボニル基;ジメチルァミノ基、ジェ チルァミノ基等の、炭素数が通常 2以上、通常 20以下、好ましくは 12以下のジアルキ ルァミノ基;ジフエ-ルァミノ基、ジトリルアミノ基、 N—カルバゾリル基等の、炭素数が 通常 10以上、好ましくは 12以上、通常 30以下、好ましくは 22以下のジァリールァミノ 基;フエニルメチルァミノ基等の、炭素数が通常 6以上、好ましくは 7以上、通常 25以 下、好ましくは 17以下のァリールアルキルアミノ基;ァセチル基、ベンゾィル基等の、 炭素数が通常 2以上、通常 10以下、好ましくは 7以下のァシル基;フッ素原子、塩素 原子等のハロゲン原子;トリフルォロメチル基等の、炭素数が通常 1以上、通常 8以下 、好ましくは 4以下のハロアルキル基;メチルチオ基、ェチルチオ基等の、炭素数が 通常 1以上、通常 10以下、好ましくは 6以下のアルキルチオ基;フエ二ルチオ基、ナ フチルチオ基、ピリジルチオ基等の、炭素数が通常 4以上、好ましくは 5以上、通常 2 5以下、好ましくは 14以下のァリールチオ基;トリメチルシリル基、トリフエニルシリル基 等の、炭素数が通常 2以上、好ましくは 3以上、通常 33以下、好ましくは 26以下のシ リル基;トリメチルシロキシ基、トリフエ-ルシロキシ基等の、炭素数が通常 2以上、好ま しくは 3以上、通常 33以下、好ましくは 26以下のシロキシ基;シァノ基;フエニル基、 ナフチル基等の、炭素数が通常 6以上、通常 30以下、好ましくは 18以下の芳香族炭 化水素環基;チェニル基、ピリジル基等の、炭素数が通常 3以上、好ましくは 4以上、 通常 28以下、好ましくは 17以下の芳香族複素環基。
[0195] Ar21、 Ar22としては、高分子化合物の溶解性、耐熱性、正孔注入'輸送性の点から 、ベンゼン環、ナフタレン環、フエナントレン環、チォフェン環、ピリジン環由来の 1価 の基が好ましぐフエニル基、ナフチル基が更に好ましい。
[0196] また、 Ar23〜Ar25としては、耐熱性、酸化還元電位を含めた正孔注入'輸送性の点 から、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環由来の 2価の基が 好ましぐフエ二レン基、ビフエ二レン基、ナフチレン基が更に好ましい。
[0197] R10\ R1C>2としては、水素原子または任意の置換基が適用可能である。これらは互 いに同一であってもよぐ異なっていてもよい。置換基の種類は、特に制限されない 力 適用可能な置換基を例示するならば、アルキル基、アルケニル基、アルキニル基 、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基、ハロ ゲン原子が挙げられる。これらの具体例としては、前記の置換基群 Dにおいて例示し た各基が挙げられる。
[0198] 一般式 (VII)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具 体例としては、 WO2005Z089024号公報に記載のものが挙げられ、その好適例も 同様であり、例えば下記構造式で表される化合物 (PB— 1)が挙げられるが、何らそ れらに限定されるものではない。
[化 48]
Figure imgf000065_0001
PB-1
[0200] 他の芳香族三級アミン高分子化合物の好ま 、例として、下記一般式 (VIII)および
Zまたは一般式 (IX)で表される繰り返し単位を含む高分子化合物が挙げられる。
[0201] [化 49]
Figure imgf000065_0002
一般式 (Vin)、 (IX)中、 Ar45, Ar47および Ar48は各々独立して、置換基を有してい てもよ ヽ芳香族炭化水素基、または置換基を有して ヽてもよ ヽ芳香族複素環基を表 す。 Ar44および Ar46は各々独立して、置換基を有していてもよい 2価の芳香族炭化 水素基、または置換基を有していてもよい 2価の芳香族複素環基を表す。また、 Ar45 〜Ar48のうち、同一の N原子に結合する 2つの基は互いに結合して環を形成してもよ い。 Rm〜R113は各々独立して、水素原子または任意の置換基を表す。 [0202] Ar45, Ar47, Ar48および Ar44、 Ar46の具体例、好まし 、例、有して 、てもよ 、置換 基の例および好ましい置換基の例は、それぞれ、 Ar21, Ar22および Ar23〜Ar25と同 様である。 Rm〜R113はとして好ましくは水素原子または [置換基群 D]に記載されて いる置換基であり、更に好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、 芳香族炭化水素基、芳香族炭化水素基である。
[0203] 一般式 (VIII)および Zまたは (IX)で表される繰り返し単位を含む芳香族三級アミン 高分子化合物の具体例としては、 WO2005Z089024号公報に記載のものが挙げ られ、その好適例も同様であるが、何らそれらに限定されるものではない。
[0204] また、湿式製膜法により正孔注入層を形成する場合には、種々の溶剤に溶解し易 ぃ正孔輸送性化合物が好ましい。芳香族三級アミン化合物としては、例えば、ビナフ チル系化合物(特開 2004— 014187)および非対称 1, 4 フエ-レンジアミンィ匕合 物(特開 2004— 026732)力 ^好まし!/ヽ。
[0205] また、従来、有機電界発光素子における正孔注入'輸送性の薄膜精製材料として 利用されてきた芳香族ァミン化合物の中から、種々の溶剤に溶解し易い化合物を適 宜選択してもよい。正孔注入層の正孔輸送性ィ匕合物に適用可能な芳香族アミンィ匕 合物としては、例えば、有機電界発光素子における正孔注入'輸送性の層形成材料 として利用されてきた、従来公知の化合物が挙げられる。例えば、 1, 1 ビス (4ージ —P トリルァミノフエ-ル)シクロへキサン等の 3級芳香族ァミンユニットを連結した芳 香族ジァミンィ匕合物(特開昭 59— 194393号公報);4, 4'—ビス [N— (1—ナフチ ル)—N—フエ-ルァミノ]ビフエ-ルで代表される 2個以上の 3級ァミンを含み 2個以 上の縮合芳香族環が窒素原子に置換した芳香族アミンィ匕合物 (特開平 5— 234681 号公報);トリフエニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミ ン化合物(米国特許第 4, 923, 774号); N, N,—ジフエ-ル— N, N,—ビス(3—メ チルフヱ-ル)ビフヱ-ルー 4, 4,ージァミン等の芳香族ジァミン化合物(米国特許第 4, 764, 625号); α , α , α ' , α,一テトラメチル α , α,一ビス(4 ジ(ρ トリル )ァミノフエニル)—ρ キシレン (特開平 3— 269084号公報);分子全体として立体 的に非対称なトリフエ-ルァミン誘導体 (特開平 4— 129271号公報);ピレニル基に 芳香族ジァミノ基が複数個置換した化合物 (特開平 4— 175395号公報);エチレン 基で 3級芳香族ァミンユニットを連結した芳香族ジァミンィ匕合物(特開平 4— 264189 号公報);スチリル構造を有する芳香族ジァミン (特開平 4— 290851号公報);チオフ ェン基で芳香族 3級ァミンユニットを連結したィ匕合物(特開平 4— 304466号公報); スターバースト型芳香族トリアミンィ匕合物(特開平 4— 308688号公報);ベンジルフエ -ル化合物(特開平 4— 364153号公報);フルオレン基で 3級ァミンを連結した化合 物(特開平 5— 25473号公報);トリアミンィ匕合物(特開平 5— 239455号公報);ビス ジピリジルアミノビフエ-ル(特開平 5— 320634号公報); N, N, N トリフエ-ルアミ ン誘導体 (特開平 6— 1972号公報);フエノキサジン構造を有する芳香族ジァミン (特 開平 7— 138562号公報);ジァミノフエ-ルフヱナントリジン誘導体 (特開平 7— 252 474号公報);ヒドラゾンィ匕合物(特開平 2— 311591号公報);シラザンィ匕合物(米国 特許第 4, 950, 950号公報);シラナミン誘導体 (特開平 6— 49079号公報);ホスフ ァミン誘導体 (特開平 6— 25659号公報);キナタリドンィ匕合物等が挙げられる。これら の芳香族アミンィ匕合物は、必要に応じて 2種以上を混合して用いてもょ 、。
[0206] また、正孔注入層の正孔輸送性ィ匕合物に適用可能なフタロシアニン誘導体または ポルフィリン誘導体の好ましい具体例としては、ポルフィリン、 5, 10, 15, 20—テトラ フエ-ル— 21H, 23H ポルフィリン、 5, 10, 15, 20—テトラフエ-ル— 21H, 23H —ポルフィリンコバルト(11)、 5, 10, 15, 20—テトラフエ-ルー 21H, 23H ポルフィ リン銅(11)、 5, 10, 15, 20—テトラフエ-ル— 21H, 23H ポルフィリン亜鉛(Π)、 5 , 10, 15, 20—テトラフエ-ルー 21H, 23H ポルフィリンバナジウム(IV)ォキシド、 5, 10, 15, 20—テトラ(4 ピリジル)—21H, 23H ポルフィリン、 29H, 31H フ タロシアニン銅(π)、フタロシアニン亜鉛(11)、フタロシアニンチタン、フタロシア-ンォ キシドマグネシウム、フタロシアニン鉛、フタロシアニン銅(11)、 4, 4,, 4", 4,"ーテト ラァザ 29H, 31H フタロシアニン等が挙げられる。
[0207] また、正孔注入層の正孔輸送性ィ匕合物として適用可能なオリゴチォフェン誘導体 の好ましい具体例としては、 α ターチォフェンとその誘導体、 α—セキシチォフエ ンとその誘導体、ナフタレン環を含有するオリゴチォフェン誘導体 (特開 6— 256341 )等が挙げられる。
[0208] また、本発明における正孔輸送性ィ匕合物として適用可能なポリチォフェン誘導体の 好ましい具体例としては、ポリ(3, 4—エチレンジォキシチォフェン)(PEDOT)、ポリ (3—へキシルチオフェン)等が挙げられる。
[0209] なお、これらの正孔輸送性ィ匕合物の分子量は、高分子化合物 (繰り返し単位が連 なる重合性ィ匕合物)の場合を除いて、通常 9000以下、好ましくは 5000以下、また、 通常 200以上、好ましくは 400以上の範囲である。正孔輸送性化合物の分子量が高 過ぎると合成および精製が困難であり好ましくない一方で、分子量が低過ぎると耐熱 性が低くなるおそれがありやはり好ましくない。
[0210] 正孔注入層の材料として用いられる正孔輸送性ィ匕合物は、このような化合物のうち 何れ力 1種を単独で含有していてもよぐ 2種以上を含有していてもよい。 2種以上の 正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級 ァミン高分子化合物 1種または 2種以上と、その他の正孔輸送性ィヒ合物 1種または 2 種以上とを併用するのが好ましい。
[0211] [電子受容性化合物]
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容 する能力を有する化合物が好ましぐ具体的には、電子親和力が 4eV以上であるィ匕 合物が好ましぐ 5eV以上の化合物である化合物がさらに好ましい。
[0212] 例としては、 4—イソプロピル一 4'—メチルジフエ-ルョードニゥムテトラキス(ペンタ フルオロフヱ-ル)ボラート等の有機基の置換したォ -ゥム塩、塩ィ匕鉄 (III) (特開平 1 1— 251067)、ペルォキソ二硫酸アンモ-ゥム等の高原子価の無機化合物、テトラ シァノエチレン等のシァノ化合物、トリス(ペンタフルォロフエ-ル)ボラン(特開 2003 — 31365)等の芳香族ホウ素化合物、フラーレン誘導体、ヨウ素等が挙げられる。
[0213] 上記の化合物のうち、強い酸ィ匕カを有する点で有機基の置換したォニゥム塩、高 原子価の無機化合物が好ましぐ種々の溶剤に可溶で湿式塗布に適用可能である 点で有機基の置換したォ -ゥム塩、シァノ化合物、芳香族ホウ素化合物が好ましい。
[0214] 電子受容性化合物として好適な有機基の置換したォ -ゥム塩、シァノ化合物、芳香 族ホウ素化合物の具体例としては、 WO2005Z089024号公報に記載のものが挙 げられ、その好適例も同様であり、例えば下記構造式で表される化合物 (A— 2)が挙 げられるが、何らそれらに限定されるものではな 、。 [0215] [化 50]
Figure imgf000069_0001
A-2
[0216] [カチオンラジカルィ匕合物]
カチオンラジカルィ匕合物とは、正孔輸送性化合物から一電子取り除いた化学種で あるカチオンラジカルと、対ァ-オン力もなるイオンィ匕合物である。但し、カチオンラジ カルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化 合物の繰り返し単位力 一電子取り除いた構造となる。
[0217] カチオンラジカルは、正孔輸送性化合物に前述した化合物から一電子取り除いた 化学種であることが好ましぐ正孔輸送性ィ匕合物としてさらに好ましいィ匕合物から一 電子取り除いたィ匕学種であることが非晶質性、可視光の透過率、耐熱性、溶解性な どの点からさらに好ましい。
[0218] カチオンラジカルィ匕合物は、前述の正孔輸送性ィ匕合物と電子受容性ィ匕合物を混 合すること〖こより生成させることができる。即ち、前述の正孔輸送性化合物と電子受 容性化合物を混合することにより、正孔輸送性化合物から電子受容性化合物へと電 子移動が起こり、正孔輸送性ィ匕合物のカチオンラジカルと対ァ-オン力 なるカチォ ンイオンィ匕合物が生成する。
[0219] PEDOT/PSS (Adv. Mater. , 2000年, 12卷, 481頁)ゃェメラルジン塩酸塩( J. Phys. Chem. , 1990年, 94卷, 7716頁)等の高分子化合物由来のカチオンラ ジカル化合物は、酸ィ匕重合 (脱水素重合)、即ち、モノマーを酸性溶液中で、ペルォ キソニ硫酸塩等を用いて化学的に、または、電気化学的に酸化することによつても生 成する。この酸化重合 (脱水素重合)の場合、モノマーが酸化されることにより、高分 子化されるとともに、酸性溶液由来のァ-オンを対ァ-オンとする、高分子の繰り返し 単位から一電子取り除かれたカチオンラジカルが生成する。
[0220] 正孔注入層 3は、湿式製膜法または真空蒸着法により陽極 2上に形成される。
[0221] 陽極 2として一般的に用いられる ITO (インジウム 'スズ酸ィ匕物)は、その表面粗さが lOnm程度の粗さ (Ra)を有するのにカ卩えて、局所的に突起を有することが多ぐ短 絡欠陥を生じ易いという問題があった。陽極 2の上に形成される正孔注入層 3は湿式 製膜法により形成することは、真空蒸着法より形成する場合と比較して、これら陽極 表面の凹凸に起因する、素子の欠陥の発生を低減する利点を有する。
[0222] 湿式製膜法による層形成の場合は、前述した各材料 (正孔輸送性化合物、電子受 容性化合物、カチオンラジカルィ匕合物)の 1種または 2種以上の所定量を、必要によ り電荷のトラップにならな!/ヽバインダー榭脂ゃ塗布性改良剤を添加して、溶剤に溶解 させて、塗布溶液を調製し、スピンコート、スプレーコート、ディップコート、ダイコート、 フレキソ印刷、スクリーン印刷、インクジェット法等の湿式製膜法により陽極上に塗布 し、乾燥して、正孔注入層 3を形成させる。
[0223] 湿式製膜法による層形成のために用いられる溶剤としては、前述の各材料 (正孔輸 送性化合物、電子受容性化合物、カチオンラジカルィ匕合物)を溶解することが可能な 溶剤であれば、その種類は特に限定されないが、正孔注入層に用いられる各材料( 正孔輸送性化合物、電子受容性化合物、カチオンラジカル化合物)を失活させる恐 れのある、失活物質または失活物質を発生させるものを含まな 、ものが好ま 、。
[0224] これらの条件を満たす好ま U、溶剤としては、例えば、エーテル系溶剤およびエス テル系溶剤が挙げられる。具体的には、エーテル系溶剤としては、例えば、エチレン グリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、プロピレングリコ ール 1 モノメチルエーテルァセタート(PGMEA)等の脂肪族エーテル; 1 , 2—ジ メトキシベンゼン、 1, 3 ジメトキシベンゼン、ァニソール、フエネトール、 2—メトキシト ルェン、 3—メトキシトルエン、 4ーメトキシトルエン、 2, 3 ジメチルァニノール、 2, 4 ジメチルァ-ソール等の芳香族エーテル等が挙げられる。エステル系溶剤としては 、例えば、酢酸ェチル、酢酸 n—ブチル、乳酸ェチル、乳酸 n ブチル等の脂肪族ェ ステル;酢酸フエ-ル、プロピオン酸フエ-ル、安息香酸メチル、安息香酸ェチル、安 息香酸プロピル、安息香酸 n—ブチル等の芳香族エステル等が挙げられる。これらは 何れ力 1種を単独で用いてもよぐ 2種以上を任意の組み合わせおよび比率で用い てもよい。
[0225] 上述のエーテル系溶剤およびエステル系溶剤以外に使用可能な溶剤としては、例 えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤、 N, N—ジメチルホ ルムアミド、 N, N—ジメチルァセトアミド等のアミド系溶剤、ジメチルスルホキシド等が 挙げられる。これらは何れ力 1種を単独で用いてもよぐ 2種以上を任意の組み合わ せおよび比率で用いてもよい。また、これらの溶剤のうち 1種または 2種以上を、上述 のエーテル系溶剤およびエステル系溶剤のうち 1種または 2種以上と組み合わせて 用いてもよい。特に、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤は、 電子受容性ィ匕合物およびカチオンラジカルィ匕合物を溶解する能力が低いため、ェ 一テル系溶剤およびエステル系溶剤と混合して用いることが好ま ヽ。
[0226] 塗布溶液中における溶剤の濃度は、通常 10重量%以上、好ましくは 30重量%以 上、より好ましくは 50%重量以上、また、通常 99. 999重量%以下、好ましくは 99. 9 9重量%以下、更に好ましくは 99. 9重量%以下の範囲である。なお、 2種以上の溶 剤を混合して用いる場合には、これらの溶剤の合計力 Sこの範囲を満たすようにする。
[0227] 真空蒸着法による層形成の場合には、前述した各材料 (正孔輸送性化合物、電子 受容性化合物、カチオンラジカルィ匕合物)の 1種または 2種以上を真空容器内に設 置されたるつぼに入れ (2種以上材料を用いる場合は各々のるつぼに入れ)、真空容 器内を適当な真空ポンプで 10_4Pa程度まで排気した後、るつぼを加熱して(2種以 上材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ (2種 以上材料を用いる場合はそれぞれ独立に蒸発量を制御して蒸発させ)、るつぼと向 き合って置かれた基板の陽極上に正孔注入層を形成させる。なお、 2種以上の材料 を用いる場合は、それらの混合物をるつぼに入れ、加熱し蒸発させて正孔注入層形 成に用いることもできる。
[0228] このようにして形成されるよぃ正孔注入層 3の膜厚は、通常 5nm以上、好ましくは 1 Onm以上、また、通常 lOOOnm以下、好ましくは 500nm以下の範囲である。 なお、正孔注入層 3は、図 6に示す如ぐこれを省略していてもよい。
[0229] [4]発光層
正孔注入層 3の上には通常発光層 4が設けられる。発光層 4は発光材料を含む層 であり、電界を与えられた電極間において、陽極 2から正孔注入層 3を通じて注入さ れた正孔と、陰極 6から電子輸送層 5を通じて注入された電子との再結合により励起 されて、主たる発光源となる層である。発光層 4は発光材料 (ドーパント)と 1種または 2種以上のホスト材料を含むことが好ましぐ発光層 4は本発明の電荷輸送材料をホ スト材料として含むことが更に好ましぐ真空蒸着法で形成していてもよいが、本発明 の電荷輸送材料用組成物を用い、湿式製膜法によって作製された層であることが特 に好ましい。
[0230] ここで、湿式製膜法とは、上記溶剤を含む本発明の電荷輸送材料用組成物を、ス ピンコート、スプレーコート、ディップコート、ダイコート、フレキソ印刷、スクリーン印刷 、インクジェット法により塗布して成膜するものである。
[0231] なお、発光層 4は、本発明の性能を損なわない範囲で、他の材料、成分を含んでい てもよい。
[0232] 一般に有機電界発光素子において、同じ材料を用いた場合、電極間の膜厚が薄 い方が、実効電界が大きくなる為、注入される電流が多くなるので、駆動電圧は低下 する。その為、電極間の総膜厚は薄い方が、有機電界発光素子の駆動電圧は低下 するが、あまりに薄いと、 ITO等の電極に起因する突起により短絡が発生する為、あ る程度の膜厚が必要となる。
[0233] 本発明においては、発光層 4以外に、正孔注入層 3および後述の電子輸送層 5等 の有機層を有する場合、発光層 4と正孔注入層 3や電子輸送層 5等の他の有機層と を合わせた総膜厚は通常 30nm以上、好ましくは 50nm以上であり、更に好ましくは 1 OOnm以上で、通常 lOOOnm以下、好ましくは 500nm以下であり、更に好ましくは 3 OOnm以下である。また、発光層 4以外の正孔注入層 3や後述の電子注入層 5の導 電性が高い場合、発光層 4に注入される電荷量が増加する為、例えば正孔注入層 3 の膜厚を厚くして発光層 4の膜厚を薄くし、総膜厚をある程度の膜厚を維持したまま 駆動電圧を下げることも可能である。 [0234] よって、発光層 4の膜厚は、通常 10nm以上、好ましくは 20nm以上で、通常 300η m以下、好ましくは 200nm以下である。なお、本発明の素子が、陽極および陰極の 両極間に、発光層 4のみを有する場合の発光層 4の膜厚は、通常 30nm以上、好ま しくは 50nm以上、通常 500nm以下、好ましくは 300nm以下である。
[0235] [5]電子注入層
電子注入層 5は陰極 6から注入された電子を効率よく発光層 4へ注入する役割を果 たす。電子注入を効率よく行うには、電子注入層 5を形成する材料は、仕事関数の低 い金属が好ましぐナトリウムやセシウム等のアルカリ金属、ノリウムゃカルシウムなど のアルカリ土類金属が用いられる。
電子注入層 5の膜厚は 0. l〜5nmが好ましい。
[0236] また、陰極 6と発光層 4または後述の電子輸送層 8との界面に LiF、 MgF、 Li 0、
2 2
CsCO等の極薄絶縁膜 (0. l〜5nm)を挿入することも、素子の効率を向上させる
3
有効な方法である(Appl.Phys丄 ett.,70卷, 152頁, 1997年;特開平 10— 74586号公 報; IEEETrans.Electron.Devices, 44卷, 1245頁, 1997年; SID 04 Digest, 154頁)。
[0237] 更に、後述するバソフヱナント口リン等の含窒素複素環化合物や 8—ヒドロキシキノリ ンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム
、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平 10 — 270171号公報、特開 2002— 100478号公報、特開 2002— 100482号公報な どに記載)ことにより、電子注入 ·輸送性が向上し優れた膜質を両立させることが可能 となるため好ましい。この場合の膜厚は通常、 5nm以上、好ましくは 10nm以上で、 通常 200nm以下、好ましくは lOOnm以下である。
[0238] 電子注入層 5は、発光層 4と同様にして湿式製膜法、或いは真空蒸着法により発光 層 4上に積層することにより形成される。真空蒸着法の場合には、真空容器内に設置 されたるつぼまたは金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで 10_4Pa程度にまで排気した後、るつぼまたは金属ボートを加熱して蒸発させ、るつ ぼまたは金属ボートと向き合って置かれた基板上に電子注入層を形成する。
[0239] アルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアル力 リ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱すること により、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。有機電子輸送 材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置 されたるつぼに入れ、真空容器内を適当な真空ポンプで 10_4Pa程度にまで排気し た後、各々のるつぼおよびディスペンサーを同時に加熱して蒸発させ、るつぼおよび ディスペンサーと向き合って置かれた基板上に電子注入層を形成する。
[0240] このとき、電子注入層 5の膜厚方向において均一に共蒸着されるが、膜厚方向にお V、て濃度分布があっても構わな!/、。
なお、電子注入層 5は、図 5, 6, 7, 8に示す如ぐこれを省略していてもよい。
[0241] [6]陰極
陰極 6は、発光層側の層(電子注入層 5または発光層 4など)に電子を注入する役 割を果たす。陰極 6として用いられる材料は、前記陽極 2に使用される材料を用いる ことが可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましぐ スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属または それらの合金が用いられる。具体例としては、マグネシウム 銀合金、マグネシウム —インジウム合金、アルミニウム—リチウム合金等の低仕事関数合金電極が挙げられ る。
[0242] 陰極 6の膜厚は通常、陽極 2と同様である。低仕事関数金属から成る陰極を保護す る目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層するこ とは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム 、金、白金等の金属が使われる。
[0243] [7]その他の構成層
以上、図 1に示す層構成の素子を中心に説明してきたが、本発明の有機電界発光 素子における陽極 2および陰極 6と発光層 4との間には、その性能を損なわない限り 、上記説明にある層の他にも、任意の層を有していてもよぐまた発光層 4以外の任 意の層を省略してもよい。
[0244] 有していてもよい層としては例えば、電子輸送層 7が挙げられる。電子輸送層 7は素 子の発光効率をさらに向上させることを目的として、図 2に示す如ぐ発光層 4と電子 注入層 5との間に設けられる。 [0245] 電子輸送層 7は、電界を与えられた電極間において陰極 6から注入された電子を効 率よく発光層 4の方向に輸送することができる化合物より形成される。電子輸送層 7に 用いられる電子輸送性ィ匕合物としては、陰極 6または電子注入層 5からの電子注入 効率が高ぐかつ、高い電子移動度を有し注入された電子を効率よく輸送することが できる化合物であることが必要である。
このような条件を満たす材料としては、 8—ヒドロキシキノリンのアルミニウム錯体など の金属錯体(特開昭 59— 194393号公報)、 10 ヒドロキシベンゾ [h]キノリンの金 属錯体、ォキサジァゾール誘導体、ジスチリルビフエ-ル誘導体、シロール誘導体、 3—または 5—ヒドロキシフラボン金属錯体、ベンズォキサゾール金属錯体、ベンゾチ ァゾール金属錯体、トリスべンズイミダゾリルベンゼン(米国特許第 5, 645, 948号)、 キノキサリンィ匕合物(特開平 6— 207169号公報)、フ ナント口リン誘導体 (特開平 5 331459号公報)、 2 tーブチノレー 9, 10—N, N,ージシァノアントラキノンジイミ ン、 n型水素化非晶質炭化シリコン、 n型硫化亜鉛、 n型セレンィ匕亜鉛などが挙げられ る。
[0246] 電子輸送層 7の膜厚は、通常下限は lnm、好ましくは 5nm程度であり、上限は通 常 300nm、好ましくは lOOnm程度である。
[0247] 電子輸送層 7は、正孔注入層 3と同様にして湿式製膜法、或いは真空蒸着法により 発光層 4上に積層することにより形成される。通常は、真空蒸着法が用いられる。
[0248] また、正孔輸送層 10を有することが本発明において好ましぐ正孔輸送層 10には、 本発明の電荷輸送材料を含有することが好ましい。また、前記正孔注入層の正孔輸 送性ィ匕合物として例示した化合物を用いることもできる。また、ポリビュルカルバゾー ル、ポリビュルトリフエ-ルァミン、テトラフエ-ルペンジジンを含有するポリアリーレン エーテルサルホン等の高分子材料を使用してもよい。正孔輸送層 10は、これらの材 料を湿式製膜法または真空蒸着法により正孔注入層上に積層することにより形成さ れる。このようにして形成される正孔輸送層 10の膜厚は、通常 10nm以上、好ましく は 30nmである。但し、通常、 300nm以下、好ましくは lOOnm以下である。
[0249] また、特に、発光物質として燐光材料を用いたり、青色発光材料を用いたりする場 合、図 3に示す如ぐ正孔阻止層 8を設けることも効果的である。正孔阻止層 8は正孔 と電子を発光層 4内に閉じこめて、発光効率を向上させる機能を有する。即ち、正孔 阻止層 8は、発光層 4から移動してくる正孔が電子輸送層 7に到達するのを阻止する ことで、発光層 4内で電子との再結合確率を増やし、生成した励起子を発光層 4内に 閉じこめる役割と、電子輸送層 8から注入された電子を効率よく発光層 4の方向に輸 送する役割がある。
[0250] 正孔阻止層 8は、陽極 2から移動してくる正孔を陰極 6に到達するのを阻止する役 割と、陰極 6から注入された電子を率よく発光層 4の方向に輸送することができる化合 物により、発光層 4の上に、発光層 4の陰極 6側の界面に接するように積層形成され る。
[0251] 正孔阻止層 8を構成する材料に求められる物性としては、電子移動度が高く正孔 移動度が低いこと、エネルギーギャップ(HOMO、 LUMOの差)が大きいこと、励起 三重項準位 (T1)が高 、ことが挙げられる。
[0252] このような条件を満たす正孔阻止層材料としては、ビス(2—メチルー 8 キノリノラト ) (フエノラト)アルミニウム、ビス(2—メチル 8 キノリノラト)(トリフエ-ルシラノラト) アルミニウム等の混合配位子錯体、ビス(2—メチル 8 キノラト)アルミニウム一 μ -ォキソ―ビス - (2 メチル 8 キノリラト)アルミニウム二核金属錯体等の金属錯 体、ジスチリルビフ ニル誘導体等のスチリル化合物(特開平 11 242996)、 3— ( 4 ビフエ-ルイル)— 4—フエ-ルー 5 (4— tert—ブチルフエ-ル)— 1, 2, 4 トリ ァゾール等のトリァゾール誘導体 (特開平 7— 41759号公報)、バソクプロイン等のフ ナントロリン誘導体 (特開平 10— 79297号公報)が挙げられる。
[0253] さらに、 WO2005Z022962号公報に記載の 2, 4, 6位が置換されたピリジン環を 少なくとも 1個有する化合物も正孔阻止材料として好ましい。
[0254] 正孔阻止層 8の膜厚は、通常 0. 3nm以上、好ましくは 0. 5nm以上で、通常 ΙΟΟη m以下、好ましくは 50nm以下である。
[0255] 正孔阻止層 8も正孔注入層 3と同様の方法で形成することができるが、通常は真空 蒸着法が用いられる。
[0256] 電子輸送層 7および正孔阻止層 8は必要に応じて、適宜設ければよぐ 1)電子輸 送層のみ、 2)正孔阻止層のみ、 3)正孔阻止層 Z電子輸送層の積層、 4)用いない、 等、用法がある。また、図 7に示す如ぐ電子注入層 5を省略して正孔阻止層 8と電子 輸送層 7を積層しても良ぐまた、図 8に示す如ぐ電子輸送層 7のみでもよい。
[0257] 正孔阻止層 8と同様の目的で、図 4に示す如ぐ正孔注入層 3と発光層 4の間に電 子阻止層 9を設けることも効果的である。電子阻止層 9は、発光層 4から移動してくる 電子が正孔注入層 3に到達するのを阻止することで、発光層 4内で正孔との再結合 確率を増やし、生成した励起子を発光層 4内に閉じこめる役割と、正孔注入層 3から 注入された正孔を効率よく発光層 4の方向に輸送する役割がある。
[0258] 電子阻止層 9に求められる特性としては、正孔輸送性が高ぐエネルギーギャップ( HOMO, LUMOの差)が大きいこと、励起三重項準位 (T1)が高いことが挙げられ る。また、発光層 4を湿式製膜法で形成する場合、電子阻止層 9も湿式製膜法で形 成することが、素子製造が容易となるため、好ましい。
[0259] このため、電子阻止層 9も湿式製膜適合性を有することが好ましぐこのような電子 阻止層 9に用いられる材料としては、 F8— TFBに代表されるジォクチルフルオレンと トリフエ-ルァミンの共重合体 (WO2004Z084260号公報記載)等が挙げられる。
[0260] なお、図 1とは逆の構造、即ち、基板 1上に陰極 6、電子注入層 5、発光層 4、正孔 注入層 3、陽極 2の順に積層することも可能であり、既述したように少なくとも一方が透 明性の高い 2枚の基板の間に本発明の有機電界発光素子を設けることも可能である 。同様に、図 2〜図 8に示した前記各層構成とは逆の構造に積層することも可能であ る。
[0261] さら〖こは、図 1に示す層構成を複数段重ねた構造 (発光ユニットを複数積層させた 構造)とすることも可能である。その際には段間 (発光ユニット間)の界面層(陽極が IT 0、陰極が A1の場合はその 2層)の代わりに、例えば V O等を電荷発生層(CGL)と
2 5
して用いると段間の障壁が少なくなり、発光効率'駆動電圧の観点力もより好ましい。
[0262] 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からな る素子、陽極と陰極力 ¾—Yマトリックス状に配置された構造の 、ずれにお!、ても適 用することができる。
実施例
[0263] 次に、本発明を実施例によって更に具体的に説明する力 本発明はその要旨を超 えない限り、以下の実施例の記載に限定されるものではな 、。
[0264] [本発明の有機化合物の合成例]
以下に本発明の有機化合物を合成する実施例を示す。
なお、以下の実施例において、ガラス転移温度は DSC測定により、気化温度は TG DTA測定により、融点は DSC測定または TG— DTA測定によりそれぞれ求めた。
[0265] [実施例 1 :目的物 1、 2]
[化 51]
Figure imgf000078_0001
目的物 1
[0266] 窒素気流中、力ルバゾール(12. 7g)、p ジョードベンゼン(25. Og)、銅粉末 (4.
82g)、炭酸カリウム(21. Og)、テトラグライム (45ml)を、 145°Cに加熱下、 5時間撹 拌し、室温まで放冷した。反応混合物にクロ口ホルムを加え、不溶物を濾別した。濾 液に含まれるクロ口ホルムを減圧留去し、シリカゲルカラムクロマトグラフィー (n—へキ サン/トルエン =4/1)で精製することにより、 目的物 1 (11. 2g)を得た。
[0267] [化 52]
Figure imgf000078_0002
目的物 1 目的物 2
[0268] 窒素気流中、 目的物 1 (8. 01g)、 2 ヒドロキシベンズイミダゾール(1. 04g)、銅粉
(1. 38g)、炭酸カリウム(6. 44g)、テトラグライム(20ml)を、 200°Cで 8時間撹拌し た後、放冷し、銅粉(1. 39g)を加え、 200°Cで 6時間攪拌した。放冷後、反応混合物 にクロ口ホルム、活性白土をカ卩えて、攪拌し、不溶物を濾別し、メタノール(200ml)に 加え、攪拌した後、沈殿を濾取した。得られた固形分をシリカゲルカラムクロマトダラ フィー(トルエン)で精製し、酢酸ェチルおよびクロ口ホルム Zメタノール混合液で洗 浄することにより、 目的物 2 (1. 33g)を得た。
DEI- MS m/z=616(M+)
このもののガラス転移温度は 146°C、融点は 355°C、気化温度は 507°Cであった。 このものの励起三重項状態と基底状態のエネルギー差は、 3. 04eVであった。
[0269] [実施例 2 :目的物 3、 4]
[化 53]
Figure imgf000079_0001
目的物 3
[0270] 窒素気流中、 2—ヒドロキシベンズイミダゾール(5. 41g)、 m—ジブロモベンゼン(2 8. 6g)、ヨウ化銅(I) (15. 3g)、炭酸カリウム(22. 3g)、 N, N—ジメチルホルムアミド (130ml)を、 150°Cに加熱下、 6. 5時間撹拌し、室温まで放冷した。反応混合物に 水を加え、酢酸ェチルで抽出、有機層を硫酸マグネシウムで乾燥、濃縮した。濃縮 残渣にトルエン、活性白土を加えて、攪拌し、不溶物を濾別した。濾液に含まれるク ロロホルムを減圧留去した後、メタノールをカ卩え、攪拌し、得られた析出物をメタノー ルで再結晶することにより、 目的物 3 (4. 36g)を得た。
[0271] [化 54]
Figure imgf000079_0002
目的物 3 目的物 4
[0272] 窒素気流中、 目的物 3 (4. 36g)、力ルバゾール(5. 76g)、銅粉(1. 88g)、炭酸力 リウム(8. 15g)、テトラグライム(20ml)を、 210°Cで 7. 5時間撹拌した。放冷後、反 応混合物にクロ口ホルムをカ卩えて、攪拌し、不溶物を濾別し、メタノール(200ml)に 加え、攪拌した後、沈殿を濾取した。得られた固形分をシリカゲルカラムクロマトダラ フィー(トルエン)で精製し、ジクロロメタン Zメタノール混合液で洗浄することにより、 目的物 4 (2. 29g)を得た。
DEI- MS m/z=616(M+)
このもののガラス転移温度は 125°C、融点は 227°C、気化温度は 489°Cであった。 このものはトルエンに対して、 3重量%以上溶解した。
このものの励起三重項状態と基底状態のエネルギー差は、 2. 99eVであった。
[実施例 3 :目的物 5]
[化 55]
Figure imgf000080_0001
目的物 5
[0274] 窒素気流中、 1 , 3 ビス(4 ブロモフエ-ル)—1, 3 ジヒドロべンズイミダゾール —2—オン(2. 60g)、N— (4 ビフエ-ル)ァ-リン(4. 31g)、 tert—ブトキシナトリ ゥム(2. 25g)、およびトルエン(35ml)の溶液に、トリス(ジベンジリデンアセトン)ジパ ラジウム(0)クロ口ホルム錯体(0. 12g)、トリ— tert—ブチルホスフィン(0. 209g)、 およびトルエン(5ml)を窒素雰囲気下、 60°Cで 5分間攪拌して調製した溶液をカロえ て、加熱還流下、 9. 5時間攪拌した。放冷後、活性白土およびクロ口ホルムをカロえ、 攪拌した。不溶物を濾別し、メタノール(200ml)に加え、攪拌した後、沈殿を濾取し た。得られた固形分をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、ジクロ ロメタン Zメタノール混合液で洗浄することにより、 目的物 5 (2. 55g)を得た。
Dm- MS m/z=772(M+)
このもののガラス転移温度は 124°C、融点は観測されず、気化温度は 527°Cであつ た。このものは、トルエンに対して 5. 0重量%以上溶解した。
[0275] [実施例 4:目的物 6]
[化 56]
Figure imgf000081_0001
目的物 6
[0276] 窒素気流中、 2—ヒドロキシベンズイミダゾール( 1 03g)、 3—ブロモビフエ-ル(5
. OOg)、ヨウ化銅(I) (2. 92g)、炭酸カリウム(4. 23g)、 N, N—ジメチルホルムアミド (10ml)を、加熱還流下 8時間撹拌した後、放冷した。反応混合物にクロ口ホルムを カロえて、攪拌し、不溶物を濾別し、濾液を濃縮した後、シリカゲルカラムクロマトグラフ ィ一で精製し、メタノールで懸濁洗浄することにより、 目的物 6 (2. 68g)を得た。
EI-MS m/z=438(M+)
このもののガラス転移温度は 56°C、融点は 150°C、気化温度は 391°Cであった。こ のものはトノレェンに対して 5. 0重量%以上溶解した。
[0277] [実施例 5:目的物 7 9]
[化 57]
Figure imgf000081_0002
目的物 7
[0278] 窒素気流中、 2—ヒドロキシベンズイミダゾール(6. 53g) ョードベンゼン(9. 93g)
、銅粉(3. l lg)、炭酸カリウム(13. 5g)、およびテトラグライム(15ml)を、 170°Cで 4時間撹拌した後、放冷した。反応混合物に酢酸ェチル及び水を加えて攪拌し、有 機層を硫酸マグネシウムで乾燥後、濃縮し、シリカゲルカラムクロマトグラフィー (n— へキサン Z酢酸ェチル混合液〜酢酸ェチル)で精製し、 n キサンで懸濁洗浄す ることにより、 目的物 7 (3. 87g)を得た。
[0279] [化 58]
Figure imgf000082_0001
目的物 8
[0280] 窒素気流中、 2—ヒドロキシベンズイミダゾール(7. 58g)、 p—ジブロモベンゼン(4 0. Og)、銅粉(10. 8g)、炭酸カリウム (46. 9g)、およびテトラグライム (40ml)を、 20 0°Cで 12時間撹拌した後、放冷した。反応混合物に酢酸ェチルを加え、加熱還流下 、 30分攪拌し、放冷後、不溶物を濾別し、濾液を濃縮し、析出物をエタノールで懸濁 洗浄し、シリカゲルカラムクロマトグラフィー(n—へキサン Zトルエン混合液〜トルェ ン)で精製し、メタノールで懸濁洗浄することにより、 目的物 8 (3. 87g)を得た。
[0281] [化 59]
Figure imgf000082_0002
[0282] 窒素気流中、 目的物 8 (0. 860g)、 目的物 7 (1. 22g)、銅粉 (0. 492g)、炭酸カリ ゥム(2. 14g)、およびテトラグライム(6ml)を、 200°Cで 14時間撹拌した後、放冷し た。反応混合物にクロ口ホルムを加え、 30分攪拌し、不溶物を濾別し、濾液を濃縮し 、析出物をエタノールで懸濁洗浄し、シリカゲルカラムクロマトグラフィー(n—へキサ ン Z酢酸ェチル混合液)で精製し、酢酸ェチル Zエタノール混合液で懸濁洗浄する ことにより、 目的物 9 (0. 465g)を得た。
DEI-MS m/z=702(M+)
このもののガラス転移温度は 150°C、融点は 328°C、気化温度は 527°Cであった。 このものの励起三重項状態と基底状態のエネルギー差は、 3. 2eV以上であった。
[0283] [実施例 6 :目的物 10, 11] [化 60]
Figure imgf000083_0001
目的物 1 0
[0284] 窒素気流中、力ルバゾール(18. 8g)、 2, 6—ジブロモピリジン(80. Og)、銅粉(14 . 4g)、炭酸カリウム(31. 2g)、およびテトラグライム(80ml)を、 170°Cに加熱下、 7 時間撹拌し、室温まで放冷した。反応混合物にクロ口ホルムを加え、不溶物を濾別し た。濾液に含まれるクロ口ホルムを減圧留去し、エタノール/水(40/1)混合液をカロ え、析出物を濾別した。濾液に水を加え、析出物を濾取し、エタノールで洗浄後、シリ 力ゲルカラムクロマトグラフィー (n—へキサン Z塩化メチレン混合液)で精製すること により、 目的物 10 (17. 7g)を得た。
[0285] [化 61]
Figure imgf000083_0002
目的物 1 0 目的物 1 1
[0286] 窒素気流中、 2—ヒドロキシベンズイミダゾール(0. 724g)、 目的物 10 (7. 50g)、ョ ゥ化銅 (I) (2. 06g)、炭酸カリウム(2. 99g)、および N, N—ジメチルホルムアミド(1 7ml)を、加熱還流下、 10時間撹拌した後、放冷した。反応混合物に塩化メチレン、 活性白土を加えて攪拌し、不溶物を濾別し、濾液を濃縮した後、析出物をメタノール で懸濁洗浄した。さら〖こ、クロ口ホルム Zメタノール混合液及びクロ口ホルムで懸濁洗 浄することにより、 目的物 11 (2. 27g)を得た。
DEI- MS m/z=618(M+)
このもののガラス転移温度は 123°C、融点は 317°C、気化温度は 500°Cであった。 このものの励起三重項状態と基底状態のエネルギー差は、 3. OOeVであった。 [0287] [実施例 7 :目的物 12]
[化 62]
Figure imgf000084_0001
目的物 3 目的物 1 2
[0288] 窒素気流中、 9H—ピリド [3, 4— b]インドール(2. 8g)、 目的物 3 (2. 47g)、銅粉 ( 1. 06g)、炭酸カリウム (4. 6g)、およびテトラグライム(8ml)を加熱下、 180°Cで 8時 間反応攪拌した。
反応終了後、反応混合物にクロ口ホルムを加え、不溶物を濾別した。濾液を濃縮し た後、析出物をメタノールで懸濁洗浄し、シリカゲルカラムクロマトグラフィー(酢酸ェ チル /塩化メチレン混合液→エタノール Z塩化メチレン混合液)で精製することにより
、 目的物 12 (1.27g)を得た。
DEI-MS m/z = 617 (M-H) +
DCI-MS m/z = 619 (M+H) +
このもののガラス転移温度は 135°C、融点は 221°C、気化温度は 499°Cであった。 このものはトルエンに対して、 3重量%以上溶解した。
このものの励起三重項状態と基底状態のエネルギー差は、 2. 96eVであった。
[0289] [実施例 8 :目的物 13, 14]
[化 63]
Figure imgf000084_0002
hbN N02 EtOH H2N NH2 THF Ν γΝΗ
OH
目的物 1 3
[0290] 大気中、 4—ァミノ一 3—二トロベンゼントリフルオリド(20. 06g)、およびエタノール
(400ml)の懸濁溶液に、濃塩酸水溶液(120ml)を加え、撹拌しながら 80°Cに昇温 した。ここに還元鉄(27. 09g)を 15分かけて徐々に投入した後、加熱還流下、 1時間 撹拌した。氷冷後、得られた溶液を水酸ィ匕アンモ-ゥム水溶液で中和してから、ジク ロロメタンで抽出した。抽出液を水洗後、濃縮し、これをシリカゲルカラムクロマトダラ フィ一で精製し、 3, 4—ジァミノベンゼントリフルオリド(12. 495g)を得た。
窒素気流中、氷冷下、 3, 4—ジァミノベンゼントリフルオリド(3. Og)と脱水テトラヒド 口フラン(100ml)の溶液に、 1, 1,—カルボ-ルジイミダゾール(3. 314g)を添加し、 室温で 10. 7時間撹拌した。得られた溶液を濃縮後、メタノールを加えて超音波を照 射して力 濃縮し、析出した沈殿物を濾取した。これをエタノール Zへキサン混合溶 媒中での懸濁洗浄、酢酸ェチルカもの再結晶により精製し、 目的物 13 (1. 203g)を 得た。
DEI-MS m/z=202(M+)
[0291] [化 64]
Figure imgf000085_0001
目的物 1 3 目的物 1 0 目的物 1 4
[0292] 窒素気流中、 目的物 13 (1. 188g)、 目的物 10 (5. 125g)、CuI (2. 26g)、炭酸力 リウム(3. 28g)、および無水 N, N—ジメチルホルムアミド(19ml)の混合溶液を、加 熱還流下、 6. 2時間撹拌した。これに更に、 目的物 10 (1. 41g)、 Cul (l. 15g)、お よび炭酸カリウム(1. 8g)を追加投入し、加熱還流下、 4. 5時間撹拌した。得られた 溶液にメタノール(30ml)と水(30ml)をカ卩えた後、濾過し、残渣を 150mlのクロロホ ルムに投入し、撹拌した。この溶液に活性白土を加えて撹拌した後、濾過し、濾液を 濃縮後、中性球状シリカゲルのカラムクロマトグラフィー (展開溶媒:へキサン Z塩ィ匕 メチレン)で精製し、その後メタノール中での懸濁洗浄、酢酸ェチルとエタノールの混 合溶媒中での熱懸洗で精製し、 目的物 14 (2. 164g)を得た。
DEI-MS m/z=686(M+)
このもののガラス転移温度は 126°C、融点は 282°C、気化温度は 399°Cであった。 このものの励起三重項状態と基底状態のエネルギー差は、 2. 97eVであった。
[0293] [実施例 9 :目的物 15, 16]
[化 65]
Figure imgf000086_0001
目的物 1 5
[0294] 窒素気流中、氷冷下、 2, 3—ジァミノピリジン (8. 7g)と脱水テトラヒドロフラン(500 ml)の溶液に、 1, 1 '—カルボ-ルジイミダゾール(15. 5g)を添カ卩し、室温で 14時間 撹拌した。得られた溶液を濃縮後、メタノールを加えて加熱懸洗処理を行い、析出し た沈殿物を濾取したところ目的物 15 (4. 9g)を得た。
Dm- MS m/z=135(M+)
[0295] [化 66]
Figure imgf000086_0002
[0296] 窒素気流中、 目的物 15 (1. Og)、N— (3—ブロモフエ-ル)力ルバゾール(6. 8g) 、 Cul (2. 8g)、炭酸カリウム(4. 2g)、および無水 N, N—ジメチルホルムアミド(10 ml)の混合溶液を、加熱還流下、 6. 2時間撹拌した。これに更に、 目的物 10 (1. 4g )、 Cul (l . 15g)、および炭酸カリウム(1. 8g)を追加投入し、加熱還流下、 15時間 撹拌した。反応液をジクロロメタンにて希釈後濾過し、ブライン、 1Nの塩酸で洗浄し 硫酸ナトリウムで乾燥させた。減圧濃縮により茶色オイル状になったものを、シリカゲ ルのカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、その後メタノール中での 懸濁洗浄にて精製し、 目的物 16 (1. lg)を得た。
DEI- MS m/z=617(M+) このもののガラス転移温度は 125°C、融点は 226°C、気化温度は 490°Cであった。 このものはトルエンに対して、 3重量%以上溶解した。
このものの励起三重項状態と基底状態のエネルギー差は、 2. 99eVであった。
[実施例 10 :目的物 17]
[化 67]
Figure imgf000087_0001
[0298] 窒素気流中、 目的物 7 (1. 6g)、 6, 6 "—ジブ口モー 2, 2,:6,, 2 "—ターピリジン( 1. Og)、銅紛 (0. 35g)、炭酸カリウム(1. 4g)、およびテトラグライム(5ml)を 100m L4口フラスコに加え、 170°Cのオイルバスにつけて 13時間加熱攪拌した。ジクロロメ タンで希釈して濾過後、減圧留去して得られた黄白色固体をテトラヒドロフランで加熱 懸洗することにより、白色粉末状の目的物 17 (0. 9g)を得た。
DEI-MS m/z=649(M+)
このもののガラス転移温度は 118°C、融点は 276°C、気化温度は 451°Cであった。 このものの励起三重項状態と基底状態のエネルギー差は、 2. 98eVであった。
[0299] [本発明の有機電界発光素子の作製例]
以下に本発明の有機電界発光素子を作製する実施例を示す。
[0300] [実施例 11]
図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜 2を 150nm堆積した もの (スパッター成膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エツ チングを用いて 2mm幅のストライプにパターユングして陽極 2を形成した。パターン 形成した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアル コールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線ォゾ ン洗浄を行った。
[0301] 正孔注入層 3の材料として、下記に示す構造式の芳香族アミノ基を有する非共役 系高分子化合物 (PB— 2)を下記に示す構造式の電子受容性化合物 (A— 2)と共 以下の条件でスピンコートした。
[0302] [化 68]
Figure imgf000088_0001
重量平均分子量: 48900
数平均分子量: 1 1000
Figure imgf000088_0002
スピンコート条件
溶媒 ァニソール
PB— 2の濃度 2[wt%]
PB-2:A-2 10 :2 (重量比)
スピナ回転数 2000 [rpm]
スピナ回転時間 30 [秒]
乾燥条件 230 [°C] 15 [分]
[0304] 上記のスピンコートにより膜厚 30nmの均一な薄膜が形成された c [0305] 次に正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗排 気を油回転ポンプにより行った後、装置内の真空度が 9. 8 X 10_5Pa (約 7. 5 X 10" 7Torr)以下になるまでクライオポンプを用いて排気した。上記装置内に配置されたセ ラミックるつぼに入れた、下記に示す構造式のァリールアミンィ匕合物 (H— 1)をるつ ぼの周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のるつぼの温度は、 300〜314°Cの範囲で制御した。蒸着時の真空度 9. 0 X 10_5Pa (約 6. 9 X 10"7T orr)、蒸着速度は 0. InmZ秒で膜厚 40nmの正孔輸送層 10を形成した。
[0306] [化 69]
Figure imgf000089_0001
[0307] 引続き、発光層 4の主成分 (ホスト材料)として実施例 2で合成した目的物 4 :本発明 の有機化合物 (EM— 1)を、副成分 (ドーパント)として下記に示す構造式の有機イリ ジゥム錯体 (D- 1)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を 行った。
[0308] [化 70]
Figure imgf000090_0001
Figure imgf000090_0002
[0309] 本発明の有機化合物 (EM— 1)のるつぼ温度は 270〜284°C、蒸着速度は 0. In m/秒に、有機イリジウム錯体 (D— 1)のるつぼ温度は 230〜237°Cにそれぞれ制 御し、膜厚 30nmで有機イリジウム錯体 (D— 1)が約 12.5重量%含有された発光層 4を正孔輸送層 10の上に積層した。蒸着時の真空度は 7.4X10_5Pa (約 5.7X10 Torr)であつ 7こ o
[0310] さらに、正孔阻止層 8として、下記に示す構造式のトリアリールベンゼン誘導体 (HB — 2)をるつぼ温度を 343〜350°Cとして、蒸着速度 0.09nmZ秒で lOnmの膜厚で 積層した。蒸着時の真空度は 7. lX10_5Pa (約 5.5X 10_7Torr)であった。
[0311] [化 71]
Figure imgf000090_0003
次いで、正孔阻止層 8の上に、電子輸送層 7として、下記に示す構造式のバソクプ 口イン (ET— 2)を同様にして蒸着した。この時のバソクプロイン (ET— 2)のるつぼ温 度は 160〜172°Cの範囲で制御し、蒸着時の真空度は 6.6X10_5Pa (約 5.1X10 " Torr)、蒸着速度は 0. InmZ秒で膜厚は 30nmとした。
[0313] [化 72]
Figure imgf000091_0001
[0314] 上記の正孔輸送層 10、発光層 4、正孔阻止層 8および電子輸送層 7を真空蒸着す る時の基板温度は室温に保持した。
[0315] ここで、電子輸送層 7までの蒸着を行った素子を一度前記真空蒸着装置内より大 気中に取り出して、陰極蒸着用のマスクとして 2mm幅のストライプ状シャドーマスクを 、陽極 2の ITOストライプとは直交するように素子に密着させて、別の真空蒸着装置 内に設置して有機層と同様にして装置内の真空度が 2. 8 X 10_6Torr (約 3. 6 X 10 _4Pa)以下になるまで排気した。陰極 6として、先ず、フッ化リチウム (LiF)をモリブデ ンボートを用いて、蒸着速度 0. 03nmZ秒、真空度 2. 8 X 10_6Torr (約 3. 7 X 10" 4Pa)で、 0. 5nmの膜厚で電子輸送層 7の上に成膜した。次に、アルミニウムを同様 にモリブデンボートにより加熱して、蒸着速度 0. 2nmZ秒、真空度 9. 8 X 10"6Torr (約 1. 3 X 10_3Pa)で膜厚 80nmのアルミニウム層を形成して陰極 6を完成させた。 以上の 2層型陰極 6の蒸着時の基板温度は室温に保持した。
[0316] 以上の様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子が得られた。この素子の発光特性を表 1, 2に示す。
この素子の電界発光は、極大波長 473nm、半値幅は 67nmの青緑色発光であり、 有機イリジウム錯体 (D—1)力ものものと同定された。色度は CIE (x, y) = (0. 18, 0 . 38)であった。
[0317] [表 1] 電圧 輝度 Z電流 発光効率 電圧 輝度/電; ϊϊ£
(@ 100cd/m2) (@100cd/m2) (@ 100cd/m2) (@ 1000cd/m2) ((§> 1000cd/m2)
[V] [cd/A] [Im/W] [V] [cd/A] 実施例 1 1 4.9 30.8 20 6.1 28.7 比較例 1 5.4 1 1.5 6.7 7 14.2
[実施例 12]
発光層 4を以下に記す方法で成膜した以外は実施例 11に示す方法と同様にして、 図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。
発光層 4の主成分 (ホスト材料)として実施例 9で合成した目的物 16 :本発明の有機 化合物 (EM— 3)を、副成分 (ドーパント)として実施例 11で用いた有機イリジウム翁 体 (D— 1)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った c [化 73]
Figure imgf000092_0001
[0320] 本発明の有機化合物 (EM— 3)のるつぼ温度は 400〜407°C、蒸着速度は 0. In m/秒に、有機イリジウム錯体 (D— 1)のるつぼ温度は 201〜207°Cにそれぞれ制 御し、膜厚 30nmで有機イリジウム錯体 (D— 1)が約 10. 4重量%含有された発光層 4を正孔輸送層 10の上に積層した。蒸着時の真空度は 4. 6 X 10_5Pa (約 3. 5 X 10 Torr)であつ 7こ o
この素子の発光特性を表 2に示す。
この素子の電界発光は、極大波長 471nm、半値幅は 53nmの青緑色発光であり、 有機イリジウム錯体 (D—1)力ものものと同定された。色度は CIE (x, y) = (0. 14, 0 . 31)であった。
[0321] [実施例 13]
発光層 4を以下に記す方法で成膜した以外は実施例 11に示す方法と同様にして、 図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 発光層 4の主成分 (ホスト材料)として実施例 7で合成した目的物 12 :本発明の有機 化合物 (EM— 4)を、副成分 (ドーパント)として実施例 11で用いた有機イリジウム錯 体 (D— 1)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[0322] [化 74]
Figure imgf000093_0001
[0323] 本発明の有機化合物 (EM— 4)のるつぼ温度は 217〜242°C、蒸着速度は 0. 09 nmZ秒に、有機イリジウム錯体 (D— 1)のるつぼ温度は 213〜216°Cにそれぞれ制 御し、膜厚 30nmで有機イリジウム錯体 (D— 1)が約 13. 1重量%含有された発光層 4を正孔輸送層 10の上に積層した。蒸着時の真空度は 5. 0 X 10_5Pa (約 4. 0 X 10 Torr)であつ 7こ o
この素子の発光特性を表 2に示す。
この素子の電界発光は、極大波長 472nm、半値幅は 53nmの青緑色発光であり、 有機イリジウム錯体 (D—1)力ものものと同定された。色度は CIE (x, y) = (0. 15, 0 . 32)であった。
[0324] [比較例 1]
発光層 4を以下に記す方法で成膜した以外は実施例 11に示す方法と同様にして、 図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。
発光層 4の主成分 (ホスト材料)として下記構造式に示す力ルバゾール誘導体 (CB P)を、副成分 (ドーパント)として実施例 11で用いた有機イリジウム錯体 (D- 1)を別 々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[化 75]
Figure imgf000094_0001
[0325] 力ルバゾール誘導体(CBP)のるつぼ温度は 411〜406°C、蒸着速度は 0. 08nm /秒に、有機イリジウム錯体 (D— 1)のるつぼ温度は 204〜209°Cにそれぞれ制御 し、膜厚 30nmで有機イリジウム錯体 (D— 1)が約 13. 1重量%含有された発光層 4 を正孔輸送層 10の上に積層した。蒸着時の真空度は 3. 8 X 10_5Pa (約 2. 9 X 10— Torr)であつ 7こ o
この素子の発光特性を表 1と表 2に示す。
この素子の電界発光は、極大波長 490nm、半値幅は 59nmの青緑色発光であり、 有機イリジウム錯体 (D—1)力ゝらの発光以外に、他の材料由来の発光も観測された。 色度は CIE (x, y) = (0. 19, 0. 54)であった。
[0326] [表 2]
Figure imgf000094_0002
[0327] [実施例 14]
図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜 2を 150nm堆積した もの (スパッター成膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エツ チングを用いて 2mm幅のストライプにパターユングして陽極 2を形成した。パターン 形成した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアル コールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線ォゾ ン洗浄を行った。
[0328] 正孔注入層 3の材料として、下記に示す構造式の芳香族アミノ基を有する非共役 系高分子化合物(PB— 1) (重量平均分子量: 29400、数平均分子量: 12600)を実 施例 11で用いた電子受容性ィ匕合物 (A— 2)と共に以下の条件でスピンコートした。
[0329] [化 76]
Figure imgf000095_0001
[0330] スピンコート条件
安息香酸ェチル
PB— 1の濃度 2[wt%]
ΡΒ- 1 :Α- 2 10 : 2 (重量比)
スピナ回転数 1500[rpm]
スピナ回転時間 30 [秒]
乾燥条件 230 [°C] 15 [分]
[0331] 上記のスピンコートにより膜厚 30nmの均一な薄膜が形成された。
[0332] 次に正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗排 気を油回転ポンプにより行った後、装置内の真空度が 9. 0 X 10_5Pa (約 6. 8 X 10" 7Torr)以下になるまでクライオポンプを用いて排気した。上記装置内に配置されたセ ラミックるつぼに入れた、実施例 11で用いたァリールアミンィ匕合物 (H— 1)をるつぼ の周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のるつぼの温度は、 30 0〜314°Cの範囲で制御した。蒸着時の真空度 9. 3 X 10_5Pa (約 7. 0 X 10"7Torr )、蒸着速度は 0. lnm/秒で膜厚 40nmの正孔輸送層 10を形成した。
[0333] 引続き、発光層 4の主成分 (ホスト材料)として実施例 2で合成した目的物 4 :本発明 の有機化合物 (EM— 1)を、副成分 (ドーパント)として下記に示す構造式の有機イリ ジゥム錯体 (D— 2)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を 行った。
[0334] [化 77]
Figure imgf000096_0001
[0335] 本発明の有機化合物 (EM— 1)のるつぼ温度は 270〜284°C、蒸着速度は 0. In m/秒に、有機イリジウム錯体 (D- 2)のるつぼ温度は 245〜246°Cにそれぞれ制 御し、膜厚 30nmで有機イリジウム錯体 (D— 2)が約 5. 9重量%含有された発光層 4 を正孔輸送層 10の上に積層した。蒸着時の真空度は 7. 8 X 10_5Pa (約 5. 9 X 10" Torr)であつ 7こ o
[0336] さらに、正孔阻止層 8として、下記に示す構造式のフヱ-ルビリジン誘導体 (HB— 1 )をるつぼ温度を 343〜350°Cとして、蒸着速度 0. 09nmZ秒で lOnmの膜厚で積 層した。蒸着時の真空度は 7. l X 10_5Pa (約 5. 5 X 10_7Torr)であった。
[0337] [化 78]
Figure imgf000096_0002
次いで、正孔阻止層 8の上に、電子輸送層 7として、下記に示す構造式のトリス(8 —ヒドロキシキノリナト)アルミニウム (Alq3)を同様にして蒸着した。この時のトリス(8 ーヒドロキシキノリナト)アルミニウム(Alq3)のるつぼ温度は 296〜300°Cの範囲で制 御し、蒸着時の真空度は 6. 6 X 10_5Pa (約 5. 1 X 10_7Torr)、蒸着速度は 0. 15m Z秒で膜厚は 30nmとした。
[化 79]
Figure imgf000097_0001
[0340] 上記の正孔輸送層 10、発光層 4、正孔阻止層 8および電子輸送層 7を真空蒸着す る時の基板温度は室温に保持した。
[0341] この後、実施例 11と同様にして 2層型陰極 6を蒸着した。
この素子の発光特性を表 3に示す。
この素子の電界発光は、極大波長 514nm、半値幅は 70nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 31, 0. 62)であった。
[0342] [実施例 15]
発光層 4を以下に記す方法で成膜した以外は実施例 14に示す方法と同様にして、 図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。
発光層 4の主成分 (ホスト材料)として実施例 6で合成した目的物 11:本発明の有機 化合物 (EM— 5)を、副成分 (ドーパント)として実施例 14で用いた有機イリジウム錯 体 (D— 2)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[0343] [化 80]
Figure imgf000097_0002
[0344] 本発明の有機化合物 (EM— 5)の蒸着速度は 0. InmZ秒に、有機イリジウム錯体 (D- 2)のるつぼ温度は 257〜255°Cにそれぞれ制御し、膜厚 32nmで有機イリジゥ ム錯体 (D— 2)が約 6. 2重量%含有された発光層 4を正孔輸送層 10の上に積層し た。蒸着時の真空度は 1. 5 X 10_4Paであった。
この素子の発光特性を表 3に示す。
この素子の電界発光は、極大波長 513nm、半値幅は 68nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 30, 0. 62)であった。
[0345] [実施例 16]
正孔輸送層 10および発光層 4を以下に記す方法で成膜した以外は実施例 14に示 す方法と同様にして、図 7に示す構造を有する有機電界発光素子を以下の方法で作 製した。
正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗排気を 油回転ポンプにより行った後、装置内の真空度が 5. 3 X 10_5Pa (約 4. 0 X 10"7To rr)以下になるまでクライオポンプを用いて排気した。上記装置内に配置されたセラミ ックるつぼに入れた、下記に示す構造式のァリールアミンィ匕合物(PPD)をるつぼの 周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のるつぼの温度は、 260 〜272°Cの範囲で制御した。蒸着時の真空度 6. 0 X 10_5Pa (約 4. 9 X 10"?Torr) 、蒸着速度は 0. lnm,秒で膜厚 40nmの正孔輸送層 10を形成した。
[0346] [化 81]
Figure imgf000098_0001
引続き、発光層 4の主成分 (ホスト材料)として実施例 1で合成した目的物 2 :本発明 の有機化合物 (EM— 6)を、副成分 (ドーパント)として実施例 14で用いた有機イリジ ゥム錯体 (D— 2)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行 [0348] [化 82]
Figure imgf000099_0001
[0349] 本発明の有機化合物 (EM— 6)の蒸着速度は 0. InmZ秒に、有機イリジウム錯体
(D- 2)のるつぼ温度は 268〜270°Cにそれぞれ制御し、膜厚 30nmで有機イリジゥ ム錯体 (D— 2)が約 6. 1重量%含有された発光層 4を正孔輸送層 10の上に積層し た。蒸着時の真空度は 6. 3 X 10_5Pa (約 4. 7 X 10_7Torr)であった。
この素子の発光特性を表 3に示す。
この素子の電界発光は、極大波長 513nm、半値幅は 69nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 30, 0. 58)であった。
[0350] [比較例 2]
発光層 4を以下に記す方法で成膜した以外は実施例 14に示す方法と同様にして、 図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。
発光層 4の主成分 (ホスト材料)として下記構造式に示す力ルバゾール誘導体 (SiM CP)を、副成分 (ドーパント)として実施例 14で用いた有機イリジウム錯体 (D— 2)を 別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[化 83]
Figure imgf000099_0002
[0351] 力ルバゾール誘導体 (SiMCP)の蒸着速度は 0. InmZ秒に、有機イリジウム錯体 (D- 2)のるつぼ温度は 268〜270°Cにそれぞれ制御し、膜厚 30nmで有機イリジゥ ム錯体 (D— 2)が約 5. 9重量%含有された発光層 4を正孔輸送層 10の上に積層し た。蒸着時の真空度は 6. 3 X 10_5Pa (約 4. 7 X 10_7Torr)であった。
この素子の発光特性を表 3に示す。
この素子の電界発光は、極大波長 513nm、半値幅は 70nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 31, 0. 68)であった。
[0352] [表 3]
Figure imgf000100_0001
[0353] [実施例 17及び比較例 3]
実施例 14〜16及び比較例 2で作製した素子に、電流密度 250mAZcm2に相当 する直流を通電したときの輝度変化を観察した。通電 40秒後の輝度、通電直後の輝 度、及び通電 40秒後の輝度値を通電直後の輝度値で除した値を表 4に示す。
[0354] [表 4]
通電直後の輝度 通電 40秒後の輝度 通電 40秒後の輝度値を、
[cd/m2] [cd/m2] 通電直後の輝度値で除した値 実施例 14の素子 46300 44840 0.97 実施例 15の素子 51716 52009 1.01 実施例 16の素子 24020 22390 0.93 比較例 2の素子 23010 19980 0.87 [0355] この結果より、本発明の化合物(EM— 1)、 (EM— 5)及び (EM— 6)を発光層の主 成分に用いた素子は、力ルバゾール誘導体 (SiMCP)を発光層の主成分に用いた 素子よりも、通電時の輝度低下が少ないことが明ら力となった。
[0356] [実施例 18]
正孔輸送層 10及び発光層 4を以下に記す方法で成膜した以外は実施例 14に示 す方法と同様にして、図 7に示す構造を有する有機電界発光素子を以下の方法で作 製した。
正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗排気を 油回転ポンプにより行った後、装置内の真空度が 7. 5 X 10_5Pa (約 5. 6 X 10"?To rr)以下になるまでクライオポンプを用いて排気した。上記装置内に配置されたセラミ ックるつぼに入れた、下記に示す実施例 3で合成した目的物 5 :本発明の有機化合 物 (EM— 7)をるつぼの周囲のタンタル線ヒーターで加熱して蒸着を行った。蒸着時 の真空度 7. 0 X 10_5Pa、蒸着速度は 0. lnm/秒で膜厚 40nmの正孔輸送層 10を 得た。
[0357] [化 84]
Figure imgf000101_0001
[0358] 引続き、発光層 4の主成分 (ホスト材料)として下記に示す力ルバゾール誘導体 (E
- 1)を、副成分 (ドーパント)として実施例 14で用いた有機イリジウム錯体 (D— 2)を 、別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[0359] [化 85]
Figure imgf000102_0001
[0360] 力ルバゾール誘導体(E— 1)のるつぼ温度は 300〜304°C、蒸着速度は 0. 08nm /秒に、有機イリジウム錯体 (D— 2)のるつぼ温度は 239〜242°Cにそれぞれ制御 し、膜厚 30nmで有機イリジウム錯体 (D— 2)が 6. 4重量%含有された発光層 4を正 孔輸送層 10の上に積層した。蒸着時の真空度は 6. 6 X 10_5Paであった。
この素子の発光特性を表 5に示す。
この素子の電界発光は、極大波長 513nm、半値幅は 69nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 31, 0. 62)であった。
[0361] [比較例 4]
正孔輸送層 10を以下に記す方法で成膜した以外は実施例 18に示す方法と同様 にして、図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 下記に示す構造式のァリールアミンィ匕合物(PPD)をセラミックるつぼに入れ、るつ ぼの周囲のタンタル線ヒーターで加熱して蒸着を行った。蒸着時の真空度は 6. O X 10_5Pa、蒸着速度は 0. 08-0. 13nmZ秒で制御し、膜厚 40nmの正孔輸送層 10 を得た。
[0362] [化 86]
Figure imgf000103_0001
[0363] この素子の発光特性を表 5に示す。
この素子の電界発光は、極大波長 513nm、半値幅は 67nmの緑色発光であり、有 機イリジウム錯体 (D— 2)力ものものと同定された。色度は CIE (x, y) = (0. 30, 0.
61)であった。
[0364] [表 5]
Figure imgf000103_0002
[0365] [実施例 19]
図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 実施例 14に示す方法と同様にして、正孔注入層 3と正孔輸送層 10を成膜した後、 発光層 4の主成分 (ホスト材料)として実施例 2で合成した目的物 4:本発明の有機化 合物 (EM— 1)を、副成分 (ドーパント)として下記に示す構造式の有機イリジウム錯 体 (Facial体: D— 3。 Meはメチル基)を別々のセラミックるつぼに設置し、 2元同時蒸 着法により成膜を行った。
[0366] [化 87]
Figure imgf000104_0001
(D - 3 )
[0367] 本発明の有機化合物 (EM— 1)のるつぼ温度は 277〜283°C、蒸着速度は 0. 07 nm/秒に、有機イリジウム錯体 (D— 3)のるつぼ温度は 279〜281°Cにそれぞれ制 御し、膜厚 30nmで有機イリジウム錯体 (D— 3)が約 5. 8重量%含有された発光層 4 を正孔輸送層 10の上に積層した。蒸着時の真空度は 5. 0 X 10_5Pa (約 3. 8 X 10" Torr)であつ 7こ o
[0368] さらに、正孔阻止層 8として、本発明の有機化合物(EM— 1)のみを、るつぼ温度を 283〜297°Cとして、蒸着速度 0. 09nmZ秒で lOnmの膜厚で積層した。蒸着時の 真空度は 4. 5 X 10_5Pa (約 3. 4 X 10_7Torr)であった。
[0369] 次いで、正孔阻止層 8の上に、電子輸送層 7として、実施例 11で用いたバソクプロ イン (ET— 2)を同様にして蒸着した。この時のバソクプロイン (ET— 2)のるつぼ温度 は 162〜183°Cの範囲で制御し、蒸着時の真空度は 4. 4 X 10_5Pa (約 3. 3 X 10"7 Torr)、蒸着速度は 0. 09nmZ秒で膜厚は 30nmとした。
[0370] 上記の正孔輸送層 10、発光層 4、正孔阻止層 8および電子輸送層 7を真空蒸着す る時の基板温度は室温に保持した。
この後、実施例 11と同様にして 2層型陰極 6を蒸着した。
この素子の発光特性を表 6に示す。
この素子の電界発光は、極大波長 403nmの青色発光であり、有機イリジウム錯体( D— 3)力ものものと同定された。色度は CIE (x, y) = (0. 18, 0. 10)であった。
[0371] [表 6] 電圧 輝度ノ電流
(@ 100cd/m2) (@ 100cd/m2)
[V] [cd/A] 実施例 1 9 1 1.3 0.1
[0372] [実施例 20]
図 7に示す構造を有する有機電界発光素子を以下の方法で作製した。 実施例 14に示す方法と同様にして、正孔注入層 3と正孔輸送層 10を成膜した後、 発光層 4の主成分 (ホスト材料)として実施例 6で合成した目的物 11:本発明の有機 化合物 (EM— 5)を、副成分 (ドーパント)として実施例 11で用いた有機イリジウム錯 体 (D— 1)を別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。
[0373] 本発明の有機化合物 (EM— 5)の蒸着速度は 0. InmZ秒に、有機イリジウム錯体
(D- 1)のるつぼ温度は 252〜260°Cにそれぞれ制御し、膜厚 33nmで有機イリジゥ ム錯体 (D—1)が約 7. 6重量%含有された発光層 4を正孔輸送層 10の上に積層し た。蒸着時の真空度は 4. 2 X 10_5Paであった。
[0374] さらに、正孔阻止層 8として、実施例 14で用いたフエ-ルビリジン誘導体 (HB— 1) をるつぼ温度 340〜341°Cとして、蒸着速度 0. 08〜0. 09nmZ秒で 5nmの膜厚で 積層した。蒸着時の真空度は 4. 6 X 10_5Paであった。
[0375] 次いで、正孔阻止層 8の上に、電子輸送層 7として、下記に示す構造式のビス(2— メチル 8—ヒドロキシキノリナト)(p—フエ-ルフエノラート)アルミニウム(BAlq)を同様 にして蒸着した。この時のビス(2—メチル 8—ヒドロキシキノリナト)(p—フエ-ルフエノ ラート)アルミニウム(BAlq)のるつぼ温度は 190〜191°Cの範囲で制御し、蒸着時 の真空度は 5. 1 X 10_5Pa、蒸着速度は 0. 08〜0. 24mZ秒で制御し、膜厚は 30 nmとし 7こ。
[0376] [化 88]
Figure imgf000106_0001
[0377] 上記の正孔輸送層 10、発光層 4、正孔阻止層 8および電子輸送層 7を真空蒸着す る時の基板温度は室温に保持した。
この後、実施例 11と同様にして 2層型陰極 6を蒸着した。
[0378] この素子の発光特性を表 7に示す。
この素子の電界発光は、極大波長 471nm、半値幅は 66nmの青緑色発光であり、 有機イリジウム錯体 (D—1)力ものものと同定された。色度は CIE (x, y) = (0. 17, 0 . 36)であった。
[0379] [表 7]
Figure imgf000106_0002
[0380] [実施例 21]
図 3に示す構造 (ただし、電子注入層は有さな!/、)を有する有機電界発光素子を、 以下の方法により作製した。
ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜 2を 150nm堆積した もの (スパッター成膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エツ チングを用いて 2mm幅のストライプにパターユングして陽極 2を形成した。パターン 形成した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアル コールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線ォゾ ン洗浄を行った。
[0381] 次に、正孔注入層 3を、スピンコート時の乾燥条件を 230°C、 180分とした以外は実 施例 11と同様にして形成した。
[0382] 続いて、正孔注入層 3の上に発光層 4を以下のように湿式製膜法によって形成した 。発光層 4の材料として、実施例 2で合成した目的物 4 :本発明の有機化合物 (EM— 1)及び実施例 11で用いた有機イリジウム錯体 (D—1)を用い、これらを溶媒としてト ルェンに溶解させて有機電界発光素子用組成物を調製し、この有機電界発光素子 用糸且成物を用いて下記の条件でスピンコートした。
[0383] スピンコート条件
溶媒 トルエン
EM— 1の濃度 2[wt%]
EM— 1 : D—l 10 : 1 (重量比)
スピナ回転数 1500[rpm]
スピナ回転時間 60 [秒]
乾燥条件 100 [°C] , 60 [分] (減圧下)
[0384] 上記のスピンコートにより膜厚 65nmの均一な薄膜が形成された。
[0385] 次に、正孔阻止層 8、電子輸送層 7、陰極 6を実施例 11と同様にして形成した。
以上の様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子が得られた。この素子の発光特性を表 8に表す。
[0386] この素子の電界発光は、極大波長 471nm、半値幅は 67nmの青緑発光であり、有 機イリジウム錯体 (D—1)力ものものと同定された。色度は CIE (x、 y) = (0. 18、 0. 36)であった。
[0387] [表 8] 電圧 輝度ノ電流 発光効率 電圧 輝度 電流 (@100cd/m2) (@100cd/m2) (@ 100cd/m2) (@1000cd/m2) (@1000cd/m2)
[V] [cd/A] [WW] [V] [cd/A] 実施例 2t 8.4 29.3 1 1 1 1.3 27.7 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 11月 30日付で出願された日本特許出願 (特願 2005— 346164)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
下記式 (I)で表される有機化合物。
[化 89]
Figure imgf000109_0001
Ar1は置換基を有して 、てもよ 、芳香族炭化水素基、置換基を有して!/、てもよ!ヽ芳 香族複素環基、または置換基を有して 、てもよ 、アルキル基を表す。
Ar2は置換基を有して 、てもよ 、芳香族炭化水素基、または置換基を有して ヽても よい芳香族複素環基を表す。
R2は各々独立に、水素原子または置換基を表す。 R1と R2は互いに結合して環 を形成していてもよい。
Qは下記式 (I 1 )または(I 2)で表される。
[化 90]
Figure imgf000109_0002
Ar3〜Ar5は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して 、てもよ 、芳香族複素環基を表す。 Ar3と Ar4は互 、に結合して環を形 成していてもよい。
下記式 (II)で表される、請求項 1に記載の有機化合物。
[化 91]
Figure imgf000110_0001
Ar2、 Qは、前記式 (I)におけると同義である。
環 A1は、置換基を有していてもよいベンゼン環、または置換基を有していてもよい 含窒素芳香族六員環を表す。
[3] 下記式 (III)で表される、請求項 1に記載の有機化合物。
[化 92]
Figure imgf000110_0002
R\ R2、 Qは、前記式 (I)におけると同義である。
環 B1は置換基を有して 、てもよ 、ベンゼン環を表し、環 C1は Q以外に置換基を有 して!/、てもよ!/、ベンゼン環を表す。
[4] 下記式 (ΠΙ-2)で表される、請求項 1に記載の有機化合物。
[化 93]
Figure imgf000110_0003
R\ R2、 Qは、前記式 (I)におけると同義である。
環 D1は置換基を有して 、てもよ 、ピリジン環を表し、環 E1は Q以外に置換基を有し て!、てもよ 、ピリジン環を表す。
[5] 下記式 (IV)で表される、請求項 1に記載の有機化合物。
[化 94]
Figure imgf000111_0001
Ar2〜Ar4、 R1, R2は、前記式 (I)および式 (I— 1)におけると同義である。 Ar6〜Ar8は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。 Ar7と Ar8は互 、に結合して環を形 成していてもよい。
[6] 部分構造として下記式 (I 3)で表される N—力ルバゾリル基を有する、請求項 1に 記載の有機化合物。
[化 95]
Figure imgf000111_0002
請求項 1に記載の有機化合物からなる電荷輸送材料。
下記式 (Π-2)で表される、有機電界発光素子用の電荷輸送材料。
[化 96]
Figure imgf000112_0001
環 A1は、置換基を有していてもよいベンゼン環、または置換基を有していてもよい 含窒素芳香族六員環を表す。
Ar9は各々独立に、置換基を有していてもよい芳香族炭化水素基、または置 換基を有して ヽてもよ ヽ芳香族複素環基を表す。
トルエンに対して 2. 0重量%以上溶解する、請求項 7に記載の電荷輸送材料。 トルエンに対して 2. 0重量%以上溶解する、請求項 8に記載の電荷輸送材料。 請求項 7に記載の電荷輸送材料を含む電荷輸送材料用組成物。
請求項 8に記載の電荷輸送材料を含む電荷輸送材料用組成物。
さらに、燐光発光材料を含む、請求項 11に記載の電荷輸送材料用組成物。
さらに、燐光発光材料を含む、請求項 12に記載の電荷輸送材料用組成物。
基板上に、陽極、陰極、およびこれら両極間に設けられた発光層を有する有機電 界発光素子にぉ ヽて、請求項 7に記載の電荷輸送材料を含有してなる層を有する有 機電界発光素子。
基板上に、陽極、陰極、およびこれら両極間に設けられた発光層を有する有機電 界発光素子にぉ ヽて、請求項 8に記載の電荷輸送材料を含有してなる層を有する有 機電界発光素子。
電荷輸送材料を含有してなる層が、請求項 11に記載の電荷輸送材料用組成物を 用いて形成される層である、請求項 15に記載の有機電界発光素子。
電荷輸送材料を含有してなる層が、請求項 12に記載の電荷輸送材料用組成物を 用いて形成される層である、請求項 15に記載の有機電界発光素子。
PCT/JP2006/323330 2005-11-30 2006-11-22 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子 WO2007063760A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06833152A EP1956008B1 (en) 2005-11-30 2006-11-22 Organic compound, charge-transporting material, composition for charge-transporting material and organic electroluminescent device
US12/095,024 US8022617B2 (en) 2005-11-30 2006-11-22 Organic compound, charge-transporting material, composition for charge-transporting material and organic electroluminescent device
KR1020087009361A KR101395615B1 (ko) 2005-11-30 2006-11-22 유기 화합물, 전하 수송 재료, 전하 수송 재료용 조성물 및유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-346164 2005-11-30
JP2005346164 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063760A1 true WO2007063760A1 (ja) 2007-06-07

Family

ID=38092095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323330 WO2007063760A1 (ja) 2005-11-30 2006-11-22 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子

Country Status (6)

Country Link
US (1) US8022617B2 (ja)
EP (1) EP1956008B1 (ja)
KR (1) KR101395615B1 (ja)
CN (1) CN101287713A (ja)
TW (1) TWI388549B (ja)
WO (1) WO2007063760A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153088A1 (ja) * 2007-06-13 2008-12-18 Ube Industries, Ltd. 有機エレクトロルミネッセンス素子及び素子用材料
JP2010067959A (ja) * 2008-08-13 2010-03-25 Mitsubishi Chemicals Corp 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明
US20110049497A1 (en) * 2009-08-31 2011-03-03 Fujifilm Corporation Material for organic electroluminescence device and organic electroluminescence device
WO2012105629A1 (ja) * 2011-02-02 2012-08-09 出光興産株式会社 含窒素複素環誘導体、有機エレクトロルミネッセンス素子用電子輸送材料、及びそれを用いてなる有機エレクトロルミネッセンス素子

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20051085A1 (it) * 2005-06-10 2006-12-11 Acs Dobfar Spa Metodo di purificazione del cefotetan
GB2462410B (en) * 2008-07-21 2011-04-27 Cambridge Display Tech Ltd Compositions and methods for manufacturing light-emissive devices
JP2012504847A (ja) * 2008-10-01 2012-02-23 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
EP2345096B1 (en) * 2008-10-28 2018-10-17 The Regents of the University of Michigan Stacked white oled having separate red, green and blue sub-elements
JP5561272B2 (ja) * 2009-04-14 2014-07-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP4579343B1 (ja) * 2010-04-23 2010-11-10 富士フイルム株式会社 有機電界発光素子用材料及び有機電界発光素子
KR101778825B1 (ko) 2010-05-03 2017-09-14 메르크 파텐트 게엠베하 제형물 및 전자 소자
KR102070539B1 (ko) * 2010-07-08 2020-01-28 유디씨 아일랜드 리미티드 질소 결합된 5원 복소환 고리로 치환된 디벤조푸란 및 디벤조티오펜의 유기 전자 소자에서의 용도
US9067919B2 (en) 2010-07-08 2015-06-30 Basf Se Use of dibenzofurans and dibenzothiophenes substituted by nitrogen-bonded five-membered heterocyclic rings in organic electronics
US9159930B2 (en) 2010-11-26 2015-10-13 Merck Patent Gmbh Formulations and electronic devices
EP2695882B1 (en) * 2011-04-07 2017-03-01 Mitsubishi Chemical Corporation Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
CN103827189B (zh) * 2011-10-18 2016-07-27 英派尔科技开发有限公司 阻隔材料和膜
CN103855309A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 有机电致发光装置及其制备方法
JP6486353B2 (ja) 2013-07-31 2019-03-20 ユー・ディー・シー アイルランド リミテッド 発光性ジアザベンゾイミダゾールカルベン金属錯体
CN103626405B (zh) * 2013-11-28 2016-04-06 中国工程物理研究院化工材料研究所 单层荧光共轭聚合物膜及其制备方法
US9666822B2 (en) 2013-12-17 2017-05-30 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile management
EP3317256A1 (en) * 2015-06-30 2018-05-09 Dow Global Technologies LLC Cyclic urea compounds for electronic devices
KR102471110B1 (ko) 2015-08-11 2022-11-28 삼성디스플레이 주식회사 유기 발광 소자
TWI582081B (zh) * 2016-03-25 2017-05-11 昱鐳光電科技股份有限公司 用於有機電激發光元件之化合物及使用該化合物之有機電激發光元件
KR102603865B1 (ko) 2016-04-21 2023-11-21 삼성디스플레이 주식회사 유기 발광 소자
CN107759572B (zh) * 2016-08-17 2020-11-03 北京鼎材科技有限公司 一种化合物及其用途和有机电致发光器件
CN107759527B (zh) * 2016-08-17 2022-03-04 北京鼎材科技有限公司 一种化合物及其用途和有机电致发光器件
US11069856B2 (en) * 2016-09-07 2021-07-20 Joled Inc. Solution for organic EL, method of producing organic EL device and organic EL device
JP2018194639A (ja) * 2017-05-16 2018-12-06 京セラドキュメントソリューションズ株式会社 電子写真感光体
CN114014742B (zh) * 2021-11-01 2024-05-10 上海八亿时空先进材料有限公司 一种三芳基苯衍生物、发光材料、发光元件及消费型产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256341A (ja) 1993-03-08 1994-09-13 Fuji Electric Co Ltd オリゴチオフェン誘導体およびその製造方法
JPH10246973A (ja) * 1997-03-05 1998-09-14 Mita Ind Co Ltd 電子写真感光体
WO2004011438A1 (de) * 2002-07-25 2004-02-05 Aventis Pharma Deutschland Gmbh Diarylsubstituierte cyclische harnstoffderivate mit mch-modulatorischer wirkung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107857A1 (de) * 1991-03-12 1992-09-17 Thomae Gmbh Dr K Cyclische harnstoffderivate, diese verbindungen enthaltende arzneimittel und verfahren zu ihrer herstellung
US5861420A (en) * 1991-04-05 1999-01-19 G. D. Searle & Co. N-arylheteroarylalkyl imidazol-2-one compounds for treatment of circulatory disorders
DE4123245A1 (de) 1991-07-13 1993-01-14 Basf Ag Polyimid mit einheiten eines cyclischen harnstoffes
JP3056412B2 (ja) * 1995-02-17 2000-06-26 武田薬品工業株式会社 アゾール化合物およびその用途
TW318841B (ja) * 1995-02-17 1997-11-01 Takeda Pharm Industry Co Ltd
GB0211649D0 (en) 2002-05-21 2002-07-03 Novartis Ag Organic compounds
EP1589789B1 (en) 2003-01-24 2015-07-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2005022962A1 (ja) * 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
JP2005123164A (ja) * 2003-09-24 2005-05-12 Fuji Photo Film Co Ltd 発光素子
US7175922B2 (en) * 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
US20060004197A1 (en) 2004-07-02 2006-01-05 Thomas Thrash Sulfonamide-based compounds as protein tyrosine kinase inhibitors
GB0510390D0 (en) * 2005-05-20 2005-06-29 Novartis Ag Organic compounds
ATE533759T1 (de) * 2005-06-23 2011-12-15 Janssen Pharmaceutica Nv Imidazolinon- und hydantoinderivate als neue inhibitoren von histondeacetylase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256341A (ja) 1993-03-08 1994-09-13 Fuji Electric Co Ltd オリゴチオフェン誘導体およびその製造方法
JPH10246973A (ja) * 1997-03-05 1998-09-14 Mita Ind Co Ltd 電子写真感光体
WO2004011438A1 (de) * 2002-07-25 2004-02-05 Aventis Pharma Deutschland Gmbh Diarylsubstituierte cyclische harnstoffderivate mit mch-modulatorischer wirkung

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 1998, pages 183 - 187
KITAZAKI T. ET AL: "Optically Active Antifungal Azoles. X. Synthesis and Antifungal Activity of N-[4-(Azolyl)phenyl]- and N-[4-(Azolylmethyl)phenyl]-N'-[(1R, 2R)-2-(2,4-difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-azolones", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 48, no. 12, 2000, pages 1935 - 1946, XP003013664 *
MACROMOLECULES, vol. 36, 2003, pages 4368 - 4373
See also references of EP1956008A4
TETRAHEDRON LETTERS, vol. 41, 2000, pages 6387 - 6391
TETRAHEDRON, vol. 46, 1990, pages 1331 - 1342
TETRAHEDRON, vol. 55, 1999, pages 475 - 484
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 69, 2004, pages 7752 - 7754
WARD R.E. ET AL: "o,p-Polyaniline: A new form of a classic conducting polymer", MACROMOLECULES, vol. 36, no. 12, 2003, pages 4368 - 4373, XP003013665 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153088A1 (ja) * 2007-06-13 2008-12-18 Ube Industries, Ltd. 有機エレクトロルミネッセンス素子及び素子用材料
JPWO2008153088A1 (ja) * 2007-06-13 2010-08-26 宇部興産株式会社 有機エレクトロルミネッセンス素子及び素子用材料
JP2010067959A (ja) * 2008-08-13 2010-03-25 Mitsubishi Chemicals Corp 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明
US20110049497A1 (en) * 2009-08-31 2011-03-03 Fujifilm Corporation Material for organic electroluminescence device and organic electroluminescence device
US9318714B2 (en) * 2009-08-31 2016-04-19 UDC Ireland Material for organic electroluminescence device and organic electroluminescence device
US10243153B2 (en) 2009-08-31 2019-03-26 Udc Ireland Limited Material for organic electroluminescence device and organic electroluminescence device
WO2012105629A1 (ja) * 2011-02-02 2012-08-09 出光興産株式会社 含窒素複素環誘導体、有機エレクトロルミネッセンス素子用電子輸送材料、及びそれを用いてなる有機エレクトロルミネッセンス素子
US9748496B2 (en) 2011-02-02 2017-08-29 Idemitsu Kosan Co., Ltd. Nitrogenated heterocyclic derivative, electron-transporting material for organic electroluminescent elements, and organic electroluminescent element using same

Also Published As

Publication number Publication date
EP1956008B1 (en) 2012-03-28
KR20080074103A (ko) 2008-08-12
TWI388549B (zh) 2013-03-11
US20090284134A1 (en) 2009-11-19
CN101287713A (zh) 2008-10-15
TW200736230A (en) 2007-10-01
EP1956008A1 (en) 2008-08-13
US8022617B2 (en) 2011-09-20
EP1956008A4 (en) 2010-12-01
KR101395615B1 (ko) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5040216B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子用材料、電荷輸送材料組成物及び有機電界発光素子
WO2007063760A1 (ja) 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子
JP4893173B2 (ja) 有機電界発光素子用組成物及び有機電界発光素子
JP5168840B2 (ja) 電荷輸送材料、有機電界発光素子用組成物及び有機電界発光素子
JP5167607B2 (ja) 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP5162891B2 (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP5499487B2 (ja) キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP6922734B2 (ja) イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR101309502B1 (ko) 탄화수소 화합물, 전하 수송 재료, 전하 수송 재료 조성물및 유기 전계 발광 소자
WO2011024922A1 (ja) モノアミン化合物、電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2011051936A (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5028934B2 (ja) 炭化水素化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP2007169268A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP2019172608A (ja) 1,3,5−トリアジン化合物、該化合物を含有する組成物、有機電界発光素子、表示装置及び照明装置
JP2009033146A (ja) 湿式成膜用電荷輸送材料、湿式成膜法用電荷輸送材料組成物、有機電界発光素子、および有機elディスプレイ
JP2008115131A (ja) 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子
JP5708426B2 (ja) 有機電界発光素子用組成物及び有機電界発光素子
JP2008031068A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP5555972B2 (ja) 有機電界発光素子
JP2008001621A (ja) トリチル化合物、トリチル化合物の製造方法、電荷輸送材料、発光材料及び有機電界発光素子
JP5233110B2 (ja) 高分子化合物、ポリマー組成物、有機薄膜および有機電界発光素子
JP5685882B2 (ja) 電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機電界発光素子表示装置及び有機電界発光素子照明装置
JP5549051B2 (ja) アントラセン化合物、湿式成膜用電荷輸送材料、湿式成膜用電荷輸送材料組成物および有機電界発光素子
JP5098199B2 (ja) 高分子化合物、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
JP5250967B2 (ja) 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038011.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087009361

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3957/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12095024

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006833152

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE