WO2007043273A1 - Procédé de recuit/trempage à chaud de tôle d’acier contenant du silicium et appareil de recuit/trempage à chaud en continu - Google Patents

Procédé de recuit/trempage à chaud de tôle d’acier contenant du silicium et appareil de recuit/trempage à chaud en continu Download PDF

Info

Publication number
WO2007043273A1
WO2007043273A1 PCT/JP2006/318089 JP2006318089W WO2007043273A1 WO 2007043273 A1 WO2007043273 A1 WO 2007043273A1 JP 2006318089 W JP2006318089 W JP 2006318089W WO 2007043273 A1 WO2007043273 A1 WO 2007043273A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
heating zone
annealing
heating
steel sheet
Prior art date
Application number
PCT/JP2006/318089
Other languages
English (en)
Japanese (ja)
Inventor
Nobuyoshi Okada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to BRPI0617390-0A priority Critical patent/BRPI0617390B1/pt
Priority to CA2625790A priority patent/CA2625790C/fr
Priority to JP2007539836A priority patent/JP4791482B2/ja
Priority to US12/083,396 priority patent/US20090123651A1/en
Priority to CN2006800382692A priority patent/CN101287854B/zh
Priority to EP06797881.7A priority patent/EP1936000B1/fr
Publication of WO2007043273A1 publication Critical patent/WO2007043273A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/565Sealing arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames

Definitions

  • the present invention relates to a method for continuously annealing and melting steel sheets containing Si, and
  • the fusion staking does not particularly specify the kind of staking metal, but includes squeezing of zinc, aluminum, tin or other metals or their alloys.
  • the surface of the steel plate is usually degreased and cleaned, and activated by annealing the steel plate and hydrogen reduction of the steel plate surface in an annealing furnace.
  • a method of immersing in a molten bath when the steel plate components contain oxidizable metals such as Si and Mn, these oxidizable elements form single or complex oxides on the surface of the steel plate during annealing.
  • the alloying treatment is carried out by re-heating after plating, the alloying rate is lowered.
  • S i forms an S i O 2 oxide film on the surface of the steel sheet, significantly reducing the wettability between the steel plate and the molten metal, and at the same time, the S i O 2 oxide film forms the ground during the alloying process.
  • This is a particular problem because it is a major barrier to diffusion between iron and metal.
  • the oxygen potential in the annealing atmosphere should be drastically reduced, but an atmosphere in which S i, M n, etc. are not oxidized is obtained industrially. It is virtually impossible.
  • Japanese Patent No. 2, 6 1 8, 3 08 and Japanese Patent No. 2, 6 4 8, 7 7 2 disclose that the direct heating furnace disposed in the front stage of the annealing furnace As a result, an oxide film is formed to a thickness of 100 nm or more, and control is performed so that the Fe oxide film formed earlier in the subsequent indirect heating furnace is reduced immediately before immersion in the plating bath.
  • a method is disclosed in which oxides of easily oxidizable metals such as i and Mn are not generated.
  • hot-rolled steel sheets are heat-treated at 6500 ° C. to 9500 ° C. with the black scale remaining attached, so that the oxidizable elements are removed.
  • a method of manufacturing a hot-dip plated steel sheet is disclosed which undergoes internal oxidation and then passes through pickling, cold rolling, and fusion bonding processes.
  • Patent No. 2, 6 1 8, 3 08 and Patent No. 2, 6 4 8, 7 7 2 the Fe-based oxide film generated in the direct-fired heating furnace is reduced immediately before immersion in the molten metal bath. If the oxide film is not sufficiently reduced, the tackiness will be reduced, and if the oxide film is reduced too early, surface oxidation such as S 1 and M n will occur. . For this reason, extremely high furnace control is required, and industrially lacks stability. In addition, the oxide film produced in the direct-fired furnace peels off from the steel sheet and adheres to the roll surface while the steel sheet is wound around the in-furnace roll, thereby generating push rods on the steel sheet.
  • Japanese Patent Laid-Open No. 20 0 4-3 1 5 9 60 avoids the above-mentioned problems, and can be applied to an indirect heating type melting squeezing apparatus, and there is no increase in special processes.
  • the atmospheric conditions in the annealing furnace that internally oxidize S i and M n are conditions that cause surface oxidation of the steel in a region where the steel plate temperature is relatively low. Therefore, the atmosphere adjustment method in the annealing furnace must be specified. There is a concern of inducing the generation of rolls in the furnace due to the surface oxide film formed in the low temperature range, and industrialization requires a device to control the atmosphere.
  • the problem of the present invention is that when a steel sheet containing Si is melted and bonded by the indirect heating method, the inside of S i and M n is not produced without causing surface oxidation of the base iron in a relatively low temperature range.
  • An object of the present invention is to provide an apparatus and a method for causing oxidation and avoiding deterioration of plateability and alloying delay of a steel sheet.
  • the present invention has been made in order to solve the above-mentioned problems. However, it is as follows.
  • the atmosphere in the cooling zone is composed of 1 to 10 vol% of hydrogen, the balance is composed of nitrogen and inevitable impurities, and the dew point of the front stage of the heating zone is less than 125 ° C, the latter stage of the heating zone and After annealing with a dew point of 30 to 0 ° C and below, a dew point of the cooling zone of less than 125 ° C, and the steel sheet temperature during heating in the previous stage of the heating zone to 55 0 to 75 ° C and below, A method for continuously annealing and melting steel sheets containing S i, characterized by performing melting and staking treatment.
  • the mixed gas of nitrogen and hydrogen is humidified and introduced into the latter stage of the heating zone and Z or the retentive zone, according to any one of (1) to (4), A method for continuously annealing and melting steel sheets containing S i.
  • Equipped with an annealing furnace and a melting bath carry in a continuous steel plate from the front of the annealing furnace, move it continuously inside the furnace, anneal it, send it out of the furnace, and then continue to the annealing furnace
  • a continuous annealing fusion staking apparatus that continuously performs fusion staking in a rear squeeze bath, wherein the annealing furnace carries steel sheets
  • Each zone is divided into a heating zone, a heating zone, a heating zone, a warming zone, and a cooling zone.
  • Each zone has a roller that transports steel plates, and a steel plate that passes between the zones continuously.
  • each zone has means for controlling the atmospheric gas composition and the dew point of the atmosphere, respectively, and before the heating zone, after the heating zone, and in the tropical zone.
  • It has a discharge means, and has an atmospheric gas sealing device between the atmospheric gas discharge means and the preceding stage of the heating zone, and Z or between the above-mentioned retention zone and the cooling zone.
  • the heating zone and the dew point of the tropical zone are controlled, and the generation of Fe-based oxides on the steel sheet surface is avoided, and S i is internally oxidized. It is possible to suppress the surface concentration of S i, manufacture a hot-dip steel plate with excellent plating appearance and plating adhesion, and extremely increase the alloying temperature or lengthen the alloying time. Can be produced.
  • FIG. 1 is a diagram illustrating an internal oxide formation method avoiding the formation of an Fe-based oxide according to the present invention.
  • FIG. 2 is an overall configuration diagram of the fusing device according to the present invention.
  • an annealing furnace atmosphere of hydrogen 1 to 10%, nitrogen 990 to 90%, dew point 1 30 to more than 0 ° C The atmosphere is composed of other inevitable ingredients, and is formed by heating the steel plate to at least 5500 or more. If the dew point is less than 130 ° C, the suppression of external oxidation of Si, Mn, etc. will be insufficient, and the consistency will deteriorate. On the other hand, if the dew point exceeds 0, an internal oxide is formed, but at the same time, oxidation of the base iron occurs, resulting in a decrease in tightness due to poor reduction of the Fe-based oxide.
  • the internal oxide When heated to 5500 ° C or higher under the above atmospheric conditions suitable for internal oxidation, the internal oxide is formed within 2 m from the steel sheet surface. When the internal oxide extends to a depth exceeding 2 zm from the surface of the steel sheet, a large amount of internal oxide is generated due to the effects of high dew point, heating at a high temperature for longer than necessary, etc. Problems such as delayed alloying occur.
  • the atmosphere in the direct-fired heating zone is mainly composed of burner flue gas components, and oxidation of the steel is inevitable due to the large amount of water vapor contained in the flue gas.
  • the steel sheet will cause in-furnace roll wrinkles. Therefore, it is appropriate to adopt the indirect heating method in the region where the steel plate temperature is 300 or higher where the steel plate is substantially oxidized by the direct flame heating method.
  • any heating method up to less than 300 ° C. is irrelevant. Since oxidation of Si, Mn, etc.
  • the suitable atmospheric conditions for the internal oxidation should be the heating zone of the annealing furnace and the tropical zone.
  • the dew point in the atmosphere is 1 25 or higher, Fe-based oxides are formed on the steel sheet surface when the steel sheet temperature during heating is relatively low. This kind of oxide generated in the indirect heating method disappears in the subsequent heating process, but if it remains even if the steel plate temperature exceeds 5550, it adheres to the in-furnace roll and is similar to the direct fire heating method In addition, it was found that the surface of the steel sheet was pressed.
  • the dew point in the heating zone of the annealing furnace and the dew point in the cooling zone should be less than 125 to avoid the formation of Fe-based surface oxides, and the atmosphere in the latter half of the heating zone or in the tropical zone should be avoided. It is necessary to set conditions suitable for the internal oxidation.
  • the temperature reached by the steel plate at the front stage of the heating zone is preferably 5 5 0 to 7 5 0 ° C.
  • the lower limit of the steel sheet temperature reached 55 ° C is that even if Fe-based oxides are formed on the surface of the steel sheet, if it is less than 55 ° C, it adheres to the hearth roll and causes squeezing to the steel sheet. This is because there is virtually no occurrence.
  • the maximum temperature reached in an annealing furnace is usually 7500, which is not specified here because the appropriate temperature differs depending on the target strength level and steel composition.
  • the steel plate cooling temperature in the cooling zone is usually about the same as the bath temperature, but it is not specified here because the appropriate temperature differs depending on the plating type.
  • Figure 1 illustrates the internal oxide formation method that avoids the formation of the Fe-based oxide of the present invention described above.
  • a in the figure exemplifies the production limit of Fe-based oxides, which is around 5550. Fe-based oxides are generated in the lower temperature region, Fe-based oxides are not generated in the higher-temperature region, and Fe-based oxides generated on the lower temperature side are reduced.
  • B in the figure indicates the upper limit of the dew point in the preceding stage of the heating zone according to the present invention, which is about 1 to 25 in the vicinity.
  • I in the figure exemplifies a steel plate heating pattern suitable for forming internal oxidation at the lowest dew point of the present invention.
  • II in the figure exemplifies a steel plate heating pattern suitable for forming internal oxidation at the highest dew point of the present invention. In either case, no Fe-based oxide is generated in the heating region where the steel plate temperature is 5500 or higher.
  • the decrease in the tackiness due to the surface concentration of Si is a substantial problem when the Si concentration is 0.2% by mass or more. If the Si concentration exceeds 2.5% by mass, the Si content will be too high, and even with this technology, it will be difficult to suppress the surface concentration of S i to a level that does not impair the contact property. Therefore, the content is preferably in the range of 0 2 to 25 mass%.
  • the amount of Mn added is not specified here because the appropriate amount depends on the target strength level and steel structure.
  • the atmospheric gas in the annealing furnace of the melting smelter usually flows from the bath side to the pre-tropical stage, and most of it is dissipated out of the furnace through the inlet of the heating zone. Therefore, in order to separate the atmosphere, especially the dew point, before and after the heating zone of the annealing furnace, there is no choice but to prevent the high dew point holding tropics or the atmosphere after the heating zone from flowing into the preceding stage of the heating zone. It is necessary to have a device for exhausting part of the atmospheric gas flowing from the latter stage of the heating zone to the former stage between the former stage and the latter stage of the heating zone.
  • the tropical atmosphere before the heating zone or the atmospheric gas after the heating zone In order to improve the effect of preventing the inflow, there is a device that exhausts part of the atmospheric gas flowing from the rear stage of the heating zone to the front stage between the front stage and the rear stage of the heating zone, and further, on the front side of the exhaust system, It is effective to have a sealing device to suppress the outflow of atmospheric gas before the heating zone and the inflow of atmospheric gas after the heating zone.
  • the dew point is 125 ° C or higher as the steel plate temperature decreases in the heating zone or the cooling zone after the tropical rain, there is a concern that an Fe-based oxide film is formed again on the steel plate surface. Therefore, in order to prevent the atmospheric gas in the heating zone or the tropical zone from flowing back to the cooling zone that follows, it is also possible to have a sealing device between the tropical zone or the tropical zone and the cooling zone. Necessary to fully exhibit the effect of improving the adhesion and alloying characteristics due to product formation.
  • the atmosphere necessary to effectively form the internal oxide is that normal nitrogen gas and hydrogen gas or a mixed gas thereof are introduced into the furnace while adjusting the flow rate so as to have the required composition, and at the same time, the water vapor into the furnace. Obtained by introducing. At this time, if so-called steam is introduced directly into the furnace, the uniformity of the dew point in the furnace is inferior, and in the unlikely event that high-concentration steam directly touches the steel sheet, useless oxides are formed on the steel sheet surface. Since there is a problem of generation, a method in which nitrogen gas or a mixed gas of nitrogen and hydrogen is introduced by humidification is preferable. Nitrogen gas or nitrogen and hydrogen mixed gas that is usually introduced into the furnace has a low dew point of dew point of 40 ° C or less.
  • a humidified gas containing saturated water vapor close to the temperature of hot water can be obtained.
  • the amount of moisture contained in the humidified gas is significantly smaller than that of the steam itself, and when introduced into the furnace, there is an advantage that a more uniform atmosphere is formed earlier than when steam is blown.
  • the air flow adjustment damper is used to exhaust the inflow atmosphere from the latter stage of the heating zone.
  • an exhaust gas blower The sealing device installed on the front side of the exhaust gas device may have a structure in which, for example, a plurality of seal rolls, dampers, or baffle plates are installed, and then nitrogen for sealing is introduced into the portion. A part of the sealing gas is exhausted by the exhaust device, but the atmosphere before the heating zone is hardly exhausted, and the atmosphere after the heating zone at the high dew point can be prevented from flowing into the heating zone.
  • the sealing device installed after the heating zone or between the tropical zone and the cooling zone may have the same structure as the sealing device installed on the front side of the exhaust gas device described above, but the gas flow in the annealing furnace is basically the same. Since it is in the direction of the heating zone or the tropical zone from the cooling zone side, the introduction of sealing nitrogen may be canceled.
  • the steel sheet obtained in this way is melted and squeezed, the steel sheet temperature is reheated to 4600 ° C or higher so that the staking layer is alloyed with the steel at a speed that does not cause industrial problems. It is possible to produce a steel sheet with alloying and melting with no Si plating and containing Si.
  • FIG. 2 shows an outline of one embodiment of the melting and crimping apparatus of the present invention.
  • the melting squeezing apparatus comprises, in order in the conveying direction of the steel plate 1, an annealing furnace 2 having a pre-trophic stage 3, a post-heating zone 4, a retentive zone 5 and a cooling zone 6, a smelting bath 7, and alloying. It consists of device 8.
  • Each zone 3, 4, 5, 6 of the annealing furnace is equipped with a roller 18 for continuously conveying the steel plate, and an opening 19 is provided between each zone, and the steel plate is placed in each zone in the furnace.
  • the board can be passed through.
  • An atmospheric gas pipe 9 for introducing an atmospheric gas composed of hydrogen and nitrogen is connected to each zone of the annealing furnace 2.
  • Humidified nitrogen is obtained by blowing nitrogen gas from the nitrogen pipe 1 1 into the nitrogen humidifier 10 and via the humidified nitrogen supply pipe 1 2. Introduced in the latter half of the heating zone 4 and in the tropical zone 5. An exhaust device 1 3 and a pre-heating zone sealing device 1 4 are arranged between the heating zone pre-stage 3 and the heating zone post-stage 4. 5 is arranged. Nitrogen piping for sealing 16 is connected to these sealing devices.
  • the gas flow in the annealing furnace is generated as schematically shown by the atmospheric gas flow 17, so humidified nitrogen is used so that the dew point of the latter half of the heating zone and the retentive zone is 30 or more. Even if is introduced, the flow into the upstream or cooling zone of the high dew point atmosphere is greatly suppressed, and as a result, the dew point of the heating zone and cooling zone can be maintained at less than 125.
  • the steel sheets with the components shown in Table 1 were used as the mating plate.
  • the atmosphere in the annealing furnace was adjusted in advance to be 5% hydrogen, the remaining nitrogen and unavoidable components, and then introduced with humidified nitrogen according to the plating conditions, and the exhaust device and the seal device were activated.
  • the dew point of the zone was controlled in the range from 140 ° C to 5.
  • the dew point of the cooling zone was set to 30 ° C or less in all cases.
  • the steel plate temperature on the upstream side of the heating zone was from 400 to 780, and the steel plate temperature on the downstream side of the heating zone was from 830 to 85 ° C. 7 Hold for 5 seconds.
  • the steel plate temperature on the cooling zone exit side was 4 6 5.
  • the plating bath conditions were a bath temperature of 46 ° C., an A 1 concentration of 0.13% in the bath, and the amount of sticking was adjusted to 50 g Z m 2 per side by gas wiping.
  • the alloying temperature was set to 50 and held for 30 seconds.
  • the presence or absence of oxidation of the steel sheet during heating and heat retention was measured by measuring the emissivity of the steel sheet surface with a radiation thermometer using a polarizing detector.
  • steel When there is no surface oxidation, the plate exhibits an emissivity of about 0.20 to 0.30, but the emissivity shows a high value depending on the degree of oxidation of the steel plate surface. This time, it was determined that there was oxidation of the steel sheet surface when the emissivity was 0.33 or more.
  • This radiation thermometer was installed at the outlet before the heating zone, at the center of the latter half of the heating zone, the outlet after the heating zone, and the tropical retreat outlet.
  • the obtained plated steel sheets were evaluated for plating properties and alloying characteristics by measuring the presence or absence of defects by stop inspection and measuring the Fe concentration in the plating layer by sampling. Regarding the alloying characteristics, Fe concentration in the plating layer was judged as unalloyed when less than 8% was unalloyed, and over 12% was overalloyed, and the others were judged as acceptable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

La présente invention concerne un procédé de recuit/trempage à chaud en continu à l'aide d'un appareil de trempage à chaud possédant un four de recuit dans lequel une tôle d'acier contenant du silicium est trempée à chaud. Dans ce procédé, le silicium contenu dans l'acier subit une oxydation interne sans subir d’oxydation de la surface de façon à éviter ainsi une diminution d’adhérence de dépôt sur l’acier et un retard de recuit après galvanisation. La présente invention concerne en outre l’appareil destiné à une utilisation dans ce procédé. Le procédé de recuit/trempage à chaud en continu utilise un four de recuit ayant une première zone de chauffage, une dernière zone de chauffage, une zone de rétention de chaleur, et une zone de refroidissement dans cet ordre et un bain de trempage. Le procédé consiste à réaliser le recuit dans les conditions suivantes. Dans les régions où la tôle d'acier a une température d’au moins 300 °C, la tôle d'acier est chauffée ou maintenue chaude au moyen d’un chauffage indirect. L'atmosphère à l'intérieur du four dans chaque zone est une atmosphère constituée de 1 à 10 % en volume d'hydrogène et, comme complément, de l’azote et des impuretés inévitables. Dans la première zone de chauffage, l'acier est chauffé à une température maximale de 550 à 750 °C et l'atmosphère est régulée de façon à avoir un point de rosée inférieur à -25 °C. Dans la dernière zone de chauffage et la zone de rétention de chaleur qui suivent, le point de rosée est régulé à une température allant de -30 °C à 0 °C. Dans la zone de refroidissement, le point de rosée est régulé à une température inférieure à -25 °C.
PCT/JP2006/318089 2005-10-14 2006-09-06 Procédé de recuit/trempage à chaud de tôle d’acier contenant du silicium et appareil de recuit/trempage à chaud en continu WO2007043273A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0617390-0A BRPI0617390B1 (pt) 2005-10-14 2006-09-06 METHOD OF CONTINUOUS CUTTING AND COATING BY HOT IMMERSION AND CONTINUOUS CUTTING AND COATING SYSTEM BY HOT IMMERSION OF STEEL PLATES CONTAINING Si
CA2625790A CA2625790C (fr) 2005-10-14 2006-09-06 Procede et systeme de recuit et de zinguage par metallisation au bain chaud continus de tole mince en acier contenant du si
JP2007539836A JP4791482B2 (ja) 2005-10-14 2006-09-06 Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
US12/083,396 US20090123651A1 (en) 2005-10-14 2006-09-06 Continuous Annealing and Hot Dip Plating Method and Continuous Annealing and Hot Dip Plating System of Steel sheet Containing Si
CN2006800382692A CN101287854B (zh) 2005-10-14 2006-09-06 含Si钢板的连续退火热浸镀方法以及连续退火热浸镀装置
EP06797881.7A EP1936000B1 (fr) 2005-10-14 2006-09-06 Procédé et appareil de recuit et trempage à chaud en continu pour tôles en acier contenant du silicium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005299915 2005-10-14
JP2005-299915 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043273A1 true WO2007043273A1 (fr) 2007-04-19

Family

ID=37942528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318089 WO2007043273A1 (fr) 2005-10-14 2006-09-06 Procédé de recuit/trempage à chaud de tôle d’acier contenant du silicium et appareil de recuit/trempage à chaud en continu

Country Status (10)

Country Link
US (1) US20090123651A1 (fr)
EP (1) EP1936000B1 (fr)
JP (1) JP4791482B2 (fr)
KR (1) KR101011897B1 (fr)
CN (1) CN101287854B (fr)
BR (1) BRPI0617390B1 (fr)
CA (1) CA2625790C (fr)
RU (1) RU2387734C2 (fr)
TW (1) TWI302571B (fr)
WO (1) WO2007043273A1 (fr)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030823A1 (fr) * 2007-09-03 2009-03-12 Siemens Vai Metals Technologies Sas Procede et dispositif d'oxydation/reduction controlee de la surface d'une bande d'acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
JP2010059510A (ja) * 2008-09-05 2010-03-18 Jfe Steel Corp 表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
US20100282374A1 (en) * 2007-06-29 2010-11-11 Arcelormittal France Galvanized or galvannealed silicon steel
JP2011153368A (ja) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd 密着性に優れた高強度合金化溶融亜鉛めっき鋼板および製造方法
JP2011162869A (ja) * 2010-02-15 2011-08-25 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板の製造方法
JP2011219780A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219781A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219783A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219782A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012042676A1 (fr) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Tôle d'acier à haute résistance et procédé de production associé
WO2012042677A1 (fr) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Tôle d'acier à haute résistance et procédé de production associé
JP2012072452A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2012072454A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高強度鋼板およびその製造方法
WO2012081719A1 (fr) 2010-12-17 2012-06-21 Jfeスチール株式会社 Procédé pour effectuer un recuit en continu d'une bande d'acier et procédé de galvanisation par immersion à chaud
WO2013108624A1 (fr) 2012-01-17 2013-07-25 Jfeスチール株式会社 Four de recuit en continu d'une bande d'acier et procédé de recuit en continu
WO2013175757A1 (fr) 2012-05-24 2013-11-28 Jfeスチール株式会社 Four de recuit continu de bande d'acier, procédé de recuit continu d'une bande d'acier, équipement de galvanisation par immersion à chaud continue et procédé de fabrication pour bande d'acier galvanisée par immersion à chaud
WO2013187039A1 (fr) 2012-06-13 2013-12-19 Jfeスチール株式会社 Procédé de recuit en continu d'un ruban d'acier, dispositif pour le recuit en continu d'un ruban d'acier, procédé de fabrication de ruban d'acier galvanisé à chaud au trempé, et dispositif de fabrication de ruban d'acier galvanisé à chaud au trempé
WO2013187042A1 (fr) 2012-06-13 2013-12-19 Jfeスチール株式会社 Procédé de recuit continu de bande d'acier, et procédé de fabrication de bande d'acier galvanisé par immersion à chaud
JP2014095142A (ja) * 2012-10-11 2014-05-22 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
WO2014129177A1 (fr) 2013-02-25 2014-08-28 Jfeスチール株式会社 Dispositif de recuit continu pour bande d'acier, et dispositif de galvanisation à chaud en continu
WO2014129180A1 (fr) 2013-02-25 2014-08-28 Jfeスチール株式会社 Dispositif de recuit continu pour bande d'acier, et dispositif de galvanisation à chaud en continu
JP2015510032A (ja) * 2011-12-27 2015-04-02 ポスコ 高マンガン熱延亜鉛めっき鋼板及びその製造方法
WO2015068369A1 (fr) 2013-11-07 2015-05-14 Jfeスチール株式会社 Équipement de recuit continu et procédé de recuit continu
WO2016006159A1 (fr) * 2014-07-07 2016-01-14 Jfeスチール株式会社 Procédé de fabrication de tôle d'acier allié galvanisé
JP2016180136A (ja) * 2015-03-23 2016-10-13 Jfeスチール株式会社 連続溶融亜鉛めっき装置及び溶融亜鉛めっき鋼板の製造方法
KR20160125472A (ko) 2014-02-25 2016-10-31 제이에프이 스틸 가부시키가이샤 환원로의 노점 제어 방법 및 환원로
US9593401B2 (en) 2012-05-24 2017-03-14 Jfe Steel Corporation Continuous annealing furnace for steel strip, continuous annealing method, continuous galvanizing apparatus and method for manufacturing galvanized steel strip (as amended)
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
KR20170093215A (ko) 2015-01-08 2017-08-14 제이에프이 스틸 가부시키가이샤 합금화 용융 아연 도금 강판의 제조 방법
KR20170117522A (ko) 2015-03-23 2017-10-23 제이에프이 스틸 가부시키가이샤 연속 용융 아연 도금 장치 및 용융 아연 도금 강판의 제조 방법
CN107419074A (zh) * 2017-04-27 2017-12-01 山东钢铁集团日照有限公司 一种消除冷轧卷锈蚀缺陷的工艺方法
KR20180064497A (ko) 2015-10-27 2018-06-14 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법
WO2018207560A1 (fr) 2017-05-11 2018-11-15 Jfeスチール株式会社 Procédé de fabrication de tôle d'acier galvanisée à chaud
WO2019123953A1 (fr) 2017-12-22 2019-06-27 Jfeスチール株式会社 Procédé de production de tôle d'acier galvanisée par immersion à chaud et appareil de galvanisation en continu par immersion à chaud
JP2021502482A (ja) * 2017-11-08 2021-01-28 アルセロールミタル 合金化溶融亜鉛めっき鋼板
WO2021166350A1 (fr) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Procédé pour la production de tôle d'acier galvanisée par immersion à chaud à haute résistance
WO2023286501A1 (fr) 2021-07-14 2023-01-19 Jfeスチール株式会社 Procédé de production d'une tôle d'acier galvanisée à chaud
WO2023079922A1 (fr) 2021-11-02 2023-05-11 Jfeスチール株式会社 Installation de recuit de finition pour tôle d'acier électromagnétique, procédé de recuit de finition et procédé de production pour tôle d'acier électromagnétique, et tôle d'acier électromagnétique non orientée

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100076744A (ko) * 2008-12-26 2010-07-06 주식회사 포스코 강판의 소둔 장치, 도금 품질이 우수한 도금 강판의 제조 장치 및 이를 이용한 도금 강판의 제조방법
JP5206705B2 (ja) * 2009-03-31 2013-06-12 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN102791901B (zh) * 2009-12-29 2015-05-06 Posco公司 用于热压的具有显著表面特性的镀锌钢板,使用该钢板得到的热压模塑部件,以及其制备方法
CN101781745A (zh) * 2010-03-19 2010-07-21 杭州创宇金属制品科技有限公司 钢丝钢带热镀零排放节能生产系统及生产方法
JP2011224584A (ja) * 2010-04-16 2011-11-10 Jfe Steel Corp 熱延鋼板の製造方法及び溶融亜鉛めっき鋼板の製造方法
DE102010017354A1 (de) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt
TWI609086B (zh) * 2010-09-30 2017-12-21 杰富意鋼鐵股份有限公司 高強度鋼板及其製造方法
TWI491741B (zh) * 2010-09-30 2015-07-11 Jfe Steel Corp 高強度鋼板及其製造方法
CN102816986A (zh) * 2011-06-10 2012-12-12 宝山钢铁股份有限公司 一种带钢连续热镀锌方法
DE102011051731B4 (de) 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts
DE102012101018B3 (de) * 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
KR101656283B1 (ko) * 2012-04-06 2016-09-09 제이에프이 스틸 가부시키가이샤 연속식 용융 아연 도금 설비
WO2013161831A1 (fr) * 2012-04-23 2013-10-31 株式会社神戸製鋼所 Procédé de production d'une tôle d'acier galvanisée, destinée à l'estampage à chaud, tôle d'acier allié galvanisée par immersion à chaud, destinée à l'estampage à chaud, et son procédé de production et composant estampé à chaud
WO2014087452A1 (fr) * 2012-12-04 2014-06-12 Jfeスチール株式会社 Installation et procédé de fabrication d'une tôle d'acier galvanisée à chaud en continu
DE102013105378B3 (de) 2013-05-24 2014-08-28 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
BR112016012236A2 (pt) * 2013-12-10 2017-08-08 Arcelormittal Método de recozimento de chapas de aço e método de produção de uma chapa de aço galvanizada
TWI586834B (zh) * 2014-03-21 2017-06-11 China Steel Corp Method of Hot - dip Galvanizing for Si - Mn High Strength Steel
PL3206509T3 (pl) 2014-10-13 2020-08-24 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Sposób i układ do obróbki produktu
CA2981923C (fr) * 2015-04-22 2021-10-05 Cockerill Maintenance & Ingenierie S.A. Procede et dispositif de controle de reaction
EP3170913A1 (fr) * 2015-11-20 2017-05-24 Cockerill Maintenance & Ingenierie S.A. Procédé et dispositif de commande de réaction
JP6237937B2 (ja) * 2016-03-11 2017-11-29 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
WO2017154494A1 (fr) * 2016-03-11 2017-09-14 Jfeスチール株式会社 Procédé de production de tôle d'acier galvanisée par immersion à chaud de résistance élevée
WO2017182833A1 (fr) * 2016-04-19 2017-10-26 Arcelormittal Procédé de production d'une tôle d'acier métallisée
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
RU2749413C2 (ru) 2016-05-10 2021-06-09 Юнайтид Стейтс Стил Корпорэйшн Изделия из высокопрочной стали и способы их изготовления
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
KR102231412B1 (ko) 2016-10-25 2021-03-23 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판의 제조 방법
CN106995876B (zh) * 2017-05-26 2018-05-15 鞍钢蒂森克虏伯(重庆)汽车钢有限公司 一种退火炉加湿器管路系统及其操作方法
EP3511430A1 (fr) * 2018-01-12 2019-07-17 SMS Group GmbH Procédé de traitement thermique en continu d'une bande en acier et installation de revêtement par immersion en bain fondu d'une bande en acier
CN109988893A (zh) * 2019-04-26 2019-07-09 宝钢湛江钢铁有限公司 一种减少纳米氧化物生成的连退工艺
CN110904327B (zh) * 2019-11-29 2021-07-23 北京首钢冷轧薄板有限公司 镀锌机组及其锌灰缺陷控制方法、装置、系统和存储介质
WO2021224662A1 (fr) * 2020-05-07 2021-11-11 Arcelormittal Procédé de recuit d'acier
DE102020208991A1 (de) * 2020-07-17 2022-01-20 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines schmelztauchbeschichteten Stahlblechs und schmelztauchbeschichtetes Stahlblech
WO2022129989A1 (fr) * 2020-12-15 2022-06-23 Arcelormittal Procédé de recuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625817A (ja) * 1992-07-10 1994-02-01 Kobe Steel Ltd めつき被膜の密着性にすぐれる溶融亜鉛めつき高強度冷延鋼板の製造方法
JP2004263271A (ja) * 2003-03-04 2004-09-24 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法
JP2005060743A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP2005154857A (ja) * 2003-11-27 2005-06-16 Jfe Steel Kk 合金化溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656285A (en) * 1948-06-03 1953-10-20 Armco Steel Corp Production of coated soft iron and steel sheets
US2875113A (en) * 1957-11-15 1959-02-24 Gen Electric Method of decarburizing silicon steel in a wet inert gas atmosphere
US3056694A (en) * 1958-07-11 1962-10-02 Inland Steel Co Galvanizing process
US3333987A (en) * 1964-12-02 1967-08-01 Inland Steel Co Carbon-stabilized steel products and method of making the same
US3532329A (en) * 1968-11-01 1970-10-06 Selas Corp Of America Strip heating apparatus
US4053663A (en) * 1972-08-09 1977-10-11 Bethlehem Steel Corporation Method of treating ferrous strand for coating with aluminum-zinc alloys
JPS6043476A (ja) * 1983-08-17 1985-03-08 Nippon Steel Corp 連続溶融アルミメツキ法
JPH0336214A (ja) * 1989-07-01 1991-02-15 Nkk Corp 無方向性電磁鋼板の連続焼鈍方法
FR2664617B1 (fr) * 1990-07-16 1993-08-06 Lorraine Laminage Procede de revetement d'aluminium par trempe a chaud d'une bande d'acier et bande d'acier obtenue par ce procede.
JP2649753B2 (ja) * 1991-11-06 1997-09-03 新日本製鐵株式会社 異種雰囲気連続ガス処理炉の隔壁構造
JP3220362B2 (ja) * 1995-09-07 2001-10-22 川崎製鉄株式会社 方向性けい素鋼板の製造方法
US6341955B1 (en) * 1998-10-23 2002-01-29 Kawasaki Steel Corporation Sealing apparatus in continuous heat-treatment furnace and sealing method
JP2001288550A (ja) * 2000-01-31 2001-10-19 Kobe Steel Ltd 溶融亜鉛めっき鋼板
EP1342801B1 (fr) * 2000-09-12 2011-02-02 JFE Steel Corporation Tole d'acier plaquee trempee a chaud presentant une resistance elevee a la traction et son procede de fabrication
FR2828888B1 (fr) * 2001-08-21 2003-12-12 Stein Heurtey Procede de galvanisation a chaud de bandes metalliques d'aciers a haute resistance
US6635313B2 (en) * 2001-11-15 2003-10-21 Isg Technologies, Inc. Method for coating a steel alloy
JP4168667B2 (ja) * 2002-05-30 2008-10-22 Jfeスチール株式会社 連続溶融亜鉛めっき用インライン焼鈍炉
ES2633914T3 (es) * 2003-01-15 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Chapa de acero galvanizado por inmersión en caliente de alta resistencia y método para producirla
RU2312162C2 (ru) * 2003-04-10 2007-12-10 Ниппон Стил Корпорейшн Высокопрочный стальной лист с покрытием из расплавленного цинка и способ его изготовления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625817A (ja) * 1992-07-10 1994-02-01 Kobe Steel Ltd めつき被膜の密着性にすぐれる溶融亜鉛めつき高強度冷延鋼板の製造方法
JP2004263271A (ja) * 2003-03-04 2004-09-24 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法
JP2005060743A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP2005154857A (ja) * 2003-11-27 2005-06-16 Jfe Steel Kk 合金化溶融亜鉛めっき鋼板およびその製造方法

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206498B2 (en) * 2007-06-29 2015-12-08 Arcelormittal France Galvanized or galvannealed silicon steel
US20100282374A1 (en) * 2007-06-29 2010-11-11 Arcelormittal France Galvanized or galvannealed silicon steel
KR101203021B1 (ko) 2007-06-29 2012-11-23 신닛테츠스미킨 카부시키카이샤 아연도금 또는 합금화 아연도금 규소강
US20100173072A1 (en) * 2007-09-03 2010-07-08 Siemens Vai Metals Technologies Sas Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing
US8609192B2 (en) 2007-09-03 2013-12-17 Siemens Vai Metals Technologies Sas Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing
WO2009030823A1 (fr) * 2007-09-03 2009-03-12 Siemens Vai Metals Technologies Sas Procede et dispositif d'oxydation/reduction controlee de la surface d'une bande d'acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
JP2010059510A (ja) * 2008-09-05 2010-03-18 Jfe Steel Corp 表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2011219780A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219783A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219782A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219781A (ja) * 2009-03-31 2011-11-04 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011153368A (ja) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd 密着性に優れた高強度合金化溶融亜鉛めっき鋼板および製造方法
JP2011162869A (ja) * 2010-02-15 2011-08-25 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板の製造方法
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
JP2012072454A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2012072452A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 高強度鋼板およびその製造方法
WO2012042677A1 (fr) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Tôle d'acier à haute résistance et procédé de production associé
WO2012042676A1 (fr) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Tôle d'acier à haute résistance et procédé de production associé
US9534270B2 (en) 2010-09-30 2017-01-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
WO2012081719A1 (fr) 2010-12-17 2012-06-21 Jfeスチール株式会社 Procédé pour effectuer un recuit en continu d'une bande d'acier et procédé de galvanisation par immersion à chaud
US9163305B2 (en) 2010-12-17 2015-10-20 Jfe Steel Corporation Continuous annealing method and a manufacturing method of hot-dip galvanized steel strips
JP2015510032A (ja) * 2011-12-27 2015-04-02 ポスコ 高マンガン熱延亜鉛めっき鋼板及びその製造方法
US9708703B2 (en) 2011-12-27 2017-07-18 Posco High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
CN105671301B (zh) * 2012-01-17 2018-01-09 杰富意钢铁株式会社 钢带的连续退火炉及连续退火方法
KR20140119104A (ko) 2012-01-17 2014-10-08 제이에프이 스틸 가부시키가이샤 강대의 연속 어닐링로 및 연속 어닐링 방법
CN105671301A (zh) * 2012-01-17 2016-06-15 杰富意钢铁株式会社 钢带的连续退火炉及连续退火方法
US9702020B2 (en) 2012-01-17 2017-07-11 Jfe Steel Corporation Continuous annealing furnace and continuous annealing method for steel strips
WO2013108624A1 (fr) 2012-01-17 2013-07-25 Jfeスチール株式会社 Four de recuit en continu d'une bande d'acier et procédé de recuit en continu
US9388484B2 (en) 2012-05-24 2016-07-12 Jfe Steel Corporation Continuous annealing furnace for annealing steel strip, method for continuously annealing steel strip, continuous hot-dip galvanizing facility, and method for manufacturing hot-dip galvanized steel strip
US9593401B2 (en) 2012-05-24 2017-03-14 Jfe Steel Corporation Continuous annealing furnace for steel strip, continuous annealing method, continuous galvanizing apparatus and method for manufacturing galvanized steel strip (as amended)
US9759491B2 (en) 2012-05-24 2017-09-12 Jfe Steel Corporation Continuous annealing furnace for annealing steel strip, method for continuously annealing steel strip, continuous hot-dip galvanizing facility, and method for manufacturing hot-dip galvanized steel strip
WO2013175757A1 (fr) 2012-05-24 2013-11-28 Jfeスチール株式会社 Four de recuit continu de bande d'acier, procédé de recuit continu d'une bande d'acier, équipement de galvanisation par immersion à chaud continue et procédé de fabrication pour bande d'acier galvanisée par immersion à chaud
KR20150013829A (ko) 2012-06-13 2015-02-05 제이에프이 스틸 가부시키가이샤 강대의 연속 어닐링 방법 및 용융 아연 도금 강대의 제조 방법
US10590509B2 (en) 2012-06-13 2020-03-17 Jfe Steel Corporation Method for continuously annealing steel strip, apparatus for continuously annealing steel strip, method for manufacturing hot-dip galvanized steel strip, and apparatus for manufacturing hot-dip galvanized steel strip
KR20150013807A (ko) 2012-06-13 2015-02-05 제이에프이 스틸 가부시키가이샤 강대의 연속 어닐링 방법, 강대의 연속 어닐링 장치, 용융 아연 도금 강대의 제조 방법 및 용융 아연 도금 강대의 제조 장치
WO2013187039A1 (fr) 2012-06-13 2013-12-19 Jfeスチール株式会社 Procédé de recuit en continu d'un ruban d'acier, dispositif pour le recuit en continu d'un ruban d'acier, procédé de fabrication de ruban d'acier galvanisé à chaud au trempé, et dispositif de fabrication de ruban d'acier galvanisé à chaud au trempé
US10106867B2 (en) 2012-06-13 2018-10-23 Jfe Steel Corporation Method for continuously annealing steel strip and method for manufacturing galvanized steel strip
WO2013187042A1 (fr) 2012-06-13 2013-12-19 Jfeスチール株式会社 Procédé de recuit continu de bande d'acier, et procédé de fabrication de bande d'acier galvanisé par immersion à chaud
JP2014095142A (ja) * 2012-10-11 2014-05-22 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
WO2014129177A1 (fr) 2013-02-25 2014-08-28 Jfeスチール株式会社 Dispositif de recuit continu pour bande d'acier, et dispositif de galvanisation à chaud en continu
US9499875B2 (en) 2013-02-25 2016-11-22 Jfe Steel Corporation Continuous annealing device and continuous hot-dip galvanising device for steel strip
WO2014129180A1 (fr) 2013-02-25 2014-08-28 Jfeスチール株式会社 Dispositif de recuit continu pour bande d'acier, et dispositif de galvanisation à chaud en continu
US9957585B2 (en) 2013-02-25 2018-05-01 Jfe Steel Corporation Continuous annealing device and continuous hot-dip galvanising device for steel strip
WO2015068369A1 (fr) 2013-11-07 2015-05-14 Jfeスチール株式会社 Équipement de recuit continu et procédé de recuit continu
US10415115B2 (en) 2013-11-07 2019-09-17 Jfe Steel Corporation Continuous annealing system and continuous annealing method
KR20160125472A (ko) 2014-02-25 2016-10-31 제이에프이 스틸 가부시키가이샤 환원로의 노점 제어 방법 및 환원로
KR20170016467A (ko) 2014-07-07 2017-02-13 제이에프이 스틸 가부시키가이샤 합금화 용융 아연 도금 강판의 제조 방법
US10752975B2 (en) 2014-07-07 2020-08-25 Jfe Steel Corporation Method of producing galvannealed steel sheet
JP2016017193A (ja) * 2014-07-07 2016-02-01 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
WO2016006159A1 (fr) * 2014-07-07 2016-01-14 Jfeスチール株式会社 Procédé de fabrication de tôle d'acier allié galvanisé
KR20170093215A (ko) 2015-01-08 2017-08-14 제이에프이 스틸 가부시키가이샤 합금화 용융 아연 도금 강판의 제조 방법
KR20170117522A (ko) 2015-03-23 2017-10-23 제이에프이 스틸 가부시키가이샤 연속 용융 아연 도금 장치 및 용융 아연 도금 강판의 제조 방법
JP2016180136A (ja) * 2015-03-23 2016-10-13 Jfeスチール株式会社 連続溶融亜鉛めっき装置及び溶融亜鉛めっき鋼板の製造方法
KR20180064497A (ko) 2015-10-27 2018-06-14 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법
CN107419074A (zh) * 2017-04-27 2017-12-01 山东钢铁集团日照有限公司 一种消除冷轧卷锈蚀缺陷的工艺方法
WO2018207560A1 (fr) 2017-05-11 2018-11-15 Jfeスチール株式会社 Procédé de fabrication de tôle d'acier galvanisée à chaud
KR20190138664A (ko) 2017-05-11 2019-12-13 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법
US11421312B2 (en) 2017-05-11 2022-08-23 Jfe Steel Corporation Method for manufacturing hot-dip galvanized steel sheet
JP2023027288A (ja) * 2017-11-08 2023-03-01 アルセロールミタル 合金化溶融亜鉛めっき鋼板
JP2021502482A (ja) * 2017-11-08 2021-01-28 アルセロールミタル 合金化溶融亜鉛めっき鋼板
KR20200095563A (ko) 2017-12-22 2020-08-10 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법 및 연속 용융 아연 도금 장치
WO2019123953A1 (fr) 2017-12-22 2019-06-27 Jfeスチール株式会社 Procédé de production de tôle d'acier galvanisée par immersion à chaud et appareil de galvanisation en continu par immersion à chaud
US11718889B2 (en) 2017-12-22 2023-08-08 Jfe Steel Corporation Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
US12031192B2 (en) 2017-12-22 2024-07-09 Jfe Steel Corporation Continuous hot-dip galvanizing apparatus
WO2021166350A1 (fr) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Procédé pour la production de tôle d'acier galvanisée par immersion à chaud à haute résistance
JPWO2021166350A1 (fr) * 2020-02-21 2021-08-26
JP7095804B2 (ja) 2020-02-21 2022-07-05 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
WO2023286501A1 (fr) 2021-07-14 2023-01-19 Jfeスチール株式会社 Procédé de production d'une tôle d'acier galvanisée à chaud
KR20240019292A (ko) 2021-07-14 2024-02-14 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법
WO2023079922A1 (fr) 2021-11-02 2023-05-11 Jfeスチール株式会社 Installation de recuit de finition pour tôle d'acier électromagnétique, procédé de recuit de finition et procédé de production pour tôle d'acier électromagnétique, et tôle d'acier électromagnétique non orientée
KR20240089697A (ko) 2021-11-02 2024-06-20 제이에프이 스틸 가부시키가이샤 전자 강판의 마무리 어닐링 설비, 전자 강판의 마무리 어닐링 방법과 제조 방법 그리고 무방향성 전자 강판

Also Published As

Publication number Publication date
CA2625790A1 (fr) 2007-04-19
RU2008118883A (ru) 2009-11-20
KR101011897B1 (ko) 2011-02-01
TW200714718A (en) 2007-04-16
RU2387734C2 (ru) 2010-04-27
TWI302571B (en) 2008-11-01
CA2625790C (fr) 2010-10-12
KR20080046241A (ko) 2008-05-26
CN101287854A (zh) 2008-10-15
EP1936000A1 (fr) 2008-06-25
CN101287854B (zh) 2011-04-20
JP4791482B2 (ja) 2011-10-12
EP1936000B1 (fr) 2018-06-27
JPWO2007043273A1 (ja) 2009-04-16
BRPI0617390A2 (pt) 2011-07-26
US20090123651A1 (en) 2009-05-14
EP1936000A4 (fr) 2010-03-10
BRPI0617390B1 (pt) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2007043273A1 (fr) Procédé de recuit/trempage à chaud de tôle d’acier contenant du silicium et appareil de recuit/trempage à chaud en continu
JP6025867B2 (ja) メッキ表面品質及びメッキ密着性に優れた高強度溶融亜鉛メッキ鋼板及びその製造方法
JP5753319B2 (ja) 溶融めっきによる金属保護層を備えた鋼板製品の製造方法
US20120090737A1 (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP2008523243A5 (fr)
JP5799819B2 (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
CN101466860A (zh) 以热镀锌为目的的高强度钢带的连续退火和制备的方法
JP2011214042A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
CN111676350A (zh) 对钢板进行退火的方法
JP4912684B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4797601B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板の製造設備
JP4264373B2 (ja) めっき欠陥の少ない溶融Al系めっき鋼板の製造方法
JP5488322B2 (ja) 鋼板の製造方法
JP4168667B2 (ja) 連続溶融亜鉛めっき用インライン焼鈍炉
JP5626324B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JPH04254532A (ja) 加工性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JP2000290762A (ja) 溶融めっき鋼板の製造方法
JP2019019344A (ja) 溶融亜鉛めっき鋼板の製造方法
JP5729008B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP2019077933A (ja) 溶融亜鉛めっき鋼板の製造方法
JP6696495B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP3302265B2 (ja) 亜鉛−鉄合金化溶融めっき鋼板の製造方法
JP2004315901A (ja) 溶融亜鉛めっき方法
JP2020122195A (ja) 溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038269.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539836

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006797881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2746/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12083396

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2625790

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087008625

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008118883

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0617390

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080414