WO2007049477A1 - イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池 - Google Patents

イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池 Download PDF

Info

Publication number
WO2007049477A1
WO2007049477A1 PCT/JP2006/320564 JP2006320564W WO2007049477A1 WO 2007049477 A1 WO2007049477 A1 WO 2007049477A1 JP 2006320564 W JP2006320564 W JP 2006320564W WO 2007049477 A1 WO2007049477 A1 WO 2007049477A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
electrolyte
photoelectric conversion
ionic liquid
gel electrolyte
Prior art date
Application number
PCT/JP2006/320564
Other languages
English (en)
French (fr)
Inventor
Nagatoshi Koumura
Koujirou Hara
Zhong-Sheng Wang
Masaru Yoshida
Nobuyuki Tamaoki
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US12/091,295 priority Critical patent/US8013241B2/en
Priority to CN200680039557XA priority patent/CN101297436B/zh
Publication of WO2007049477A1 publication Critical patent/WO2007049477A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to an ionic gel electrolyte, a dye-sensitized photoelectric conversion element, and a solar cell.
  • Non-patent document 1 Non-patent document 2
  • Patent document 1 Non-patent document 2
  • Non-patent Document 3 Non-patent literature 4
  • a dye-sensitized solar cell using an ionic liquid quasi-solid electrolyte with a low-molecular gelling agent has achieved relatively good cell stability, but the conversion efficiency is as low as 5%. Compared to a system using an electrolyte that also has organic solvent power, the value is considerably low. This cause This is thought to be due to the fact that ion conductivity is hindered by quasi-solidification.
  • the gelation ability can be improved by adding high concentrations of iodine, lithium iodide, t-butylpyridine, etc. in order to improve the conversion efficiency of the solar cell. Reduce significantly.
  • iodine lithium iodide
  • t-butylpyridine t-butylpyridine
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-93075
  • Non-patent literature l Wang et aL., J. Am. Chem. Soc, 2003, 125, 1166;
  • Non-Patent Document 2 Usui et aL., J. Photochem. PhotobioL. A: Chem., 2004, 164, 97;
  • Non-Patent Document 3 Kubo et aL "Chem. Commun., 2002, 374;
  • Non-Patent Document 4 J. Phys. Chem. B, 2003, 107, 4374
  • An object of the present invention is that an ionic liquid gel electrolyte that has been quasi-solidified (gelled) by a physical gelling agent using a conventionally known low-molecular gelling agent has a low photoelectric conversion rate.
  • the gelling agent comprising the novel oligomer (the invention of Japanese Patent Application No. 2005-040532 by the present inventors) is a linear (non-cyclic) compound represented by the following general formula (1) It is a mixture of cyclic multimeric compounds represented by formula (2).
  • This oligomer has a structure in which is coordinated to the nitrogen atom of the pyridinium so that its chemical structural formula power is also reduced. This time, it was found that the liquid electrolyte obtained by gelling the liquid electrolyte with the gelling agent composed of this oligomer exhibits good ionic conductivity.
  • n is an integer of 2 to 30
  • X is a halogen atom, tetrafluoroboric acid group (BF 4)
  • n is an integer of 2 to 30
  • X is a halogen atom, tetrafluoroboric acid group (BF 3)
  • liquid electrolyte comprises an electrolyte that counteracts redox ions and an electrolyte solvent that also has ionic liquid power.
  • a transparent conductive substrate is in contact with (b) a dye-adsorbing semiconductor electrode, and (c) the ionic liquid gel electrolyte according to (1) or (2) and (d ) A dye-sensitized photoelectric conversion element provided with a counter electrode.
  • the liquid gel electrolyte of the present invention exhibits good ionic conductivity. That is, it is quasi-solidified (gelled) while maintaining the state of the ionic liquid and exhibits good ionic conductivity.
  • this liquid gel electrolyte is used for a dye-sensitized photoelectric conversion element, the photoelectric conversion rate can be improved.
  • the phenomenon of gelling of the liquid electrolyte using an oligomer gelling agent as a physical gel was observed, indicating that the composition of the electrolyte (type of ionic liquid Conversion efficiency may be further improved by changing and optimizing the concentration of the gelling agent.
  • This solar cell which is a dye-sensitized photoelectric conversion element, has a photoelectric conversion rate of solar energy. Can be improved.
  • FIG. 1 is a structural diagram of a quasi-solid dye-sensitized photoelectric conversion element.
  • FIG. 2 Example * Example of photocurrent voltage characteristics of a pseudo-solid dye-sensitized photoelectric conversion element. Explanation of symbols
  • the gelling agent used in the present invention is an ionic organic oligomer-gelling agent mixture represented by the following general formulas (1) and (2).
  • n is an integer of 2 to 30
  • X is a halogen atom, a tetrafluoroboric acid group (BF 4)
  • the halogen atom is an atom selected from CL, Br, I or F.
  • the method for producing the ionic organic oligomer is obtained by using 4-aminoviridine and chloromethylamine as raw materials. It consists of a two-stage process consisting of a polycondensation reaction involving amide chloride and methyli of the pyridine ring and a cation exchange reaction using benzoic acid chloride. This oligomer is attributed to the present inventors (Japanese Patent Application 2005-040532).
  • the liquid electrolyte is composed of an electrolyte that counteracts redox ions and an electrolyte solvent that also functions as ionic liquid.
  • the electrolytic solution includes a redox ion pair as an electrolyte.
  • redox ion pairs are ⁇ / ⁇ -, Br ⁇ Br, Fe 2+ / Fe 3+ , Sn 2+ / Sn 4+ , Cr 2+ / Cr 3+ , V 2+
  • redox ion counterion iodine redox an imidazolium derivative containing these ions (such as dimethylpropylimidazolium iodide), lithium iodide, sodium iodide, tetraalkylammonium iodide.
  • imidazolium derivative containing these ions such as dimethylpropylimidazolium iodide
  • lithium iodide lithium iodide
  • sodium iodide sodium iodide
  • tetraalkylammonium iodide tetraalkylammonium iodide
  • bromine redox a mixture of lithium bromide, potassium bromide, tetraalkylammonium bromide and bromine containing these ions is used.
  • Preferred are lithium iodide and tetraalkyl ammonium iodide imidazolium derivatives of iodine redox.
  • the redox electrolyte concentration of the liquid electrolyte is usually 0.05 to 1M, preferably 0.1 to 0.5M. If the electrolyte concentration is less than 0.05M, the electrolyte concentration is not sufficient and satisfactory results cannot be obtained, and even if it exceeds 1M, it cannot be expected to obtain a special effect.
  • An electrolyte solvent is used to dissolve the redox electrolyte.
  • An ionic liquid is used as the electrolyte solvent.
  • the ionic liquid is not particularly limited, and examples thereof include room temperature molten salts which are liquid at room temperature and have a quaternized compound having a nitrogen atom as a cation.
  • Examples of the cation include imidazolium, pyridinium, and ammonium derivatives.
  • Examples of the cation include halogen ions, tetrafluoroborate ions, hexafluorophosphate ions, bis (trifluoromethylsulfol). ) Imide ion and the like.
  • 1-n-propyl-3-methylimidazolium iodide, 1-n-hexyl-3-methylimidazolium iodide, 1-n-octyl-3-methylimidazolium iodide, etc. Ionic liquid, or a mixed solvent thereof.
  • the ionic liquid gel electrolyte an electrolysis comprising the ionic liquid is used.
  • the electrolyte the redox ion pair ( ⁇ / ⁇ -, Br FF Br, Fe Fe 3+ , Sn Sn 4+ , Cr
  • the redox electrolyte may contain a pyridine derivative such as t-butylpyridine and a basic additive.
  • concentration of the additive in the electrolytic solution at that time is usually 0.05 to 1 M, preferably 0.1 to 0.5 M.
  • FIG. 1 shows the structure of the dye-sensitized photoelectric conversion element of the present invention.
  • Fig. 1 explains the dye-sensitized photoelectric conversion element.
  • a dye-adsorbing semiconductor electrode (b) is provided in contact with the transparent conductive substrate (a).
  • An ionic liquid gel electrolyte (c) is provided between the dye-adsorbing semiconductor electrode (b) and the counter electrode (d).
  • an oxide semiconductor thin film is used as the transparent conductive material of the transparent conductive substrate (a).
  • a doped oxide is used.
  • specific examples include tin oxide doped with fluorine or antimony (NESA), indium oxide doped with tin (ITO), and zinc oxide doped with aluminum. it can.
  • Glass or plastic is used for the substrate of the transparent conductive substrate (a).
  • the transparent conductive substrate is a coating of a conductive transparent oxide semiconductor thin film, which is the transparent conductive material, on the surface of the substrate.
  • the transparent conductive substrate (a) As the transparent conductive substrate (a), a combination of the above-described oxide semiconductor thin film and the substance described in the substrate can be used, and a fluorine-doped tin oxide thin film glass is preferably used.
  • the semiconductor thin film electrode (b) has a compound semiconductor power having a nanoporous structure (porous having a nanopore size) composed of nanoparticles.
  • the semiconductor used for the semiconductor thin film is not particularly limited as long as it has semiconductor properties, for example, TiO, ZnO, InO.
  • metal halides such as Agl, AgBr, Cul, and CuBr, as well as ZnS, TiS, InS, BiS, CdS ⁇ ZrS, TaS, AgS, CuS, SnS, WS, MoS, etc.
  • Metal sulfides such as Agl, AgBr, Cul, and CuBr, as well as ZnS, TiS, InS, BiS, CdS ⁇ ZrS, TaS, AgS, CuS, SnS, WS, MoS, etc.
  • metal selenides and tellurides include metal selenides and tellurides.
  • titanium dioxide, zinc oxide, and tin oxide are preferred.
  • titanium oxide particles When titanium oxide particles are used, a commercially available product such as P25 (Degussa or Nippon Air Port Jill) or ST-01 (Ishihara Sangyo) may be used. In addition, as described in J. Am. Ceram. Soc, 1997, 80, 3157, a crystalline acid obtained by hydrolysis, auto-rubbing, etc. from titanium alkoxide by a sol-gel method. It is also possible to use titanium particles. Preferred are acid titanium particles obtained from a titanium alkoxide by a sol-gel method.
  • the particle diameter of the semiconductor nanoparticles constituting the semiconductor thin film is 8 to 1000 nm, preferably
  • the method for forming the oxide semiconductor thin film electrode is not limited as long as it can form a film when forming the electrode. Specifically, the following two methods can be exemplified.
  • Oxide semiconductor nanoparticles are mixed with water, a polymer as a binder, and a surfactant to form a slurry. This slurry is applied onto the substrate by the doctor blade method.
  • a polymer as a binder is mixed with an organic solvent and applied onto a substrate by a screen printing method.
  • examples of the polymer include polyethylene glycol.
  • the oxide semiconductor thin film substrate thus formed is 450 to 450 in air or oxygen.
  • the structure of the oxide semiconductor thin film electrode has a porous structure in which nano-particle nanoporous structures are stacked, and the actual surface area is 1 to 10,000 times the apparent surface area, preferably 100 to 3000 times.
  • a smooth substrate is finely processed to form a high aspect ratio, rod-shaped high surface structure or a random unevenness on a substrate with a large surface area.
  • the actual surface area is 1 to 10,000 times the apparent surface area, preferably 100
  • the film thickness of the semiconductor thin film electrode is usually 2 to 100 / zm, preferably 5 to 20 / zm. is there.
  • the dye adsorbed on the surface of the semiconductor thin film electrode is (1) a metal complex having absorption in the ultraviolet, visible, or near infrared region, or (2) an organic color having absorption in the ultraviolet, visible, or near infrared region. I can mention prime.
  • non-patent document 5 Nazeeruddin et aL., J. Chem Soc, DaLton Trans. 1997, 4571
  • non-patent document 6 Nazeeruddin et aL. J. Am Chem. Soc, 2001, 123, 1613 and the like.
  • an organic dye having absorption in the ultraviolet, visible and near infrared regions, or a mixture thereof can be used as the dye to be adsorbed on the surface of the semiconductor thin film electrode.
  • Non-Patent Document 7 K. Hara et aL., SoL. Energ y Mater. SoL. CeLLs, 2003, 77, 89
  • Non-Patent Document 8 K. Hara et aL., Adv Funct. Ma ter., 2005, 15, 246, etc.
  • the dye and organic dye made of the metal complex are adsorbed on the surface of the semiconductor electrode by a chemical bond such as a metal bond, an ionic bond or a covalent bond, or a physical bond. Therefore, each of the acceptor site and the donor site has an unpaired electron as an anchor group. Any material having unpaired electrons can be used to form a bond.
  • Unpaired electrons include COOH groups, CH COOH groups, NCS groups, OH groups, and SH groups.
  • a method of adsorbing the dye on the surface of the semiconductor electrode is as follows.
  • the electrode is immersed in the dye solution at room temperature for 1 minute to 3 days, or under heating conditions for 1 minute force for 24 hours.
  • the method is immersed for 12 to 24 hours at room temperature.
  • the solvent used for adsorbing the dye on the nanoporous electrode may be any solvent that dissolves the dye.
  • an alcohol solvent such as methanol, ethanol, isopropanol, or t-butanol, or a hydrocarbon solvent such as benzene, black benzene, dichlorobenzene, dichloromethane, chlorophenol, or hexane.
  • Organic solvents such as tetrahydrofuran and acetonitrile, and mixed solvents thereof, but are not limited thereto.
  • the organic molecule concentration in the solution when the dye is adsorbed on the nanoporous electrode is a saturated amount from O. OlmM, and preferably 0.1 to 0.5 mM.
  • the counter electrode is as follows.
  • Platinum is used as the metal used for the counter electrode.
  • the counter electrode is formed by fixing platinum on the FTO glass substrate.
  • Any fixing means may be used as long as it is a means for fixing a metal to the surface of the glass substrate.
  • a spatter can be used for the fixing means.
  • the dye-sensitized photoelectric conversion element When the dye-sensitized photoelectric conversion element is allowed to act in the presence of light such as sunlight, it can be used as a solar battery.
  • the production method of the ionic organic oligomer was carried out as follows. 4.27 g of 4-aminoviridine and 8.34 g of 4- (chloromethyl) benzoic acid chloride were mixed in lOOmL of anhydrous dichloromethane in the presence of 6.95 mL of triethylamine and stirred overnight at room temperature. A white precipitate was formed and filtered to obtain 9.51 g of an ionic organic oligomer having X as a chloride. This yield was 85%.
  • Fluorine doped SnO coated transparent conductive glass substrate (hereinafter referred to as FTO glass substrate) as substrate
  • a nanoporous TiO thin film electrode with a thickness of about 6 nm was fabricated. This Ti ⁇ electrode is connected to Ru-based N719
  • the dye is adsorbed on the TiO surface by being immersed in an ethanol solution containing the dye for 24 hours.
  • a sealed cell consisting of a dye-adsorbed Ti02 electrode, a counter electrode obtained by sputtering Pt on a FTO glass substrate, and a spacer (thermocompression bonding resin) was fabricated.
  • a separately prepared ionic liquid gel electrolyte of Example 1 iodine 1-n-propyl-3-methylimidazole containing 0.3 M iodine, 0.05 M lithium iodide, 0.1 M t-butylpyridine was prepared.
  • the gelling agent is an ionizable liquid gel electrolyte in which an organic oligomer whose anion is an iodine ion is dissolved at a high temperature) and is cooled at a high temperature (about 120 ° C) before the start of gelation.
  • a gely electrolyte cell was produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Description

イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池 技術分野
[0001] 本発明は、イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池に関す る。
背景技術
[0002] 近年、色素増感光電変換素子及び太陽電池が、次世代太陽電池として注目され ている。この電池は電解質溶媒として一般的に溶媒が用いられる。有機溶媒は、セル の安定性という点力 みると、必ずしも実用的ではない。その結果、熱的安定性およ び不揮発性であるイオン性液体を電解質溶媒として用いることが注目されて ヽる。し 力 ながら、イオン性液体を用いた太陽電池の変換効率は、有機溶媒を使用した場 合に比べて低下してしまうことが問題とされる。
[0003] 電解質溶媒にイオン性液体を用いる場合には、イオン性液体を擬固体化させてセ ルの長期安定性を図ることが期待される。イオン性液体を擬固体化する技術として、 化学ゲルもしくは物理ゲルが考えられる。前者は高分子化合物の形成などを利用す る化学反応によるゲルィ匕方法であるのに対し、後者は水素結合やファンデルワ-ルス 力のような非共有結合性相互作用を用いる擬固体ィ匕技術である。 V、ずれのゲルを用 V、る色素増感太陽電池の実用化に向けた研究が、現在盛んに行われて 、る。
[0004] 注目されるものには、酸ィ匕チタンや力-ボンナノチュ-ブなどのナノ粒子を用いるィォ ン性液体をゲルイ匕する方法があり、色素増感太陽電池に用いる応用研究がなされて いる (非特許文献 1、非特許文献 2、特許文献 1)。
[0005] また、色素増感太陽電池への物理ゲルの適用という点力 見てみると、唯一低分子 系ゲル化剤を用いたイオン性液体ゲルのみが報告されている(非特許文献 3、非特 許文献 4)。
しカゝしながら、低分子ゲル化剤によるイオン性液体擬固体電解質を用いた色素増 感太陽電池は、比較的良好なセル安定性が実現されているが、変換効率は 5%と低 ぐ有機溶媒力もなる電解質を用いた系に比べるとかなり低い値にとどまる。この原因 は、擬固体ィ匕させることによりイオン伝導性が妨げられることが原因と考えられる。
[0006] さらに、低分子ゲル化剤を用いる場合には、太陽電池の変換効率を向上させるた めに高濃度のヨウ素やヨウ化リチウム、及び t-ブチルピリジンなどを添加すると、ゲル 化能を著しく低下させる。実際に、ヨウ化リチウムや t-ブチルピリジンを添加したイオン 性液体電解質を低分子ゲル化剤によりゲルィ匕した例はない。このように適切な低分 子ゲル化剤が存在しないことが高効率ィ匕を妨げる要因の一つと考えられる。
特許文献 1:特開 2005-93075号公報
非特許文献 l :Wang et aL., J. Am. Chem.Soc, 2003, 125, 1166;
非特許文献 2 : Usui et aL., J. Photochem. PhotobioL. A: Chem., 2004, 164, 97; 非特許文献 3 : Kubo et aL" Chem.Commun., 2002, 374;
非特許文献 4 : J. Phys. Chem. B, 2003, 107, 4374)
発明の開示
発明が解決しょうとする課題
[0007] 本発明の課題は、従来の公知の低分子ゲル化剤による物理ゲル化剤により擬固体 化された (ゲル化された)イオン性液体ゲル電解質は光電変換率が低 ヽと ヽぅ問題点 を克服するために、新規なゲル化剤を用いて得られるイオン性液体ゲル電解質、こ のイオン性液体ゲル電解質を用いた新規な色素増感型光電変換素子及びこの新規 な色素増感型光電変換素子力もなる太陽電池を提供することである。
課題を解決するための手段
[0008] 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、以下のことを見出 して本発明を完成させた。
(1)前記新規なオリゴマ-からなるゲル化剤 (本発明者らによる特願 2005- 040532 号の発明)は、下記一般式 (1)で表される直鎖状 (非環状)化合物及び一般式 (2)で 表される環状多量体化合物の混合物である。
(2)このオリゴマ-はその化学構造式力もわ力るようにピリジ-ゥムの窒素原子に が 配位した構造となっている。今回、このオリゴマ-からなるゲル化剤により液体電解質 をゲルイ匕して得られる液体電解質は良好なイオン伝導性を示すことがゎカゝつた。
[化 1]
Figure imgf000005_0001
(式中、 nは 2〜30の整数であり、 Xはハロゲン原子、テトラフルォロホウ酸基(BF )
4
、へキサフルォロリン酸基(PF )、ビス(トリフルォロメタンスルホ -ル)イミド、チオシァ
6
ネ-ト (SCN)、硝酸基 (NO )、硫酸基 (SO、 1/2当量)、又はリン酸基 (PO、 1/3当
3 4 4 量)力 選ばれる 1種の原子又はイオンを表す。
[0009] (3)前記ゲル化剤により液体電解質をゲル化して得られる液体電解質を色素増感 型光電変換素子に用いると、光電変換率を向上させることができることを見出した。 そして、この色素増感型光電変換素子力 なる太陽電池では、太陽エネルギ-の光 電変換率を向上させることができることを見出した。
[0010] 以上の新規な知見により得られる本発明は以下のとおりである。
(1)下記一般式(1)及び (2)で表されるオリゴマ-からなる液体電解質をゲルイ匕して 得られることを特徴とするイオン性液体ゲル電解質。
[化 2]
Figure imgf000006_0001
Figure imgf000006_0002
(式中、 nは 2〜30の整数であり、 Xはハロゲン原子、テトラフルォロホウ酸基(BF )、
4 へキサフルォロリン酸基(PF )、ビス(トリフルォロメタンスルホ -ル)イミド、チオシァネ
6
-HSCN)、硝酸基 (NO )、硫酸基 (SO、 1/2当量)、又はリン酸基 (PO、 1/3当量)
3 4 4 から選ばれる 1種の原子又はイオンを表す。 )
(2)前記液体電解質が、レドックスイオン対力 なる電解質及びイオン性液体力もな る電解質溶媒からなることを特徴とする(1)記載のイオン性液体ゲル電解質。
(3) (a)透明導電性基板に接して (b)色素吸着半導体電極が設けられており、これに 接して (c) (1)又は(2)記載のイオン性液体ゲル電解質及び (d)対極が設けられて 、 ることを特徴とする色素増感型光電変換素子。
(4) (3)記載の色素増感型光電変換素子を用いることを特徴とする太陽電池。
発明の効果
本発明の液体ゲル電解質は良好なイオン伝導性を示す。すなわち、イオン性液体 の状態を保持しつつ擬固体化 (ゲル化)されており、良好なイオン伝導性を示す。 この液体ゲル電解質を色素増感型光電変換素子に用いると、光電変換率を向上さ せることができる。この液体ゲル電解質において、物理的ゲル剤として、オリゴマ-か らなるゲル化剤を用いて液体電解質をゲルイ匕する現象が観測されたと ヽうことは、電 解質の組成 (イオン性液体の種類やゲル化剤の濃度)を変化させ最適化することによ り、変換効率がさらに向上する可能性がある。
この色素増感型光電変換素子力 なる太陽電池は、太陽エネルギ-の光電変換率 を向上させることができる。
図面の簡単な説明
[0012] [図 1]擬固体色素増感型光電変換素子の構造図である。
[図 2]実施例 *擬固体色素増感型光電変換素子の光電流電圧特性の一例である。 符号の説明
[0013] a :透明導電性基板
b :色素吸着半導体電極
c:イオン性液体ゲル電解質
d:対極
発明を実施するための最良の形態
[0014] 本発明に用いられるゲル化剤は、下記一般式(1)及び (2)で表されるイオン性有機 オリゴマ-ゲル化剤混合物である。
[化 3]
Figure imgf000007_0001
(式中、 nは 2〜30の整数であり、 Xは、ハロゲン原子、テトラフルォロホウ酸基(BF )
4
、へキサフルォロリン酸基(PF )、ビス(トリフルォロメタンスルホ -ル)イミド、チオシァ
6
ネ-ト (SCN)、硝酸基 (NO )、硫酸基 (SO、 1/2当量)、又はリン酸基 (PO、 1/3当
3 4 4 量)から選ばれる 1種の原子又はイオンを表す。 )
前記ハロゲン原子は、 CL、 Br、 I又は Fより選ばれる原子である。
前記イオン性有機オリゴマ-の製造方法は、原料に 4-アミノビリジンとクロロメチル安 息香酸クロライドを用いてアミドィ匕およびピリジン環のメチルイ匕を伴う縮重合反応させ る工程およびァ-オン交換反応させる工程の二段階工程カゝら構成される。このオリゴ マ-は、本発明者らによるものである(特願 2005- 040532)。
[0016] 液体電解質は、レドックスイオン対力 なる電解質及びイオン性液体力もなる電解 質溶媒からなる。
電解液には、電解質としてレドックスイオン対が含まれる。
具体的な、レドックスイオン対は、 Γ/Ι―、 Brフ Br、 Fe2+/Fe3+、 Sn2+/Sn4+、 Cr2+/Cr3+、 V2+
3 2
/v3+、 s2フ s 2、アントラキノンなどである。
2
[0017] 前記レドックスイオン対力 ヨウ素レドックスの場合では、これらのイオンを含むイミダ ゾリゥム誘導体 (ヨウ化ジメチルプロピルイミダゾリゥムなど)、ヨウ化リチウム、ヨウィ匕カリ ゥム、ヨウ化テトラアルキルアンモ-ゥム塩とヨウ素の混合物が用いられる。
臭素レドックスの場合では、これらのイオンを含む臭化リチウム、臭化カリウム、臭化 テトラアルキルアンモ-ゥムおよび臭素の混合物を用いる。好ましくは、ヨウ素レドック スのヨウ化リチウム、テトラアルキルアンモ-ゥムゃヨウ化イミダゾリゥム誘導体である。
[0018] 液体電解質のレドックス電解質濃度は、通常 0.05〜1M、好ましくは、 0.1〜0.5Mであ る。電解質濃度が、 0. 05M未満であると電解質濃度が十分でなく満足する結果を 得ることができな 、し、 1Mを超えても格別な効果を得ることを期待することができな ヽ
[0019] レドックス電解質を溶解するために電解質溶媒が用いられる。
電解質溶媒にはイオン性液体が用いられる。イオン性液体としては、特に限定され るものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチ オンとした常温溶融塩が例示される。カチオンとしてはイミダゾリゥム、ピリジ-ゥム、ァ ンモ -ゥムなどの誘導体が挙げられ、ァ-オンとしては、ハロゲンイオンゃテトラフル ォロホウ酸イオン、へキサフルォロリン酸イオン、ビス(トリフルォロメチルスルホ -ル) イミドイオンなどが挙げられる。具体的にはヨウ化 1-n-プロピル- 3-メチルイミダゾリウ ム、ヨウ化 1-n-へキシル -3-メチルイミダゾリゥム、ヨウ化 1-n-ォクチル -3-メチルイミダ ゾリゥムなどのようなイオン性液体、あるいはそれらの混合溶媒である。
[0020] イオン性液体ゲル電解質を形成するに際しては、前記イオン性液体からなる電解 質溶媒に、電解質として、レドックスイオン対 (Γ/Ι―、 Brフ Br、 Fe Fe3+、 Sn Sn4+、 Cr
3 2
2+/Cr3+、 V2+/V3+、 S27S 22 アントラキノンなど)を前記の電解質濃度となるように添加し て、擬固体化 (ゲル化)させる。
[0021] 前記レドックス電解液には、光電変換特性向上のために、 t-ブチルピリジンなどの ピリジン誘導体と 、つた塩基性添加物をカ卩えてもよ!ヽ。その際の添加物の電解液中 の濃度は、通常、 0.05〜1 M、好ましくは、 0.1〜0.5 Mである。
[0022] 図 1は、本発明の色素増感型光電変換素子の構造を示している。図 1により、色素 増感型光電変換素子を説明する。
透明導電性基板 (a)に接して、色素吸着半導体電極 (b)が設けられている。色素 吸着半導体電極 (b)と対極 (d)に、はさまれてイオン性液体ゲル電解質 (c)が設けら れている。
[0023] 透明導電性基板 (a)の透明導電性物質のとしては、酸ィ匕物半導体薄膜を用いる。
酸ィ匕物半導体には、ド-プされた酸ィ匕物を用いる。具体的には、フッ素又はアンチモ ンによりド-プされた酸化スズ (NESA)、スズによりド-プされた酸化インジウム(ITO)、 アルミニウムによりド-プされた酸ィ匕亜鉛などを挙げることができる。
透明導電性基板 (a)の基板には、ガラス又はプラスチックを用いる。
透明導電性基板は、前記基板の表面に前記透明導電性物質である導電性透明酸 化物半導体薄膜をコ-トものである。
透明導電性基板 (a)としては、前記の酸ィ匕物半導体薄膜と基板に記載した物質の 組合せを用いることができ、好ましくは、フッ素ド-プされた酸化スズ薄膜コ-トガラスを 用いる。
[0024] 半導体薄膜電極 (b)は、ナノ粒子により構成される、ナノポ-ラス構造 (孔径がナノの 大きさの多孔質)を有する化合物半導体力 成る。半導体薄膜に用いられる半導体 は、半導体の性質を有するものであればよぐ具体的には、例えば、 TiO、 ZnO、 In O
2 2
、 SnO、 Bi O、 ZrO、 Ta O、 Nb O、 WO、 Fe O、 Ga O、 SrTiOなどの金属酸化物
3 2 2 3 2 2 5 2 5 3 2 3 2 3 3
および複合酸化物、 Agl、 AgBr、 Cul、 CuBrなどの金属ハロゲン化物、さらに、 ZnS、 Ti S、 In S、 Bi S、 CdSゝ ZrS、 TaS、 Ag S、 Cu S、 SnS、 WS、 MoSなどの金属硫化物、
2 2 3 2 3 2 2 2 2 2 2 2
CdSe、 CdTe、 ZrSe、 ZeSe、 TiSe、 Bi Se、 In Se、 WSe、 WTe、 MoSe、 MoTeなどの 金属セレン化物ならびにテルル化物などを挙げることができる。これらの内で、好まし くは、二酸化チタン、酸化亜鉛、酸化スズである。
[0025] 酸化チタン粒子を用いる場合には、 P25 (Degussa、あるいは日本エア口ジル)や ST- 01 (石原産業)といった市販のものを用いてもよい。また、 J. Am. Ceram. Soc, 1997, 80, 3157に記載されているように、ゾル ·ゲル法によりチタンアルコキシドなどから加水 分解、オ-トタレ-ビングなどを経て得られた結晶性の酸ィ匕チタン粒子を用いても良 ヽ 。好ましくは、チタンアルコキシドからゾル ·ゲル法により得られた酸ィ匕チタン粒子であ る。
[0026] 前記半導体薄膜を構成する半導体ナノ粒子の粒子径は、 8〜1000 nm、好ましくは
、 10〜300 nmのものを用いる。
[0027] 酸化物半導体薄膜電極を作成する方法には、電極を作成する際に膜を形成できる ものであれば、利用でき、限定されない。具体的には、以下の 2方法が例示できる。
(1)酸化物半導体ナノ粒子を、水、バインダ-であるポリマ-、界面活性剤を混合して 、スラリ-とする。このスラリ-をドクタ -ブレ-ド法により基板上に塗布する。
(2)バインダ-であるポリマ-は、ポリマ-を有機溶媒と混合し、それをスクリ-ン印刷法 により基板上に塗布する。
いずれも、ポリマ-としては、ポリエチレングリコ-ルを挙げることができる。 このようにして形成した酸化物半導体薄膜基板を、空気中あるいは酸素中で 450〜
500 °C程度で焼成する。その結果、酸化物半導体薄膜電極が得られる。
[0028] 酸化物半導体薄膜電極の構造は、ナノ粒子けノポ-ラス構造)を積層した多孔質 構造を有しており、実表面積が見かけの表面積の 1〜10000倍のものであり、好ましく は 100〜3000倍のものである。
[0029] また、例えば、平滑な基板を微細加工してアスペクト比の高 、ロッド状の高表面構 造体が形成されているものやランダムな凹凸を形成されている、表面積が大きい基板 上に酸化物半導体薄膜電極が製膜されて!ヽる電極を用いてもよ!ヽ。
この場合も実表面積が見かけの表面積の 1〜10000倍のものであり、好ましくは 100
〜3000倍のものである。
[0030] 前記半導体薄膜電極の膜厚は、通常、 2〜100 /z mであり、好ましくは、 5〜20 /z mで ある。
2 未満の場合には当初の効果を期待することができない。一方、 100 mを超え る場合にも格別な効果を得ることができな 、。
[0031] 前記半導体薄膜電極表面に吸着させる色素として、(1)紫外、可視、近赤外領域 に吸収を有する金属錯体、又は (2)紫外、可視、近赤外領域に吸収を有する有機色 素を挙げることができる。
[0032] (1)紫外、可視、近赤外領域に吸収を有する金属錯体について、具体的な化合物の 例を挙げることができる。本発明はこれらに限定されない。
[化 4]
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000012_0001
Figure imgf000012_0002
[0033] 前記金属錯体の合成法につ!ヽては、非特許文献 5: Nazeeruddin et aL., J. Chem Soc, DaLton Trans. 1997, 4571,非特許文献 6: Nazeeruddin et aL. J. Am. Chem. Soc, 2001, 123, 1613等に記載されている。
[0034] (2)半導体薄膜電極表面に吸着させる色素として、紫外、可視、近赤外領域に吸 収を有する有機色素、あるいはそれらの混合物を用いることができる。
以下に、具体的な化合物の例を挙げるが、本発明はこれらに限定されない。
[化 8]
Figure imgf000012_0003
[化 9]
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
Figure imgf000013_0004
Figure imgf000013_0005
[化 15]
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
Figure imgf000014_0004
Figure imgf000014_0005
前記の有機色素の合成法については、非特許文献 7: K. Hara et aL., SoL. Energ y Mater. SoL. CeLLs, 2003, 77, 89,非特許文献 8: K. Hara et aL., Adv Funct. Ma ter., 2005, 15, 246等に記載されている。
[0036] 前記の金属錯体からなる色素及び有機色素は、半導体電極表面上に金属結合、 イオン結合、共有結合などの化学結合、あるいは物理結合により吸着している。 そのためのァクセプタ-部位およびドナ-部位に各々又はそのどちらか一方がアンカ -基として、不対電子を有する。結合を形成するにあたり、不対電子を有するものであ れば、使用できる。
不対電子は、 COOH基、 CH COOH基、 NCS基、 OH基、 SH基などが挙げられる力 S
2
、これらに限定されない。
[0037] 半導体電極表面上に、前記色素を吸着させる方法は、以下の通りである。
色素の溶液中に電極を、室温で 1分〜 3日間、あるいは加熱条件下で 1分力 24時間 浸漬する。好ましくは、室温で 12〜24時間浸漬する方法である。
[0038] 色素をナノポ-ラス電極上に吸着させる場合に用いる溶媒は、色素を溶解する溶媒 なら何でも良い。例えば、メタノ-ル、エタノ-ル、イソプロパノ-ル、 t-ブタノ-ル等のァ ノレコ-ノレ溶媒、ベンゼン、クロ口ベンゼン、ジクロロベンゼン、ジクロロメタン、クロロホノレ ム、へキサン等の炭化水素溶媒の他、テトラヒドロフラン、ァセトニトリルなどの有機溶 媒、さらには、それらの混合溶媒であるが、これらに限定されない。好ましくは、ェタノ
-ル、あるいは t-ブタノ-ルとァセトニトリルの混合溶媒である。
[0039] 色素をナノポ-ラス電極上に吸着させる場合の溶液中の有機分子濃度は、 O.OlmM から飽和量であり、好ましくは、 0.1〜0.5 mMである。
[0040] 対極については以下の通りである。
対極に用いる金属には白金が用いられる。
白金を FTOガラス基板上に固定して対極を形成する。固定手段にはガラス基板の 表面に金属を固定する手段であれば適宜用いることができる。固定手段にはスパッ タなどを禾 lj用できる。
[0041] 前記色素増感型光電変換素子を太陽光などの光の存在下に作用させると太陽電 池として用いることができる。
[0042] 以下に本発明に実施例を示す。本発明はこれに限定されない。効果を確認するた めに AM 1.5ソ-ラ-シユミレ-タ -およびソ-スメ-タ -により起電力を測定した。 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によ つて何ら限定されるものではない。
実施例 1
[0043] 合成例 1 (一般式(1)および (2)で示されるオリゴマ-で、陰イオンがヨウ素であるも の)
イオン性有機オリゴマ-の製造方法は以下のように行った。 4-アミノビリジン 4.27 gと 4- (クロロメチル)安息香酸クロライド 8.34gを、トリェチルァミン 6.95mL存在下に、無水 ジクロロメタン lOOmL中で混合し、室温で一晩攪拌した。白色沈殿が生成し、濾過す ることにより、 Xが塩素ァ-オンであるイオン性有機オリゴマ- 9.51gを得た。この収率 は 85%であった。
得られた白色粉末 150mLに水 20mLをカ卩え、加熱することにより完全に溶解させた。 この溶液に、過熱還流下、ヨウ化アンモ-ゥム 8.81gの水溶液 20mLをカ卩え、 10分間 加熱還流を行った。その後、反応溶液を室温まで冷却すると黄色に着色した固体が 析出し、ろ過することにより目的物である陰イオン力 Sヨウ素イオンのイオン性有機オリ ゴマ -192 mgを得た。この収率は 93%であった。
実施例 2
[0044] 透明導電性基板の形成
基板として、フッ素ド-プ SnOコ-ト透明導電性ガラス基板 (以下、 FTOガラス基板)上
2
に、 10〜30nmの TiOナノ粒子含有べ-ストをスクリ-ン印刷し、 500°Cで焼成すること
2
で膜厚約 6nmのナノポ-ラス Ti〇薄膜電極を作製した。この Ti〇電極を Ru系の N719
2 2
色素を含有するエタノ-ル溶液に 24時間浸漬させることにより、 TiO面に色素を吸着
2
させた。
実施例 3
[0045] 色素増感型光電変換素子及び太陽電池の形成
色素吸着 Ti02電極と、 Ptを FTOガラス基板上にスパッタした対極ならびにスぺ-サ- (熱圧着榭脂)カゝらなる封止セルを作製した。このセルに、別途調整した実施例 1のィ オン性液体ゲル電解質(ヨウ素 0.3 M、ヨウ化リチウム 0.05 M、 t-ブチルピリジン 0.1 M を含むヨウ化 1-n-プロピル- 3-メチルイミダゾリゥム(10%含水)に濃度 40 g/Lになるよう にゲル化剤である陰イオンがヨウ素イオンである有機オリゴマ-を高温で溶解させたィ オン性液体ゲル電解質)をゲル化が始まる前の高温状態 (約 120°C)で注入し、冷却 することによりゲルィ匕電解質セルを作製した。
このセルを AMI.5G (100 mW/cm2)の光照射下、電流電圧特性を測定した。その結 果、 5.6%の太陽エネルギ-変換効率が得られた。

Claims

請求の範囲 下記一般式( 1)及び (2)で表されるオリゴマ-からなるゲル化剤により液体電解質を ゲルイ匕して得られることを特徴とするイオン性液体ゲル電解質。
(化 1) (1)、 (2)
Figure imgf000018_0001
(式中、 nは 2〜30の整数であり、 Xはハロゲン原子、テトラフルォロホウ酸基(BF )、
4 へキサフルォロリン酸基(PF )、ビス(トリフルォロメタンスルホ -ル)イミド、チオシァネ
6
-ト(SCN)、硝酸基 (NO )、硫酸基 (SO、 1/2当量)、又はリン酸基 (PO、 1/3当量)
3 4 4 から選ばれる 1種の原子又はイオンを表す。 )
[2] 前記液体電解質が、レドックスイオン対からなる電解質及びイオン性液体からなる 電解質溶媒からなることを特徴とする請求項 1記載のイオン性液体ゲル電解質。
[3] (a)透明導電性基板に接して (b)色素吸着半導体電極が設けられており、これに接 して (c)請求項 1又は 2記載のイオン性液体ゲル電解質及び (d)対極が設けられて ヽ ることを特徴とする色素増感型光電変換素子。
[4] 請求項 3記載の色素増感型光電変換素子を用いることを特徴とする太陽電池。
PCT/JP2006/320564 2005-10-24 2006-10-16 イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池 WO2007049477A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/091,295 US8013241B2 (en) 2005-10-24 2006-10-16 Ionic gel electrolyte, dye-sensitized photoelectric conversion device and solar cell
CN200680039557XA CN101297436B (zh) 2005-10-24 2006-10-16 离子性凝胶电解质、色素增感型光电转换元件及太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-307950 2005-10-24
JP2005307950A JP4811642B2 (ja) 2005-10-24 2005-10-24 イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池

Publications (1)

Publication Number Publication Date
WO2007049477A1 true WO2007049477A1 (ja) 2007-05-03

Family

ID=37967590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320564 WO2007049477A1 (ja) 2005-10-24 2006-10-16 イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池

Country Status (4)

Country Link
US (1) US8013241B2 (ja)
JP (1) JP4811642B2 (ja)
CN (1) CN101297436B (ja)
WO (1) WO2007049477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2370808B1 (en) 2008-12-01 2017-11-01 MSA Europe GmbH Electrochemical gas sensors with ionic liquid electrolyte systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921754B1 (ko) * 2007-10-18 2009-10-15 한국전자통신연구원 염료 감응 태양전지 및 그 제조 방법
WO2010147162A1 (ja) 2009-06-19 2010-12-23 パナソニック電工株式会社 光電気素子
JP5658504B2 (ja) * 2009-07-31 2015-01-28 パナソニック株式会社 光電気素子
CN102024569A (zh) * 2010-09-29 2011-04-20 大连七色光太阳能科技开发有限公司 一种太阳能电池电解质及其应用
JP5662861B2 (ja) * 2011-03-30 2015-02-04 富士フイルム株式会社 光電変換素子及び光電気化学電池
KR102200500B1 (ko) * 2014-06-11 2021-01-07 삼성전자주식회사 전도성 박막 및 이를 포함한 전자 소자
US10210999B2 (en) * 2016-12-27 2019-02-19 Imam Abdulrahman Bin Faisal University Dye-sensitized solar cell including a semiconducting nanocomposite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010644A (ja) * 2002-06-04 2004-01-15 Mitsubishi Paper Mills Ltd 架橋重合体、非水系イオン伝導性組成物、および電気化学素子
JP2005093075A (ja) * 2003-07-14 2005-04-07 Fujikura Ltd 電解質組成物、これを用いた光電変換素子および色素増感太陽電池
WO2006082768A1 (ja) * 2005-02-02 2006-08-10 National Institute Of Advanced Industrial Science And Technology イオン性有機化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065394A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Photovoltaic cell components and materials
CN1262596C (zh) * 2004-05-13 2006-07-05 华侨大学 染料敏化纳米晶太阳能电池用电解质及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010644A (ja) * 2002-06-04 2004-01-15 Mitsubishi Paper Mills Ltd 架橋重合体、非水系イオン伝導性組成物、および電気化学素子
JP2005093075A (ja) * 2003-07-14 2005-04-07 Fujikura Ltd 電解質組成物、これを用いた光電変換素子および色素増感太陽電池
WO2006082768A1 (ja) * 2005-02-02 2006-08-10 National Institute Of Advanced Industrial Science And Technology イオン性有機化合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2370808B1 (en) 2008-12-01 2017-11-01 MSA Europe GmbH Electrochemical gas sensors with ionic liquid electrolyte systems
EP2370808B2 (en) 2008-12-01 2020-07-22 MSA Europe GmbH Electrochemical gas sensors with ionic liquid electrolyte systems

Also Published As

Publication number Publication date
JP4811642B2 (ja) 2011-11-09
JP2007115605A (ja) 2007-05-10
US8013241B2 (en) 2011-09-06
CN101297436A (zh) 2008-10-29
US20090266419A1 (en) 2009-10-29
CN101297436B (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4811642B2 (ja) イオン性ゲル電解質、色素増感型光電変換素子及び太陽電池
JP4674435B2 (ja) 光電変換素子
JP5428555B2 (ja) 色素増感光電変換素子の製造方法
JP4635473B2 (ja) 光電変換素子の製造方法及び半導体電極の製造方法
WO2011002073A1 (ja) 光電変換素子およびその製造方法ならびに電子機器
KR101406985B1 (ko) 고분자 전해질 조성물 및 이를 포함하는 염료감응 태양전지
JP2011204662A (ja) 光電変換素子およびその製造方法ならびに電子機器
EP2572402B1 (en) Ionic liquid based electrolytes containing sulfide/polysulfide redox couple and uses thereof
JP4459578B2 (ja) 色素増感太陽電池
Lue et al. Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells
JP2006210102A (ja) 光電変換装置およびそれを用いた光発電装置
JPWO2009069757A1 (ja) 電解質組成物およびこれを用いた光電変換素子
TWI449236B (zh) 膠態電解液、其製法及其染料敏化太陽能電池
WO2012086663A1 (ja) 色素、色素増感光電変換素子、電子機器および建築物
JP2012253004A5 (ja)
TWI510497B (zh) An additive for an electrolyte composition and an electrolyte composition using the same and a dye-sensitized solar cell
JP4420645B2 (ja) 低温型有機溶融塩、光電変換素子及び光電池
KR101648001B1 (ko) 표면이 개질된 나노입자, 이의 제조방법 및 이를 포함하는 나노젤형 전해질
JP4650660B2 (ja) 半導体電極用混合水溶液、半導体電極、光電変換素子、太陽電池及びこれらの製造方法
JP2003282160A (ja) 酸化チタン製膜方法及び色素増感太陽電池素子
JP4804050B2 (ja) 光電変換素子
JP2013058424A (ja) 光増感色素、色素増感光電変換素子、電子機器および建築物
Bakar et al. Nanostructured TiO2 thin films for DSSCs prepared by sol gel technique
JP4565158B2 (ja) 酸化チタン粒子を酸化物半導体として用いた色素増感型光電変換素子及び太陽電池
JP2012146640A (ja) 色素、色素増感光電変換素子、電子機器および建築物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039557.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12091295

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811828

Country of ref document: EP

Kind code of ref document: A1