WO2007046427A1 - 交差偏波間干渉補償方法および交差偏波間干渉補償装置 - Google Patents

交差偏波間干渉補償方法および交差偏波間干渉補償装置 Download PDF

Info

Publication number
WO2007046427A1
WO2007046427A1 PCT/JP2006/320757 JP2006320757W WO2007046427A1 WO 2007046427 A1 WO2007046427 A1 WO 2007046427A1 JP 2006320757 W JP2006320757 W JP 2006320757W WO 2007046427 A1 WO2007046427 A1 WO 2007046427A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
polarization
cross
phase
phase noise
Prior art date
Application number
PCT/JP2006/320757
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawai
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to EP06811954.4A priority Critical patent/EP1940061B1/en
Priority to CN2006800356113A priority patent/CN101273567B/zh
Priority to CA002623431A priority patent/CA2623431A1/en
Priority to US12/088,176 priority patent/US7925236B2/en
Priority to JP2007541013A priority patent/JP4573056B2/ja
Publication of WO2007046427A1 publication Critical patent/WO2007046427A1/ja
Priority to NO20081484A priority patent/NO20081484L/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • H04B1/126Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects

Definitions

  • the present invention relates to a technique for compensating for interference between cross-polarized waves, and more particularly to a cross-polarization interference compensation method and cross-polarization interference compensation suitable for use in a co-channel transmission system transmission apparatus such as fixed microwave communication. Relates to the device.
  • XPIC Cross Polarization Interference Canceller
  • a transmission device such as a co-channel transmission method (see Japanese Patent Application Laid-Open No. 2000-165339). Reference 1).
  • a signal that cancels an interference signal from a polarization hereinafter referred to as a different polarization
  • a self polarization is a received signal of a different polarization. This is generated by referring to the above and is added to the received signal to compensate for cross-polarization interference.
  • a local branch method and a reference synchronization method as a method for realizing reception local synchronization when XPIC is used in the co-channel transmission method.
  • the output of one RF local oscillator is split into two and supplied to the receiver for each polarization.
  • the output of a low-frequency reference oscillator is supplied to a separate local oscillator (LO) installed in each polarization receiver, and each RF local signal is synchronized with the reference oscillator. By synthesizing the local signal of each polarization, the signal is synchronized.
  • LO local oscillator
  • the output of one RF local oscillator is split into two and supplied to each polarization receiver, so the phase noise of the RF local signal affects the XPIC characteristics. No, but if the RF local oscillator fails, the communication of both polarizations will be interrupted. Therefore, it is disadvantageous in terms of the reliability of the communication path.
  • a local oscillator is provided for each polarization receiver, so even if one of the receivers fails, the transmission path of the other polarization that does not fail is cut.
  • the phase noise of the RF local oscillator leads to deterioration of the characteristics of cross-polarization interference compensation. Therefore, an RF local oscillator with low phase noise is used.
  • a low phase noise! / ⁇ oscillator is expensive, which is disadvantageous in terms of cost.
  • FIG. 1 is a diagram illustrating a configuration example of a co-channel transmission method employing a local branching method.
  • the IF (Intermediate Frequency) signal transmitted with V (vertical) polarization and H (horizontal) polarization is converted to an RF signal by mixers 1, 1 'and oscillators 2, 2'. Sent from 3 '.
  • the transmitted signal is received by the receiving antennas 4 and 4 ′ on the receiving device side.
  • the antenna is indicated as 3, 3 'or 4, 4' and one set for each polarization. Actually, 3, 3, and 4, 4 'are each one antenna. Power also comes.
  • the RF local signal used when converting the RF signal into the IF signal is used by branching the output of one local oscillator 6.
  • FIG. 2 is a diagram illustrating an internal configuration example of the local oscillator 6.
  • Local oscillator 6 is a reference oscillator 14 for outputting a signal of the low frequencies of standards, a phase comparator: having the (PD Phase Det ector) 15, a voltage controlled oscillator 16, a frequency divider 17.
  • the phase comparator 15 receives an output from the reference oscillator 14 and a signal obtained by dividing the output from the voltage controlled oscillator 16 by the frequency divider 17.
  • the voltage controlled oscillator 16 forms a PLL (Phase Locked Loop) that oscillates at a frequency n times that of the reference local oscillator 14.
  • the output of the voltage controlled oscillator 16 is used as the RF local signal.
  • the RF signal input to the receiver via the antennas 4 and 4 ′ is the mixers 5 and 5
  • quadrature demodulator 8, 8' It becomes IF signal by 'and input to quadrature demodulator 8, 8'.
  • the signal input to the quadrature demodulator 8, 8 ' is quadrature demodulated by the local oscillator 7, 7'.
  • the signal is input to the DEM (demodulator) 9, 9 'for processing such as carrier recovery and clock recovery. Is performed and demodulated
  • the results are output as adders 10 and 10 'as the main signal.
  • the IF signal input from the cross polarization side is also input to the quadrature demodulators 11 and 11 ′, and the quadrature demodulated signal is the cross polarization interference compensator (hereinafter referred to as XPIC) 12 , 12 '.
  • XPIC12 and 12 ' detect cross-polarized signals that interfere with their own polarization due to cross-polarization interference that occurs in the transmission path, and generate and output a signal that cancels this signal.
  • the signals output from XPIC1 2, 12 ' are phase rotated to the main signal side by EPS (Endless Phase Shifter) 13, 13' and added to the main signal by adders 10, 10 '. This corrects cross-polarization interference.
  • EPS Endless Phase Shifter
  • FIG. 3 is a circuit block diagram showing in detail a configuration example of a portion after the outputs of the quadrature demodulators 8 and 11.
  • a carrier recovery PLL is configured by a complex multiplier 18, a carrier phase comparator (Carr PD) 20, a loop filter (Carr LPF) 21, an accumulator (Acc) 22, and a SIN / COS table 23.
  • the carrier is played in a loop.
  • XPIC24 when there is an input of a different polarization, a signal that cancels the cross-polarization interference component that interferes with the own polarization is generated.
  • the complex multiplier 18 'converts the output signal of XPIC 24 into the rotation angle of its own polarization to match the carrier phase of the interference wave mixed in its own polarization with the carrier phase of the compensation signal output by XPIC24. Rotate the same angle as.
  • the output of the complex multiplier 18 ′ is added to the own polarization by the adder 19, and the cross polarization interference is compensated.
  • the complex multiplier 1 8 ′ corresponds to a phase rotator.
  • the local signal used in each polarization receiver is supplied from the same local oscillator 6. Therefore, in the V polarization receiver, the V polarization The signal V ( ⁇ 1) whose wave is affected by phase noise ⁇ 1 and the signal H ( ⁇ 1) whose H-polarized signal mixed by cross-polarization interference is affected by phase noise ⁇ 1 Is input. In addition, an H-polarized signal is affected by the phase noise ⁇ 1 and input in the form ⁇ ( ⁇ 1).
  • the relationship between the carrier component of the cross-polarized signal that interfered with its own polarization and the carrier component of the received signal of the cross-polarized signal is processed using the output from the same local oscillator 6, so the frequency The Z phase is completely the same.
  • phase noise component of the different polarization component mixed in its own polarization is ⁇ 1
  • the phase noise of the received signal on the opposite polarization side is ⁇ 1
  • the phase noise is between the two signals.
  • the XPIC12 shown in Fig. 1 can generate a correction signal with stable phase without being affected by phase noise. Therefore, in this method, the phase noise of the local oscillator does not affect the ability of cross polarization interference compensation! / ⁇ .
  • the problem with the local branching method is that the output of one local oscillator 6 is branched and used. Therefore, when this local oscillator 6 fails, both That is, polarization communication is cut off at once. This is disadvantageous in ensuring the reliability of the communication path.
  • FIG. 4 is a diagram illustrating a configuration example of a co-channel transmission scheme that employs a reference synchronization scheme.
  • the configuration is the same as that of the local branching system of FIG. 1 except that each polarization receiver is provided with local oscillators 6 and 6 ′.
  • the reference synchronization system has local oscillators 6, 6 'in each polarization receiver.
  • the reference signal output from the reference low-frequency reference oscillator 25 is branched, and each local oscillator 6, 6' uses the reference signal.
  • a local signal that is synchronized with is generated.
  • FIG. 5 is a diagram showing a configuration example of the local oscillators 6 and 6 ′ used for the reference synchronization method.
  • the local oscillators 6 and 6 ′ include a phase comparator 15, a voltage controlled oscillator 16, and a frequency divider 17.
  • a low frequency reference signal (reference signal) input from the outside and a signal obtained by dividing the output of the voltage controlled oscillator 16 by n by the frequency divider 17 are input to the phase comparator 15.
  • the voltage controlled oscillator 16 constitutes a PLL that oscillates at a frequency n times that of the reference signal input.
  • the output of the voltage controlled oscillator 16 is used as the RF local signal.
  • the local signal used for each polarization is generated by a separate PLL, so the phase noise generated is uncorrelated.
  • the component that interfered from the H polarization to the V polarization is affected by the phase noise ⁇ 1 generated by the local oscillator 6 and becomes ⁇ ( ⁇ 1).
  • the signal V (1) + ⁇ (1) is input as a result of cross polarization interference.
  • the XPIC12 receives the signal ⁇ ( ⁇ 2), the received signal of ⁇ polarization, which is also influenced by the phase noise ⁇ 2 of the local oscillator 6 '.
  • V polarization force is not considered interference with ⁇ polarization.
  • XPIC12 generates a signal that cancels ⁇ ( ⁇ 1) that interfered with its own polarization input, with reference to the different polarization input ⁇ (2).
  • the XPIC12 must generate the correction signal considering this phase difference ( ⁇ 1-2).
  • XPIC also has a phase rotation function, so when the time change of this phase difference is slower than the time constant of the XPIC operation, it can be corrected following the phase difference ( ⁇ 1 – ⁇ 2) due to phase noise.
  • phase difference ⁇ 1 – ⁇ 2
  • XPIC cannot be fully compensated by XPIC and appears as characteristic degradation.
  • FIG. Fig. 6 shows the phase noise of the RF local signal, showing the spectrum centered on the oscillation frequency of the local signal.
  • the power density decreases as the frequency moves away from the center force, and the frequency component of the phase noise decreases as the frequency moves away from the center frequency force.
  • Very low frequency components of phase noise can be followed by XPIC, and the effects of phase noise are compensated.
  • XPIC cannot react in the region beyond the range that XPIC can follow, and the phase noise component is output from XPIC as it is. For this reason, when the XPIC output is calculated with the self-polarized signal, it does not match the phase of the interference wave in the self-polarized wave, creating a compensation error and degrading the characteristics.
  • Increasing the time constant for updating the XPIC tap coefficient can increase the tracking speed for phase noise, but since the noise generated by XPIC itself increases, there is a limit to actually increasing the time constant of XPIC. For this reason, it was necessary to use an expensive local oscillator with low phase noise when using the reference synchronous XPIC.
  • the phase noise of the local oscillator affects the ability of cross-polarization interference compensation.
  • the output of one low-power oscillator is branched and used, when this local oscillator fails, there is a problem that communication of both polarizations is interrupted at once. This is disadvantageous in ensuring reliability.
  • the local oscillator provided in each polarization receiver is frequency-synchronized by the signal of the reference oscillator, even if one local oscillator fails, the communication path of the other polarization is There is an advantage to be secured.
  • the local oscillator provided in each polarization receiver is frequency-synchronized with the signal of the reference oscillator, the phase noise of each local oscillator is uncorrelated, so it is more specific to the phase noise of each local oscillator. There is a problem that the deterioration of sex occurs. In order to improve this characteristic degradation, it is necessary to use an expensive local oscillator with low phase noise.
  • the object of the present invention is to compensate for the effects of phase noise and the local noise of the local oscillator.
  • An object of the present invention is to provide a cross polarization interference compensation method and apparatus capable of preventing a decrease in interference compensation capability.
  • the cross-polarization interference compensation method of the present invention is a cross-polarization interference compensation method using a reception local synchronization method for compensating for interference between the self-polarization and the cross-polarization, Is an error signal indicating the phase difference between the demodulated signal, which is a signal subjected to cross-polarization interference compensation, and the normal received signal of the own polarization, and the cross-polarization signal, which is a signal whose cross-polarization is compensated for cross-polarization interference.
  • the first phase noise difference which is the phase noise difference of the local oscillator on the receiving side of the own polarization and the different polarization, is extracted, and the phase noise difference contained in the cross polarization interference compensation signal is extracted.
  • the second phase noise difference is suppressed by using the first phase noise difference.
  • the cross polarization interference compensation method of the present invention is a cross polarization interference compensation method using a reception local synchronization method for compensating for interference between the self polarization and the cross polarization.
  • Demodulated signal whose wave is cross-polarized interference compensated signal and normal reception of its own polarization
  • the reception side low
  • the first phase noise difference which is the phase noise difference of the power oscillator
  • the second phase noise which is the phase noise difference included in the cross-polarization signal that is the source of the cross-polarization interference compensation signal, is extracted.
  • the difference is suppressed using the first phase noise difference.
  • the vector of the cross polarization interference compensation signal is a 'on the coordinates of the phase rotation angle, and the vector of the error signal is e.
  • the first phase noise difference ⁇ is
  • reception local synchronization method if the present invention is applied to a reference synchronization method XPIC in which phase noise is a problem, a characteristic caused by a phase noise difference between a local oscillator and a reception-side local oscillator of different polarizations. It is extremely suitable for improving the deterioration.
  • the cross-polarization interference compensation device of the present invention is a cross-polarization interference compensation device that uses a reception local synchronization method to compensate for interference between the self-polarization and the cross-polarization.
  • An error detector that extracts a phase difference between a demodulated signal, which is a signal whose wave has been subjected to cross-polarization interference compensation, and a normal received signal of its own polarization, and outputs an error signal indicating the extracted phase difference;
  • a phase noise detector that extracts and outputs the phase noise difference by comparing the cross-polarization interference compensation signal, which is a signal subjected to cross-polarization interference compensation, and an error signal, and a control signal corresponding to the phase noise difference
  • the control signal generation unit that generates the cross-polarization interference and the cross-polarization interference compensator that generates the cross-polarization interference compensation signal are arranged before or after the cross-polarization interference compensator.
  • Cross-polarization interference compensation signal And a phase rotator for controlling the phase.
  • the cross-polarization interference compensator usually generates tap coefficients in order to suppress the influence of polarity fluctuations of the control signal due to force noise that uses an adaptive control type FIR (Finite Impulse Response) filter.
  • the part has a relatively large time constant.
  • the phase rotator is a parameter to be controlled by changing only the rotation direction and not the amplitude. A high-speed time constant can be expected because of focusing only on phase rotation.
  • phase noise Normally, the effect of phase noise on a local signal is mainly a phase change and a small amplitude change. Therefore, when the phase is controlled by a phase rotator, the phase noise also causes a high-speed phase change due to the phase noise of the local signal. Easy to follow.
  • a phase rotator is used for the phase noise component. Absorbing and adjusting the other amplitude changes with the XPIC main unit makes it possible to suppress the effects of phase noise.
  • the present invention detects the phase noise difference of the reception-side local oscillator of the own polarization and the different polarization from the received signal, and uses the result to suppress the phase noise difference included in the inter-polarization interference compensation signal.
  • XPIC does not need to follow the phase noise difference.
  • phase rotator for suppressing the phase noise difference has fewer parameters to be changed than the phase rotation due to the tap coefficient change in XPIC, the time constant of control can be reduced.
  • the XPIC time constant can be increased accordingly, and the noise generated by XPIC itself when the XPIC time constant is reduced can be suppressed.
  • the phase noise detector detects the phase noise difference between the local signals, and the phase rotator provided at the XPIC output reduces the phase noise.
  • the phase rotator provided at the XPIC output reduces the phase noise.
  • FIG. 1 is a diagram showing a configuration example of a co-channel transmission method adopting a local branch method.
  • FIG. 2 is a diagram showing an internal configuration example of an RF local oscillator used in the local branching method.
  • FIG. 3 is a circuit block diagram showing in detail a configuration example after the output of the quadrature demodulator of the cross polarization interference compensation device shown in FIG.
  • FIG. 4 is a diagram illustrating a configuration example of a co-channel transmission method employing a reference synchronization method.
  • FIG. 5 is a diagram showing a configuration example of a local oscillator used in the reference synchronization method.
  • FIG. 6 is a diagram showing a state of phase noise of an RF local signal.
  • FIG. 7 is a block diagram showing a first embodiment of the present invention.
  • FIG. 8A is a diagram for explaining the compensation principle of the phase noise in the first embodiment.
  • FIG. 8B is a diagram for explaining the compensation principle of the phase noise in the first embodiment.
  • FIG. 8C is a diagram for explaining the compensation principle of the phase noise in the first embodiment.
  • FIG. 9A is a diagram for explaining a phase noise compensation principle in the first embodiment.
  • FIG. 9B is a diagram for explaining the compensation principle of the phase noise in the first embodiment.
  • FIG. 10 is a flow chart summarizing the cross polarization interference compensation method in the first embodiment.
  • FIG. 11 is a block diagram showing a second embodiment of the present invention.
  • FIG. 12 is a block diagram showing a third embodiment of the present invention.
  • FIG. 13 is a flow chart summarizing the cross polarization interference compensation method in the third embodiment.
  • FIG. 14 is an overall block diagram showing a fourth embodiment of the present invention.
  • FIG. 15 is a block diagram showing the configuration after the output of the quadrature demodulator in the fourth embodiment. Explanation of symbols
  • FIG. 7 is a block diagram showing the main part of the cross-polarization interference compensator of the first embodiment, and shows the parts after the outputs of the quadrature demodulators 8 and 11 shown in FIG.
  • the configuration shown in Fig. 4 is used for the configurations up to quadrature demodulators 8 and 11.
  • the block with the same code as the conventional example shown in Fig. 3 is It has the same function except that the input control signal is partially different.
  • the output side of the complex multiplier 18 is connected to the adder 19.
  • a signal line for transmitting a demodulated signal is connected to the output side of the adder 19, and a carrier phase detector (Carr PD) 20 and an error detector 26 are connected to the signal line.
  • Carr PD carrier phase detector
  • the output side of the carrier phase detector 20 is connected to the accumulator 22 via a loop filter (Carr LPF) 21.
  • the output signal line of the accumulator 22 is branched into two, and one of the two signal lines is connected to the complex multiplier 18 via the SIN / COS table 23.
  • a cross polarization signal is input to XPIC24, and the output side of XPIC24 is connected to complex multiplier 18 '.
  • the output signal line of the complex multiplier 18 ' is branched into two, and one of the two signal lines is connected to the adder 19!
  • the output signal line of the error detector 26 is branched into two, one of the two signal lines is connected to the phase noise detector 27, and the other signal line is connected to the XPIC 24.
  • the other signal line of the two branched output signal lines in the complex multiplier 18 ′ is connected to the phase noise detector 27.
  • the output side of the phase noise detector 27 is connected to the adder 29 via the multiplier 28 and the accumulator 22.
  • the other signal line of the two branched output signal lines in the accumulator 22 is connected to the adder 29.
  • the output side of the adder 29 is connected to the complex multiplier 18 ′ via the SIN / COS table 23 ′.
  • the complex multiplier 18 corrects the carrier phase of the input polarization signal and outputs the carrier phase in a synchronized state.
  • the carrier phase detector 20 detects the phase error of the input demodulated signal.
  • the loop filter 21 removes the high frequency component from the signal received from the carrier phase detector 20 and outputs it to the accumulator 22.
  • the accumulator 22 generates and outputs a sawtooth wave having a frequency corresponding to the magnitude of the signal received from the loop filter 21.
  • the SIN / COS table 23 selects a SIN / COS signal indicating the phase rotation angle of the sawtooth wave output from the accumulator 22 and outputs it to the complex multiplier 18.
  • the XPIC24 is configured with a general adaptive control type FIR.
  • the XPIC24 refers to the signal received from the error detector 26 and generates a cross-polarized interference wave mixed in the self-polarized wave. Generate a signal to cancel.
  • the error detector 26 information indicating the normal phase rotation angle of the own polarization signal in the complex multiplier 18 is registered in advance. The information is represented, for example, by the position of the lattice point on the coordinates indicating the phase rotation angle.
  • the error detector 26 calculates the difference between the phase of the received demodulated signal and the registered normal phase, and outputs an error signal indicating the phase difference.
  • the phase noise detector 27 is based on the error obtained by the output of the complex multiplier 18 'and the error detector 26.
  • phase noise difference that is the phase direction of the phase noise component is obtained.
  • Multiplier 28 performs predetermined weighting on the phase noise difference of the information included in the signal received from phase noise detector 27, and controls the amount of phase noise difference so as to achieve optimal compensation control. Adjust. A signal including information on the weighted phase noise difference is sent to the accumulator 22 ′.
  • Accumulator 22 reads phase noise difference information from the signal received from multiplier 28, integrates the phase noise difference, and calculates a phase compensation angle indicating a phase angle to be corrected from the integrated phase noise difference. Obtain and send to adder 29.
  • the multiplier 28 and the accumulator 22 constitute a control signal generation unit.
  • the signal output from the control signal generation unit corresponds to the control signal of the present invention.
  • the SIN / COS table 23 When the information obtained by adding the phase rotation angle and the phase compensation angle is input, the SIN / COS table 23 'selects the SIN / COS signal indicating the phase angle corresponding to the information from the table camera. And send it to the complex multiplier 18 '.
  • the complex multiplier 18 ′ corrects the phase angle of the signal corresponding to the SIN / COS signal that also receives the SIN / COS table 23 ′ force.
  • the complex multiplier 18 ′ corresponds to the phase rotator of the present invention.
  • the self-polarized input signal is output after the carrier phase is corrected by the complex multiplier 18 and the carrier is in a synchronized state.
  • the demodulated signal output from the adder 19 is a carrier phase detector 20
  • the phase error is detected by the carrier phase detector 20.
  • a high frequency component is removed from the detected phase error signal by the loop filter 21 and input to the accumulator 22.
  • a sawtooth wave having a frequency corresponding to the magnitude of the input signal is output.
  • This sawtooth wave represents the phase rotation angle of the self-polarized signal in the complex multiplier 18. Therefore, the SIN / COS signal indicating the phase rotation angle output from the accumulator 22 in the SIN / COS table 23 is selected from the table, and the SIN / COS signal is input to the complex multiplier 18.
  • the accumulator 22 and the SIN / COS table 23 constitute a numerically controlled oscillator (NCO).
  • NCO numerically controlled oscillator
  • a PLL Phase Locked Loop
  • carrier recovery is configured by a circuit from the phase detector 20 to the SIN / COS table 23.
  • the error detector 26 calculates an error from the lattice point indicating the phase of the normal received signal for the demodulated signal output from the adder 19, and outputs an error signal indicating the error.
  • the phase noise detector 27 obtains a phase noise difference which is the phase direction of the phase noise component from the output of the complex multiplier 18 ′ and the error signal obtained by the error detector 26.
  • a specific example of how to obtain the phase noise difference will be described in detail later. Briefly describing the method, assuming that the output of the complex multiplier 18 ′ is the outer a ′ and the error signal output of the error detector 26 is the vector e on the coordinates of the phase rotation angle, the vector a ′ is inherent.
  • the phase difference signal including the obtained phase noise difference information is input to the multiplier 28.
  • the multiplier 28 adjusts the control amount so as to obtain optimum compensation control by weighting the phase noise difference, which is the phase difference of the obtained phase noise, by a coefficient
  • the corrected control signal indicating the adjusted control amount is integrated by the accumulator 22 'and should be corrected. It is output as a phase compensation angle indicating the phase angle.
  • the adder 29 adds the phase compensation angle to the phase rotation angle on the main signal side. Is input to the SIN / COS table 23 '.
  • the SIN / COS signal obtained in the SIN / COS table 23 ′ is input to the complex multiplier 18 ′, the phase of the signal input from the XPI C24 is corrected in the complex multiplier 18 ′.
  • FIG. 8 and FIG. 9 are diagrams for explaining the compensation principle of the phase noise in the present embodiment.
  • a loop constituted by the carrier phase detector 20, the loop filter 21, the accumulator 22, the SIN / COS table 23, and the complex multiplier 18 is a carrier recovery PLL.
  • the carrier phase detector 20 outputs an error between the current carrier phase and the desired phase.
  • the loop filter 21 removes the high frequency component and converts it into a frequency signal.
  • the complex multiplier 18 adjusts the phase rotation speed in the direction of delaying the carrier phase (delaying the frequency). Carrier synchronization is established as described above.
  • XPIC24 calculates the correlation between the error signal from the signal point detected from the signal demodulated by the error detector 26 by the error detector 26 and the cross polarization signal input to XPIC24. A cross polarization signal mixed in the signal is detected and a signal for compensating for it is generated.
  • the detailed operation of XPIC24 is disclosed in, for example, Patent Document 1, and therefore detailed description thereof is omitted here.
  • the error detector 26 on the coordinates of the phase rotation angle shown in Fig. 8A, an outer scale indicating the difference between the actual position of the received signal and the position (grid point) where the polarization signal should be originally located. A certain error vector is detected.
  • the phase noise detector 27 obtains a phase difference between the error threshold calculated by the error detector 26 and the cross-polarization interference signal input from the complex multiplier 18 ′, and outputs an error signal. This error signal reflects the phase noise difference between the self-polarization and the different polarization.
  • the XPIC24 adjusts the amplitude and phase of the cross-polarized signal that interferes with the main signal. Save and output.
  • the different polarization components mixed in the main signal and the signal input to the XP IC from the different polarization input The phase changes with time.
  • the XPIC24 must always correct the phase change of the phase noise, but in general, the time constant of the XPIC is the part that cannot follow the phase change of the phase noise that is slower than the frequency characteristic of the phase noise. It will appear as deterioration.
  • XPIC24 generates an interference compensation signal generated from a cross-polarization interference received signal from a cross polarization interference signal. By subtracting, the effect of interference is compensated.
  • the interference signal a is mixed into the original signal (regular signal) D, and the received signal is shifted from its original form (4 points of QPSK).
  • the received signal is obtained by eliminating cross-polarization interference.
  • the reception signal point can be actually detected or observed.
  • a compensation error e that is an output of the error detector 26 that detects an error vector between a position (lattice point) that is supposed to be and a demodulation output, and a compensation signal a ′ that is an output of the complex multiplier 18 ′.
  • the phase noise difference ⁇ between a ′ and ⁇ a can be known from the relationship between the correction error e and the compensation signal a ′.
  • Za ′ oe is the angle between the vector a ′ and the vector e when the vector e is viewed counterclockwise from the vector a ′ as shown in FIG. 8C.
  • This phase difference is reflected in the complex multiplier 18 'provided at the XPIC24 output, and the phase adjustment is made so as to reduce the phase difference between the phase of the carrier component of the own polarization and the carrier component of the cross-polarization interference compensation signal. This makes it possible to compensate for the effects of phase noise.
  • the correction amount of the signal output from the phase noise detector 27 is adjusted by the multiplier 28, and converted into a phase correction angle by the accumulator 22. Thereafter, the phase correction angle from the accumulator 22 is added to the phase correction angle from the accumulator 22 by the adder 29 and output to the SIN / COS table 23 ′.
  • the phase difference due to the phase noise of the carrier component of the self-polarized signal and cross-polarization interference compensation signal is reduced. To control.
  • phase noise basically does not change in the amplitude direction (only the phase changes)
  • the output of the complex multiplier 18 ' is It is considered that only the phase changes without changing the amplitude of the signal. Therefore, by performing phase compensation of the phase noise with the complex multiplier 18 'at the XPIC24 output, the XPIC24 tap coefficient does not need to follow the phase noise. Can be prevented.
  • phase rotation by the complex multiplier 18 since the phase rotation by the complex multiplier 18 'has fewer parameters to be changed than the phase rotation due to the tap coefficient change in the XPIC 24, the time constant of control can be reduced.
  • the XPIC24 time constant can be increased accordingly, and the noise generated by XPIC itself when the time constant is reduced can be suppressed.
  • FIG. 10 is a flowchart that summarizes the operation procedure of the cross polarization interference compensation method of the present embodiment.
  • the error detector 26 obtains an error signal indicating the phase difference between the demodulated signal and the normal received signal of the own polarization
  • the phase noise detector 27 detects the cross-polarization interference compensation signal and the error signal.
  • the first phase noise difference which is the phase noise difference between the receiving-side local oscillators of the own polarization and the different polarization
  • the complex multiplier 18 ′ suppresses the second phase noise difference, which is the phase noise difference included in the cross polarization interference compensation signal, using the first phase noise difference (step 102).
  • FIG. 11 is a block diagram showing a cross polarization interference compensation device of the second embodiment.
  • the XPIC signal is added after carrier synchronization is achieved.
  • the XPIC signal is added before carrier synchronization is achieved. is doing.
  • the complex multiplier 18 ′ with XPIC24 output only needs to correct the phase difference due to the influence of phase noise, and the configuration is simplified accordingly.
  • the configuration in which the output of the accumulator 22 is added to the output of the accumulator 22, is omitted! Speak.
  • the present embodiment and the first embodiment are only different in that the XPIC signal is added after carrier synchronization is achieved or the XPIC signal is added before carrier synchronization is established. Since the basic operation is the same as that of the first embodiment, the description of the operation is omitted.
  • FIG. 12 is a block diagram showing a cross polarization interference compensating apparatus according to the third embodiment.
  • the complex multiplier 18 ′ in the second embodiment is arranged on the input side of the XPIC24. That is, the phase compensation can be performed even when the phase of the input signal of the XPIC 24 is changed.
  • the complex multiplier 18 ′ is arranged in front of the XPIC 24 as shown in FIG.
  • FIG. 13 is a flowchart summarizing the operation procedure of the cross polarization interference compensation method of the present embodiment.
  • the error detector 26 obtains an error signal indicating the phase difference between the demodulated signal and the normal received signal of the own polarization
  • the phase noise detector 27 detects the cross-polarization interference compensation signal and the error signal.
  • the first phase noise difference that is the phase noise difference between the receiving-side local oscillators of the own polarization and the different polarization is extracted (step 201).
  • the complex multiplier 18 ′ calculates the first phase noise difference with respect to the second phase noise difference that is the phase noise difference included in the cross polarization signal that is the generation source of the cross polarization interference compensation signal. To suppress (step 202).
  • FIG. 14 is an overall block diagram showing the cross polarization interference compensation device of the fourth embodiment
  • FIG. 15 is a block diagram showing the configuration after the output of the quadrature demodulator.
  • FIG. 14 and FIG. 15 respectively show an overall view when the present invention is applied to a cross polarization interference compensation device that employs the synchronous detection method, and a configuration after the output of the quadrature demodulator.
  • the quadrature detectors 8 and 8 ′ in order to establish carrier synchronization at the quadrature detectors 8 and 8 ′, as shown in FIG. 14, the quadrature detectors 8 and 8 ′, the carrier phase detector 20, the loop filter 21 and The voltage controlled oscillator 33 forms a PLL.
  • the carrier synchronization of the input signal is achieved, so that the complex multiplier on the main signal side shown in FIG. 11 is unnecessary as shown in FIG.
  • the point that the influence of the phase noise is removed by the complex multiplier 18 ′ arranged at the output of the XPIC 24 is the same as in the second embodiment.
  • 15 shows an example in which the complex multiplier 18 ′ is arranged after the output of the X PIC24, but the configuration in which the complex multiplier 18 ′ is arranged in front of the XPIC24 as in the third embodiment described in FIG. It is also possible to
  • the present invention detects the phase noise difference of the receiving-side local oscillator of the own polarization and the different polarization from the received signal, and uses the result to detect the difference. Since a means for suppressing the phase noise difference included in the inter-wave interference compensation signal is provided, it is not necessary for the XPIC to follow the phase noise difference.
  • the phase rotator for suppressing the phase noise difference has fewer parameters to be changed than the phase rotation due to the tap coefficient change in the XPIC, the time constant of the control can be reduced.
  • the XPIC time constant can be increased accordingly, and the noise generated by XPIC itself when the XPIC time constant is reduced can be suppressed.
  • the phase noise detector detects the phase noise difference between the local signals, and the phase rotator provided at the XPIC output reduces the phase noise.
  • the phase rotator provided at the XPIC output reduces the phase noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

 本発明の交差偏波間干渉補償装置は、自偏波が交差偏波間干渉補償された信号である復調信号と自偏波の正規の受信信号との位相差を抽出し、抽出した位相差を示す誤差信号を出力する誤差検出器26と、異偏波が交差偏波間干渉補償された信号である交差偏波間干渉補償信号と誤差信号とを比較することにより位相雑音差分を抽出して出力する位相雑音検出器27と、位相雑音差分に対応する制御信号を生成する制御信号生成部と、交差偏波間干渉補償信号を生成する交差偏波間干渉補償器の前段もしくは後段に配置され、制御信号が入力されることにより、位相雑音差分を抑圧する方向に交差偏波間干渉補償信号の位相を制御する位相回転器18’と、を有する構成である。

Description

明 細 書
交差偏波間干渉補償方法および交差偏波間干渉補償装置
技術分野
[0001] 本発明は、交差偏波間の干渉を補償する技術に関し、特に、固定マイクロ波通信 等でコチャネル伝送方式の伝送装置に用いるのに好適な交差偏波間干渉補償方法 および交差偏波間干渉補償装置に関する。
背景技術
[0002] コチャネル伝送方式等の伝送装置における交差偏波干渉を補償する方法として、 XPIC (Cross Polarization Interference Canceller)が用いられている(特開 2000— 165339号公報参照:以下では、この公報を特許文献 1と称する)。これは、注目する 偏波(以下では、自偏波と称する)に対して直交する偏波(以下では、異偏波と称す る)からの干渉信号を打ち消す信号を、異偏波の受信信号を参照して生成し、受信 信号に加算することにより、交差偏波間干渉を補償するものである。
[0003] XPICを動作させるためには、干渉波と自偏波受信信号のキャリア成分を同期させ る必要があり、準同期検波方式では受信側のローカル信号を同期させる受信ロー力 ル同期方式が適している。受信ローカル同期方式の場合、送信側のローカル信号は 同期している必要がない。
[0004] コチャネル伝送方式で XPICを使用するときの受信ローカル同期の実現方式として 、ローカル分岐方式とリファレンス同期方式がある。ローカル分岐方式は、一つの RF のローカル発振器の出力を 2分岐して各偏波の受信器に供給するものである。リファ レンス同期方式は、低周波数の基準発振器の出力を、各偏波の受信器に設置され た別々の RFローカル発振器 (LO: Local Oscillator)に供給し、それぞれ基準発振器 に同期させた RFローカル信号を生成することにより各偏波のローカル信号を同期さ ·¾:るものである。
[0005] ローカル分岐方式は、一つの RFのローカル発振器の出力を 2分岐して各偏波の受 信器に供給して ヽるので、 RFローカル信号の位相雑音が XPICの特性に影響を与 えないが、 RFローカル発振器が故障したときには両偏波の通信が切れてしまうことか ら、通信路の信頼性上不利である。
[0006] 一方、リファレンス同期方式は、各偏波の受信器にそれぞれローカル発振器が用 意されているので、いずれかが故障した場合でも、故障していないもう片方の偏波の 伝送路は切れることはないため、通信路の信頼性上有利である力 この方式では、 R Fローカル発振器の位相雑音が交差偏波間干渉補償の特性劣化につながる。その ため位相雑音の少な ヽ RFローカル発振器が用いられて 、るが、位相雑音の少な!/ヽ 発振器は高価であるためコスト面では不利である。
[0007] 従来の交差偏波間干渉補償方法を説明する。
[0008] 図 1は、ローカル分岐方式を採用したコチャネル伝送方式の構成例を示す図であ る。 V (垂直)偏波および H (水平)偏波にて伝送される IF (Intermediate Frequency: 中間周波)信号がミキサ 1, 1 'と発振器 2, 2'により RF信号に変換されて、アンテナ 3 , 3'から送出される。送出された信号は、受信装置側の受信アンテナ 4, 4'で受信さ れる。ここでアンテナは説明の都合上 3, 3'または 4, 4'と、各偏波に対して一組ずつ 表示してある力 実際には 3, 3,と 4, 4'はそれぞれ一つのアンテナ力も成る。
[0009] 図 1に示すローカル分岐方式では、 RF信号を IF信号に変換するときに使用する R Fローカル信号を、一つのローカル発振器 6の出力を分岐して使用する。
[0010] 図 2はローカル発振器 6の内部の構成例を示す図である。ローカル発振器 6は、基 準となる低周波数の信号を出力する基準発振器 14と、位相比較器 (PD: Phase Det ector) 15と、電圧制御発振器 16と、分周器 17とを有する。位相比較器 15には、基準 発振器 14の出力と、電圧制御発振器 16からの出力が分周器 17によって分周された 信号とが入力される。位相比較器 15の出力が電圧制御発振器 16に入力されること で、電圧制御発振器 16が基準ローカル発振器 14の n倍の周波数で発振する PLL ( Phase Locked Loop)を構成している。電圧制御発振器 16の出力が RFのローカル 信号として用いられる。
[0011] 図 1において、アンテナ 4, 4'を介して受信装置に入力された RF信号はミキサ 5, 5
'により IF信号となり、直交復調器 8, 8'に入力される。直交復調器 8, 8'に入力され る信号がローカル発振器 7, 7'により直交復調された信号は、 DEM (demodulator: 復調器) 9, 9'に入力され、キャリア再生やクロック再生などの処理が行われ、復調結 果が主信号として加算器 10, 10'〖こ出力される。
[0012] 一方、交差偏波側から入力された IF信号も直交復調器 11, 11 'に入力され、直交 復調された信号が、交差偏波間干渉補償器 (以下では、 XPICと表記する) 12, 12' に入力される。 XPIC12, 12'では、伝送路中で生じた交差偏波間干渉により自偏波 に干渉した異偏波信号を検出し、それを打ち消す信号を生成して出力する。 XPIC1 2, 12'から出力された信号は、 EPS (Endless Phase Shifter:無限移相器) 13, 13' にて位相回転が主信号側に合わされ、加算器 10, 10'で主信号と加算されること〖こ より、交差偏波間干渉が補正される。
[0013] 図 3は、直交復調器 8, 11の出力より後の部分の一構成例を詳細に示す回路プロ ック図である。図 3において、複素乗算器 18、キャリア位相比較器 (Carr PD) 20、 ループフィルタ(Carr LPF) 21、アキュムレータ(Acc) 22、 SIN/COSテーブル 23に よってキャリア再生 PLLが構成されており、このループでキャリアが再生される。
[0014] XPIC24では、異偏波入力があると、自偏波に干渉した交差偏波間干渉成分を打 ち消す信号が生成される。複素乗算器 18'は、自偏波に混入している干渉波のキヤ リア位相と、 XPIC24が出力した補償信号のキャリア位相とを合わせるために、 XPIC 24の出力信号を自偏波の回転角と同じ角度だけ回転させる。複素乗算器 18'の出 力は、加算器 19で自偏波に加算され、交差偏波間干渉が補償される。複素乗算器 1 8 'は位相回転器に相当する。
[0015] このローカル分岐方式の場合には、各偏波の受信器で用いるローカル信号が同じ ローカル発振器 6から供給されているため、 V偏波の受信器において、自偏波入力 には V偏波が位相雑音 φ 1の影響を受けた信号 V( φ 1)と、交差偏波干渉により混 入した H偏波の信号が位相雑音 φ 1の影響を受けた H ( φ 1)という信号が入力される 。また、異偏波入力からは H偏波の信号が位相雑音 φ 1の影響を受け、 Η ( φ 1)とい う形で入力される。ここで自偏波に干渉した異偏波信号のキャリア成分と、異偏波信 号の受信信号のキャリア成分の間の関係は、同じローカル発振器 6からの出力を用 いて処理しているため周波数 Z位相とも完全に同じものである。
[0016] 自偏波に混入した異偏波成分のもつ位相雑音成分は φ 1であり、異偏波側の受信 信号が持つ位相雑音も φ 1であって、両者の信号の間に位相雑音による位相差はな い。図 1に示した XPIC12は補正信号を生成する際に位相雑音の影響を受けずに位 相の安定した補正信号を生成することができる。よってこの方式では、ローカル発振 器の位相雑音は交差偏波間干渉補償の能力には影響を与えな!/ヽ。
[0017] し力し、上述したように、ローカル分岐方式で問題になるのは、一つのローカル発振 器 6の出力を分岐して使用して 、るため、このローカル発振器 6が故障したときには 両偏波の通信が一度に切れてしまうことである。これは通信路の信頼性を確保する 上で不利である。
[0018] 図 4は、リファレンス同期方式を採用したコチャネル伝送方式の構成例を示す図で ある。図 4に示すように、各偏波の受信器にローカル発振器 6, 6'を各々備えた構成 になっている点を除いて、図 1のローカル分岐方式と同じ構成である。リファレンス同 期方式は、各偏波の受信器にローカル発振器 6, 6 'を各々備えている。そして、それ ぞれのローカル発振器 6, 6'の周波数を同期させるために、基準となる低周波数の 基準発振器 25からの基準信号の出力を分岐し、各ローカル発振器 6, 6'で基準信 号に同期したローカル信号を発生させている。このような構成をとることで、ローカル 発振器 6, 6'のいずれかが故障した場合でも、故障していないもう片方の偏波の伝 送路は切れることがない。
[0019] 図 5は、リファレンス同期方式に用いるローカル発振器 6, 6'の構成例を示す図で ある。図 5に示すように、ローカル発振器 6, 6'は、位相比較器 15、電圧制御発振器 16および分周器 17を有する。位相比較器 15には、外部から入力される低周波の基 準信号 (リファレンス信号)と、電圧制御発振器 16の出力を分周器 17で n分周した信 号とが入力される。位相比較器 15の出力が電圧制御発振器 16に入力されることによ り、電圧制御発振器 16が基準信号入力の n倍の周波数で発振する PLLを構成する 。電圧制御発振器 16の出力が RFローカル信号として使用される。リファレンス同期 方式では、各偏波で用いるローカル信号は別々の PLLで生成されるため、各々の発 生する位相雑音は無相関である。
[0020] したがって、リファレンス同期方式の場合、 VZH各偏波の受信器のローカル発振 器 6, 6'が持つ位相雑音により、これらローカル発振器 6, 6'から出力されるローカル 信号間の位相関係は常に変動する。そのため、自偏波に混入した異偏波成分の位 相と、異偏波側の受信信号の位相の間には、ローカル発振器 6, 6'の位相雑音の差 を反映した位相変化が生じる。つまり、図 4に示されているように、 V偏波の受信系で 、ローカル発振器 6で発生する位相雑音 φ 1の影響を受けた信号を V( φ 1)と表すと 、伝送路中で H偏波から V偏波に干渉した成分は、ローカル発振器 6で発生する位 相雑音 φ 1の影響を受け、 Η ( φ 1)となる。結果的に V偏波の受信系では、交差偏波 間干渉の結果 V( 1) +Η ( 1)という信号が入力される。
[0021] 一方、 XPIC12には Η偏波の受信系力もローカル発振器 6'の位相雑音 φ 2の影響 を受けた Η偏波の受信信号 Η ( φ 2)という信号が入力される。ここでは簡単のために 、 V偏波力も Η偏波への干渉は考えないことにする。 XPIC12は、自偏波入力に干渉 した Η ( φ 1)を打ち消す信号を、 Η ( 2)という異偏波入力をリファレンスにして生成 する。このとき XPIC12は、この位相差( φ 1 - 2)まで考慮して補正信号を生成し なければならない。一般に XPICには位相回転機能もあるため、この位相差の時間 変化が XPIC動作の時定数よりも遅いときには位相雑音による位相差( φ 1— φ 2)に 追従して補正することができる。しかし、位相雑音により XPICの時定数以上で位相 変化が起こったときには XPICで補償しきれず、特性劣化として見えてくる。
[0022] この様子を図 6で説明する。図 6は RFローカル信号の位相雑音の様子を示した図 であり、ローカル信号の発振周波数をセンターとしたスペクトラムを表している。周波 数がセンター力 離れるほど電力密度が低くなつており、位相雑音の周波数成分は、 周波数がセンター周波数力 離れるほど小さくなることを示している。位相雑音のごく 低周波領域の成分は、 XPICが追随することができ、位相雑音の影響は補償される。
[0023] しかし、 XPICの追随可能範囲を超えた領域では XPICが反応することができず、位 相雑音成分はそのまま XPICから出力される。このため XPIC出力が自偏波信号とカロ 算されるときに自偏波中の干渉波の位相と合わず、補償誤差を生み出して特性劣化 となる。 XPICタップ係数更新の時定数を速くすれば位相雑音に対する追従速度を 上げることができるが、 XPIC自身の発する雑音が増えるため、実際には XPICの時 定数を上昇させることには限界がある。そのため、リファレンス同期方式の XPICを使 用するときには高価な位相雑音の小さいローカル発振器を使用する必要があった。 発明の開示 [0024] 上述したように、コチャネル伝送方式で XPICを使用するときの受信ローカル同期 の実現方式として、ローカル分岐方式を用いた場合、ローカル発振器の位相雑音が 交差偏波間干渉補償の能力には影響を与えない利点がある。しかし、一つのロー力 ル発振器の出力を分岐して使用しているため、このローカル発振器が故障したときに は両偏波の通信が一度に切れてしまうという問題があり、これは通信路の信頼性を確 保する上で不利である。
[0025] 一方、各偏波の受信器に設けたローカル発振器を基準発振器の信号によって周 波数同期させるリファレンス同期方式は、一つのローカル発振器が故障してももう片 方の偏波の通信路は確保される利点がある。しかし、各偏波の受信器に設けたロー カル発振器を基準発振器の信号によって周波数同期させて 、るものの、各ローカル 発振器のもつ位相雑音は無相関であるため、各ローカル発振器の位相雑音により特 性劣化が発生するという問題がある。この特性劣化を改善するためには、位相雑音 の小さ 、高価なローカル発振器を使用しなければならな 、。
[0026] 本発明の目的は、上記問題点に鑑み、位相雑音の多!、ローカル発振器の位相雑 音の影響を補償し、安価な発振器を使用した場合であっても位相雑音による交差偏 波間干渉補補償能力の低下を防止することが可能な交差偏波間干渉補補償方法お よび装置を提供することにある。
[0027] 本発明の交差偏波間干渉補償方法は、自偏波および異偏波の干渉を補償するた めの、受信ローカル同期方式を用いた交差偏波間干渉補償方法であって、自偏波 が交差偏波間干渉補償された信号である復調信号および自偏波の正規の受信信号 間の位相差を示す誤差信号と、異偏波が交差偏波間干渉補償された信号である交 差偏波間干渉補償信号とを比較することにより、自偏波と異偏波の受信側ローカル 発振器の位相雑音差分である第 1の位相雑音差分を抽出し、交差偏波間干渉補償 信号に含まれる位相雑音差分である第 2の位相雑音差分を、第 1の位相雑音差分を 用いて抑圧するものである。
[0028] また、本発明の交差偏波間干渉補償方法は、自偏波および異偏波の干渉を補償 するための、受信ローカル同期方式を用いた交差偏波間干渉補償方法であって、自 偏波が交差偏波間干渉補償された信号である復調信号および自偏波の正規の受信 信号間の位相差を示す誤差信号と、異偏波が交差偏波間干渉補償された信号であ る交差偏波間干渉補償信号とを比較することにより、自偏波と異偏波の受信側ロー力 ル発振器の位相雑音差分である第 1の位相雑音差分を抽出し、交差偏波間干渉補 償信号の生成元になる異偏波の信号に含まれる位相雑音差分である第 2の位相雑 音差分を、第 1の位相雑音差分を用いて抑圧するものである。
[0029] また、上記本発明の交差偏波間干渉方法にお!、て、位相回転角度の座標上で交 差偏波間干渉補償信号のベ外ルが a 'であり、誤差信号のベクトルが eであるとき、第 1の位相雑音差分 Θを、
θ = π - 2 Χ ( Z a ' oe)
( Z a ' oeは、ベクトル a 'とベクトル e間の回転方向を含む角度)
によって抽出することとしてもよ 、。
[0030] また、受信ローカル同期方式として、特に位相雑音が問題になるリファレンス同期 方式 XPICに本発明を適用すれば、自偏波と異偏波の受信側ローカル発振器の位 相雑音差分により生ずる特性劣化を改善する上で極めて好適である。
[0031] 一方、本発明の交差偏波間干渉補償装置は、自偏波および異偏波の干渉を補償 するための、受信ローカル同期方式を用いた交差偏波間干渉補償装置であって、自 偏波が交差偏波間干渉補償された信号である復調信号と自偏波の正規の受信信号 との位相差を抽出し、抽出した位相差を示す誤差信号を出力する誤差検出器と、異 偏波が交差偏波間干渉補償された信号である交差偏波間干渉補償信号と誤差信号 とを比較することにより位相雑音差分を抽出して出力する位相雑音検出器と、位相雑 音差分に対応する制御信号を生成する制御信号生成部と、交差偏波間干渉補償信 号を生成する交差偏波間干渉補償器の前段もしくは後段に配置され、制御信号が 入力されることにより、位相雑音差分を抑圧する方向に交差偏波間干渉補償信号の 位相を制御する位相回転器と、を有する構成である。
[0032] 交差偏波間干渉補償器 (XPIC)は、通常、適応制御形の FIR (Finite Impulse Re sponse)フィルタが用いられる力 雑音による制御信号の極性変動の影響を抑圧する ため、タップ係数の生成部には比較的大きな時定数を持っている。一方、位相回転 器は、回転方向のみを変化させ振幅は変化させないことにより、制御するパラメータ を位相回転のみに絞っているため高速な時定数が期待できる。
[0033] また通常、位相雑音がローカル信号に与える影響は、位相変化が主で振幅の変化 は小さいため、位相回転器で位相を制御した場合、ローカル信号の位相雑音による 高速な位相変化にも追従しやす 、。
[0034] そこで、本発明によれば、 XPICと、ローカル信号間の位相雑音差に応じた信号で 制御される位相回転器を組み合わせることにより、位相雑音成分にっ ヽては位相回 転器で吸収し、その他の振幅の変化を XPIC本体で調節する構造にすることにより、 位相雑音の影響を抑えることが可能となる。
[0035] 本発明は、受信信号から自偏波と異偏波の受信側ローカル発振器の位相雑音差 分を検出し、その結果を用いて偏波間干渉補償信号に含まれる位相雑音差分を抑 圧する手段を設けているので、 XPICが位相雑音差分に追従する必要がなくなる。
[0036] また、位相雑音差分を抑圧するための位相回転器は、 XPIC内のタップ係数変化 による位相回転にくらべて変化させるパラメータが少ないため、制御の時定数を小さ くすることができるので、その分 XPICの時定数を大きくとることができ、 XPICの時定 数を小さくした場合に XPIC自身で発生する雑音を抑えることができる。
[0037] また、位相雑音が問題になるリファレンス同期方式 XPICにおいて、本発明では、位 相雑音検出器によってローカル信号間の位相雑音差を検出し、 XPIC出力に設けた 位相回転器によって位相雑音を打ち消す位相回転を与えて、自偏波側に混入して いる干渉成分のもつ位相と同じ位相にそろえる。そのため、リファレンス同期方式であ つても、干渉波のキャリア成分と補償信号のキャリア成分の位相関係が安定している 状況を作り出すことができ、より高い周波数成分の位相雑音まで追随して、位相雑音 による交差偏波間干渉補償特性の劣化を防止することが可能となる。
[0038] さらに、位相雑音の比較的大きい安価な RFのローカル発振器を用いてリファレンス 同期方式の XPICを構成した場合にお ヽても、位相雑音による交差偏波間干渉補補 償能力の低下を防止することができる。
図面の簡単な説明
[0039] [図 1]図 1はローカル分岐方式を採用したコチャネル伝送方式の構成例を示す図で ある。 [図 2]図 2はローカル分岐方式に使用される RFローカル発振器の内部の構成例を示 す図である。
圆 3]図 3は図 1に示した交差偏波間干渉補補償装置の直交復調器の出力以降の構 成例を詳細に示す回路ブロック図である。
[図 4]図 4はリファレンス同期方式を採用したコチャネル伝送方式の構成例を示す図 である。
[図 5]図 5はリファレンス同期方式に用いるローカル発振器の構成例を示す図である。
[図 6]図 6は RFローカル信号の位相雑音の様子を示す図である。
圆 7]図 7は本発明の第 1の実施形態を示すブロック図である。
圆 8A]図 8Aは第 1の実施形態における位相雑音の補償原理を説明するための図で ある。
圆 8B]図 8Bは第 1の実施形態における位相雑音の補償原理を説明するための図で ある。
圆 8C]図 8Cは第 1の実施形態における位相雑音の補償原理を説明するための図で ある。
圆 9A]図 9Aは第 1の実施形態における位相雑音の補償原理を説明するための図で ある。
圆 9B]図 9Bは第 1の実施形態における位相雑音の補償原理を説明するための図で ある。
圆 10]図 10は第 1の実施形態における交差偏波間干渉補補償方法をまとめたフロ 一チャートである。
[図 11]図 11は本発明の第 2の実施形態を示すブロック図である。
圆 12]図 12は本発明の第 3の実施形態を示すブロック図である。
圆 13]図 13は第 3の実施形態における交差偏波間干渉補補償方法をまとめたフロ 一チャートである。
圆 14]図 14は本発明の第 4の実施形態を示す全体ブロック図である。
圆 15]図 15は第 4の実施形態における直交復調器の出力以降の構成を示すブロッ ク図である。 符号の説明
[0040] 1,1 ' , 5, 5' ミキサ
2,2' 発振器
3,3' , 4,4, アンテナ
6, 6' , 7, 7' ローカル発振器
8, 8' , 11, 11 ' 直交復調器
9, 9' DEM
10, 10' , 19, 29 カロ算器
12, 12' , 24 交差偏波間干渉補償器 (XPIC)
13, 13' EPS
14, 25 基準発振器
15 位相比較器
16 電圧制御発振器
17 分周器
18, 18' 複素乗算器
20 キャリア位相比較器
21 ループフィルタ
22, 22' アキュムレータ
23, 23, SIN/COSテーブル
26 誤差検出器
27 位相雑音検出器
28 乗算器
発明を実施するための最良の形態
[0041] (第 1の実施形態)
本発明の第 1の実施形態の交差偏波間干渉補償装置を説明する。図 7は、第 1の 実施形態の交差偏波間干渉補償装置の要部を示すブロック図であり、図 4に示した 直交復調器 8, 11の出力以降の部分を示している。直交復調器 8, 11までの構成は 図 4に示した構成がとられており、また図 3に示した従来例と同じ符号のブロックは、 入力される制御信号が一部異なる点を除いて、同様の機能を有している。
[0042] はじめに、図 7に示す各構成間の信号伝送のための接続を説明する。
[0043] 図 7に示すように、複素乗算器 18の出力側は加算器 19に接続されている。加算器 19の出力側には復調信号を伝送するための信号線が接続され、その信号線にキヤ リア位相検出器 (Carr PD) 20および誤差検出器 26が接続されている。
[0044] キャリア位相検出器 20の出力側がループフィルタ(Carr LPF) 21を介してアキュ ムレータ 22に接続されている。アキュムレータ 22の出力信号線は 2つに分岐され、 2 本のうち一方の信号線は SIN/COSテーブル 23を介して複素乗算器 18に接続されて いる。
[0045] XPIC24には異偏波信号が入力され、 XPIC24の出力側は複素乗算器 18'に接 続されている。複素乗算器 18'の出力信号線は 2つに分岐され、 2本のうち一方の信 号線は加算器 19に接続されて!、る。
[0046] 誤差検出器 26の出力信号線は 2つに分岐され、 2本のうち一方の信号線は位相雑 音検出器 27に接続され、他方の信号線は XPIC24に接続されている。また、上記複 素乗算器 18 'における、分岐された 2本の出力信号線のうち他方の信号線が位相雑 音検出器 27に接続されている。位相雑音検出器 27の出力側が乗算器 28およびァ キュムレータ 22,を介して加算器 29に接続されて 、る。
[0047] 上記アキュムレータ 22における、分岐された 2つの出力信号線のうち他方の信号線 が加算器 29に接続されている。加算器 29の出力側は SIN/COSテーブル 23'を介し て複素乗算器 18'に接続されている。
[0048] 続いて、各構成について説明する。
[0049] 複素乗算器 18は、入力される自偏波信号のキャリア位相を補正し、キャリア位相を 同期状態にして出力する。キャリア位相検出器 20は、入力される復調信号の位相誤 差を検出する。ループフィルタ 21はキャリア位相検出器 20より受け取る信号から高 周波成分を取り除いてアキュムレータ 22に出力する。アキュムレータ 22はループフィ ルタ 21から受け取る信号の大きさに対応した周波数の鋸波を生成して出力する。 SIN /COSテーブル 23は、アキュムレータ 22から出力された鋸波の位相回転角度を示す SIN/COS信号を選択して複素乗算器 18に出力する。 [0050] XPIC24は、一般な適応制御形 FIRで構成され、異偏波信号が入力されると、誤差 検出器 26から受信する信号を参照し、自偏波に混入した異偏波干渉波を打ち消す 信号を生成する。誤差検出器 26には、複素乗算器 18における自偏波信号の正規の 位相回転角度を示す情報が予め登録されている。その情報は、例えば、位相回転角 度を示す座標上において格子点の位置で表される。誤差検出器 26は、受信する復 調信号の位相と登録された正規の位相との差を求め、位相差を示す誤差信号を出 力する。
[0051] 位相雑音検出器 27は、複素乗算器 18'の出力と誤差検出器 26で求めた誤差から
、位相雑音成分の位相方向である位相雑音差分を求める。
[0052] 乗算器 28は、位相雑音検出器 27より受信する信号に含まれる情報の位相雑音差 分に対して所定の重み付けを行って、最適な補償制御となるように位相雑音差分の 制御量を調節する。重み付けを行った位相雑音差分の情報を含む信号をアキュムレ ータ 22'に送出する。
[0053] アキュムレータ 22'は、乗算器 28から受け取る信号から位相雑音差分の情報を読 み出し、位相雑音差分を積分し、積分した位相雑音差分から、補正すべき位相角度 を示す位相補償角度を求めて加算器 29に送出する。なお、乗算器 28とアキュムレ ータ 22'とで制御信号生成部が構成される。制御信号生成部から出力される信号が 本発明の制御信号に相当する。
[0054] SIN/COSテーブル 23'は、位相回転角度と位相補償角度とが加算された情報が入 力されると、テーブルカゝらその情報に対応した位相角度を示す SIN/COS信号を選択 して複素乗算器 18 'に送出する。
[0055] 複素乗算器 18'は、 SIN/COSテーブル 23'力も受信する SIN/COS信号に対応して 、信号の位相角度を補正する。なお、複素乗算器 18'は本発明の位相回転器に相 当する。
[0056] 次に、本実施形態の交差偏波間干渉補償装置における信号の流れを簡単に説明 する。
[0057] 自偏波入力信号は、複素乗算器 18でキャリア位相が補正され、キャリアが同期状 態になって出力される。加算器 19から出力される復調信号はキャリア位相検出器 20 に入力され、キャリア位相検出器 20で位相誤差が検出される。検出された位相誤差 信号はループフィルタ 21で高周波成分が取り除かれ、アキュムレータ 22に入力され る。
[0058] アキュムレータ 22からは、入力信号の大きさに対応した周波数の鋸波が出力される 。この鋸波は複素乗算器 18での自偏波信号の位相回転角度を表す。そのため、 SIN /COSテーブル 23にてアキュムレータ 22から出力された位相回転角度を示す SIN/C OS信号がテーブル内から選択され、その SIN/COS信号が複素乗算器 18に入力され る。なお、アキュムレータ 22と SIN/COSテーブル 23で数値制御発振器(NCO ; Nume ric Controlled Oscillator)が構成されている。また、位相検出器 20から SIN/COSテ 一ブル 23までの回路でキャリア再生を行う PLL (Phase Locked Loop)を構成してい る。
[0059] 一方、異偏波信号が XPIC24に入力されると、自偏波に混入した異偏波干渉波を 打ち消す信号が XPIC24で生成される。 XPIC24の出力が複素乗算器 18 'に入力さ れると、その信号は位相補正を受けて複素乗算器 18 'から出力される。複素乗算器 1 8 'で位相補正された信号は、 2つに分岐され、そのうちの一方は加算器 19で主信号 に加算され、他方は位相雑音検出器 27に入力される。
[0060] 誤差検出器 26は、加算器 19から出力される復調信号について、正規の受信信号 の位相を示す格子点からの誤差を求め、その誤差を示す誤差信号を出力する。位 相雑音検出器 27は、複素乗算器 18 'の出力と誤差検出器 26で求めた誤差信号か ら、位相雑音成分の位相方向である位相雑音差分を求める。位相雑音差分の求め 方の具体例を後で詳細に説明する。その方法を簡単に説明すると、位相回転角度の 座標上で複素乗算器 18 'の出力をべ外ル a'、誤差検出器 26の誤差信号出力をべ タトル eとすると、ベクトル a 'が本来ある位置(一 a)力 の位相雑音差分 0は、 θ = π - 2 Χ ( Z a ' oe)で求められる。
[0061] 求められた位相雑音差分の情報を含む位相差信号は、乗算器 28に入力される。
乗算器 28は、求められた位相雑音の位相差である位相雑音差分に対して係数 |8の 重み付けを行うことにより、最適な補償制御となるようにその制御量を調節する。調節 された制御量を示す補正制御信号は、アキュムレータ 22 'で積分され、補正すべき 位相角度を示す位相補償角度として出力される。
[0062] アキュムレータ 22'から出力された位相補償角度の情報を含む補正角度信号が加 算器 29に入力されると、加算器 29で位相補償角度が主信号側の位相回転角度と加 算されて SIN/COSテーブル 23'に入力される。そして、 SIN/COSテーブル 23'で得ら れた SIN/COS信号が複素乗算器 18'に入力されると、複素乗算器 18'において XPI C24から入力される信号の位相補正が行われる。
[0063] 次に、本実施形態の交差偏波間干渉補償装置の動作を説明する。図 8および図 9 は、本実施形態における位相雑音の補償原理を説明するための図である。
[0064] キャリア位相検出器 20、ループフィルタ 21、アキュムレータ 22、 SIN/COSテーブル 23、複素乗算器 18で構成されるループはキャリア再生 PLLである。キャリア位相検 出器 20が、現在のキャリア位相とあるべき位相との誤差を出力する。その出力がルー プフィルタ 21に入力されると、ループフィルタ 21は高周波成分を取り除き、周波数信 号に変換する。この周波数信号について、キャリア位相検出器 20で位相が進んでい るとの判定が出たときには、キャリア位相を遅らせる(周波数を遅らせる)方向に、複 素乗算器 18は位相回転速度を調節する。以上のようにしてキャリア同期が確立され る。
[0065] XPIC24では、誤差検出器 26により自偏波信号が復調された信号から検出された 信号点からの誤差信号と、 XPIC24に入力される異偏波信号の相関を計算すること により、主信号に混入している異偏波信号を検出し、それを補償する信号を生成する 。なお、 XPIC24の詳しい動作については、例えば特許文献 1に開示されているので 、ここではその詳細な説明を省略する。
[0066] 誤差検出器 26では、図 8Aに示す位相回転角度の座標上で、実際の受信信号の 位置と自偏波信号の本来あるべき位置 (格子点)との差を示すべ外ルである誤差べ タトルを検出する。位相雑音検出器 27は、誤差検出器 26で計算された誤差べ外ル と、複素乗算器 18'から入力された交差偏波間干渉信号間の位相差を求め、誤差信 号を出力する。この誤差信号には、自偏波と異偏波の位相雑音差が反映されている
[0067] 図 9Aに示すように、 XPIC24は、主信号に干渉した異偏波信号の振幅と位相を調 節して出力する。一方、図 9Bに示すリファレンス同期方式のように位相雑音が発生 する要因がある場合には、主信号に混入している異偏波成分と、異偏波入力から XP ICに入力された信号の位相が時間的に変化する。この場合、 XPIC24は常に位相 雑音の位相変化の補正も行わなければならな 、が、一般に XPICの時定数は位相雑 音の周波数特性に比べて遅ぐ位相雑音の位相変化に追従できない部分は特性劣 化として見えてしまう。
[0068] XPIC24は、図 8Aに示す(図 8Aでは QPSKの例を示して!/、る)ように、交差偏波 間干渉を受けた受信信号から、異偏波信号から生成した干渉補償信号を差し引くこ とにより、干渉の影響を補償するものである。図 8Aでは、本来の信号 (正規の信号) Dに対して、干渉成分 aが混入することにより受信信号が本来の姿 (QPSKの 4点)か らずれた形になっている。 XPIC24は、この干渉成分 aを打ち消すための a' ( =—a) という打消成分を生成する。干渉を受けた受信信号に XPIC出力を加算することによ り交差偏波間干渉を取り除いた受信信号が得られる。
[0069] 位相雑音の影響がある場合、干渉成分 aと打消成分 a'の向きは、平均的には逆向 きであるが、瞬間的には絶えず向きが変化している。向きの変化が遅い場合には図 8 Bのように、 XPIC24の補償機能で干渉成分 aと打消成分 a'が逆向きの信号が生成 される力 XPIC24の追従速度を超えると図 8Cのように、干渉成分 aと打消成分 a'は 正反対の方向に向かなくなる。その結果、補償しきれない誤差 eが生じ、これが最終 的に受信信号点をずらすことになり、受信器の特性を劣化させる。
[0070] 図 8Cに示すように、干渉成分に相当する干渉波 a、打消成分に相当する補償信号 a'、補償誤差 eのうち、実際に検出もしくは観測することができるのは、受信信号点の 本来あるべき位置 (格子点)と復調出力間の誤差ベクトルを検出する誤差検出器 26 の出力である補償誤差 eと、複素乗算器 18 'の出力そのものである補償信号 a'であ る。図 8Cに示すように、補正誤差 eと補償信号 a'の関係から、 a'と— aとの位相雑音 差分 Θを知ることができる。
[0071] 即ち、交差偏波間干渉補償信号のベクトルを a'とし、誤差信号のベクトルを eとし、 o をそれぞれのベクトルの基準点とするとき、位相雑音差分 Θを、
θ = π - 2 Χ ( Z a' oe) によって抽出することができる。ここで、 Za' oeは、図 8Cに示すように、ベクトル a'か らベクトル eを反時計回りにみたときの、ベクトル a'とベクトル e間の角度である。この位 相差を XPIC24出力に設けた複素乗算器 18'に反映させ、自偏波のキャリア成分の 位相と、交差偏波間干渉補償信号のキャリア成分との間の位相差を小さくする方向 に位相調整すれば位相雑音の影響を補償することが可能である。
[0072] 位相雑音検出器 27から出力された信号は、乗算器 28で補正量が調節され、アキ ュムレータ 22,で位相補正角度に変換される。その後、アキュムレータ 22,からの位 相補正角度が加算器 29でアキュムレータ 22からの位相補正角度と加算されて SIN/ COSテーブル 23'へ出力される。さらに、 SIN/COSテーブル 23'および複素乗算器 1 8'で XPIC24の出力を位相回転することにより、自偏波信号と交差偏波間干渉補償 信号のキャリア成分が持つ位相雑音による位相差を縮める方向に制御する。
[0073] 位相雑音は基本的に振幅方向の変化を伴わない (位相だけが変化する)ため、あ る固定量の安定した交差偏波間干渉が入っているときには、複素乗算器 18'の出力 は、信号の振幅は変化せず位相のみが変化すると考えられる。したがって、 XPIC24 出力にある複素乗算器 18'で位相雑音の位相補償を行うことにより、 XPIC24のタツ プ係数は位相雑音には追従する必要がな 、ので、位相雑音による交差偏波間干渉 補補償能力の低下を防止することができる。
[0074] また、複素乗算器 18'による位相回転は、 XPIC24内のタップ係数変化による位相 回転にくらべて変化させるパラメータが少ないため、制御の時定数を小さくすることが できる。その分 XPIC24の時定数を大きくとることができ、時定数を小さくした場合に XPIC自身で発生する雑音を抑えることができる。
[0075] 図 10は本実施形態の交差偏波間干渉補償方法の動作手順をまとめたフローチヤ ートである。図 10に示すように、誤差検出器 26が復調信号と自偏波の正規の受信信 号との位相差を示す誤差信号を求め、位相雑音検出器 27が交差偏波間干渉補償 信号と誤差信号とを比較することにより、自偏波と異偏波の受信側ローカル発振器の 位相雑音差分である第 1の位相雑音差分を抽出する (ステップ 101)。その後、複素 乗算器 18 'は、交差偏波間干渉補償信号に含まれる位相雑音差分である第 2の位 相雑音差分に対して、第 1の位相雑音差分を用いて抑圧する (ステップ 102)。 (第 2の実施形態)
本発明の第 2の実施形態の交差偏波間干渉補償装置を説明する。図 11は第 2の 実施形態の交差偏波間干渉補償装置を示すブロック図である。上記第 1の実施形態 では、キャリア同期が取れた後で XPIC信号を加算する方法を採用しているが、本実 施形態では、これをキャリア同期が取れる前に XPIC信号を加算する方法を採用して いる。
[0076] 本実施形態の場合、 XPIC24出力の複素乗算器 18 'は、単純に位相雑音の影響 による位相差のみを補正すればよいので、その分構成が簡略化される。第 1の実施 形態と比べると、図 11に示すように、アキュムレータ 22の出力がアキュムレータ 22, の出力と加算される構成が省略されて!ヽる。
[0077] なお、本実施形態と第 1の実施形態は、キャリア同期が取れた後で XPIC信号を加 算するか、キャリア同期が取れる前に XPIC信号を加算するかの相違だけであり、そ の基本的動作は第 1の実施形態と同様であるので、その動作説明は省略する。
[0078] (第 3の実施形態)
本発明の第 3の実施形態の交差偏波間干渉補償装置を説明する。図 12は第 3の 実施形態の交差偏波間干渉補償装置を示すブロック図である。本実施形態は、上記 第 2の実施形態における複素乗算器 18'を XPIC24の入力側に配置した構成である 。即ち、位相補償は、 XPIC24の入力信号の位相を変化させても実施することができ 、この場合複素乗算器 18'は、図 12のように XPIC24の前に配置される。
[0079] 図 13は本実施形態の交差偏波間干渉補償方法の動作手順をまとめたフローチヤ ートである。図 13に示すように、誤差検出器 26が復調信号と自偏波の正規の受信信 号との位相差を示す誤差信号を求め、位相雑音検出器 27が交差偏波間干渉補償 信号と誤差信号とを比較することにより、自偏波と異偏波の受信側ローカル発振器の 位相雑音差分である第 1の位相雑音差分を抽出する (ステップ 201)。その後、複素 乗算器 18 'は、交差偏波間干渉補償信号の生成元になる異偏波の信号に含まれる 位相雑音差分である第 2の位相雑音差分に対して、第 1の位相雑音差分を用いて抑 圧する (ステップ 202)。
[0080] (第 4の実施形態) 本発明の第 4の実施形態の交差偏波間干渉補償装置を説明する。図 14は第 4の 実施形態の交差偏波間干渉補償装置を示す全体ブロック図であり、図 15は直交復 調器の出力以降の構成を示すブロック図である。図 14および図 15のそれぞれは、同 期検波方式を採用した交差偏波間干渉補償装置に対して本発明を適用した場合の 全体図および直交復調器の出力以降の構成をそれぞれ示す。
[0081] 同期検波方式の場合、直交検波器 8, 8'のところでキャリア同期を確立させるため 、図 14に示すように、直交検波器 8, 8'、キャリア位相検出器 20、ループフィルタ 21 および電圧制御発振器 33で PLLが構成される。本実施形態の場合、入力信号のキ ャリア同期が取れているため、図 15に示すように、図 11に示した、主信号側の複素 乗算器が不要になる。
[0082] 本実施形態においても、 XPIC24の出力に配置されている複素乗算器 18'によつ て位相雑音の影響を取り除く点は、第 2の実施形態と同様である。また、図 15では X PIC24の出力後に複素乗算器 18'を配置する例を示したが、図 12で説明した第 3の 実施形態のように XPIC24の前に複素乗算器 18'を配置する構成とすることも可能 である。
[0083] 第 1から第 4の実施形態で説明したように、本発明は、受信信号から自偏波と異偏 波の受信側ローカル発振器の位相雑音差分を検出し、その結果を用いて偏波間干 渉補償信号に含まれる位相雑音差分を抑圧する手段を設けて ヽるので、 XPICが位 相雑音差分に追従する必要がなくなる。
[0084] また、位相雑音差分を抑圧するための位相回転器は、 XPIC内のタップ係数変化 による位相回転にくらべて変化させるパラメータが少ないため、制御の時定数を小さ くすることができるので、その分 XPICの時定数を大きくとることができ、 XPICの時定 数を小さくした場合に XPIC自身で発生する雑音を抑えることができる。
[0085] また、位相雑音が問題になるリファレンス同期方式 XPICにおいて、本発明では、位 相雑音検出器によってローカル信号間の位相雑音差を検出し、 XPIC出力に設けた 位相回転器によって位相雑音を打ち消す位相回転を与えて、自偏波側に混入して いる干渉成分のもつ位相と同じ位相にそろえる。そのため、リファレンス同期方式であ つても、干渉波のキャリア成分と補償信号のキャリア成分の位相関係が安定している 状況を作り出すことができ、より高い周波数成分の位相雑音まで追随して、位相雑音 による交差偏波間干渉補償特性の劣化を防止することが可能となる。
[0086] さらに、位相雑音の比較的大きい安価な RFのローカル発振器を用いてリファレンス 同期方式の XPICを構成した場合にお ヽても、位相雑音による交差偏波間干渉補補 償能力の低下を防止することができる。
[0087] なお、本発明は上記実施形態に限定されることなぐ発明の範囲内で種々の変形 が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。

Claims

請求の範囲
[1] 自偏波および異偏波の干渉を補償するための、受信ローカル同期方式を用いた交 差偏波間干渉補償方法であって、
前記自偏波が交差偏波間干渉補償された信号である復調信号および前記自偏波 の正規の受信信号間の位相差を示す誤差信号と、前記異偏波が交差偏波間干渉 補償された信号である交差偏波間干渉補償信号とを比較することにより、前記自偏 波と前記異偏波の受信側ローカル発振器の位相雑音差分である第 1の位相雑音差 分を抽出し、
前記交差偏波間干渉補償信号に含まれる位相雑音差分である第 2の位相雑音差 分を、前記第 1の位相雑音差分を用いて抑圧する、交差偏波間干渉補償方法。
[2] 自偏波および異偏波の干渉を補償するための、受信ローカル同期方式を用いた交 差偏波間干渉補償方法であって、
前記自偏波が交差偏波間干渉補償された信号である復調信号および前記自偏波 の正規の受信信号間の位相差を示す誤差信号と、前記異偏波が交差偏波間干渉 補償された信号である交差偏波間干渉補償信号とを比較することにより、前記自偏 波と前記異偏波の受信側ローカル発振器の位相雑音差分である第 1の位相雑音差 分を抽出し、
前記交差偏波間干渉補償信号の生成元になる前記異偏波の信号に含まれる位相 雑音差分である第 2の位相雑音差分を、前記第 1の位相雑音差分を用いて抑圧する 、交差偏波間干渉補償方法。
[3] 位相回転角度の座標上で前記交差偏波間干渉補償信号のベクトルが a'であり、前 記誤差信号のベ外ルが eであるとき、前記第 1の位相雑音差分 Θを、
θ = π - 2 Χ ( Z a' oe)
( Z a' oeは、ベクトル a'とベクトル e間の回転方向を含む角度)
によって抽出する、請求項 1または 2に記載の交差偏波間干渉補償方法。
[4] 前記受信ローカル同期方式として、リファレンス同期による受信ローカル同期方式 を用いる請求項 1から 3のいずれ力 1項に記載の交差偏波間干渉補償方法。
[5] 自偏波および異偏波の干渉を補償するための、受信ローカル同期方式を用いた交 差偏波間干渉補償装置であって、
前記自偏波が交差偏波間干渉補償された信号である復調信号と前記自偏波の正 規の受信信号との位相差を抽出し、抽出した位相差を示す誤差信号を出力する誤 差検出器と、
前記異偏波が交差偏波間干渉補償された信号である交差偏波間干渉補償信号と 前記誤差信号とを比較することにより位相雑音差分を抽出して出力する位相雑音検 出器と、
前記位相雑音差分に対応する制御信号を生成する制御信号生成部と、 前記交差偏波間干渉補償信号を生成する交差偏波間干渉補償器の前段もしくは 後段に配置され、前記制御信号が入力されることにより、前記位相雑音差分を抑圧 する方向に前記交差偏波間干渉補償信号の位相を制御する位相回転器と、 を有する交差偏波間干渉補償装置。
[6] 前記制御信号生成部は、
前記位相雑音検出器により検出された位相雑音差分を積分し、積分した位相雑音 差分から、補正すべき位相角度を示す位相補償角度を求めて前記位相回転器に供 給する、請求項 5に記載の受信ローカル同期方式の交差偏波干渉補償装置。
[7] 前記制御信号生成部は、
前記位相雑音検出器により検出された前記位相雑音差分に重み付けを行って、該 位相雑音差分に対する制御量を調節する、請求項 5または 6に記載の交差偏波干渉 補償装置。
[8] 前記位相雑音検出器は、
前記交差偏波間干渉補償信号のベクトルが a'であり、前記誤差信号のベクトルが e であるとき、前記位相雑音差分 Θを、
θ = π - 2 Χ ( Z a' oe)
( Z a' oeは、ベクトル a'とベクトル e間の回転方向を含む角度)
によって抽出する、請求項 5から 7のいずれか 1項に記載の交差偏波間干渉補償装 置。
PCT/JP2006/320757 2005-10-20 2006-10-18 交差偏波間干渉補償方法および交差偏波間干渉補償装置 WO2007046427A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06811954.4A EP1940061B1 (en) 2005-10-20 2006-10-18 Cross polarization interference compensating method, and cross polarization interference compensating device
CN2006800356113A CN101273567B (zh) 2005-10-20 2006-10-18 交叉极化干扰消除方法和交叉极化干扰消除设备
CA002623431A CA2623431A1 (en) 2005-10-20 2006-10-18 Cross polarization interference compensating method, and cross polarization interference compensating device
US12/088,176 US7925236B2 (en) 2005-10-20 2006-10-18 Cross polarization interference canceling method and cross polarization interference canceling apparatus
JP2007541013A JP4573056B2 (ja) 2005-10-20 2006-10-18 交差偏波間干渉補償方法および交差偏波間干渉補償装置
NO20081484A NO20081484L (no) 2005-10-20 2008-03-26 Fremgangsmate ved kompensering av krysspolariserende interferens, og tilsvarende anordning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-306322 2005-10-20
JP2005306322 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046427A1 true WO2007046427A1 (ja) 2007-04-26

Family

ID=37962520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320757 WO2007046427A1 (ja) 2005-10-20 2006-10-18 交差偏波間干渉補償方法および交差偏波間干渉補償装置

Country Status (8)

Country Link
US (1) US7925236B2 (ja)
EP (1) EP1940061B1 (ja)
JP (1) JP4573056B2 (ja)
CN (1) CN101273567B (ja)
CA (1) CA2623431A1 (ja)
NO (1) NO20081484L (ja)
RU (1) RU2369969C1 (ja)
WO (1) WO2007046427A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087338A1 (ja) * 2009-01-28 2010-08-05 日本電気株式会社 両偏波伝送システム、両偏波伝送方法、受信装置、送信装置、受信方法、及び送信方法
JP2019507543A (ja) * 2016-01-27 2019-03-14 ゾディアック データ システムズ 受信信号の交差偏波を打ち消す無線通信受信器
KR102293881B1 (ko) * 2020-05-15 2021-08-25 국방과학연구소 위상 및 신호세기 제어기능을 갖는 교차편파 재밍장비

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008057602A1 (en) * 2006-11-08 2008-05-15 Massachusetts Institute Of Technology Method and apparatus for signal searching
JP4918938B2 (ja) * 2007-04-11 2012-04-18 日本電気株式会社 直交偏波間干渉補償装置、復調装置、受信局および直交偏波間干渉補償方法
KR20090025112A (ko) * 2007-09-05 2009-03-10 삼성전자주식회사 Rf 수신기 및 그 간섭신호 제거방법
CN101800678B (zh) * 2010-03-12 2012-05-23 华为技术有限公司 应用ccdp和xpic的微波传输方法、装置和系统
EP2560306A4 (en) * 2010-04-15 2016-03-23 Nec Corp DEVICE FOR COMPENSATING A POLARIZATION INTERFERENCE AND METHOD AND PROGRAM FOR COMPENSATING A POLARIZATION INTERFERENCE
JP5453195B2 (ja) * 2010-08-03 2014-03-26 パナソニック株式会社 高周波受信装置及び無線受信機
US8396177B1 (en) * 2010-09-03 2013-03-12 Dragonwave, Inc. Interference carrier regeneration and interference cancellation apparatus and methods
CN102510766B (zh) * 2011-11-15 2014-02-26 华为技术有限公司 一种同波道双极化微波设备和接收信号接收方法
CN103378899B (zh) * 2012-04-25 2016-03-30 中兴通讯股份有限公司 一种应用交叉极化干扰抵消器的控制方法及系统
CN102710569B (zh) * 2012-05-16 2017-09-19 南京中兴新软件有限责任公司 一种交叉极化干扰消除装置及方法
CN103546401A (zh) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 微波调制解调器及其交叉干扰抵消的方法
CN102833199B (zh) * 2012-09-12 2014-11-05 安徽省菲特科技股份有限公司 消除交叉极化干扰的方法及装置
US9628219B2 (en) * 2015-07-31 2017-04-18 Huawei Technologies Co., Ltd. Apparatus and method for transmitting and receiving polarized signals
CN106921510A (zh) * 2015-12-28 2017-07-04 中兴通讯股份有限公司 一种应用ccdp和xpic微波传输时避免干扰的方法及装置
WO2017118621A1 (de) * 2016-01-04 2017-07-13 Symeo Gmbh Verfahren und system zur verringerung von störungen durch phasenrauschen in einem radarsystem
US10425256B2 (en) * 2018-02-06 2019-09-24 Huawei Technologies Canada Co., Ltd. Methods and systems for interference mitigation in a dual-polarized communication system
EP3672070A1 (en) * 2018-12-19 2020-06-24 Nxp B.V. Communications device and method for operating a communications device
CN111289864B (zh) * 2020-04-02 2023-02-28 全球能源互联网研究院有限公司 一种局部放电高频电流抗干扰检测系统及方法
DE102022104457B4 (de) 2022-02-24 2023-10-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Empfang von zwei digitalen Signalen in einem digitalen Doppelpolarisationsübertragungssystem
CN115173916B (zh) * 2022-06-02 2024-04-05 中国电子科技集团公司第十研究所 适用交叉极化干扰对消的数字频率补偿方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219007A (ja) * 1992-02-04 1993-08-27 Nec Eng Ltd 交差偏波干渉除去装置
JPH07177123A (ja) * 1993-12-17 1995-07-14 Fujitsu Ltd 交差偏波間干渉補償装置及び補償方法
JPH10313255A (ja) * 1997-05-12 1998-11-24 Nippon Hoso Kyokai <Nhk> 受信状態改善装置
JP2000165339A (ja) 1998-11-27 2000-06-16 Nec Corp 送信lo同期方式を用いた両偏波伝送システム
JP2002158630A (ja) * 2000-11-17 2002-05-31 Nec Corp 交差偏波間干渉補償回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611127B2 (ja) 1989-09-13 1994-02-09 日本電気株式会社 交差偏波間干渉除去システム
US5710799A (en) * 1992-06-01 1998-01-20 Fujitsu Limited Cross polarization interference canceler and cross polarization interference eliminating apparatus using the same
JPH06181464A (ja) 1992-08-28 1994-06-28 Fujitsu Ltd 交差偏波間干渉補償器
JP2800774B2 (ja) 1996-03-31 1998-09-21 日本電気株式会社 交差偏波干渉補償方式
US5838740A (en) * 1996-04-17 1998-11-17 Motorola, Inc. Crosspole interference canceling receiver for signals with unrelated baud rates
US5901343A (en) * 1997-05-09 1999-05-04 Lockheed Martin Corporation Adaptive cross polarization Interference canceler for use at intermediate frequencies
JP3616706B2 (ja) * 1997-06-19 2005-02-02 富士通株式会社 交差偏波間干渉補償機能を備えた復調器
JP3196729B2 (ja) 1998-06-26 2001-08-06 日本電気株式会社 両偏波受信装置
DE19926658A1 (de) * 1999-06-11 2000-12-14 Bosch Gmbh Robert Empfänger für zwei orthogonal polarisierte Signale
JP3925279B2 (ja) * 2002-04-05 2007-06-06 日本電気株式会社 交差偏波干渉除去システム
JP2004172975A (ja) * 2002-11-20 2004-06-17 Nec Corp 両偏波受信装置及びそのローカル位相雑音低減方法
JP4125588B2 (ja) 2002-12-20 2008-07-30 Necエンジニアリング株式会社 交差偏波干渉補償装置
JP4561364B2 (ja) * 2005-01-05 2010-10-13 日本電気株式会社 両偏波受信装置
JP4918938B2 (ja) * 2007-04-11 2012-04-18 日本電気株式会社 直交偏波間干渉補償装置、復調装置、受信局および直交偏波間干渉補償方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219007A (ja) * 1992-02-04 1993-08-27 Nec Eng Ltd 交差偏波干渉除去装置
JPH07177123A (ja) * 1993-12-17 1995-07-14 Fujitsu Ltd 交差偏波間干渉補償装置及び補償方法
JPH10313255A (ja) * 1997-05-12 1998-11-24 Nippon Hoso Kyokai <Nhk> 受信状態改善装置
JP2000165339A (ja) 1998-11-27 2000-06-16 Nec Corp 送信lo同期方式を用いた両偏波伝送システム
JP2002158630A (ja) * 2000-11-17 2002-05-31 Nec Corp 交差偏波間干渉補償回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1940061A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087338A1 (ja) * 2009-01-28 2010-08-05 日本電気株式会社 両偏波伝送システム、両偏波伝送方法、受信装置、送信装置、受信方法、及び送信方法
US8554164B2 (en) 2009-01-28 2013-10-08 Nec Corporation Dual polarization transmission system, dual polarization transmission method, reception apparatus, transmission apparatus, reception method, and transmission method
JP2019507543A (ja) * 2016-01-27 2019-03-14 ゾディアック データ システムズ 受信信号の交差偏波を打ち消す無線通信受信器
KR102293881B1 (ko) * 2020-05-15 2021-08-25 국방과학연구소 위상 및 신호세기 제어기능을 갖는 교차편파 재밍장비

Also Published As

Publication number Publication date
JP4573056B2 (ja) 2010-11-04
US20090143042A1 (en) 2009-06-04
JPWO2007046427A1 (ja) 2009-04-23
CA2623431A1 (en) 2007-04-26
RU2369969C1 (ru) 2009-10-10
CN101273567A (zh) 2008-09-24
CN101273567B (zh) 2011-09-14
EP1940061A1 (en) 2008-07-02
US7925236B2 (en) 2011-04-12
EP1940061A4 (en) 2014-08-06
EP1940061B1 (en) 2015-07-08
NO20081484L (no) 2008-07-21

Similar Documents

Publication Publication Date Title
JP4573056B2 (ja) 交差偏波間干渉補償方法および交差偏波間干渉補償装置
JP4918938B2 (ja) 直交偏波間干渉補償装置、復調装置、受信局および直交偏波間干渉補償方法
EP1225711B1 (en) Cross polarization interference canceller and method of canceling cross polarization interference
US20120224657A1 (en) Carrier recovery circuit and demodulation circuit under quasi-coherent detection method
JP4693462B2 (ja) ダイバシティ受信装置および方法
US8908817B1 (en) Differential phase tracking in the presence of unknown interference
JPH0211032A (ja) アップリンク交差偏波補償装置
JP2904196B2 (ja) 直交周波数分割多重信号のダイバーシティ受信装置
JP4926878B2 (ja) 中継装置
JP4459749B2 (ja) Ofdmダイバーシティ同期装置及び受信端末装置並びに中継装置
JP4926879B2 (ja) 中継装置
JP4524148B2 (ja) 無線中継装置
JP4760535B2 (ja) スペースダイバシティ受信装置
US7088977B2 (en) Wireless communication apparatus and wireless communication method
JP3873016B2 (ja) 衛星通信システム、送信地球局及び受信地球局
JP3092608B2 (ja) 交差偏波干渉補償方式
JPS6412135B2 (ja)
JP2012029132A (ja) 交差偏波間干渉補償装置
JPS61135244A (ja) 交差偏波補償回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680035611.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007541013

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2623431

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/003971

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12088176

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008111739

Country of ref document: RU

Ref document number: 1504/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006811954

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE