JP2020122195A - 溶融亜鉛めっき鋼板の製造方法 - Google Patents

溶融亜鉛めっき鋼板の製造方法 Download PDF

Info

Publication number
JP2020122195A
JP2020122195A JP2019015724A JP2019015724A JP2020122195A JP 2020122195 A JP2020122195 A JP 2020122195A JP 2019015724 A JP2019015724 A JP 2019015724A JP 2019015724 A JP2019015724 A JP 2019015724A JP 2020122195 A JP2020122195 A JP 2020122195A
Authority
JP
Japan
Prior art keywords
zone
dff
steel sheet
hot
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019015724A
Other languages
English (en)
Other versions
JP6908062B2 (ja
Inventor
研二 山城
Kenji Yamashiro
研二 山城
秀行 ▲高▼橋
秀行 ▲高▼橋
Hideyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019015724A priority Critical patent/JP6908062B2/ja
Publication of JP2020122195A publication Critical patent/JP2020122195A/ja
Application granted granted Critical
Publication of JP6908062B2 publication Critical patent/JP6908062B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】不めっきの無い美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。【解決手段】直火型加熱炉(DFF)を含む加熱帯と、均熱帯とが隣接した焼鈍炉を備える連続溶融亜鉛めっき設備を用いた溶融亜鉛めっき鋼板の製造方法において、前記直火型加熱炉は空気比1以上で操業されるDFF酸化帯と、空気比1未満で操業されるDFF還元帯とを有し、前記DFF酸化帯と前記DFF還元帯との間から炉ガスを排気し、前記DFF酸化帯の炉圧を前記DFF還元帯より高く保つことを特徴とする溶融亜鉛めっき鋼板の製造方法。【選択図】なし

Description

本発明は、溶融亜鉛めっき鋼板の製造方法に関する。
近年、環境問題への意識の高まりから、自動車に対する二酸化炭素の排出規制が厳しくなっている。また、自動車の衝突安全性の規制も強化されるなど、従来以上に車体の安全性が求められている。そこで、軽量化と強度向上を両立させるため、自動車メーカ各社は、車体への溶融亜鉛めっき高張力鋼板の適用拡大を推進している。
溶融亜鉛めっき鋼板は、以下の手法によって製造される。冷延後のコイルを、連続式溶融亜鉛めっきライン(Continuous galvanizing line:CGL)に通板させ、最初に、予熱炉内で母材表面の油分の燃焼除去を行う。その後、酸化性雰囲気または還元性雰囲気で加熱を行い、鋼板を再結晶させる。さらに、酸化性雰囲気または還元性雰囲気で、鋼板をめっきに適した温度になるよう冷却を行い、溶融亜鉛へと浸漬させる。
鋼板の高張力化には、Si、Mn、P、Alなどの固溶強化元素の添加が行われることが多い。特に、Siは添加コストが他の元素と比較して低く、かつ鋼の延性を損なわずに高強度化できる利点がある。そのため、Si含有鋼は高張力鋼板として有望である。しかし、Siを鋼中に多量に添加すると、以下の問題が生じる。
高張力鋼板は、還元雰囲気中で、600〜900℃の温度域で焼鈍される。SiはFeと比較して易酸化元素であるため、この時に、Siが鋼板表面へ濃化する。その結果、鋼板表面にSi酸化物が形成され、このSi酸化物が亜鉛との濡れ性を著しく悪化させ、不めっきを生じさせる。
さらに、Siが表面に濃化すると、亜鉛めっきが付着したとしても溶融亜鉛めっき後の合金化過程において、著しい合金化の遅延を生じる。その結果、生産性が悪化する。
このような問題に対して、直火バーナーによって加熱帯で鋼板を加熱し、鋼板表面に酸化膜を形成した後、還元焼鈍で鋼板表面に還元鉄を形成させることによって亜鉛との濡れ性を改善する手法がよく知られている。そのため、加熱帯の酸化膜厚を一定に保つことは非常に重要であり、様々な手法で酸化膜厚を一定にする手法が公開されている。また、加熱帯で形成された酸化膜の還元が十分でないとめっき不良が発生することから、還元帯の能力を均一に保つ手法が公開されている。
例えば、特許文献1では直火加熱方式の無酸化炉において、炉を複数ゾーンに分割し、直火バーナーを燃焼させないゾーンを設けることによって、酸化膜厚を均一化させる手法が開示されている。
特許文献2では、直火加熱方式の無酸化炉において、加熱帯の雰囲気の酸化性ガス(O、CO、HO)の濃度を規定して、酸化膜厚を均一に保つ手法が開示されている。
特許文献3では、直火加熱方式の無酸化炉において、加熱帯が予熱帯、無酸化帯、酸化帯、還元帯に分割され、還元帯に隣接する酸化帯のバーナーの空気比を高く設定することにより酸化雰囲気を安定させるとともに、無酸化帯に隣接する酸化帯のバーナーの空気比を低く設定することにより酸化帯から流入する残存酸素を含む排気ガスを燃焼させることにより無酸化雰囲気を安定させ、その結果、鋼板表面に均一な酸化膜を形成させる手法が開示されている。
特許文献4では、直火加熱方式の無酸化炉において、直火帯と還元帯の間からガスを排気して、直火帯ガスの還元帯への流入を抑制し、これによって均熱帯の還元能力低下を防ぎ、酸化膜を十分に還元させる手法が開示されている。
特開2009−19253号公報 特開平6−306561号公報 特開2013−142174号公報 特開2007−146242号公報
特許文献1において、直火バーナーの燃焼を行っていないゾーンでは、酸化が緩やかに進行すると記載されているが、各ゾーンが繋がっているため、他のゾーンから燃焼ガスが流入し、雰囲気が不安定になりやすい。そのため、酸化量が不均一になりやすく、不めっきが発生しやすい。
また特許文献2では、炉内雰囲気を直接制御するために、直火バーナーの燃焼ガスとは別に、ガスを炉内に導入して、雰囲気の制御を試みている。酸化性のガスは3種(O、CO、HO)存在するため、炉内の酸素ポテンシャルを制御するためには、3種のガス濃度を管理しなければならず、複雑な制御システムを構築する必要がある。これに加えて、加熱帯では、下流から上流へのガス流れが存在するため、直火バーナーの燃焼ガスと別途導入したガスの混合が十分に行われず、炉内雰囲気が均一とならないため、不めっきが発生する。
特許文献3においても、加熱帯の後段の均熱帯から還元性のガスが流れてくるため、局所的なバーナーの空気比調整のみでは、加熱帯の雰囲気を一定に保つことができない。したがって、不めっきが発生しやすい。
特許文献4の方法では、直火加熱帯において、直火酸化帯のガスが直火還元帯のガスと混ざるため、鋼板の酸化量に影響を及ぼす酸素濃度、二酸化炭素濃度、水蒸気濃度が不均一となり、その結果、酸化量を鋼板幅方向で一定に保つことができず、不めっきが発生する。
本発明は、かかる事情に鑑みてなされたものであって、不めっきの無い美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
良好なめっき性を得るには、最適な酸化量を確保する必要がある。本発明者らは、直火型加熱炉(DFF)を有する加熱帯を備える連続式溶融亜鉛めっき設備において、炉内の雰囲気制御が容易で、かつ鋼板表面に均一な酸化膜が形成される手法について鋭意検討を行った。その結果、加熱帯におけるDFFの酸化領域(DFF酸化帯)の酸素濃度を適正範囲に制御することにより、鋼板表面に均一な酸化膜が形成されることを明らかにした。
本発明は上記知見に基づくものであり、その要旨は以下のとおりである。
[1]直火型加熱炉(DFF)を含む加熱帯と、均熱帯とが隣接した焼鈍炉を備える連続溶融亜鉛めっき設備を用いた溶融亜鉛めっき鋼板の製造方法において、
前記直火型加熱炉は空気比1以上で操業されるDFF酸化帯と、空気比1未満で操業されるDFF還元帯とを有し、
前記DFF酸化帯と前記DFF還元帯との間から炉ガスを排気し、前記DFF酸化帯の炉圧を前記DFF還元帯より高く保つことを特徴とする溶融亜鉛めっき鋼板の製造方法。
[2][1]記載の溶融亜鉛めっき鋼板の製造方法において、前記DFF酸化帯の酸素濃度を0.7%以上で操業することを特徴とする溶融亜鉛めっき鋼板の製造方法。
[3][1]または[2]記載の溶融亜鉛めっき鋼板の製造方法において、排気された炉ガスを燃焼させた後、加熱帯前段の予熱帯に還流させることを特徴とする溶融亜鉛めっき鋼板の製造方法。
[4][1]〜[3]のいずれかに記載の溶融亜鉛めっき鋼板の製造方法において、溶融亜鉛めっき処理後に合金化処理することを特徴とする溶融亜鉛めっき鋼板の製造方法。
本発明によれば、不めっきのない美麗な表面外観を有する優れた溶融亜鉛めっき鋼板が得られる。本発明は、溶融亜鉛めっき処理が困難である高Si添加鋼板を母材とする場合に特に有効であり、高Si添加溶融亜鉛めっき鋼板の製造におけるめっき品質を改善する方法として有用である。
図1は、本発明の実施の形態に係る、DFFを有する連続溶融亜鉛めっき設備の概略図である。 図2は、直火バーナーを用いて実施した酸化実験の実験装置の模式図である。 図3は、直火バーナーを用いて実施した酸化実験の実験結果を示すグラフである。 図4は、DFF酸化帯入側に設けられた配管を示す模式図である。
本発明の実施形態について、図1〜4に基づき具体的に説明する。
図1は、本発明の実施の形態に係る、DFFを有する連続溶融亜鉛めっき設備100の概略図である。
図1において、連続溶融亜鉛めっき設備100は、加熱帯1と均熱帯2とがこの順に隣接した焼鈍炉を有する。なお、均熱帯2の下流には、冷却帯、溶融亜鉛めっき装置、合金化処理装置などが配置される(図示しない)。均熱帯2、冷却帯、溶融亜鉛めっき装置、合金化処理装置などは特に限定されず、通常採用されているもので良い。
鋼板Sは連続式溶融亜鉛めっき設備100において、熱処理を施される。図1に示すように、加熱帯1の前段には予熱帯1−1が配置され、加熱帯1は直火型加熱炉(DFF)1−2を有する。直火型加熱炉(DFF)1−2は、DFF酸化帯3とDFF還元帯4とを有する。
なお、Si、Mnの表面濃化をDFFのプレ酸化によって抑制するという理由で、DFF酸化帯3は空気比1以上で操業され、DFF還元帯4は空気比1未満で操業される。
DFF酸化帯3とDFF還元帯4の間には、ガスを炉外に排出するための配管5が接続されている。また、DFF酸化帯3とDFF還元帯4の炉圧を監視するために、DFF酸化帯3とDFF還元帯4には炉圧計6がそれぞれ設置される。
また、DFF酸化帯3とDFF還元帯4の酸素濃度を監視するために、DFF酸化帯3とDFF還元帯4のそれぞれに酸素濃度計7が設置される。また、直火型加熱炉(DFF)1−2の出側温度を監視するために、DFF還元帯4の出側に多重反射式温度計8が設置される。
配管5の下流側には、DFF酸化帯3とDFF還元帯4の間から炉ガスを排出するためのブロワ9と、炉ガスの流量を監視する流量計10とがこの順に接続されている。流量計10は下流側でアフターバーニング室11と接続されている。さらに、アフターバーニング室11にはアフターバーニング室11に空気を導入するための空気導入配管12、アフターバーニング室11の酸素濃度を監視するための酸素濃度計13、および、アフターバーニング室11の燃焼ガスを予熱帯1−1に還流させるための配管14がそれぞれ接続されている。なお、配管14には空気の代わりに酸素を投入してもよい。また、ガスの温度低下を抑制する目的で、配管5および配管14は断熱材15で覆われている。
良好なめっき性を得るには、最適な酸化量を確保する必要がある。以下に、本発明に到った実験について、説明する。
Siを1.5%含む高張力鋼板を供試材として、直火バーナーを用いて酸化実験を実施した。図2に、実験装置の模式図を示す。図2に示すように、実験装置は、準備室、加熱室、冷却室の順に配置されており、それぞれ仕切りで仕切られている。実験装置は、連続的に鋼板の加熱および冷却処理が実施できる仕様となっている。また、加熱室以外での酸化を抑制するため、準備室と冷却室の雰囲気はNガスによって置換されている。鋼板を移動させるために不可避的に生じる隙間には窒素を常時吹き付けていて、加熱室内への大気の流入を抑制しており、バーナー非燃焼時における加熱室内への大気の侵入を抑制している。鋼板は、移動可能な搬送台に設置されており、準備室から加熱室に移動して加熱された後、冷却室にてN冷却される。
本発明者らは、図2に示す実験装置で鋼板を所定温度(500℃、600℃または700℃)まで加熱して冷却する(冷却速度:7(℃/sec)酸化実験を行い、酸素濃度と酸化量との関係について調べた。酸化実験には、C:0.12mass%、Si:1.4mass%、Mn:1.9mass%、P:0.01mass%含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼板を用いた。また、酸化量は、蛍光X線分析装置で測定した。酸化量の測定結果を図3に示す。
図3より、鋼板温度が高いほど酸化量が多い傾向を示した。また、いずれの鋼板温度においても、酸素濃度が0.2〜0.5%の範囲では酸化量が一旦増加した後、酸化量は減少し、酸素濃度が0.7%以上では酸化量はほぼ一定値であった。
このことから、高Si添加鋼の酸化膜を鋼板全面に渡って均一に保つためには、DFF酸化帯の酸素濃度を所定の濃度以上に保つことが重要であることが分かった。
DFF酸化帯3の酸素濃度を所定の濃度以上に保つ手法として、バーナーの空気比を調整することが考えられる。しかしながら、前述のように、DFF還元帯4や均熱帯2から還元ガスが、鋼板Sの進行方向とは逆方向にDFF酸化帯3へ流れ込む。そのため、鋼板Sの酸化に最も重要であると考えられる鋼板S近傍のガス濃度を制御することが困難である。
そこで、DFF酸化帯3の鋼板S近傍の雰囲気を調整する手段として、DFF酸化帯3とDFF還元帯4との間からのガス排出に着目した。
そこで本発明者らがさらに検討した結果、DFF酸化帯3の酸素濃度を所定の濃度以上に保つために、本発明では、DFF還元帯3のガスがDFF酸化帯4に流入することを抑制するために、DFF酸化帯と前記DFF還元帯との間から炉ガスを排気し、DFF酸化帯の炉圧はDFF還元帯の炉圧より高く保つことを見出した。DFF酸化帯の炉圧はDFF還元帯の炉圧より高く保つ方法としては、例えば、鋼板進行方向に対するDFF酸化帯3の断面積をDFF還元帯3の断面積より小さくする方法や、DFF還元帯4での還元能力を損なわない範囲でDFF還元帯4のガス流量を抑制する方法、DFF還元帯4のガスを排気する方法などが挙げられる。
均熱帯2に投入される窒素−水素混合ガス中の水素ガスと、DFF還元帯4でバーナーから吐出される排ガス中の水素および一酸化炭素は、DFF酸化帯3でバーナーから吐出される酸素と下記式(1)、(2)のように反応する。
+0.5O→HO・・・式(1)
CO+0.5O→CO・・・式(2)
通常では、上記式(1)、(2)に示したように、酸素が水素と一酸化炭素に消費される。このため、DFF酸化帯3の酸素濃度は、Cガス組成、流量および空気流量から計算される酸素濃度と比較して低下する。
そこで、式(1)、(2)をもとに均熱帯2、DFF酸化帯3およびDFF還元帯4におけるガスのマスバランスについて検討した。その結果、下記式(3)、(4)から、DFF酸化帯3とDFF還元帯4との間から排出する炉ガスの流量の下限QL(Nm/h)、および、DFF酸化帯3とDFF還元帯4との間から排出する炉ガスの流量の上限QH(Nm/h)がそれぞれ決まることを見出した。
QL=λ{1.4f(i+j+k)+(0.6g+1.4)h+(2e+2d)f+(1.4−2b)c}/{0.7(i+j+k+1)+0.3g+e+d}・・・式(3)
QH=λ{3f(i+j+k)+(−g+1.4)h+(2e+2d)f+(3−2b)c}/{1.5(i+j+k+1)−0.5g+e+d}・・・式(4)
なお、上記式(3)、(4)において、
b:DFF酸化帯最終ゾーンの空気比と、Cガス組成から計算される排ガスの酸素濃度(−)
c:DFF酸化帯最終ゾーンの排ガス総流量(Nm/h)
d:DFF還元帯の空気比とCガス組成から計算される排ガスの一酸化炭素濃度(−)
e:DFF還元帯の空気比とCガス組成から計算される排ガスの水素濃度(−)
f:DFF還元帯の排ガス総流量(Nm/h)
g:均熱帯に投入される水素−窒素混合ガスの水素濃度(−)
h:均熱帯に投入される水素−窒素混合ガス総流量(Nm/h)
i:DFF還元帯の空気比とCガス組成から計算される排ガスの水蒸気濃度(−)
j:DFF還元帯の空気比とCガス組成から計算される排ガスの窒素濃度(−)
k:DFF還元帯の空気比とCガス組成から計算される排ガスの二酸化炭素濃度(−)
λ:製造ラインによって決まる係数(−)
である。
なお、係数b、d、e、i、j、kは、閉じられた系の中でCガスの未燃成分と空気中の酸素が反応して求められる値である。例えば、Cガス成分が表1のように与えられたと仮定すると、空気比に対する各種係数b、d、e、i、j、kは下記のように求められる。
Cガス成分が表1の各濃度(%)であると仮定した場合、各種係数は酸化帯(b、d、e)においては水素と酸素、一酸化炭素と酸素が完全燃焼すると仮定して求める。還元帯(i、j、k)においては、一酸化炭素と水素が酸素と反応しない割合が空気比に応じて変わる(例えば空気比0.9の場合、CO7.32%の1割が反応しない)と仮定して下記のように求めることができる。
b=−10.125R+37.624R−27.503
d=1.6131R−4.7638R+3.1509
e=12.234R−36.13R+23.898
i=26.585R−40.288R+36.427
j=−93.56R+178.53R−15.197
k=47.421R−80.048R+40.28
なお、Rは空気比である。
Cガス組成から式(3)、(4)の係数算出法を以下に示す。代表して、係数bの求め方について述べる。まず、表1のCガス組成から1mの燃料を完全燃焼させるために必要な空気量(=理論空気量)を算出する。理論空気量は一酸化炭素、水素、メタン、エチレン、酸素の各濃度(%)を用いて次式(5)から求められる。
100(0.5CO+0.5H+2CH+3C−O)/0.21・・・式(5)
表1の各濃度を式(5)に代入すると、100(0.5×7.48+0.5×56.73+2×24.76+3×2.4−0.2)/0.21=4.22となり、Cガス1mを完全燃焼させるとき、空気は4.22m必要となる。
例えば空気比1.1の場合、酸素濃度は以下のように求められる。空気比1.1であるから投入する空気量は4.22×1.1=4.64mとなる。ここで、空気の酸素濃度を21%、窒素濃度を79%とおき、Cガス燃料を1mと仮定すれば、燃焼反応前のCガス、空気の各成分が占める体積は表2となる。
式(1)、(2)の化学反応式に基づいて、排ガスの各成分の体積を求め、それから濃度を求めると表3になる。
以上から、空気比1.1の酸素濃度が1.64%と求まった。この操作を代表的な空気比に対して行い、空気比に対して各種ガス濃度をプロットし、二次多項式で近似することによってガス濃度が求められる。すなわち、bは酸素濃度の二次多項式であり、b、d、e、i、j、kは各種ガス濃度の二次多項式に対応する。
以上より、本発明では炉ガスを排気することで、DFF酸化帯3の炉圧をDFF還元帯4の炉圧より高く保つことができ、上記式(3)、(4)により導き出される、DFF酸化帯3とDFF還元帯4との間から排出する流量の下限QL(Nm/h)、および、流量の上限QH(Nm/h)を制御することが好ましい。
なお、排出する炉ガスの流量が下限QLを下回ると、好ましい雰囲気条件を保てなくなり、めっき性が悪化する可能性がある。排出する炉ガスの流量が上限QHを上回ると、DFF出側板温の低下が著しくなり、めっき性が極端に悪化する可能性がある。
本発明において、DFF酸化帯の炉圧はDFF還元帯の炉圧と比較して13.5Pa以上高く保つ(差圧が13.5Pa以上)ことが望ましい。
本発明では、DFF酸化帯3の酸素濃度は、0.7%以上で操業することが好ましい。一方で、過剰に酸素を投入しても燃焼効率の悪化を招き、また、酸化量のバラつきを考慮すると、酸素濃度は1.0%以上がより好ましい。また、燃焼効率の観点から、上限は1.5%が好ましい。
また、DFF酸化帯3の酸素濃度を酸素濃度0.7%以上に制御するため、図4に示すように、DFF酸化帯入側に別途配管18を設け、DFF酸化帯入側の燃焼排ガスをブロワ16で排気し、DFF酸化帯出側において、ノズル17で燃焼排ガスを吹き付けてもよい。なお、ノズル17で燃焼排ガスを吹き付ける場合、吹き付ける量を制御するために流量計19を設けても良い。
DFF酸化帯3とDFF還元帯4の間から排出された炉ガスは、アフターバーニング室11で空気中の酸素(もしくは酸素のみ)と反応させて燃焼させることで、反応熱を発生させる。本発明では、この燃焼ガスを予熱帯1−1に還流してもよい。燃焼ガスを還流させることにより、予熱帯1−1の加熱能力を上昇させ、鋼板の高効率加熱が可能となる。また、DFF酸化帯3の燃焼排ガスは予熱帯1−1に流れ、鋼板の予熱に使用される。
鋼板SはDFF酸化帯3およびDFF還元帯4に続く均熱帯2において、還元雰囲気中で600〜900℃の温度域で焼鈍されればよい。DFF酸化帯3およびDFF還元帯4で鋼板Sを700℃超えで加熱すると鋼板の酸化量が過剰になり、酸化物の一部がロールにピックアップする。そのため、DFF酸化帯3およびDFF還元帯4では鋼板を700℃以下に加熱することが好ましい。
焼鈍後の鋼板Sは、冷却帯で冷却された後、溶融亜鉛めっき装置で溶融亜鉛めっき処理を施す。溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.10〜0.20%の亜鉛めっき浴を用いることが好ましい。
浴温が440℃未満では浴内における温度ばらつきが大きい場所はZnの凝固が起こる可能性がある。550℃を超えると浴の蒸発が激しく操業コストや気化したZnが炉内へ付着するため操業上問題がある。更にめっき時に合金化が進行するため、過合金になりやすい。
めっき浴中のAl濃度が0.10%未満になるとζ相が多量に生成しパウダリング性が悪化し、0.20%超になるとFe−Zn合金化が進まない。
次いで、合金化処理を行う。合金化処理は鋼板加熱温度が460℃超え570℃未満で行うのが最適である。460℃以下では合金化進行が遅く、570℃以上では過合金により地鉄界面に生成する硬くて脆いZn−Fe合金層が生成しすぎてめっき密着性が劣化する。さらに、残留オーステナイト相が分解するため、強度と延性のバランスも劣化する場合がある。
めっき付着量は、耐食性およびめっき付着量制御の点から、20g/m以上(片面当り付着量)が好ましい。しかしながら、付着量が多いと密着性が低下する場合があるので、120g/m以下(片面当り付着量)が好ましい。
本発明が対象とする鋼板は、高Si鋼であることが好ましく、具体的には、Siの含有量は0.3質量%以上であることが好ましい。
Siは、脱酸剤として、あるいは高強度化を図るための固溶強化元素として含有される。特に、Siは、高強度化する効果が大きいわりに、加工性等の機械的特性劣化が比較的小さい元素であるため、好ましく用いることができる。しかし、0.3質量%未満の含有量では、焼鈍時における鋼板表層への濃化は少なく、本発明を適用する必要がない。よって、Si含有量は0.3質量%以上が好ましい。なお、Siの含有量が3.0質量%を超えると、本手法で形成される酸化膜のみでは、Siの表層への拡散を抑えきれず、表層濃化してしまう鋼板の割合が多くなってしまうため、上限は3.0質量%以下とするのが好ましい。より好ましいSiの範囲は0.8〜1.5質量%である。
なお、Si以外の元素は、通常の冷延鋼板に含まれる範囲で含有することができる。例えば、C、Mn、Al、PおよびSは、本発明が解決しようとしている炉内ロールへの酸化物付着にほとんど影響しないため、機械的強度特性や製造性等から要求される成分範囲であるC:0.05〜0.25質量%、Mn:0.5〜3.0質量%、Al:0.01〜3.00質量%、P:0.001〜0.10質量%、S:0.200質量%以下の範囲で含有することができる。また、残部はFeおよび不可避的不純物とする。
図1に示すように、加熱帯1にDFFを持つCGLにおいて、DFF酸化帯3の酸素濃度を変化させてめっき性を評価する試験を行った。なお、DFF酸化帯3とDFF還元帯4の間からガスを排気して、DFF酸化帯3の酸素濃度を制御した。また、DFF還元帯4の出側で鋼板温度を測定し、DFF出側鋼板温度とした。DFF出側鋼板温度は680±20℃に制御した。また、DFF酸化帯3の出側とDFF還元帯4の出側に設置される炉圧計6を用いて、それぞれの炉圧を測定した。
試験に用いた鋼板の化学成分を表4に示す(残部はFeおよび不可避的不純物である。)。鋼板の幅は1mとした。また、λ=0.7である。
加熱帯は、鋼板S入側の3ゾーン(#1〜#3)をDFF酸化帯3(空気比1以上)、最終ゾーン(#4)をDFF還元帯4(空気比1未満)に設定した。各ゾーンには直火バーナーが鋼板に対向するように配置し、バーナー数は各ゾーン72本(片面36本)とした。また、各ゾーンには酸素濃度計7を配置し、酸素濃度がモニタリングできるようにした。
一部の実験(条件7)では、配管5より排出されたガスをアフターバーニング室11に導入し、さらに空気導入配管12より空気をアフターバーニング室11に流入させ、燃焼排ガスを予熱帯1−1に還流した。
製造条件を表5に示す。なお、焼鈍温度は830℃、めっき浴温は460℃、めっき浴中のAl濃度は0.130%、付着量はガスワイピングにより、片面あたり45g/mに調整した。また、溶融亜鉛めっきを施した後に合金化温度530℃で合金化処理を行った。
得られためっき鋼板について、めっき外観を下記のようにして評価した。
(1)めっき外観
めっき外観の評価は、目視により不めっきの有無に基づき評価した。
本発明例である条件1、3、5、7では、加熱帯におけるDFF酸化帯(#1〜#3)の酸素濃度を0.7以上に制御しており、めっき外観に優れた鋼板の製造を可能にしている。炉ガスを排気しなかった条件2、4、6では不めっきが発生している。アフターバーニング室11で配管5より排出されたガスを燃焼させた条件7では、通板速度が向上し、高能率で鋼板の製造が可能となった。また、炉圧差が最適範囲を満足しなかった実施例8では不めっきが発生した。
100 連続溶融亜鉛めっき設備
1 加熱帯
1−1 予熱帯
1−2 直火型加熱炉(DFF)
2 均熱帯
3 DFF酸化帯
4 DFF還元帯
5 配管
6 炉圧計
7 酸素濃度計
8 多重反射式温度計
9 ブロワ
10 流量計
11 アフターバーニング室
12 空気導入配管
13 酸素濃度計
14 配管
15 断熱材
16 ブロワ
17 ノズル
18 配管
19 流量計
S 鋼板

Claims (4)

  1. 直火型加熱炉(DFF)を含む加熱帯と、均熱帯とが隣接した焼鈍炉を備える連続溶融亜鉛めっき設備を用いた溶融亜鉛めっき鋼板の製造方法において、
    前記直火型加熱炉は空気比1以上で操業されるDFF酸化帯と、空気比1未満で操業されるDFF還元帯とを有し、
    前記DFF酸化帯と前記DFF還元帯との間から炉ガスを排気し、前記DFF酸化帯の炉圧を前記DFF還元帯より高く保つことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  2. 請求項1記載の溶融亜鉛めっき鋼板の製造方法において、前記DFF酸化帯の酸素濃度を0.7%以上で操業することを特徴とする溶融亜鉛めっき鋼板の製造方法。
  3. 請求項1または2記載の溶融亜鉛めっき鋼板の製造方法において、排気された炉ガスを燃焼させた後、加熱帯前段の予熱帯に還流させることを特徴とする溶融亜鉛めっき鋼板の製造方法。
  4. 請求項1〜3のいずれかに記載の溶融亜鉛めっき鋼板の製造方法において、溶融亜鉛めっき処理後に合金化処理することを特徴とする溶融亜鉛めっき鋼板の製造方法。
JP2019015724A 2019-01-31 2019-01-31 溶融亜鉛めっき鋼板の製造方法 Active JP6908062B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015724A JP6908062B2 (ja) 2019-01-31 2019-01-31 溶融亜鉛めっき鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015724A JP6908062B2 (ja) 2019-01-31 2019-01-31 溶融亜鉛めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2020122195A true JP2020122195A (ja) 2020-08-13
JP6908062B2 JP6908062B2 (ja) 2021-07-21

Family

ID=71992311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015724A Active JP6908062B2 (ja) 2019-01-31 2019-01-31 溶融亜鉛めっき鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP6908062B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199246A (ja) * 1995-01-20 1996-08-06 Sumitomo Metal Ind Ltd 連続焼鈍炉
JPH08319520A (ja) * 1995-03-23 1996-12-03 Nippon Steel Corp 連続焼鈍炉
JPH1161278A (ja) * 1997-08-14 1999-03-05 Nippon Steel Corp 珪素鋼板の連続焼鈍方法およびその連続焼鈍設備
JP2007146242A (ja) * 2005-11-29 2007-06-14 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板の製造設備
JP2010202959A (ja) * 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法
JP2013142174A (ja) * 2012-01-11 2013-07-22 Kobe Steel Ltd 溶融亜鉛めっき設備の焼鈍炉およびその焼鈍炉における操業方法
JP2014227562A (ja) * 2013-05-21 2014-12-08 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2016125131A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199246A (ja) * 1995-01-20 1996-08-06 Sumitomo Metal Ind Ltd 連続焼鈍炉
JPH08319520A (ja) * 1995-03-23 1996-12-03 Nippon Steel Corp 連続焼鈍炉
JPH1161278A (ja) * 1997-08-14 1999-03-05 Nippon Steel Corp 珪素鋼板の連続焼鈍方法およびその連続焼鈍設備
JP2007146242A (ja) * 2005-11-29 2007-06-14 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板の製造設備
JP2010202959A (ja) * 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法
JP2013142174A (ja) * 2012-01-11 2013-07-22 Kobe Steel Ltd 溶融亜鉛めっき設備の焼鈍炉およびその焼鈍炉における操業方法
JP2014227562A (ja) * 2013-05-21 2014-12-08 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2016125131A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
JP6908062B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
KR100766165B1 (ko) 고강도 합금화 용융아연 도금 강판의 제조 방법 및 제조 설비
WO2021166350A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
CA2625790C (en) Continuous annealing and hot dip plating method and continuous annealing and hot dip plating system of steel sheet containing si
JP5206705B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4741376B2 (ja) 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
US9932659B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
JP5083354B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
JP5799819B2 (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
JP5962582B2 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法
EP3045559A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
EP3103892B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP2008024980A (ja) 高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP4912684B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造装置ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5811841B2 (ja) Si含有高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4797601B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板の製造設備
JP7243668B2 (ja) 冷延鋼板および溶融亜鉛めっき鋼板の製造方法
JP4264373B2 (ja) めっき欠陥の少ない溶融Al系めっき鋼板の製造方法
JPH04254532A (ja) 加工性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JP6908062B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP6740973B2 (ja) 溶融亜鉛めっき鋼板の製造方法
CN115003847B (zh) 高强度热浸镀锌钢板的制造方法
JP6696495B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5729008B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP2005200711A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
TH87771A (th) แผ่นเหล็กกล้าชุบสังกะสีแบบการจุ่มร้อนทนแรงสูงและแผ่นเหล็กกล้าชุบสังกะสีทนแรงสูงซึ่งเป็นเลิศในสภาพทำให้เป็นรูปร่างและสภาพเคลือบด้วยแผ่นโลหะได้และกรรมวิธีของการผลิตและเครื่องมือสำหรับการผลิตสิ่งดังกล่าว

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6908062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150