WO2007052408A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2007052408A1
WO2007052408A1 PCT/JP2006/317530 JP2006317530W WO2007052408A1 WO 2007052408 A1 WO2007052408 A1 WO 2007052408A1 JP 2006317530 W JP2006317530 W JP 2006317530W WO 2007052408 A1 WO2007052408 A1 WO 2007052408A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
scanning signal
signal line
display device
signal
Prior art date
Application number
PCT/JP2006/317530
Other languages
English (en)
French (fr)
Inventor
Toshihiro Yanagi
Kazuhiro Tani
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007542261A priority Critical patent/JP4704438B2/ja
Priority to CN2006800410902A priority patent/CN101300619B/zh
Priority to US12/091,972 priority patent/US8411006B2/en
Publication of WO2007052408A1 publication Critical patent/WO2007052408A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to a display device such as a matrix liquid crystal display device and a display method, and more particularly to a liquid crystal display device in which, for example, a thin film transistor is provided as a switch element for each display pixel.
  • Liquid crystal display devices are actively used as display elements for televisions, graphic displays and the like.
  • a liquid crystal display device in which a switching element such as a thin film transistor (hereinafter referred to as TFT) is provided for each display pixel causes crosstalk between adjacent display pixels even when the number of display pixels increases. It is especially noticeable because it provides a superior display image.
  • TFT thin film transistor
  • such a liquid crystal display device is composed of a liquid crystal display panel 1001 and a drive circuit unit, and the liquid crystal display panel holds a liquid crystal layer between a pair of electrode substrates.
  • a polarizing plate is attached to the outer surface of each electrode substrate.
  • a TFT array substrate which is one electrode substrate, has a plurality of signal lines S (1), S (2), ⁇ S (i), ⁇ S (N) on a transparent insulating substrate 1100 such as glass. ) And scanning signal lines G (1), G (2) to G (j), to G (M) are formed in a matrix.
  • a switch element 1102 made of TFT connected to the pixel electrode 1103 is formed at each intersection between the signal line and the scanning signal line, and an alignment film is disposed so as to cover almost the entire surface thereof.
  • a TFT array substrate is formed.
  • the counter substrate which is another electrode substrate, is formed by sequentially laminating a counter electrode 1101 and an alignment film over the entire surface of a transparent insulating substrate such as glass, like the TFT array substrate. Then, the scanning signal line driving circuit 1300 connected to each scanning signal line of the liquid crystal display panel configured as described above, the signal line driving circuit 1200 connected to each signal line, and the counter electrode connected to the counter electrode
  • the drive circuit section is configured by the drive circuit COM.
  • the scanning signal line drive circuit (gate driver) 1300 corresponds to a shift register 1003a composed of M flip-flops that are cascade-connected and the output of each flip-flop. And a selection switch 1003b that switches.
  • One input terminal VD1 of each selection switch 1003b receives a potential Vgh for generating a gate-on voltage between the source and gate sufficient to turn on the TFT 1102 (see FIG. 7).
  • the input terminal VD2 is supplied with a potential Vgl for generating a gate-off voltage sufficient between the source and gate to turn off the switch element 1102. Therefore, the data signal (GSP) is sequentially transferred through the flip-flops by the clock signal (GCK), and is sequentially output to the selection switch 1003b.
  • the selection switch 100 3b turns the TFT on. After selecting the Vgh potential for one scanning period and outputting it to the scanning signal line 1105, the scanning signal line 1105 has the potential to turn the TFT off. Output each Vgl.
  • the video signal output from the signal line driver circuit 1200 to each signal line 1104 can be written to each corresponding pixel.
  • FIG. 9 shows an equivalent circuit of one display pixel P (i, j) having a configuration in which the pixel capacitor Clc and the auxiliary capacitor Cs are connected in parallel to the counter potential VCOM of the counter electrode drive circuit COM.
  • C gd represents the parasitic capacitance between the gate and drain of the TFT.
  • FIG. 10 shows a drive waveform diagram of a conventional liquid crystal display device.
  • Vg represents the waveform of one scanning signal line
  • Vs represents the waveform of one signal line
  • Vd represents the drain waveform.
  • the gate electrode g (i, j) (see FIG. 7) of the TFT of one display pixel P (i, j) is connected to the scanning signal line driving circuit 1300.
  • this TFT is turned on, and the video signal voltage Vsp from the signal line driver circuit 1200 is written to the pixel electrode through the source electrode and drain electrode of the TFT.
  • the pixel electrode holds the pixel potential Vdp as shown in FIG. 10 until the potential Vgh is applied in the next field (TF2).
  • the counter electrode is connected to a predetermined pair by a counter electrode drive circuit COM. Since the counter potential VCOM is set, the liquid crystal composition held by the pixel electrode and the counter electrode responds according to the potential difference between the pixel potential Vdp and the counter potential VCOM, and image display is performed.
  • the gate electrode g (i, j) of one display pixel P (i, j) is applied to the TFT gate electrode g (i, j) from the driving signal line driving circuit 1300 as shown in FIG. Is applied, the TFT is turned on, and the video signal voltage Vsn from the signal line driver circuit 1200 is written to the pixel electrode to hold the pixel potential Vdn, and the liquid crystal composition is opposite to the pixel potential Vdn.
  • the potential difference from VCOM displays images, and realizes liquid crystal AC drive
  • the counter electrode is nominated to the counter potential VCOM so as to reduce the level shift AVd caused by the parasitic capacitance Cgd in advance.
  • the scanning signal lines G (l), G (2) to G (j) formed on a transparent insulating substrate 100 such as glass are used.
  • ⁇ ⁇ G (M) are signal delay paths in which a signal propagation delay is generated to some extent, which is difficult to form with an ideal wiring having no signal propagation delay.
  • FIG. 11 is a propagation equivalent circuit when attention is paid to the signal propagation delay of one scanning signal line G (j).
  • rgl, rg2, rg3, and one rgN mainly indicate the resistance component of the wiring material forming the scanning signal line, and the resistance component depending on the wiring width and the wiring length.
  • cgl, eg 2, cg3, and 1 cgN indicate various parasitic capacitances that are capacitively coupled to the scanning signal lines in the configuration. For example, it is composed of a cross capacitance generated by crossing the signal line.
  • the scanning signal line is a distributed constant type signal propagation delay path.
  • FIG. 12 shows that the scanning signal VG (j) input to the scanning signal line from the scanning signal line driving circuit 1300 is distorted inside the panel due to the above-described signal propagation delay characteristic of the scanning signal line.
  • the waveform Vg (l, j) is a waveform near g (l, j) immediately after the output of the scanning signal line driving circuit 1300, and there is almost no waveform rounding.
  • the waveform Vg (N, j) is a waveform in the vicinity of the scanning signal line termination g (N, j), and the waveform is rounded due to the signal propagation delay characteristic of the scanning signal line.
  • the amount of change S yN per unit time occurs due to the waveform rounding.
  • the TFT has a V-I characteristic (gate voltage-drain current characteristic) as shown in FIG. 13 which is not a complete ONZOFF switch.
  • V-I characteristic gate voltage-drain current characteristic
  • the horizontal axis represents the voltage applied to the TFT gate
  • the vertical axis represents the drain current.
  • the scan pulse is composed of two potentials: a potential Vgh sufficient to turn on the TFT and a potential Vgl sufficient to turn off the TFT. There is an intermediate ON region (linear region) up to the threshold VT force Vgh level.
  • the characteristics of the linear region of the TFT affect the scanning signal. While the TFT falls to near the threshold level VT from Vgh, the TFT is on in the linear state, so the level shift that occurs in the pixel potential Vd due to the parasitic capacitance Cgd does not occur, and the scanning signal further increases.
  • a level shift AVd (N) that occurs in the pixel potential Vd (N, j) occurs due to the parasitic capacitance Cgd described above in the region where the value level VT changes to Vgl.
  • the level shift AVd (N) becomes AVd (N) and Cgd ′ (Vgh ⁇ Vgl) / (Clc + Cs + Cgd), and AVd (l)> AVd (N) is satisfied.
  • the level shift AVd deviation caused by the pixel potential Vd due to the parasitic capacitance Cgd in this panel can be ignored by increasing the screen size and definition, which is uniform on the display surface. Disappear. Therefore, the conventional method of biasing the counter voltage cannot absorb the level shift non-uniformity in the display surface, and each pixel cannot be optimally AC driven. Will be invited.
  • Patent Document 1 As an invention for solving the above problems, there is a display device described in Patent Document 1.
  • FIG. 14 is a block diagram showing a configuration of the scanning signal line drive circuit 2001 of the display device.
  • Fig. 15 (a) shows the waveform of the signal generated by the scanning signal line driver circuit 2001.
  • Fig. 15 (b) shows the waveform of the scanning signal output from the scanning signal line driver circuit 2001.
  • the scanning signal line driving circuit 2001 includes an internal modulation unit 2002 and a scanning signal line driving unit 2003.
  • the potential Vgh is input to the internal modulation unit 2002.
  • the internal modulation unit 2002 modulates the potential Vgh to generate a drive signal VM having a waveform in which the sawtooth shown in FIG.
  • the scanning signal line driving unit 2003 generates the scanning signal VG shown in FIG. 15B from the driving signal VM.
  • the scanning signal VG rises vertically from the potential Vgl to the potential V gh, maintains the potential Vgh for a predetermined period, then falls linearly in an oblique direction, and finally has a waveform that drops substantially vertically at the potential Vg. Have.
  • the waveform of the falling portion of the scanning signal VG is less likely to be distorted.
  • the influence of the characteristics of the TFT linear region shown in FIG. 13 is approximately equal between the TFT arranged immediately after the output of the scanning signal line driving circuit 1300 and the TFT arranged at the end of the scanning signal line.
  • the level shift AVd generated in the pixel potential Vd due to the parasitic capacitance Cgd in the panel can be made close to uniform in the display surface.
  • Patent Document 1 Japanese Patent Publication No. 10-504911
  • FIG. 16 is a diagram showing waveforms of the drive signals VM 1 to 4 generated by the scanning signal line drive circuits 2001-1 to 2001-4 of the conventional display device.
  • the number of scanning lines that can be driven by the scanning signal line driving circuit is limited. For this reason, a high-definition display device having a large number of scanning lines cannot handle all of the scanning lines by a single scanning signal line driving circuit.
  • a plurality of scanning signal line drive circuits 2001 are provided.
  • the display device can be increased in size and definition. Specifically, by providing a plurality of scanning signal line drive circuits 2001, variation in the distance between the scanning signal line drive circuit and each scanning signal line is reduced, and the number of driveable scanning signal lines is increased. Yes.
  • the drive signal VM is generated in each internal modulation unit 2002.
  • the internal modulation unit 2002 is configured by an electric circuit such as a wiring or a transistor. There are manufacturing variations in electrical circuits. For this reason, the waveform of the drive signal VM output from each internal modulation unit 2002 differs for each internal modulation unit 2002 as shown in FIG.
  • the waveform of the scanning signal VG is also different for each scanning signal line drive circuit 2001. As described above, when the scanning signal line VG is different for each scanning signal line driving circuit 2001, the TFT driving conditions are different for each scanning signal line driving circuit 2001. As a result, the display quality of the liquid crystal display device is degraded.
  • an object of the present invention is to improve display quality in a display device provided with a plurality of scanning signal line drive circuits.
  • the first invention provides a plurality of scanning signal lines, a plurality of video signal lines, and driving the scanning signal lines.
  • a plurality of scanning signal line drive circuits that generate scanning signals for operation, wherein each of the scanning signal line drive circuits has an intermediate potential between a high potential and a low potential.
  • the drive signal having a waveform with a change in potential that falls to a slope until the intermediate potential force then rises to the high potential is generated internally, and the drive signal line drive circuits are connected to each other.
  • the display device further includes a signal line whose potential becomes the potential of the drive signal.
  • a second invention is an invention according to the first invention, wherein the drive signal decreases so that the potential is inclined from a high potential to an intermediate potential between the high potential and the low potential, Then, the intermediate potential force is a display device that includes one waveform with a potential change that rises to the high potential.
  • a third invention is an invention according to the second invention, wherein the scanning signal driving circuit is a display device in which a periodic signal including one pulse per period is input. is there
  • a fourth invention is an invention according to the third invention, wherein the period signal includes a length of a period other than a pulse in one period, the high potential and the low potential of the drive signal.
  • This is a display device in which the length of the period decreasing so as to incline to the intermediate potential is the same.
  • a fifth invention is an invention according to the third invention, wherein the periodic signal generates a portion that decreases so as to incline to an intermediate potential between the high potential and the low potential of the drive signal. Therefore, the display device inputs the scanning signal drive circuit.
  • a sixth invention is an invention dependent on the first to fifth inventions, wherein the potential change of the drive signal that decreases so as to incline from the high potential to the intermediate potential is
  • This is a display device that is a change for tilting part of the change between the high potential and the low potential of the driving signal.
  • a seventh invention is an invention dependent on the first invention to the sixth invention, wherein the potential of the signal wiring is an average of the potential of the drive signal generated by each of the scanning signal line drive circuits. It is a display device that has an integrated potential.
  • An eighth invention is an invention dependent on the first invention to the seventh invention, wherein each of the scanning signals is provided.
  • the signal line drive circuit generates a drive signal based on the signal having the high potential, and the scanning signal is generated based on the drive signal generated by the drive signal generation circuit.
  • a display device including: a scanning signal generation circuit to generate; and an internal wiring for transmitting the driving signal from the driving signal generation circuit to the scanning signal generation circuit, wherein the internal wirings are connected to each other by the signal wiring It is.
  • each scanning signal line driving circuit By connecting each scanning signal line driving circuit with a signal wiring, the potential of the driving signal applied to the signal wiring is averaged with the potential of the driving signal generated by each scanning signal line driving circuit. It will be. As a result, the variation in potential of the drive signal generated by each scanning signal line drive circuit is suppressed. As a result, when each scanning signal line driving circuit generates a scanning signal using the driving signal, it is possible to generate a scanning signal with less waveform variation between the scanning signal line driving circuits.
  • FIG. 1 is a block diagram showing an overall configuration of a liquid crystal display device 1 according to an embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing a waveform of a clock signal GCK, a waveform of a periodic signal Stc, a waveform of an intermediate signal Vet, a waveform of a drive signal VM, and a waveform of a scanning signal VG.
  • FIG. 3 is a block diagram showing a configuration of scanning line driving circuits 300-1 to 300-3.
  • FIG. 4 is a circuit diagram showing a configuration of internal modulation section 310-1.
  • FIG. 5 is a block diagram showing a configuration of a scanning signal line driving unit 315-1.
  • FIG. 6 is a plan view showing an example in which a video signal driving circuit 200 and a scanning signal line driving circuit 300 are mounted on an insulating substrate 100.
  • FIG. 7 is a block diagram showing an overall configuration of a conventional liquid crystal display device.
  • FIG. 8 is a block diagram showing a configuration of a conventional scanning signal line driving unit 1315.
  • FIG. 9 is a circuit diagram showing an equivalent circuit of one display pixel P (i, j) having a configuration in which a pixel capacitor Clc and an auxiliary capacitor Cs are connected in parallel to the counter potential VCOM of the counter electrode drive circuit COM.
  • FIG. 10 is a waveform diagram showing drive waveforms of a conventional liquid crystal display device.
  • FIG. 11 A propagation equivalent circuit diagram focusing on the signal propagation delay of one scanning signal line G (j). is there.
  • FIG. 12 is a waveform diagram showing how the scanning signal VG (j) input from the scanning signal line driving unit 1315 to the scanning signal line is distorted inside the panel due to the signal propagation delay characteristic of the scanning signal line. is there.
  • FIG. 13 is a graph showing transistor characteristics.
  • FIG. 14 is a block diagram showing a configuration of a scanning signal line driving circuit 2001 of a conventional display device.
  • FIG. 16 is a waveform diagram showing waveforms of drive signals VM1 to VM4 generated by scanning signal line drive circuits 2001-1 to 4 of a conventional display device.
  • the display device includes a plurality of scanning signal lines extending in the row direction, a plurality of video signal lines extending in the column direction, and a plurality of scanning signal lines that generate scanning signals for driving the scanning signal lines.
  • the potential is lowered from a high potential to an intermediate potential between the high potential and the low potential.
  • a driving signal having a waveform accompanied by a potential change that rises to the high potential is generated in each scanning signal line driving circuit, and the scanning signal line driving circuits are connected to each other.
  • the signal wiring is provided with the potential of the drive signal.
  • the scanning signal line driving circuits are connected by the signal wiring, so that the potential of the driving signal applied to the signal wiring is the potential of the driving signal generated by each scanning signal line driving circuit. Is averaged. As a result, the variation in the potential of the drive signal generated in each scanning signal line drive circuit is suppressed. As a result, when each scanning signal line drive circuit generates a scanning signal using the driving signal, there is little waveform variation between the scanning signal line driving circuits! / And it is possible to generate a scanning signal. Become.
  • FIG. 1 is a diagram showing an overall configuration of the liquid crystal display device 1.
  • the liquid crystal display device 1 includes an insulating substrate 100, a counter electrode 101, video signal line driving circuits 200-1 and 2, a scanning signal line driving circuit 300-1 to 3, a signal wiring 305, a control circuit 600, and a counter electrode.
  • the display device includes a drive circuit COM and performs frame inversion drive. Note that the liquid crystal display device 1 may perform inversion driving other than frame inversion driving.
  • the insulating substrate 100 is an active matrix substrate formed of a glass substrate, and has video signal lines S (1) to S (N) and scanning signal lines G (1) to G (G) on its main surface. (M) and a display pixel P (i, j) (i is an integer from 1 to N, j is an integer from 1 to M).
  • the video signal lines S (1) to S (N) are arranged so as to extend in the column direction, and a video signal having a potential corresponding to the display content is applied by the video signal line driving circuit 200-1 or 2.
  • Scan signal line G (1) to G (M ) Are arranged so as to extend in the row direction, and a scanning signal is applied by the scanning signal line driving circuits 300-1 to 300-3.
  • the video signal line s (i) (i is an integer from 1 to N) is used when referring to the square video signal line, and the video signal line s is used when referring to the entire video signal line.
  • the scanning signal line G (j) (j is an integer from 1 to M) is used when referring to the scanning signal line in the jth row, and the scanning signal line G is used when referring to the scanning signal line in general. Describe.
  • display pixel P (i, j) (i is an integer from 1 to N, j is an integer from 1 to M) Is denoted as display pixel P.
  • the display pixel P (i, j) is disposed in the vicinity of the intersection of the video signal line S (i) and the scanning signal line G (j). Thereby, the display pixels P are arranged in a matrix on the main surface of the insulating substrate 100.
  • Each display pixel P (i, j) includes a transistor (TFT) 102 and a pixel electrode 103.
  • the transistor 102 arranged near the intersection of the video signal line S (i) and the scanning signal line G (j) is referred to as a transistor T (i, j).
  • the source of the transistor T (i, j) is connected to the corresponding video signal line S (i), and the gate of the transistor T (i, j) is connected to the corresponding scanning signal line G (j).
  • the pixel electrode 103 is connected to the drain of the transistor 102.
  • the counter electrode 101 is formed over substantially the entire main surface of the counter substrate (not shown), and is applied with a counter voltage having a predetermined potential from the counter electrode drive circuit COM.
  • a liquid crystal layer is provided between the counter electrode 101 and the pixel electrode 103.
  • This liquid crystal layer has a light transmittance that changes in accordance with the potential difference between the counter electrode 101 and the pixel electrode 103. That is, when it is desired to set the display pixel P to a desired transmittance, a video signal having a potential corresponding to the transmittance is applied to the video signal line S and a scanning signal for making the transistor T conductive. Is applied to the scanning signal line G. As a result, the pixel electrode 103 is charged to a desired potential via the transistor T, and the transmittance of the display pixel P is controlled to a desired transmittance.
  • the control circuit 600 generates a clock signal GCK and a periodic signal Stc for operating the video signal line driving circuits 200-1 and 2 and the scanning signal line driving circuits 300-1 to 3 as shown in FIG. Generate.
  • FIG. 2 is a diagram showing the waveform of the clock signal GCK, the waveform of the periodic signal Stc, the waveform of the intermediate signal Vet, the waveform of the drive signal VM, and the waveform of the scanning signal VG. Waveform of clock signal GCK, periodic signal Stc, and scanning signal VG Details of this will be described later.
  • the video signal line drive circuits 200-1 and 2 apply a video signal input from the outside to the video signal line S using the clock signal GCK.
  • the scanning signal line driving circuits 300-1 to 300-3 generate a scanning signal VG as shown in FIG. 2 using the clock signal GCK and the periodic signal Stc, and apply them to the scanning signal line G.
  • details of the scanning signal line driving circuits 300 1 to 3 will be described with reference to the drawings.
  • FIG. 3 is a block diagram showing the configuration of the scanning signal line driving circuits 300-1 to 300-3. Hereinafter, the description will be given focusing on the scanning signal line drive circuit 300-1.
  • the scanning signal line driving circuit 300-1 includes an internal modulation unit 310-1 and a scanning signal line driving unit 315-1.
  • the internal modulation unit 310-1 generates the intermediate signal Vet shown in FIG. 2 based on the potential Vgl and the periodic signal Stc, and then drives the drive shown in FIG. 2 based on the intermediate signal Vet and the high potential Vgh.
  • the drive signal VM1 indicates the drive signal VM generated by the internal modulation unit 310-1
  • the drive signal VM2 indicates the drive signal VM generated by the internal modulation unit 310-2
  • the drive signal VM3 indicates the internal modulation. This indicates the drive signal VM generated by the unit 310-3.
  • the potential Vgl is a potential for generating a gate-off voltage between the source and gate that can control the transistor 102 to be in a non-conductive state when applied to the gate of the transistor 102. Yes.
  • the scanning signal line driving unit 3151 generates the scanning signal VG shown in FIG. 2 based on the driving signal VM1 generated by the internal modulation unit 310-1.
  • FIG. 4 is a circuit diagram showing a configuration of the internal modulation unit 310-1.
  • the internal modulation unit 310-1 includes resistors Rl, R2, R3, and Rct, an operational amplifier OP, a capacitor Cct, a constant current source let, and a switch SW3.
  • the periodic signal Stc is a slope period control signal (a charge control signal and a discharge control signal) for generating a slope portion of the scanning signal VG shown in FIG. 2, and the switch SW3 connected in parallel to the capacitor Cct. Open / close control is performed.
  • the periodic signal Stc has a waveform in which one pulse that is high for a predetermined period is included in one period. High level pulse During this period, the switch SW3 is controlled to be in a conductive state, and during a period other than a pulse at a low level, the switch SW3 is controlled to be in a nonconductive state.
  • the constant current source let is connected to one end of the capacitor Cct via the resistor Ret, and the other end of the capacitor Cct is grounded.
  • the intermediate signal Vet which is the voltage across the capacitor Cct, is connected to the inverting input terminal of the operational amplifier OP via a resistor R3.
  • a resistor R4 is connected between the inverting input terminal and the output terminal of this op.
  • the periodic signal Stc may be formed so as to be synchronized with the clock signal GCK.
  • the control circuit 600 using a mono multivibrator or the like (not shown). Can be created.
  • the periodic signal Stc may be generated inside the scanning signal line driving circuit 300-1.
  • the switch SW3 becomes conductive during the period when the periodic signal Stc is high level, but becomes non-conductive during the low level period.
  • one end of a resistor R2 and a resistor R1 is connected to the non-inverting input terminal of the operational amplifier OP.
  • the other end of the resistor R2 is grounded, and the other end of the resistor R1 is applied with the potential Vgh.
  • This signal potential Vgh is a potential for generating a gate-on voltage between the drain and source sufficient to turn on the TFT.
  • the drive signal VM is output from the output terminal of the operational amplifier OP.
  • the slope portion of the drive signal VM and the slope portion of the intermediate signal Vet are generated based on the low potential portion of the periodic signal Stc. Therefore, as shown in FIG. 2, the length of the inclined portion of the drive signal VM, the length of the inclined portion of the intermediate signal Vet, and the length of the portion where the potential of the periodic signal Stc is low (the portion other than the pulse). Is in agreement.
  • the operational amplifier OP and the resistors Rl, R2, R3, and R4 constitute a subtracting unit. In this subtraction unit, the following subtraction process is performed.
  • VM Vgh- (R2 / (R1 + R2)) ⁇ (1 + (R4 / R3))-(R4 / R3)-Vet
  • FIG. 5 is a diagram showing a configuration of the scanning signal line driving unit 315-1.
  • the scanning signal line drive The moving unit 315-1 includes a shift register 3a, a selection switch 3b, and terminals T1 to T4.
  • the clock signal GCK is applied to the terminal T1.
  • Data signal GSP is applied to terminal ⁇ 2.
  • the terminal V3 is applied with a potential Vgl for generating a gate-off voltage between the source and gate that can control the transistor 102 to be in a non-conductive state.
  • the drive signal VM1 is applied to the terminal T4.
  • the shift register 3a includes k-stage flip-flops Fl to Fk corresponding to the number of scanning signal lines G.
  • the flip-flops Fl to Fk-l transfer the data signal GSP to the next flip-flops F2 to Fk based on the clock signal GCK.
  • the flip-flops Fl to Fk output the sampling nors to the selection switch 3b when transferring the data signal GSP. That is, sampling pulses are output in order from the upstream selection switch 3b to the downstream selection switch 3b according to the transfer of the data signal GSP.
  • the flip-flops Fl to Fk are collectively referred to as flip-flops F.
  • the selection switch 3b is a switch that is provided in a number corresponding to the scanning signal line G on a one-to-one basis, and selects and outputs one of the two inputs according to the sampling pulse.
  • the drive signal VM1 and the potential Vgl are applied to the two input terminals of the selection switch 3b.
  • One scanning signal line G is connected to each output terminal of the selection switch 3b.
  • the selection switch 3b selects the drive signal VM1 when the sampling pulse is output, and selects the potential Vgl when the sampling pulse is not output. As a result, a scanning signal VG having a waveform obtained by cutting out one cycle of the drive signal VM1 as shown in FIG. 2 is generated.
  • the scanning signal VG rises vertically from the potential Vgl to the potential Vgh, maintains the potential Vgh for a predetermined period, then falls linearly in the diagonal direction, and finally approximately vertically to the potential Vg. It has a corrugated waveform. Note that the potential of the end point of the inclined portion of the scanning signal VG is preferably higher than the potential VT for generating the threshold voltage for making the transistor 102 conductive.
  • the signal wiring 305 is a wiring that connects each of the scanning signal line driving circuits 300-1 to 300-3 and is applied with the driving signal VM as shown in FIG. More specifically, as shown in Figure 3. , An internal wiring connecting the internal modulation unit 310-1 and the scanning signal line driving unit 315-1, an internal wiring connecting the internal modulation unit 310-2 and the scanning signal line driving unit 315-2, and an internal wiring The signal wiring 305 connects the internal wiring that connects the modulation section 310-3 and the scanning signal line driving section 315-3. As a result, the waveforms of the drive signals VM1 to VM3 applied to each internal wiring are averaged.
  • the switch SW3 shown in FIG. 4 is controlled to be in a non-conductive state while the periodic signal Stc is at the low level, and the charge is charged from the constant current source let to the capacitor Cct via the resistor Ret. Is done. As a result, the potential of the intermediate signal Vet rises as shown in FIG. 2 while the periodic signal Stc is at the low level.
  • the drive signal VM can be lowered at an arbitrary slope Vslope.
  • the switch SW3 is controlled to be in a conducting state while the periodic signal Stc is at a high level. Therefore, the electric charge charged in the capacitor Cct is discharged through the switch SW3.
  • the potential of the intermediate signal Vet becomes the ground potential as shown in Fig.2.
  • the potential Vgh is output as the drive signal VM as shown in FIG.
  • the intermediate signal Vet becomes a sawtooth waveform having a maximum amplitude Vcth in accordance with the control of the periodic signal Stc.
  • the intermediate signal Vet has a waveform in which the potential rises in a period other than the pulse in one period in the periodic signal Stc and becomes the ground potential in the pulse period.
  • the drive signal VM is a waveform obtained by inverting a sawtooth waveform up and down. Specifically, the drive signal VM decreases in potential so as to incline from the high potential to the intermediate potential between the high potential and the low potential, and then changes in potential that increases from the intermediate potential to the high potential.
  • One accompanying waveform is included in one cycle.
  • the drive signal VM has a waveform with an inclination period Tslope and an inclination amount Vslope.
  • the output signal VDlb is the output of the operational amplifier OP, the impedance is low (impedance when the operational amplifier OP is viewed from the next stage is small).
  • Each internal modulation unit (modulation unit) 310-1 to 3 outputs the generated drive signals VM1 to VM3 to the corresponding scanning signal line drive units 315-1 to 3 through the internal wiring in FIG. To do.
  • the waveforms of the drive signals VM1 to VM3 are averaged.
  • the drive signals VM1 to VM3 having substantially the same waveform are input to the scanning signal line driving units 315-1 to 315-3.
  • the scanning signal line driving units 315-1 to 3-3 generate the scanning signal G based on the driving signals VM1 to VM3. To do.
  • the operation of transferring the data signal GSP to each flip-flop F-stage flip-flop is repeated based on the clock signal GCK.
  • the sampling pulse force flip-flop F force is also output to the selection switch 3b.
  • the selection switch 3b selects the potential Vgl and outputs the potential Vgl to the scanning signal line G.
  • the selection switch 3b on which the sampling pulse is printed selects the drive signal VM and outputs the drive signal VM to the scanning signal line G.
  • the scanning signal VG as shown in FIG. 2 is applied to the scanning signal line G.
  • the waveform falls at the falling portion of the scanning signal VG because the scanning signal VG falls so as not to be vertical. It becomes difficult to get round. Therefore, the influence of the characteristics of the TFT linear region shown in Figure 13
  • the TFT arranged immediately after the output of the scanning signal line driving circuit 300 and the TFT arranged at the end of the scanning signal line are substantially equal.
  • the level shift AVd generated in the pixel potential Vd due to the parasitic capacitance Cgd in the panel can be made to be uniform in the display surface. This eliminates the problem of a difference in display quality between the right and left sides of the display area of the liquid crystal display device.
  • the waveforms of the driving signals VM1 to 3 applied to the internal wirings are averaged. It becomes. More specifically, the inclinations of the respective inclined portions of the drive signals VM1 to VM3 are substantially equal.
  • the scanning signal line driving units 315-1 to 315-3 generate the scanning signal VG based on the driving signals VM1 to VM3. For this reason, the inclinations of the respective inclined portions of the drive signals VM1 to VM3 are substantially equal, and the inclinations of the inclined portions of the scanning signal VG are substantially equal. This solves the problem that the display quality differs for each display area corresponding to each of the scanning signal line drive circuits 300-1 to 300-3.
  • the problem that the display quality differs for each display area corresponding to each of the scanning signal line driving circuits 300-1 to 3 is that the scanning signal line driving circuits 300-1 to 3 have different internals. This is because the modulation signals 310-1 to 3 generate the drive signals VM1 to VM3. Therefore, the waveforms of the drive signals VM1 to VM3 are other than those described in the present embodiment. Similar problems can occur even if they exist. Such a problem is that the internal wirings of the scanning signal line driving circuits 300-1 to 300-3 are connected by the signal wiring 305, and the waveforms of the driving signals VM1 to VM3 applied to the internal wirings are averaged. It can be solved by the same way.
  • the waveform of one cycle of the drive signal VM is cut out using the sampling pulse output from the shift register 3a to generate the pulse waveform of the scanning signal G.
  • Force The method of using the drive signal VM is not limited to this. It is only necessary that the inclined portion of the driving signal VM is used to generate the inclined portion of the scanning signal G.
  • the driving signal VM and the scanning signal line VG are linearly inclined in FIG. 2, but the driving signal VM and the inclined portion of the scanning signal line VG are inclined. Minutes are not limited to straight lines.
  • the inclined portion only needs to have a substantially linear shape. Note that this approximate width is a width of a delay that occurs when the drive signal VM and the scanning signal line VG are generated.
  • the liquid crystal display device is, for example, a small liquid crystal display device such as a mobile phone or a PDA (Personal Digital Assistance), or a large liquid crystal display device such as a personal computer monitor or a television.
  • the liquid crystal display device according to the present embodiment is preferably a large-sized liquid crystal display device such as a personal computer monitor or a television. This is because a large liquid crystal display device has a longer scanning signal line G than a small liquid crystal display device, and the rounding of the waveform of the scanning signal VG between both ends of the scanning signal line G increases. This is because the influence on the display quality of the variation in level shift ⁇ Vd caused by this is increased.
  • FIG. 6 is a diagram showing an example in which the video signal line driving circuit 200 and the scanning signal line driving circuit 300 are mounted on the insulating substrate 100.
  • Fig. 6 shows an insulating substrate 100, video signal line drive circuit 200 1-2, scanning signal line drive circuit 300-1-3, flexible printed circuit board 700-1-2 and 800-1-3, and rigid substrate 750 and 850 is listed.
  • the video signal line drive circuits 200-1 and 200-2 and the scanning signal line drive circuits 300-1 to 300-3 are each configured by one semiconductor chip.
  • the hard substrate 750 is, for example, a substrate made of grease and having a circuit formed on the main surface.
  • Flexible printed circuit boards 700-1 and 2 are made of a flexible material and have a circuit formed thereon.
  • a video signal line drive circuit 200-1 is mounted on the main surface of the flexible printed circuit board 700-1.
  • one end of the flexible printed circuit board 700-1 is mounted on a hard substrate, and the other end of the flexible printed circuit board 700-2 is mounted on an insulating substrate 100.
  • the flexible printed circuit board 700-2 is the same as the flexible printed circuit board 700-1, and the description thereof is omitted.
  • the hard substrate 850 is a substrate that is made of, for example, resin and has a circuit formed on the main surface.
  • the flexible printed circuit boards 800-1 to 3 are made of a flexible material and have a circuit formed thereon.
  • a scanning signal line driving circuit 300-1 is mounted on the main surface of the flexible printed circuit board 800-1.
  • one end of the flexible printed circuit board 800-1 is mounted on a hard substrate, and the other end of the flexible printed circuit board 800-2 is mounted on the insulating substrate 100.
  • the configuration of the signal wiring 305 in the liquid crystal display device in which the video signal line driving circuits 200-1 and 200-2 and the scanning signal line driving circuits 300-1 to 3 are mounted as described above will be described.
  • the signal wiring 305 is a wiring for connecting the scanning signal line driving circuits 300-1 to 300-3. Therefore, the signal wiring 305 is formed on each of the flexible printed circuit boards 800-1 to 3, and is connected to each other on the main surface of the hard circuit board 850!
  • the video signal line driving circuits 200-1 to 2 and the scanning signal line driving circuits 300-1 to 3 are mounted on the flexible printed circuit boards 700-1 to 2 and 800-1 to 3, respectively. Forces to be Implemented
  • the mounting method of the video signal line driving circuits 200-1 to 200-2 and the scanning signal line driving circuits 300-1 to 3-3 is not limited to this.
  • the video signal line driving circuits 200-1 to 200 and the scanning signal line driving circuits 300-1 to 3 may be mounted on the insulating substrate 100 by COG (Chip On Glass), or may be monolithically mounted on the insulating substrate 100. It may be formed.
  • the signal wiring 305 is formed on the insulating substrate 100, and each scanning signal line driving circuit 300-1 to 300- 3 can be connected.
  • the signal wiring 305 can be formed by the same process as the scanning signal line G and the video signal line S of the insulating substrate 100, a process for newly forming the signal wiring 305 becomes unnecessary.
  • An object of the present invention is to improve display quality in a display device provided with a plurality of scanning signal line drive circuits.
  • a thin film transistor is used as a switch element for each display pixel. This is useful as a liquid crystal display device provided with a display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の目的は、複数の走査信号線駆動回路が設けられた表示装置において表示品位を向上させることである。本発明に係る表示装置は、複数の走査信号線と、複数の映像信号線と、当該走査信号線を駆動するための走査信号を生成する複数の走査信号線駆動回路とを備える表示装置であって、各走査信号線駆動回路は、電位が高電位から、当該高電位と低電位との中間電位まで傾斜するように低下し、その後、当該中間電位から当該高電位まで上昇する電位変化を伴う波形の駆動信号を内部において生成しており、各走査信号線駆動回路同士を接続し、前記駆動信号が印加される信号配線を更に備える。

Description

明 細 書
表示装置
技術分野
[0001] 本発明は、マトリクス型液晶表示装置等の表示装置および表示方法に係り、特に表 示画素ごとにスィッチ素子として例えば薄膜トランジタが配設された液晶表示装置に 関するものである。
背景技術
[0002] 液晶表示装置は、テレビやグラフィックディスプレイ等の表示素子として盛んに用い られている。その中でも、特に表示画素毎に薄膜トランジスタ(Thin Film Transistor, 以下、 TFTと称す)等のスィッチ素子が設けられた液晶表示装置は、表示画素数が 増大しても隣接表示画素間でのクロストークのない優れた表示画像を得ることができ るため、特に注目^^めている。
[0003] このような液晶表示装置は、図 7に示す様に液晶表示パネル 1001及び駆動回路 部とからその主要部が構成されており、液晶表示パネルは一対の電極基板間に液晶 層が保持され、各電極基板の外表面にはそれぞれ偏光板が貼り付けられている。
[0004] 一方の電極基板である TFTアレイ基板は、ガラスなどの透明な絶縁性基板 1100 上に複数本の信号線 S (1)、 S (2)、〜S (i)、〜S (N)、及び走査信号線 G (1)、 G (2 )〜G (j)、〜G (M)、がマトリクス状に形成されている。そして、これら信号線と走査信 号線との交差部ごとに、画素電極 1103に接続された TFTからなるスィッチ素子 110 2が形成されており、これらの上をほぼ全面にわたって覆うように配向膜が設置されて 、 TFTアレイ基板が形成されている。
[0005] 一方、他の電極基板である対向基板は、 TFTアレイ基板と同様にガラスなどの透 明な絶縁性基板上に、全面にわたって対向電極 1101、配向膜が順次積層されて成 つている。そして、このようにして構成される液晶表示パネルの各走査信号線に接続 される走査信号線駆動回路 1300、各信号線に接続される信号線駆動回路 1200、 及び対向電極に接続される対向電極駆動回路 COMによって上記駆動回路部は構 成されている。 [0006] 走査信号線駆動回路 (ゲートドライバ) 1300は、例えば、図 8に示すように、カスケ ード接続された M個のフリップフロップから成るシフトレジスタ 1003aと、各フリップフ 口ップカもの出力に応じて切り替わる選択スィッチ 1003bとによって構成されている。
[0007] 各選択スィッチ 1003bの一方の入力端子 VD1には、 TFT1102 (図 7参照)をオン状 態にするに十分なゲートオン電圧をソース一ゲート間に発生させるための電位 Vgh が入力され、他方の入力端子 VD2には、スィッチ素子 1102をオフ状態にするに十 分なゲートオフ電圧をソース一ゲート間に発生させるための電位 Vglが入力されてい る。従って、クロック信号 (GCK)によってデータ信号 (GSP)はフリップフロップを順次 転送され、選択スィッチ 1003bへ順次出力される。これに応答して選択スィッチ 100 3bは TFTをオン状態にする Vghの電位を一走査期間だけ選択して走査信号線 110 5に出力した後、走査信号線 1105には TFTをオフ状態にする電位 Vglをそれぞれ 出力する。この動作により、信号線駆動回路 1200から各々の信号線 1104 (図 7参照 )に出力された映像信号を、対応した各々の画素に書き込むことが可能となる。
[0008] 図 9は、画素容量 Clcと補助容量 Csとが対向電極駆動回路 COMの対向電位 VC OMに並列に接続されている構成の 1表示画素 P (i, j)の等価回路を示す。図中、 C gdは TFTのゲート ドレイン間の寄生容量を示す。
[0009] 図 10は、従来の液晶表示装置の駆動波形図を示している。図 10中、 Vgは 1走査 信号線の波形を示し、 Vsは 1信号線の波形を示し、 Vdはドレイン波形を示す。
[0010] ここで、図 7、図 9、及び図 10を参照しながら、従来の駆動方法を説明する。なお、 液晶は、焼き付け残像や、表示劣化を防ぐために交流駆動を必要とすることは広く知 られており、以下に説明する従来駆動方法も上記交流駆動の 1種であるフレーム反 転駆動を用いて説明する。
[0011] 図 10に示すように、第 1フィールド (TF1)で 1表示画素 P (i, j)の TFTのゲート電極 g (i, j) (図 7参照)に走査信号線駆動回路 1300から図 10に示すように電位 Vghが 印加されると、この TFTはオン状態となり、信号線駆動回路 1200からの映像信号電 圧 Vspが TFTのソース電極、及びドレイン電極を介して画素電極に書き込まれ、次フ ィールド (TF2)で電位 Vghが印加されるまで画素電極は図 10に示すように画素電 位 Vdpを保持する。そして、対向電極は対向電極駆動回路 COMによって所定の対 向電位 VCOMに設定されているため、画素電極と対向電極とによって保持される液 晶組成物は画素電位 Vdpと対向電位 VCOMとの電位差に応じて応答し、画像表示 が行われる。
[0012] 同様に、第 2フィールド (TF2)で 1表示画素 P (i, j)の TFTのゲート電極 g (i, j)に走 查信号線駆動回路 1300から図 10に示すように電位 Vghが印加されると、この TFT はオン状態となり、信号線駆動回路 1200からの映像信号電圧 Vsnが画素電極に書 き込まれ、画素電位 Vdnを保持し、液晶組成物は画素電位 Vdnと対向電位 VCOM との電位差に応じて応答し、画像表示が行われ、且つ、液晶交流駆動が実現される
[0013] また、図 9に示したように、 TFTのゲート ドレイン間には、構成上、寄生容量 Cgd が必然的に形成されるため、図 10に示すように、電位 Vghの立ち下がり時に、画素 電位 Vdには寄生容量 Cgdに起因するレベルシフト AVdが生じる。このように TFTに 必然的に形成される寄生容量 Cgdに起因して画素電位 Vdに生じるレベルシフト Δν dは、走査信号の非走査時電圧 (TFTのオフ時電圧)を Vglとすると、
AVd=Cgd- (Vgh - Vgl) / (Clc + Cs + Cgd)
となり、表示画像にフリツ力や表示劣化等を生じさせるといった問題を引き起こしてし まうため、一層の高精細、高品位を指向する液晶表示装置にとっては全く好ましくな い。
[0014] そこで従来では、例えば対向電極に寄生容量 Cgdに起因するレベルシフト AVdを 予め低減させるように対向電位 VCOMにノィァスすることなどが考えられて 、る。
[0015] ところで、上記従来の技術では、図 7に示すようにガラスなどの透明な絶縁性基板 1 00上に形成された走査信号線 G (l)、 G (2)、〜G (j)、〜G (M)は、信号伝播遅延 のない理想配線で形成することは難しぐある程度信号伝播遅延が生じる信号遅延 経路である。
[0016] 図 11は、 1本の走査信号線 G (j)の信号伝播遅延に着目した場合の伝播等価回路 である。図 11中、 rgl、 rg2、 rg3、一rgNは、主に、走査信号線を形成する配線材料 の抵抗成分、及び配線幅、配線長による抵抗成分を示すものである。また、 cgl、 eg 2、 cg3、一cgNは、構成上、走査信号線と容量結合関係にある各種寄生容量を示 すものであり、たとえば、信号線と交差することによって生じるクロス容量などで構成さ れる。このように走査信号線は、分布定数型の信号伝播遅延経路になっている。
[0017] 図 12は、走査信号線に上記走査信号線駆動回路 1300から入力された走査信号 VG (j)が走査信号線の上述した信号伝播遅延特性によりパネル内部でなまって!/、く 様子を示したものである。図 12中、波形 Vg (l, j)は走査信号線駆動回路 1300の出 力直後の g (l, j)付近の波形であり、波形なまりは殆ど無い。これに対して、同図中、 波形 Vg (N, j)は走査信号線終端部 g (N, j)付近の波形で上記走査信号線の信号 伝播遅延特性により波形がなまっている。波形なまりにより、単位時間当りの変化量 S yNが発生している。
[0018] また、 TFTは、完全な ONZOFFスィッチではなぐ図 13に示すような V— I特性( ゲート電圧—ドレイン電流特性)をもっている。図 13中、横軸は TFTのゲートに印加 される電圧を示し、縦軸はドレイン電流を示す。通常、走査パルスは、 TFTをオン状 態にするのに十分な電位 Vghと、 TFTをオフするのに十分な電位 Vglとの 2電位と〖こ より構成されているが、図示するように TFTのしきい値 VT力 Vghレベルまでに中間 的なオン領域 (リニア領域)が存在する。
[0019] したがって、図 12に示すように、走査信号線駆動回路 1300の出力直後の g (l, j) に位置する画素では、走査信号の Vghから Vglへの立ち下がりが瞬時に立ち下がる ので、上記 TFTのリニア領域の特性が影響せず、上述の寄生容量 Cgdに起因して、 画素電位 Vd (l, j)に生じるレベルシフト AVd (l)は、 AVd (l) =Cgd' (Vgh—Vgl ) / (Clc + Cs + Cgd)と近似できる。
[0020] ところが、走査信号線終端部 g (N, j)付近に位置する画素では走査信号の立ち下 力 Sりがなまっているため、上記 TFTのリニア領域の特性が影響し、走査信号が Vghか ら TFTのしきい値レベル VT付近まで立ち下がる間は TFTがリニア状態でオンのた め寄生容量 Cgdに起因する画素電位 Vdに生じるレベルシフトは発生せず、走査信 号が更にしき 、値レベル VT付近から Vglに変化する領域にぉ 、て、上述した寄生容 量 Cgdに起因して画素電位 Vd (N, j)に生じるレベルシフト AVd (N)が発生する。し たがって、レベルシフト AVd (N)は、 AVd (N)く Cgd' (Vgh-Vgl) / (Clc + Cs + Cgd)となり、 AVd (l) > AVd (N)を満足する。 [0021] このように、このパネル内での寄生容量 Cgdに起因して画素電位 Vdに生じるレべ ルシフト AVdのズレは表示面内で均一でなぐ画面の大型化、高精細化によって、 無視できなくなる。したがって、従来方式の対向電圧のバイアス方法では表示面内の レベルシフトの不均一を吸収できず、各画素を最適交流駆動できないので、フリツ力 の発生や、 DC成分印加による焼き付け残像などの不具合を招来することになる。
[0022] 上記不具合を解消する発明としては、特許文献 1に記載の表示装置が存在する。
以下に、図面を参照しながら当該表示装置について説明する。図 14は、当該表示 装置の走査信号線駆動回路 2001の構成を示したブロック図である。図 15 (a)は、走 查信号線駆動回路 2001で生成される信号の波形を示した図であり、図 15 (b)は、 走査信号線駆動回路 2001から出力される走査信号の波形を示した図である。
[0023] 図 14に示すように、上記走査信号線駆動回路 2001は、一つの表示装置に対して 複数個設けられる。走査信号線駆動回路 2001は、内部モジュレーション部 2002お よび走査信号線駆動部 2003を含む。
[0024] 内部モジュレーション部 2002には、電位 Vghが入力している。内部モジユレーショ ン部 2002は、当該電位 Vghを変調して図 15 (a)に示す鋸歯が上下反転した波形を 持つ駆動信号 VMを生成する。走査信号線駆動部 2003は、上記駆動信号 VMから 図 15 (b)に示す走査信号 VGを生成する。当該走査信号 VGは、電位 Vglから電位 V ghへと垂直に立ち上がり、電位 Vghを所定期間だけ維持した後、斜め方向に直線的 に降下し、最後に略垂直に電位 Vgほで降下する波形を有する。このように、走査信 号 VGの立下り部分が傾斜することにより、走査信号 VGの立下り部分の波形がなまり にくくなる。そのため、図 13に示す TFTのリニア領域の特性の影響が、走査信号線 駆動回路 1300の出力直後に配置される TFTと走査信号線の終端部に配置される T FTとで略等しくなる。その結果、パネル内での寄生容量 Cgdに起因して画素電位 V dに生じるレベルシフト AVdを表示面内で均一に近づけることが可能となる。
特許文献 1:特表平 10 - 504911号公報
発明の開示
発明が解決しょうとする課題
[0025] し力しながら、上記表示装置では、生成される走査信号 VGの波形が均一にならな いという問題が存在する。以下に、図面を参照しながら詳しく説明する。図 16は、上 記従来の表示装置の走査信号線駆動回路 2001— 1〜4で生成される駆動信号 VM 1〜4の波形を示した図である。
[0026] 近年、表示装置の大型化及び高精細化が進んでいる。大型化された表示装置に おいて、一つの走査信号線駆動回路により全ての走査信号線を駆動しょうとすると、 当該一つの走査信号線駆動回路に全ての各走査信号線が接続される。この場合、 走査信号線駆動回路から近!ヽ位置に設けられた走査信号線と、走査信号線駆動回 路力 遠い位置に設けられた走査信号線との間には走査信号の遅延量に差が生じ てしまう。このような遅延は、表示装置の表示品位に悪影響を及ぼす。
[0027] また、走査信号線駆動回路が駆動を受け持つことができる走査線の本数には限り がある。そのため、多数の走査線が存在する高精細化された表示装置では、一つの 走査信号線駆動回路により全ての走査線の駆動を受け持つことができない。
[0028] そこで、図 14では、走査信号線駆動回路 2001を複数個設けている。これにより、 表示装置の大型化及び高精細化に対応している。具体的には、複数の走査信号線 駆動回路 2001を設けることにより、走査信号線駆動回路と各走査信号線との距離の ばらつきを小さくすると共に、駆動可能な走査信号線の本数を多くしている。
[0029] ここで、駆動信号 VMは、各内部モジュレーション部 2002において生成されている 。当該内部モジュレーション部 2002は、配線やトランジスタ等の電気回路により構成 されている。電気回路には、製造ばらつきが存在する。そのため、各内部モジユレ一 シヨン部 2002から出力される駆動信号 VMの波形は、図 16に示すように内部モジュ レーシヨン部 2002毎に異なる。そして、走査信号 VGの波形も、走査信号線駆動回 路 2001毎に異なる。このように、走査信号線 VGが走査信号線駆動回路 2001毎に 異なると、 TFTの駆動条件が走査信号線駆動回路 2001毎に異なってしまう。その結 果、液晶表示装置の表示品位の低下が発生してしまう。
[0030] そこで、本発明の目的は、複数の走査信号線駆動回路が設けられた表示装置にお いて表示品位を向上させることにある。
課題を解決するための手段
[0031] 第 1の発明は、複数の走査信号線と、複数の映像信号線と、当該走査信号線を駆 動するための走査信号を生成する複数の走査信号線駆動回路とを備える表示装置 であって、各前記走査信号線駆動回路は、電位が高電位から、当該高電位と低電位 との中間電位まで傾斜するように低下し、その後、当該中間電位力 当該高電位ま で上昇する電位変化を伴う波形の駆動信号を内部において生成しており、各前記走 查信号線駆動回路同士を接続し、電位が前記駆動信号の電位となって!ヽる信号配 線を更に備える表示装置である。
[0032] 第 2の発明は、第 1の発明に従属する発明であって、前記駆動信号が、電位が高 電位から、当該高電位と低電位との中間電位まで傾斜するように低下し、その後、当 該中間電位力 当該高電位まで上昇する電位変化を伴う波形を一周期に一つずつ 含む表示装置である。
[0033] 第 3の発明は、第 2の発明に従属する発明であって、前記走査信号駆動回路には 、前記一周期毎に 1つのパルスが含まれる周期信号が入力している表示装置である
[0034] 第 4の発明は、第 3の発明に従属する発明であって、前記周期信号において一周 期のうちのパルス以外の期間の長さと、前記駆動信号の前記高電位と前記低電位と の前記中間電位まで傾斜するように低下する期間の長さとが、一致している表示装 置である。
[0035] 第 5の発明は、第 3の発明に従属する発明であって、前記周期信号は、前記駆動 信号の当該高電位と低電位との中間電位まで傾斜するように低下する部分を生成す るために、前記走査信号駆動回路に入力している表示装置である。
[0036] 第 6の発明は、第 1の発明から第 5の発明に従属する発明であって、前記高電位か ら前記中間電位まで傾斜するように低下する前記駆動信号の電位変化は、前記走 查信号の高電位と低電位との間の変化の一部を傾斜させるための変化である表示 装置である。
[0037] 第 7の発明は、第 1の発明から第 6の発明に従属する発明であって、前記信号配線 の電位は、各前記走査信号線駆動回路で生成された駆動信号の電位が平均化され た電位である表示装置である。
[0038] 第 8の発明は、第 1の発明から第 7の発明に従属する発明であって、各前記走査信 号線駆動回路は、前記高電位の電位を有する信号に基づいて、前記駆動信号を生 成する駆動信号生成回路と、前記駆動信号生成回路が生成した前記駆動信号に基 づいて、前記走査信号を生成する走査信号生成回路と、前記駆動信号を前記駆動 信号生成回路から前記走査信号生成回路へと伝送する内部配線とを含み、各前記 内部配線は、前記信号配線により互いに接続されている表示装置である。
発明の効果
[0039] 各走査信号線駆動回路が信号配線により接続されることで、信号配線に印加され る駆動信号の電位は、各走査信号線駆動回路で生成された駆動信号の電位が平均 ィ匕されたものとなる。これにより、各走査信号線駆動回路で生成された駆動信号の電 位のばらつきが抑制される。その結果、各走査信号線駆動回路は、駆動信号を用い て走査信号を生成した場合、走査信号線駆動回路間で波形のばらつきが少ない走 查信号を生成することが可能となる。
図面の簡単な説明
[0040] [図 1]本発明の一実施形態に係る液晶表示装置 1の全体構成を示したブロック図で ある。
[図 2]クロック信号 GCKの波形、周期信号 Stcの波形、中間信号 Vetの波形、駆動信 号 VMの波形および走査信号 VGの波形を示した波形図である。
[図 3]走査線駆動回路 300— 1〜3の構成を示したブロック図である。
[図 4]内部モジュレーション部 310— 1の構成を示した回路図である。
[図 5]走査信号線駆動部 315— 1の構成を示したブロック図である。
[図 6]絶縁性基板 100に映像信号駆動回路 200および走査信号線駆動回路 300が 実装された例を示した平面図である。
[図 7]従来の液晶表示装置の全体構成を示したブロック図である。
[図 8]従来の走査信号線駆動部 1315の構成を示したブロック図である。
[図 9]画素容量 Clcと補助容量 Csとが対向電極駆動回路 COMの対向電位 VCOM に並列に接続されている構成の 1表示画素 P (i, j)の等価回路を示す回路図である。
[図 10]従来の液晶表示装置の駆動波形を示す波形図である。
[図 11] 1本の走査信号線 G (j)の信号伝播遅延に着目した場合の伝播等価回路図で ある。
[図 12]走査信号線に上記走査信号線駆動部 1315から入力された走査信号 VG (j) が走査信号線の上述した信号伝播遅延特性によりパネル内部でなまっていく様子を 示した波形図である。
[図 13]トランジスタの特性を示したグラフである。
[図 14]従来の表示装置の走査信号線駆動回路 2001の構成を示したブロック図であ る。
圆 15(a)]走査信号線駆動回路 2001で生成される信号の波形を示した波形図である 圆 15(b)]走査信号線駆動回路 2001から出力される走査信号の波形を示した波形 図である。
[図 16]従来の表示装置の走査信号線駆動回路 2001— 1〜4で生成される駆動信号 VM1〜4の波形を示した波形図である。
符号の説明
1 揿 tT曰表示装置
100 絶縁性基板
101 対向電極
200 映像信号線駆動回路
300 走査信号線駆動回路
305 信号配線
310 内部モジュレーション部(変調部)
315 走査信号線駆動部
600 コントロール回路
700 フレキシブルプリント基板
750 硬質基板
800 フレキシブルプリント基板
850 硬質基板
COM 対向電極駆動回路 発明を実施するための最良の形態
[0042] 以下に、本発明の一実施形態に係る表示装置について説明する。本実施形態に 係る表示装置は、行方向に伸びる複数の走査信号線と、列方向に伸びる複数の映 像信号線と、走査信号線を駆動するための走査信号を生成する複数の走査信号線 駆動回路とを備える液晶表示装置である。このような液晶表示装置において表示品 位を向上させることを目的として、本実施形態に係る液晶表示装置では、電位が高 電位から、当該高電位と低電位との中間電位まで傾斜するように低下し、その後、当 該中間電位力 当該高電位まで上昇する電位変化を伴う波形の駆動信号が各走査 信号線駆動回路の内部において生成されると共に、各走査信号線駆動回路同士を 接続し、電位が駆動信号の電位となって 、る信号配線が設けられて 、る。
[0043] 上述したように各走査信号線駆動回路が信号配線により接続されることで、信号配 線に印加される駆動信号の電位は、各走査信号線駆動回路で生成された駆動信号 の電位が平均化されたものとなる。これにより、各走査信号線駆動回路で生成された 駆動信号の電位のばらつきが抑制される。その結果、各走査信号線駆動回路は、駆 動信号を用いて走査信号を生成した場合、走査信号線駆動回路間で波形のばらつ きが少な!/、走査信号を生成することが可能となる。
[0044] (液晶表示装置の全体構成)
以下に本実施形態に係る液晶表示装置の詳細について図面を参照しながら説明 する。図 1は、当該液晶表示装置 1の全体構成を示した図である。当該液晶表示装 置 1は、絶縁性基板 100、対向電極 101、映像信号線駆動回路 200— 1および 2、走 查信号線駆動回路 300— 1〜3、信号配線 305、コントロール回路 600ならびに対向 電極駆動回路 COMを備え、フレーム反転駆動を行う表示装置である。なお、当該液 晶表示装置 1は、フレーム反転駆動以外の反転駆動を行うものであってもよい。
[0045] 絶縁性基板 100は、ガラス基板により形成されるアクティブマトリクス基板であって、 その主面には、映像信号線 S (1)〜S (N)、走査信号線 G (1)〜G (M)および表示画 素 P (i, j) (iは 1〜Nの整数、 jは 1〜Mの整数)が形成される。映像信号線 S (1)〜S ( N)は、列方向に伸びるように配置され、映像信号線駆動回路 200— 1または 2により 、表示内容に応じた電位を有する映像信号が印加される。走査信号線 G (1)〜G (M )は、行方向に伸びるように配置され、走査信号線駆動回路 300— 1〜3により、走査 信号が印加される。なお、冽目の映像信号線を指す場合には、映像信号線 s (i) (iは 1〜Nの整数)とし、映像信号線全般を指す場合には、映像信号線 sと記載する。同 様に、 j行目の走査信号線を指す場合には、走査信号線 G (j) (jは 1〜Mの整数)とし 、走査信号線全般を指す場合には、走査信号線 Gと記載する。同様に、 i列目 j行目 の表示画素を指す場合には、表示画素 P (i, j) (iは 1〜Nの整数、 jは 1〜Mの整数) とし、表示画素を指す場合には、表示画素 Pと記載する。
[0046] 表示画素 P (i, j)は、映像信号線 S (i)と走査信号線 G (j)との交点近傍に配置され る。これにより、表示画素 Pは、絶縁性基板 100の主面上にマトリクス状に配置される 。各表示画素 P (i, j)は、トランジスタ (TFT) 102および画素電極 103を含む。以下、 映像信号線 S (i)と走査信号線 G (j)との交点近傍に配置されるトランジスタ 102をトラ ンジスタ T(i, j)と称す。当該トランジスタ T(i, j)のソースは、対応する映像信号線 S (i )に接続され、当該トランジスタ T(i, j)のゲートは、対応する走査信号線 G (j)に接続 される。画素電極 103は、トランジスタ 102のドレインに接続される。
[0047] 対向電極 101は、図示しない対向基板の主面の略全面に亘つて形成され、対向電 極駆動回路 COMからの所定の電位を有する対向電圧の印加を受けている。対向電 極 101と画素電極 103との間には、液晶層が設けられている。この液晶層は、対向電 極 101と画素電極 103との電位差に応じて、その光の透過率が変化するものである。 すなわち、表示画素 Pを所望の透過率に設定したい場合には、当該透過率に応じた 電位を持った映像信号が映像信号線 Sに印加されると共に、トランジスタ Tを導通さ せるための走査信号が走査信号線 Gに印加される。これにより、トランジスタ Tを介し て画素電極 103が所望の電位に充電され、表示画素 Pにおける透過率が所望の透 過率に制御される。
[0048] コントロール回路 600は、図 2に示すような、映像信号線駆動回路 200— 1および 2 ならびに走査信号線駆動回路 300— 1〜3を動作させるためのクロック信号 GCKお よび周期信号 Stcを生成する。ここで、図 2は、クロック信号 GCKの波形、周期信号 S tcの波形、中間信号 Vetの波形、駆動信号 VMの波形および走査信号 VGの波形を 示した図である。なお、クロック信号 GCK、周期信号 Stcおよび走査信号 VGの波形 の詳細については後述する。
[0049] 映像信号線駆動回路 200— 1および 2は、クロック信号 GCKを用いて、外部から入 力してくる映像信号を映像信号線 Sに対して印加する。走査信号線駆動回路 300— 1〜3は、クロック信号 GCKおよび周期信号 Stcを用いて、図 2に示すような、走査信 号 VGを生成し、走査信号線 Gに印加する。以下に、当該走査信号線駆動回路 300 1〜3の詳細について図面を参照しながら説明する。
[0050] (走査信号線駆動回路の構成)
図 3は、走査信号線駆動回路 300— 1〜3の構成を示したブロック図である。以下、 走査信号線駆動回路 300— 1に注目して説明を行う。
[0051] 走査信号線駆動回路 300— 1は、内部モジュレーション部 310— 1および走査信号 線駆動部 315— 1を含む。内部モジュレーション部 310— 1は、電位 Vglおよび周期 信号 Stcに基づいて、図 2に示す中間信号 Vetを生成した後、当該中間信号 Vetお よび高電位の電位 Vghに基づいて、図 2に示す駆動信号 VM1を生成する。なお、 駆動信号 VM1は、内部モジュレーション部 310— 1が生成した駆動信号 VMを指し 、駆動信号 VM2は、内部モジュレーション部 310— 2が生成した駆動信号 VMを指 し、駆動信号 VM3は、内部モジュレーション部 310— 3が生成した駆動信号 VMを 指す。また、電位 Vglは、トランジスタ 102のゲートに印加された場合に、当該トランジ スタ 102を非導通状態に制御できるゲートオフ電圧をソース ゲート間に発生させる ための電位であり、ここでは一例として接地電位としている。走査信号線駆動部 315 1は、内部モジュレーション部 310—1が生成した駆動信号 VM1に基づいて、図 2 に示す走査信号 VGを生成する。
[0052] 図 4は、上記内部モジュレーション部 310— 1の構成を示した回路図である。当該 内部モジュレーション部 310— 1は、抵抗 Rl、 R2、 R3および Rct、オペアンプ OP、 コンデンサ Cct、定電流源 letおよびスィッチ SW3を含む。
[0053] 周期信号 Stcは、図 2に示す走査信号 VGの傾斜部分を生成するための傾斜期間 制御信号 (充電制御信号および放電制御信号)であり、コンデンサ Cctに並列に接 続されたスィッチ SW3の開閉制御を行う。当該周期信号 Stcは、所定期間だけハイ レベルになるパルスが一周期に 1つ含まれる波形を有する。ハイレベルであるパルス の期間ではスィッチ SW3が導通状態に制御され、ローレベルであるパルス以外の期 間ではスィッチ SW3が非導通状態に制御される。
[0054] 定電流源 letは、抵抗 Retを介してコンデンサ Cctの一端に接続されており、コンデ ンサ Cctの他端は接地されている。コンデンサ Cctの両端の電圧である中間信号 Vet は、抵抗 R3を介してオペアンプ OPの反転入力端子に接続されている。このオペァ ンプ OPの反転入力端子と出力端子との間には抵抗 R4が接続されている。
[0055] 上記周期信号 Stcは、図 2に示したように、クロック信号 GCKと同期するように形成 されればよぐ例えば、モノマルチバイブレータ等(図示しない)を使用してコントロー ル回路 600において作成できる。なお、当該周期信号 Stcは、走査信号線駆動回路 300— 1の内部にて生成されてもよい。上記スィッチ SW3は、上記周期信号 Stcがハ ィレベルの期間中に導通状態になる一方、ローレベルの期間中に非導通状態になる
[0056] 一方、オペアンプ OPの非反転入力端子には抵抗 R2および抵抗 R1の一端がそれ ぞれ接続されている。抵抗 R2の他端は接地されており、抵抗 R1の他端は電位 Vgh が印加される。この信号電位 Vghは、上記 TFTをオン状態にするのに十分なゲート オン電圧をドレイン一ソース間に発生させるための電位である。オペアンプ OPの出 力端子からは、駆動信号 VMが出力される。上述したように駆動信号 VMの傾斜部 分および中間信号 Vetの傾斜部分は、周期信号 Stcの低い電位の部分に基づいて 生成される。そのため、図 2に示すように、駆動信号 VMの傾斜部分の長さおよび中 間信号 Vetの傾斜部分の長さと、周期信号 Stcの電位の低 、部分 (パルス以外の期 間の部分)の長さとは一致する。
[0057] なお、上記オペアンプ OP、抵抗 Rl、 R2、 R3および R4は減算部を構成するもので ある。この減算部では、次の減算処理が行われる。
[0058] VM=Vgh- (R2/ (R1 +R2) ) · (1 + (R4/R3) ) - (R4/R3) - Vet
ここで、 R1 =R4、 R2=R3、及び A=R4/R3とすると、
VM=Vgh-A-Vct
となる。
[0059] 図 5は、走査信号線駆動部 315— 1の構成を示した図である。当該走査信号線駆 動部 315— 1は、シフトレジスタ 3a、選択スィッチ 3bおよび端子 T1〜T4を含む。
[0060] 端子 T1には、クロック信号 GCKが印加される。端子 Τ2には、データ信号 GSPが印 加される。端子 Τ3には、トランジスタ 102のゲートに印加された場合に、当該トランジ スタ 102を非導通状態に制御できるゲートオフ電圧をソース ゲート間に発生させる ための電位 Vglが印加される。端子 T4には、駆動信号 VM1が印加される。シフトレ ジスタ 3aは、走査信号線 Gの本数に対応する k段のフリップフロップ Fl〜Fkにより構 成される。フリップフロップ Fl〜Fk—lは、クロック信号 GCKに基づいて、次段のフリ ップフロップ F2〜Fkにデータ信号 GSPを転送する。そして、各フリップフロップ Fl〜 Fkは、データ信号 GSPを転送する際に、サンプリングノルスを選択スィッチ 3bに出 力する。すなわち、データ信号 GSPの転送にしたがって、上流の選択スィッチ 3bから 下流の選択スィッチ 3bへと順番にサンプリングパルスが出力される。なお、フリップフ ロップ Fl〜Fkを総称する場合には、フリップフロップ Fと記載する。
[0061] 選択スィッチ 3bは、走査信号線 Gに 1対 1対応する数だけ設けられ、サンプリングパ ルスにしたがって 2つの入力のうちのいずれか一方を選択して出力するスィッチであ る。当該選択スィッチ 3bの 2つの入力端子には、駆動信号 VM1と電位 Vglとが印加 されている。選択スィッチ 3bの出力端子には、走査信号線 Gが 1本ずつ接続されて いる。選択スィッチ 3bは、サンプリングパルスが出力されてきたときには駆動信号 VM 1を選択し、サンプリングパルスが出力されてきていないときには電位 Vglを選択する 。これにより、図 2に示すような駆動信号 VM1の一周期分が切り取られた波形を有す る走査信号 VGが生成される。具体的には、当該走査信号 VGは、電位 Vglカゝら電位 Vghへと垂直に立ち上がり、電位 Vghを所定期間だけ維持した後、斜め方向に直線 的に降下し、最後に略垂直に電位 Vgほで降下する波形を有する。なお、当該走査 信号 VGの傾斜部分の終点の電位は、トランジスタ 102を導通状態にするための閾 値電圧を発生させるための電位 VTよりも高 、電位であることが望ま U、。
[0062] (信号配線の構成)
ここで、信号配線 305について説明する。本実施形態に係る液晶表示装置 1では、 信号配線 305は、図 1に示すように各走査信号線駆動回路 300— 1〜3のそれぞれ を接続し、駆動信号 VMが印加される配線である。より具体的には、図 3に示すように 、内部モジュレーション部 310— 1と走査信号線駆動部 315 - 1とを接続する内部配 線と、内部モジュレーション部 310— 2と走査信号線駆動部 315— 2とを接続する内 部配線と、内部モジュレーション部 310— 3と走査信号線駆動部 315— 3とを接続す る内部配線とが信号配線 305により接続される。これにより、各内部配線に印加され る駆動信号 VM1〜3の波形が平均化される。
[0063] (液晶表示装置の動作)
以上のように構成された本実施形態に係る液晶表示装置の動作について以下に 図面を参照しながら説明する。なお、ここでは、走査信号線駆動回路 300— 1〜3の 動作に着目して説明を行う。
[0064] 図 2に示すように、周期信号 Stcがローレベルの期間中、図 4に示すスィッチ SW3 は非導通状態に制御され、抵抗 Retを介して定電流源 letからコンデンサ Cctへ電荷 が充電される。これにより、中間信号 Vetの電位は、周期信号 Stcがローレベルの期 間中、図 2に示すように傾斜して上昇する。
[0065] このとき、減算部においては、中間信号 Vetの電位が A (=R4ZR3)倍されたもの が電位 Vghから減算され、図 2に示すように、電位が電位 Vghから、当該 Vghと接地 電位 Vglとの中間電位まで傾斜するように低下する傾斜部分の波形が得られる。な お、 Aを変化させることによって、任意の傾き Vslopeで駆動信号 VMを立ち下げるこ とが可能となる。
[0066] これに対して、上記周期信号 Stcがハイレベルの期間中、上記スィッチ SW3は導 通状態に制御される。そのため、コンデンサ Cctに充電された電荷は、スィッチ SW3 を介して放電される。これ〖こより、中間信号 Vetの電位は図 2に示すように接地電位 になる。このとき、減算部においては、電位 Vghから中間信号 Vetの電位を A (=R4 ZR3)倍されたものが減算される。ただし、中間信号 Vetの電位が接地電位であるた め、電位 Vghが、図 2に示すように、駆動信号 VMとして出力される。
[0067] 以上のように、中間信号 Vetは、周期信号 Stcの制御に伴って、最大振幅が Vcth の鋸歯状の波形となる。具体的には、中間信号 Vetは、周期信号 Stcにおいて一周 期のうちのパルス以外の期間では電位が上昇し、パルスの期間では接地電位となる 波形を有する。また、駆動信号 VMは、鋸歯状の波形を上下反転させた波形となる。 具体的には、駆動信号 VMは、電位が高電位から、当該高電位と低電位との中間電 位まで傾斜するように低下し、その後、当該中間電位から当該高電位まで上昇する 電位変化を伴う波形を一周期に一つずつ含んでいる。駆動信号 VMの傾斜部分の 始期と中間信号 Vetの傾斜部分の始期とは一致しており、駆動信号 VMの傾斜部分 の終期と中間信号 Vetの傾斜部分の終期とは一致している。なお、当該駆動信号 V Mは、傾斜期間 Tslope、傾斜量 Vslopeの波形となる。この傾斜量 Vslopeは、 Vslop e=Vcth- (R4ZR3)となり抵抗 R4、 R3の設定で容易に調整できる。しカゝも、出力信 号 VDlbはオペアンプ OPの出力であるので、インピーダンスが低くなる(次段からォ ぺアンプ OPを見た場合のインピーダンスが小さくなる)。
[0068] 各内部モジュレーション部(変調部) 310— 1〜3は、図 3の内部配線を介して、生 成した駆動信号 VM1〜3を対応する走査信号線駆動部 315— 1〜3に出力する。こ こで、各内部配線は信号配線 305により接続されているので、各駆動信号 VM1〜3 の波形は平均化される。すなわち、各走査信号線駆動部 315— 1〜3には、波形が 略等しい駆動信号 VM1〜3が入力する。上記駆動信号 VM1〜3が走査信号線駆 動部 315— 1〜3に入力すると、走査信号線駆動部 315— 1〜3は、当該駆動信号 V Ml〜3に基づいて、走査信号 Gを生成する。具体的には、図 5に示すシフトレジスタ 3aでは、クロック信号 GCKに基づいて、各フリップフロップ F力 次段のフリップフロッ プにデータ信号 GSPを転送する動作が繰り返される。このデータ信号 GSPの転送に 応じて、サンプリングパルス力 フリップフロップ F力も選択スィッチ 3bに対して出力さ れる。
[0069] ここで、サンプリングパルスが印加されて!、な!/、選択スィッチ 3bは、電位 Vglを選択 し、当該電位 Vglを走査信号線 Gに対して出力する。一方、サンプリングパルスが印 カロされている選択スィッチ 3bは、駆動信号 VMを選択し、当該駆動信号 VMを走査 信号線 Gに対して出力する。これにより、図 2に示すような走査信号 VGが走査信号 線 Gに対して印加されるようになる。
[0070] 以上のように、本実施形態に係る液晶表示装置によれば、走査信号 VGの立下り時 に垂直ではなく傾斜するように立ち下がっているので、走査信号 VGの立下り部分の 波形がなまりにくくなる。そのため、図 13に示す TFTのリニア領域の特'性の影響が、 走査信号線駆動回路 300の出力直後に配置される TFTと走査信号線の終端部に 配置される TFTとで略等しくなる。その結果、パネル内での寄生容量 Cgdに起因して 画素電位 Vdに生じるレベルシフト AVdを表示面内で均一に近づけることが可能とな る。これにより、液晶表示装置の表示領域の右側と左側との間において表示品位に 差が出るという問題が解消される。
[0071] また、走査信号線駆動回路 300— 1〜3の内部配線が信号配線 305により接続さ れているので、当該内部配線に印加されている駆動信号 VM1〜3のそれぞれの波 形が平均化される。より具体的には、駆動信号 VM1〜3のそれぞれの傾斜部分の傾 きが略等しくなる。ここで、走査信号線駆動部 315— 1〜3は、当該駆動信号 VM1〜 3に基づいて走査信号 VGを生成している。そのため、駆動信号 VM1〜3のそれぞ れの傾斜部分の傾きが略等 、と、走査信号 VGの傾斜部分の傾きが略等しくなる。 これにより、走査信号線駆動回路 300— 1〜3のそれぞれに対応する表示エリア毎に 表示品位が異なってしまうという問題が解消される。
[0072] なお、走査信号線駆動回路 300— 1〜3のそれぞれに対応する表示エリア毎に表 示品位が異なってしまうという問題は、走査信号線駆動回路 300— 1〜3ごとに別々 の内部モジュレーション部 310— 1〜3によって駆動信号 VM1〜3を生成しているこ とに起因しているのであることから、駆動信号 VM1〜3の波形が本実施形態におい て説明した波形以外のものであっても同様の問題は発生し得る。このような問題は、 走査信号線駆動回路 300— 1〜3の内部配線が信号配線 305により接続され、当該 内部配線に印加されている駆動信号 VM1〜3のそれぞれの波形が平均化されるこ とによって同じく解消されること〖こなる。
[0073] また、本実施形態に係る液晶表示装置では、シフトレジスタ 3aから出力されるサン プリングパルスを用いて駆動信号 VMの一周期分の波形を切り出して走査信号 Gの パルス波形を生成している力 当該駆動信号 VMの利用方法はこれに限らない。駆 動信号 VMの傾斜部分が、走査信号 Gの傾斜部分の生成に用いられてさえ 、ればよ い。
[0074] 本実施形態に係る液晶表示装置では、駆動信号 VMおよび走査信号線 VGは、図 2にお 、て直線的に傾斜して ヽるが、駆動信号 VMおよび走査信号線 VGの傾斜部 分は、直線に限らない。当該傾斜部分は、略直線形状を有していればよい。なお、こ の略の幅は、駆動信号 VMおよび走査信号線 VGの生成時に生じる遅延程度の幅 である。
[0075] なお、本実施形態に係る液晶表示装置は、例えば、携帯電話機や PDA (Personal Digital Assistance)等の小型の液晶表示装置やパソコンのモニターやテレビ等の大 型の液晶表示装置である。ただし、本実施形態に係る液晶表示装置は、パソコンの モニターやテレビ等の大型の液晶表示装置であることが望ましい。これは、大型の液 晶表示装置の方が小型の液晶表示装置よりも走査信号線 Gが長くなり、走査信号線 Gの両端部間での走査信号 VGの波形のなまりが大きくなり、当該なまりを原因とする レベルシフト Δ Vdのばらつきの表示品位に対する影響が大きくなるからである。
[0076] (実装例)
最後に、本発明に係る液晶表示装置における映像信号線駆動回路 200および走 查信号線駆動回路 300の実装例について図面を参照しながら説明する。図 6は、絶 縁性基板 100に映像信号線駆動回路 200および走査信号線駆動回路 300が実装 された例を示した図である。図 6には、絶縁性基板 100、映像信号線駆動回路 200 1〜2、走査信号線駆動回路 300— 1〜3、フレキシブルプリント基板 700— 1〜2 および 800— 1〜3ならびに硬質基板 750および 850が記載されている。
[0077] 図 6に示す実装例では、映像信号線駆動回路 200— 1〜2および走査信号線駆動 回路 300— 1〜3は、それぞれ一つの半導体チップにより構成されている。硬質基板 750は、例えば、榭脂により構成され、主面上に回路が形成された基板である。フレ キシブルプリント基板 700— 1〜2は、可撓性性材料により構成され、回路が形成され た基板である。当該フレキシブルプリント基板 700— 1の主面上には、映像信号線駆 動回路 200— 1が実装されている。また、当該フレキシブルプリント基板 700— 1の一 端は硬質基板に実装され、当該フレキシブルプリント基板 700— 2の他端は絶縁性 基板 100に実装される。これにより、硬質基板 750に形成された回路と映像信号線駆 動回路 200— 1と絶縁性基板 100に形成された回路との間で信号のやり取りを行うこ とができるようになつている。なお、フレキシブルプリント基板 700— 2については、フ レキシブルプリント基板 700— 1と同様であるので説明を省略する。 [0078] 硬質基板 850は、例えば、榭脂により構成され、主面上に回路が形成された基板 である。フレキシブルプリント基板 800— 1〜3は、可撓性材料により構成され、回路 が形成された基板である。当該フレキシブルプリント基板 800—1の主面上には、走 查信号線駆動回路 300— 1が実装されている。また、当該フレキシブルプリント基板 8 00— 1の一端は硬質基板に実装され、当該フレキシブルプリント基板 800— 2の他端 は絶縁性基板 100に実装される。これにより、硬質基板 850に形成された回路と走査 信号線駆動回路 300— 1と絶縁性基板 100に形成された回路との間で信号のやり取 りを行うことができるようになつている。なお、フレキシブルプリント基板 800— 2および 3については、フレキシブルプリント基板 800— 1と同様であるので説明を省略する。
[0079] 上記のように映像信号線駆動回路 200— 1〜2および走査信号線駆動回路 300— 1〜3が実装された液晶表示装置における信号配線 305の構成について説明する。 当該信号配線 305は、各走査信号線駆動回路 300— 1〜3を接続する配線である。 そのため、信号配線 305は、フレキシブルプリント基板 800— 1〜3のそれぞれに形 成され、硬質基板 850の主面上にぉ 、て互 、に接続されて!、る。
[0080] なお、上記実装例では、映像信号線駆動回路 200— 1〜2および走査信号線駆動 回路 300— 1〜3は、それぞれフレキシブルプリント基板 700— 1〜2および 800— 1 〜3に実装されるものとした力 映像信号線駆動回路 200— 1〜2および走査信号線 駆動回路 300— 1〜3の実装方法はこれに限らない。例えば、映像信号線駆動回路 200— 1〜2および走査信号線駆動回路 300— 1〜3は、絶縁性基板 100に COG ( Chip On Glass)実装されてもよいし、絶縁性基板 100にモノリシックに形成されてもよ い。走査信号線駆動回路 300— 1〜3が COG実装されたりモノリシックに形成された りすると、絶縁性基板 100上にお ヽて信号配線 305を形成して各走査信号線駆動回 路 300— 1〜3を接続することが可能となる。この場合、当該信号配線 305を、絶縁 性基板 100の走査信号線 Gや映像信号線 Sと同じ工程により形成できるので、信号 配線 305を新たに形成するための工程などが不要になる。
産業上の利用の可能性
[0081] 本発明は、複数の走査信号線駆動回路が設けられた表示装置において表示品位 を向上させることを目的としており、表示画素ごとにスィッチ素子として例えば薄膜トラ ンジタが配設された液晶表示装置として有用である。

Claims

請求の範囲
[1] 複数の走査信号線と、複数の映像信号線と、当該走査信号線を駆動するための走 查信号を生成する複数の走査信号線駆動回路とを備える表示装置であって、 各前記走査信号線駆動回路は、電位が高電位から、当該高電位と低電位との中 間電位まで傾斜するように低下し、その後、当該中間電位から当該高電位まで上昇 する電位変化を伴う波形の駆動信号を内部において生成しており、
各前記走査信号線駆動回路同士を接続し、電位が前記駆動信号の電位となって いる信号配線を更に備える、表示装置。
[2] 前記駆動信号は、電位が高電位から、当該高電位と低電位との中間電位まで傾斜 するように低下し、その後、当該中間電位力 当該高電位まで上昇する電位変化を 伴う波形を一周期に一つずつ含むことを特徴とする、請求項 1に記載の表示装置。
[3] 前記走査信号駆動回路には、前記一周期毎に 1つのパルスが含まれる周期信号 が入力して 、ることを特徴とする、請求項 2に記載の表示装置。
[4] 前記周期信号において一周期のうちのパルス以外の期間の長さと、前記駆動信号 の前記高電位と前記低電位との前記中間電位まで傾斜するように低下する期間の長 さとは、一致していることを特徴とする、請求項 3に記載の表示装置。
[5] 前記周期信号は、前記駆動信号の当該高電位と低電位との中間電位まで傾斜す るように低下する部分を生成するために、前記走査信号駆動回路に入力していること を特徴とする、請求項 3に記載の表示装置。
[6] 前記高電位から前記中間電位まで傾斜するように低下する前記駆動信号の電位 変化は、前記走査信号の高電位と低電位との間の変化の一部を傾斜させるための 変化であることを特徴とする、請求項 1に記載の表示装置。
[7] 前記信号配線の電位は、各前記走査信号線駆動回路で生成された駆動信号の電 位が平均化された電位であることを特徴とする、請求項 1に記載の表示装置。
[8] 各前記走査信号線駆動回路は、前記高電位の電位を有する信号に基づ!、て、前 記駆動信号を生成する駆動信号生成回路と、前記前記駆動信号生成回路が生成し た前記駆動信号に基づいて、前記走査信号を生成する走査信号生成回路と、前記 駆動信号を前記駆動信号生成回路から前記走査信号生成回路へと伝送する内部 配線とを含み、各前記内部配線は、前記信号配線により互いに接続されていることを 特徴とする、請求項 1に記載の表示装置。
入力されるゲートオン電圧及びゲートオフ電圧を用いて走査信号線に対して走査 信号を出力して前記走査信号線を駆動する走査信号線駆動回路を複数備えた表示 装置において、
前記各走査信号線駆動回路は、前記ゲートオン電圧を変調して出力する変調部と 、前記変調部の出力電圧と前記ゲートオフ電圧とを前記走査信号線に対して選択的 に出力する走査信号線駆動部とを備え、
前記各走査信号線駆動回路における変調部の出力は互いに接続されていることを 特徴とする表示装置。
PCT/JP2006/317530 2005-11-04 2006-09-05 表示装置 WO2007052408A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007542261A JP4704438B2 (ja) 2005-11-04 2006-09-05 表示装置
CN2006800410902A CN101300619B (zh) 2005-11-04 2006-09-05 显示装置
US12/091,972 US8411006B2 (en) 2005-11-04 2006-09-05 Display device including scan signal line driving circuits connected via signal wiring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005320278 2005-11-04
JP2005-320278 2005-11-04

Publications (1)

Publication Number Publication Date
WO2007052408A1 true WO2007052408A1 (ja) 2007-05-10

Family

ID=38005567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317530 WO2007052408A1 (ja) 2005-11-04 2006-09-05 表示装置

Country Status (4)

Country Link
US (1) US8411006B2 (ja)
JP (1) JP4704438B2 (ja)
CN (2) CN101300619B (ja)
WO (1) WO2007052408A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005044A1 (ja) * 2010-07-08 2012-01-12 シャープ株式会社 液晶表示装置
WO2015128904A1 (ja) * 2014-02-28 2015-09-03 パナソニック液晶ディスプレイ株式会社 表示装置及びその製造方法
JP2016517039A (ja) * 2013-04-02 2016-06-09 ビーオーイー・テクノロジー・グループ・カンパニー・リミテッド 残像除去装置、ディスプレイ及び残像除去方法
KR20160083565A (ko) * 2014-12-31 2016-07-12 엘지디스플레이 주식회사 표시장치
CN107402486A (zh) * 2017-08-31 2017-11-28 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
KR101812858B1 (ko) 2009-05-02 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346636B2 (ja) * 2006-11-16 2009-10-21 友達光電股▲ふん▼有限公司 液晶表示装置
TWI336461B (en) * 2007-03-15 2011-01-21 Au Optronics Corp Liquid crystal display and pulse adjustment circuit thereof
TWM340549U (en) * 2008-04-01 2008-09-11 Richtek Technology Corp Apparatus for decreasing internal power loss in integrated circuit package
JP2009251046A (ja) * 2008-04-01 2009-10-29 Canon Inc 画像表示装置およびその制御方法
CN102129845B (zh) * 2010-01-14 2012-12-26 群康科技(深圳)有限公司 液晶面板驱动电路和液晶显示装置
KR20130019776A (ko) * 2011-08-18 2013-02-27 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
TWI440011B (zh) * 2011-10-05 2014-06-01 Au Optronics Corp 具適應性脈波削角控制機制之液晶顯示裝置
KR102110223B1 (ko) * 2012-08-14 2020-05-14 삼성디스플레이 주식회사 구동 회로 및 이를 포함하는 표시 장치
US8890791B2 (en) 2012-10-22 2014-11-18 Shenzhen China Star Optoelectronics Technology Co., Ltd Drive circuit of liquid crystal panel
CN102914925B (zh) * 2012-10-22 2015-02-04 深圳市华星光电技术有限公司 液晶面板驱动电路
CN103198804B (zh) * 2013-03-27 2015-09-16 深圳市华星光电技术有限公司 一种液晶显示装置及其驱动方法
TWI532032B (zh) * 2013-09-30 2016-05-01 聯詠科技股份有限公司 省電方法及其相關削角電路
CN104332148A (zh) * 2014-11-20 2015-02-04 深圳市华星光电技术有限公司 液晶显示面板及其驱动方法
CN104851384B (zh) 2015-05-29 2018-04-20 合肥京东方光电科技有限公司 显示面板的驱动方法及驱动模块、显示面板及显示装置
US10809855B2 (en) * 2015-08-19 2020-10-20 Novatek Microelectronics Corp. Driving circuit and a method for driving a display panel having a touch panel
CN105118472A (zh) * 2015-10-08 2015-12-02 重庆京东方光电科技有限公司 像素阵列的栅极驱动装置及其驱动方法
CN105513552A (zh) * 2016-01-26 2016-04-20 京东方科技集团股份有限公司 驱动电路、驱动方法及显示装置
CN107665687A (zh) * 2017-10-26 2018-02-06 惠科股份有限公司 一种显示设备
CN107545873A (zh) * 2017-10-26 2018-01-05 惠科股份有限公司 一种显示设备
CN107665688A (zh) * 2017-10-26 2018-02-06 惠科股份有限公司 一种显示设备
JP2019087852A (ja) * 2017-11-06 2019-06-06 シャープ株式会社 走査アンテナおよび液晶装置
CN109686328A (zh) * 2018-12-21 2019-04-26 惠科股份有限公司 驱动装置及其显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129618A (ja) * 1988-11-10 1990-05-17 Toshiba Corp アクティブマトリクス形液晶表示装置
JPH04324418A (ja) * 1991-04-25 1992-11-13 Toshiba Corp アクティブマトリックス型表示装置用駆動回路
JPH04324419A (ja) * 1991-04-25 1992-11-13 Toshiba Corp アクティブマトリックス型表示装置の駆動方法
JPH063647A (ja) * 1992-06-18 1994-01-14 Sony Corp アクティブマトリクス型液晶表示装置の駆動方法
JPH10504911A (ja) * 1994-08-02 1998-05-12 トムソン−エルセデ 液晶表示の最適化されたアドレス指定方法及びそれを実現する装置
JPH11281957A (ja) * 1998-03-27 1999-10-15 Sharp Corp 表示装置および表示方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170430A (ja) 1984-09-13 1986-04-11 Matsushita Electric Works Ltd 電子体温計
JPS61163324A (ja) 1985-01-14 1986-07-24 Canon Inc 液晶セルの駆動方法
US5081400A (en) 1986-09-25 1992-01-14 The Board Of Trustees Of The University Of Illinois Power efficient sustain drivers and address drivers for plasma panel
JPH0833532B2 (ja) 1987-02-13 1996-03-29 富士通株式会社 アクテイブマトリクス型液晶表示装置
EP0288011A3 (en) 1987-04-20 1991-02-20 Hitachi, Ltd. Liquid crystal display device and method of driving the same
US5179371A (en) 1987-08-13 1993-01-12 Seiko Epson Corporation Liquid crystal display device for reducing unevenness of display
JP2718068B2 (ja) 1988-06-22 1998-02-25 松下電器産業株式会社 振幅制御台形波発生装置
JPH02272490A (ja) 1989-04-14 1990-11-07 Hitachi Ltd 液晶表示装置及び液晶表示装置用電源装置
JPH03294822A (ja) 1990-04-13 1991-12-26 Hitachi Ltd 液晶パネル表示装置
JPH04265991A (ja) 1991-02-21 1992-09-22 Toshiba Corp 液晶表示装置
JP2806098B2 (ja) 1991-10-09 1998-09-30 松下電器産業株式会社 表示装置の駆動方法
JPH0643833A (ja) 1992-04-24 1994-02-18 Toshiba Corp 液晶表示装置およびその駆動方法
KR950003381B1 (ko) 1992-05-26 1995-04-12 삼성전관 주식회사 플라즈마 어드레스방식의 액정표시장치 및 그 구동방법
JP3276995B2 (ja) 1992-09-04 2002-04-22 株式会社東芝 液晶表示装置
JPH06110035A (ja) 1992-09-28 1994-04-22 Seiko Epson Corp 液晶表示装置の駆動方法
JP3141312B2 (ja) 1992-12-21 2001-03-05 キヤノン株式会社 表示素子
JPH07120720A (ja) 1993-01-18 1995-05-12 Sharp Corp 液晶表示装置
JPH06317807A (ja) 1993-05-06 1994-11-15 Sharp Corp マトリクス表示装置およびその駆動方法
KR0171913B1 (ko) 1993-12-28 1999-03-20 사토 후미오 액정표시장치 및 그 구동방법
JP3715996B2 (ja) 1994-07-29 2005-11-16 株式会社日立製作所 液晶表示装置
US5714968A (en) 1994-08-09 1998-02-03 Nec Corporation Current-dependent light-emitting element drive circuit for use in active matrix display device
JP3135810B2 (ja) 1995-01-31 2001-02-19 シャープ株式会社 画像表示装置
JP3229156B2 (ja) 1995-03-15 2001-11-12 株式会社東芝 液晶表示装置
US5774099A (en) 1995-04-25 1998-06-30 Hitachi, Ltd. Liquid crystal device with wide viewing angle characteristics
KR0154799B1 (ko) 1995-09-29 1998-12-15 김광호 킥백전압을 감소시킨 박막 트랜지스터 액정 표시장치의 구동장치
JP3037886B2 (ja) 1995-12-18 2000-05-08 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置の駆動方法
JPH09258174A (ja) 1996-03-21 1997-10-03 Toshiba Corp アクティブマトリクス型液晶表示装置
US6295042B1 (en) 1996-06-05 2001-09-25 Canon Kabushiki Kaisha Display apparatus
JPH1078592A (ja) 1996-09-03 1998-03-24 Semiconductor Energy Lab Co Ltd アクティブマトリクス表示装置
JP3814365B2 (ja) 1997-03-12 2006-08-30 シャープ株式会社 液晶表示装置
JP3856919B2 (ja) 1997-08-29 2006-12-13 株式会社東芝 液晶表示装置
US6225992B1 (en) 1997-12-05 2001-05-01 United Microelectronics Corp. Method and apparatus for generating bias voltages for liquid crystal display drivers
US6421038B1 (en) 1998-09-19 2002-07-16 Lg. Philips Lcd Co., Ltd. Active matrix liquid crystal display
KR100700415B1 (ko) 1998-09-19 2007-03-27 엘지.필립스 엘시디 주식회사 액티브 매트릭스 액정표시장치
US7002542B2 (en) 1998-09-19 2006-02-21 Lg.Philips Lcd Co., Ltd. Active matrix liquid crystal display
JP4480821B2 (ja) 1999-10-28 2010-06-16 シャープ株式会社 液晶表示装置
KR100666317B1 (ko) 1999-12-15 2007-01-09 삼성전자주식회사 구동 신호 인가시점 결정모듈, 이를 포함한 액정표시패널어셈블리 및 액정표시패널 어셈블리의 구동 방법
KR100596965B1 (ko) * 2000-03-17 2006-07-04 삼성전자주식회사 구동신호 인가모듈, 이를 적용한 액정표시패널 어셈블리 및 이 액정표시패널 어셈블리의 구동신호 검사 방법
JP4712937B2 (ja) * 2000-03-27 2011-06-29 エーユー オプトロニクス コーポレイション 液晶表示装置、配線構造、電圧供給方法およびコンピュータ
TW589598B (en) 2002-09-10 2004-06-01 Au Optronics Corp Display panel to increase electrical connection by bypass bus line
KR100862945B1 (ko) 2002-11-04 2008-10-14 하이디스 테크놀로지 주식회사 칩 온 글래스 타입의 액정 표시 장치
JP4103703B2 (ja) * 2003-07-11 2008-06-18 三菱電機株式会社 Tft表示装置
JP4640951B2 (ja) * 2005-05-26 2011-03-02 シャープ株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129618A (ja) * 1988-11-10 1990-05-17 Toshiba Corp アクティブマトリクス形液晶表示装置
JPH04324418A (ja) * 1991-04-25 1992-11-13 Toshiba Corp アクティブマトリックス型表示装置用駆動回路
JPH04324419A (ja) * 1991-04-25 1992-11-13 Toshiba Corp アクティブマトリックス型表示装置の駆動方法
JPH063647A (ja) * 1992-06-18 1994-01-14 Sony Corp アクティブマトリクス型液晶表示装置の駆動方法
JPH10504911A (ja) * 1994-08-02 1998-05-12 トムソン−エルセデ 液晶表示の最適化されたアドレス指定方法及びそれを実現する装置
JPH11281957A (ja) * 1998-03-27 1999-10-15 Sharp Corp 表示装置および表示方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10915145B2 (en) 2009-05-02 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US11803213B2 (en) 2009-05-02 2023-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US11513562B2 (en) 2009-05-02 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Electronic book
KR101812858B1 (ko) 2009-05-02 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR101860692B1 (ko) 2009-05-02 2018-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 패널
US9996115B2 (en) 2009-05-02 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Electronic book
JP5525611B2 (ja) * 2010-07-08 2014-06-18 シャープ株式会社 液晶表示装置
US9081218B2 (en) 2010-07-08 2015-07-14 Sharp Kabushiki Kaisha Liquid crystal display device
WO2012005044A1 (ja) * 2010-07-08 2012-01-12 シャープ株式会社 液晶表示装置
JP2016517039A (ja) * 2013-04-02 2016-06-09 ビーオーイー・テクノロジー・グループ・カンパニー・リミテッド 残像除去装置、ディスプレイ及び残像除去方法
WO2015128904A1 (ja) * 2014-02-28 2015-09-03 パナソニック液晶ディスプレイ株式会社 表示装置及びその製造方法
KR102364096B1 (ko) 2014-12-31 2022-02-21 엘지디스플레이 주식회사 표시장치
KR20160083565A (ko) * 2014-12-31 2016-07-12 엘지디스플레이 주식회사 표시장치
US10593708B2 (en) 2017-08-31 2020-03-17 Boe Technology Group Co., Ltd. Array substrate and driving method thereof, display device
CN107402486A (zh) * 2017-08-31 2017-11-28 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US8411006B2 (en) 2013-04-02
CN101300619A (zh) 2008-11-05
CN101300619B (zh) 2010-11-17
US20090289884A1 (en) 2009-11-26
CN101944346A (zh) 2011-01-12
JP4704438B2 (ja) 2011-06-15
JPWO2007052408A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4704438B2 (ja) 表示装置
JP4931588B2 (ja) アクティブマトリクス基板およびその駆動回路
US8878829B2 (en) Liquid crystal display and common electrode drive circuit thereof
JP3406508B2 (ja) 表示装置および表示方法
CN100416347C (zh) 显示装置及其驱动电路和显示方法
US20100289785A1 (en) Display apparatus
JP3628676B2 (ja) 表示装置
JP3715306B2 (ja) 表示装置および表示方法
KR20100096383A (ko) 액정표시장치
WO2019080301A1 (zh) 一种显示设备
JP3681734B2 (ja) 表示装置および表示方法
JP4137957B2 (ja) 表示装置及びこの表示装置に用いる走査信号線駆動回路
JP2008191687A (ja) 表示装置
WO2012111551A1 (ja) 表示装置
KR20070068098A (ko) 킥백 노이즈가 감소된 액정 표시 장치
JP3832667B2 (ja) 表示装置
JP3745362B2 (ja) 表示装置および表示方法
JP3795509B2 (ja) 表示装置および表示方法
US20130307841A1 (en) Display device
KR20080021177A (ko) 액정 표시 장치
JP3754056B2 (ja) 表示装置および表示方法
KR20070068096A (ko) 액정 표시 장치
JP3754060B2 (ja) 表示装置および表示方法
WO2012102236A1 (ja) 表示装置
JP2011128642A (ja) 表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041090.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542261

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12091972

Country of ref document: US