WO2007034582A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2007034582A1
WO2007034582A1 PCT/JP2006/303668 JP2006303668W WO2007034582A1 WO 2007034582 A1 WO2007034582 A1 WO 2007034582A1 JP 2006303668 W JP2006303668 W JP 2006303668W WO 2007034582 A1 WO2007034582 A1 WO 2007034582A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
water
tank
nano bubble
bubble generation
Prior art date
Application number
PCT/JP2006/303668
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Yamasaki
Kazuyuki Sakata
Kazumi Chuhjoh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/992,156 priority Critical patent/US7803272B2/en
Priority to CN2006800344120A priority patent/CN101268019B/zh
Publication of WO2007034582A1 publication Critical patent/WO2007034582A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment device including a pretreatment device that performs pretreatment of water to be introduced.
  • pretreatment equipment for biological treatment equipment in wastewater treatment includes precipitation, filtration, ⁇ adjustment, ozone oxidation and adsorption.
  • the purpose of the pretreatment device is to reduce the biological, chemical or physical load on the wastewater treatment device in the next process. It is expected to reduce the cost of wastewater and improve the quality of treated water with the power of wastewater treatment equipment.
  • the micronanobubble concentration in the water to be treated is remarkably increased so that the high micronanobubble concentration can be maintained for a long time until the next process.
  • weak! ⁇ ⁇ It cannot be processed by new functions such as sterilization function.
  • the micro-nano bubble includes both a micro bubble having a diameter of 50 microns or less and larger than 1 micron and a nano bubble having a diameter of 1 micron or less.
  • nanobubble utilization method and apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-121962.
  • This nanobubble utilization method and device make use of characteristics such as reduction of buoyancy, increase of surface area, increase of surface activity, generation of local high-pressure field, and surface active action and bactericidal action by realizing electrostatic polarization. It is. More specifically, these characteristics are related to each other, so that the dirt component adsorption function and the high speed of the object surface can be obtained. It is disclosed that various objects can be cleaned with high performance and low environmental load by the cleaning function and the sterilizing function, and the purification of polluted water can be performed.
  • the water to be treated containing the micro-nano bubbles is introduced into the anaerobic measurement tank, and the dissolved oxygen concentration It should be disclosed that the optimization with the values of the redox potential and the redox potential is disclosed.
  • the water to be treated containing the micro-nano bubbles is introduced into the anaerobic measurement tank, and the dissolved oxygen concentration It should be disclosed that the optimization with the values of the redox potential and the redox potential is disclosed.
  • the water to be treated containing the micro-nano bubbles is introduced into the anaerobic measurement tank, and the dissolved oxygen concentration It should be disclosed that the optimization with the values of the redox potential and the redox potential is disclosed.
  • an object of the present invention is to provide a water treatment apparatus capable of optimizing the generation state of the micro / nano bubbles when treating the water to be treated by containing the micro / nano bubbles in the water to be treated. Is to provide.
  • a water treatment device of the present invention comprises:
  • a micro-nano bubble generating tank that has a micro-nano bubble generator that generates micro-nano bubbles including both micro bubbles and nano bubbles, and that contains the micro-nano bubbles in the introduced water.
  • the micro / nano bubble generation tank is also introduced in the anaerobic measurement tank. It becomes possible to measure the content of the micro-nano bubbles in the treated water. Therefore, the generation amount of the micro / nano bubbles in the micro / nano bubble generation tank can be confirmed, and the generation state of the micro / nano bubbles can be optimized based on the measurement result of the content.
  • the anaerobic measurement tank is installed at a stage preceding the pretreatment apparatus in an ultrapure water production apparatus including at least the pretreatment apparatus.
  • the micro-nano bubble generation tank and the anaerobic measurement tank can perform further pretreatment on the water introduced into the pretreatment apparatus in the ultrapure water production apparatus. Therefore, the processing load of the pretreatment device can be reduced.
  • the anaerobic measurement tank is installed in a stage preceding the primary pure water production apparatus in an ultrapure water production apparatus including at least a primary pure water production apparatus.
  • the micro-nano bubble generation tank and the anaerobic measurement tank can perform pretreatment on water introduced into the primary pure water production apparatus in the ultrapure water production apparatus. Therefore, the processing load of the primary pure water production apparatus can be reduced. Furthermore, since the micro-nano bubbles are contained in the treated water, there is an improvement effect on the membrane clogging phenomenon and the decrease in the permeate flow rate in the primary pure water production apparatus, and the treatment capacity of the membrane apparatus increases. . Therefore, the lifetime of the membrane in the primary pure water production apparatus can be extended to reduce the running cost, and the processing performance can be improved.
  • the anaerobic measurement tank is installed in a stage preceding the secondary pure water production apparatus in an ultrapure water production apparatus including at least a primary pure water production apparatus and a secondary pure water production apparatus.
  • the micro-nano bubble generation tank and the anaerobic measurement tank can perform pretreatment on water introduced into the secondary pure water production apparatus in the ultrapure water production apparatus. Therefore, reduce the processing load of the secondary pure water production equipment. Can do. Furthermore, since the micro-nano bubbles are contained in the treated water, there is an improvement effect on the clogging phenomenon of the membrane in the secondary pure water production apparatus and the reduction of the permeate flow rate to the membrane, and the treatment capacity of the membrane apparatus increases. . Therefore, it is possible to extend the life of the membrane in the secondary pure water production apparatus to reduce the running cost and improve the processing performance.
  • Ultra-pure water production equipment including pre-treatment equipment, primary pure water production equipment and secondary pure water production equipment, and use in the factory, which is a place in the factory that uses ultra-pure water produced by the above ultra-pure water production equipment Point and
  • a lean wastewater recovery device that processes and recovers the lean wastewater generated at the above-mentioned factory use points
  • a cooling tower and a scrubber for reusing the treated water recovered by the miscellaneous water recovery device
  • a wastewater treatment device for treating and discharging the concentrated wastewater generated at the above-mentioned factory use points
  • An activated carbon adsorber disposed in front of the diluted waste water recovery device
  • Lean wastewater generated at the factory use point is introduced into the micro-nano bubble generation tank and the anaerobic measurement tank for treatment, and the treated water is treated and collected by the activated carbon adsorption device and the lean wastewater collection device. This recovered water is introduced into the primary pure water production equipment in the ultra pure water production equipment and reused.
  • the micro-nano bubble generation tank and the anaerobic measurement tank are used to pre-treat the lean wastewater generated at the factory use point introduced into the activated carbon adsorption device and the lean wastewater recovery device. Can do. Therefore, the processing load of the activated carbon adsorbing device and the diluted waste water collecting device can be reduced. [0024] Further, in the water treatment apparatus of one embodiment,
  • Concentrated wastewater generated at the plant use point is introduced into the micro / nano bubble generation tank and the anaerobic measurement tank for treatment, and the treated water is treated and collected by the miscellaneous water collection device. Reused in cooling towers and scrubbers.
  • the micro-nano bubble generation tank and the anaerobic measurement tank can perform pretreatment on the concentrated wastewater generated at the factory use point introduced into the miscellaneous water recovery apparatus. Therefore, the processing load of the miscellaneous water recovery apparatus can be reduced.
  • Concentrated wastewater generated at the use point in the factory is introduced into the micro / nano bubble generation tank and the anaerobic measurement tank for treatment, and the treated water is again treated and discharged by the wastewater treatment device.
  • the micro-nano bubble generation tank and the anaerobic measurement tank can perform pre-treatment on the concentrated waste water generated at the factory use point introduced into the waste water treatment apparatus. Therefore, the treatment load of the waste water treatment device can be reduced.
  • a micro-nano bubble generation aid tank storing a micro-nano bubble generation aid added to the micro-nano bubble generation tank is provided.
  • the micro / nano bubble generation auxiliary power stored in the micro / nano bubble generation auxiliary tank is added to the micro / nano bubble generation tank. Therefore, the micro / nano bubbles can be generated effectively and efficiently in the micro / nano bubble generation tank. That is, it is possible to optimize the generation state of the micro / nano bubbles.
  • the micro / nano bubble generation aid stored in the micro / nano bubble generation aid tank is an alcohol or a salt containing salt.
  • the micro-nano bubble generation aid is a salt containing alcohols or salt, it can be easily secured at low cost. Furthermore, since the alcohols and salts are easily removed by a subsequent membrane device, the membrane device is not adversely affected.
  • the anaerobic measurement tank is provided with at least one of a dissolved oxygen meter and an acid reduction potentiometer.
  • micro-nano bubbles can persist in water for a long time, if the micro-nano bubble generator is continuously driven in the micro-nano bubble generation tank, the content of the micro-nano bubbles in the water to be treated becomes excessive. In some cases, it may adversely affect the subsequent processing equipment.
  • At least one of a dissolved oxygen meter and an oxidation-reduction potential meter is installed in the anaerobic measurement tank. Therefore, based on the measurement results obtained by the dissolved oxygen meter and the acid reduction potentiometer, it is possible to confirm the influence of the micro-nano bubble in the treated water on the subsequent treatment apparatus.
  • the anaerobic measurement tank is filled with a polyvinyl chloride vinylidene filler.
  • the microorganisms propagating in the polysalt / vinylidene packing are activated by the micro / nano bubbles to improve the treatment efficiency of low-concentration organic matter in the water to be treated. Is done.
  • oxygen can be consumed by the microorganism in the presence of the micro-nano bubbles.
  • the dissolved oxygen concentration and the acid reduction potential in the anaerobic measurement tank increase. Therefore, it is possible to measure the sustained state of the micro / nano pubs by measuring the dissolved oxygen concentration and the acid reduction potential in the anaerobic measurement tank.
  • the micro / nano bubble generator in the micro / nano bubble generation tank is a mold. This is a micro-nano bubble generator.
  • the micro-nano bubble generator is provided with a cavity type micro-nano bubble generator. Therefore, even if the water to be treated is recovered water, tap water, or fresh water with good water quality, such as dilute wastewater from a semiconductor factory, it is possible to efficiently generate micro-nano bubbles.
  • the water treatment apparatus of the present invention can measure the content of micro / nano bubbles in the water to be treated introduced from the micro / nano bubble generation tank in the anaerobic measurement tank. . Therefore, it becomes possible to confirm the generation amount of the micro-nano bubbles in the micro-nano bubble generation tank. Furthermore, it is possible to optimize the generation state of the micro / nano bubbles based on the measurement result of the content of the micro / nano bubbles.
  • the anaerobic measurement tank is filled with the polysalt / vinylidene packing, the microorganisms propagating in the polysalt / vinylidene packing are activated by the micro / nano bubbles, and It is possible to improve the treatment efficiency of low-concentration organic substances in the water to be treated.
  • the micro-nano bubble generation tank and the anaerobic measurement tank are used in the ultrapure water production apparatus, the activated carbon adsorption apparatus and the diluted waste water collection apparatus for treating and collecting the diluted waste water generated at the factory use point, If it is installed in front of a miscellaneous water recovery device that processes and collects concentrated wastewater generated at factory use points, or a wastewater treatment device that processes and discharges concentrated wastewater generated at factory use points, the above It is possible to reduce the processing load of each device constituting the ultrapure water production device, the activated carbon adsorption device and the diluted waste water collection device, the miscellaneous water collection device, and the waste water treatment device.
  • a dissolved oxygen meter and an acid reduction potentiometer is installed in the anaerobic measurement tank, it is determined based on the measurement results of the dissolved oxygen meter and the oxidation-reduction potentiometer. The influence of the micro-nano bubbles in the treated water on the subsequent treatment equipment can be confirmed.
  • micro / nano bubble generation aid stored in the micro / nano bubble generation aid tank is added to the micro / nano bubble generation tank, the micro / nano bubble is effectively removed. And the generation state of the micro-nano bubbles can be optimized.
  • FIG. 1 is a partial configuration diagram of a water treatment apparatus according to the present invention.
  • FIG. 2 is a partial configuration diagram following FIG.
  • FIG. 3 is a partial configuration diagram of a water treatment apparatus different from those in FIGS. 1 and 2.
  • FIG. 1 and FIG. 2 are schematic configuration diagrams of the water treatment apparatus according to the present embodiment.
  • FIG. 1 and FIG. 2 are schematic configuration diagrams of water treatment apparatuses in a semiconductor factory and a liquid crystal factory.
  • This water treatment device is additionally equipped with 1st treatment tank 1, 2nd treatment tank 2, 3rd treatment tank 3 and 4th treatment tank 4 in addition to the completely closed system type water treatment equipment in the conventional semiconductor factory and liquid crystal factory.
  • micronano bubbles are contained in the water to be treated for efficient water treatment.
  • each of the first treatment tank 1, the second treatment tank 2, the third treatment tank 3 and the fourth treatment tank 4 is composed of a micro / nano bubble generation tank and an anaerobic measurement tank as will be described in detail later.
  • RU micro / nano bubble generation tank
  • the first treatment tank 1 installed in the front stage of the ultrapure water production apparatus 5 will be described in detail.
  • the first treatment tank 1 includes a first micro / nano bubble generation tank 6 and a first anaerobic measurement tank 7.
  • the first micro / nano bubble generation tank 6 is introduced with industrial water or brine as treated water.
  • the first micro / nano bubble generation tank 6 has a micro / nano bubble generator 8 installed therein and a circulation pump 9 installed outside. Then, the water in the first micro / nano bubble generation tank 6 is pumped to the micro / nano bubble generator 8 by the circulation pump 9. As a result, the micro / nano bubble generator 8 generates micro / nano bubbles while sucking in air that is also supplied by the connected air suction pipe 10. Note that a valve 11 is interposed in the air suction pipe 10, and the amount of air is adjusted so that an optimum micro / nano bubble is easily generated.
  • the micro / nano bubble generator 8 is not particularly limited. For example, products such as Auratec Co., Ltd. and Nano Planet Research Laboratories may be used.
  • the industrial water introduced into the first micro / nano bubble generation tank 6 is treated as water to be treated in the first micro / nano bubble generation tank 6. After the bull is contained, it overflows and is introduced into the first anaerobic tank 7.
  • the first anaerobic measuring tank 7 is provided with a polyvinylidene chloride filling 12, a dissolved oxygen meter 13, an oxidation reduction electrometer 14 and a pump 15.
  • a polyvinylidene chloride filling 12 microorganisms are propagated in the treated water containing micro-nano bubbles, and a low concentration of organic matter in the treated water is treated by the microorganisms.
  • the presence of the micro-nano bubbles and the polyvinylidene-vinylidene packing 12 in the first anaerobic measurement tank 7 activates the microorganisms, thereby improving the processing efficiency of the low concentration organic matter. It will be improved.
  • the dissolved oxygen meter 13 and the oxidation-reduction potential meter 14 measure the dissolved oxygen concentration and the acid reduction potential in the first anaerobic measurement tank 7 throughout the day (24 hours).
  • the circulation pump 9 is controlled by a rotational speed inverter of the pump. When the measured value of the dissolved oxygen meter 13 or redox potentiometer 14 or both measured values exceed a predetermined range, the number of revolutions of the circulating pump 9 is controlled and the circulating pump 9 The discharge amount and the discharge pressure are reduced, and the micro / nano bubbles generated by the micro / nano bubble generator 8 are reduced.
  • the micro / nano bubbles generated in the first micro / nano bubble generation tank 6 last for a long time in water. Therefore, if there are more micro / nano bubbles than necessary, the environment of the primary pure water production equipment and secondary pure water production equipment in the subsequent process will be affected. Therefore, when the number of micro-nano bubbles increases and the dissolved oxygen concentration in the first anaerobic measurement tank 7 increases and the measured value in the acid reduction reduction meter 14 increases, the dissolved oxygen concentration value and The amount of micro-nano bubbles generated in the micro-nano bubble generator 8 is reduced by the acid-reduction potential value, and the dissolved oxygen concentration by the dissolved oxygen meter 13 and the measured value of the redox potential meter 14 are kept normal.
  • the content of the micro / nano bubbles in the first anaerobic measurement tank 7 is kept normal, and the primary It prevents the effects of excessive micro / nano bubbles on the pure water production equipment and the secondary pure water production equipment.
  • 16 is a signal line for transmitting a control signal to the circulating pump 9 also for the dissolved oxygen meter 13 and the oxygen reduction potential meter 14 force
  • 17 is a detection unit of the dissolved oxygen meter 13
  • 18 is Redox It is a detection part of the electrometer 14.
  • the water to be treated in the first anaerobic measurement tank 7 is converted into ultrapure water production equipment by a pump 15.
  • a pre-processing device 19 constituting a part of 5.
  • the pretreatment device 19 include a coagulation precipitation facility, a rapid filtration facility, and a coagulation filtration facility.
  • the water to be treated that has exited the pretreatment device 19 is introduced into a primary pure water production device 20 that constitutes a part of the ultrapure water production device 5.
  • a primary pure water production device 20 that constitutes a part of the ultrapure water production device 5.
  • the treated water that has exited the primary pure water production apparatus 20 is introduced into a secondary pure water production apparatus 21 that constitutes a part of the ultrapure water production apparatus 5.
  • the primary pure water production apparatus 20 is provided with a reverse osmosis membrane device (not shown) and a deaeration device (not shown). Accordingly, the micro-nano bubbles in the treated water are erased when the treated water leaves the primary pure water production apparatus 20 and lose its effectiveness.
  • the ultrapure water that has exited the secondary pure water production apparatus 21 is sent to an in-plant use point 22 that is a location in the factory that uses the ultrapure water produced by the ultrapure water production apparatus 5.
  • the ultrapure water sent to the factory use point 22 is used in each production device (not shown), it is classified into two types: lean wastewater and concentrated wastewater. At the same time, it is branched into three lines, a lean wastewater recovery system, a concentrated wastewater recovery system, and a concentrated wastewater treatment system.
  • the second treatment tank 2 is composed of a second micro / nano bubble generation tank 23 and a second anaerobic measurement tank 24. Then, the diluted waste water as the water to be treated is introduced into the second micro / nano bubble generating tank 23.
  • the second micro / nano bubble generation tank 23 has a micro / nano bubble generator 25 installed therein, and a circulation pump 26 installed outside.
  • the micro-nano bubble generator 25 is provided with an air suction pipe 27 that is The volume is adjustable.
  • the above-mentioned diluted waste water introduced into the second micro / nano bubble generation tank 23 overflows after the micro / nano bubble is contained in the second micro / nano bubble generation tank 23, and the second anaerobic measurement tank 24 To be introduced.
  • the second anaerobic measurement tank 24 is provided with a polyvinylidene chloride filling 29, a dissolved oxygen meter 30, an acid reduction potential meter 31 and a pump 32 !.
  • a polyvinylidene chloride filling material 29 microorganisms are propagated in the treated water containing micro-nano bubbles, and a low concentration of organic matter in the treated water is treated by the microorganisms.
  • the presence of the micro-nano bubbles (not shown) and the polysalt-vinylidene filler 29 in the second anaerobic measurement tank 24 activates the microorganisms, thereby reducing the low concentration.
  • the processing efficiency of organic matter is improved.
  • the dissolved oxygen meter 30 and the oxidation-reduction potentiometer 31 measure the dissolved oxygen concentration and the oxidation-reduction potential in the second anaerobic measurement tank 24 throughout the day (24 hours). Further, the circulation pump 26 is controlled by a rotational speed inverter of the pump. Then, when the measured value of the dissolved oxygen meter 30 or the oxidation-reduction potentiometer 31 or both measured values exceed a predetermined range, the number of revolutions of the circulation pump 26 is controlled and the circulation pump 26 The discharge volume and discharge pressure are reduced, and the micro / nano bubbles generated by the micro / nano bubble generator 25 are reduced.
  • the micro / nano bubbles generated in the second micro / nano bubble generation tank 23 last for a long time in water. Therefore, if the number of micro-nano bubbles increases more than necessary, and the dissolved oxygen concentration in the second anaerobic measurement tank 24 increases and the measured value in the oxidation-reduction potentiometer 31 increases, the dissolved oxygen concentration value and The amount of micro-nano bubbles generated in the micro-nano bubble generator 25 is reduced by the oxidation-reduction potential value, so that the dissolved oxygen concentration by the dissolved oxygen meter 30 and the measured value of the acid-reduction potential meter 31 are kept normal.
  • the numbers of the signal lines for transmitting control signals from the dissolved oxygen meter 30 and the oxidation-reduction potentiometer 31 to the circulation pump 26, the detection unit of the dissolved oxygen meter 30, and the detection unit of the oxidation-reduction potentiometer 31 are as follows: Omitted.
  • the treated water from the second anaerobic measurement tank 24 is introduced into the lean waste water recovery device 34 by the pump 32 via the activated carbon adsorption device 33, and the target water is discharged by the lean waste water recovery device 34. Processed to quality. In that case, the water to be treated introduced into the activated carbon adsorption device 33 is treated by the second treatment tank 2. Therefore, the processing load of the activated carbon adsorption device 33 and the diluted waste water collection device 34 can be reduced. Then, the treated water treated by the lean waste water collecting device 34 is introduced into the primary pure water producing device 20 of the ultrapure water producing device 5 and reused.
  • reference numeral 35 denotes a valve provided in a pipe for returning the treated water from the activated carbon adsorption device 33 to the second anaerobic measurement tank 24.
  • Reference numeral 36 denotes a valve provided in a pipe for introducing the treated water from the activated carbon adsorption device 33 into the lean waste water collection device 34.
  • the third treatment tank 3 includes a third micro / nano bubble generation tank 37 and a third anaerobic measurement tank 38. Then, the concentrated waste water as the water to be treated is introduced into the third micro / nano bubble generation tank 37.
  • the third micro / nano bubble generation tank 37 has a micro / nano bubble generator 39 installed therein and a circulation pump 40 installed outside.
  • the micro-nano bubble generator 39 is provided with an air suction pipe 41 and a nozzle 42 for adjusting the amount of suction air.
  • the concentrated waste water introduced into the third micro / nano bubble generation tank 37 overflows into the third anaerobic measurement tank 38 after the micro / nano bubbles are contained in the third micro / nano bubble generation tank 37. be introduced.
  • the third anaerobic measurement tank 38 is provided with a polysalt / vinylidene filling 43, a dissolved oxygen meter 44, an acid reduction potential meter 45 and a pump 46 !.
  • a polysalt / vinylidene filling 43 In the polyvinylidene chloride filler 43, microorganisms are propagated in the treated water containing micro-nano bubbles, and a low concentration of organic matter in the treated water is treated by the microorganisms.
  • the presence of the micro-nano bubbles (not shown) and the polysalt-vinylidene filler 43 in the third anaerobic measurement tank 38 activates the microorganisms, thereby reducing the low concentration.
  • the processing efficiency of organic matter is improved.
  • the dissolved oxygen meter 44 and the oxidation-reduction potential meter 45 measure the dissolved oxygen concentration and oxidation-reduction potential in the third anaerobic measurement tank 38 throughout the day (24 hours).
  • the circulation pump 40 The rotation speed power inverter of the pump is controlled. Then, when the measured value of the dissolved oxygen meter 44 or the oxidation-reduction potentiometer 45 or both measured values exceed a predetermined range, the number of revolutions of the circulation pump 40 is controlled and the circulation pump 40 The discharge volume and discharge pressure decrease, and the micro / nano bubbles generated by the micro / nano bubble generator 39 decrease.
  • the micro / nano bubbles generated in the third micro / nano bubble generation tank 37 are kept in water for a long time. Therefore, if the number of micro-nano bubbles increases more than necessary, and the dissolved oxygen concentration in the third anaerobic measurement tank 38 and the measured value of the oxidation-reduction potentiometer 45 increase, the dissolved oxygen concentration value and The amount of micro-nano bubbles generated in the micro-nano bubble generator 39 is reduced by the oxidation-reduction potential value, and the dissolved oxygen concentration by the dissolved oxygen meter 44 and the measured value of the acid-reduction potential meter 45 are kept normal.
  • the treated water from the third anaerobic measurement tank 38 is introduced into the cooling tower and scrubber 48 by the pump 46 via the miscellaneous water recovery device 47 and reused by the cooling tower and scrubber 48.
  • the water to be treated introduced into the miscellaneous water recovery apparatus 47 is treated by the third treatment tank 3. Therefore, the processing load of the miscellaneous water recovery apparatus 47 can be reduced.
  • the treated water reused by the cooling tower and scrubber 48 is introduced into the waste water treatment device 59 and treated to the target water quality. Thus, the treated water treated by the waste water treatment device 59 is discharged.
  • the fourth treatment tank 4 includes a fourth micro / nano bubble generation tank 49 and a fourth anaerobic measurement tank 50. Then, the concentrated waste water as the water to be treated is introduced into the fourth micro / nano bubble generation tank 49.
  • the fourth micro / nano bubble generating tank 49 has a micro / nano bubble generator inside. While 51 is installed, a circulation pump 52 is installed outside. The micro-nano bubble generator 51 is provided with an air suction pipe 53 and a nozzle 54 for adjusting the amount of suction air.
  • the above-mentioned concentrated waste water introduced into the fourth micro / nano bubble generation tank 49 overflows into the fourth anaerobic measurement tank 50 after the micro / nano bubbles are contained in the fourth micro / nano bubble generation tank 49. be introduced.
  • the fourth anaerobic measurement tank 50 is provided with a polyvinylidene chloride filling 55, a dissolved oxygen meter 56, an acid reduction potential meter 57 and a pump 58!
  • a polyvinylidene chloride filling 55 microorganisms are propagated in the water to be treated containing micro-nano bubbles, and low-concentration organic substances in the water to be treated are treated by the microorganisms.
  • the presence of the micro-nano bubbles (not shown) and the polysalt-vinylidene filler 55 in the fourth anaerobic measurement tank 50 activates the microorganisms, thereby reducing the low concentration.
  • the processing efficiency of organic matter is improved.
  • the dissolved oxygen meter 56 and the oxidation-reduction potential meter 57 measure the dissolved oxygen concentration and the oxidation-reduction potential in the fourth anaerobic measurement tank 50 throughout the day (24 hours).
  • the circulation pump 52 is controlled by a rotational speed inverter of the pump. Then, when the measured value of the dissolved oxygen meter 56 or the acid-reduction potentiometer 57 or both measured values exceed a predetermined range, the rotational speed of the circulating pump 52 is controlled and the circulating pump 52 The discharge amount and discharge pressure are reduced, and the micro / nano bubbles generated by the micro / nano bubble generator 51 are reduced.
  • the micro / nano bubbles generated in the fourth micro / nano bubble generation tank 49 are kept in water for a long time. Therefore, if the number of micro-nano bubbles increases more than necessary, and the dissolved oxygen concentration in the fourth anaerobic measurement tank 50 and the measured value of the oxidation-reduction potential meter 57 increase, the dissolved oxygen concentration value and The amount of micro-nano bubbles generated in the micro-nano bubble generator 51 is reduced by the oxidation-reduction potential value, and the dissolved oxygen concentration by the dissolved oxygen meter 56 and the measured value of the acid-reduction potential meter 57 are kept normal.
  • the numbers of the signal lines for transmitting control signals from the dissolved oxygen meter 56 and the oxidation-reduction potentiometer 57 to the circulation pump 52, the detection unit of the dissolved oxygen meter 56, and the detection unit of the oxidation-reduction potentiometer 57 are Omitted.
  • the water to be treated from the fourth anaerobic measurement tank 50 is introduced into the waste water treatment device 59 by the pump 58 and treated to the target water quality by the waste water treatment device 59. In that case, the water to be treated introduced into the waste water treatment device 59 is treated by the fourth treatment tank 4. Therefore, the treatment load of the waste water treatment device 59 can be reduced. Then, the treated water treated by the wastewater treatment device 59 is discharged.
  • ultrapure water production equipment 5 activated carbon adsorption equipment 33, miscellaneous water recovery equipment 47 and wastewater in fully closed system type water treatment equipment in semiconductor factories and liquid crystal factories.
  • a first treatment tank 1, a second treatment tank 2, a third treatment tank 3 and a fourth treatment tank 4 are installed in each front stage of the treatment apparatus 59.
  • the first treatment tank 1 installed in the preceding stage of the ultrapure water production apparatus 5 is composed of a first micro-nano bubble generation tank 6 and a first anaerobic measurement tank 7. Therefore, the micro-nano bubbles generated in the first micro-nano bubble generation tank 6 activate the microorganisms that are propagated in the first anaerobic measurement tank 7, and the low-concentration organic matter in the first anaerobic measurement tank 7 is activated.
  • the processing efficiency is improved.
  • the ability of each membrane apparatus in the primary pure water production apparatus 20 is improved by the water to be treated containing the micro / nano bubbles. Accordingly, it is possible to significantly reduce the running cost by greatly extending the time of membrane replacement of each of the membrane devices.
  • the first anaerobic measurement tank 7 is provided with a dissolved oxygen meter 13 and an acid-reduction potentiometer 14, and the measured value of the dissolved oxygen meter 13 or the oxidation-reduction potentiometer 14 or both
  • the measured value exceeds a predetermined range
  • the number of rotations of the circulation pump 9 is controlled, and the micro / nano bubbles generated by the micro / nano bubble generator 8 are reduced. Accordingly, it is possible to prevent environmental influences caused by excessive micro / nano bubbles on the primary pure water production apparatus 20 and the secondary pure water production apparatus 21.
  • each of the anaerobic measurement tanks 24, 38, 50 is provided with a dissolved oxygen meter 30, 44, 56 and an acid reduction potential meter 31, 45, 57. , 56 or each redox electrometer 31, 45, 57, or when both measured values exceed a predetermined range, the rotational speed of the circulation pumps 26, 40, 52 is controlled.
  • the micro / nano bubbles generated by the micro / nano bubble generators 25, 39, and 51 are reduced. Therefore, the content of micro / nano bubbles in the treated water can be kept normal.
  • FIGS. 3 and 4 are schematic configuration diagrams of the water treatment apparatus according to the present embodiment.
  • This water treatment apparatus includes the first micro / nano bubble generation tank 6, the second micro / nano bubble generation tank 23, the third micro / nano bubble generation tank 37 and the water treatment apparatus of the first embodiment shown in FIGS.
  • a micro-nano bubble generation assistant is added to each of the fourth micro-nano bubble generation tanks 49.
  • FIG. 3 and FIG. 4 the same parts as those in the case of the water treatment apparatus of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the following, only the parts different from the first embodiment will be described.
  • the first micro / nano bubble generation tank 6 is quantified by the micro / nano bubble generation aid 1S metering pump 62 from the micro / nano bubble generation aid tank 61. It is added in the meantime.
  • the micro / nano bubble generation aid from the micro / nano bubble generation aid tank 63 is quantitatively added to the second micro / nano bubble generation tank 23 by the metering pump 64.
  • the third micro / nano bubble generation tank 37 is quantitatively added by the micro / nano bubble generation aid capacity metering pump 66 from the micro / nano bubble generation aid tank 65.
  • the fourth nano-nano bubble generation tank 49 is quantitatively added by the micro-nano-bubble generation auxiliary agent metering pump 68 from the micro-nano bubble generation auxiliary agent tank 67!
  • the reason for adding the micro / nano bubble generation aid to each of the micro / nano bubble generation tanks 6, 23, 37, and 49 is to improve the generation efficiency of the micro / nano bubbles. Shi Therefore, the micro-nano bubble generation state may be improved by changing the type of the micro-nano bubble generator 8, 25, 39, 51, etc., so it is not an absolute requirement to add the above micro-nano bubble generation aid. .
  • a cavitation micro-nano bubble generator is used as the micro-nano bubble generator 8, 25, 39, 51
  • the treated water is recovered water, tap water or fresh water with good water quality such as the above-mentioned diluted waste water. Even so, micro-nano bubbles are generated. Therefore, in this case, it is not necessary to add a micro / nano bubble generation aid to the micro / nano bubble generation tanks 6, 23, 37, and 49.
  • micro-nano bubble generation aid is added as a last resort. To do.
  • micro / nano bubble generation aid specifically, a small amount of a salt such as alcohol or food salt, a small amount of surfactant, or the like is used. In that case, the generation rate of the micro-nano bubbles with respect to the amount of air supplied from the air suction pipes 10, 27, 41, 53 can be improved to about 100%. However, since the alcohols and salts are easily removed by a subsequent membrane device, the alcohol does not adversely affect the membrane device.
  • a salt such as alcohol or food salt, a small amount of surfactant, or the like
  • the first micro / nano bubble generation tank 6, the second micro / nano bubble generation tank 23, the third micro / nano bubble generation tank 37, and the fourth micro / nano bubble generation tank 49 are The micro / nano bubble generation aid is supplied from the individual micro / nano bubble generation aid tanks 61, 63, 65, 67.
  • the present invention is not limited to this, and the common micro / nano bubble generating aid tank power may be supplied by each metering pump.
  • the treatment tank 1 is disposed only in the preceding stage of the pretreatment device 19 constituting the ultrapure water production device 5.
  • the present invention is not limited to this.
  • Each of the anaerobic measurement tanks 7, 24, 38, 50 includes a dissolved oxygen meter 13, 30, 44, 56 and a redox Only one of the forces installed with the electrometers 14, 31, 45, 57 may be installed.

Abstract

 超純水製造装置(5),希薄排水回収装置(34),雑用水回収装置および排水処理装置の各前段に、第1処理槽(1)~第4処理槽を設置している。そして、各処理槽(1,2,…)を、マイクロナノバブル発生槽(6,23,…)と嫌気測定槽(7,24,…)とで構成している。したがって、各マイクロナノバブル発生槽(6,23,…)で発生されたマイクロナノバブルによって、各嫌気測定槽(7,24,…)内の微生物が活性化されて低濃度有機物の処理効率が向上される。さらに、上記各嫌気測定槽(7,24,…)における各溶存酸素計(13,30,…)または各酸化還元電位計(14,31,…)の測定値が夫々に定められた一定の範囲を越えると循環ポンプ(9,26,…)の回転数が制御されて、マイクロナノバブルの発生が減少される。こうして、処理水中におけるマイクロナノバブルの含有量が適正に保たれる。

Description

水処理装置
技術分野
[0001] この発明は、導入される水の前処理を行う前処理装置を含む水処理装置に関する
背景技術
[0002] 水処理の処理装置や処理方法において、一般的な前処理装置や前処理方法とし て従来から幾つかの前処理装置や前処理方法がある。一例として、排水処理におけ る生物処理装置の前処理装置として、沈澱,ろ過 ,ρΗ調整,オゾン酸化および吸着等 がある。
[0003] 上記前処理装置の目的は、次工程の排水処理装置に対する生物学的,化学的ある いは物理学的な負荷を低減することであり、当該排水処理装置の規模の縮小,ラン二 ングコストの低減,排水処理装置力もの処理水の水質向上等が期待できる。
[0004] し力しながら、従来の前処理には、被処理水中におけるマイクロナノバブル濃度を 格段に高めることによって高いマイクロナノバブル濃度を次工程まで長時間に渡り持 続させ、膜装置に対する洗浄機能や弱!ヽ殺菌機能等の新たな機能によって処理を 行うことはできない。ここで、上記マイクロナノバブルとは、直径が 50ミクロン以下で且 つ 1ミクロンよりも大きなマイクロバブルと直径が 1ミクロン以下のナノバブルとの両方を 含むものである。
[0005] また、従来の前処理には、ブロワ一による一般的な曝気は存在する力 上記マイク ロナノバブルよる処理機能はない。尚、上記マイクロナノバブルよる前処理の場合に は、次工程まで長時間溶存酸素を高濃度に持続させる機能がある。
[0006] ところで、従来、特開 2004- 121962号公報に開示されたナノバブルの利用方法 及び装置がある。このナノバブルの利用方法及び装置は、ナノバブルが有する浮力 の減少,表面積の増加,表面活性の増大,局所高圧場の生成,静電分極の実現による 界面活性作用および殺菌作用等の特性を活用したものである。より具体的には、そ れらの特性が相互に関連することによって、汚れ成分の吸着機能や物体表面の高速 洗浄機能や殺菌機能によって、各種物体を高機能且つ低環境負荷で洗浄すること ができ、汚濁水の浄ィ匕を行うことができることが開示されている。
[0007] しかしながら、
(1)マイクロナノバブル発生槽で上記マイクロナノバブルを発生させ、上記マイクロナ ノバブルの発生状態の最適化を計るために、上記マイクロナノバブルを含有した被 処理水を嫌気測定槽に導入して、溶存酸素濃度と酸化還元電位との値で最適化を 計ることは開示されて ヽな 、。
(2) (a)前処理装置, 1次純水製造装置および 2次純水製造装置で構成される超純水 製造装置、(b)希薄排水回収装置、(c)雑用水回収装置、(d)排水処理装置の各前段 に、マイクロナノバブル発生槽と嫌気測定槽とからなる処理槽を設置することも開示さ れてはいない。
[0008] さらに、特開 2003-334548号公報に開示されたナノ気泡の生成方法がある。この ナノ気泡の生成方法では、液体中において、 G)液体の一部を分解ガス化する工程、 ( ii)液体中で超音波を印加する工程、または、(m)液体の一部を分解ガス化する工程 および超音波を印加する工程、カゝら構成されている。
[0009] しかしながら、
(3)マイクロナノバブル発生槽で上記マイクロナノバブルを発生させ、上記マイクロナ ノバブルの発生状態の最適化を計るために、上記マイクロナノバブルを含有した被 処理水を嫌気測定槽に導入して、溶存酸素濃度と酸化還元電位との値で最適化を 計ることは開示されて ヽな 、。
(4) (a)前処理装置, 1次純水製造装置および 2次純水製造装置で構成される超純水 製造装置、(b)希薄排水回収装置、(c)雑用水回収装置、(d)排水処理装置の各前段 に、マイクロナノバブル発生槽と嫌気測定槽とからなる処理槽を設置することも開示さ れてはいない。
[0010] さらに、特開 2004-321959号公報に開示された廃液の処理装置がある。この廃 液の処理装置では、マイクロバブル発生装置に、オゾン発生装置によって生成され たオゾンガスと処理槽の下部カゝら抜き出された廃液とを加圧ポンプを介して供給して いる。そして、生成されたオゾンマイクロバブルを、ガス吹き出しパイプの開口部より 上記処理槽内の廃液中に通気することが開示されて ヽる。
[0011] しかしながら、
(5)マイクロナノバブル発生槽で上記マイクロナノバブルを発生させ、上記マイクロナ ノバブルの発生状態の最適化を計るために、上記マイクロナノバブルを含有した被 処理水を嫌気測定槽に導入して、溶存酸素濃度と酸化還元電位との値で最適化を 計ることは開示されて ヽな 、。
(6) (a)前処理装置, 1次純水製造装置および 2次純水製造装置で構成される超純水 製造装置、(b)希薄排水回収装置、(c)雑用水回収装置、(d)排水処理装置の各前段 に、マイクロナノバブル発生槽と嫌気測定槽とからなる処理槽を設置することも開示さ れてはいない。
[0012] 以上のごとぐ従来、膜装置の前処理装置として各種の方式による装置があるが、 低コストで、し力もメンテナンスが容易で、且つ、省エネルギーであるシンプルな装置 を活用して、膜装置の閉塞現象を大幅に防止したり、膜装置の能力を向上させること が可能な前処理装置は存在して ヽな 、のである。
発明の開示
発明が解決しょうとする課題
[0013] そこで、この発明の課題は、被処理水中にマイクロナノバブルを含有させて被処理 水に対して処理を行う際に、上記マイクロナノバブルの発生状態の最適化を図ること ができる水処理装置を提供することにある。
課題を解決するための手段
[0014] 上記課題を解決するため、この発明の水処理装置は、
外部力 水が導入されると共に、マイクロバブルとナノバブルとの両方を含むマイク ロナノバブルを発生するマイクロナノバブル発生器を有して、上記導入された水中に 上記マイクロナノバブルを含有させるマイクロナノバブル発生槽と、
上記マイクロナノバブル発生槽から導入された水を嫌気性処理すると共に、被処理 水中における上記マイクロナノバブルの含有量を測定するための嫌気測定槽と を備えたことを特徴として!/ヽる。
[0015] 上記構成によれば、嫌気測定槽において、マイクロナノバブル発生槽カも導入され た被処理水における上記マイクロナノバブルの含有量を測定することが可能になる。 したがって、上記マイクロナノバブル発生槽における上記マイクロナノバブルの発生 量を確認することができると共に、上記含有量の測定結果に基づいて上記マイクロナ ノバブルの発生状態の最適化を図ることが可能になる。
[0016] また、 1実施の形態の水処理装置では、
上記嫌気測定槽は、少なくとも前処理装置を含む超純水製造装置における上記前 処理装置の前段に設置されて!、る。
[0017] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、超純水製造装置における前処理装置に導入される水に対する更なる前処 理を行うことができる。したがって、上記前処理装置の処理負荷を低減することができ る。
[0018] また、 1実施の形態の水処理装置では、
上記嫌気測定槽は、少なくとも 1次純水製造装置を含む超純水製造装置における 上記 1次純水製造装置の前段に設置されている。
[0019] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、超純水製造装置における 1次純水製造装置に導入される水に対する前処 理を行うことができる。したがって、上記 1次純水製造装置の処理負荷を低減すること ができる。さらに、処理水中に上記マイクロナノバブルが含有されているため上記 1次 純水製造装置における膜の閉塞現象や膜に対する透過流量の減少に対して改善効 果があり、膜装置の処理能力が増加する。したがって、上記 1次純水製造装置にお ける膜の寿命を長くしてランニングコストの低減を図ると共に、処理性能を向上させる ことができる。
[0020] また、 1実施の形態の水処理装置では、
上記嫌気測定槽は、少なくとも 1次純水製造装置および 2次純水製造装置を含む 超純水製造装置における上記 2次純水製造装置の前段に設置されている。
[0021] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、超純水製造装置における 2次純水製造装置に導入される水に対する前処 理を行うことができる。したがって、上記 2次純水製造装置の処理負荷を低減すること ができる。さらに、処理水中に上記マイクロナノバブルが含有されているため上記 2次 純水製造装置における膜の閉塞現象や膜に対する透過流量の減少に対して改善効 果があり、膜装置の処理能力が増加する。したがって、上記 2次純水製造装置にお ける膜の寿命を長くしてランニングコストの低減を図ると共に、処理性能を向上させる ことができる。
[0022] また、 1実施の形態の水処理装置では、
前処理装置, 1次純水製造装置および 2次純水製造装置を含む超純水製造装置と 上記超純水製造装置で製造された超純水を使用する工場内の箇所である工場内 ユースポイントと、
上記工場内ユースポイントにおいて発生した希薄排水を処理して回収する希薄排 水回収装置と、
上記工場内ユースポイントにおいて発生した濃厚排水を処理して回収する雑用水 回収装置と、
上記雑用水回収装置によって回収された処理水を再利用するクーリングタワーおよ びスクラバーと、
上記工場内ユースポイントにおいて発生した濃厚排水を処理して放流する排水処 理装置と、
上記希薄排水回収装置の前段に配置された活性炭吸着装置と
を備え、
上記工場内ユースポイントにおいて発生した希薄排水を上記マイクロナノバブル発 生槽および上記嫌気測定槽に導入して処理し、この処理水を上記活性炭吸着装置 および上記希薄排水回収装置によって処理して回収し、この回収水を上記超純水製 造装置における上記 1次純水製造装置に導入して再利用するようになっている。
[0023] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、活性炭吸着装置および希薄排水回収装置に導入される工場内ユースボイ ントで発生した希薄排水に対する前処理を行うことができる。したがって、上記活性炭 吸着装置および上記希薄排水回収装置の処理負荷を低減することができる。 [0024] また、 1実施の形態の水処理装置では、
上記工場内ユースポイントにおいて発生した濃厚排水を上記マイクロナノバブル発 生槽および上記嫌気測定槽に導入して処理し、この処理水を上記雑用水回収装置 によって処理して回収し、この回収水を上記クーリングタワーおよびスクラバーで再利 用するようになっている。
[0025] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、雑用水回収装置に導入される工場内ユースポイントで発生した濃厚排水 に対する前処理を行うことができる。したがって、上記雑用水回収装置の処理負荷を 低減することができる。
[0026] また、 1実施の形態の水処理装置では、
上記工場内ユースポイントにおいて発生した濃厚排水を上記マイクロナノバブル発 生槽および上記嫌気測定槽に導入して処理し、この処理水を上記排水処理装置に よって再度処理して放流するようになって 、る。
[0027] この実施の形態によれば、上記マイクロナノバブル発生槽および上記嫌気測定槽 によって、上記排水処理装置に導入される工場内ユースポイントで発生した濃厚排 水に対する前処理を行うことができる。したがって、上記排水処理装置の処理負荷を 低減することができる。
[0028] また、 1実施の形態の水処理装置では、
上記マイクロナノバブル発生槽に添加されるマイクロナノバブル発生助剤が貯溜さ れたマイクロナノバブル発生助剤タンクを備えて 、る。
[0029] この実施の形態によれば、マイクロナノバブル発生助剤タンクに貯溜されたマイクロ ナノバブル発生助剤力 上記マイクロナノバブル発生槽に添加される。したがって、 上記マイクロナノバブル発生槽にお 、て、上記マイクロナノバブルを効果的に且つ効 率的に発生させることができる。すなわち、上記マイクロナノバブルの発生状態を最 適にすることが可能になる。
[0030] また、 1実施の形態の水処理装置では、
上記マイクロナノバブル発生助剤タンクに貯溜された上記マイクロナノバブル発生 助剤は、アルコール類あるいは食塩を含む塩類である。 [0031] この実施の形態によれば、上記マイクロナノバブル発生助剤は、アルコール類ある いは食塩を含む塩類であるため、容易に低コストで確保することができる。さらに、上 記アルコール類や塩類は、後段の膜装置で除去し易いため上記膜装置に対して悪 影響を及ぼすことがない。
[0032] また、 1実施の形態の水処理装置では、
上記嫌気測定槽には、溶存酸素計および酸ィ匕還元電位計のうちの少なくとも何れ かが設置されている。
[0033] 上記マイクロナノバブルは水の中に長く存続することができるため、上記マイクロナ ノバブル発生槽における上記マイクロナノバブル発生器を駆動し続けると、被処理水 中における上記マイクロナノバブルの含有量が過剰となり、後段の処理装置に対して 悪影響を及ぼす場合が生ずる。
[0034] この実施の形態によれば、上記嫌気測定槽には、溶存酸素計および酸化還元電 位計のうちの少なくとも何れかが設置されている。したがって、上記溶存酸素計およ び酸ィヒ還元電位計による計測結果に基づいて、被処理水中の上記マイクロナノパブ ルによる後段の処理装置に対する影響を確認することができる。
[0035] また、 1実施の形態の水処理装置では、
上記嫌気測定槽には、ポリ塩ィ匕ビ二リデン充填物が充填されている。
[0036] この実施の形態によれば、上記ポリ塩ィ匕ビユリデン充填物に繁殖している微生物が 上記マイクロナノバブルによって活性ィ匕されて、被処理水中における低濃度の有機 物の処理効率が向上される。
[0037] さらに、上記マイクロナノバブルの存在下において上記微生物によって酸素を消費 させることができる。そして、酸素消費が行われている状態で上記マイクロナノバブル 発生槽から上記マイクロナノバブルが多く流入した場合には、上記嫌気測定槽内の 溶存酸素濃度や酸ィ匕還元電位が上昇することになる。したがって、上記嫌気測定槽 内の溶存酸素濃度や酸ィ匕還元電位を測定することによって、上記マイクロナノパブ ルの持続状態を測定することが可能になる。
[0038] また、 1実施の形態の水処理装置では、
上記マイクロナノバブル発生槽における上記マイクロナノバブル発生器は、キヤビ テーシヨン型マイクロナノバブル発生器である。
[0039] この実施の形態によれば、上記マイクロナノバブル発生槽にはキヤビテーシヨン型 マイクロナノバブル発生器が設けられている。したがって、被処理水が、半導体工場 の希薄排水のような水質の良い回収水や水道水や淡水であっても、マイクロナノパブ ルを効率よく発生させることができる。
発明の効果
[0040] 以上より明らかなように、この発明の水処理装置は、嫌気測定槽において、マイクロ ナノバブル発生槽カゝら導入された被処理水におけるマイクロナノバブルの含有量を 測定することが可能になる。したがって、上記マイクロナノバブル発生槽における上 記マイクロナノバブルの発生量を確認することが可能になる。さらに、上記マイクロナ ノバブルの含有量の測定結果に基づいて上記マイクロナノバブルの発生状態の最 適化を図ることが可能になる。
[0041] また、上記嫌気測定槽にポリ塩ィ匕ビ二リデン充填物を充填すれば、このポリ塩ィ匕ビ ユリデン充填物に繁殖している微生物が上記マイクロナノバブルによって活性ィ匕され て、被処理水中における低濃度の有機物の処理効率を向上することができる。
[0042] また、上記マイクロナノバブル発生槽および上記嫌気測定槽を、超純水製造装置、 工場内ユースポイントで発生した希薄排水を処理して回収する活性炭吸着装置およ び希薄排水回収装置、上記工場内ユースポイントで発生した濃厚排水を処理して回 収する雑用水回収装置、あるいは、上記工場内ユースポイントで発生した濃厚排水 を処理して放流する排水処理装置の前段に設置すれば、上記超純水製造装置を構 成する各装置や、上記活性炭吸着装置および希薄排水回収装置や、上記雑用水回 収装置や、上記排水処理装置の処理負荷を低減することができる。
[0043] また、上記嫌気測定槽に溶存酸素計および酸ィ匕還元電位計のうちの少なくとも何 れかを設置すれば、上記溶存酸素計および上記酸化還元電位計による計測結果に 基づいて、被処理水中の上記マイクロナノバブルによる後段の処理装置に対する影 響を確認することができる。
[0044] また、上記マイクロナノバブル発生槽に、マイクロナノバブル発生助剤タンクに貯溜 されたマイクロナノバブル発生助剤を添加すれば、上記マイクロナノバブルを効果的 に且つ効率的に発生させることができ、上記マイクロナノバブルの発生状態を最適に することが可能になる。
図面の簡単な説明
[0045] [図 1]この発明の水処理装置における部分構成図である。
[図 2]図 1に続く部分構成図である。
[図 3]図 1および図 2とは異なる水処理装置における部分構成図である。
圆 4]図 3に続く部分構成図である。
符号の説明
[0046] 1…第 1処理槽、
2…第 2処理槽、
3…第 3処理槽、
4…第 4処理槽、
5…超純水製造装置、
6,23,37,49· ··マイクロナノバブル発生槽、
7,24,38,50· ··嫌気測定槽、
8, 25, 39, 51…マイクロナノバブル発生器、
9, 26,40,52· ··循環ポンプ、
10,27,41, 53· ··空気吸込管、
12,29,43,55…ポリ塩化ビニリデン充填物、
13, 30,44,56…溶存酸素計、
14,31,45,57· ··酸化還元電位計、
19· ··前処理装置、
20· - 1次純水製造装置、
21 · -2次純水製造装置、
22…工場内ユースポイント、
33· ··活性炭吸着装置、
34· ··希薄排水回収装置、
47…雑用水回収装置、 48· ··クーリングタワー及びスクラバー、
59· ··排水処理装置、
61, 63, 65, 67…マイクロナノバブル発生助剤タンク、
62, 64,66, 68· ··定量ポンプ
発明を実施するための最良の形態
[0047] 以下、この発明を図示の実施の形態により詳細に説明する。
[0048] (第 1実施の形態)
図 1及び図 2は、本実施の形態の水処理装置における概略構成図であり、具体的 には、半導体工場や液晶工場における水処理装置の概略構成図である。本水処理 装置は、従来の半導体工場や液晶工場における完全クローズドシステム型の水処理 装置に、第 1処理槽 1,第 2処理槽 2,第 3処理槽 3および第 4処理槽 4を追加設置する と共に、マイクロナノバブルを被処理水に含有させて水処理を効率的に行うものであ る。ここで、第 1処理槽 1,第 2処理槽 2,第 3処理槽 3および第 4処理槽 4の夫々は、後 に詳述するようにマイクロナノバブル発生槽と嫌気測定槽とから構成されて 、る。
[0049] 先ず、超純水製造装置 5の前段に設置される第 1処理槽 1について詳細に説明す る。上記第 1処理槽 1は、第 1マイクロナノバブル発生槽 6と第 1嫌気測定槽 7とで構 成されている。そして、第 1マイクロナノバブル発生槽 6には、被処理水としての工業 用水あるいは巿水が導入される。
[0050] 上記第 1マイクロナノバブル発生槽 6は、その内部にはマイクロナノバブル発生器 8 が設置される一方、外部には循環ポンプ 9が設置されている。そして、循環ポンプ 9 によって、第 1マイクロナノバブル発生槽 6内の水をマイクロナノバブル発生器 8に圧 送するようにしている。その結果、マイクロナノバブル発生器 8は、接続されている空 気吸込管 10力も供給される空気を吸い込みながら、マイクロナノバブルを発生する のである。尚、空気吸込管 10にはバルブ 11が介設されており、最適なマイクロナノバ ブルが発生し易いように空気量が調整される。ここで、マイクロナノバブル発生器 8と しては、特に限定するものではなぐ例えば株式会社オーラテックや株式会社ナノプ ラネット研究所等の製品を用いればよい。第 1マイクロナノバブル発生槽 6に導入され た被処理水としての工業用水は、第 1マイクロナノバブル発生槽 6内でマイクロナノバ ブルが含有された後、オーバーフローして第 1嫌気測定槽 7に導入される。
[0051] 上記第 1嫌気測定槽 7には、ポリ塩化ビ-リデン充填物 12,溶存酸素計 13,酸化還 元電位計 14およびポンプ 15が設置されている。ポリ塩化ビ-リデン充填物 12では、 マイクロナノバブルを含有した被処理水中において微生物が繁殖しており、被処理 水中における低濃度の有機物が上記微生物によって処理される。その際に、第 1嫌 気測定槽 7内に上記マイクロナノバブルとポリ塩ィ匕ビ二リデン充填物 12とが存在する ことによって、上記微生物が活性化されて、上記低濃度有機物の処理効率が向上さ れるのである。
[0052] 上記溶存酸素計 13および酸化還元電位計 14は、第 1嫌気測定槽 7内の溶存酸素 濃度および酸ィ匕還元電位を 1日中 (24時間)測定している。また、循環ポンプ 9は、ポ ンプの回転数力インバータ制御されるようになっている。そして、溶存酸素計 13ある いは酸化還元電位計 14の測定値、または、両測定値が夫々に定められた一定の範 囲を越えると、循環ポンプ 9の回転数が制御されて循環ポンプ 9の吐出量と吐出圧力 とが減少し、マイクロナノバブル発生器 8で発生するマイクロナノバブルが減少するの である。
[0053] すなわち、上記第 1マイクロナノバブル発生槽 6で発生したマイクロナノバブルは長 く水中に持続する。したがって、マイクロナノバブルが必要以上に多い場合には、後 工程である 1次純水製造装置や 2次純水製造装置の環境に影響を及ぼす。そこで、 上記マイクロナノバブルが多くなつて、第 1嫌気測定槽 7の溶存酸素計 13による溶存 酸素濃度と酸ィ匕還元電位計 14の測定値とが上昇した場合には、溶存酸素濃度値お よび酸ィ匕還元電位値によってマイクロナノバブル発生器 8でのマイクロナノバブル発 生量を減少させて、溶存酸素計 13による溶存酸素濃度と酸化還元電位計 14の測定 値とを正常に保つ。こうして、溶存酸素計 13による溶存酸素濃度と酸化還元電位計 14の測定値とを正常に保つことによって、第 1嫌気測定槽 7内におけるマイクロナノ バブルの含有量を正常に保って、上記 1次純水製造装置や上記 2次純水製造装置 に対する過剰なマイクロナノバブルによる影響を防止するのである。
[0054] 尚、 16は溶存酸素計 13および酸ィ匕還元電位計 14力も循環ポンプ 9へ制御信号を 伝送するための信号線であり、 17は溶存酸素計 13の検出部であり、 18は酸化還元 電位計 14の検出部である。
[0055] 次に、上記第 1嫌気測定槽 7内の被処理水は、ポンプ 15によって超純水製造装置
5の一部を構成する前処理装置 19に導入される。前処理装置 19としては、凝集沈澱 設備,急速ろ過設備および凝集ろ過設備等がある。
[0056] 次に、上記前処理装置 19を出た被処理水は、超純水製造装置 5の一部を構成す る 1次純水製造装置 20に導入される。その場合、上記マイクロナノバブルを含有した 被処理水によって、 1次純水製造装置 20内の各膜装置における能力が向上される ため、上記各膜装置の膜交換の時期を大幅に長くしてランニングコストの低減を図る ことができるのである。
[0057] 次に、上記 1次純水製造装置 20を出た被処理水は、超純水製造装置 5の一部を構 成する 2次純水製造装置 21に導入される。ここで、 1次純水製造装置 20には逆浸透 膜装置 (図示せず)や脱気装置 (図示せず)が設置されている。したがって、上記被処 理水中のマイクロナノバブルは、被処理水が 1次純水製造装置 20を出た時点で抹消 され、その効力を失う。そして、 2次純水製造装置 21を出た超純水は、超純水製造装 置 5で製造された超純水を使用する工場内の箇所である工場内ユースポイント 22に 送出される。
[0058] 上述のようにして、上記工場内ユースポイント 22に送出された超純水は、各生産装 置 (図示せず)で使用された後、希薄排水および濃厚排水の 2種類に分類されると共 に、希薄排水回収系,濃厚排水回収系および濃厚排水処理系の 3系列に分岐されて 排出される。
[0059] 次に、上記希薄排水を回収するための希薄排水回収系について説明する。上記 各生産装置からの希薄排水は、第 2処理槽 2に導入される。ここで、第 2処理槽 2は、 第 2マイクロナノバブル発生槽 23と第 2嫌気測定槽 24とで構成されて 、る。そして、 被処理水としての上記希薄排水は、第 2マイクロナノバブル発生槽 23に導入されるこ とになる。
[0060] 上記第 2マイクロナノバブル発生槽 23は、その内部にはマイクロナノバブル発生器 25が設置される一方、外部には循環ポンプ 26が設置されている。そして、マイクロナ ノバブル発生器 25には、空気吸込管 27が設置されてバルブ 28によって吸い込み空 気量が調節可能になっている。第 2マイクロナノバブル発生槽 23に導入された被処 理水としての上記希薄排水は、第 2マイクロナノバブル発生槽 23内でマイクロナノバ ブルが含有された後、オーバーフローして第 2嫌気測定槽 24に導入される。
[0061] 上記第 2嫌気測定槽 24には、ポリ塩化ビ-リデン充填物 29,溶存酸素計 30,酸ィ匕 還元電位計 31およびポンプ 32が設置されて!、る。ポリ塩化ビ-リデン充填物 29では 、マイクロナノバブルを含有した被処理水中において微生物が繁殖しており、被処理 水中における低濃度の有機物が上記微生物によって処理される。その際に、第 2嫌 気測定槽 24内に上記マイクロナノバブル (図示せず)とポリ塩ィ匕ビ二リデン充填物 29 とが存在することによって、上記微生物が活性化されて、上記低濃度有機物の処理 効率が向上されるのである。
[0062] 上記溶存酸素計 30および酸化還元電位計 31は、第 2嫌気測定槽 24内の溶存酸 素濃度および酸化還元電位を 1日中 (24時間)測定している。また、循環ポンプ 26は 、ポンプの回転数力インバータ制御されるようになっている。そして、溶存酸素計 30 あるいは酸ィ匕還元電位計 31の測定値、または、両測定値が夫々に定められた一定 の範囲を越えると、循環ポンプ 26の回転数が制御されて循環ポンプ 26の吐出量と 吐出圧力が減少し、マイクロナノバブル発生器 25で発生するマイクロナノバブルが減 少するのである。
[0063] すなわち、上記第 2マイクロナノバブル発生槽 23で発生したマイクロナノバブルは 長く水中に持続する。したがって、上記マイクロナノバブルが必要以上に多くなつて、 第 2嫌気測定槽 24の溶存酸素計 30による溶存酸素濃度と酸化還元電位計 31の測 定値とが上昇した場合には、溶存酸素濃度値および酸化還元電位値によってマイク ロナノバブル発生器 25でのマイクロナノバブル発生量を減少させて、溶存酸素計 30 による溶存酸素濃度と酸ィ匕還元電位計 31の測定値とを正常に保つのである。
[0064] 尚、上記溶存酸素計 30および酸化還元電位計 31から循環ポンプ 26へ制御信号 を伝送するための信号線、溶存酸素計 30の検出部、酸化還元電位計 31の検出部 の番号は、省略する。
[0065] 上記第 2嫌気測定槽 24からの被処理水は、ポンプ 32によって、活性炭吸着装置 3 3を介して希薄排水回収装置 34に導入され、希薄排水回収装置 34によって目的水 質まで処理される。その場合、活性炭吸着装置 33に導入される被処理水は、第 2処 理槽 2によって処理されている。したがって、活性炭吸着装置 33および希薄排水回 収装置 34の処理負荷を低減することができるのである。そして、希薄排水回収装置 3 4によって処理された処理水は、超純水製造装置 5の 1次純水製造装置 20に導入さ れて再利用される。
[0066] 尚、 35は、上記活性炭吸着装置 33からの処理水を第 2嫌気測定槽 24に戻すため の配管に設けられたバルブである。また、 36は、活性炭吸着装置 33からの処理水を 希薄排水回収装置 34に導入するための配管に設けられたバルブである。
[0067] 次に、上記濃厚排水を回収するための濃厚排水回収系について説明する。上記 各生産装置からの濃厚排水は、第 3処理槽 3に導入される。ここで、第 3処理槽 3は、 第 3マイクロナノバブル発生槽 37と第 3嫌気測定槽 38とで構成されている。そして、 被処理水としての上記濃厚排水は、第 3マイクロナノバブル発生槽 37に導入されるこ とになる。
[0068] 上記第 3マイクロナノバブル発生槽 37は、その内部にはマイクロナノバブル発生器 39が設置される一方、外部には循環ポンプ 40が設置されている。そして、マイクロナ ノバブル発生器 39には、空気吸込管 41と吸い込み空気量を調節するためのノ レブ 42とが設置されて ヽる。第 3マイクロナノバブル発生槽 37に導入された被処理水とし ての上記濃厚排水は、第 3マイクロナノバブル発生槽 37内でマイクロナノバブルが含 有された後、オーバーフローして第 3嫌気測定槽 38に導入される。
[0069] 上記第 3嫌気測定槽 38には、ポリ塩ィ匕ビユリデン充填物 43,溶存酸素計 44,酸ィ匕 還元電位計 45およびポンプ 46が設置されて!、る。ポリ塩化ビ-リデン充填物 43では 、マイクロナノバブルを含有した被処理水中において微生物が繁殖しており、被処理 水中における低濃度の有機物が上記微生物によって処理される。その際に、第 3嫌 気測定槽 38内に上記マイクロナノバブル (図示せず)とポリ塩ィ匕ビ二リデン充填物 43 とが存在することによって、上記微生物が活性化されて、上記低濃度有機物の処理 効率が向上されるのである。
[0070] 上記溶存酸素計 44および酸化還元電位計 45は、第 3嫌気測定槽 38内の溶存酸 素濃度および酸化還元電位を 1日中 (24時間)測定している。また、循環ポンプ 40は 、ポンプの回転数力インバータ制御されるようになっている。そして、溶存酸素計 44 あるいは酸ィ匕還元電位計 45の測定値、または、両測定値が夫々に定められた一定 の範囲を越えると、循環ポンプ 40の回転数が制御されて循環ポンプ 40の吐出量と 吐出圧力が減少し、マイクロナノバブル発生器 39で発生するマイクロナノバブルが減 少するのである。
[0071] すなわち、上記第 3マイクロナノバブル発生槽 37で発生したマイクロナノバブルは 長く水中に持続する。したがって、上記マイクロナノバブルが必要以上に多くなつて、 第 3嫌気測定槽 38の溶存酸素計 44による溶存酸素濃度と酸化還元電位計 45の測 定値とが上昇した場合には、溶存酸素濃度値および酸化還元電位値によってマイク ロナノバブル発生器 39でのマイクロナノバブル発生量を減少させて、溶存酸素計 44 による溶存酸素濃度と酸ィ匕還元電位計 45の測定値とを正常に保つのである。
[0072] 尚、上記溶存酸素計 44および酸化還元電位計 45から循環ポンプ 40へ制御信号 を伝送するための信号線、溶存酸素計 44の検出部、酸化還元電位計 45の検出部 の番号は、省略する。
[0073] 上記第 3嫌気測定槽 38からの被処理水は、上記ポンプ 46によって、雑用水回収装 置 47を介してクーリングタワー及びスクラバー 48に導入され、クーリングタワー及びス クラバー 48によって再利用される。その場合、雑用水回収装置 47に導入される被処 理水は、第 3処理槽 3によって処理されている。したがって、雑用水回収装置 47の処 理負荷を低減することができるのである。そして、上記クーリングタワー及びスクラバ 一 48によって再利用された後の処理水は、排水処理装置 59に導入されて目的水質 まで処理される。こうして、排水処理装置 59によって処理された処理水は、放流され るのである。
[0074] 次に、上記濃厚排水を処理するための濃厚排水処理系について説明する。上記 各生産装置からの濃厚排水は、第 4処理槽 4に導入される。ここで、第 4処理槽 4は、 第 4マイクロナノバブル発生槽 49と第 4嫌気測定槽 50とで構成されて 、る。そして、 被処理水としての上記濃厚排水は、第 4マイクロナノバブル発生槽 49に導入されるこ とになる。
[0075] 上記第 4マイクロナノバブル発生槽 49は、その内部にはマイクロナノバブル発生器 51が設置される一方、外部には循環ポンプ 52が設置されている。そして、マイクロナ ノバブル発生器 51には、空気吸込管 53と吸い込み空気量を調節するためのノ レブ 54とが設置されている。第 4マイクロナノバブル発生槽 49に導入された被処理水とし ての上記濃厚排水は、第 4マイクロナノバブル発生槽 49内でマイクロナノバブルが含 有された後、オーバーフローして第 4嫌気測定槽 50に導入される。
[0076] 上記第 4嫌気測定槽 50には、ポリ塩化ビ-リデン充填物 55,溶存酸素計 56,酸ィ匕 還元電位計 57およびポンプ 58が設置されて!、る。ポリ塩化ビ-リデン充填物 55では 、マイクロナノバブルを含有した被処理水中において微生物が繁殖しており、被処理 水中における低濃度の有機物が上記微生物によって処理される。その際に、第 4嫌 気測定槽 50内に上記マイクロナノバブル (図示せず)とポリ塩ィ匕ビ二リデン充填物 55 とが存在することによって、上記微生物が活性化されて、上記低濃度有機物の処理 効率が向上されるのである。
[0077] 上記溶存酸素計 56および酸化還元電位計 57は、第 4嫌気測定槽 50内の溶存酸 素濃度および酸化還元電位を 1日中 (24時間)測定している。また、循環ポンプ 52は 、ポンプの回転数力インバータ制御されるようになっている。そして、溶存酸素計 56 あるいは酸ィ匕還元電位計 57の測定値、または、両測定値が夫々に定められた一定 の範囲を越えると、循環ポンプ 52の回転数が制御されて循環ポンプ 52の吐出量と 吐出圧力が減少し、マイクロナノバブル発生器 51で発生するマイクロナノバブルが減 少するのである。
[0078] すなわち、上記第 4マイクロナノバブル発生槽 49で発生したマイクロナノバブルは 長く水中に持続する。したがって、上記マイクロナノバブルが必要以上に多くなつて、 第 4嫌気測定槽 50の溶存酸素計 56による溶存酸素濃度と酸化還元電位計 57の測 定値とが上昇した場合には、溶存酸素濃度値および酸化還元電位値によってマイク ロナノバブル発生器 51でのマイクロナノバブル発生量を減少させて、溶存酸素計 56 による溶存酸素濃度と酸ィ匕還元電位計 57の測定値とを正常に保つのである。
[0079] 尚、上記溶存酸素計 56および酸化還元電位計 57から循環ポンプ 52へ制御信号 を伝送するための信号線、溶存酸素計 56の検出部、酸化還元電位計 57の検出部 の番号は、省略する。 [0080] 上記第 4嫌気測定槽 50からの被処理水は、ポンプ 58によって、上記排水処理装置 59に導入され、排水処理装置 59によって目的水質まで処理される。その場合、排水 処理装置 59に導入される被処理水は、第 4処理槽 4によって処理されている。したが つて、排水処理装置 59の処理負荷を低減することができるのである。そして、排水処 理装置 59によって処理された処理水は、放流されるのである。
[0081] 以上のごとぐ本実施の形態においては、半導体工場や液晶工場における完全ク ローズドシステム型の水処理装置における超純水製造装置 5,活性炭吸着装置 33,雑 用水回収装置 47および排水処理装置 59の各前段に、第 1処理槽 1,第 2処理槽 2,第 3処理槽 3および第 4処理槽 4を設置して ヽる。
[0082] そして、上記超純水製造装置 5の前段に設置された第 1処理槽 1を、第 1マイクロナ ノバブル発生槽 6と第 1嫌気測定槽 7とで構成している。したがって、第 1マイクロナノ バブル発生槽 6で発生されたマイクロナノバブルによって、第 1嫌気測定槽 7内で繁 殖している微生物が活性化されて、第 1嫌気測定槽 7内における上記低濃度有機物 の処理効率が向上される。さらに、上記マイクロナノバブルを含有した被処理水によ つて、 1次純水製造装置 20内の各膜装置における能力が向上される。したがって、 上記各膜装置の膜交換の時期を大幅に長くしてランニングコストの低減を図ることが できる。
[0083] さらに、上記第 1嫌気測定槽 7には溶存酸素計 13および酸ィ匕還元電位計 14が設 置されており、溶存酸素計 13あるいは酸化還元電位計 14の測定値、または、両測 定値が夫々に定められた一定の範囲を越えると循環ポンプ 9の回転数が制御されて 、マイクロナノバブル発生器 8で発生するマイクロナノバブルが減少されるようになつ ている。したがって、 1次純水製造装置 20および 2次純水製造装置 21に対する過剰 なマイクロナノバブルによる環境影響を防止することができる。
[0084] また、上記活性炭吸着装置 33,雑用水回収装置 47および排水処理装置 59の各前 段に配置された第 2処理槽 2,第 3処理槽 3および第 4処理槽 4の夫々を、マイクロナノ バブル発生槽 23,37,49と嫌気測定槽 24,38,50とで構成している。したがって、各 マイクロナノバブル発生槽 23,37,49で発生されたマイクロナノバブルによって、各嫌 気測定槽 24,38,50内で繁殖している微生物が活性ィ匕されて、各嫌気測定槽 24,38 ,50内における上記低濃度有機物の処理効率が向上される。
[0085] さらに、上記各嫌気測定槽 24,38,50には溶存酸素計 30,44,56および酸ィ匕還元 電位計 31 ,45,57が設置されており、各溶存酸素計 30,44,56あるいは各酸化還元 電位計 31 ,45,57の測定値、または、両測定値が夫々に定められた一定の範囲を越 えると循環ポンプ 26,40,52の回転数が制御されて、各マイクロナノバブル発生器 25 ,39,51で発生するマイクロナノバブルが減少されるようになっている。したがって、処 理水中におけるマイクロナノバブルの含有量を正常に保つことができる。
[0086] (第 2実施の形態)
図 3および図 4は、本実施の形態の水処理装置における概略構成図である。本水 処理装置は、図 1および図 2に示す上記第 1実施の形態の水処理装置における第 1 マイクロナノバブル発生槽 6,第 2マイクロナノバブル発生槽 23,第 3マイクロナノパブ ル発生槽 37および第 4マイクロナノバブル発生槽 49の夫々に、マイクロナノバブル 発生助剤を添加するものである。
[0087] そこで、図 3および図 4において、上記第 1実施の形態の水処理装置の場合と同じ 部分には同じ符号を付して、詳細は説明は省略する。以下、上記第 1実施の形態と は異なる部分にっ 、て説明する。
[0088] 本実施の形態においては、図 3及び図 4に示すように、第 1マイクロナノバブル発生 槽 6には、マイクロナノバブル発生助剤タンク 61からのマイクロナノバブル発生助剤 1S 定量ポンプ 62によって定量的に添加されるようになっている。また、第 2マイクロ ナノバブル発生槽 23には、マイクロナノバブル発生助剤タンク 63からのマイクロナノ バブル発生助剤が、定量ポンプ 64によって定量的に添加されるようになっている。ま た、第 3マイクロナノバブル発生槽 37には、マイクロナノバブル発生助剤タンク 65か らのマイクロナノバブル発生助剤力 定量ポンプ 66によって定量的に添加されるよう になっている。また、第 4マイクロナノバブル発生槽 49には、マイクロナノバブル発生 助剤タンク 67からのマイクロナノバブル発生助剤力 定量ポンプ 68によって定量的 に添加されるようになって!/ヽる。
[0089] 以上のごとぐ各マイクロナノバブル発生槽 6, 23, 37,49にマイクロナノバブル発生 助剤を添加する理由は、マイクロナノバブルの発生効率を向上させるためである。し たがって、マイクロナノバブル発生器 8,25,39,51のタイプ変更等によって、マイクロ ナノバブルの発生状態が改善される場合もあるので、上記マイクロナノバブル発生助 剤を添加することは絶対的条件ではない。例えば、マイクロナノバブル発生器 8, 25, 39,51としてキヤビテーション型マイクロナノバブル発生器を用 、た場合には、処理 水が、上記希薄排水のような水質の良い回収水や水道水や淡水であってもマイクロ ナノバブルが発生する。したがって、その場合には、マイクロナノバブル発生槽 6, 23, 37,49に対するマイクロナノバブル発生助剤の添カ卩は不要となる。
[0090] 但し、上記マイクロナノバブル発生器 8,25,39,51のタイプ変更等によって上記マイ クロナノバブルの発生状態が改善されない場合には、最後の手段として、上記マイク ロナノバブル発生助剤を添加するのである。
[0091] 尚、上記マイクロナノバブル発生助剤としては、具体的には少量のアルコールや食 塩等の微量の塩類や少量の界面活性剤等が用いられる。その場合には、空気吸込 管 10,27,41, 53から供給される空気量に対する上記マイクロナノバブルの発生率を 100%程度まで向上させることができる。然も、上記アルコール類や塩類は、後段の 膜装置で除去し易いため、上記膜装置に対して悪影響を及ぼすことはない。
[0092] また、本実施の形態においては、上記第 1マイクロナノバブル発生槽 6,第 2マイクロ ナノバブル発生槽 23,第 3マイクロナノバブル発生槽 37および第 4マイクロナノパブ ル発生槽 49に対して、個別のマイクロナノバブル発生助剤タンク 61, 63, 65, 67から マイクロナノバブル発生助剤を供給するようにしている。しかしながら、この発明はこ れに限定されるものではなぐ共通のマイクロナノバブル発生助剤タンク力 夫々の 定量ポンプによって供給するようにしても差し支えな 、。
[0093] また、上記各実施の形態においては、超純水製造装置 5を構成する前処理装置 19 の前段のみに処理槽 1を配置している。し力しながら、この発明はこれに限定されるも のではなぐ 1次純水製造装置 20の前段あるいは 2次純水製造装置 21の前段にもマ イクロナノバブル発生槽および嫌気測定槽を含む処理槽を配置し、マイクロナノパブ ルによって 1次純水製造装置 20あるいは 2次純水製造装置 21における膜の寿命を 長くして、ランニングコストの低減を図ることも可能である。
[0094] また、上記各嫌気測定槽 7,24,38,50には、溶存酸素計 13,30,44,56と酸化還元 電位計 14,31,45,57との両方を設置している力 何れか一方のみを設置しても構わ ない。

Claims

請求の範囲
[1] 外部力 水が導入されると共に、マイクロバブルとナノバブルとの両方を含むマイク ロナノバブルを発生するマイクロナノバブル発生器 (8,25,39,51)を有して、上記導入 された水中に上記マイクロナノバブルを含有させるマイクロナノバブル発生槽 (6,23, 37,49)と、
上記マイクロナノバブル発生槽 (6, 23,37,49)カゝら導入された水を嫌気性処理する と共に、被処理水中における上記マイクロナノバブルの含有量を測定するための嫌 気測定槽 (7,24,38,50)と
を備えたことを特徴とする水処理装置。
[2] 請求項 1に記載の水処理装置において、
上記嫌気測定槽 (7)は、少なくとも前処理装置 (19)を含む超純水製造装置 (5)にお ける上記前処理装置 (19)の前段に設置されていることを特徴とする水処理装置。
[3] 請求項 1に記載の水処理装置において、
上記嫌気測定槽 (7,24)は、少なくとも 1次純水製造装置 (20)を含む超純水製造装 置 (5)における上記 1次純水製造装置 (20)の前段に設置されていることを特徴とする 水処理装置。
[4] 請求項 1に記載の水処理装置において、
上記嫌気測定槽 (7,24)は、少なくとも 1次純水製造装置 (20)および 2次純水製造装 置 (21)を含む超純水製造装置 (5)における上記 2次純水製造装置 (21)の前段に設置 されて ヽることを特徴とする水処理装置。
[5] 請求項 1に記載の水処理装置において、
前処理装置 (19),1次純水製造装置 (20)および 2次純水製造装置 (21)を含む超純 水製造装置 (5)と、
上記超純水製造装置 (5)で製造された超純水を使用する工場内の箇所である工場 内ユースポイント (22)と、
上記工場内ユースポイント (22)において発生した希薄排水を処理して回収する希 薄排水回収装置 (34)と、
上記工場内ユースポイント (22)において発生した濃厚排水を処理して回収する雑 用水回収装置 (47)と、
上記雑用水回収装置 (47)によって回収された処理水を再利用するクーリングタヮ 一およびスクラバー (48)と、
上記工場内ユースポイント (22)において発生した濃厚排水を処理して放流する排 水処理装置 (59)と、
上記希薄排水回収装置 (34)の前段に配置された活性炭吸着装置 (33)と を備え、
上記工場内ユースポイント (22)において発生した希薄排水を上記マイクロナノパブ ル発生槽 (23)および上記嫌気測定槽 (24)に導入して処理し、この処理水を上記活 性炭吸着装置 (33)および上記希薄排水回収装置 (34)によって処理して回収し、この 回収水を上記超純水製造装置 (5)における上記 1次純水製造装置 (20)に導入して再 利用するようになって!/ヽることを特徴とする水処理装置。
[6] 請求項 5に記載の水処理装置において、
上記工場内ユースポイント (22)において発生した濃厚排水を上記マイクロナノパブ ル発生槽 (37)および上記嫌気測定槽 (38)に導入して処理し、この処理水を上記雑 用水回収装置 (47)によって処理して回収し、この回収水を上記クーリングタワーおよ びスクラバー (48)で再利用するようになって ヽることを特徴とする水処理装置。
[7] 請求項 5に記載の水処理装置において、
上記工場内ユースポイント (22)において発生した濃厚排水を上記マイクロナノパブ ル発生槽 (49)および上記嫌気測定槽 (50)に導入して処理し、この処理水を上記排 水処理装置 (59)によって再度処理して放流するようになっていることを特徴とする水 処理装置。
[8] 請求項 1に記載の水処理装置において、
上記マイクロナノバブル発生槽 (6, 23,37,49)に添カ卩されるマイクロナノバブル発生 助剤が貯溜されたマイクロナノバブル発生助剤タンク (61,63,65,67)を備えたことを 特徴とする水処理装置。
[9] 請求項 8に記載の水処理装置において、
上記マイクロナノバブル発生助剤タンク (61, 63,65,67)に貯溜された上記マイクロ ナノバブル発生助剤は、アルコール類ある 、は食塩を含む塩類であることを特徴とす る水処理装置。
[10] 請求項 1に記載の水処理装置において、
上記嫌気測定槽 (7,24,38,50)には、溶存酸素計 (13,30,44,56)および酸化還元 電位計 (14,31,45,57)のうちの少なくとも何れかが設置されていることを特徴とする 水処理装置。
[11] 請求項 1に記載の水処理装置において、
上記嫌気測定槽 (7,24,38,50)には、ポリ塩ィ匕ビ二リデン充填物 (12,29,43,55)が 充填されて!ゝることを特徴とする水処理装置。
[12] 請求項 1に記載の水処理装置において、
上記マイクロナノバブル発生槽 (6, 23,37,49)における上記マイクロナノバブル発生 器 (8,25,39,51)は、キヤビテーシヨン型マイクロナノバブル発生器であることを特徴と する水処理装置。
PCT/JP2006/303668 2005-09-21 2006-02-28 水処理装置 WO2007034582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/992,156 US7803272B2 (en) 2005-09-21 2006-02-28 Water treatment system
CN2006800344120A CN101268019B (zh) 2005-09-21 2006-02-28 水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005273562A JP3893401B1 (ja) 2005-09-21 2005-09-21 水処理装置
JP2005-273562 2005-09-21

Publications (1)

Publication Number Publication Date
WO2007034582A1 true WO2007034582A1 (ja) 2007-03-29

Family

ID=37888641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303668 WO2007034582A1 (ja) 2005-09-21 2006-02-28 水処理装置

Country Status (5)

Country Link
US (1) US7803272B2 (ja)
JP (1) JP3893401B1 (ja)
CN (1) CN101268019B (ja)
TW (1) TW200712007A (ja)
WO (1) WO2007034582A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485444B2 (ja) 2005-09-28 2010-06-23 シャープ株式会社 排水処理方法および排水処理装置
JP4956052B2 (ja) * 2006-05-26 2012-06-20 シャープ株式会社 微生物活性化装置
JP4611328B2 (ja) * 2007-02-28 2011-01-12 シャープ株式会社 インスリン量を増加させるとともに血糖値を低下させる装置
JP4991371B2 (ja) * 2007-04-05 2012-08-01 シャープ株式会社 入浴装置および入浴方法
JP5097024B2 (ja) * 2008-06-17 2012-12-12 シャープ株式会社 水処理装置および水処理方法
JP5261124B2 (ja) * 2008-10-10 2013-08-14 シャープ株式会社 ナノバブル含有液体製造装置及びナノバブル含有液体製造方法
JP5037479B2 (ja) * 2008-11-18 2012-09-26 シャープ株式会社 浄化処理装置及び浄化処理方法
US10683162B2 (en) 2017-05-18 2020-06-16 Evoqua Water Technologies Llc Digester cover left-in-place ballast ring
CN107473381A (zh) * 2017-09-13 2017-12-15 安徽有余跨越瓜蒌食品开发有限公司 一种好氧厌氧组合式茶多酚生产废水处理系统
US11939245B2 (en) 2017-10-13 2024-03-26 The Regents Of The University Of California Alternating magnetic field systems and methods for generating nanobubbles
US11904366B2 (en) * 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970598A (ja) * 1995-09-06 1997-03-18 Sharp Corp 超純水製造装置
JPH09155371A (ja) * 1996-08-09 1997-06-17 Kurita Water Ind Ltd 超純水製造装置
JPH10249392A (ja) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd 排水処理方法
JP2001058142A (ja) * 1999-06-14 2001-03-06 Aura Tec:Kk マイクロバブル吐出ノズル、ノズル装填容器及び流動促進筒
JP2002143885A (ja) * 2000-11-14 2002-05-21 Hirobumi Onari 微細気泡
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP2005169359A (ja) * 2003-12-15 2005-06-30 Miyazaki Prefecture 単分散気泡の生成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160438A (en) * 1990-12-28 1992-11-03 The United States Of American As Represented By The Secretary Of The Navy Method and means of sampling large regions of liquid for pollution or biological activity using bubbles
US5458778A (en) * 1992-12-23 1995-10-17 Partner Gmbh Method of treating waste water from a car wash at a vehicle refueling station
US6238569B1 (en) * 1999-06-22 2001-05-29 Engineering Specialties, Inc. Flotation pile oil/water separator apparatus
JP4016099B2 (ja) 2002-05-20 2007-12-05 独立行政法人産業技術総合研究所 ナノ気泡の生成方法
JP2004321959A (ja) 2003-04-25 2004-11-18 Hitachi Eng Co Ltd 廃液の処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970598A (ja) * 1995-09-06 1997-03-18 Sharp Corp 超純水製造装置
JPH09155371A (ja) * 1996-08-09 1997-06-17 Kurita Water Ind Ltd 超純水製造装置
JPH10249392A (ja) * 1997-03-12 1998-09-22 Mitsubishi Heavy Ind Ltd 排水処理方法
JP2001058142A (ja) * 1999-06-14 2001-03-06 Aura Tec:Kk マイクロバブル吐出ノズル、ノズル装填容器及び流動促進筒
JP2002143885A (ja) * 2000-11-14 2002-05-21 Hirobumi Onari 微細気泡
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP2005169359A (ja) * 2003-12-15 2005-06-30 Miyazaki Prefecture 単分散気泡の生成方法

Also Published As

Publication number Publication date
CN101268019B (zh) 2011-07-13
US7803272B2 (en) 2010-09-28
JP3893401B1 (ja) 2007-03-14
US20090145827A1 (en) 2009-06-11
JP2007083143A (ja) 2007-04-05
TWI302143B (ja) 2008-10-21
TW200712007A (en) 2007-04-01
CN101268019A (zh) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2007034582A1 (ja) 水処理装置
TWI302522B (ja)
JP4250163B2 (ja) 水処理方法および水処理装置
JP4443493B2 (ja) 水処理方法および水処理システム
JP4495056B2 (ja) 超純水製造装置の殺菌装置
CN101132990A (zh) 废水处理装置及废水处理方法
CN205313291U (zh) 冷却循环水综合处理系统
JP3370576B2 (ja) 超純水製造装置
JP4927415B2 (ja) 排ガス排水処理装置
CN209872689U (zh) 一种锂电池废水处理一体化装置
JP4884737B2 (ja) 液体処理装置
CN101659503A (zh) 膜生物反应-纳米固定态光催化反应装置
KR100992827B1 (ko) 막분리를 이용한 폐수처리 시스템
JP4648140B2 (ja) 水処理方法、マイクロナノバブル微生物活性ユニットおよび水処理装置
CN205313294U (zh) 可连续运转的冷却循环水处理系统
CN212151997U (zh) 一种含油废水处理回用装置
CN111285563B (zh) 一种船舶生活污水处理装置及处理方法
CN104591351B (zh) 一种处理化工生产废水的离子膜电解槽装置
CN204848535U (zh) 一种反渗透浓水处理装置
CN209778389U (zh) 一种高效便捷的海水淡化车
CN107352711B (zh) 纳米电解协同高频振荡的污水处理系统
CN217265326U (zh) 一种垃圾渗滤液深度处理装置
KR20110020486A (ko) 정수 시스템
WO2012087283A1 (en) Adsorptive flotation removal of sodium tripolyphosphate from waste liquid
CN107285548A (zh) 冷等离子体聚变技术污水处理系统和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034412.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11992156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714805

Country of ref document: EP

Kind code of ref document: A1