WO2007034614A1 - 裏面接合型太陽電池の製造方法 - Google Patents

裏面接合型太陽電池の製造方法 Download PDF

Info

Publication number
WO2007034614A1
WO2007034614A1 PCT/JP2006/314261 JP2006314261W WO2007034614A1 WO 2007034614 A1 WO2007034614 A1 WO 2007034614A1 JP 2006314261 W JP2006314261 W JP 2006314261W WO 2007034614 A1 WO2007034614 A1 WO 2007034614A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
etching
solar cell
heat treatment
etching paste
Prior art date
Application number
PCT/JP2006/314261
Other languages
English (en)
French (fr)
Inventor
Yasushi Funakoshi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/991,838 priority Critical patent/US20090305456A1/en
Priority to EP06768287A priority patent/EP1936702A1/en
Publication of WO2007034614A1 publication Critical patent/WO2007034614A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a back junction solar cell, and more particularly to a method for manufacturing a back junction solar cell that can reduce manufacturing cost by substituting a photolithographic process with a printing process.
  • a solar cell forms a pn junction by diffusing an impurity having a conductivity type opposite to that of a silicon substrate into a light receiving surface of a single crystal or polycrystalline silicon substrate, for example.
  • the mainstream products are made by forming electrodes on the light-receiving surface of the substrate and the back surface on the opposite side. Also, it is common to increase the output by the back surface field effect by diffusing impurities of the same conductivity type as the silicon substrate at a high concentration on the back surface of the silicon substrate.
  • back junction solar cell in which an electrode is not formed on the light receiving surface of a silicon substrate, but a pn junction is formed on the back surface of the silicon substrate. Since back-junction solar cells generally do not have electrodes on the light-receiving surface, they can obtain higher output than the above-mentioned solar cells that have electrodes on the light-receiving surface and back surface of the silicon substrate where there is no shadow loss due to the electrodes. Can be expected. Back junction solar cells are used in applications such as solar power and concentrating solar cells by making use of these characteristics.
  • FIG. 4 shows a schematic cross-sectional view of an example of a back junction solar cell.
  • a back junction solar cell for example, an antireflection film 107 is formed on the light receiving surface of an n-type silicon substrate 101 etched into a texture structure, and an oxide silicon film 109 is formed on the back surface of the silicon substrate 101.
  • n + layers 105 and p + layers 106 are alternately formed on the back surface of the silicon substrate 101 at predetermined intervals along the back surface. 1 is formed, and an n-electrode 112 is formed on the n + layer 105.
  • this back junction solar cell When sunlight is incident on the light-receiving surface of this back junction solar cell, the generated carriers reach the pn junction formed on the back surface (the interface between the n-type silicon substrate 101 and the p + layer 106) and then separate at the pn junction. Then, it is collected by the p-electrode 111 and the n-electrode 112 and taken out as a current to be output from the back junction solar cell.
  • FIG. 5 shows a flowchart of an example of a manufacturing process of the back junction solar cell.
  • step 1 an n-type silicon substrate having a light receiving surface etched into a texture structure is prepared.
  • step 2 an oxide silicon film as a first diffusion mask is deposited on the light receiving surface and the back surface of the silicon substrate using the APCVD method (atmospheric pressure CVD method).
  • APCVD method atmospheric pressure CVD method
  • step 3 a part of the silicon oxide film is removed on the back surface of the silicon substrate by etching using a photolithographic process.
  • step 4 boron, which is a p-type impurity, is diffused by vapor phase diffusion using BBr to form silicon.
  • step 5 all of the silicon oxide film on the light receiving surface and the back surface of the silicon substrate is removed.
  • step 6 an oxide silicon film is again deposited on the entire light receiving surface and back surface of the silicon substrate.
  • step 7 (S7) a part of the silicon oxide film is removed by etching using a photolithographic process so as to face the p + layer between the p + layers on the back surface of the silicon substrate. .
  • step 8 (S8) n-type impurities are eliminated by vapor phase diffusion using POC1.
  • step 9 Pure phosphorus is diffused to form an n + layer on the back side of the silicon substrate.
  • step 9 all of the silicon oxide film on the light receiving surface and the back surface of the silicon substrate is removed.
  • step 10 an oxide silicon film is deposited again on the entire light receiving surface and back surface of the silicon substrate.
  • step 11 after removing the silicon oxide film on the light receiving surface of the silicon substrate, a silicon nitride film is deposited as an antireflection film by a plasma CVD method.
  • step 12 the silicon oxide film on the back surface of the silicon substrate is partially removed by etching using a photolithographic process, and the removed partial force p + layer and Each n + layer is exposed.
  • step 13 (S13) the p + layer region and the n + layer region exposed on the back surface of the silicon substrate by etching using a photolithographic process are deposited on the p + layer by vapor deposition. An electrode is formed on the n + layer. This completes the back junction solar cell.
  • Patent Document 1 Japanese Translation of Special Publication 2003-531807
  • Patent Document 2 Special Publication 2004-520713
  • An object of the present invention is to provide a method for manufacturing a back junction solar cell that can reduce the manufacturing cost by replacing the photolithographic process with a printing process. Means for solving the problem
  • the present invention is a method of manufacturing a back junction solar cell in which a pn junction is formed on the back surface opposite to the incident light side surface of the first conductivity type or second conductivity type silicon substrate.
  • a second etching paste containing an etching component capable of etching the diffusion mask is printed on a part of the surface of the second diffusion mask, and a second heat treatment is performed on the silicon substrate to perform the second heating treatment. Removing the portion printed with the etching paste to expose a part of the back surface of the silicon substrate; and diffusing the second conductivity type impurities to form a second conductivity type impurity diffusion layer on the exposed back surface of the silicon substrate; Forming and removing the second diffusion mask. And a method of manufacturing a back junction solar cell.
  • At least one etching component of the first etching paste and the second etching paste can be made phosphoric acid.
  • the etching component is contained in an amount of 10% by mass to 40% by mass with respect to the mass of the entire etching paste! / I prefer to do that!
  • the viscosity of the etching paste containing an etching component is not less than lOPa's and not more than 40 Pa's.
  • the heating temperature of at least one of the first calo heat treatment and the second heat treatment is 200 ° C or higher and 400 ° C or lower. It is preferable.
  • the processing time of at least one of the first caloric heat treatment and the second heat treatment is 30 seconds or more and 180 seconds or less. preferable.
  • At least one of the etching components of the first etching paste and the second etching paste is treated with hydrogen fluoride, ammonium fluoride.
  • -UM and hydrogen fluoride AMMUMUKA group power can be at least one selected.
  • the etching component may be contained in an amount of 5% by mass or more and 20% by mass or less with respect to the mass of the entire etching paste. preferable.
  • the viscosity of the etching paste containing an etching component is preferably lOPa ⁇ s or more and 25Pa ⁇ s or less.
  • the heating temperature of at least one of the first calo heat treatment and the second heat treatment is 50 ° C or higher and 200 ° C or lower. Preferably there is.
  • the processing time of at least one of the first caloric heat treatment and the second heat treatment is 10 seconds or more and 120 seconds or less. preferable.
  • the first conductivity type impurity diffusion layer and the first conductivity type impurity diffusion layer are not in contact with each other. It is preferable to leave an interval of 10 m or more and 200 m or less between the second conductivity type impurity diffusion layer.
  • At least one of the first etching paste after the first heat treatment and the second etching paste after the second heat treatment is subjected to ultrasonic cleaning and running water cleaning. Can be removed.
  • At least one of the first diffusion mask and the second diffusion mask is composed of at least one of an oxide silicon film and a silicon nitride film. It's okay.
  • the method for manufacturing a back junction solar cell according to the present invention includes a step of forming a passivation film on the back surface of the silicon substrate after removing the second diffusion mask, and an etching component capable of etching the nose passivation film.
  • the etching component of the third etching base is selected from the group forces of hydrogen fluoride, ammonium fluoride, and hydrogen fluoride ammonia Can be at least one or phosphoric acid.
  • the method for manufacturing a back junction solar cell of the present invention includes a first electrode that contacts the exposed surface of the first conductivity type impurity diffusion layer and a first electrode that contacts the exposed surface of the second conductivity type impurity diffusion layer.
  • the “incident light side surface” means a solar cell among the surfaces of a silicon substrate. In general, it refers to the surface directed to the side on which sunlight is incident. In this specification, “the surface on the incident light side” is sometimes referred to as “light receiving surface”.
  • first conductivity type means either n-type or p-type conductivity
  • second conductivity type is either n-type or p-type. A conductivity type that is different from the first conductivity type.
  • FIG. 1 (a) is a schematic plan view of the back surface of a back junction solar cell obtained by the method of manufacturing a back junction solar cell of the present invention, and (b) is an IB of (a). — A schematic cross-sectional view along IB.
  • FIG. 2 is a schematic cross-sectional view showing an example of a manufacturing process of a method for manufacturing a back junction solar cell of the present invention that can obtain the back junction solar cell shown in FIGS. 1 (a) and 1 (b). It is.
  • FIG. 3 is a schematic diagram showing another example of the manufacturing process of the method for manufacturing a back junction solar cell of the present invention that can obtain the back junction solar cell shown in FIGS. 1 (a) and 1 (b).
  • FIG. 3 is a schematic diagram showing another example of the manufacturing process of the method for manufacturing a back junction solar cell of the present invention that can obtain the back junction solar cell shown in FIGS. 1 (a) and 1 (b).
  • FIG. 3 is a schematic diagram showing another example of the manufacturing process of the method for manufacturing a back junction solar cell of the present invention that can obtain the back junction solar cell shown in FIGS. 1 (a) and 1 (b).
  • FIG. 4 is a schematic cross-sectional view of an example of a conventional back junction solar cell.
  • FIG. 1 (a) shows a schematic plan view of the back surface of the back junction solar cell obtained by the method for manufacturing a back junction solar cell of the present invention.
  • Each of the P + layers 6 as the first conductivity type impurity diffusion layers is arranged in a single thick strip so as to be parallel to each other, and each of the strips of the n + layer 5 and the p + layer 6 is arranged.
  • a plurality of thin strip-like n + layers 5 and p + layers 6 extend toward the inside of the back surface of the silicon substrate 1.
  • the thin band-like n + layers 5 and p + layers 6 extending inward toward the inner surface of the back surface of the silicon substrate 1 are alternately arranged.
  • an n electrode 12 as a second electrode is formed on the n + layer 5
  • a p electrode 11 as a first electrode is formed on the p + layer 6.
  • the n-type silicon substrate 1 and the p + layer 6 form a pn junction.
  • Fig. 1 (b) shows a schematic cross-sectional view along IB-IB in Fig. 1 (a).
  • the light-receiving surface of the silicon substrate 1 is etched to form a texture structure
  • an antireflection film 7 is formed on the light-receiving surface
  • an oxide film that is a passivation film is formed on the back surface of the silicon substrate 1.
  • a silicon film 9 is formed.
  • the n + layer 5 and the p + layer 6 are formed alternately at predetermined intervals along the back surface of the silicon substrate 1, respectively.
  • a pn junction is formed on the back surface of the silicon substrate 1 by the n-type silicon substrate 1 and the p + layer 6.
  • a p-electrode 11 is formed on the p + layer 6, and an n-electrode 12 is formed on the n + layer 5.
  • FIGS. 2 (a) to (n) the back junction solar cell of the present invention capable of obtaining the back junction solar cell shown in Figs. 1 (a) and 1 (b).
  • An example of the manufacturing process of this manufacturing method is shown.
  • FIGS. 2 (a) to (n) for convenience of explanation, only one n + layer and one p + layer are formed on the back surface of the silicon substrate, but a plurality of layers are actually formed. .
  • an n-type silicon substrate 1 is prepared.
  • the silicon substrate 1 for example, polycrystalline silicon or single crystal silicon can be used.
  • the silicon substrate 1 may be p-type.
  • a pn junction is formed on the back surface by the n + layer on the back surface of the silicon substrate 1 and the p-type silicon substrate 1.
  • the size and shape of the silicon substrate 1 are not particularly limited.
  • the silicon substrate 1 can have a rectangular shape with a thickness of 100 m to 300 ⁇ m and a side of 100 mm to 150 mm. In order to improve the printing accuracy of the etching paste, as shown in Fig.
  • Two circular alignment marks 2 are formed on the back surface of the substrate 1 by laser markers.
  • the alignment mark 2 is preferably placed at a place other than the place where the n + layer 5 and the p + layer 6 are formed so as not to deteriorate the performance of the back junction solar cell.
  • the silicon substrate 1 shown in FIG. 2 (a) for example, a substrate obtained by removing slice damage caused by slicing is used.
  • the removal of the slice damage of the silicon substrate 1 is performed by etching the surface of the silicon substrate 1 with a mixed acid of hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as sodium hydroxide sodium.
  • a silicon oxide film 9 as a texture mask is formed on the back surface of the silicon substrate 1, and a texture structure is formed on the light receiving surface of the silicon substrate 1.
  • a texture structure can be formed only on the light receiving surface, and the back surface can be flattened.
  • the silicon oxide film 9 can be formed by, for example, steam oxidation, atmospheric pressure CVD or SOG (spin on glass) printing and baking.
  • the thickness of the silicon oxide film 9 is not particularly limited, but can be, for example, a thickness of 300 nm to 800 nm.
  • a silicon nitride film or a stacked body of a silicon oxide film and a silicon nitride film can be used in addition to the silicon oxide film.
  • the silicon nitride film can be formed by, for example, a plasma CVD method or an atmospheric pressure CVD method.
  • the thickness of the silicon nitride film is not particularly limited. For example, the thickness can be 60 nm or more and lOOnm or less.
  • the silicon oxide film and the Z or silicon nitride film which are texture masks, can be used as the first diffusion mask in the subsequent impurity diffusion step.
  • the silicon oxide film and the Z or silicon nitride film as the texture mask can be temporarily removed after the texture structure is formed.
  • the texture structure of the light receiving surface is such that a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is heated to, for example, 70 ° C to 80 ° C. It can be formed by etching using a material or the like.
  • the silicon oxide silicon film 9 on the back surface of the silicon substrate 1 is once removed using an aqueous hydrogen fluoride solution or the like. Then, as shown in FIG. 2 (c), an oxide silicon film 9 is formed as a first diffusion mask on each of the light receiving surface and the back surface of the silicon substrate 1 again. Then, a first etching paste 3 a containing an etching component capable of etching the silicon oxide film 9 is printed on a part of the silicon oxide film 9 on the back surface of the silicon substrate 1.
  • the first etching paste 3 a is printed by, for example, a screen printing method or the like, and is printed on the portion of the silicon oxide film 9 corresponding to the formation position of the p + layer.
  • the first etching paste 3a includes phosphoric acid as an etching component, and includes water, an organic solvent, and a thickener as components other than the etching component.
  • the organic solvent for example, an alcohol such as ethylene glycol, an ether such as ethylene glycol monobutyl ether, an ester such as propylene carbonate, or a ketone such as N-methyl-2-pyrrolidone can be used.
  • Organic solvents other than those mentioned above can also be used, but it is particularly preferable to select a solvent having a boiling point of about 200 ° C. and in which the viscosity of the first etching paste 3a does not easily change during printing.
  • the thickener for example, at least one of cellulose, ethyl cellulose, cellulose derivatives, polyamide resin such as nylon 6 or a polymer in which a bur group is polymerized such as polybulurpyrrolidone can be used.
  • phosphoric acid as an etching component is preferably contained in an amount of 10 mass% to 40 mass% with respect to the mass of the entire first etching paste 3a.
  • the phosphoric acid content is less than 10% by mass with respect to the total mass of the first etching paste 3a, sufficient etching performance tends to be not obtained, and the phosphoric acid content tends to be lower than the first etching paste 3a. If it is more than 40% by mass with respect to the total mass, the viscosity of the first etching paste 3a is lowered, which may cause a problem in printability.
  • the first etching paste 3a has a viscosity of lOPa's or more and 40 Pa's or less by appropriately selecting and adjusting the above materials in order to achieve both etching property and printability. It is preferable.
  • the silicon oxide film 9 as the first diffusion mask can be formed by, for example, steam oxidation, atmospheric pressure CVD, or SOG (spin on glass) printing and baking.
  • the thickness of the silicon oxide film 9 is not particularly limited. The thickness can be as follows.
  • a silicon nitride film or a stacked body of an oxide silicon film and a silicon nitride film can be used as the first diffusion mask.
  • the silicon nitride film can be formed by, for example, a plasma CVD method or an atmospheric pressure CVD method.
  • the thickness of the silicon nitride film is not particularly limited, but can be, for example, 40 nm or more and 80 nm or less.
  • the silicon substrate 1 after the printing of the first etching paste 3a is subjected to the first heat treatment, so that the silicon oxide film 9 on the back surface of the silicon substrate 1 as shown in FIG.
  • the portion where the first etching paste 3a is printed is removed by etching.
  • the heating temperature in the first heat treatment is preferably 300 ° C. or higher and 400 ° C. or lower. If the first diffusion mask is an oxide silicon film and the heating temperature of the first etching paste 3a is less than 300 ° C, the etching is insufficient and the oxide silicon film 9 tends to remain.
  • the first etching paste 3a may scorch the back surface of the silicon substrate and cannot be completely removed.
  • the heating temperature in the first heat treatment is preferably 200 ° C. or higher and 400 ° C. or lower. If the first diffusion mask is a silicon nitride film and the heating temperature of the first etching paste 3a is less than 200 ° C, the etching tends to be insufficient and the silicon nitride film tends to remain. If it exceeds C, the first etching paste 3a may scorch on the back surface of the silicon substrate and cannot be completely removed.
  • the treatment time in the first heat treatment is preferably 30 seconds or more and 180 seconds or less.
  • the treatment time in the first heat treatment is less than 30 seconds, there may be a portion that cannot be etched sufficiently even when the heating temperature in the first heat treatment is 400 ° C.
  • the heating temperature in the first heat treatment is less than 400 ° C, if the heating is performed for a long time, the first etching paste 3a is denatured and difficult to remove after the heating.
  • the processing time is preferably within a range not exceeding 180 seconds.
  • the etching rate when the first etching paste 3a was printed on an oxide silicon film formed by atmospheric pressure CVD and heated at 300 ° C was about 150 nmZ
  • the etching rate when heated at 300 ° C later was about 240 nmZ.
  • the first etching paste 3a containing phosphoric acid as an etching component reacts at room temperature ⁇ , and phosphoric acid is difficult to vaporize even during heating, so it tends to be difficult to overetch areas other than the printed area.
  • Etching with a high aspect ratio is possible, which is close to the etching performed using the lithographic process. Therefore, it is possible to form a fine pattern in which the interval between the n + layer and p + layer, which will be described later, is 10 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less. Leads to high efficiency of solar cell.
  • the method of the first heat treatment is not particularly limited, and for example, the first heat treatment can be performed by heating using a hot plate, a belt furnace, or an oven.
  • phosphoric acid which is an etching component of the first etching paste 3a
  • heating by a belt furnace or oven is preferable in that a temperature difference hardly occurs between the peripheral portion and the central portion of the silicon substrate 1 and variation in etching can be suppressed.
  • the silicon substrate 1 is immersed in water and subjected to ultrasonic cleaning by applying ultrasonic waves, and then the back surface of the silicon substrate 1 is washed with running water to perform first cleaning. 1 After the heat treatment, the first etching paste 3a is removed. As a result, a part of the back surface of the silicon substrate 1 is exposed.
  • the back surface of the silicon substrate 1 is commonly known using RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a thin aqueous solution of hydrogen fluoride or a surfactant. It can also be washed.
  • the first conductive is formed on the exposed back surface of the silicon substrate 1 by vapor phase diffusion using BBr.
  • Boron which is a p-type impurity as a type impurity, diffuses to form a P + layer 6 as a first conductivity type impurity diffusion layer as shown in FIG. 2 (e).
  • the silicon oxide film 9 on the light receiving surface and the back surface of the silicon substrate 1 and BS G (boron silicate glass) formed by diffusing boron are mixed with an aqueous hydrogen fluoride solution or the like. Remove everything using.
  • the P + layer 6 may be formed by applying a solvent containing boron to the exposed surface of the back surface of the silicon substrate 1 and then heating.
  • an oxide silicon film 9 is formed as a second diffusion mask on the entire light receiving surface and back surface of the silicon substrate 1.
  • the second diffusion mask is silicon oxide.
  • a silicon nitride film or a laminate of an oxide silicon film and a silicon nitride film can be used in addition to the con film.
  • the second etching paste 3b is printed on a part of the oxide silicon film 9 on the back surface of the silicon substrate 1.
  • the second etching paste 3b is printed by, for example, a screen printing method or the like, and is printed on the portion of the silicon oxide film 9 corresponding to the formation location of the n + layer.
  • the second etching paste 3b can be of the same composition as the first etching paste 3a using phosphoric acid as an etching component.
  • the silicon substrate 1 after the printing of the second etching paste 3b is subjected to the second heat treatment, so that the silicon oxide film 9 on the back surface of the silicon substrate 1 as shown in FIG. Etch and remove the portion where the second etching paste 3b is printed.
  • the heating temperature in the second heat treatment is preferably 300 ° C. or higher and 400 ° C. or lower. If the second diffusion mask is an oxide silicon film and the heating temperature of the second etching paste 3b is less than 300 ° C, the etching is insufficient and the oxide silicon film 9 tends to remain.
  • the second etching paste 3b may burn on the back surface of the silicon substrate and cannot be completely removed.
  • the heating temperature in the second heat treatment is preferably 200 ° C or higher and 400 ° C or lower. If the second diffusion mask is a silicon nitride film and the heating temperature of the second etching paste 3b is less than 200 ° C, the etching is insufficient and the silicon nitride film tends to remain. If it exceeds ° C, the second etching paste 3b may burn onto the back surface of the silicon substrate and cannot be completely removed.
  • the treatment time in the second heat treatment is preferably 30 seconds or more and 180 seconds or less.
  • the etching rate varies due to the variation in temperature distribution on the back surface of the silicon substrate when the heating temperature in the second heat treatment is 400 ° C. May occur.
  • the second etching paste 3b is denatured and difficult to remove after heating.
  • the processing time does not exceed 180 seconds! /, It is preferable to do in the range! /.
  • the back surface of the silicon substrate 1 is flushed with running water and washed with running water.
  • the second etching paste 3b after the second heat treatment is removed.
  • a part of the back surface of the silicon substrate 1 is exposed.
  • the back surface of the silicon substrate 1 is generally known. RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a cleaning solution containing a thin aqueous solution of hydrogen fluoride or a surfactant. Wash with a brush.
  • the second lead is formed on the exposed back surface of the silicon substrate 1 by vapor phase diffusion using POC1.
  • the n + layer 5 as the second conductivity type impurity diffusion layer is formed by diffusing phosphorus which is the n type impurity as the electric impurity.
  • the silicon oxide film 9 on the light receiving surface and the back surface of the silicon substrate 1 and PSG (phosphorus silicate glass) formed by diffusion of phosphorus are used with an aqueous solution of hydrogen fluoride or the like. Remove all.
  • the n + layer 5 may be formed by applying a solvent containing phosphorus on the exposed surface of the back surface of the silicon substrate 1 and then heating.
  • the distance between the n + layer 5 and the p + layer 6 is 10 ⁇ m or more and 200 ⁇ m or less, preferably It is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • dry oxidation thermal oxidation
  • an oxide silicon film 9 as a passivation film on the back surface of the silicon substrate 1 as shown in FIG.
  • an antireflection film 7 made of a silicon nitride film is formed on the light receiving surface, and a part of the silicon oxide film 9 is removed to form a contact hole. , N + layer 5 and part of P + layer 6 are exposed.
  • the removal of the silicon oxide film 9 is performed by removing the silicon oxide film 9 on a part of the surface of the silicon oxide film 9 on the back surface of the silicon substrate 1 by using a screen printing method or the like.
  • a third heat treatment is performed on the silicon substrate 1 to remove the portion of the oxide silicon film 9 on which the third etching paste is printed.
  • the third etching paste the same one as the first etching paste and / or the second etching paste can be used, and the third heating treatment can be heated.
  • the temperature and Z or the treatment time can also be the same heating temperature and Z or the same treatment time as the first heat treatment and Z or the second heat treatment, respectively.
  • the silicon substrate 1 is immersed in water, subjected to ultrasonic cleaning by applying ultrasonic waves, and then washed with running water by flowing the back surface of the silicon substrate 1 with running water. 3 Remove the third etching paste after heat treatment. As a result, a part of the n + layer 5 and the p + layer 6 is exposed.
  • the back surface of the silicon substrate 1 is generally known as RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, and a cleaning solution containing a thin aqueous solution of hydrogen fluoride or a surfactant. It can also be washed.
  • a silver paste is printed on each of the exposed surface of the n + layer 5 and the exposed surface of the p + layer 6, and then baked, as shown in FIG. 2 (n).
  • An electrode 12 is formed, and a p-electrode 11 is formed on the p + layer 6. Thereby, a back junction solar cell is completed.
  • the manufacturing cost of the back junction solar cell can be significantly reduced by substituting the photolithography process with a printing process.
  • FIGS. 3 (a) to 3 (n) the back junction solar cell manufacturing method of the present invention capable of obtaining the back junction solar cell shown in FIGS. 1 (a) and 1 (b). Another example of the manufacturing process is shown.
  • the present embodiment is characterized in that the etching components of the etching paste are different from those of the first embodiment.
  • FIGS. 3 (a) to (n) only one n + layer and one p + layer are formed on the back surface of the silicon substrate for convenience of explanation, but a plurality of layers are actually formed.
  • an n-type silicon substrate 1 which is a second conductivity type is prepared.
  • two circular alignment marks 2 are formed on the back surface of the silicon substrate 1 by a laser marker as shown in FIG. 1 (a).
  • the alignment mark 2 is preferably placed at a place other than the place where the n + layer 5 and the p + layer 6 are formed so as not to deteriorate the performance of the back junction solar cell.
  • the silicon substrate 1 shown in FIG. 3A for example, a substrate from which slice damage caused by slicing is removed is used.
  • the removal of the slice damage of the silicon substrate 1 is performed by etching the surface of the silicon substrate 1 with a mixed solution of hydrogen fluoride aqueous solution and nitric acid or an alkaline aqueous solution such as sodium hydroxide.
  • a silicon oxide film 9 as a texture mask is formed on the back surface of the silicon substrate 1, and a texture structure is formed on the light receiving surface of the silicon substrate 1.
  • the silicon oxide film 9 can be formed by, for example, steam oxidation, atmospheric pressure CVD or SOG (spin on glass) printing and baking.
  • the thickness of the silicon oxide film 9 is not particularly limited, but can be, for example, a thickness of 300 nm to 800 nm.
  • the texture mask besides a silicon oxide film, a silicon nitride film or a stacked body of a silicon oxide film and a silicon nitride film can be used.
  • the silicon nitride film can be formed by, for example, a plasma CVD method or an atmospheric pressure CVD method.
  • the thickness of the silicon nitride film is not particularly limited. For example, the thickness can be 60 nm or more and lOOnm or less.
  • the silicon oxide film and the Z or silicon nitride film, which are texture masks can also be used as the first diffusion mask in the subsequent impurity diffusion step. Further, the silicon oxide film and the Z or silicon nitride film, which are the texture masks, can be removed once after the texture structure is formed.
  • the texture structure of the light-receiving surface is such that a solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is heated to, for example, 70 ° C to 80 ° C. It can be formed by etching using a material or the like.
  • the light receiving surface of the silicon substrate 1 again.
  • An oxide silicon film 9 is formed as a first diffusion mask on each of the back surface and the back surface.
  • the first etching paste 4 a is printed on a part of the silicon oxide film 9 on the back surface of the silicon substrate 1.
  • the etching paste 4a is printed by, for example, a screen printing method or the like, and is printed on the portion of the silicon oxide film 9 corresponding to the formation location of the n + layer.
  • the first etching paste 4a includes at least one selected from the group force selected from hydrogen fluoride, ammonium fluoride, and hydrogen fluoride ammonia power as an etching component, and includes components other than the etching component.
  • the organic solvent for example, at least one kind of alcohol such as ethylene glycol, ether such as ethylene glycol monobutyl ether, ester such as propylene carbonate, or ketone such as N-methyl-2-pyrrolidone can be used.
  • organic solvents other than those described above can be used, but it is particularly preferable to select a solvent having a boiling point of about 200 ° C.
  • the thickener for example, at least one of cellulose, ethyl cellulose, cellulose derivatives, polyamide resin such as nylon 6 or a polymer obtained by polymerizing a bur group such as polybulurpyrrolidone can be used.
  • At least one selected as a group force including hydrogen fluoride, ammonium fluoride, and hydrogen fluoride ammonia muc that are etching components is 5% of the total mass of the etching paste 4a. It is preferably contained in an amount of 20% by mass or more and 20% by mass or less. Hydrogen fluoride, ammonium fluoride and hydrogen fluoride ammonia rubber are also selected. At least one kind is sufficient when the content is less than 5% by mass with respect to the total mass of the etching paste. Etching performance tends to be difficult to obtain, and the group strength of hydrogen fluoride, ammonium fluoride, and hydrogen fluoride ammonia power is selected.
  • the first etching paste 4a has a low viscosity, which may cause a problem in printability.
  • the total mass force of the total mass of the etching paste 4a It is preferable that it is 5% by mass or more and 20% by mass or less.
  • the first etching paste 4a has a viscosity of lOPa's or more and 25Pa's or less by appropriately selecting and adjusting the above materials in order to achieve both etching property and printability. It is preferable.
  • the first etching paste 4a progresses even at room temperature, and the etching components are vaporized. Therefore, the etching progresses only by leaving it at room temperature, but not only that, but the first etching paste 4a is printed by the vaporized etching component, and the part is also etched.
  • the diffusion mask may be completely etched.
  • heating the first etching paste 4a serves not only to increase the etching rate but also to quickly vaporize the etching components and complete the reaction to suppress over-etching due to the vaporized etching components.
  • the thickness of the first diffusion mask, the heating temperature of the first heat treatment, and the heat treatment time of the first heat treatment described later are used. It is necessary to fully consider.
  • the silicon oxide film 9 as the first diffusion mask can be formed by, for example, steam oxidation, atmospheric pressure CVD or SOG (spin on glass) printing and baking.
  • the thickness of the silicon oxide film 9 is not particularly limited, but can be, for example, a thickness of lOOnm to 300nm.
  • a silicon nitride film or a stacked body of an oxide silicon film and a silicon nitride film can be used as the first diffusion mask.
  • the silicon nitride film can be formed by, for example, a plasma CVD method or an atmospheric pressure CVD method.
  • the thickness of the silicon nitride film is not particularly limited, but can be, for example, 40 nm or more and 80 nm or less.
  • the silicon substrate 1 after the printing of the first etching paste 4a is subjected to the first heat treatment, so that the silicon oxide film 9 on the back surface of the silicon substrate 1 as shown in FIG.
  • the portion where the first etching paste 4a is printed is removed by etching.
  • the heating temperature in the first heat treatment is preferably 50 ° C. or higher and 200 ° C. or lower. If the first diffusion mask is an oxide silicon film and the heating temperature of the first etching paste 4a is less than 50 ° C, it takes time to complete the etching and the overetching tends to progress. If the temperature exceeds 200 ° C, the etching component of the first etching paste 4a is rapidly vaporized and the first etching paste 4a expands or bubbles are generated, resulting in a collapsed print pattern. There is a risk that.
  • the treatment time in the first heat treatment is not less than 10 seconds and not more than 120 seconds. And are preferred.
  • the heating temperature in the first heat treatment is set to 200 ° C.
  • the etching component of the first etching paste 4a is completely vaporized before the completion of the first heat treatment, and the progress of overetching after the first heat treatment is progressed. In order to prevent this, it is preferable to set the above processing time to 10 seconds or more.
  • the heating temperature in the first heat treatment is set to 50 ° C.
  • the etching components of the first etching paste 4a can be completely vaporized by completion of the first heat treatment by heating for 120 seconds. It tends to be possible.
  • the etching rate when the first etching paste 4a was printed on an oxide silicon film formed by atmospheric pressure CVD and heated at 150 ° C was about 300 nmZ.
  • the etching rate when the etching paste 4a was printed on the silicon nitride film and heated at 150 ° C was about 150 nmZ.
  • the first heat treatment method in this case is preferably performed by heating using a hot plate. Since the heating temperature in the first heat treatment does not need to be so high, the temperature distribution in the silicon substrate 1 does not become so large even when heated by a hot plate, and the etching components vaporize unlike the first etching paste 3a described above. Therefore, if a belt furnace or oven is used, the device may be corroded. In the above experiment, the first heat treatment was performed by heating using a hot plate.
  • the silicon substrate 1 is immersed in water, subjected to ultrasonic cleaning by applying ultrasonic waves, and then the back surface of the silicon substrate 1 is washed with running water to perform first cleaning. 1
  • the first etching paste 4a after the heat treatment is removed.
  • the back surface of the silicon substrate 1 is generally known, including RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, thin !, including an aqueous hydrogen fluoride solution or a surfactant. It can also be cleaned using a cleaning solution.
  • the first conductive layer is formed on the exposed back surface of the silicon substrate 1 by vapor phase diffusion using BBr.
  • Boron which is a p-type impurity as a type impurity, diffuses to form a P + layer 6 as a first conductivity type impurity diffusion layer as shown in FIG. 3 (e). Thereafter, as shown in FIG. 3 (f), the light-receiving surface and the back surface of the silicon substrate 1 of the silicon substrate 1 and the BS formed by diffusing boron are diffused. Remove all G (boron silicate glass) using an aqueous hydrogen fluoride solution.
  • the P + layer 6 may be formed by applying a solvent containing boron to the exposed surface of the back surface of the silicon substrate 1 and then heating.
  • an oxide silicon film 9 is formed as a second diffusion mask on the entire light receiving surface and back surface of the silicon substrate 1.
  • the second diffusion mask in addition to the silicon oxide film, a silicon nitride film or a laminate of an oxide silicon film and a silicon nitride film can be used.
  • the second etching paste 4b is printed on a part of the oxide silicon film 9 on the back surface of the silicon substrate 1.
  • the second etching paste 4b is printed by, for example, a screen printing method or the like, and is printed on the portion of the silicon oxide film 9 corresponding to the location where the n + layer is formed.
  • the second etching paste 4b has the same composition as the first etching paste 4a described above, in which at least one selected from the group power of hydrogen fluoride, ammonium fluoride, and hydrogen fluoride ammonia-mocha is used as an etching component. Can be used.
  • the silicon substrate 1 after the printing of the second etching paste 4b is subjected to the second heat treatment, so that the silicon oxide film 9 on the back surface of the silicon substrate 1 as shown in FIG. Etch and remove the portion printed with the second etching paste 4b.
  • the heating temperature in the second heat treatment is preferably 50 ° C or higher and 200 ° C or lower. If the second diffusion mask is an oxide silicon film and the heating temperature of the second etching paste 4b is less than 50 ° C, it takes time to complete the etching and the overetching tends to proceed. If the temperature exceeds 200 ° C, the etching component of the second etching paste 4b is rapidly vaporized and the second etching paste 4b expands or bubbles are generated, resulting in a collapsed print pattern. There is a risk that.
  • the treatment time in the second heat treatment is preferably 10 seconds or more and 120 seconds or less.
  • the heating temperature in the second heat treatment is set to 200 ° C.
  • the etching component of the first etching paste 4a is completely vaporized before the completion of the second heat treatment, so that the over-etching after the second heat treatment proceeds.
  • it is preferable to set the above processing time to 10 seconds or more.
  • the heating temperature in the second heat treatment is 50 ° C. In this case, by heating for 120 seconds, the etching components of the second etching paste 4b tend to be completely vaporized by the completion of the second heat treatment.
  • the silicon substrate 1 is immersed in water and ultrasonic waves are applied! After performing ultrasonic cleaning, the back surface of the silicon substrate 1 is flushed with running water and washed with running water. As a result, the second etching paste 4b after the second heat treatment is removed. As a result, a part of the back surface of the silicon substrate 1 is exposed.
  • the back surface of the silicon substrate 1 is generally known. RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a cleaning solution containing a thin aqueous solution of hydrogen fluoride or a surfactant. Wash with a brush.
  • the second lead is formed on the exposed back surface of the silicon substrate 1 by vapor phase diffusion using POC1.
  • n + layer 5 which is an n-type impurity as a conductive impurity, diffuses to form an n + layer 5 as a second conductivity type impurity diffusion layer as shown in FIG. 3 (j).
  • the n + layer 5 may be formed by applying a solvent containing phosphorus on the exposed surface of the back surface of the silicon substrate 1 and then heating.
  • the distance between n + layer 5 and the p + layer 6 is 10 ⁇ m or more and 200 ⁇ m or less, preferably It is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the third etching paste the same thread and composition as the first etching paste and / or the second etching paste can be used, and the third heating treatment is heated.
  • the temperature and Z or the treatment time can also be the same heating temperature and Z or the same treatment time as the first heat treatment and Z or the second heat treatment, respectively.
  • the silicon substrate 1 is immersed in water and subjected to ultrasonic cleaning by applying ultrasonic waves, and then the back surface of the silicon substrate 1 is flowed with running water to perform running water cleaning. 3 Remove the third etching paste after heat treatment. As a result, a part of the n + layer 5 and the p + layer 6 is exposed.
  • the back surface of the silicon substrate 1 is generally known as RCA cleaning, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, and a cleaning solution containing a thin aqueous solution of hydrogen fluoride or a surfactant. It can also be washed.
  • a silver paste is printed on each of the exposed surface of the n + layer 5 and the exposed surface of the p + layer 6, and then baked, as shown in FIG. 3 (n).
  • An electrode 12 is formed, and a p-electrode 11 is formed on the p + layer 6. Thereby, a back junction solar cell is completed.
  • the manufacturing cost of the back junction solar cell can be significantly reduced by substituting the photolithography process with the printing process.
  • N- methyl-2-pyrrolidone, nylon 6 and aqueous phosphoric acid concentration of phosphoric acid 8 5 mass 0/0
  • An etching paste containing phosphoric acid as an etching component was prepared by mixing at a mass ratio of 2 and sufficiently stirring. The viscosity of this etching paste was 25 Pa's.
  • an n-type silicon single crystal was sliced into a square plate of width 100 mm x length 100 mm x thickness 200 / zm and sliced by etching using a mixed acid of aqueous hydrogen fluoride and nitric acid. By removing the scratches, an n-type silicon substrate of the second conductivity type was prepared.
  • a 600 nm thick silicon oxide film was formed on the back surface of the silicon substrate as a texture mask by atmospheric pressure CVD, and a solution obtained by adding a small amount of isopropyl alcohol to a sodium hydroxide aqueous solution was 80 ° C.
  • a texture structure was formed on the light-receiving surface of each silicon substrate by etching the light-receiving surface of the silicon substrate using an etching solution heated at a high temperature.
  • an acid having a thickness of 150 ⁇ m is formed as a first diffusion mask on the light receiving surface and the back surface of the silicon substrate.
  • a silicon film was formed.
  • the etching paste prepared above was printed as a first etching paste on a part of the silicon oxide film on the back surface of the silicon substrate by a screen printing method.
  • the silicon substrate on which the first etching paste is printed is heated in a belt furnace at 300 ° C for 60 seconds to perform the first heat treatment, and the silicon substrate is oxidized on the back surface. ⁇ ⁇
  • the silicon film where the first etching paste was printed was etched.
  • each silicon substrate is immersed in water, and ultrasonic cleaning is performed for 5 minutes, and then the back surface of the silicon substrate is washed with running water for 5 minutes.
  • the first etching paste after the first heat treatment was removed, and a part of the back surface of each silicon substrate was exposed to the etching partial force.
  • an oxide silicon film having a thickness of 150 nm was formed as a second diffusion mask on the entire light receiving surface and back surface of each silicon substrate.
  • a second etch having the same composition as the first etching paste is formed on a part of the silicon oxide film on the back surface of each silicon substrate.
  • the paste was printed by the screen printing method.
  • the second heat treatment is performed by heating the silicon substrate on which the second etching paste has been printed in the belt furnace at the same heating temperature and treatment time as the first heat treatment, so that the acid on the back surface of the silicon substrate is obtained.
  • the printed part of the first etching paste on the silicon film was etched.
  • ultrasonic cleaning, running water cleaning and RCA cleaning were performed under the same conditions as described above to expose a part of the back surface of the silicon substrate from the etched portion.
  • Phosphorus which is a second conductivity type impurity
  • n + layer which was a second conductivity type impurity diffusion layer
  • a silicon oxide film as a passivation film was formed on the back surface of the silicon substrate by dry oxidation, and a silicon nitride film was formed as a reflection preventing film on the light receiving surface of the silicon substrate by a plasma CVD method.
  • a third etching paste having the same thread and composition as the first etching paste and the second etching paste was printed on a part of the silicon oxide film on the back surface of the silicon substrate by a screen printing method.
  • the third heat treatment is performed by heating the silicon substrate on which the third etching paste is printed in the belt furnace at the same heating temperature and treatment time as the first heat treatment and the second heat treatment.
  • the printed part of the third etching paste of the silicon oxide film on the back surface of the silicon substrate was etched.
  • a silver paste is printed on each of the exposed surface of the n + layer and the exposed surface of the p + layer, and then fired to form an n electrode as a second electrode on the n + layer.
  • a back electrode solar cell of Example 1 was fabricated by forming a p-electrode as the first electrode.
  • the characteristics of the back junction solar cell of Example 1 were evaluated using a solar simulator. . The results are shown in Table 1. For comparison, the etching using the photolithographic process is used without using the first etching paste, the second etching paste, and the third etching paste, and the p electrode and the n electrode are used using the photolithographic process.
  • a back-junction solar cell of Comparative Example 1 was fabricated in the same manner as in Example 1 except that was formed by evaporation, and the characteristics of the back-junction solar cell of Comparative Example 1 were evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • the Jsc (short-circuit current density) of the back junction solar cell of Example 1 is 38.8 mAZcm 2
  • Voc (open voltage) is 0.649 V
  • F The (fill factor) was 0.770
  • the Eff (conversion efficiency) was 19.40%.
  • the characteristics of the back junction solar cell of Example 1 were comparable to those of the back junction solar cell of Comparative Example 1.
  • n-type silicon single crystal into a square plate of width 100mm x length 100mm x thickness 200 / zm and slice damage by etching using mixed acid of hydrogen fluoride aqueous solution and nitric acid
  • the n type silicon substrate which is the 2nd conductivity type was prepared by removing.
  • a 600 nm thick silicon oxide film was formed on the back surface of the silicon substrate as a texture mask by atmospheric pressure CVD, and a solution obtained by adding a small amount of isopropyl alcohol to a sodium hydroxide aqueous solution was 80 ° C.
  • a texture structure was formed on the light-receiving surface of each silicon substrate by etching the light-receiving surface of the silicon substrate using an etching solution heated at a low temperature.
  • the silicon substrate on which the first etching paste is printed is heated on a hot plate at 150 ° C for 30 seconds to perform the first heat treatment, so that the silicon oxide on the back surface of the silicon substrate is obtained.
  • the portion of the film where the first etching paste was printed was etched.
  • each silicon substrate is immersed in water, and ultrasonic cleaning is performed for 5 minutes, and then the back surface of the silicon substrate is washed with running water for 5 minutes.
  • the first etching paste after the first heat treatment was removed, and a part of the back surface of each silicon substrate was exposed to the etching partial force.
  • an oxide silicon film having a thickness of 150 nm was formed as a second diffusion mask on the entire light receiving surface and back surface of each silicon substrate.
  • a second etching paste having the same composition as the first etching paste was printed on a part of the silicon oxide film on the back surface of each silicon substrate by a screen printing method.
  • the second heat treatment is performed by heating the silicon substrate on which the second etching paste is printed at the same heating temperature and treatment time as the first heat treatment on the hot plate, and the acid on the back surface of the silicon substrate is obtained.
  • the printed portion of the second etching paste on the silicon film was etched. Then, after the second heat treatment, ultrasonic cleaning and running water cleaning were performed under the same conditions as above to expose a part of the back surface of the silicon substrate with partial etching force.
  • a silicon oxide film as a passivation film was formed on the back surface of the silicon substrate by dry oxidation, and a silicon nitride film was formed on the light receiving surface of the silicon substrate by a plasma CVD method as an antireflection film. .
  • the third etching paste having the same thread and composition as the first etching paste and the second etching paste was printed on a part of the silicon oxide film on the back surface of the silicon substrate by the screen printing method.
  • the third heat treatment is performed by heating the silicon substrate on which the third etching paste is printed on the hot plate at the same heating temperature and treatment time as the first heat treatment and the second heat treatment.
  • the printed portion of the third etching paste of the silicon oxide film on the back surface of the substrate was etched.
  • ultrasonic cleaning and running water cleaning are performed under the same conditions as above to form a circular contact hole with a diameter of about 100 m in the silicon oxide film on the back surface of the silicon substrate.
  • the n + layer and the p + layer were respectively exposed.
  • a silver paste is printed on each of the exposed surface of the n + layer and the exposed surface of the p + layer, and then fired to form an n electrode as the first electrode on the n + layer, and on the p + layer.
  • a back-electrode solar cell of Example 2 was fabricated by forming a p-electrode as the second electrode.
  • the back-junction solar cell of Example 2 has a Jsc (short-circuit current density) of 37.9 mAZcm 2 and a Voc (open-circuit voltage) of 0.623 V, F.
  • F The (fill factor) was 0.75 7 and the Eff (conversion efficiency) was 17.85%.
  • Example 2 a hook is used as an etching component of the etching paste.
  • Power using hydrogen fluoride ammonium In addition to hydrogen fluoride ammonium, ammonium fluoride, hydrogen fluoride, a mixture of hydrogen fluoride and ammonium fluoride, hydrogen fluoride and hydrogen fluoride A mixture of ammonia, a mixture of ammonium fluoride and ammonium fluoride, or a mixture of hydrogen fluoride, ammonium fluoride and ammonium fluoride It was also confirmed that the same characteristics as in Example 2 above can be obtained even if any change is made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 シリコン基板(1)の裏面に第1拡散マスク(9)を形成する工程と、第1エッチングペースト(3a,4a)を第1拡散マスク(9)の表面の一部に印刷する工程と、シリコン基板(1)を第1加熱処理することにより第1拡散マスク(9)のうち第1エッチングペースト(3a,4a)が印刷された部分を除去してシリコン基板(1)の裏面の一部を露出させる工程と、第1導電型不純物を拡散することによりシリコン基板(1)の露出した裏面に第1導電型不純物拡散層(6)を形成する工程と、第1拡散マスク(9)を除去する工程と、シリコン基板(1)の裏面に第2拡散マスク(9)を形成する工程と、第2エッチングペースト(3b,4b)を第2拡散マスク(9)の表面の一部に印刷する工程と、シリコン基板(1)を第2加熱処理することにより第2拡散マスク(9)のうち第2エッチングペースト(3b,4b)が印刷された部分を除去してシリコン基板(1)の裏面の一部を露出させる工程と、第2導電型不純物を拡散することによりシリコン基板(1)の露出した裏面に第2導電型不純物拡散層(5)を形成する工程と、第2拡散マスク(9)を除去する工程と、を含む、裏面接合型太陽電池の製造方法である。

Description

明 細 書
裏面接合型太陽電池の製造方法
技術分野
[0001] 本発明は裏面接合型太陽電池の製造方法に関し、特にフォトリソグラフイエ程を印 刷工程で代替することによって製造コストを低減することができる裏面接合型太陽電 池の製造方法に関する。
背景技術
[0002] 近年、エネルギ資源の枯渴の問題や大気中の COの増加のような地球環境問題な
2
ど力 クリーンなエネルギの開発が望まれており、特に太陽電池を用いた太陽光発 電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。
[0003] 太陽電池は、従来から、たとえば単結晶または多結晶のシリコン基板の受光面にシ リコン基板の導電型と反対の導電型となる不純物を拡散することによって pn接合を形 成し、シリコン基板の受光面とその反対側にある裏面にそれぞれ電極を形成して製 造されたものが主流となっている。また、シリコン基板の裏面にはシリコン基板と同じ 導電型の不純物を高濃度で拡散することによって、裏面電界効果による高出力化を 図ることも一般的となって 、る。
[0004] また、シリコン基板の受光面には電極を形成せず、シリコン基板の裏面に pn接合を 形成するいわゆる裏面接合型太陽電池が開発されている。裏面接合型太陽電池は 一般的に受光面に電極を有しないことから、電極によるシャドーロスがなぐシリコン 基板の受光面および裏面にそれぞれ電極を有する上記の太陽電池と比べて高い出 力を得ることが期待できる。裏面接合型太陽電池は、このような特性を活力してソーラ 一力一や集光用太陽電池などの用途に使用されている。
[0005] 図 4に、裏面接合型太陽電池の一例の模式的な断面図を示す。裏面接合型太陽 電池は、たとえばテクスチャ構造にエッチングされた n型のシリコン基板 101の受光面 に反射防止膜 107が形成されており、シリコン基板 101の裏面上には酸ィ匕シリコン膜 109が形成されている。また、シリコン基板 101の裏面には n+層 105と p+層 106とが 裏面に沿って交互に所定の間隔をあけて形成されており、 P+層 106上には p電極 11 1が形成され、 n+層 105上には n電極 112が形成されている。この裏面接合型太陽 電池の受光面に太陽光が入射すると、発生したキャリアが裏面に形成された pn接合 (n型のシリコン基板 101と p+層 106との界面)まで到達した後に pn接合で分離され て p電極 111および n電極 112によって収集され、外部に電流として取り出されて裏 面接合型太陽電池の出力となる。
[0006] 図 5に、この裏面接合型太陽電池の製造工程の一例のフローチャートを示す。まず 、ステップ 1 (S1)において、受光面がテクスチャ構造にエッチングされた n型のシリコ ン基板を用意する。そして、ステップ 2 (S2)において、 APCVD法(常圧 CVD法)を 用いて、このシリコン基板の受光面および裏面に第 1拡散マスクである酸ィ匕シリコン 膜を堆積させる。
[0007] そして、ステップ 3 (S3)において、このシリコン基板の裏面にフォトリソグラフイエ程 を利用したエッチングによって酸ィ匕シリコン膜を一部除去する。その後、ステップ 4 (S 4)において、 BBrを用いた気相拡散により p型不純物であるボロンを拡散してシリコ
3
ン基板の裏面に P+層を形成する。続いて、ステップ 5 (S5)において、シリコン基板の 受光面および裏面の酸ィ匕シリコン膜をすベて除去する。そして、ステップ 6 (S6)にお いて、再度、シリコン基板の受光面および裏面の全面に酸ィ匕シリコン膜を堆積させる
[0008] 次いで、ステップ 7 (S7)において、シリコン基板の裏面の p+層の間に p+層と向き合 うようにしてフォトリソグラフイエ程を利用したエッチングによって酸ィ匕シリコン膜を一部 除去する。その後、ステップ 8 (S8)において、 POC1を用いた気相拡散により n型不
3
純物であるリンを拡散してシリコン基板の裏面に n+層を形成する。そして、ステップ 9 ( S9)において、シリコン基板の受光面および裏面の酸ィ匕シリコン膜をすベて除去する 。そして、ステップ 10 (S 10)において、再度、シリコン基板の受光面および裏面の全 面に酸ィ匕シリコン膜を堆積させる。
[0009] その後、ステップ 11 (S11)において、シリコン基板の受光面の酸ィ匕シリコン膜を除 去した後、プラズマ CVD法により反射防止膜として窒化シリコン膜を堆積させる。そし て、ステップ 12 (S 12)において、フォトリソグラフイエ程を利用したエッチングによって シリコン基板の裏面の酸ィ匕シリコン膜を一部除去して、その除去部分力 p+層および n+層をそれぞれ露出させる。
[0010] 最後に、ステップ 13 (S13)において、フォトリソグラフイエ程を利用したエッチングに よりシリコン基板の裏面に露出した p+層の領域および n+層の領域に蒸着法により、 p +層上に p電極を、 n+層上に n電極を形成する。これにより、裏面接合型太陽電池が 完成する。
特許文献 1:特表 2003 - 531807号公報
特許文献 2:特表 2004 - 520713号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、従来の裏面接合型太陽電池の製造にお!、ては、上記のようにフォトリ ソグラフイエ程を多く利用しているため製造コストが高くなるという問題があった。
[0012] 本発明の目的は、フォトリソグラフイエ程を印刷工程で代替することによって製造コ ストを低減することができる裏面接合型太陽電池の製造方法を提供することにある。 課題を解決するための手段
[0013] 本発明は、第 1導電型または第 2導電型のシリコン基板の入射光側の表面とは反対 側の裏面に pn接合が形成された裏面接合型太陽電池を製造する方法であって、シ リコン基板の裏面に第 1拡散マスクを形成する工程と、第 1拡散マスクをエッチング可 能なエッチング成分を含有する第 1エッチングペーストを第 1拡散マスクの表面の一 部に印刷する工程と、シリコン基板を第 1加熱処理することにより第 1拡散マスクのうち 第 1エッチングペーストが印刷された部分を除去してシリコン基板の裏面の一部を露 出させる工程と、第 1導電型不純物を拡散することによりシリコン基板の露出した裏面 に第 1導電型不純物拡散層を形成する工程と、第 1拡散マスクを除去する工程と、シ リコン基板の裏面に第 2拡散マスクを形成する工程と、第 2拡散マスクをエッチング可 能なエッチング成分を含有する第 2エッチングペーストを第 2拡散マスクの表面の一 部に印刷する工程と、シリコン基板を第 2加熱処理することにより第 2拡散マスクのうち 第 2エッチングペーストが印刷された部分を除去してシリコン基板の裏面の一部を露 出させる工程と、第 2導電型不純物を拡散することによりシリコン基板の露出した裏面 に第 2導電型不純物拡散層を形成する工程と、第 2拡散マスクを除去する工程と、を 含む、裏面接合型太陽電池の製造方法である。
[0014] ここで、本発明の裏面接合型太陽電池の製造方法の第 1の局面によれば、第 1エツ チングペーストおよび第 2エッチングペーストの少なくとも一方のエッチング成分をリン 酸とすることができる。
[0015] また、本発明の裏面接合型太陽電池の製造方法の第 1の局面においては、エッチ ング成分がエッチングペースト全体の質量に対して 10質量%以上 40質量%以下含 有されて!/、ることが好まし!/、。
[0016] また、本発明の裏面接合型太陽電池の製造方法の第 1の局面においては、エッチ ング成分を含むエッチングペーストの粘度を lOPa' s以上 40Pa' s以下とすることが好 ましい。
[0017] また、本発明の裏面接合型太陽電池の製造方法の第 1の局面においては、第 1カロ 熱処理および第 2加熱処理の少なくとも一方の加熱温度が 200°C以上 400°C以下で あることが好ましい。
[0018] また、本発明の裏面接合型太陽電池の製造方法の第 1の局面においては、第 1カロ 熱処理および第 2加熱処理の少なくとも一方の処理時間が 30秒以上 180秒以下で あることが好ましい。
[0019] また、本発明の裏面接合型太陽電池の製造方法の第 2の局面によれば、第 1エツ チングペーストおよび第 2エッチングペーストの少なくとも一方のエッチング成分を、 フッ化水素、フッ化アンモ-ゥムおよびフッ化水素アンモ-ゥムカ なる群力 選択さ れた少なくとも 1種とすることができる。
[0020] また、本発明の裏面接合型太陽電池の製造方法の第 2の局面においては、エッチ ング成分がエッチングペースト全体の質量に対して 5質量%以上 20質量%以下含有 されていることが好ましい。
[0021] また、本発明の裏面接合型太陽電池の製造方法の第 2の局面においては、エッチ ング成分を含むエッチングペーストの粘度が lOPa · s以上 25Pa · s以下であることが 好ましい。
[0022] また、本発明の裏面接合型太陽電池の製造方法の第 2の局面においては、第 1カロ 熱処理および第 2加熱処理の少なくとも一方の加熱温度が 50°C以上 200°C以下で あることが好ましい。
[0023] また、本発明の裏面接合型太陽電池の製造方法の第 2の局面においては、第 1カロ 熱処理および第 2加熱処理の少なくとも一方の処理時間が 10秒以上 120秒以下で あることが好ましい。
[0024] また、本発明の裏面接合型太陽電池の製造方法においては、第 1導電型不純物 拡散層と第 2導電型不純物拡散層とは互いに接することがなぐ第 1導電型不純物拡 散層と第 2導電型不純物拡散層との間には 10 m以上 200 m以下の間隔をあけ ることが好ましい。
[0025] また、本発明の裏面接合型太陽電池の製造方法においては、第 1加熱処理後の 第 1エッチングペーストおよび第 2加熱処理後の第 2エッチングペーストの少なくとも 一方を超音波洗浄および流水洗浄により除去することができる。
[0026] また、本発明の裏面接合型太陽電池の製造方法においては、第 1拡散マスクおよ び第 2拡散マスクの少なくとも一方が酸ィ匕シリコン膜および窒化シリコン膜の少なくと も一方からなって 、てもよ ヽ。
[0027] また、本発明の裏面接合型太陽電池の製造方法は、第 2拡散マスクを除去した後 に、シリコン基板の裏面にパッシベーシヨン膜を形成する工程と、ノッシベーシヨン膜 をエッチング可能なエッチング成分を含有する第 3エッチングペーストをパッシベーシ ヨン膜の表面の一部に印刷する工程と、シリコン基板を第 3加熱処理することによりパ ッシベーシヨン膜のうち第 3エッチングペーストが印刷された部分を除去して第 1導電 型不純物拡散層の少なくとも一部および第 2導電型不純物拡散層の少なくとも一部 をそれぞれ露出させる工程と、を含むことができる。
[0028] また、本発明の裏面接合型太陽電池の製造方法においては、第 3エッチングベー ストのエッチング成分をフッ化水素、フッ化アンモ-ゥムおよびフッ化水素アンモ-ゥ ムカ なる群力 選択された少なくとも 1種またはリン酸とすることができる。
[0029] また、本発明の裏面接合型太陽電池の製造方法は、第 1導電型不純物拡散層の 露出面に接触する第 1電極および第 2導電型不純物拡散層の露出面に接触する第
2電極をそれぞれ形成する工程を含んで 、てもよ 、。
[0030] なお、本発明にお 、て「入射光側の表面」とはシリコン基板の表面のうち太陽電池と して用いるときに通常、太陽光が入射する側に向けられる表面のことをいう。本明細 書にお ヽては「入射光側の表面」のことを「受光面」 t 、うこともある。
[0031] また、本発明において「第 1導電型」とは n型または p型のいずれかの導電型のこと を 、 、、「第 2導電型」は n型または p型の 、ずれかの導電型のうち第 1導電型とは異 なる導電型のことをいう。
発明の効果
[0032] 本発明によれば、フォトリソグラフイエ程を印刷工程で代替することによって製造コス トを低減することができる裏面接合型太陽電池の製造方法を提供することができる。 図面の簡単な説明
[0033] [図 1] (a)は本発明の裏面接合型太陽電池の製造方法によって得られる裏面接合型 太陽電池の裏面の模式的な平面図であり、 (b)は (a)の IB— IBに沿った模式的な断 面図である。
[図 2]図 1 (a)および図 1 (b)に示す裏面接合型太陽電池を得ることができる本発明の 裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な断面図である。
[図 3]図 1 (a)および図 1 (b)に示す裏面接合型太陽電池を得ることができる本発明の 裏面接合型太陽電池の製造方法の製造工程の他の一例を示す模式的な断面図で ある。
圆 4]従来の裏面接合型太陽電池の一例の模式的な断面図である。
[図 5]図 4に示す裏面接合型太陽電池の製造工程の一例のフローチャートである。 符号の説明
[0034] 1, 101 シリコン基板、 2 ァライメントマーク、 3a, 4a 第 1エッチングペースト、 3b , 4b 第 2エッチングペースト、 5, 105 n+層、 6, 106 p+層、 7, 107 反射防止膜 、 9, 109 酸ィ匕シリコン膜、 11, 111 p電極、 12, 112 n電極。
発明を実施するための最良の形態
[0035] (実施の形態 1)
図 1 (a)に、本発明の裏面接合型太陽電池の製造方法によって得られる裏面接合 型太陽電池の裏面の模式的な平面図を示す。ここで、第 2導電型である n型のシリコ ン基板 1の裏面の端部には第 2導電型不純物としての n型不純物が拡散した第 2導 電型不純物拡散層としての n+層 5および第 1導電型不純物としての p型不純物が拡 散した第 1導電型不純物拡散層としての P+層 6がそれぞれ 1本の太い帯状に互いに 平行となるように間隔をあけて配列されており、その帯状の n+層 5および p+層 6からそ れぞれ細い帯状の n+層 5および p+層 6が複数、シリコン基板 1の裏面の内側に向か つて伸びている。そして、シリコン基板 1の裏面の内側に向力つて伸びる細い帯状の n+層 5および p+層 6はそれぞれ交互に配列されている。また、 n+層 5上には第 2電極 としての n電極 12が形成されており、 p+層 6上には第 1電極としての p電極 11が形成 されている。なお、ここでは、 n型のシリコン基板 1と p+層 6とによって pn接合が形成さ れている。
[0036] 図 1 (b)に、図 1 (a)の IB— IBに沿った模式的な断面図を示す。ここで、シリコン基 板 1の受光面はエッチングされてテクスチャ構造が形成され、その受光面上には反射 防止膜 7が形成されており、シリコン基板 1の裏面にはパッシベーシヨン膜である酸ィ匕 シリコン膜 9が形成されている。また、 n+層 5と p+層 6はそれぞれシリコン基板 1の裏面 に沿って交互に所定の間隔をあけて形成されている。 n型のシリコン基板 1と p+層 6と によってシリコン基板 1の裏面に pn接合が形成されている。そして、 p+層 6上には p電 極 11が形成され、 n+層 5上には n電極 12が形成されている。
[0037] 図 2 (a)〜 (n)の模式的断面図に、図 1 (a)および図 1 (b)に示す裏面接合型太陽 電池を得ることができる本発明の裏面接合型太陽電池の製造方法の製造工程の一 例を示す。なお、図 2 (a)〜(n)においては説明の便宜のためシリコン基板の裏面に n+層と p+層を 1つずつしか形成して 、な 、が、実際には複数形成されて 、る。
[0038] まず、図 2 (a)に示すように、 n型のシリコン基板 1を用意する。ここで、シリコン基板 1 としてはたとえば多結晶シリコンまたは単結晶シリコンなどを用いることができる。また 、シリコン基板 1は p型であってもよぐシリコン基板 1が p型である場合にはシリコン基 板 1の裏面の n+層と p型のシリコン基板 1とによって裏面に pn接合が形成される。な お、シリコン基板 1の大きさおよび形状は特に限定されないが、たとえば厚さを 100 m以上 300 μ m以下、 1辺 100mm以上 150mm以下の四角形状とすることができる 。また、エッチングペーストの印刷精度を高めるため、図 1 (a)に示すように、シリコン 基板 1の裏面には、レーザーマーカーにより円状のァライメントマーク 2を 2つ形成し ている。なお、ァライメントマーク 2は、裏面接合型太陽電池の性能を低下させないた めに n+層 5および p+層 6の形成箇所以外の箇所に設置することが好ましい。
[0039] また、図 2 (a)に示すシリコン基板 1としては、たとえば、スライスされることにより生じ たスライスダメージを除去したものなどが用いられる。ここで、シリコン基板 1のスライス ダメージの除去は、シリコン基板 1の表面をフッ化水素水溶液と硝酸の混酸または水 酸ィ匕ナトリウムなどのアルカリ水溶液などでエッチングを行なうことにより実施される。
[0040] 次 、で、図 2 (b)に示すように、シリコン基板 1の裏面にテクスチャマスクとしての酸 化シリコン膜 9を形成し、さらにシリコン基板 1の受光面にテクスチャ構造を形成する。 このように、シリコン基板 1の裏面にテクスチャマスクとして酸ィ匕シリコン膜 9を形成する ことによって受光面のみにテクスチャ構造を形成することができ、裏面は平坦にする ことができる。ここで、酸ィ匕シリコン膜 9はたとえばスチーム酸化、常圧 CVD法または SOG (スピンオングラス)の印刷'焼成などによって形成することができる。酸化シリコ ン膜 9の厚さは特に限定されないが、たとえば 300nm以上 800nm以下の厚さとする ことができる。
[0041] また、テクスチャマスクとしては、酸ィ匕シリコン膜以外にも、窒化シリコン膜または酸 化シリコン膜と窒化シリコン膜の積層体などを用いることができる。ここで、窒化シリコ ン膜は、たとえばプラズマ CVD法または常圧 CVD法などで形成することができる。 窒化シリコン膜の厚さは特に限定されないが、たとえば 60nm以上 lOOnm以下の厚 さとすることができる。
[0042] なお、テクスチャマスクである酸ィ匕シリコン膜および Zまたは窒化シリコン膜はその 後の不純物拡散工程において第 1拡散マスクとして利用することができる。また、テク スチヤマスクである酸ィ匕シリコン膜および Zまたは窒化シリコン膜はテクスチャ構造の 形成後に一旦除去することもできる。
[0043] また、受光面のテクスチャ構造は、たとえば水酸ィ匕ナトリウムまたは水酸ィ匕カリウムな どのアルカリ水溶液にイソプロピルアルコールを添カ卩した液をたとえば 70°C以上 80 °C以下に加熱したものなどを用いてエッチングすることにより形成することができる。
[0044] 次に、シリコン基板 1の裏面の酸ィ匕シリコン膜 9を一且フッ化水素水溶液などを用い て除去した後に、図 2 (c)に示すように、再度シリコン基板 1の受光面および裏面のそ れぞれに第 1拡散マスクとしての酸ィ匕シリコン膜 9を形成する。そして、シリコン基板 1 の裏面の酸ィ匕シリコン膜 9の一部に酸ィ匕シリコン膜 9をエッチング可能なエッチング成 分を含有する第 1エッチングペースト 3aを印刷する。ここで、第 1エッチングペースト 3 aは、たとえばスクリーン印刷法などによって印刷され、 p+層の形成箇所に相当する 酸ィ匕シリコン膜 9の部分に印刷される。
[0045] ここで、第 1エッチングペースト 3aはエッチング成分としてリン酸を含み、エッチング 成分以外の成分として水、有機溶媒および増粘剤を含んでいる。有機溶媒としては、 たとえば、エチレングリコールなどのアルコール、エチレングリコールモノブチルエー テルなどのエーテル、プロピレンカーボネートなどのエステルまたは N—メチルー 2— ピロリドンなどのケトンなどの少なくとも 1種を用いることができる。また、上記以外の有 機溶媒も用いることができるが、特に沸点が 200°C程度であり、印刷時に第 1エッチ ングペースト 3aの粘度変化が起こりにくいものを選択することが好ましい。また、増粘 剤としては、たとえばセルロース、ェチルセルロース、セルロース誘導体、ナイロン 6な どのポリアミド榭脂またはポリビュルピロリドンなどのビュル基が重合したポリマーなど の少なくとも 1種を用いることができる。
[0046] また、エッチング成分であるリン酸は第 1エッチングペースト 3a全体の質量に対して 10質量%以上 40質量%以下含有されていることが好ましい。リン酸の含有量が第 1 エッチングペースト 3a全体の質量に対して 10質量%未満である場合には十分なエツ チング性能が得られない傾向にあり、リン酸の含有量が第 1エッチングペースト 3a全 体の質量に対して 40質量%よりも多い場合には第 1エッチングペースト 3aの粘度が 低くなつて印刷性に問題が生ずるおそれがある。
[0047] また、第 1エッチングペースト 3aは、エッチング性と印刷性とを両立させるために、上 記の材料を適宜選択して調整することによって、粘度を lOPa' s以上 40Pa' s以下と することが好ましい。
[0048] また、第 1拡散マスクとしての酸ィ匕シリコン膜 9はたとえばスチーム酸化、常圧 CVD 法または SOG (スピンオングラス)の印刷'焼成などによって形成することができる。こ こで、酸化シリコン膜 9の厚さは特に限定されないが、たとえば lOOnm以上 300nm 以下の厚さとすることができる。また、第 1拡散マスクとしては、酸化シリコン膜以外に も、窒化シリコン膜または酸ィ匕シリコン膜と窒化シリコン膜の積層体などを用いること ができる。ここで、窒化シリコン膜は、たとえばプラズマ CVD法または常圧 CVD法な どで形成することができる。窒化シリコン膜の厚さは特に限定されないが、たとえば 40 nm以上 80nm以下の厚さとすることができる。
[0049] 次いで、第 1エッチングペースト 3aの印刷後のシリコン基板 1を第 1加熱処理するこ とにより、図 2 (d)に示すようにシリコン基板 1の裏面の酸ィ匕シリコン膜 9のうち第 1エツ チングペースト 3aが印刷された部分をエッチングして除去する。ここで、第 1拡散マス クが酸ィ匕シリコン膜である場合、第 1加熱処理における加熱温度は 300°C以上 400 °C以下であることが好ましい。第 1拡散マスクが酸ィ匕シリコン膜であって第 1エツチン グペースト 3aの加熱温度が 300°C未満である場合にはエッチングが不十分となって 酸ィ匕シリコン膜 9が残ってしまう傾向にあり、 400°Cを超えている場合には第 1エッチ ングペースト 3aがシリコン基板の裏面に焦げ付いて完全に除去できなくなるおそれが ある。また、第 1拡散マスクが窒化シリコン膜である場合、第 1加熱処理における加熱 温度は 200°C以上 400°C以下であることが好ましい。第 1拡散マスクが窒化シリコン 膜であって第 1エッチングペースト 3aの加熱温度が 200°C未満である場合にはエツ チングが不十分となって窒化シリコン膜が残ってしまう傾向にあり、 400°Cを超えてい る場合には第 1エッチングペースト 3aがシリコン基板の裏面に焦げ付いて完全に除 去できなくなるおそれがある。
[0050] また、第 1加熱処理における処理時間は 30秒以上 180秒以下であることが好まし い。第 1加熱処理における処理時間が 30秒未満である場合には第 1加熱処理にお ける加熱温度を 400°Cとした場合でも十分にエッチングできない部分が生じるおそれ がある。また、第 1加熱処理における加熱温度が 400°C未満であっても長時間の加 熱を行なうと、第 1エッチングペースト 3aが変性して加熱後の除去が難しくなるため、 第 1加熱処理における処理時間は 180秒を超えな 、範囲で行なうことが好ま 、。
[0051] なお、実験の結果、第 1エッチングペースト 3aを常圧 CVDで製膜した酸ィ匕シリコン 膜に印刷した後に 300°Cで加熱したときのエッチングレートは 150nmZ分程度であ り、第 1エッチングペースト 3aをプラズマ CVDで製膜した窒化シリコン膜に印刷した 後に 300°Cで加熱したときのエッチングレートは 240nmZ分程度であった。
[0052] リン酸をエッチング成分とする第 1エッチングペースト 3aは常温では反応しに《、 加熱時においてもリン酸が気化しにくいため印刷箇所以外の箇所をオーバーエッチ ングしにくい傾向にあり、フォトリソグラフイエ程を利用して行なったエッチングに近い 、高アスペクト比のエッチングが可能となる。そのため、後述する n+層と p+層との間の 間隔を 10 μ m以上 200 μ m以下、好ましくは 10 μ m以上 100 μ m以下とした精細な ノ ターンを形成することが可能となり、裏面接合型太陽電池の高効率ィ匕につながる。
[0053] なお、第 1加熱処理の方法は特に限定されず、たとえばホットプレート、ベルト炉ま たはオーブンを用いて加熱することにより行なうことができる。上記のように第 1エッチ ングペースト 3aのエッチング成分であるリン酸は気化しにく 、ことから、装置を腐食す る心配が少なぐベルト炉ゃオーブンの使用が可能となる。特に、ベルト炉またはォ ーブンによる加熱では、シリコン基板 1の周縁部と中心部とで温度差が生じにくくエツ チングのばらつきを抑制することができる点で好ましい。
[0054] 第 1加熱処理後は、シリコン基板 1を水中に浸し、超音波を印加して超音波洗浄を 行なった後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによって、第 1加熱処理後の第 1エッチングペースト 3aを除去する。これにより、シリコン基板 1の裏 面の一部が露出することになる。なお、流水洗浄に加え、シリコン基板 1の裏面を一 般に知られている RCA洗浄、硫酸と過酸化水素水の混合液による洗浄、薄いフツイ匕 水素水溶液または界面活性剤を含む洗浄液を用いて洗浄することもできる。
[0055] そして、 BBrを用いた気相拡散によってシリコン基板 1の露出した裏面に第 1導電
3
型不純物としての p型不純物であるボロンが拡散して図 2 (e)に示すように第 1導電型 不純物拡散層としての P+層 6が形成される。その後、図 2 (f)に示すように、シリコン基 板 1の受光面および裏面の酸ィ匕シリコン膜 9並びにボロンが拡散して形成された BS G (ボロンシリケートガラス)をフッ化水素水溶液などを用いてすべて除去する。なお、 P+層 6は、シリコン基板 1の裏面の露出面にボロンを含んだ溶剤を塗布した後に加熱 することによって形成してもよ 、。
[0056] 続いて、図 2 (g)に示すように、シリコン基板 1の受光面および裏面の全面に第 2拡 散マスクとして酸ィ匕シリコン膜 9を形成する。なお、第 2拡散マスクとしては、酸化シリ コン膜以外にも、窒化シリコン膜または酸ィ匕シリコン膜と窒化シリコン膜の積層体など を用いることができることは言うまでもな 、。
[0057] 次いで、図 2 (h)に示すように、シリコン基板 1の裏面の酸ィ匕シリコン膜 9の一部に第 2エッチングペースト 3bを印刷する。ここで、第 2エッチングペースト 3bは、たとえばス クリーン印刷法などによって印刷され、 n+層の形成箇所に相当する酸化シリコン膜 9 の部分に印刷される。また、第 2エッチングペースト 3bはリン酸をエッチング成分とし た上記の第 1エッチングペースト 3aと同一組成のものを用いることができる。
[0058] その後、第 2エッチングペースト 3bの印刷後のシリコン基板 1を第 2加熱処理するこ とにより、図 2 (i)に示すようにシリコン基板 1の裏面の酸ィ匕シリコン膜 9のうち第 2エツ チングペースト 3bが印刷された部分をエッチングして除去する。ここで、第 2拡散マス クが酸ィ匕シリコン膜である場合、第 2加熱処理における加熱温度は 300°C以上 400 °C以下であることが好ましい。第 2拡散マスクが酸ィ匕シリコン膜であって第 2エツチン グペースト 3bの加熱温度が 300°C未満である場合にはエッチングが不十分となって 酸ィ匕シリコン膜 9が残ってしまう傾向にあり、 400°Cを超えている場合には第 2エッチ ングペースト 3bがシリコン基板の裏面に焦げ付いて完全に除去できなくなるおそれ がある。また、第 2拡散マスクが窒化シリコン膜である場合、第 2加熱処理における加 熱温度は 200°C以上 400°C以下であることが好ま U、。第 2拡散マスクが窒化シリコ ン膜であって第 2エッチングペースト 3bの加熱温度が 200°C未満である場合にはェ ツチングが不十分となって窒化シリコン膜が残ってしまう傾向にあり、 400°Cを超えて いる場合には第 2エッチングペースト 3bがシリコン基板の裏面に焦げ付いて完全に 除去できなくなるおそれがある。
[0059] また、第 2加熱処理における処理時間は 30秒以上 180秒以下であることが好まし い。第 2加熱処理における処理時間が 30秒未満である場合には第 2加熱処理にお ける加熱温度を 400°Cとした場合にシリコン基板の裏面の温度分布がばらつくことに よりエッチングレートにばらつきが生じるおそれがある。また、第 2加熱処理における 加熱温度が 400°C未満であっても長時間の加熱を行なうと、第 2エッチングペースト 3 bが変性して加熱後の除去が難しくなるため、第 2エッチングペースト 3bの処理時間 は 180秒を超えな!/、範囲で行なうことが好まし!/、。 [0060] そして、第 2加熱処理後は、シリコン基板 1を水中に浸し、超音波を印力!]して超音波 洗浄を行なつた後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによつ て、第 2加熱処理後の第 2エッチングペースト 3bを除去する。これにより、シリコン基 板 1の裏面の一部が露出することになる。なお、ここでも、流水洗浄に加え、シリコン 基板 1の裏面を一般に知られて ヽる RCA洗浄、硫酸と過酸化水素水の混合液による 洗浄、薄 ヽフッ化水素水溶液または界面活性剤を含む洗浄液を用いて洗浄すること ちでさる。
[0061] そして、 POC1を用いた気相拡散によってシリコン基板 1の露出した裏面に第 2導
3
電型不純物としての n型不純物であるリンが拡散して図 2 (j)に示すように第 2導電型 不純物拡散層としての n+層 5が形成される。その後、図 2 (k)に示すように、シリコン 基板 1の受光面および裏面の酸ィ匕シリコン膜 9並びにリンが拡散して形成された PSG (リンシリケートガラス)をフッ化水素水溶液などを用いてすべて除去する。なお、 n+層 5の形成は、シリコン基板 1の裏面の露出面にリンを含んだ溶剤を塗布した後に加熱 することによって形成してもよ 、。
[0062] また、 n+層 5と p+層 6との間の間隔が狭すぎると n+層 5と p+層 6とが接触してリーク電 流が発生する傾向にあり、その間隔が広すぎると特性が低下する傾向にあるため、 裏面接合型太陽電池の歩留と特性を向上させる観点力もは、 n+層 5と p+層 6との間 の間隔は、 10 μ m以上 200 μ m以下、好ましくは 10 μ m以上 100 μ m以下であるこ とが好ましい。
[0063] その後、シリコン基板 1についてドライ酸化 (熱酸化)を行ない、シリコン基板 1の裏 面に図 2 (1)に示すようにパッシベーシヨン膜としての酸ィ匕シリコン膜 9を形成する。そ して、図 2 (m)に示すように、受光面上に窒化シリコン膜からなる反射防止膜 7を形成 するとともに、酸ィ匕シリコン膜 9の一部を除去してコンタクトホールを形成し、 n+層 5お よび P+層 6の一部を露出させる。ここで、酸ィ匕シリコン膜 9の除去は、シリコン基板 1の 裏面の酸ィ匕シリコン膜 9の表面の一部にスクリーン印刷法などを用いて酸ィ匕シリコン 膜 9をエッチング可能な第 3エッチングペーストを印刷した後にシリコン基板 1につい て第 3加熱処理を行ない、酸ィ匕シリコン膜 9のうち第 3エッチングペーストが印刷され た部分を除去することにより行なうことができる。 [0064] ここで、第 3エッチングペーストとしては、上記の第 1エッチングペーストおよび/ま たは上記の第 2エッチングペーストと同一の糸且成のものを用いることができ、第 3加熱 処理の加熱温度および Zまたは処理時間もそれぞれ上記の第 1加熱処理および Z または上記の第 2加熱処理と同一の加熱温度および Zまたは同一の処理時間とする ことができる。
[0065] 第 3加熱処理後は、シリコン基板 1を水中に浸し、超音波を印加して超音波洗浄を 行なった後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによって、第 3加熱処理後の第 3エッチングペーストを除去する。これにより、 n+層 5および p+層 6 の一部が露出することになる。なお、ここでも、流水洗浄に加え、シリコン基板 1の裏 面を一般に知られている RCA洗浄、硫酸と過酸化水素水の混合液による洗浄、薄い フッ化水素水溶液または界面活性剤を含む洗浄液を用いて洗浄することもできる。
[0066] 最後に、 n+層 5の露出面および p+層 6の露出面のそれぞれに銀ペーストを印刷し た後に焼成することによって、図 2 (n)に示すように、 n+層 5上に n電極 12を形成し、 p +層 6上に p電極 11を形成する。これにより、裏面接合型太陽電池が完成する。
[0067] なお、エッチングペースト 3および銀ペーストの印刷は、図 1 (a)に示すァライメント マーク 2を利用することによって印刷精度を上げることができる。
[0068] このように本発明においては、フォトリソグラフイエ程を印刷工程で代替することによ り、裏面接合型太陽電池の製造コストを大幅に低減することができる。
[0069] (実施の形態 2)
図 3 (a)〜 (n)の模式的断面図に、図 1 (a)および図 1 (b)に示す裏面接合型太陽 電池を得ることができる本発明の裏面接合型太陽電池の製造方法の製造工程の他 の一例を示す。本実施の形態においては、実施の形態 1とエッチングペーストのエツ チング成分が異なることに特徴がある。なお、図 3 (a)〜(n)においては説明の便宜 のためシリコン基板の裏面には n+層と p+層を 1つずつしか形成していないが、実際 には複数形成されている。
[0070] まず、図 3 (a)に示すように、第 2導電型である n型のシリコン基板 1を用意する。また 、エッチングペーストの印刷精度を高めるため、図 1 (a)に示すように、シリコン基板 1 の裏面には、レーザーマーカーにより円状のァライメントマーク 2を 2つ形成している。 なお、ァライメントマーク 2は、裏面接合型太陽電池の性能を低下させないために n+ 層 5および p+層 6の形成箇所以外の箇所に設置することが好ましい。
[0071] また、図 3 (a)に示すシリコン基板 1としては、たとえばスライスされることにより生じた スライスダメージを除去したものが用いられる。ここで、シリコン基板 1のスライスダメー ジの除去は、シリコン基板 1の表面をフッ化水素水溶液と硝酸の混酸または水酸ィ匕 ナトリウムなどのアルカリ水溶液などでエッチングを行なうことにより実施される。
[0072] 次 、で、図 3 (b)に示すように、シリコン基板 1の裏面にテクスチャマスクとしての酸 化シリコン膜 9を形成し、さらにシリコン基板 1の受光面にテクスチャ構造を形成する。 ここで、酸ィ匕シリコン膜 9はたとえばスチーム酸化、常圧 CVD法または SOG (スピン オングラス)の印刷'焼成などによって形成することができる。酸ィ匕シリコン膜 9の厚さ は特に限定されないが、たとえば 300nm以上 800nm以下の厚さとすることができる
[0073] また、テクスチャマスクとしては、酸ィ匕シリコン膜以外にも、窒化シリコン膜または酸 化シリコン膜と窒化シリコン膜の積層体などを用いることができる。ここで、窒化シリコ ン膜は、たとえばプラズマ CVD法または常圧 CVD法などで形成することができる。 窒化シリコン膜の厚さは特に限定されないが、たとえば 60nm以上 lOOnm以下の厚 さとすることができる。
[0074] なお、テクスチャマスクである酸ィ匕シリコン膜および Zまたは窒化シリコン膜はその 後の不純物拡散工程において第 1拡散マスクとしても利用することができる。また、テ タスチヤマスクである酸ィ匕シリコン膜および Zまたは窒化シリコン膜はテクスチャ構造 の形成後に一旦除去することもできる。
[0075] また、受光面のテクスチャ構造は、たとえば水酸ィ匕ナトリウムまたは水酸ィ匕カリウムな どのアルカリ水溶液にイソプロピルアルコールを添カ卩した液をたとえば 70°C以上 80 °C以下に加熱したものなどを用いてエッチングすることにより形成することができる。
[0076] 次に、シリコン基板 1の裏面の酸ィ匕シリコン膜 9を一且フッ化水素水溶液などを用い て除去した後に、図 3 (c)に示すように、再度シリコン基板 1の受光面および裏面のそ れぞれに第 1拡散マスクとして酸ィ匕シリコン膜 9を形成する。そして、シリコン基板 1の 裏面の酸ィ匕シリコン膜 9の一部に第 1エッチングペースト 4aを印刷する。ここで、第 1 エッチングペースト 4aは、たとえばスクリーン印刷法などによって印刷され、 n+層の形 成箇所に相当する酸ィ匕シリコン膜 9の部分に印刷される。
[0077] ここで、第 1エッチングペースト 4aはエッチング成分としてフッ化水素、フッ化アンモ -ゥムおよびフッ化水素アンモ-ゥム力 なる群力 選択された少なくとも 1種を含み 、エッチング成分以外の成分として水、有機溶媒および増粘剤を含んでいる。有機 溶媒としては、たとえば、エチレングリコールなどのアルコール、エチレングリコールモ ノブチルエーテルなどのエーテル、プロピレンカーボネートなどのエステルまたは N —メチル一 2—ピロリドンなどのケトンなどの少なくとも 1種を用いることができる。また 、上記以外の有機溶媒も用いることができるが、特に沸点が 200°C程度であり、印刷 時に第 1エッチングペースト 4aの粘度変化が起こりにくいものを選択することが好まし い。また、増粘剤としては、たとえばセルロース、ェチルセルロース、セルロース誘導 体、ナイロン 6などのポリアミド榭脂またはポリビュルピロリドンなどのビュル基が重合 したポリマーなどの少なくとも 1種を用いることができる。
[0078] また、エッチング成分であるフッ化水素、フッ化アンモ-ゥムおよびフッ化水素アン モ-ゥムカもなる群力も選択された少なくとも 1種はエッチングペースト 4aの全体の質 量に対して 5質量%以上 20質量%以下含有されて 、ることが好まし 、。フッ化水素、 フッ化アンモ-ゥムおよびフッ化水素アンモ-ゥムカ なる群力も選択された少なくと も 1種の含有量がエッチングペースト全体の質量に対して 5質量%未満である場合に は十分なエッチング性能が得られない傾向にあり、フッ化水素、フッ化アンモ-ゥム およびフッ化水素アンモ-ゥム力 なる群力 選択された少なくとも 1種の含有量が第 1エッチングペースト 4a全体の質量に対して 20質量%よりも多い場合には第 1エッチ ングペースト 4aの粘度が低くなつて印刷性に問題が生ずるおそれがある。ここで、フ ッ化水素、フッ化アンモ-ゥムまたはフッ化水素アンモ-ゥムの 2種類以上が含有さ れている場合には、その合計質量力 エッチングペースト 4aの全体の質量に対して 5 質量%以上 20質量%以下であることが好まし 、。
[0079] また、第 1エッチングペースト 4aは、エッチング性と印刷性とを両立させるために、上 記の材料を適宜選択して調整することによって、粘度を lOPa' s以上 25Pa' s以下と することが好ましい。 [0080] この第 1エッチングペースト 4aは上記の第 1エッチングペースト 3aとは異なり、常温 であってもエッチングが進行し、エッチング成分が気化する。そのため、常温で放置 するだけでエッチングが進行するが、それだけではなく気化したエッチング成分によ り第 1エッチングペースト 4aを印刷して 、な 、箇所もエッチングされてしま 、、放置す ると第 1拡散マスクが完全にエッチングされてしまうことがある。そのため、第 1エッチ ングペースト 4aを加熱することはエッチングレートを高めるためだけでなぐ速やかに エッチング成分を気化させて反応を完了させて気化したエッチング成分によるオーバ 一エッチングを抑える役割を果たす。このように、第 1拡散マスクの性能を維持しつつ 第 1拡散マスクをエッチングするためには、後述する第 1拡散マスクの厚さ、第 1加熱 処理の加熱温度および第 1加熱処理の熱処理時間を十分に検討する必要がある。
[0081] また、第 1拡散マスクとしての酸ィ匕シリコン膜 9はたとえばスチーム酸化、常圧 CVD 法または SOG (スピンオングラス)の印刷'焼成などによって形成することができる。こ こで、酸化シリコン膜 9の厚さは特に限定されないが、たとえば lOOnm以上 300nm 以下の厚さとすることができる。また、第 1拡散マスクとしては、酸化シリコン膜以外に も、窒化シリコン膜または酸ィ匕シリコン膜と窒化シリコン膜の積層体などを用いること ができる。ここで、窒化シリコン膜は、たとえばプラズマ CVD法または常圧 CVD法な どで形成することができる。窒化シリコン膜の厚さは特に限定されないが、たとえば 40 nm以上 80nm以下の厚さとすることができる。
[0082] 次いで、第 1エッチングペースト 4aの印刷後のシリコン基板 1を第 1加熱処理するこ とにより、図 3 (d)に示すようにシリコン基板 1の裏面の酸ィ匕シリコン膜 9のうち第 1エツ チングペースト 4aが印刷された部分をエッチングして除去する。この場合の第 1加熱 処理における加熱温度は 50°C以上 200°C以下であることが好ましい。第 1拡散マス クが酸ィ匕シリコン膜であって第 1エッチングペースト 4aの加熱温度が 50°C未満である 場合にはエッチングの完了までに時間が力かりオーバーエッチングが進行してしまう 傾向にあり、 200°Cを超えている場合には第 1エッチングペースト 4aのエッチング成 分が急激に気化して第 1エッチングペースト 4aが膨張したり、気泡が発生したりして、 印刷パターンが崩れてしまうおそれがある。
[0083] また、この場合の第 1加熱処理における処理時間は 10秒以上 120秒以下であるこ とが好ましい。上記の第 1加熱処理における加熱温度を 200°Cとした場合に第 1加熱 処理の完了までに第 1エッチングペースト 4aのエッチング成分を完全に気化して第 1 加熱処理後のオーバーエッチングの進行を防止するためには上記の処理時間を 10 秒以上とすることが好ましい。また、上記の第 1加熱処理における加熱温度を 50°Cに した場合には 120秒加熱することで第 1加熱処理の完了までに第 1エッチングペース ト 4aのエッチング成分を完全に気化することができる傾向にある。
[0084] なお、実験の結果、第 1エッチングペースト 4aを常圧 CVDで製膜した酸ィ匕シリコン 膜に印刷した後に 150°Cで加熱したときのエッチングレートは 300nmZ分程度であ り、第 1エッチングペースト 4aを窒化シリコン膜に印刷した後に 150°Cで加熱したとき のエッチングレートは 150nmZ分程度であった。
[0085] なお、この場合の第 1加熱処理の方法はホットプレートを用いて加熱することにより 行なうことが好ましい。第 1加熱処理における加熱温度をあまり高くする必要がないた め、ホットプレートによる加熱でもシリコン基板 1内の温度分布はあまり大きくならず、 また上記の第 1エッチングペースト 3aと異なりエッチング成分が気化するため、ベルト 炉またはオーブンなどを用いると装置が腐食されてしまうおそれがあるためである。な お、上記の実験においては、第 1加熱処理はホットプレートを用いて加熱することによ り行なった。
[0086] 第 1加熱処理後は、シリコン基板 1を水中に浸し、超音波を印加して超音波洗浄を 行なった後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによって、第 1加熱処理後の第 1エッチングペースト 4aを除去する。これにより、シリコン基板 1の裏 面の一部が露出することになる。なお、ここでも、流水洗浄に加え、シリコン基板 1の 裏面を一般に知られて 、る RCA洗浄、硫酸と過酸化水素水の混合液による洗浄、 薄!、フッ化水素水溶液または界面活性剤を含む洗浄液を用いて洗浄することもでき る。
[0087] そして、 BBrを用いた気相拡散によってシリコン基板 1の露出した裏面に第 1導電
3
型不純物としての p型不純物であるボロンが拡散して図 3 (e)に示すように第 1導電型 不純物拡散層としての P+層 6が形成される。その後、図 3 (f)に示すように、シリコン基 板 1の受光面および裏面の酸ィ匕シリコン膜 9並びにボロンが拡散して形成された BS G (ボロンシリケートガラス)をフッ化水素水溶液などを用いてすべて除去する。なお、 P+層 6は、シリコン基板 1の裏面の露出面にボロンを含んだ溶剤を塗布した後に加熱 することによって形成してもよ 、。
[0088] 続いて、図 3 (g)に示すように、シリコン基板 1の受光面および裏面の全面に第 2拡 散マスクとして酸ィ匕シリコン膜 9を形成する。なお、第 2拡散マスクとしては、酸化シリ コン膜以外にも、窒化シリコン膜または酸ィ匕シリコン膜と窒化シリコン膜の積層体など を用いることができることは言うまでもな 、。
[0089] 次いで、図 3 (h)に示すように、シリコン基板 1の裏面の酸ィ匕シリコン膜 9の一部に第 2エッチングペースト 4bを印刷する。ここで、第 2エッチングペースト 4bは、たとえばス クリーン印刷法などによって印刷され、 n+層の形成箇所に相当する酸化シリコン膜 9 の部分に印刷される。また、第 2エッチングペースト 4bはフッ化水素、フッ化アンモニ ゥムおよびフッ化水素アンモ-ゥムカもなる群力も選択された少なくとも 1種をエッチ ング成分とした上記の第 1エッチングペースト 4aと同一組成のものを用いることができ る。
[0090] その後、第 2エッチングペースト 4bの印刷後のシリコン基板 1を第 2加熱処理するこ とにより、図 3 (i)に示すようにシリコン基板 1の裏面の酸ィ匕シリコン膜 9のうち第 2エツ チングペースト 4bが印刷された部分をエッチングして除去する。この場合の第 2加熱 処理における加熱温度は 50°C以上 200°C以下であることが好まし 、。第 2拡散マス クが酸ィ匕シリコン膜であって第 2エッチングペースト 4bの加熱温度が 50°C未満である 場合にはエッチングの完了までに時間が力かりオーバーエッチングが進行してしまう 傾向にあり、 200°Cを超えている場合には第 2エッチングペースト 4bのエッチング成 分が急激に気化して第 2エッチングペースト 4bが膨張したり、気泡が発生したりして、 印刷パターンが崩れてしまうおそれがある。
[0091] また、この場合の第 2加熱処理における処理時間は 10秒以上 120秒以下であるこ とが好ま 、。上記の第 2加熱処理における加熱温度を 200°Cとした場合に第 2加熱 処理の完了までに第 1エッチングペースト 4aのエッチング成分を完全に気化して第 2 加熱処理後のオーバーエッチングの進行を防止するためには上記の処理時間を 10 秒以上とすることが好ましい。また、上記の第 2加熱処理における加熱温度を 50°Cに した場合には 120秒加熱することで第 2加熱処理の完了までに第 2エッチングペース ト 4bのエッチング成分を完全に気化することができる傾向にある。
[0092] そして、第 2加熱処理後は、シリコン基板 1を水中に浸し、超音波を印力!]して超音波 洗浄を行なつた後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによつ て、第 2加熱処理後の第 2エッチングペースト 4bを除去する。これにより、シリコン基 板 1の裏面の一部が露出することになる。なお、ここでも、流水洗浄に加え、シリコン 基板 1の裏面を一般に知られて ヽる RCA洗浄、硫酸と過酸化水素水の混合液による 洗浄、薄 ヽフッ化水素水溶液または界面活性剤を含む洗浄液を用いて洗浄すること ちでさる。
[0093] そして、 POC1を用いた気相拡散によってシリコン基板 1の露出した裏面に第 2導
3
電型不純物としての n型不純物であるリンが拡散して図 3 (j)に示すように第 2導電型 不純物拡散層としての n+層 5が形成される。その後、図 3 (k)に示すように、シリコン 基板 1の受光面および裏面の酸ィ匕シリコン膜 9並びにリンが拡散して形成された PSG (リンシリケートガラス)をフッ化水素水溶液などを用いてすべて除去する。なお、 n+層 5の形成は、シリコン基板 1の裏面の露出面にリンを含んだ溶剤を塗布した後に加熱 することによって形成してもよ 、。
[0094] また、 n+層 5と p+層 6との間の間隔が狭すぎると n+層 5と p+層 6とが接触してリーク電 流が発生する傾向にあり、その間隔が広すぎると特性が低下する傾向にあるため、 裏面接合型太陽電池の歩留と特性を向上させる観点力もは、 n+層 5と p+層 6との間 の間隔は、 10 μ m以上 200 μ m以下、好ましくは 10 μ m以上 100 μ m以下であるこ とが好ましい。
[0095] その後、シリコン基板 1についてドライ酸化 (熱酸化)を行ない、シリコン基板 1の裏 面に図 3 (1)に示すようにパッシベーシヨン膜としての酸ィ匕シリコン膜 9を形成する。そ して、図 3 (m)に示すように、受光面上に窒化シリコン膜からなる反射防止膜 7を形成 するとともに、酸ィ匕シリコン膜 9の一部を除去してコンタクトホールを形成し、 n+層 5お よび P+層 6の一部を露出させる。ここで、酸ィ匕シリコン膜 9の除去は、シリコン基板 1の 裏面の酸ィ匕シリコン膜 9の表面の一部にスクリーン印刷法などを用いて酸ィ匕シリコン 膜 9をエッチング可能な第 3エッチングペーストを印刷した後にシリコン基板 1につい て第 3加熱処理を行ない、酸ィ匕シリコン膜 9のうち第 3エッチングペーストが印刷され た部分を除去することにより行なうことができる。
[0096] ここで、第 3エッチングペーストとしては、上記の第 1エッチングペーストおよび/ま たは上記の第 2エッチングペーストと同一の糸且成のものを用いることができ、第 3加熱 処理の加熱温度および Zまたは処理時間もそれぞれ上記の第 1加熱処理および Z または上記の第 2加熱処理と同一の加熱温度および Zまたは同一の処理時間とする ことができる。
[0097] 第 3加熱処理後は、シリコン基板 1を水中に浸し、超音波を印加して超音波洗浄を 行なった後、シリコン基板 1の裏面を流水で流して流水洗浄を行なうことによって、第 3加熱処理後の第 3エッチングペーストを除去する。これにより、 n+層 5および p+層 6 の一部が露出することになる。なお、ここでも、流水洗浄に加え、シリコン基板 1の裏 面を一般に知られている RCA洗浄、硫酸と過酸化水素水の混合液による洗浄、薄い フッ化水素水溶液または界面活性剤を含む洗浄液を用いて洗浄することもできる。
[0098] 最後に、 n+層 5の露出面および p+層 6の露出面のそれぞれに銀ペーストを印刷し た後に焼成することによって、図 3 (n)に示すように、 n+層 5上に n電極 12を形成し、 p +層 6上に p電極 11を形成する。これにより、裏面接合型太陽電池が完成する。
[0099] なお、エッチングペーストおよび銀ペーストの印刷は、図 1 (a)に示すァライメントマ ーク 2を利用することによって印刷精度を上げることができる。
[0100] このように本発明においては、フォトリソグラフイエ程を印刷工程で代替することによ り、裏面接合型太陽電池の製造コストを大幅に低減することができる。
実施例
[0101] (実施例 1)
まず、 N—メチル—2—ピロリドン、ナイロン 6およびリン酸水溶液(リン酸の濃度は 8 5質量0 /0)を、 N—メチルー 2—ピロリドン:ナイロン 6:リン酸水溶液 =4: 3: 3の質量比 で混合して十分に攪拌することによってリン酸をエッチング成分とするエッチングぺー ストを作製した。また、このエッチングペーストの粘度は 25Pa' sであった。
[0102] 次に、幅 100mm X長さ 100mm X厚さ 200 /z mの正方形の板状に n型のシリコン 単結晶をスライスし、フッ化水素水溶液と硝酸の混酸を用いたエッチングによりスライ スダメージを除去することによって第 2導電型である n型のシリコン基板を用意した。
[0103] 次いで、シリコン基板の裏面に厚さ 600nmの酸ィ匕シリコン膜を常圧 CVD法により テクスチャマスクとして形成し、水酸ィ匕ナトリウム水溶液にイソプロピルアルコールを少 量添加した液を 80°Cに加熱したエッチング液を用いてシリコン基板の受光面をエツ チングすることによって、それぞれのシリコン基板の受光面にテクスチャ構造を形成し た。
[0104] 続いて、シリコン基板の裏面の酸ィ匕シリコン膜を一且フッ化水素水溶液などを用い て除去した後に、シリコン基板の受光面および裏面に第 1拡散マスクとして厚さ 150η mの酸ィ匕シリコン膜を形成した。そして、上記で作製したエッチングペーストを第 1ェ ツチングペーストとしてシリコン基板の裏面の酸ィ匕シリコン膜の一部にスクリーン印刷 法により印刷した。
[0105] 続いて、上記の第 1エッチングペーストが印刷されたシリコン基板をベルト炉内にお いて 300°Cで 60秒間加熱することによって第 1加熱処理を行ない、シリコン基板の裏 面の酸ィ匕シリコン膜のうち第 1エッチングペーストが印刷されている箇所をエッチング した。そして、第 1加熱処理後は、シリコン基板をそれぞれ水中に浸し、超音波を印 加して超音波洗浄を 5分間行なった後、シリコン基板の裏面をそれぞれ流水で 5分間 流して流水洗浄を行なうことによって、第 1加熱処理後の第 1エッチングペーストを除 去し、それぞれのシリコン基板の裏面の一部をエッチング部分力 露出させた。
[0106] そして、 950°Cの雰囲気下で BBrを用いた気相拡散を 60分間行なうことによって
3
それぞれのシリコン基板の露出した裏面に第 1導電型不純物であるボロンを拡散して 、シリコン基板の裏面の露出部に第 1導電型不純物拡散層である p+層を形成した。 その後、それぞれのシリコン基板の受光面および裏面の酸ィ匕シリコン膜並びにボロン が拡散して形成された BSG (ボロンシリケートガラス)をフッ化水素水溶液を用いてす ベて除去した。ここで、シリコン基板の裏面における p+層と n+層との間には一定の間 隔が設けられており、その間隔は 50 mであった。
[0107] 続いて、それぞれのシリコン基板の受光面および裏面の全面に第 2拡散マスクとし て厚さ 150nmの酸ィ匕シリコン膜を形成した。そして、それぞれのシリコン基板の裏面 の酸化シリコン膜の一部に上記の第 1エッチングペーストと同一の組成の第 2エッチ ングペーストをスクリーン印刷法により印刷した。
[0108] その後、第 2エッチングペーストが印刷されたシリコン基板をベルト炉内において第 1加熱処理と同一の加熱温度および処理時間で加熱することによって第 2加熱処理 を行ない、シリコン基板の裏面の酸ィ匕シリコン膜の第 1エッチングペーストの印刷箇所 をエッチングした。そして、第 2加熱処理後は、上記と同一の条件で超音波洗浄、流 水洗浄および RCA洗浄を行なって、シリコン基板の裏面の一部をエッチング部分か ら露出させた。
[0109] そして、 900°Cの雰囲気下で POC1を用いた気相拡散を 30分間行なうことによって
3
シリコン基板の露出した裏面に第 2導電型不純物であるリンを拡散して、シリコン基板 の裏面の露出部に第 2導電型不純物拡散層である n+層を形成した。その後、それぞ れのシリコン基板の受光面および裏面の酸ィ匕シリコン膜並びにリンが拡散して形成さ れた PSG (リンシリケートガラス)をフッ化水素水溶液を用いてすべて除去した。
[0110] その後、ドライ酸ィ匕によって、シリコン基板の裏面にパッシベーシヨン膜としての酸 化シリコン膜を形成し、シリコン基板の受光面上には反射防止膜としてプラズマ CVD 法により窒化シリコン膜を形成した。
[0111] 続いて、シリコン基板の裏面の酸ィ匕シリコン膜の一部に上記の第 1エッチングぺー ストおよび第 2エッチングペーストと同一の糸且成の第 3エッチングペーストをスクリーン 印刷法により印刷した。その後、第 3エッチングペーストが印刷されたシリコン基板を ベルト炉内において上記の第 1加熱処理および第 2加熱処理と同一の加熱温度およ び処理時間で加熱することによって第 3加熱処理を行な ヽ、シリコン基板の裏面の酸 化シリコン膜の第 3エッチングペーストの印刷箇所をエッチングした。そして、第 3加熱 処理後は、上記と同一の条件で超音波洗浄、流水洗浄を行なって、シリコン基板の 裏面の酸ィ匕シリコン膜に直径 100 m程度の円形状のコンタクトホールを形成して n +層および P+層をそれぞれ露出させた。
[0112] 最後に、 n+層の露出面および p+層の露出面のそれぞれに銀ペーストを印刷した後 に焼成することによって、 n+層上に第 2電極としての n電極を形成し、 p+層上に第 1電 極としての p電極を形成して実施例 1の裏面接合型太陽電池を作製した。
[0113] そして、実施例 1の裏面接合型太陽電池の特性をソーラシミュレータにより評価した 。その結果を表 1に示す。また、比較として、第 1エッチングペースト、第 2エッチング ペーストおよび第 3エッチングペーストを用いずにフォトリソグラフイエ程を利用したェ ツチングを用いたことおよびフォトリソグラフイエ程を利用して p電極および n電極を蒸 着により形成したこと以外は実施例 1と同様にして比較例 1の裏面接合型太陽電池を 作製し、実施例 1と同様にして比較例 1の裏面接合型太陽電池の特性を評価した結 果についても表 1に示す。
[0114] 表 1に示すように、実施例 1の裏面接合型太陽電池の Jsc (短絡電流密度)は 38. 8 mAZcm2であり、 Voc (開放電圧)は 0. 649Vであり、 F. F (フィルファクタ)は 0. 77 0であり、 Eff (変換効率)は 19. 40%であった。この実施例 1の裏面接合型太陽電池 の特性は、比較例 1の裏面接合型太陽電池の特性と同等程度であった。
[0115] (実施例 2)
まず、水、エチレングリコールモノブチルエーテル、ェチルセルロースおよびフツイ匕 水素アンモニゥムを、水:エチレングリコーノレモノブチノレエーテノレ:ェチノレセルロース: フッ化水素アンモ-ゥム = 10 :4 : 3 : 3の質量比で混合して十分に攪拌することによつ てリン酸をエッチング成分とするエッチングペーストを作製した。また、このエッチング ペーストの粘度は 15Pa' sであった。
[0116] 次に、幅 100mm X長さ 100mm X厚さ 200 /z mの正方形の板状に n型のシリコン 単結晶をスライスし、フッ化水素水溶液と硝酸の混酸を用いたエッチングによりスライ スダメージを除去することによって第 2導電型である n型のシリコン基板を用意した。
[0117] 次いで、シリコン基板の裏面に厚さ 600nmの酸ィ匕シリコン膜を常圧 CVD法により テクスチャマスクとして形成し、水酸ィ匕ナトリウム水溶液にイソプロピルアルコールを少 量添加した液を 80°Cに加熱したエッチング液を用いてシリコン基板の受光面をエツ チングすることによって、それぞれのシリコン基板の受光面にテクスチャ構造を形成し た。
[0118] 続いて、シリコン基板の裏面の酸ィ匕シリコン膜を一且フッ化水素水溶液などを用い て除去した後に、シリコン基板の受光面および裏面に第 1拡散マスクとして厚さ 150η mの酸ィ匕シリコン膜を形成した。そして、上記で作製したエッチングペーストを第 1ェ ツチングペーストとしてシリコン基板の裏面の酸ィ匕シリコン膜の一部にスクリーン印刷 法により印刷した。
[0119] 続いて、上記の第 1エッチングペーストが印刷されたシリコン基板をホットプレートに おいて 150°Cで 30秒間加熱することによって第 1加熱処理を行ない、シリコン基板の 裏面の酸ィ匕シリコン膜のうち第 1エッチングペーストが印刷されている箇所をエツチン グした。そして、第 1加熱処理後は、シリコン基板をそれぞれ水中に浸し、超音波を印 加して超音波洗浄を 5分間行なった後、シリコン基板の裏面をそれぞれ流水で 5分間 流して流水洗浄を行なうことによって、第 1加熱処理後の第 1エッチングペーストを除 去し、それぞれのシリコン基板の裏面の一部をエッチング部分力 露出させた。
[0120] そして、 950°Cの雰囲気下で BBrを用いた気相拡散を 60分間行なうことによって
3
それぞれのシリコン基板の露出した裏面に第 1導電型不純物であるボロンを拡散して 、シリコン基板の裏面の露出部に第 1導電型不純物拡散層である p+層を形成した。 その後、それぞれのシリコン基板の受光面および裏面の酸ィ匕シリコン膜並びにボロン が拡散して形成された BSG (ボロンシリケートガラス)をフッ化水素水溶液を用いてす ベて除去した。
[0121] 続いて、それぞれのシリコン基板の受光面および裏面の全面に第 2拡散マスクとし て厚さ 150nmの酸ィ匕シリコン膜を形成した。そして、それぞれのシリコン基板の裏面 の酸化シリコン膜の一部に上記の第 1エッチングペーストと同一の組成の第 2エッチ ングペーストをスクリーン印刷法により印刷した。
[0122] その後、第 2エッチングペーストが印刷されたシリコン基板をホットプレートにおいて 第 1加熱処理と同一の加熱温度および処理時間で加熱することによって第 2加熱処 理を行ない、シリコン基板の裏面の酸ィ匕シリコン膜の第 2エッチングペーストの印刷箇 所をエッチングした。そして、第 2加熱処理後は、上記と同一の条件で超音波洗浄、 流水洗浄を行なって、シリコン基板の裏面の一部をエッチング部分力も露出させた。
[0123] そして、 900°Cの雰囲気下で POC1を用いた気相拡散を 30分間行なうことによって
3
シリコン基板の露出した裏面に第 2導電型不純物であるリンを拡散して、シリコン基板 の裏面の露出部に第 2導電型不純物拡散層である n+層を形成した。その後、それぞ れのシリコン基板の受光面および裏面の酸ィ匕シリコン膜並びにリンが拡散して形成さ れた PSG (リンシリケートガラス)をフッ化水素水溶液を用いてすべて除去した。ここで 、シリコン基板の裏面における p+層と n+層との間には一定の間隔が設けられており、 その間隔は 50 μ mであった。
[0124] その後、ドライ酸ィ匕によって、シリコン基板の裏面にパッシベーシヨン膜としての酸 化シリコン膜を形成し、シリコン基板の受光面上には反射防止膜としてプラズマ CVD 法により窒化シリコン膜を形成した。
[0125] 続いて、シリコン基板の裏面の酸ィ匕シリコン膜の一部に上記の第 1エッチングぺー ストおよび第 2エッチングペーストと同一の糸且成の第 3エッチングペーストをスクリーン 印刷法により印刷した。その後、第 3エッチングペーストが印刷されたシリコン基板を ホットプレートにおいて上記の第 1加熱処理および第 2加熱処理と同一の加熱温度 および処理時間で加熱することによって第 3加熱処理を行な ヽ、シリコン基板の裏面 の酸ィ匕シリコン膜の第 3エッチングペーストの印刷箇所をエッチングした。そして、第 3 加熱処理後は、上記と同一の条件で超音波洗浄、流水洗浄を行なって、シリコン基 板の裏面の酸ィ匕シリコン膜に直径 100 m程度の円形状のコンタクトホールを形成し て n+層および p+層をそれぞれ露出させた。
[0126] 最後に、 n+層の露出面および p+層の露出面のそれぞれに銀ペーストを印刷した後 に焼成することによって、 n+層上に第 1電極としての n電極を形成し、 p+層上に第 2電 極としての p電極を形成して実施例 2の裏面接合型太陽電池を作製した。
[0127] そして、実施例 2の裏面接合型太陽電池の特性を実施例 1と同一の方法および同 一の条件で評価した。その結果を表 1に示す。
[0128] 表 1に示すように、実施例 2の裏面接合型太陽電池の Jsc (短絡電流密度)は 37. 9 mAZcm2であり、 Voc (開放電圧)は 0. 623Vであり、 F. F (フィルファクタ)は 0. 75 7であり、 Eff (変換効率)は 17. 85%であった。
[0129] [表 1]
Figure imgf000028_0001
[0130] なお、上記の実施例 2においては、エッチングペーストのエッチング成分としてフッ 化水素アンモ-ゥムを用いた力 フッ化水素アンモ-ゥム以外にもフッ化アンモ-ゥ ム、フッ化水素、フッ化水素とフッ化アンモニゥムとの混合物、フッ化水素とフッ化水 素アンモ-ゥムとの混合物、フッ化アンモ-ゥムとフッ化水素アンモ-ゥムとの混合物 、または、フッ化水素とフッ化アンモ-ゥムとフッ化水素アンモ-ゥムとの混合物のい ずれに変更した場合でも、上記の実施例 2と同様の特性が得られることも確認された
[0131] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。
産業上の利用可能性
[0132] 本発明によれば、フォトリソグラフイエ程を印刷工程で代替することによって製造コス トを低減することができる裏面接合型太陽電池の製造方法を提供することができる。

Claims

請求の範囲
[1] 第 1導電型または第 2導電型のシリコン基板(1)の入射光側の表面とは反対側の裏 面に pn接合が形成された裏面接合型太陽電池を製造する方法であって、
前記シリコン基板(1)の裏面に第 1拡散マスク(9)を形成する工程と、
前記第 1拡散マスク(9)をエッチング可能なエッチング成分を含有する第 1エツチン グペースト (3a, 4a)を前記第 1拡散マスク(9)の表面の一部に印刷する工程と、 前記シリコン基板(1)を第 1加熱処理することにより前記第 1拡散マスク(9)のうち前 記第 1エッチングペースト(3a, 4a)が印刷された部分を除去して前記シリコン基板(1 )の裏面の一部を露出させる工程と、
第 1導電型不純物を拡散することにより前記シリコン基板(1)の露出した裏面に第 1 導電型不純物拡散層(6)を形成する工程と、
前記第 1拡散マスク (9)を除去する工程と、
前記シリコン基板(1)の裏面に第 2拡散マスク(9)を形成する工程と、
前記第 2拡散マスク(9)をエッチング可能なエッチング成分を含有する第 2エツチン グペースト (3b, 4b)を前記第 2拡散マスク(9)の表面の一部に印刷する工程と、 前記シリコン基板(1)を第 2加熱処理することにより前記第 2拡散マスク(9)のうち前 記第 2エッチングペースト(3b, 4b)が印刷された部分を除去して前記シリコン基板(1 )の裏面の一部を露出させる工程と、
第 2導電型不純物を拡散することにより前記シリコン基板(1)の露出した裏面に第 2 導電型不純物拡散層(5)を形成する工程と、
前記第 2拡散マスク (9)を除去する工程と、
を含む、裏面接合型太陽電池の製造方法。
[2] 前記第 1エッチングペースト (3a, 4a)および前記第 2エッチングペースト (3b, 4b) の少なくとも一方のエッチング成分がリン酸であることを特徴とする、請求項 1に記載 の裏面接合型太陽電池の製造方法。
[3] 前記エッチング成分はエッチングペースト全体の質量に対して 10質量%以上 40質 量%以下含有されていることを特徴とする、請求項 2に記載の裏面接合型太陽電池 の製造方法。
[4] 前記エッチング成分を含むエッチングペーストの粘度が lOPa' s以上 40Pa' s以下 であることを特徴とする、請求項 2に記載の裏面接合型太陽電池の製造方法。
[5] 前記第 1加熱処理および前記第 2加熱処理の少なくとも一方の加熱温度が 200°C 以上 400°C以下であることを特徴とする、請求項 2に記載の裏面接合型太陽電池の 製造方法。
[6] 前記第 1加熱処理および前記第 2加熱処理の少なくとも一方の処理時間が 30秒以 上 180秒以下であることを特徴とする、請求項 2に記載の裏面接合型太陽電池の製 造方法。
[7] 前記第 1エッチングペースト (3a, 4a)および前記第 2エッチングペースト (3b, 4b) の少なくとも一方のエッチング成分力 フッ化水素、フッ化アンモ-ゥムおよびフツイ匕 水素アンモ-ゥムカもなる群力も選択された少なくとも 1種であることを特徴とする、請 求項 1に記載の裏面接合型太陽電池の製造方法。
[8] 前記エッチング成分はエッチングペースト全体の質量に対して 5質量%以上 20質 以下含有されていることを特徴とする、請求項 7に記載の裏面接合型太陽電池の製 造方法。
[9] 前記エッチング成分を含むエッチングペーストの粘度が lOPa' s以上 25Pa' s以下 であることを特徴とする、請求項 7に記載の裏面接合型太陽電池の製造方法。
[10] 前記第 1加熱処理および前記第 2加熱処理の少なくとも一方の加熱温度が 50°C以 上 200°C以下であることを特徴とする、請求項 7に記載の裏面接合型太陽電池の製 造方法。
[11] 前記第 1加熱処理および前記第 2加熱処理の少なくとも一方の処理時間が 10秒以 上 120秒以下であることを特徴とする、請求項 7に記載の裏面接合型太陽電池の製 造方法。
[12] 前記第 1導電型不純物拡散層(6)と前記第 2導電型不純物拡散層(5)とは互いに 接することがなぐ前記第 1導電型不純物拡散層(6)と前記第 2導電型不純物拡散 層(5)との間には 10 μ m以上 200 μ m以下の間隔があけられていることを特徴とする 、請求項 1に記載の裏面接合型太陽電池の製造方法。
[13] 前記第 1加熱処理後の前記第 1エッチングペースト (3a, 4a)および前記第 2加熱 処理後の前記第 2エッチングペースト(3b, 4b)の少なくとも一方は、超音波洗浄およ び流水洗浄により除去されることを特徴とする、請求項 1に記載の裏面接合型太陽電 池の製造方法。
[14] 前記第 1拡散マスク(9)および前記第 2拡散マスク(9)の少なくとも一方が酸化シリ コン膜および窒化シリコン膜の少なくとも一方力もなることを特徴とする、請求項 1に 記載の裏面接合型太陽電池の製造方法。
[15] 前記第 2拡散マスク (9)を除去した後に、
前記シリコン基板(1)の裏面にパッシベーシヨン膜 (9)を形成する工程と、 前記パッシベーシヨン膜 (9)をエッチング可能なエッチング成分を含有する第 3エツ チングペーストを前記パッシベーシヨン膜 (9)の表面の一部に印刷する工程と、 前記シリコン基板(1)を第 3加熱処理することにより前記パッシベーシヨン膜 (9)のう ち前記第 3エッチングペーストが印刷された部分を除去して前記第 1導電型不純物 拡散層(6)の少なくとも一部および前記第 2導電型不純物拡散層(5)の少なくとも一 部をそれぞれ露出させる工程と、
を含む、請求項 1に記載の裏面接合型太陽電池の製造方法。
[16] 前記第 3エッチングペーストのエッチング成分がフッ化水素、フッ化アンモ-ゥムぉ よびフッ化水素アンモ-ゥムカもなる群力 選択された少なくとも 1種またはリン酸で あることを特徴とする、請求項 15に記載の裏面接合型太陽電池の製造方法。
[17] 前記第 1導電型不純物拡散層(6)の露出面に接触する第 1電極(11)および前記 第 2導電型不純物拡散層(5)の露出面に接触する第 2電極(12)をそれぞれ形成す る工程を含む、請求項 15に記載の裏面接合型太陽電池の製造方法。
PCT/JP2006/314261 2005-09-22 2006-07-19 裏面接合型太陽電池の製造方法 WO2007034614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/991,838 US20090305456A1 (en) 2005-09-22 2006-07-19 Method of Manufacturing Back Junction Solar Cell
EP06768287A EP1936702A1 (en) 2005-09-22 2006-07-19 Method of manufacturing back junction solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005275927A JP4657068B2 (ja) 2005-09-22 2005-09-22 裏面接合型太陽電池の製造方法
JP2005-275927 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034614A1 true WO2007034614A1 (ja) 2007-03-29

Family

ID=37888670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314261 WO2007034614A1 (ja) 2005-09-22 2006-07-19 裏面接合型太陽電池の製造方法

Country Status (4)

Country Link
US (1) US20090305456A1 (ja)
EP (1) EP1936702A1 (ja)
JP (1) JP4657068B2 (ja)
WO (1) WO2007034614A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101108A1 (de) * 2008-02-15 2009-08-20 Ersol Solar Energy Ag Verfahren zur herstellung monokristalliner silizium-solarzellen mit rückseitigen emitter- und basiskontakten sowie solarzelle, hergestellt nach einem derartigen verfahren
US20100218821A1 (en) * 2009-03-02 2010-09-02 Sunyoung Kim Solar cell and method for manufacturing the same
JP2011503910A (ja) * 2007-11-19 2011-01-27 アプライド マテリアルズ インコーポレイテッド パターン付きエッチング剤を用いた太陽電池コンタクト形成プロセス
KR101153377B1 (ko) 2009-08-24 2012-06-07 주식회사 효성 개선된 후면구조를 구비한 후면접합 태양전지 및 그 제조방법
CN103620793A (zh) * 2011-06-20 2014-03-05 夏普株式会社 结晶太阳能电池单元及结晶太阳能电池单元的制造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354400T3 (es) * 2007-05-07 2011-03-14 Georgia Tech Research Corporation Formación de un contacto posterior de alta calidad con un campo en la superficie posterior local serigrafiada.
KR101370225B1 (ko) * 2007-05-30 2014-03-06 엘지전자 주식회사 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지
JP5226255B2 (ja) * 2007-07-13 2013-07-03 シャープ株式会社 太陽電池の製造方法
JP4947654B2 (ja) * 2007-09-28 2012-06-06 シャープ株式会社 誘電体膜のパターニング方法
NL2000999C2 (nl) * 2007-11-13 2009-05-14 Stichting Energie Werkwijze voor het fabriceren van kristallijn silicium zonnecellen met gebruikmaking van co-diffusie van boor en fosfor.
US20090139568A1 (en) * 2007-11-19 2009-06-04 Applied Materials, Inc. Crystalline Solar Cell Metallization Methods
WO2009094711A1 (en) * 2008-02-01 2009-08-06 Newsouth Innovations Pty Limited Method for patterned etching of selected material
KR101330973B1 (ko) 2009-03-11 2013-11-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
EP2327106A4 (en) 2008-09-16 2015-09-30 Lg Electronics Inc SOLAR CELL AND METHOD FOR TEXTURING THE SAME
CN101764175B (zh) * 2008-10-27 2012-09-05 北京北方微电子基地设备工艺研究中心有限责任公司 硅太阳能电池的制造方法
KR101002282B1 (ko) 2008-12-15 2010-12-20 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101142861B1 (ko) * 2009-02-04 2012-05-08 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101122048B1 (ko) 2009-03-02 2012-03-12 엘지전자 주식회사 태양 전지 및 그 제조 방법
JP2010232530A (ja) * 2009-03-27 2010-10-14 Sharp Corp 光電変換素子の製造方法および光電変換素子
KR101159276B1 (ko) * 2009-05-29 2012-06-22 주식회사 효성 후면접합 구조의 태양전지 및 그 제조방법
KR101093114B1 (ko) 2009-07-16 2011-12-13 주식회사 효성 후면접합 구조의 태양전지
US8779280B2 (en) 2009-08-18 2014-07-15 Lg Electronics Inc. Solar cell and method of manufacturing the same
KR101110825B1 (ko) 2009-08-18 2012-02-24 엘지전자 주식회사 이면 접합형 태양 전지 및 그 제조 방법
KR101248163B1 (ko) * 2009-09-10 2013-03-27 엘지전자 주식회사 이면 접합형 태양 전지 및 그 제조 방법
TW201115749A (en) * 2009-10-16 2011-05-01 Motech Ind Inc Surface structure of crystalline silicon solar cell and its manufacturing method
WO2011160130A2 (en) * 2010-06-18 2011-12-22 Sionyx, Inc High speed photosensitive devices and associated methods
KR20120009682A (ko) 2010-07-20 2012-02-02 삼성전자주식회사 태양 전지 제조 방법
CN101937945A (zh) * 2010-09-09 2011-01-05 浙江百力达太阳能有限公司 太阳电池的制备方法
US20140021400A1 (en) * 2010-12-15 2014-01-23 Sun Chemical Corporation Printable etchant compositions for etching silver nanoware-based transparent, conductive film
CN103492947A (zh) * 2011-04-28 2014-01-01 默克专利股份有限公司 在pet 上的聚合物基质的选择性蚀刻
JP5129369B2 (ja) * 2011-06-20 2013-01-30 シャープ株式会社 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
JP5275415B2 (ja) * 2011-06-20 2013-08-28 シャープ株式会社 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
WO2013058707A1 (en) * 2011-10-21 2013-04-25 Trina Solar Energy Development Pte Ltd All-back-contact solar cell and method of fabricating the same
WO2013062727A1 (en) * 2011-10-24 2013-05-02 Applied Materials, Inc. Method and apparatus of removing a passivation film and improving contact resistance in rear point contact solar cells
KR101977927B1 (ko) 2012-07-11 2019-05-13 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 광전소자 및 그 제조방법
JP5781488B2 (ja) * 2012-11-07 2015-09-24 シャープ株式会社 結晶太陽電池セルおよび結晶太陽電池セルの製造方法
TWI518924B (zh) * 2013-06-18 2016-01-21 新日光能源科技股份有限公司 太陽能電池
CN104638055A (zh) * 2013-11-14 2015-05-20 江苏天宇光伏科技有限公司 一种单晶硅太阳能电池制造工艺方法
KR101740522B1 (ko) * 2016-01-29 2017-06-08 엘지전자 주식회사 태양 전지와 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (ja) * 1997-04-28 1999-01-22 Sharp Corp 太陽電池セルおよびその製造方法
JP2002057352A (ja) * 2000-06-02 2002-02-22 Honda Motor Co Ltd 太陽電池およびその製造方法
JP2003298078A (ja) * 2002-03-29 2003-10-17 Ebara Corp 光起電力素子
JP2003531807A (ja) * 2000-04-28 2003-10-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 無機表面用エッチングペースト
JP2005506705A (ja) * 2001-10-10 2005-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング エッチングおよびドーピング複合物質
JP2005510885A (ja) * 2001-11-26 2005-04-21 シェル・ゾラール・ゲーエムベーハー 背面接点を有する太陽電池の製造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653970A (en) * 1969-04-30 1972-04-04 Nasa Method of coating solar cell with borosilicate glass and resultant product
US4927770A (en) * 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
US5209814A (en) * 1991-09-30 1993-05-11 E. I. Du Pont De Nemours And Company Method for diffusion patterning
JP4244549B2 (ja) * 2001-11-13 2009-03-25 トヨタ自動車株式会社 光電変換素子及びその製造方法
DE10241300A1 (de) * 2002-09-04 2004-03-18 Merck Patent Gmbh Ätzpasten für Siliziumoberflächen und -schichten
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
DE102005032807A1 (de) * 2005-07-12 2007-01-18 Merck Patent Gmbh Kombinierte Ätz- und Dotiermedien für Siliziumdioxidschichten und darunter liegendes Silizium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (ja) * 1997-04-28 1999-01-22 Sharp Corp 太陽電池セルおよびその製造方法
JP2003531807A (ja) * 2000-04-28 2003-10-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 無機表面用エッチングペースト
JP2002057352A (ja) * 2000-06-02 2002-02-22 Honda Motor Co Ltd 太陽電池およびその製造方法
JP2005506705A (ja) * 2001-10-10 2005-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング エッチングおよびドーピング複合物質
JP2005510885A (ja) * 2001-11-26 2005-04-21 シェル・ゾラール・ゲーエムベーハー 背面接点を有する太陽電池の製造
JP2003298078A (ja) * 2002-03-29 2003-10-17 Ebara Corp 光起電力素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503910A (ja) * 2007-11-19 2011-01-27 アプライド マテリアルズ インコーポレイテッド パターン付きエッチング剤を用いた太陽電池コンタクト形成プロセス
WO2009101108A1 (de) * 2008-02-15 2009-08-20 Ersol Solar Energy Ag Verfahren zur herstellung monokristalliner silizium-solarzellen mit rückseitigen emitter- und basiskontakten sowie solarzelle, hergestellt nach einem derartigen verfahren
US20100218821A1 (en) * 2009-03-02 2010-09-02 Sunyoung Kim Solar cell and method for manufacturing the same
KR101153377B1 (ko) 2009-08-24 2012-06-07 주식회사 효성 개선된 후면구조를 구비한 후면접합 태양전지 및 그 제조방법
CN103620793A (zh) * 2011-06-20 2014-03-05 夏普株式会社 结晶太阳能电池单元及结晶太阳能电池单元的制造方法

Also Published As

Publication number Publication date
JP2007088254A (ja) 2007-04-05
EP1936702A1 (en) 2008-06-25
JP4657068B2 (ja) 2011-03-23
US20090305456A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2007034614A1 (ja) 裏面接合型太陽電池の製造方法
JP5226255B2 (ja) 太陽電池の製造方法
JP4767110B2 (ja) 太陽電池、および太陽電池の製造方法
JP5117770B2 (ja) 太陽電池の製造方法
US20100032012A1 (en) Solar cell and method of manufacturing the same
US20130153025A1 (en) Method for producing a solar cell having a textured front face and corresponding solar cell
JP5885891B2 (ja) 太陽電池の製造方法および太陽電池
JP2005310830A (ja) 太陽電池および太陽電池の製造方法
JP2008186927A (ja) 裏面接合型太陽電池とその製造方法
JP4947654B2 (ja) 誘電体膜のパターニング方法
JP4974756B2 (ja) 太陽電池素子の製造方法
JP2010161310A (ja) 裏面電極型太陽電池および裏面電極型太陽電池の製造方法
JP2006156646A (ja) 太陽電池の製造方法
JP2014112600A (ja) 裏面電極型太陽電池の製造方法および裏面電極型太陽電池
US20130220414A1 (en) Back electrode type solar cell
CN109411565B (zh) 太阳能电池片及其制备方法、光伏组件
KR101161807B1 (ko) 플라즈마 도핑과 확산을 이용한 후면접합 태양전지의 제조방법 및 그 태양전지
TWI438907B (zh) 以印刷塗佈形成遮罩而製作埋藏式電極太陽能電池之方法以及該太陽能電池
JP4712073B2 (ja) 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
KR101472018B1 (ko) 후면전극 태양전지 및 그 제조방법
JP6114171B2 (ja) 太陽電池の製造方法
JP2014110256A (ja) 太陽電池セルの製造方法および太陽電池セル
JP4412930B2 (ja) 太陽電池素子の製造方法
CN113380922A (zh) 制备方法及选择性发射极太阳能电池
JP2011124603A (ja) 裏面接合型太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006768287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE