KR20170016467A - 합금화 용융 아연 도금 강판의 제조 방법 - Google Patents

합금화 용융 아연 도금 강판의 제조 방법 Download PDF

Info

Publication number
KR20170016467A
KR20170016467A KR1020177000540A KR20177000540A KR20170016467A KR 20170016467 A KR20170016467 A KR 20170016467A KR 1020177000540 A KR1020177000540 A KR 1020177000540A KR 20177000540 A KR20177000540 A KR 20177000540A KR 20170016467 A KR20170016467 A KR 20170016467A
Authority
KR
South Korea
Prior art keywords
gas
dew point
gas supply
mixed gas
steel sheet
Prior art date
Application number
KR1020177000540A
Other languages
English (en)
Other versions
KR101862206B1 (ko
Inventor
겐타로 다케다
마사루 미야케
요이치 마키미즈
요시츠구 스즈키
요시카즈 스즈키
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20170016467A publication Critical patent/KR20170016467A/ko
Application granted granted Critical
Publication of KR101862206B1 publication Critical patent/KR101862206B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

양호한 도금 외관을 얻을 수 있고, 또한, 인장 강도의 저하를 억제하는 것이 가능한, 합금화 용융 아연 도금 강판의 제조 방법을 제공한다.
본 발명의 합금화 용융 아연 도금 강판의 제조 방법은, 강대를 어닐링로의 내부에서, 직화형 가열로를 포함하는 가열대, 균열대 및 냉각대의 차례로 반송하여, 상기 강대에 대하여 어닐링을 행하는 공정과, 상기 냉각대로부터 배출되는 강대에 용융 아연 도금을 실시하는 공정과, 상기 강대에 실시된 아연 도금을 가열 합금화하는 공정을 갖고, 균열대의 높이 방향의 하부 1/2의 영역에 형성된 적어도 1개의 가스 공급구로부터 가습 가스와 건조 가스의 혼합 가스를 균열대 내에 공급하여, 균열대의 높이 방향의 상부 1/5의 영역에서 측정되는 노점과, 하부 1/5의 영역에서 측정되는 노점을, 모두 -20℃ 이상 0℃ 이하로 하는 것을 특징으로 한다.

Description

합금화 용융 아연 도금 강판의 제조 방법{METHOD OF PRODUCING GALVANNEALED STEEL SHEET}
본 발명은, 가열대, 균열대(均熱帶) 및 냉각대가 이 차례로 병렬 배치된 어닐링로와, 상기 냉각대에 인접한 용융 아연 도금 설비와, 당해 용융 아연 도금 설비에 인접한 합금화 설비를 갖는 연속 용융 아연 도금 장치를 이용한 합금화 용융 아연 도금 강판의 제조 방법에 관한 것이다.
최근, 자동차, 가전, 건재 등의 분야에 있어서, 구조물의 경량화 등에 기여하는 고장력 강판(하이텐 강재)의 수요가 높아지고 있다. 하이텐 강재로서는, 예를 들면, 강 중에 Si를 함유함으로써 구멍 확장성이 양호한 강판이나, Si나 Al을 함유함으로써 잔류 γ가 형성되기 쉽고 연성이 양호한 강판을 제조할 수 있는 것을 알고 있다.
그러나, Si를 다량으로(특히 0.2질량% 이상) 함유하는 고장력 강판을 모재로 하여 합금화 용융 아연 도금 강판을 제조하는 경우, 이하의 문제가 있다. 합금화 용융 아연 도금 강판은, 환원 분위기 또는 비(非)산화성 분위기 중에서 600∼900℃ 정도의 온도로 모재의 강판을 가열 어닐링한 후에, 당해 강판에 용융 아연 도금 처리를 행하고, 추가로 아연 도금을 가열 합금화함으로써, 제조된다.
여기에서, 강 중의 Si는 이(易)산화성 원소로서, 일반적으로 이용되는 환원 분위기 또는 비산화성 분위기 중에서도 선택 산화되어, 강판의 표면에 농화하여, 산화물을 형성한다. 이 산화물은, 도금 처리시의 용융 아연과의 습윤성(wettability)을 저하시켜, 비(非)도금을 발생시킨다. 그 때문에, 강 중 Si 농도의 증가와 함께, 습윤성이 급격하게 저하되어 비도금이 다발한다. 또한, 비도금에 이르지 않았던 경우에도, 도금 밀착성이 뒤떨어진다는 문제가 있다. 또한, 강 중의 Si가 선택 산화되어 강판의 표면에 농화하면, 용융 아연 도금 후의 합금화 과정에 있어서 현저한 합금화 지연이 발생하여, 생산성을 현저하게 저해한다는 문제도 있다.
이러한 문제에 대하여, 예를 들면, 특허문헌 1에는, 직화(直火)형 가열로(DFF)를 이용하여, 강판의 표면을 일단 산화시킨 후, 환원 분위기하에서 강판을 어닐링함으로써, Si를 내부 산화시키고, 강판의 표면에 Si가 농화하는 것을 억제하여, 용융 아연 도금의 습윤성 및 밀착성을 향상시키는 방법이 기재되어 있다. 가열 후의 환원 어닐링에 대해서는 일반적인 방법(노점(dew point) -30∼-40℃)으로 좋다고 기재되어 있다.
특허문헌 2에는, 차례로 가열대 전단, 가열대 후단, 보열대(保熱帶) 및 냉각대를 갖는 어닐링로와 용융 도금욕을 이용한 연속 어닐링 용융 도금 방법에 있어서, 강판 온도가 적어도 300℃ 이상의 영역의 강판의 가열 또는 보열을 간접 가열로 하고, 각 대의 노(furnace) 내 분위기를 수소 1∼10체적%, 잔부가 질소 및 불가피적 불순물로 이루어지는 분위기로 하고, 상기 가열대 전단에서 가열 중의 강판 도달 온도를 550℃ 이상 750℃ 이하로 하고, 또한, 노점을 -25℃ 미만으로 하고, 이에 이어지는 상기 가열대 후단 및 상기 보열대의 노점을 -30℃ 이상 0℃ 이하로 하고, 상기 냉각대의 노점을 -25℃ 미만으로 하는 조건으로 어닐링을 행함으로써, Si를 내부 산화시켜, 강판의 표면에 Si가 농화하는 것을 억제하는 기술이 기재되어 있다. 또한, 가열대 후단 및/또는 보열대에, 질소와 수소의 혼합 가스를 가습하여 도입하는 것도 기재되어 있다.
특허문헌 3에는, 로 내 가스의 노점을 측정하면서, 그 측정값에 따라서, 노 내 가스의 공급 및 배출의 위치를 변화시킴으로써, 환원로 내 가스의 노점을 -30℃ 초과 0℃ 이하의 범위 내가 되도록 제어하여, 강판의 표면에 Si가 농화하는 것을 억제하는 기술이 기재되어 있다. 가열로에 대해서는 DFF(직화 가열로), NOF(무산화 노), 라디언트 튜브 타입(radiant tube type)중 어느 것이라도 좋지만, 라디언트 튜브 타입으로 현저하게 발명 효과를 발현할 수 있기 때문에 바람직하다는 기재가 있다.
특허문헌 1: 일본공개특허공보 2010-202959호 특허문헌 2: 국제공개공보 WO2007/043273호 특허문헌 3: 일본공개특허공보 2009-209397호
그러나, 특허문헌 1에 기재된 방법에서는, 환원 후의 도금 밀착성은 양호하지만, Si의 내부 산화량이 부족하기 쉽고, 강 중의 Si의 영향으로 합금화 온도가 통상보다도 30∼50℃ 고온이 되어 버려, 그 결과 강판의 인장 강도가 저하되는 문제가 있었다. 충분한 내부 산화량을 확보하기 위해 산화량을 증가시키면, 어닐링로 내의 롤에 산화 스케일이 부착되어 강판에 누름 흠집, 소위 픽업 결함이 발생한다. 이 때문에, 산화량을 단지 증가시키는 수단은 취할 수 없다.
특허문헌 2에 기재된 방법에서는, 가열대 전단, 가열대 후단, 보열대의 가열·보온을 간접 가열로 하고 있기 때문에, 특허문헌 1의 직화 가열의 경우와 같은 강판 표면의 산화가 일어나기 어렵고, 특허문헌 1과 비교해도 Si의 내부 산화가 불충분하여, 합금화 온도가 높아진다는 문제가 보다 현저하다. 또한, 외기온(外氣溫) 변동이나 강판의 종류에 따라 노 내에 반입되는 수분량이 변화하는 것에 더하여, 혼합 가스 노점도 외기온 변동에 따라 변동하기 쉬워, 안정적으로 최적 노점 범위로 제어하는 것이 곤란했다. 이와 같이 노점 변동이 큼으로써, 상기 노점 범위나 온도 범위라도, 비도금 등의 표면 결함이 발생하여, 안정적인 제품을 제조하기에는 곤란했다.
특허문헌 3에 기재된 방법에서는, 가열로에 DFF를 사용하면 강판 표면의 산화는 일어날 수 있지만, 어닐링로에 적극적으로 가습 가스를 공급하지 않기 때문에, 노점을 제어 범위 중에서도 고(高)노점 영역인 -20∼0℃로 안정적으로 제어하는 것이 곤란하다. 또한, 만일 노점이 상승한 경우에는 노 상부의 노점이 높아지기 쉽고, 노 하부의 노점계로 0℃가 되었을 때에는, 노 상부에서는 +10℃ 이상의 고노점 분위기가 되는 경우가 있어, 그대로 장기간 조업하면 픽업 결함이 발생하는 것을 알았다.
그래서 본 발명은, 상기 과제를 감안하여, Si를 0.2질량% 이상 포함하는 강대(steel strip)에 합금화 용융 아연 도금을 실시한 경우에도, 도금 밀착성이 높아 양호한 도금 외관을 얻을 수 있고, 또한, 합금화 온도를 내림으로써 인장 강도의 저하를 억제하는 것이 가능한, 합금화 용융 아연 도금 강판의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은, 가열대에 직화 가열로(DFF)를 이용하여 강판 표면의 산화를 충분히 행하게 한 후에, 균열대 전체를 일반적인 방법의 노점보다도 고노점으로 하여 Si의 내부 산화를 충분히 행하게 함으로써, Si의 표면 농화를 억제하여 합금화 온도를 저감시키는 기술이다.
본 발명의 요지 구성은 이하와 같다.
[1] 직화형 가열로를 포함하는 가열대와, 균열대와, 냉각대가 이 차례로 병렬 배치된 어닐링로와, 상기 냉각대에 인접한 용융 아연 도금 설비와, 당해 용융 아연 도금 설비에 인접한 합금화 설비를 갖는 연속 용융 아연 도금 장치를 이용한 합금화 용융 아연 도금 강판의 제조 방법으로서,
강대를 상기 어닐링로의 내부에서, 상기 가열대, 상기 균열대 및 상기 냉각대의 차례로 반송하여, 상기 강대에 대하여 어닐링을 행하는 공정과,
상기 용융 아연 도금 설비를 이용하여, 상기 냉각대로부터 배출되는 강대에 용융 아연 도금을 실시하는 공정과,
상기 합금화 설비를 이용하여, 상기 강대에 실시된 아연 도금을 가열 합금화하는 공정을 갖고,
상기 균열대에 공급되는 환원성 가스 또는 비산화성 가스는, 가습 장치에 의해 가습된 가스와, 상기 가습 장치에 의해 가습되어 있지 않은 건조 가스를 소정의 혼합비로 혼합하여 얻은 혼합 가스이고,
상기 균열대의 높이 방향의 하부 1/2의 영역에 형성된 적어도 1개의 가스 공급구로부터 상기 혼합 가스를 상기 균열대 내에 공급하여, 상기 균열대의 높이 방향의 상부 1/5의 영역에서 측정되는 노점과, 하부 1/5의 영역에서 측정되는 노점을, 모두 -20℃ 이상 0℃ 이하로 하는 것을 특징으로 하는 합금화 용융 아연 도금 강판의 제조 방법.
[2] 상기 가스 공급구는, 복수 배치되고, 또한, 2개 이상의 상이한 높이 위치에 적어도 1개 배치되는 상기 [1]에 기재된 합금화 용융 아연 도금 강판의 제조 방법.
[3] 동일한 높이 위치에 배치된 상기 가스 공급구로부터의 가스 유량의 합계를, 모든 높이 위치에 있어서 동일로 하고, 높이 위치가 낮은 상기 가스 공급구로부터 공급되는 상기 혼합 가스일수록 노점을 높게 하는 상기 [2]에 기재된 합금화 용융 아연 도금 강판의 제조 방법.
[4] 모든 상기 가스 공급구로부터 공급되는 상기 혼합 가스의 노점을 동일로 하고, 높이 위치가 낮은 상기 가스 공급구로부터의 가스 유량일수록 많게 하는 상기 [2]에 기재된 합금화 용융 아연 도금 강판의 제조 방법.
[5] 상기 균열대로의 상기 혼합 가스의 공급 조건이 이하의 식 (1)을 충족시키는 상기 [1]∼[4] 중 어느 1항에 기재된 합금화 용융 아연 도금 강판의 제조 방법.
Figure pct00001
여기에서,
V: 혼합 가스의 유량(㎥/hr)
m: 혼합 가스의 노점으로부터 산출되는 혼합 가스의 함유 수분(ppm)
y: 노점계 또는 가스 공급구의 높이 위치(m)
N: 가스 공급구의 합계수
첨자
t: 혼합 가스의 합계
a: 상기 균열대의 높이 방향의 상부 1/5의 영역에 배치되는 노점계
b: 상기 균열대의 높이 방향의 하부 1/5의 영역에 배치되는 노점계
i: i번째의 가스 공급구
[6] 상기 직화형 가열로는, 산화용 버너와, 당해 산화용 버너로부터 강판 이동 방향 하류에 위치하는 환원용 버너를 갖고, 상기 산화용 버너의 공기비를 0.95 이상 1.5 이하로 하고, 상기 환원용 버너의 공기비를 0.5 이상 0.95 미만으로 하는 상기 [1]∼[5] 중 어느 1항에 기재된 합금화 용융 아연 도금 강판의 제조 방법.
본 발명의 합금화 용융 아연 도금 강판의 제조 방법에 의하면, Si를 0.2질량% 이상 포함하는 강대에 합금화 용융 아연 도금을 실시한 경우에도, 도금 밀착성이 높아 양호한 도금 외관을 얻을 수 있고, 또한, 합금화 온도를 내림으로써 인장 강도의 저하를 억제하는 것이 가능하다.
도 1은 본 발명의 일 실시 형태에 의한 합금화 용융 아연 도금 강판의 제조 방법에 이용하는 연속 용융 아연 도금 장치(100)의 구성을 나타내는 개략도이다.
도 2는 도 1에 있어서의 균열대(12)로의 혼합 가스의 공급계를 나타내는 개략도이다.
(발명을 실시하기 위한 형태)
(연속 용융 아연 도금 장치(100))
우선, 본 발명의 일 실시 형태에 의한 합금화 용융 아연 도금 강판의 제조 방법에 이용하는 연속 용융 아연 도금 장치(100)의 구성을, 도 1을 참조하여 설명한다. 연속 용융 아연 도금 장치(100)는, 가열대(10), 균열대(12) 및 냉각대(14, 16)가 이 차례로 병렬 배치된 어닐링로(20)와, 냉각대(16)에 인접한 용융 아연 도금 설비로서의 용융 아연 도금욕(22)과, 이 용융 아연 도금욕(22)과 인접한 합금화 설비(23)를 갖는다. 본 실시 형태에 있어서 가열대(10)는, 제1 가열대(10A)(가열대 전단) 및 제2 가열대(10B)(가열대 후단)를 포함한다. 냉각대는, 제1 냉각대(14)(급냉대) 및 제2 냉각대(16)(제냉(除冷)대)를 포함한다. 제2 냉각대(16)와 연결한 스나우트(snout;18)는, 선단이 용융 아연 도금욕(22)에 침지되어 있고, 어닐링로(20)와 용융 아연 도금욕(22)이 접속되어 있다.
강대(P)는, 제1 가열대(10A)의 하부의 강대 도입구로부터 제1 가열대(10A) 내로 도입된다. 각 대(10, 12, 14, 16)에는, 상부 및 하부에 1개 이상의 허스 롤(hearth roll)이 배치된다. 허스 롤을 기점으로 강대(P)가 180도 되접어 꺾이는 경우, 강대(P)는 어닐링로(20)의 소정의 대의 내부에서 상하 방향으로 복수회 반송되어, 복수 패스를 형성한다. 도 1에 있어서는, 균열대(12)에서 10패스, 제1 냉각대(14)에서 2패스, 제2 냉각대(16)에서 2패스의 예를 나타냈지만, 패스수는 이에 한정되지 않고, 처리 조건에 따라서 적절히 설정 가능하다. 또한, 일부의 허스 롤에서는, 강대(P)를 되접어 꺾는 일 없이 직각으로 방향 전환시켜, 강대(P)를 다음의 대로 이동시킨다. 이와 같이 하여, 강대(P)를 어닐링로(20)의 내부에서, 가열대(10), 균열대(12) 및 냉각대(14, 16)의 차례로 반송하여, 강대(P)에 대하여 어닐링을 행할 수 있다.
어닐링로(20)에 있어서, 인접하는 대는, 각각의 대의 상부끼리 또는 하부끼리를 접속하는 연통부를 통하여 연통하고 있다. 본 실시 형태에서는, 제1 가열대(10A)와 제2 가열대(10B)는, 각각의 대의 상부끼리를 접속하는 스로트(throat)(조임부)를 통하여 연통한다. 제2 가열대(10B)와 균열대(12)는, 각각의 대의 하부끼리를 접속하는 스로트를 통하여 연통한다. 균열대(12)와 제1 냉각대(14)는, 각각의 대의 하부끼리를 접속하는 스로트(32)를 통하여 연통한다. 제1 냉각대(14)와 제2 냉각대(16)는, 각각의 대의 하부끼리를 접속하는 스로트를 통하여 연통한다. 각 스로트의 높이는 적절히 설정하면 좋지만, 허스 롤의 직경이 1m 정도인 점에서, 1.5m 이상으로 하는 것이 바람직하다. 단, 각 대의 분위기의 독립성을 높이는 관점에서, 각 연통부의 높이는 가능한 한 낮은 것이 바람직하다.
(가열대)
본 실시 형태에 있어서, 제2 가열대(10B)는, 직화형 가열로(DFF)이다. DFF는 예를 들면 특허문헌 1에 기재되는 바와 같은 공지의 것을 이용할 수 있다. 도 1에 있어서는 도시하지 않지만, 제2 가열대(10B)에 있어서의 직화형 가열로의 내벽에는, 복수의 버너가 강대(P)에 대향하여 분산 배치된다. 복수의 버너는 복수의 그룹으로 나뉘고, 그룹마다 연료율 및 공기비를 독립적으로 제어 가능하게 하는 것이 바람직하다. 제1 가열대(10A)의 내부에는, 제2 가열대(10B)의 연소 배기 가스가 공급되고, 그 열로 강대(P)를 예열한다.
연소율은, 실제로 버너로 도입한 연료 가스량을, 최대 연소 부하시의 버너의 연료 가스량으로 나눈 값이다. 버너를 최대 연소 부하로 연소했을 때가 연소율 100%이다. 버너는, 연소 부하가 낮아지면 안정적인 연소 상태가 얻어지지 않게 된다. 따라서, 연소율은 통상 30% 이상으로 하는 것이 바람직하다.
공기비는, 실제의 버너에 도입한 공기량을, 연료 가스를 완전 연소하기 위해 필요한 공기량으로 나눈 값이다. 본 실시 형태에서는, 제2 가열대(10B)의 가열용 버너를 4개의 군(#1∼#4)으로 분할하여, 강판 이동 방향 상류측의 3개의 군(#1∼#3)은 산화용 버너, 최종 존(#4)은 환원용 버너로 하고, 산화용 버너 및 환원용 버너의 공기비를 개별적으로 제어 가능하게 했다. 산화용 버너에서는, 공기비를 0.95 이상 1.5 이하로 하는 것이 바람직하다. 환원용 버너에서는, 공기비를 0.5 이상 0.95 미만으로 하는 것이 바람직하다. 또한, 제2 가열대(10B)의 내부의 온도는, 800∼1200℃로 하는 것이 바람직하다.
(균열대)
본 실시 형태에 있어서 균열대(12)에서는, 가열 수단으로서 라디언트 튜브(RT)(도시하지 않음)를 이용하여, 강대(P)를 간접 가열할 수 있다. 균열대(12)의 내부의 평균 온도 Tr(℃)은 700∼900℃로 하는 것이 바람직하다.
균열대(12)에는 환원성 가스 또는 비산화성 가스가 공급된다. 환원성 가스로서는, 통상 H2-N2 혼합 가스가 이용되고, 예를 들면 H2: 1∼20체적%, 잔부가 N2 및 불가피적 불순물로 이루어지는 조성을 갖는 가스(노점: -60℃ 정도)를 들 수 있다. 또한, 비산화성 가스로서는, N2 및 불가피적 불순물로 이루어지는 조성을 갖는 가스(노점: -60℃ 정도)를 들 수 있다.
본 실시 형태에서는, 균열대(12)에 공급되는 환원성 가스 또는 비산화성 가스는, 가습 장치에 의해 가습된 가스와, 가습 장치에 의해 가습되어 있지 않은 건조 가스를 소정의 혼합비로 혼합하여 얻은 혼합 가스이다. 혼합비를 조정함으로써, 노점이 -50∼10℃인 소망하는 값이 되도록 한다.
도 2는, 균열대(12)로의 혼합 가스의 공급계를 나타내는 개략도이다. 혼합 가스는, 가스 공급구(36A, 36B, 36C)와, 가스 공급구(38A, 38B, 38C)의 2계통에서 공급된다. 가스 공급구(38A, 38B, 38C)의 계통을 예로 설명한다. 상기 환원성 가스 또는 비산화성 가스(건조 가스)는, 가스 분배 장치(24A)에 의해, 일부는 가습 장치(26A)로 보내지고, 잔부는 가스 혼합 장치(30A)로 보내진다. 가스 혼합 장치(30A)에서는, 가습 장치(26A)에서 가습된 가스와, 가스 분배 장치(24A)로부터 직접 보내진 건조 가스를 소정 비율로 혼합하여, 소정의 노점의 혼합 가스로 조제한다. 조제된 혼합 가스는, 혼합 가스용 배관(34A)을 경유하여, 가스 공급구(38)로부터 균열대(12) 내에 공급된다. 부호 32A는 혼합 가스용 노점계이다. 가스 공급구(36A, 36B, 36C)의 계통도 동일하다.
가습 장치(26) 내에는, 불소계 혹은 폴리이미드계의 중공사막 또는 평막 등을 갖는 가습 모듈이 있고, 막의 내측에는 건조 가스를 흐르게 하고, 막의 외측에는 순환 항온 수조(28)에서 소정 온도로 조정된 순수를 순환시킨다. 불소계 혹은 폴리이미드계의 중공사막 또는 평막이란, 수(水)분자와의 친화력을 갖는 이온 교환막의 일종이다. 중공사막의 내측과 외측에 수분 농도차가 생기면, 그 농도차를 균등하게 하고자 하는 힘이 발생하고, 수분은 그 힘을 드라이빙 포스(driving force)로서 낮은 수분 농도 쪽으로 막을 투과하여 이동한다. 건조 가스 온도는, 계절이나 하루의 기온 변화에 따라 변화하지만, 이 가습 장치에서는, 수증기 투과막을 통한 가스와 물의 접촉 면적을 충분히 취함으로써 열 교환도 행할 수 있기 때문에, 건조 가스 온도가 순환 수온보다 높아도 낮아도, 건조 가스는 설정 수온과 동일한 노점까지 가습된 가스가 되어, 고정밀의 노점 제어가 가능해진다. 가습 가스의 노점은 5∼50℃의 범위에서 임의로 제어 가능하다. 가습 가스의 노점이 배관 온도보다도 높으면 배관 내에서 결로되어 버리고, 결로된 물이 직접 노 내에 침수할 가능성이 있기 때문에, 가습 가스용의 배관은 가습 가스 노점 이상 또한 외기온 이상으로 가열·보열되어 있다.
가스 혼합 장치(30)에 있어서의 가스의 혼합 비율을 조정하면, 임의의 노점의 혼합 가스를 균열대(12) 내에 공급할 수 있다. 균열대(12) 내의 노점이 목표 범위를 하회하는 것 같으면, 높은 노점의 혼합 가스를 공급하고, 균열대(12) 내의 노점이 목표 범위를 상회하는 것 같으면, 낮은 노점의 혼합 가스를 공급할 수 있다.
(냉각대)
본 실시 형태에 있어서 냉각대(14, 16)에서는, 강대(P)가 냉각된다. 강대(P)는, 제1 냉각대(14)에서는 480∼530℃ 정도로까지 냉각되고, 제2 냉각대(16)에서는 470∼500℃ 정도로까지 냉각된다.
냉각대(14, 16)에도, 상기 환원성 가스 또는 비산화성 가스가 공급되지만, 여기에서는, 건조 가스만이 공급된다. 냉각대(14, 16)에 공급되는 건조 가스의 가스 유량 Qcd는, 200∼1000(N㎥/hr) 정도로 한다.
(용융 아연 도금욕)
용융 아연 도금욕(22)을 이용하여, 제2 냉각대(16)로부터 배출되는 강대(P)에 용융 아연 도금을 실시할 수 있다. 용융 아연 도금은 정법(定法)에 따라 행하면 좋다.
(합금화 설비)
합금화 설비(23)를 이용하여, 강대(P)에 실시된 아연 도금을 가열 합금화할 수 있다. 합금화 처리는 정법에 따라 행하면 좋다. 본 실시 형태에 의하면, 합금화 온도가 고온이 되지 않기 때문에, 제조된 합금화 용융 아연 도금 강판의 인장 강도가 저하되는 일이 없다.
(합금화 용융 아연 도금 강판의 제조 방법)
본 발명의 일 실시 형태는, 이 연속 용융 아연 도금 장치(100)를 이용한 합금화 용융 아연 도금 강판의 제조 방법이다. 어닐링로(20) 내의 가스는, 노의 하류로부터 상류로 흐른다. 통상은, 어닐링로 내 각 위치로 건조 가스를 공급하여, 노 내가 소정 범위의 양압(陽壓)이 되도록 한다. 노 내 압력이 저하되면, 어닐링로 내로 외기가 혼입하고, 노 내 산소 농도나 노점이 상승해 버려, 강대가 산화되어 산화 스케일이 발생하거나, 허스 롤 표면이 산화되어 픽업 결함이 발생하거나 하기 때문이다. 한편, 노 내 압력이 과도하게 상승하면, 노체 그 자체를 손상시킬 위험이 있다. 이와 같이 노 내 압력 제어는, 안정 제조를 위해 매우 중요해진다.
이러한 환경하에 있어서, 균열대(12)의 노점을 -20∼0℃로 안정적으로 제어하기 위한 노점 제어 방법에 관해서, 발명자들은 예의 검토를 행했다. 그리고, 균열대(12)의 높이 방향의 하부 1/2의 영역에 형성된 적어도 1개의 가스 공급구로부터 앞서 기술한 혼합 가스를 균열대(12) 내로 공급하는 것이 중요한 것을 찾아냈다. 노점이 -10∼+10℃인 혼합 가스를 균열대(12)의 하반분의 영역으로부터 도입함으로써, 균열대(12)의 높이 방향의 상부 1/5의 영역(예를 들면 도 2의 노점 측정 위치(40A))에서 측정되는 노점과, 하부 1/5의 영역(예를 들면 도 2의 노점 측정 위치(40B))에서 측정되는 노점을, 모두 -20℃ 이상 0℃ 이하로 할 수 있다.
추가로 본 발명자들은, 균열대(12)로의 혼합 가스의 공급 조건이 이하의 식 (1)을 충족시킴으로써, 균열대(12)의 노점을 -20∼0℃로 안정적으로 제어할 수 있는 것을 찾아냈다.
Figure pct00002
여기에서,
V: 혼합 가스의 유량(㎥/hr)
m: 혼합 가스의 노점으로부터 산출되는 혼합 가스의 함유 수분(ppm)
y: 노점계 또는 가스 공급구의 높이 위치(m)
N: 가스 공급구의 합계수
첨자
t: 혼합 가스의 합계
a: 상기 균열대의 높이 방향의 상부 1/5의 영역에 배치되는 노점계
b: 상기 균열대의 높이 방향의 하부 1/5의 영역에 배치되는 노점계
i: i번째의 가스 공급구
혼합 가스의 노점으로부터 함유 수분 m(ppm)을 산출하는 것은, 이하의 식 (2)에 따라 행할 수 있다.
Figure pct00003
T: 노점(℃)
이 식 (1)의 좌변은, 노점 -10℃의 가스에 대하여 계측된 노 내 상하 노점의 경사를 고려하여, i번째(복수의 가스 공급구 중 i번째)의 가스 공급구 높이에 따라서 분사해야 하는 가습 가스의 함유 수분량을 나타낸다. 중변은, i번째(복수의 가스 공급구 중 i번째)의 가스 공급구로부터의 가스에 포함되는 수분량을 나타낸다. 우변은, 노점 +10℃의 가스에 대하여 계측된 노 내 상하 노점의 경사를 고려하여, i번째(복수의 가스 공급구 중 i번째)의 가스 공급구 높이에 따라서 분사해야 하는 가습 가스의 함유 수분량을 나타낸다. 그리고, 중변의 값은, 좌변의 값과 우변의 값의 사이로 제어하는 것이 바람직한 것을 알았다.
따라서, 식 (1)의 중변의 miVi가 좌변의 값 미만인 경우, 혼합 가스 중의 함유 수분이 너무 적어 가습 성능이 부족하기 때문에, 바람직하지 않다. 또한, 식 (1)의 중변의 miVi가 우변의 값 초과인 경우, 혼합 가스 중의 함유 수분이 너무 많아 가습 성능이 과대가 되어, 롤 픽업이나, Fe 표면 산화에 기인하는 비도금이 발생하기 때문에, 바람직하지 않다.
본 발명에 있어서, 혼합 가스의 유량 V는, 배관에 설치된 가스 유량계(도시하지 않음)에 의해 측정한다. 또한, 혼합 가스의 노점으로부터 산출되는 함유 수분 m은, 노점계에 의해 측정한다. 노점계는, 경면식 혹은 정전 용량식 중 어느 타입이라도 좋고, 그 이외의 타입이라도 상관없다. 또한, 균열대(12)의 내부의 평균 온도 Tr은, 균열대 내에 열전대를 삽입함으로써 측정한다.
균열대(12)의 조건은, 상기 이외에 특별히 한정되지 않지만, 통상은 이하와 같이 된다. 우선, 균열대(12)의 용적 Vr은, 150∼300(㎥)이 되고, 균열대(12)의 높이는 20∼30(m)이 된다. 또한, 균열대(12)에 공급되는 혼합 가스의 총 유량 Vt는, 100∼400(N㎥/hr) 정도로 한다.
균열대(12)로의 혼합 가스의 공급은, 균열대(12)의 높이 방향의 하부 1/2의 영역에 형성된 복수의 가스 공급구로부터 행하는 것이 바람직하다. 특히, 도 2에 나타내는 바와 같이, 복수의 가스 공급구는, 2개 이상의 상이한 높이 위치에 배치되고, 각각의 높이 위치에 있어서, 복수 배치되는 것이 바람직하다. 강대 진행 방향으로 균등하게 배치하는 것이 더욱 바람직하다.
균열대(12)의 상하 방향의 노점 편차를 작게 하기 위해, 균열대(12)의 보다 낮은 위치로부터 보다 많은 수분을 공급하는 것이 바람직하다.
그 일 실시 형태로서, 동일한 높이 위치에 배치된 가스 공급구로부터의 가스 유량의 합계를, 모든 높이 위치에 있어서 동일로 하고, 높이 위치가 낮은 가스 공급구로부터 공급되는 혼합 가스일수록 노점을 높게 한다. 구체적으로는, 도 2에 있어서, 가스 공급구(36A, 36B, 36C)로부터의 가스 유량의 합계와, 가스 공급구(38A, 38B, 38C)로부터의 가스 유량의 합계를 동일로 한다. 그리고, 가스 공급구(36A, 36B, 36C)로부터 공급되는 혼합 가스의 노점은, 가스 공급구(38A, 38B, 38C)로부터 공급되는 혼합 가스의 노점보다도 높게 한다. 구체적으로는, 전자의 노점은 -10∼+10℃ 정도, 후자의 노점 -10∼5℃ 정도로 한다.
다른 실시 형태로서, 모든 가스 공급구로부터 공급되는 혼합 가스의 노점을 동일로 하고, 높이 위치가 낮은 가스 공급구로부터의 가스 유량일수록 많게 한다. 구체적으로는, 도 2에 있어서, 가스 공급구(36A, 36B, 36C)로부터의 가스 유량의 합계는, 가스 공급구(38A, 38B, 38C)로부터의 가스 유량의 합계보다도 많게 한다.
어닐링로(20) 내의 가스는, 노의 하류로부터 상류로 흘러, 제1 가열대(10A)의 하부의 강대 도입구로부터 배출된다.
균열대(12)에 있어서의 환원 어닐링 공정은, 가열대(10)에 있어서의 산화 처리 공정에서 강대 표면에 형성된 철 산화물을 환원함과 함께, 철 산화물로부터 공급되는 산소에 의해, Si나 Mn의 합금 원소가 강대 내부에 내부 산화물로서 생성된다. 결과적으로, 강대 최(最)표면에는 철 산화물로부터 환원된 환원 철층이 형성되고, Si나 Mn은 내부 산화물로서 강대 내부에 머무르기 때문에, 강대 표면에서의 Si나 Mn의 산화가 억제되고, 강대와 용융 도금의 습윤성의 저하를 방지하여, 비도금 없고 양호한 도금 밀착성을 얻을 수 있다.
그러나, 양호한 도금 밀착성은 얻어지지만, Si 함유 강에 있어서의 합금화 온도는 고온이 되기 때문에, 잔류 오스테나이트상(相)의 펄라이트상으로의 분해나, 마르텐사이트상의 템퍼링 연화가 일어나기 때문에, 소망하는 기계 특성이 얻어지지 않는 경우가 있다. 그래서, 합금화 온도를 저감시키기 위한 기술의 검토를 행한 결과, Si의 내부 산화를 더욱 적극적으로 형성시킴으로써, 강대 표층의 고용 Si량을 저하시켜, 합금화 반응을 촉진할 수 있는 것을 알았다. 그를 위해서는, 균열대(12) 내의 분위기 노점을 -20℃ 이상으로 제어하는 것이 유효하다.
균열대(12) 내의 노점을 -20℃ 이상으로 제어하면, 철 산화물로부터 산소가 공급되어, Si의 내부 산화물이 형성된 후도, 분위기의 H2O로부터 공급되는 산소에 의해 Si의 내부 산화가 계속해서 일어나기 때문에, 보다 많은 Si의 내부 산화가 발생한다. 그러면, 내부 산화가 형성된 강대 표층의 내부의 영역에 있어서, 고용 Si량이 저하된다. 고용 Si량이 저하되면, 강대 표층은 마치 저(低)Si강과 같은 거동을 나타내고, 그 후의 합금화 반응이 촉진되어, 저온에서 합금화 반응이 진행된다. 합금화 온도가 저하된 결과로서, 잔류 오스테나이트상이 고분율로 유지될 수 있음으로써 연성이 향상된다. 또한, 마르텐사이트상의 템퍼링 연화가 진행하지 않아, 소망하는 강도가 얻어지게 된다. 균열대(12) 내에서는, 노점이 +10℃ 이상이 되면, 강대 지철이 산화하기 시작하기 때문에, 균열대(12) 내의 노점 분포의 균일성이나 노점 변동폭을 최소화하는 이유로부터, 노점의 상한은 0℃에서 관리하는 것이 바람직하다.
어닐링 및 용융 아연 도금 처리의 대상으로 하는 강대(P)는 특별히 한정되지 않지만, Si를 0.2질량% 이상 함유하는 성분 조성의 강대의 경우, 본 발명의 효과를 유리하게 얻을 수 있다.
실시예
(실험 조건)
도 1 및 도 2에 나타내는 연속 용융 아연 도금 장치를 이용하여, 표 1에 나타내는 성분 조성의 강대를 표 2에 나타내는 각종 어닐링 조건으로 어닐링하고, 그 후 용융 아연 도금 및 합금화 처리를 실시했다.
제2 가열대는 DFF로 했다. 가열용 버너를 4개의 군(#1∼#4)으로 분할하여, 강판 이동 방향 상류측의 3개의 군(#1∼#3)은 산화용 버너, 최종 존(#4)은 환원용 버너로 하고, 산화용 버너 및 환원용 버너의 공기비를 표 2에 나타내는 값으로 설정했다. 또한, 각 군의 강판 반송 방향의 길이는 4m이다.
균열대는, 용적 Vr이 700㎥인 RT노(爐)로 했다. 균열대의 내부의 평균 온도는 표 2에 나타내는 것으로 설정했다. 가습 전의 건조 가스로서는, 15체적%의 H2이고 잔부가 N2 및 불가피적 불순물로 이루어지는 조성을 갖는 가스(노점: -50℃)를 이용했다. 이 건조 가스의 일부를, 중공사막식 가습부를 갖는 가습 장치에 의해 가습하여, 혼합 가스를 조제했다. 중공사막식 가습부는, 10대의 막 모듈로 이루어지고, 각 모듈에 최대 500L/min의 건조 가스와, 최대 10L/min의 순환수를 흐르도록 했다. 순환 항온 수조는 공통으로 하며, 합계 100L/min의 순수를 공급 가능하다. 가스 공급구는 도 2에 나타내는 위치에 배치했다. 도 2의 부호 36에 대응하는 하단의 3개의 가스 공급구 각각으로부터의 가스 유량 및 가스 노점, 그리고, 도 2의 부호 38에 대응하는 중단의 3개의 가스 공급구 각각으로부터의 가스 유량 및 가스 노점을 표 2에 나타낸다. 하부 노점계는 노상(爐床)으로부터 2m 높이(yb=2), 상부 노점계는 노상으로부터 21m 높이(ya=21), 하단의 가스 공급구는 노상으로부터 3m(yi=3), 중단의 가스 공급구는 노상으로부터 9m(yi=9)에 설치했다. 또한, 하단의 3개의 가스 공급구 각각에 대한 식 (1)의 계산 결과와, 상단의 3개의 가스 공급구 각각에 대한 식 (1)의 계산 결과도, 표 2에 나타낸다.
제1 냉각대 및 제2 냉각대에는, 건조 가스(노점: -50℃)를 표 2에 나타내는 유량으로 공급했다.
도금욕온은 460℃, 도금욕 중 Al 농도 0.130%, 부착량은 가스 와이핑에 의해 편면당 45g/㎡로 조절했다. 또한, 라인 속도는 80∼100mpm으로 했다. 또한, 용융 아연 도금을 실시한 후에, 피막 합금화도(Fe 함유율)가 10∼13% 내가 되도록, 유도 가열식 합금화로로 합금화 처리를 행했다. 그때의 합금화 온도는 표 2에 나타낸다.
(평가 방법)
도금 외관의 평가는, 광학식의 표면 결함계에 의한 검사(φ0.5 이상의 비도금 결함이나 과산화성 결함을 검출) 및 육안에 의한 합금화 얼룩 판정을 행하여, 모든 항목이 합격에서 ○, 경도의 합금화 얼룩이 있는 경우는 △, 하나라도 불합격이 있으면 ×로 했다. 또한, 코일 1000m당의 합금화 얼룩의 발생 길이를 측정했다. 결과를 표 2에 나타낸다.
또한, 각종 조건으로 제조한 합금화 용융 아연 도금 강판의 인장 강도를 측정했다. 강종 A는 590㎫ 이상, 강종 B는 780㎫ 이상, 강종 C는 980㎫ 이상, 강종 D는 1180㎫ 이상을 합격으로 했다. 결과를 표 2에 나타낸다.
또한, 균열대 내의 노점은 도 2에 나타내는 위치에서 측정하여, 표 2에 나타냈다.
(평가 결과)
표 2에 나타내는 바와 같이, 본 발명예에서는, 노점을 안정적으로 -10∼-20℃ 내로 제어할 수 있었기 때문에, 도금 외관이 양호하고, 인장 강도도 높았다. 특히, 식 (1)을 만족하도록 혼합 가스를 투입한 경우, 노점을 보다 안정적으로 -10∼-20℃ 내로 제어할 수 있었기 때문에, 합금 얼룩 발생 길이를 제로로 할 수 있었다. 한편, 가습 가스를 포함하는 혼합 가스를 공급하지 않는 비교예에서는, 강판에 의해 반입되는 수분으로는 부족하여, 통판에 수반하여 균열대 내의 노점이 저하되었다. 따라서, 균열대 내의 노점을 충분히 상승시킬 수 없고, 또한 노 내 노점 편차도 커졌다. 그 결과, 합금화 얼룩이 발생하여, 합금화 온도가 상승해 버리고, 인장 강도도 저하했다. 또한, 가습 가스를 포함하는 혼합 가스를 공급하지만 상단 노점 또는 하단 노점을 -20℃ 이상 0℃ 이하로 할 수 없었던 비교예에서도, 도금 외관과 인장 강도의 양립은 할 수 없었다.
Figure pct00004
Figure pct00005
본 발명의 합금화 용융 아연 도금 강판의 제조 방법에 의하면, Si를 0.2질량% 이상 포함하는 강대에 합금화 용융 아연 도금을 실시한 경우라도, 도금 밀착성이 높아 양호한 도금 외관을 얻을 수 있고, 또한, 합금화 온도를 내림으로써 인장 강도의 저하를 억제하는 것이 가능하다.
100 : 연속 용융 아연 도금 장치
10 : 가열대
10A : 제1 가열대(전단)
10B : 제2 가열대(후단, 직화형 가열로)
12 : 균열대
14 : 제1 냉각대(급냉대)
16 : 제2 냉각대(제냉대)
18 : 스나우트
20 : 어닐링로
22 : 용융 아연 도금욕
23 : 합금화 설비
24 : 가스 분배 장치
26 : 가습 장치
28 : 순환 항온 수조
30 : 가스 혼합 장치
32 : 혼합 가스용 노점계
34 : 혼합 가스용 배관
36A, 36B, 36C : 가스 공급구
38A, 38B, 38C : 가스 공급구
40A, 40B : 노점 측정 위치
42 : 허스 롤
P : 강대

Claims (6)

  1. 직화형 가열로를 포함하는 가열대와, 균열대와, 냉각대가 이 차례로 병렬 배치된 어닐링로와, 상기 냉각대에 인접한 용융 아연 도금 설비와, 당해 용융 아연 도금 설비에 인접한 합금화 설비를 갖는 연속 용융 아연 도금 장치를 이용한 합금화 용융 아연 도금 강판의 제조 방법으로서,
    강대(steel strip)를 상기 어닐링로의 내부에서, 상기 가열대, 상기 균열대 및 상기 냉각대의 차례로 반송하여, 상기 강대에 대하여 어닐링을 행하는 공정과,
    상기 용융 아연 도금 설비를 이용하여, 상기 냉각대로부터 배출되는 강대에 용융 아연 도금을 실시하는 공정과,
    상기 합금화 설비를 이용하여, 상기 강대에 실시된 아연 도금을 가열 합금화하는 공정을 갖고,
    상기 균열대에 공급되는 환원성 가스 또는 비산화성 가스는, 가습 장치에 의해 가습된 가스와, 상기 가습 장치에 의해 가습되어 있지 않은 건조 가스를 소정의 혼합비로 혼합하여 얻은 혼합 가스이고,
    상기 균열대의 높이 방향의 하부 1/2의 영역에 형성된 적어도 1개의 가스 공급구로부터 상기 혼합 가스를 상기 균열대 내로 공급하여, 상기 균열대의 높이 방향의 상부 1/5의 영역에서 측정되는 노점과, 하부 1/5의 영역에서 측정되는 노점을, 모두 -20℃ 이상 0℃ 이하로 하는 것을 특징으로 하는 합금화 용융 아연 도금 강판의 제조 방법.
  2. 제1항에 있어서,
    상기 가스 공급구는, 복수 배치되고, 또한, 2개 이상의 상이한 높이 위치에 적어도 1개 배치되는 합금화 용융 아연 도금 강판의 제조 방법.
  3. 제2항에 있어서,
    동일한 높이 위치에 배치된 상기 가스 공급구로부터의 가스 유량의 합계를, 모든 높이 위치에 있어서 동일로 하고, 높이 위치가 낮은 상기 가스 공급구로부터 공급되는 상기 혼합 가스일수록 노점을 높게 하는 합금화 용융 아연 도금 강판의 제조 방법.
  4. 제2항에 있어서,
    모든 상기 가스 공급구로부터 공급되는 상기 혼합 가스의 노점을 동일로 하고, 높이 위치가 낮은 상기 가스 공급구로부터의 가스 유량일수록 많게 하는 합금화 용융 아연 도금 강판의 제조 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 균열대로의 상기 혼합 가스의 공급 조건이 이하의 식 (1)을 충족시키는 합금화 용융 아연 도금 강판의 제조 방법.
    Figure pct00006

    여기에서,
    V: 혼합 가스의 유량(㎥/hr)
    m: 혼합 가스의 노점으로부터 산출되는 혼합 가스의 함유 수분(ppm)
    y: 노점계 또는 가스 공급구의 높이 위치(m)
    N: 가스 공급구의 합계수
    첨자
    t: 혼합 가스의 합계
    a: 상기 균열대의 높이 방향의 상부 1/5의 영역에 배치되는 노점계
    b: 상기 균열대의 높이 방향의 하부 1/5의 영역에 배치되는 노점계
    i: i번째의 가스 공급구
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 직화형 가열로는, 산화용 버너와, 당해 산화용 버너로부터 강판 이동 방향 하류에 위치하는 환원용 버너를 갖고, 상기 산화용 버너의 공기비를 0.95 이상 1.5 이하로 하고, 상기 환원용 버너의 공기비를 0.5 이상 0.95 미만으로 하는 합금화 용융 아연 도금 강판의 제조 방법.
KR1020177000540A 2014-07-07 2015-06-05 합금화 용융 아연 도금 강판의 제조 방법 KR101862206B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-140012 2014-07-07
JP2014140012A JP6131919B2 (ja) 2014-07-07 2014-07-07 合金化溶融亜鉛めっき鋼板の製造方法
PCT/JP2015/002851 WO2016006159A1 (ja) 2014-07-07 2015-06-05 合金化溶融亜鉛めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
KR20170016467A true KR20170016467A (ko) 2017-02-13
KR101862206B1 KR101862206B1 (ko) 2018-05-29

Family

ID=55063819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177000540A KR101862206B1 (ko) 2014-07-07 2015-06-05 합금화 용융 아연 도금 강판의 제조 방법

Country Status (7)

Country Link
US (1) US10752975B2 (ko)
EP (1) EP3168321B1 (ko)
JP (1) JP6131919B2 (ko)
KR (1) KR101862206B1 (ko)
CN (1) CN106488994B (ko)
MX (1) MX2017000001A (ko)
WO (1) WO2016006159A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095563A (ko) * 2017-12-22 2020-08-10 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법 및 연속 용융 아연 도금 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131919B2 (ja) * 2014-07-07 2017-05-24 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP6020605B2 (ja) * 2015-01-08 2016-11-02 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
US11459631B2 (en) 2017-04-27 2022-10-04 Jfe Steel Corporation Method for producing galvannealed steel sheet, and continuous hot dip galvanizing apparatus
US11208711B2 (en) 2018-11-15 2021-12-28 Psitec Oy Method and an arrangement for manufacturing a hot dip galvanized rolled high strength steel product
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
KR20220123120A (ko) * 2020-02-21 2022-09-05 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판의 제조 방법
CN113699474A (zh) * 2021-08-30 2021-11-26 宝钢湛江钢铁有限公司 一种无底渣生产合金化热镀锌ga产品的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043273A1 (ja) 2005-10-14 2007-04-19 Nippon Steel Corporation Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
JP2009209397A (ja) 2008-03-03 2009-09-17 Jfe Steel Corp めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
JP2010202959A (ja) 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674451B2 (ja) * 1983-04-27 1994-09-21 大同ほくさん株式会社 ガス調湿法
US8592049B2 (en) 2006-01-30 2013-11-26 Nippon Steel & Sumitomo Metal Corporation High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability
JP5108365B2 (ja) * 2007-04-25 2012-12-26 大陽日酸株式会社 加湿ガス供給方法及び装置
BRPI1014674A2 (pt) 2009-03-31 2019-04-16 Jfe Steel Corp chapa de aço galvanizada de alta resistência e método de produção da mesma
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
JP5071551B2 (ja) * 2010-12-17 2012-11-14 Jfeスチール株式会社 鋼帯の連続焼鈍方法、溶融亜鉛めっき方法
JP2012133615A (ja) * 2010-12-22 2012-07-12 Nippon Hoso Kyokai <Nhk> リモート編集システム、編集処理装置およびそのプログラム
DE102012101018B3 (de) * 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
US9327249B2 (en) * 2012-04-17 2016-05-03 Air Products And Chemicals, Inc. Systems and methods for humidifying gas streams
JP5510495B2 (ja) 2012-05-24 2014-06-04 Jfeスチール株式会社 鋼帯の連続焼鈍炉、連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法
WO2013187039A1 (ja) * 2012-06-13 2013-12-19 Jfeスチール株式会社 鋼帯の連続焼鈍方法、鋼帯の連続焼鈍装置、溶融亜鉛めっき鋼帯の製造方法及び溶融亜鉛めっき鋼帯の製造装置
JP5953138B2 (ja) * 2012-06-19 2016-07-20 株式会社キッツマイクロフィルター 湿潤ガス発生方法と小流量用調湿装置
EP2927342A4 (en) * 2012-12-04 2016-01-06 Jfe Steel Corp APPARATUS AND METHOD FOR PRODUCING A CONTINUOUS FIRE-PLATED STEEL PLATE
KR101568547B1 (ko) 2013-12-25 2015-11-11 주식회사 포스코 스트립의 연속소둔 장치 및 그 연속소둔 방법
WO2015185956A1 (en) 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
JP6131919B2 (ja) * 2014-07-07 2017-05-24 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043273A1 (ja) 2005-10-14 2007-04-19 Nippon Steel Corporation Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
JP2009209397A (ja) 2008-03-03 2009-09-17 Jfe Steel Corp めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
JP2010202959A (ja) 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200095563A (ko) * 2017-12-22 2020-08-10 제이에프이 스틸 가부시키가이샤 용융 아연 도금 강판의 제조 방법 및 연속 용융 아연 도금 장치

Also Published As

Publication number Publication date
CN106488994B (zh) 2018-11-27
US10752975B2 (en) 2020-08-25
EP3168321A4 (en) 2017-05-31
MX2017000001A (es) 2017-05-01
WO2016006159A8 (ja) 2016-12-29
KR101862206B1 (ko) 2018-05-29
EP3168321B1 (en) 2018-12-19
US20170130296A1 (en) 2017-05-11
EP3168321A1 (en) 2017-05-17
WO2016006159A1 (ja) 2016-01-14
JP6131919B2 (ja) 2017-05-24
JP2016017193A (ja) 2016-02-01
CN106488994A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
KR101862206B1 (ko) 합금화 용융 아연 도금 강판의 제조 방법
KR101949631B1 (ko) 합금화 용융 아연 도금 강판의 제조 방법
KR101893509B1 (ko) 환원로의 노점 제어 방법 및 환원로
US20200190652A1 (en) Method for manufacturing hot-dip galvanized steel sheet
KR20170117522A (ko) 연속 용융 아연 도금 장치 및 용융 아연 도금 강판의 제조 방법
US20230323501A1 (en) Continuous hot-dip galvanizing apparatus
KR102267952B1 (ko) 합금화 용융 아연 도금 강판의 제조 방법 및 연속 용융 아연 도금 장치
JP6439654B2 (ja) 溶融亜鉛めっき鋼板の製造方法
KR101722350B1 (ko) 용융 아연도금 강판의 제조 방법 및 연속 용융 아연도금 장치
JP6128068B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP7334860B2 (ja) 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant