WO2007023737A1 - 有機材料の真空蒸着方法およびその装置 - Google Patents

有機材料の真空蒸着方法およびその装置 Download PDF

Info

Publication number
WO2007023737A1
WO2007023737A1 PCT/JP2006/316232 JP2006316232W WO2007023737A1 WO 2007023737 A1 WO2007023737 A1 WO 2007023737A1 JP 2006316232 W JP2006316232 W JP 2006316232W WO 2007023737 A1 WO2007023737 A1 WO 2007023737A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
heating
container
vacuum
containers
Prior art date
Application number
PCT/JP2006/316232
Other languages
English (en)
French (fr)
Inventor
Eiichi Matsumoto
Yoshiko Abe
Yuji Yanagi
Original Assignee
Tokki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokki Corporation filed Critical Tokki Corporation
Priority to EP06796543.4A priority Critical patent/EP1918413B1/en
Priority to KR1020087004100A priority patent/KR101311002B1/ko
Priority to US11/990,829 priority patent/US8357241B2/en
Publication of WO2007023737A1 publication Critical patent/WO2007023737A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method and apparatus for vacuum deposition of organic materials.
  • vacuum evaporation is used as a method for producing an organic layer such as an organic electoluminescence (EL) element.
  • the vacuum deposition method is performed by placing a substrate and a film forming material facing each other in a vacuum environment, heating the film forming material to a vapor pressure temperature, and attaching the obtained evaporated material to the substrate surface.
  • a method for heating the film forming substance a resistance heating method, a heater single heating method, an induction heating method, an electron beam (hereinafter referred to as EB) method, and the like can be given.
  • the resistance heating method energizes and heats the container containing the film-forming substance as a resistor
  • the heater heating method heats the container with a heater placed on the outer periphery of the container
  • the induction heating method uses an induction installed outside.
  • the container or film-forming material is heated from the coil by electromagnetic induction.
  • the film forming material is irradiated with an electron beam from the outside to heat the film forming material.
  • the heating temperature is set low.
  • the evaporation temperature is about 200 to 400 ° C. Therefore, when depositing organic materials, it is necessary to control the deposition rate in the low heating temperature range.
  • the container becomes a heating resistor, it is difficult to increase the size of the container because of the electric capacity, and although the heating rate is high, the growth rate is high. There is a problem that the filling amount of the film material is limited and it is not suitable for a large-scale vapor deposition system for mass production.
  • the heater heating method since the container is indirectly heated, the heating time is long, and the heating response It is difficult to control the deposition rate, which has poor properties. In particular, since organic materials have poor thermal conductivity, the heating time may be several hours in mass production equipment.
  • Patent Document 3 a technique for depositing an organic substance by induction heating has been proposed (see, for example, Patent Document 3).
  • an organic material is charged in a container that generates heat by electromagnetic induction, and the container is heated by electromagnetic induction, or a filler that generates heat by electromagnetic induction is charged in a container together with an organic material, and the filler is electromagnetically induced.
  • a method of heating is disclosed. In this method, the container is directly heated, so that it is easy to control the vapor deposition rate, which has a shorter heating time and better responsiveness than the heater heating method, which is indirect heating.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-223970 (paragraph 0037)
  • Patent Document 2 JP 2001-323367 A (paragraph 0014)
  • Patent Document 3 Japanese Patent Publication No. 02Z014575 (Figs. 1 to 3)
  • the present invention has been made to solve the above-described problems, and can prevent thermal deterioration of the organic material contained in the evaporation source, improve productivity, and stably control the evaporation rate for a long time. It is an object of the present invention to provide a vacuum vapor deposition method and apparatus for an organic material.
  • the method for vacuum evaporation of an organic material forms an evaporation material on an opposing substrate from an evaporation source including a container containing the organic material and one of which opens.
  • the vapor deposition source has a heating body that closes the opening without being fixed to the container and contacts the surface of the organic material in the container, and heats only the heating body to evaporate the organic material.
  • the evaporating substance is discharged from at least one hole or at least one slit formed in the heating body.
  • the present invention is effective for vapor deposition for large-scale mass production.
  • a plurality of the containers are provided, or the inside of the container is divided into a plurality of compartments, and vapor deposition is performed by heating one of the plurality of containers or compartments, and the organic material in the containers or compartments
  • the organic material is reduced through the holes, the slits, or other holes formed in the heating body provided in the plurality of containers or compartments, respectively. It is preferable to replenish the organic material in the compartment.
  • the container in which the organic material is reduced can be replenished in the vacuum apparatus, and it is not necessary to release the vacuum and replenish the organic material, thereby further improving the productivity.
  • the container is maintained at a temperature equal to or lower than an evaporation temperature of the organic material.
  • An organic material vacuum vapor deposition apparatus of the present invention releases an evaporating substance for forming a film on an opposing substrate, and contains a container that contains the organic material that becomes the evaporating substance and one of which opens.
  • the container having at least one hole that closes the opening without being fixed to the container smaller than the opening, contacts the surface of the organic material in the container, and releases the evaporated substance, or the container.
  • a heating body having at least one slit for releasing the evaporated substance, and a heating source for heating only the heating body.
  • the heating source is preferably at least one of an electron beam heating source, a high frequency induction heating source, a laser beam heating source, and an infrared heating source.
  • a plurality of the containers are provided, or the inside of the container is divided into a plurality of compartments, the heating body is provided for each of the plurality of containers or compartments, and the one of the plurality of containers or compartments has
  • the plurality of containers or compartments are moved to a predetermined heating position, while the container or compartment in which the organic material is reduced by releasing the evaporated substance is separated from the heating position. It is preferable to provide moving means.
  • the container or compartment with reduced organic material is passed through the holes, slits, or other holes formed in the heater provided in each of the plurality of containers or compartments. It is preferable to have an organic material supply mechanism that replenishes organic materials.
  • the invention's effect it is possible to prevent thermal degradation of the organic material accommodated in the vapor deposition source, and to perform vapor deposition stably for a long time.
  • productivity can be improved and the deposition rate can be stably controlled for a long time.
  • FIG. 1 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus according to the first embodiment of the present invention.
  • the first embodiment is an example in which EB or a single laser beam (hereinafter abbreviated as LB) is used as an energy source for evaporating an organic material.
  • LB single laser beam
  • a vacuum deposition apparatus 20 and a substrate holder 8 are disposed opposite to each other in the chamber 9.
  • the substrate 7 is attached to the substrate holder 8, and the evaporated particles evaporated from the vacuum deposition apparatus 20
  • the vacuum deposition apparatus 20 includes a container 1, a heating element 3, a heating source (EB or LB) 4, and a shielding partition 10.
  • the container 1 contains an organic material (film forming material) 2 and is stored in the container. .
  • a shutter and a deposition rate measurement system for example, a quartz vibration type film thickness controller (not shown) may be provided as necessary.
  • the container 1 has a bottomed cylindrical shape.
  • the heating element 3 forms a donut shape slightly smaller than the inner diameter of the container 1 to cover the upper surface opening of the container 1, and the lower surface of the heating element 3 is in contact with the upper surface of the organic material 2 accommodated in the container 1. .
  • the heating source 4 is disposed above the outer edge portion of the upper surface of the heating element 3 and is heated by irradiating the outer edge portion with EB or LB. Then, when the heating element 3 is heated, heat is conducted from the lower surface of the heating element 3 to the upper surface of the organic material 1, and the generated evaporated particles 5 pass through the hole 6 provided at the center of the heating element 3, and the substrate To reach 7.
  • FIG. 2 shows a partially enlarged view near the contact point between the container 1 and the heating element 3.
  • the peripheral edge of the heating element 3 is not fixed to the inner wall of the container 1, but comes into contact with or away from the inner wall as appropriate, and the bottom surface of the heating element 3 is always in contact with the surface of the organic material 2. In this way, an increase in the temperature of the entire container, where the heat of the heating element 3 is difficult to transfer to the container 1, is suppressed.
  • heating element 3 is placed on the surface of organic material 2 As a result, the high level of the heating body 3 changes following the change in the high level of the organic material 2 in the container 1 due to the progress of evaporation, and the bottom surface of the heating body 3 always contacts the surface of the organic material 2.
  • the outer surface of the heating element 3 is irradiated with EB, the temperature of the organic material 2 in the portion in contact with the lower surface of the heating element 3 rises and reaches the evaporation temperature.
  • the organic material 2 evaporates, passes through the holes 6 and becomes vaporized particles 5, and is deposited on the surface of the substrate 7 to form a film.
  • the organic material 2 in the container 1 is heated only at the portion in contact with the heating element 3 and the entire organic material 2 is not heated. .
  • the heating element 3 When the heating element 3 is irradiated with EB or the like, secondary electrons, reflected electrons, or X-rays are emitted from the heating element 3, which adversely affect the TFT substrate or the like in the process of forming the organic EL element. There is power to exert. Therefore, by arranging the shielding partition 10 inside the irradiation area (upper edge portion) of the heating element 3, secondary electrons and the like emitted from the outer edge portion of the heating element 3 reach the substrate 7 side. Can be prevented.
  • the container 1 it is preferable to cool the container 1 by placing a cooling mechanism such as a water cooling jacket outside the container 1 so that only the part of the container 1 that is in contact with the heating element 3 is not exposed to high temperatures.
  • a cooling mechanism such as a water cooling jacket outside the container 1
  • the heating source 4 may be used alone, or a plurality of heating sources may be used simultaneously in order to improve the deposition efficiency.
  • the material of the heating element 3 has good thermal conductivity in that temperature range, and Those that do not react with each other are preferred.
  • the material of the heating element 3 is preferably a metal material, a carbon material, or a ceramic material.
  • tungsten, molybdenum, titanium, aluminum, etc. can be used as the metal material.
  • the carbon material may be carbon alone, but it is more preferable to use a carbon surface with a special coating treatment.
  • the special coating improves the physical stability of the carbon surface and prevents contamination of organic materials.
  • any general-purpose ceramics such as composite ceramics such as silicon carbide, nitride nitride, alumina, zirconia, or sialon can be used.
  • the position and number of the holes 6 of the heating element 3 are not limited to the above. The position and number of the holes 6 may be adjusted so that the region to be deposited on the substrate is in an appropriate position.
  • the heating element 3 is not provided with a hole, and the size of the heating element 3 is made much smaller than the inner diameter of the container 1 (for example, the difference in diameter between the two is about 5 mm).
  • a slit 6B (maximum width is about 5 mm) may be formed between the peripheral edge of the container and the inner wall of the container 1, and the evaporated substance may be discharged from the slit 6B.
  • any part of the upper surface of the heating element can be irradiated with EB, etc. This makes it possible to easily change the irradiation area of EB, etc. The amount of incident light can be easily adjusted.
  • FIG. 4 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus according to the second embodiment of the present invention.
  • the second embodiment is an example in which a high frequency induction heating source is used as an energy source for evaporating the organic material.
  • the vacuum evaporation apparatus 20C includes a container 1C, a heating body 3C, a heating source (induction coil for high-frequency induction heating) 11, and a high-frequency power source 12.
  • the material of the container 1C needs not to generate heat by high frequency induction.
  • the material is a ceramic material. More specifically, the same ceramic material as that used for the heating body 3 of the first embodiment can be used.
  • the heating body 3C is provided with two holes 6C at predetermined intervals, and the evaporated substance is discharged through the holes 6C.
  • the degree of freedom of the position and number of holes or slits provided in the heating element 3C is increased.
  • FIG. 5 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus according to the third embodiment of the present invention.
  • the third embodiment is an example in which an infrared heating source is used as an energy source for evaporating an organic material.
  • a vacuum evaporation apparatus 20D includes a container 1D, a heating body 3D, and a heating source (infrared heating source) 19.
  • the material of the container 1 needs to be a material that does not absorb infrared rays. Specifically, quartz glass or the like can be used.
  • the material used for the heating element 3D differs depending on the organic material 2, but in principle, the infrared absorption factor of the heating element 3D needs to be larger than the infrared absorption factor of the organic material 2.
  • the infrared heating source 19 may be arranged above or to the side of the container 1D, but in consideration of contamination of the infrared heating source 19 due to adhesion of evaporated particles, high-temperature deterioration of organic materials due to the heat of the calo heat source, and maintainability. Then, it is preferable to place it below the container 1D.
  • FIG. 6 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus according to the fourth embodiment of the present invention.
  • the fourth embodiment is an example in which EB or LB is used as an energy source for evaporating the organic material.
  • a vacuum evaporation apparatus 20E includes a container 1E, heating elements 3E1 to 3E4, a heating source (EB) 4E, an organic material supply mechanism 14, a cooling mechanism 16, a rotating mechanism 17, and a partition plate 18.
  • EB heating source
  • the container 1E has a bottomed cylindrical shape with a central axis 15, and is above the cooling mechanism (water cooling jacket) 16. Is placed.
  • the central axis 15 of the container 1E is connected to a rotating mechanism 17 below the cooling mechanism 16, and as the rotating mechanism 17 rotates in the direction of arrow A in the figure, the container 1E rotates around the central axis 15. Yes.
  • the container 1E is partitioned into four small containers 1E1 to 1E4 by four partition plates 13 extending from the central shaft 15 toward the outer periphery of the container 1E.
  • Each of the small containers 1E1 to 1E4 is a bottomed cylindrical shape having a sector shape with a cut end of approximately 1/4 yen, and the organic material 2 is accommodated in each small container.
  • the heating elements 3E1 to 3E4 are slightly smaller than the fan-shaped cuts of the small containers 1E1 to 1E4.
  • the heating elements 3E1 to 3E4 are floating on the upper surface of the organic material 2 without contacting the inner wall of each small container. It is the same.
  • one hole 6E1 to 6E4 is provided in the center of each heating element 3E1 to 3E4.
  • the heating source (EB) 4E is arranged on the side of the container 1E, and the electron beam 40 that has jumped upward from the heating source 4E is deflected to 180 ° or 270 ° by a magnetic circuit (not shown). Then, the heated body 3E4 is irradiated. When the heating element 3E4 is heated by irradiation with the electron beam 40, the organic material 2 evaporates, and the evaporated particles 5 jump out of the holes 6E4 of the heating element 3E4.
  • the organic material supply mechanism 14 is arranged above the small container 1E2 on the side facing the small container 1E4 when viewed from the container 1E, and the hole of the heating element 3E 2 of the small container 1E2 immediately below the organic material supply mechanism 14 6E2 can be charged with organic material 2.
  • a partition plate 18 is disposed immediately above the central shaft 15 of the container 1E to prevent the evaporated particles 5 jumping out from the heating element 3E4 irradiated with EB from adhering to the organic material supply mechanism 14. Further, the partition plate 18 is electrically grounded and absorbs reflected electrons generated from the electron beam 40. Further, since high energy particles are incident on the partition plate 18 from the electron beam 40 and are in the vicinity of the evaporation source, the partition plate 18 is cooled by water because it is exposed to a high temperature.
  • the rotation mechanism 17 rotates the entire container 1E by force Z4, and the irradiation position (heating position) of the electron beam is adjacent to the small container. 1E3 heating element 3E3.
  • the container 1E rotates 1/4, the small container 1E1 moves immediately below the organic material supply mechanism 14 (the small container 1E1 has already used up the organic material). Therefore, the organic material can be replenished to a small container that has used up organic material, and at the same time, the small container that has been replenished with organic material can be used as an evaporation source. It is possible to carry out the process without stopping the apparatus and without releasing the vacuum. Thus, vapor deposition can be performed continuously.
  • the holes through which the evaporated particles are discharged from each heating body and the holes through which the organic material is supplied are common, but these holes may be provided separately. Further, these holes may be provided with a shutter if necessary, and the supply to the small container may be performed by other methods without using the organic material supply holes.
  • a plurality of small containers are arranged in a ring around the central axis 15, but the present invention is not limited to this.
  • a heating source is provided at a position where a heating element of one of the small containers is heated, and the organic material is consumed, the small container is placed directly below the adjacent organic material supply mechanism.
  • the organic material may be replenished.
  • a small container containing the organic material moves to the heating position.
  • the heating source and organic material supply mechanism may be moved instead to deposit and replenish organic materials from the container.
  • the deflection of the electron beam is 270 °.
  • a vacuum evaporation apparatus 20 shown in FIG. 1 was used.
  • a carbon container 1 having a wall thickness of 1.2 mm, an inner diameter of 40 mm ⁇ , an inner height of 15 mm, and a maximum filling amount of 18 ml was used.
  • the heating element 3 is formed on the surface of the carbon material 32 on the surface of the carbon material 32 by a CVD method as shown in FIG. Thermally decomposable carbon) 32 was used.
  • the heating element 3 had an outer diameter of 39 mm ⁇ and a thickness of 1.2 mm, and a doughnut-shaped object having one hole 6 of 5 mm ( ⁇ >) at the center of the heating element was used.
  • the heating element 3 was placed on the organic material 2 described later filled in the container so as not to contact the container 1. Since the outer diameter of the heating element 3 is not fixed to the container 1 which is smaller than the inner diameter of the container 1, the heating element 3 moves to the lower side of the container 1 following the decrease in the organic material 2 as the deposition proceeds. The bottom surface of the heating element 3 is always in contact with the surface of the organic material 2. Heating is done with firewood and Alq (aluminum quinolinol complex, powder) is used as the organic material.
  • the acceleration voltage of the EB was adjusted so that the temperature of the heating element was about 300 ° C.
  • the deposition rate was measured by a quartz vibration rate monitor.
  • the target deposition rate of 10 X 10 _ 1 ° m / s was reached in about 10 seconds. After that, deposition continued for more than 10 hours, but the deposition rate was stable. In the case of EB heating, the heating body can be heated and cooled rapidly, so it is considered that the target deposition rate is reached quickly.
  • the organic material in the container and the contact portion between the organic material and the heating element were observed, and the organic material was affected by heat from the contact portion to a depth of about 2 to 2 mm. In the deeper part, the initial powder state was maintained. As a result, only the vicinity of the surface of the organic material is heated by the heating body, and high temperature deterioration of the organic material due to heating the entire container as in the conventional case is prevented, so that the deposition rate can be stabilized even during long-time deposition. found.
  • a vacuum evaporation apparatus 20E shown in FIG. 6 was used as an example according to the fourth embodiment.
  • This vapor deposition apparatus serves as an evaporation source as a mass production vapor deposition apparatus.
  • the heating source 4E adopts the EB method, and the heating source 4E contains a filament that generates EB, and in order to suppress the contamination of the filament, the thermoelectrons are deflected 270 ° by a magnetic circuit (not shown). Let the heated body of one small container irradiate.
  • each heating body was mounted on the same organic material 2 as the above with which each container was filled so that it might not contact each container 1E1-: 1E4. Since the outer diameter of each heating element is not fixed to a container smaller than the inner diameter of each container, each heating element moves to the lower side of each container following the decrease in the organic material 2 as the vapor deposition proceeds. The bottom surface of the heating element is always in contact with the surface of the organic material 2.
  • the container 1E When the organic material in the small container 1E4 in Fig. 6 is exhausted, the container 1E is rotated 1/4 in the direction of arrow A by the rotation mechanism 17, and the vapor deposition is continued using the adjacent small container 1E3. Then, the organic material was replenished in the small container 1E1 which used the organic material. By repeating this operation, the deposition process could be carried out continuously for 140 hours.
  • a vacuum evaporation apparatus 20C shown in FIG. 4 was used.
  • the container 1C is made of alumina, which is a material that is not induction-heated, and is a large-capacity container of about 10 Occ suitable for mass production.
  • a plurality of the above-mentioned containers 1C were installed in a vacuum chamber, and continuous vapor deposition was carried out by appropriately changing the container.
  • Organic material 2 was the same as in Example 1.
  • the heating element 3C was made of carbon having one hole.
  • the heating source 11 a high frequency induction heating induction coil made of copper pipe was used.
  • the organic material loses weight, and the heated body moves downward along the container. It has been confirmed that the bottom surface of the heating body always contacts the surface of the organic material. As a result, it was possible to stably deposit the evaporated particles on the substrate stably for a long time.
  • a vacuum evaporation apparatus 20D shown in FIG. 5 was used.
  • quartz glass that transmits infrared wavelengths was used.
  • the amount of evaporated particles reaching the substrate 7 is controlled by heating with the above device, monitoring the amount of evaporated particles generated with a quartz-vibration film thickness controller, and controlling the current input to the infrared heating source. Was constantly controlled.
  • the organic material 2 was heated in the same manner as in Example 1 except that the heating element 3 was not used and EB was directly irradiated on the side surface of the container 1.
  • the organic material in the container was visually observed, and it was confirmed that it was clearly affected by heat.
  • the organic material used was changed from Alq3 to CuPc (copper phthalocyanine) and TPD (triphenylamine dimer)
  • CuPc copper phthalocyanine
  • TPD triphenylamine dimer
  • FIG. 1 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is a schematic cross-sectional view showing another example in which the heating element of the vacuum vapor deposition apparatus according to the first embodiment of the present invention is installed in a container.
  • FIG. 4 is a schematic cross-sectional view showing an example of a vacuum vapor deposition apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of a vacuum vapor deposition apparatus according to the third embodiment of the present invention. Is
  • FIG. 6 is a schematic cross-sectional view showing an example of a vacuum deposition apparatus according to the fourth embodiment of the present invention. 7] An example of the configuration of the heating element of the vacuum deposition apparatus according to the first embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 蒸着源に収容された有機材料の熱劣化を防ぐことができ、生産性が向上すると共に、蒸着レートを長時間安定して制御することができる有機材料の真空蒸着方法およびその装置を提供する。 【解決手段】 有機材料2を収容し一方が開口する容器1を備えた蒸着源20からの蒸発物質5を対向する基板7に成膜する真空蒸着法であって、蒸着源は、容器に固定せずに容器の開口を閉塞するとともに容器中の有機材料の表面に接触する加熱体3を有し、加熱体のみを加熱して有機材料を蒸発させ、加熱体に形成された少なくとも1つの孔6又は少なくとも1つのスリットから蒸発物質を放出させる。

Description

明 細 書
有機材料の真空蒸着方法およびその装置
技術分野
[0001] 本発明は有機材料の真空蒸着方法およびその装置に関する。
背景技術
[0002] 例えば有機エレクト口ルミネッセンス (EL)素子等の有機層の製造方法として、真空 蒸着が用いられている。通常、真空蒸着法は、真空環境下において基板と成膜物質 を対向配置し、成膜物質を蒸気圧温度に加熱し、得られた蒸発物質を基板表面に 付着させて行われる。ここで、成膜物質の加熱方法としては、抵抗加熱方式、ヒータ 一加熱方式、誘導加熱方式、電子ビーム(以下、 EBと称する)方式等が挙げられる。 このうち、抵抗加熱方式は成膜物質を収容する容器を抵抗体として通電加熱し、ヒ 一ター加熱方式は容器の外周に配置したヒーターで容器を加熱し、誘導加熱方式 は外部に設置した誘導コイルから電磁誘導作用によって容器又は成膜物質を加熱 する。又、 EB方式は、外部から電子ビームを成膜物質に照射し、成膜物質を加熱す る。
[0003] ところで、有機材料は融点が低 蒸気圧が高いものが多いために低温で蒸発する 。そのため、有機材料を真空蒸着の成膜源とする場合、加熱温度は低く設定されて いる。例えば、有機 EL素子用の有機層を成膜する場合、蒸発温度は 200〜400°C 程度である。従って、有機材料を蒸着する場合、低加熱温度域での蒸着レートの制 御が必要である。
[0004] し力しながら、抵抗加熱方式の場合、容器が加熱抵抗体となるため、電気容量の関 係から容器のサイズを大きくすることが困難であり、加熱速度が高レ、ものの、成膜物 質の充填量が制限され、量産用の大規模な蒸着装置には適さないという問題がある また、ヒーター加熱方式の場合、容器を間接加熱するため、加熱時間が長ぐ又、 加熱応答性も悪ぐ蒸着レートの制御が困難である。特に、有機材料は熱伝導性が 悪いため、量産装置において加熱時間が数時間にも及ぶことがある。又、この方式 では、容器内部の材料が全体にわたって加熱されるため、最後まで容器内に残った 有機材料が長時間蒸発温度に曝され、熱分解などの劣化を起こす恐れがある。 電子ビームを成膜物質に照射する EB方式の場合、有機材料の分子間結合力が弱 レ、(数 eV程度)ため、高エネルギーの電子ビームを有機材料に直接照射すると、分 子間結合が切れ、又、分子が高温になるため、有機材料が分解して劣化する問題が ある。
[0005] このようなことから、有機材料を収容した容器に間接的に電子ビームを照射する技 術が提案されている (例えば、特許文献 1参照)。
又、上記ヒーター加熱方式を用いた場合の熱伝導性の改善方法として、容器内に 、有機化合物の粉体と、セラミックス等の熱伝導率の大きい物質とを混合する技術が 提案されている(例えば、特許文献 2参照)。このようにすると、セラミックス等が容器 内部まで熱を伝搬し、加熱が均一になるとされる。
一方、誘導加熱方式で有機物質を蒸着する技術が提案されている (例えば、特許 文献 3参照)。この技術は、電磁誘導で発熱する容器に有機材料を装入し、容器を電 磁誘導加熱する方法、又は電磁誘導で発熱する充填材を有機材料と共に容器に装 入し、充填材を電磁誘導加熱する方法を開示する。この方法は容器を直接加熱する ため、間接加熱である上記ヒーター加熱方式に比べて加熱時間が短ぐ蒸着レート 応答性も良ぐ蒸着レートの制御が容易とされている。
[0006] 特許文献 1 :特開平 6— 223970号公報 (段落 0037)
特許文献 2:特開 2001— 323367号公報 (段落 0014)
特許文献 3:特再表 02Z014575号公報 (第 1図〜第 3図)
発明の開示
発明が解決しょうとする課題
[0007] し力 ながら、上記した特許文献 1記載の技術の場合、間接加熱を用いるために上 記ヒーター加熱方式や誘導加熱方式と同様、均一加熱やレート制御が難しいという 問題がある。
又、特許文献 2記載の技術の場合、充填材が存在するために容器中の有機材料の 充填量が極端に少なくなり、さらに充填材と有機材料との接触状態によって均熱カロ 熱性が左右されるため、加熱時間の短縮化、蒸着レートの制御性の点で不充分であ る。
特許文献 3記載の技術の場合、ヒーター加熱方式と同様に容器を加熱する方法で は、容器内部の材料が全体にわたって加熱されるため、最後まで容器内に残った有 機材料が熱分解する恐れがある。又、同技術において充填材を加熱する方法では、 充填材の混入量や混入分布により、誘導加熱の周波数のマッチングが変動するため 、加熱の再現性が得られず、実用的でない。
本発明は上記の課題を解決するためになされたものであり、蒸着源に収容された 有機材料の熱劣化を防ぐことができ、生産性が向上すると共に、蒸着レートを長時間 安定して制御することができる有機材料の真空蒸着方法およびその装置の提供を目 的とする。
課題を解決するための手段
[0008] 上記の目的を達成するために、本発明の有機材料の真空蒸着方法は、有機材料 を収容し一方が開口する容器を備えた蒸着源から蒸発物質を対向する基板に成膜 し、前記蒸着源は、前記容器に固定せずに前記開口を閉塞するとともに該容器中の 有機材料の表面に接触する加熱体を有し、前記加熱体のみを加熱して前記有機材 料を蒸発させ、前記加熱体に形成された少なくとも 1つの孔又は少なくとも 1つのスリ ットから前記蒸発物質を放出させることを特徴とする。
このようにすると、容器内の有機材料全体でなぐ加熱体近傍の有機材料のみを蒸 発温度にすればよいので、有機材料の熱劣化の防止、蒸着レートの立上げ時間短 縮、及び蒸着レートの応答性改善が図られる。特に、大規模な量産を行う蒸着にお レ、て本発明は有効である。
[0009] 前記加熱体を加熱する方法として、電子ビーム加熱、高周波誘導加熱、レーザー ビーム加熱、又は赤外線加熱のうち少なくとも 1種以上を用いることが好ましい。
[0010] 前記容器を複数備え、又は前記容器の内部が複数の区画に分けられ、前記複数 の容器又は区画のうち 1つを加熱して蒸着を行レヽ、該容器又は区画内の有機材料が 減少すると、他の容器又は区画に切り替えて加熱して蒸着する工程を繰り返し、各容 器又は区画を順次用いて連続的に蒸着を行なうことが好ましい。 このようにすると、 1の容器内の有機材料が減少しても、別の容器を用いて蒸着を続 けることができるので、生産性が向上する。
[0011] さらに、前記複数の容器又は区画にそれぞれ設けられた前記加熱体の前記孔、前 記スリット、又は前記加熱体に形成される他の孔を介して、前記有機材料が減少した 容器又は区画内に前記有機材料を補充することが好ましい。
このようにすると、有機材料が減少した容器に真空装置内で補充することができ、 真空を解除して有機材料を補充する必要がないので、生産性がさらに向上する。
[0012] 前記容器は、前記有機材料の蒸発温度以下に保持されることが好ましい。
このようにすると、容器内の有機材料の熱劣化がより一層防止される。
[0013] 本発明の有機材料の真空蒸着装置は、対向する基板に成膜するための蒸発物質 を放出するものであって、前記蒸発物質となる有機材料を収容し一方が開口する容 器と、前記開口より小さぐ前記容器に固定せずに前記開口を閉塞して該容器中の 有機材料の表面に接触し、かつ前記蒸発物質を放出させる少なくとも 1つの孔を有 するか又は前記容器との間に前記蒸発物質を放出させる少なくとも 1つのスリットを有 する加熱体と、前記加熱体のみを加熱する加熱源とを備えたことを特徴とする。
[0014] 前記加熱源が、電子ビーム加熱源、高周波誘導加熱源、レーザービーム加熱源、 赤外線加熱源のうち少なくとも 1種類以上であることが好ましい。
前記容器を複数備え、又は前記容器の内部が複数の区画に分けられ、前記複数 の容器又は区画のそれぞれに対して前記加熱体が設けられ、前記複数の容器又は 区画のうちの 1つが有する前記加熱体を前記加熱源によって加熱するため、前記複 数の容器又は区画を所定の加熱位置に移動させ、一方、前記蒸発物質を放出して 有機材料が減少した容器又は区画を前記加熱位置から離す移動手段を備えたこと が好ましい。
前記複数の容器又は区画のそれぞれに設けられた前記加熱体の前記孔、前記スリ ット、又は前記加熱体に形成された他の孔を介して、前記有機材料が減少した容器 又は区画に前記有機材料を補充する有機材料供給機構をさらに備えたことが好まし レ、。
発明の効果 [0015] 本発明によれば、蒸着源に収容された有機材料の熱劣化を防ぐことができ、長時 間安定した蒸着が行える。又、本発明によれば、生産性が向上すると共に、蒸着レー トを長時間安定して制御することができる。
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態について説明する。
[0017] く第 1の実施形態〉
図 1は、本発明の第 1の実施形態に係る真空蒸着装置の一例を示す断面模式図で ある。第 1の実施形態は、有機材料を蒸発させるエネルギー源として、 EB又はレーザ 一ビーム(以下、 LBと略す)を用いた場合の例である。
図 1におレ、て、チャンバ一 9内に真空蒸着装置 20と基板ホルダー 8が対向配置され
、基板ホルダー 8には基板 7が取付けられ、真空蒸着装置 20から蒸発した蒸発粒子
(気化した有機材料) 5が基板 7上に成膜するようになっている。真空蒸着装置 20は 容器 1、加熱体 3、加熱源 (EB又は LB) 4、及び遮蔽用仕切具 10を備え、容器 1内に は有機材料 (成膜材料) 2が収容されてレ、る。
なお、基板 7と容器 1の間の空間に、必要に応じ、図示しないシャッターや蒸着レー ト測定システム (例えば、水晶振動式膜厚制御器)を設けてもよい。
[0018] 容器 1は有底円筒状をなしている。加熱体 3は容器 1の内径よりわずかに小さいドー ナツ状をなして容器 1の上面開口を覆い、加熱体 3の下面が容器 1に収容された有 機材料 2の上面に接してレ、る。
加熱源 4は、加熱体 3の上面外縁部の上方に配置され、当該外縁部に EB又は LB を照射して加熱するようになっている。そして、加熱体 3が加熱されると、加熱体 3の 下面から有機材料 1の上面に熱が伝導し、生じた蒸発粒子 5は加熱体 3の中心に設 けられた孔 6を通り抜け、基板 7へ到達するようになっている。
[0019] 図 2は、容器 1と加熱体 3の接点付近の部分拡大図を示す。この図において、加熱 体 3の周縁は容器 1の内壁に固定されず、適宜内壁に接触し又は内壁から離間し、 有機材料 2の表面に加熱体 3の底面が常接している。このようにすると、加熱体 3の熱 が容器 1に伝達し難ぐ容器全体の温度上昇が抑制される。
有機材料 2は固体 (通常は粉末)であるので、加熱体 3を有機材料 2の表面に載置 するだけで、蒸発の進行による容器 1内の有機材料 2の高位の変化に追随して加熱 体 3の高位が変化し、加熱体 3の底面が常に有機材料 2の表面に接触する。そして、 EBが加熱体 3の外面に照射されると、加熱体 3の下面と接触している部分の有機材 料 2の温度が上昇して蒸発温度に到達する。有機材料 2は蒸発し、孔 6を通過して蒸 発粒子 5となって基板 7の表面に蒸着し成膜する。この加熱の間、容器 1内の有機材 料 2は、加熱体 3と接する部分のみが加熱され、有機材料 2の全体は加熱されないた め、長時間の蒸着において有機材料の熱劣化はほとんどない。
[0020] なお、 EB等を加熱体 3に照射した際、加熱体 3から二次電子、反射電子、又は X線 が放出され、これらは有機 EL素子の形成の過程で TFT基板等に悪影響を及ぼすこ と力ある。そこで、加熱体 3の照射領域(上面外縁部)より内側に遮蔽用仕切具 10を 配置することで、加熱体 3の上面外縁部から放出される二次電子等が基板 7側へ到 達することを防止できる。
又、容器 1のうち加熱体 3に接している部分以外が高温に曝さないよう、容器 1の外 側に水冷ジャケットなどの冷却機構を配置して容器 1を冷却することが好ましレ、。この 場合、容器 1を有機材料の融点以下の温度に冷却することで、より効率的に有機材 料の熱劣化を防止することができる。
加熱源 4は、単独で用いてもよぐ蒸着効率を向上させるため複数の加熱源を同時 に用いてもよい。
[0021] 有機 EL等に用いる有機材料の蒸発温度域は概ね 200〜400°Cであるため、加熱 体 3の材質としては、その温度域で熱伝導性が良好であり、かつ、有機材料と相互に 反応しないものが好ましい。加熱体 3の材質としては、具体的には金属素材、カーボ ン素材、又はセラミックス素材が好ましい。
より具体的には、金属素材としてタングステン、モリブデン、チタン、アルミなどが使 用可能である。また、カーボン素材はカーボン単体であってもよレ、が、カーボン表面 を特殊コーティング処理したものを用いるとより好ましい。特殊コーティングを行うによ り、カーボン表面の物理的'ィ匕学的安定性が向上し、有機材料の汚染を防止できる。 セラミックス素材としては、炭化ケィ素、窒化ケィ素、アルミナ、ジルコ二ァ、又はサイ ァロンのような複合セラミックス等の汎用的なセラミックスであれば使用可能である。 [0022] 加熱体 3の孔 6の位置及び個数は上記に限定されなレ、。基板上に蒸着される領域 が適切な位置になるよう、孔 6の位置及び個数を調整すればよい。
又、図 3に示すように、加熱体 3に孔を設けず、加熱体 3の大きさを容器 1の内径より 力なり小さくし (例えば、両者の直径の差を 5mm程度)、加熱体 3の周縁と容器 1内壁 との間にスリット 6B (最大幅が 5mm程度となる)を形成させ、スリット 6Bから蒸発物質 を放出させてもよい。この場合、加熱体 3Bに孔が設けられていないため、加熱体上 面のどの部分に EB等を照射してもよぐこれにより、 EB等の照射面積を容易に変更 できるので、必要な EBの入射量の調節が容易になる。
[0023] く第 2の実施形態〉
図 4は、本発明の第 2の実施形態に係る真空蒸着装置の一例を示す断面模式図で ある。第 2の実施形態は、有機材料を蒸発させるエネルギー源として、高周波誘導加 熱源を用レ、た場合の例である。
図 4において、第 1の実施形態(図 1)と同一の構成部分については、同一の符号を 付け、説明を省略する。図 4において、真空蒸着装置 20Cは容器 1C、加熱体 3C、 加熱源(高周波誘導加熱用誘導コイル) 11、及び高周波電源 12、を備える。
第 2の実施形態においては、容器 1Cの素材は第 1の実施形態の場合と異なり、高 周波誘導により熱を発しないものである必要がある。具体的には、セラミックス素材で あることが好ましぐより具体的には、第 1の実施形態の加熱体 3に用いたのと同様の セラミックス素材が使用可能である。
以上のような構成とすることにより、誘導コイル 11によって加熱体 3Cのみが加熱さ れ、加熱体 3Cの下面に接する有機材料 2の上面に熱が伝導する。加熱体 3Cには、 所定の間隔で 2個の孔 6Cが設けられ、蒸発物質は孔 6Cを通って放出される。
[0024] なお、第 2の実施形態においては、加熱体 3Cに EB等の照射領域を設ける必要が ないので、加熱体 3Cに設ける孔又はスリットの位置及び個数の自由度が増大する。 又、容器のうち加熱体に接している部分以外を冷却することが好ましぐ加熱源を 単独で用いてもよく複数の加熱源を同時に用いてもよいのは、第 1の実施形態の場 合と同様である。
[0025] く第 3の実施形態〉 図 5は、本発明の第 3の実施形態に係る真空蒸着装置の一例を示す断面模式図で ある。第 3の実施形態は、有機材料を蒸発させるエネルギー源として、赤外線加熱源 を用いた場合の例である。
図 5において、第 1の実施形態(図 1)と同一の構成部分については、同一の符号を 付け、説明を省略する。図 5において、真空蒸着装置 20Dは容器 1D、加熱体 3D、 加熱源 (赤外線加熱源) 19を備える。
第 3の実施形態においては、容器 1の素材は赤外線を吸収しないものである必要 がある。具体的には、石英ガラスなどが使用できる。又、加熱体 3Dに用いる素材は、 有機材料 2に応じて異なるが、原則として、加熱体 3Dの赤外線吸収率が有機材料 2 の赤外線吸収率より大きいことが必要である。赤外線加熱源 19は、容器 1Dの上方 又は側方に配置してもよいが、蒸発粒子の付着による赤外線加熱源 19の汚れ、カロ 熱源力 の熱による有機材料の高温劣化、及びメンテナンス性を考慮すると、容器 1 Dの下方に配置することが好ましレ、。
以上のような構成とすることにより、赤外線加熱源 19によって加熱体 3Dのみが加 熱され、加熱体 3Dの下面に接する有機材料 2の上面に熱が伝導する。蒸発物質は 、加熱体 3Dの中心孔 6Dを通って放出される。
又、容器のうち加熱体に接している部分以外を冷却することが好ましぐ加熱源を 単独で用いてもよく複数の加熱源を同時に用いてもよいのは、第 1の実施形態の場 合と同様である。
[0026] く第 4の実施形態〉
図 6は、本発明の第 4の実施形態に係る真空蒸着装置の一例を示す断面模式図で ある。第 4の実施形態は、有機材料を蒸発させるエネルギー源として、 EB又は LBを 用いた場合の例である。
図 6において、第 1の実施形態(図 1)と同一の構成部分については、同一の符号を 付け、説明を省略する。図 6において、真空蒸着装置 20Eは容器 1E、加熱体 3E1〜 3E4、加熱源 (EB) 4E、有機材料供給機構 14、冷却機構 16、回転機構 17、仕切板 18を備える。
[0027] 容器 1Eは、中心軸 15を持つ有底円筒状であり、冷却機構 (水冷ジャケット) 16の上 に載置されている。容器 1Eの中心軸 15は、冷却機構 16下方の回転機構 17に接続 され、回転機構 17が図の矢印 A方向に回転するのにつれて、中心軸 15まわりに容 器 1Eが回転するようになっている。
そして、容器 1Eは、中心軸 15から容器 1E外周に向かって延びる 4枚の区切り板 1 3により、 4つの小容器 1E1〜1E4に区切られている。各小容器 1E1〜: 1E4は、切口 が略 1/4円の扇形をなす有底筒状であり、各小容器に有機材料 2がそれぞれ収容 される。加熱体 3E1〜3E4は、各小容器 1E1〜1E4の扇形切口よりわずかに小さぐ 各小容器の内壁に接さずに有機材料 2の上面に浮かんでいるのは、前述した図 2の 場合と同様である。
又、各加熱体 3E1〜3E4の中心には、それぞれ 1個の孔 6E1〜6E4が設けられて いる。
[0028] 加熱源(EB) 4Eは、容器 1Eの側方に配置され、加熱源 4Eから上方に向かって飛 び出した電子ビーム 40は、図示しない磁場回路で 180° 又は 270° に偏向させら れ、加熱体 3E4に照射する。そして、加熱体 3E4が電子ビーム 40の照射により加熱 されると有機材料 2が蒸発し、加熱体 3E4の孔 6E4から蒸発粒子 5が飛び出す。 容器 1Eから見て、小容器 1E4と対向する側の小容器 1E2上方には、有機材料供 給機構 14が配置され、有機材料供給機構 14の直下にある小容器 1E2の加熱体 3E 2の孔 6E2に有機材料 2を装入可能になっている。
なお、容器 1Eの中心軸 15の直上には仕切板 18が配置され、 EBを照射された加 熱体 3E4から飛び出した蒸発粒子 5が有機材料供給機構 14に付着するのを防止す る。また、仕切板 18は電気的にアース接地され、電子ビーム 40から発生する反射電 子を吸収する。さらに、仕切板 18には電子ビーム 40から高エネルギー粒子が入射す るため、又、蒸発源の近傍にあるため、高温に曝されることから水冷されている。
[0029] そして、この実施形態において、小容器 1E4に収容した有機材料を使い切ると、回 転機構 17により容器 1E全体力 Z4回転し、電子線の照射位置 (加熱位置)は、隣 接する小容器 1E3の加熱体 3E3となる。一方、容器 1Eが 1/4回転すると、有機材 料供給機構 14の直下には小容器 1E1が移動してくる(小容器 1E1は既に有機材料 を使い切ったものである)。 従って、有機材料を使いきつた小容器に有機材料を補充し、同時に有機材料を補 充し終えた小容器を蒸発源として使用できるので、容器力 の有機材料の蒸着とそ の補充を連続的に装置を停止せず、かつ真空を解除することなく行なうことが可能と なる。このようにして、連続して蒸着を行うことができる。
[0030] なお、上記した説明では、各加熱体から蒸発粒子が放出される孔と、有機材料を供 給する孔が共通であるが、これらの孔を別個に設けてもよい。又、これらの孔に必要 に応じてシャッターを設けてもよぐ有機材料供給用の孔を用いずに他の方法で小容 器内に供給を行ってもよい。
又、上記した説明では、複数の小容器が中心軸 15周りに環状に並んでいるが、こ れに限られない。例えば、複数の小容器を直線状に並べ、小容器の 1つが有する加 熱体を加熱する位置に加熱源を設け、有機材料が消耗すると、この小容器を隣接す る有機材料供給機構の直下に移動させ、有機材料の補充を行わせてもよい。この場 合、加熱位置には、有機材料が収容されている小容器が移動してくる。そして、加熱 位置に最後の小容器が移動してその有機材料が消耗すると、小容器群は直線上を 反対方向に戻り、有機材料が補充されている先頭の小容器が加熱位置に置かれる。 又、複数の小容器を移動させず、代わりに加熱源や有機材料供給機構を移動させ て、容器からの有機材料の蒸着とその補充を行わせてもよレ、。
さらに、加熱源 4E内の電子ビームを発生するフィラメントの汚染を抑えるため、上記 した電子ビームの偏向を 270° とすると好ましい。
[0031] く実施例〉
以下に本発明を実施例を挙げて説明するが、本発明はこれらの例に限定されるも のではない。
実施例 1
[0032] く第 1の実施形態に係る実施例〉
第 1の実施形態に係る実施例として、図 1に示す真空蒸着装置 20を用いた。ここで 、カーボン製の容器 1は肉厚 1. 2mm、内径 40mm φ、内高 15mmで、最充填量 18 mlのものを用いた。加熱体 3は、有機材料との反応や不純物の混入等を予防するた め、図 7に示すように、カーボン素材 32の表面に、 CVD法により厚さ lOO x mの PG ( 熱分解性カーボン) 32を被覆したものを用いた。加熱体 3は、外径寸法 39mm φ、厚 み 1. 2mmとし、加熱体中央に 5mm (ί>の孔 6を一つ設けたドーナツ状のものを用レヽ た。
そして、容器 1に接しないようにして、容器に充填された後述する有機材料 2の上に 加熱体 3を載置した。加熱体 3の外径は容器 1の内径より小さぐ容器 1に固定されて いないため、蒸着の進行に伴う有機材料 2の減量に追随して加熱体 3は容器 1の下 方へ移動し、加熱体 3の底面が有機材料 2の表面に常に接触するようになっている。 加熱は ΕΒにより行ない、有機材料として Alq (アルミキノリノール錯体、粉末)を用い
3
たため、加熱体の温度が 300°C程度になるように EBの加速電圧を調節した。蒸着レ 一トは水晶振動式レートモニターにより測定した。
[0033] (結果)
EBの加速電圧を 10kV、ェミッション電流を 4mAとすることで、 目標とする蒸着レー トである 10 X 10_ 1°m/sに約 10秒で達した。その後、 10時間以上蒸着を続けたが 蒸着レートは安定していた。これは、 EB加熱の場合、加熱体を急速に加熱及び冷却 できるため、 目標とする蒸着レートに達するのが早いものと考えられる。
又、蒸着が終了後、容器内の有機材料、及び有機材料と加熱体の接触部分を観 察したところ、接触部から:!〜 2mm程度の深さまで有機材料が熱影響を受けたが、 それより深部では初期の粉末状態を保っていた。これより、加熱体によって有機材料 の表面近傍のみ加熱され、従来のように容器全体を加熱することによる有機材料の 高温劣化が防止されるので、長時間の蒸着においても蒸着レートを安定化できること が判明した。
なお、 EBによる加熱体の損傷は全くなかったことを確認した。
実施例 2
[0034] く第 4の実施形態に係る実施例〉
第 4の実施形態に係る実施例として、図 6に示す真空蒸着装置 20Eを用いた。この 蒸着装置は、量産蒸着装置としての蒸発源となるものである。
加熱源 4Eとしては EB方式を採用し、加熱源 4Eには EBを発生するフィラメントを内 蔵し、フィラメントの汚染を抑えるため、図示しない磁場回路で熱電子を 270° 偏向さ せて、 1つの小容器の加熱体に照射した。
カロ熱体 3E1〜3E4は、外径寸法 39mm φ、厚み 1. 2mmのカーボン製円板を 4等 分してそれぞれ扇形とし、加熱体中央に 5mm φの孔 6を一つ設けたものを用いた。 そして、容器 1E1〜: 1E4にそれぞれ接しないようにして、各容器に充填された上記と 同一の有機材料 2の上に各加熱体を載置した。各加熱体の外径は各容器の内径よ り小さぐ容器に固定されていないため、蒸着の進行に伴う有機材料 2の減量に追随 して各加熱体は各容器の下方へ移動し、各加熱体の底面が有機材料 2の表面に常 に接触するようになっている。
蒸着が進行し、図 6の小容器 1E4の有機材料が無くなった時、容器 1Eを回転機構 17により矢印 A方向に 1/4回転させ、隣接する小容器 1E3を用いて蒸着を続け、一 方で、有機材料を使いきつた小容器 1E1に有機材料を補充した。この操作を繰り返 すことにより、 140時間連続して蒸着工程を行うことができた。
実施例 3
く第 2の実施形態に係る実施例〉
第 2の実施形態に係る実施例として、図 4に示す真空蒸着装置 20Cを用いた。 容器 1Cは、誘導加熱されない材質であるアルミナ製とし、量産製造に適した約 10 Occの大容量容器とした。 1週間連続して蒸着を行うため、真空チャンバ内に上記容 器 1Cを複数個設置し、適宜容器を交換して連続蒸着を行った。有機材料 2は実施 例 1と同一とした。加熱体 3Cは、孔を 1個有するカーボン製とした。
加熱源 11としては、銅パイプ製の高周波誘導加熱用誘導コイルを用いた。
以上の装置により、高周波電源 12から電源を投入して誘導加熱を開始した。加熱 体 3Cが加熱されると、これに接触している有機材料 2の温度も上昇し始め、蒸発温 度に達すると加熱体 3の孔から蒸発粒子が噴出した。蒸発粒子の噴出量を、基板 7 近傍に配設した水晶振動式膜厚制御器によりモニタリングした。設定した蒸着レート を一定に保っため、水晶振動式膜厚制御器により得られた膜厚に応じ、誘導コイル に投入する電流をコントロールし、基板 7上に到達する蒸発粒子の量を常に一定にコ ントローノレした。
蒸着の進行につれて有機材料が減量し、それに追随して加熱体は容器の下方へ 移動し、加熱体の底面が有機材料の表面に常に接触することが確認された。これに より、長時間安定して蒸発粒子を基板上に一定に付着することができた。
実施例 4
[0036] く第 3の実施形態に係る実施例〉
第 3の実施形態に係る実施例として、図 5に示す真空蒸着装置 20Dを用いた。 容器 1Dは、赤外線波長を透過する石英ガラスを用いた。
以上の装置により加熱を行い、蒸発粒子の発生量を水晶振動式膜厚制御器でモ 二ターし、赤外線加熱源に投入する電流をコントロールすることで、基板 7上に到達 する蒸発粒子の量を常に一定にコントロールした。
[0037] く比較例 1>
図 1において、加熱体 3を用いず、 EBを容器 1の側面に直接照射したこと以外は、 実施例 1と全く同様にして有機材料 2を加熱した。
(結果)
この結果、有機材料 2の温度上昇は、容器 1の中央部より側壁面との接触部の方が 早ぐ側壁面近傍から先行して蒸発が進行したため、上記接触部に空間が形成され た。そのため、より高い温度になるようにして順次調節して一定の蒸着レートを確保し た。
蒸着終了後、容器内の有機材料を目視したところ、明らかに熱影響を受けたことが 確認された。ここで、用いた有機材料を Alq3から CuPc (銅フタロシアニン)及び TPD (ト リフエニルァミン二量体)に変えたところ、熱劣化により溶融する場合の他、黒化する 場合が見られた。これらの熱劣化は、容器内の位置によって有機材料の加熱状態が 不均一となり、部分的に必要以上に高温になったために生じたと考えられる。
又、 EBを調整する際、容器に損傷を与えたことが確認された。
[0038] く比較例 2>
加熱体を用いず、ステンレススチールを容器として用レ、、この容器の外部側面を通 常のヒーターで加熱した。有機材料として CuPc (銅フタロシアニン)を用いたため、加 熱温度を 400°C程度に調節した。又、蒸着レートは水晶振動式レートモニターにより 測定した。 この場合、加熱ヒーターにより容器を介して有機材料が間接加熱された。真空環境 下での加熱ヒーターからの伝熱は、放射伝熱によるため、加熱開始力 蒸着が始まる まで、約 1時間を必要とした。
また、ヒーターパワーに対する温度応答性が悪ぐ蒸着レートの安定化も困難であ つた。
図面の簡単な説明
[0039] [図 1]本発明の第 1の実施形態に係る真空蒸着装置の一例を示す断面模式図である [図 2]図 1の部分拡大図である。
[図 3]本発明の第 1の実施形態に係る真空蒸着装置の加熱体が容器に設置される別 の一例を示す断面模式図である。
[図 4]本発明の第 2の実施形態に係る真空蒸着装置の一例を示す断面模式図である [図 5]本発明の第 3の実施形態に係る真空蒸着装置の一例を示す断面模式図である
[図 6]本発明の第 4の実施形態に係る真空蒸着装置の一例を示す断面模式図である 園 7]本発明の第 1の実施形態に係る真空蒸着装置の加熱体の構成の一例を示す 断面模式図である。
符号の説明
[0040] 1、 1C、 1D、 IE 谷器
皿〜 1E4 小容器 (容器の区画)
2 有機材料 (成膜材料)
3、 3B、 3C、 3D 加熱体
3E1〜3E4 小容器の加熱体
4、 4C、 4D、 4E 加熱源
5
6、 6C、 6D (加熱体の)孔 B (加熱体と容器の間の)スリットE1〜6E4 小容器の加熱体の孔
基板
0、 20C、 20D、 20E 真空蒸着装置 (蒸着源)

Claims

請求の範囲
[1] 有機材料を収容し一方が開口する容器を備えた蒸着源から蒸発物質を対向する基 板に成膜する真空蒸着法であって、前記蒸着源は、前記容器に固定せずに前記開 口を閉塞するとともに該容器中の有機材料の表面に接触する加熱体を有し、前記加 熱体のみを加熱して前記有機材料を蒸発させ、前記加熱体に形成された少なくとも 1つの孔又は少なくとも 1つのスリットから前記蒸発物質を放出させることを特徴とする 有機材料の真空蒸着方法。
[2] 前記加熱体を加熱する方法として、電子ビーム加熱、高周波誘導加熱、レーザービ ーム加熱、又は赤外線加熱のうち少なくとも 1種以上を用いたことを特徴とする請求 項 1に記載の有機材料の真空蒸着方法。
[3] 前記容器を複数備え、又は前記容器の内部が複数の区画に分けられ、前記複数の 容器又は区画のうち 1つを加熱して蒸着を行レ、、該容器又は区画内の有機材料が減 少すると、他の容器又は区画に切り替えて加熱して蒸着する工程を繰り返し、各容器 又は区画を順次用いて連続的に蒸着を行なうことを特徴とする請求項 1又は 2に記 載の有機材料の真空蒸着方法。
[4] さらに、前記複数の容器又は区画のそれぞれに設けられた前記加熱体の前記孔、 前記スリット、又は前記加熱体に形成される他の孔を介して、前記有機材料が減少し た容器又は区画内に前記有機材料を補充することを特徴とする請求項 3記載の有機 材料の真空蒸着方法。
[5] 前記容器は、前記有機材料の蒸発温度以下に保持されることを特徴とする請求項 1
〜4のいずれかに記載の有機材料の真空蒸着方法。
[6] 対向する基板に成膜するための蒸発物質を放出する真空蒸着装置であって、 前記蒸発物質となる有機材料を収容し一方が開口する容器と、
前記開口より小さぐ前記容器に固定せずに前記開口を閉塞して該容器中の有機 材料の表面に接触し、かつ前記蒸発物質を放出させる少なくとも 1つの孔を有するか 又は前記容器との間に前記蒸発物質を放出させる少なくとも 1つのスリットを有する加 熱体と、
前記加熱体のみを加熱する加熱源と を備えたことを特徴とする有機材料の真空蒸着装置。
[7] 前記加熱源が、電子ビーム加熱源、高周波誘導加熱源、レーザービーム加熱源、赤 外線加熱源のうち少なくとも 1種類以上であることを特徴とする請求項 6に記載の有 機材料の真空蒸着装置。
[8] 前記容器を複数備え、又は前記容器の内部が複数の区画に分けられ、前記複数の 容器又は区画のそれぞれに対して前記加熱体が設けられ、
前記複数の容器又は区画のうちの 1つが有する前記加熱体を前記加熱源によって 加熱するため、前記複数の容器又は区画を所定の加熱位置に移動させ、一方、前 記蒸発物質を放出して有機材料が減少した容器又は区画を前記加熱位置から離す 移動手段を備えたことを特徴とする請求項 6又は 7に記載の有機材料の真空蒸着装 置。
[9] 前記複数の容器又は区画のそれぞれに設けられた前記加熱体の前記孔、前記スリ ット、又は前記加熱体に形成された他の孔を介して、前記有機材料が減少した容器 又は区画に前記有機材料を補充する有機材料供給機構をさらに備えたことを特徴と する請求項 8記載の有機材料の真空蒸着装置。
PCT/JP2006/316232 2005-08-25 2006-08-18 有機材料の真空蒸着方法およびその装置 WO2007023737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06796543.4A EP1918413B1 (en) 2005-08-25 2006-08-18 Method of organic material vacuum deposition and apparatus therefor
KR1020087004100A KR101311002B1 (ko) 2005-08-25 2006-08-18 유기재료의 진공증착방법 및 그 장치
US11/990,829 US8357241B2 (en) 2005-08-25 2006-08-18 Method of organic material vacuum evaporation and apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005244238A JP4001296B2 (ja) 2005-08-25 2005-08-25 有機材料の真空蒸着方法およびその装置
JP2005-244238 2005-08-25

Publications (1)

Publication Number Publication Date
WO2007023737A1 true WO2007023737A1 (ja) 2007-03-01

Family

ID=37771485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316232 WO2007023737A1 (ja) 2005-08-25 2006-08-18 有機材料の真空蒸着方法およびその装置

Country Status (6)

Country Link
US (1) US8357241B2 (ja)
EP (1) EP1918413B1 (ja)
JP (1) JP4001296B2 (ja)
KR (1) KR101311002B1 (ja)
TW (1) TWI396758B (ja)
WO (1) WO2007023737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534767A (ja) * 2007-07-26 2010-11-11 セコ コーポレイション リミテッド 真空蒸着物質の多目的容器及びその製造方法
US8357241B2 (en) 2005-08-25 2013-01-22 Canon Tokki Corporation Method of organic material vacuum evaporation and apparatus thereof
US10198066B2 (en) 2008-03-27 2019-02-05 DISH Technologies L.L.C. Reduction of power consumption in remote control electronics

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522943B (zh) * 2006-10-10 2013-04-24 Asm美国公司 前体输送系统
JP5064930B2 (ja) * 2007-08-07 2012-10-31 株式会社アルバック 永久磁石及び永久磁石の製造方法
JP5183310B2 (ja) * 2008-06-12 2013-04-17 日立造船株式会社 蒸着装置
JP5036660B2 (ja) * 2008-08-29 2012-09-26 住友化学株式会社 有機エレクトロルミネッセンス素子の製造方法
DE102009004502A1 (de) * 2009-01-09 2010-07-15 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Verdampfung organischer Materialien
JP4758513B2 (ja) * 2009-07-31 2011-08-31 富士フイルム株式会社 容器のスクリーニング方法
JP2011052301A (ja) * 2009-09-04 2011-03-17 Hitachi Zosen Corp 真空蒸着用蒸着材料の蒸発、昇華方法および真空蒸着用るつぼ装置
JP2012049356A (ja) * 2010-08-27 2012-03-08 Kyocera Corp 光電変換装置の製造装置および光電変換装置の製造方法
JP5789992B2 (ja) * 2011-01-18 2015-10-07 住友ベークライト株式会社 蓋付ハースライナーおよび蓋付ハースライナーを用いた蒸着方法
KR20120116720A (ko) * 2011-04-13 2012-10-23 에스엔유 프리시젼 주식회사 원료물질 공급장치
JP2012226838A (ja) * 2011-04-15 2012-11-15 Hitachi Zosen Corp 真空蒸着装置
EP2723912B1 (en) * 2011-06-22 2018-05-30 Aixtron SE Vapor deposition material source and method for making same
JP2014185356A (ja) * 2013-03-22 2014-10-02 Optorun Co Ltd 蒸着源及び成膜装置
KR20150026011A (ko) * 2013-08-30 2015-03-11 삼성디스플레이 주식회사 증착원
TWI472635B (zh) * 2013-09-13 2015-02-11 Univ Nat Taiwan 脈衝雷射蒸鍍系統
JP2015137409A (ja) * 2014-01-23 2015-07-30 スタンレー電気株式会社 坩堝及び真空蒸着装置
CN106232858A (zh) * 2014-05-26 2016-12-14 株式会社爱发科 成膜装置、有机膜的膜厚测量方法以及有机膜用膜厚传感器
TWI606132B (zh) * 2016-01-27 2017-11-21 國立清華大學 有機發光元件之有機層的製作方法
US10090470B2 (en) * 2016-02-22 2018-10-02 City University Of Hong Kong Semiconductor film and method of forming the same
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
DE102017119280A1 (de) * 2017-08-23 2019-02-28 Heraeus Noblelight Gmbh Verfahren und Vorrichtung zur Herstellung einer Polyimidschicht auf einem Substrat
JP6734909B2 (ja) * 2018-03-28 2020-08-05 公益財団法人福岡県産業・科学技術振興財団 蒸着装置及び有機電子デバイスの生産方法
JP7376278B2 (ja) 2018-08-16 2023-11-08 エーエスエム・アイピー・ホールディング・ベー・フェー 固体原料昇華器
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system
CN112110725B (zh) * 2020-09-01 2022-12-09 有研资源环境技术研究院(北京)有限公司 一种高密度环状氧化物镀膜材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819471A (ja) * 1981-07-27 1983-02-04 Fuji Electric Co Ltd セレン蒸着用蒸発源
JPH02145763A (ja) * 1988-11-25 1990-06-05 Matsushita Electric Works Ltd 高分子膜の作製方法
JPH11222668A (ja) * 1998-02-06 1999-08-17 Ulvac Corp 蒸着装置
JP2004095542A (ja) * 2002-07-19 2004-03-25 Lg Electron Inc 有機電界発光膜蒸着用蒸着源
JP2006002218A (ja) * 2004-06-17 2006-01-05 Tohoku Pioneer Corp 成膜源、成膜方法、および加熱板、ならびに有機el素子の製造方法
JP2006059640A (ja) * 2004-08-19 2006-03-02 Tdk Corp 蒸着装置及び蒸着方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2000357C1 (ru) * 1991-06-05 1993-09-07 Ростислав Николаевич Грицкевич Испаритель
JPH06223970A (ja) 1993-01-25 1994-08-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
TW409300B (en) * 1998-05-21 2000-10-21 Rohm Co Ltd Method of producing semiconductor and a mask for forming film pattern
JP2001323367A (ja) 2000-03-09 2001-11-22 Junji Kido 有機化合物の蒸着方法、及び有機化合物の精製方法
KR20030038689A (ko) 2000-08-10 2003-05-16 신닛테츠가가쿠 가부시키가이샤 유기 el 소자의 제조방법 및 장치
KR100490537B1 (ko) * 2002-07-23 2005-05-17 삼성에스디아이 주식회사 가열용기와 이를 이용한 증착장치
JP4139186B2 (ja) * 2002-10-21 2008-08-27 東北パイオニア株式会社 真空蒸着装置
DE10256038A1 (de) * 2002-11-30 2004-06-17 Applied Films Gmbh & Co. Kg Bedampfungsvorrichtung
JP2004353084A (ja) * 2003-05-08 2004-12-16 Sanyo Electric Co Ltd 蒸発装置の固定部材
JP2004353085A (ja) * 2003-05-08 2004-12-16 Sanyo Electric Co Ltd 蒸発装置
US6837939B1 (en) * 2003-07-22 2005-01-04 Eastman Kodak Company Thermal physical vapor deposition source using pellets of organic material for making OLED displays
TWI263690B (en) * 2004-01-06 2006-10-11 Ind Tech Res Inst Evaporation coating apparatus
JP4001296B2 (ja) 2005-08-25 2007-10-31 トッキ株式会社 有機材料の真空蒸着方法およびその装置
JP5129527B2 (ja) * 2006-10-02 2013-01-30 株式会社リコー 結晶製造方法及び基板製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819471A (ja) * 1981-07-27 1983-02-04 Fuji Electric Co Ltd セレン蒸着用蒸発源
JPH02145763A (ja) * 1988-11-25 1990-06-05 Matsushita Electric Works Ltd 高分子膜の作製方法
JPH11222668A (ja) * 1998-02-06 1999-08-17 Ulvac Corp 蒸着装置
JP2004095542A (ja) * 2002-07-19 2004-03-25 Lg Electron Inc 有機電界発光膜蒸着用蒸着源
JP2006002218A (ja) * 2004-06-17 2006-01-05 Tohoku Pioneer Corp 成膜源、成膜方法、および加熱板、ならびに有機el素子の製造方法
JP2006059640A (ja) * 2004-08-19 2006-03-02 Tdk Corp 蒸着装置及び蒸着方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1918413A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357241B2 (en) 2005-08-25 2013-01-22 Canon Tokki Corporation Method of organic material vacuum evaporation and apparatus thereof
JP2010534767A (ja) * 2007-07-26 2010-11-11 セコ コーポレイション リミテッド 真空蒸着物質の多目的容器及びその製造方法
US10198066B2 (en) 2008-03-27 2019-02-05 DISH Technologies L.L.C. Reduction of power consumption in remote control electronics

Also Published As

Publication number Publication date
KR101311002B1 (ko) 2013-09-24
EP1918413B1 (en) 2014-09-03
EP1918413A4 (en) 2010-06-02
US8357241B2 (en) 2013-01-22
TWI396758B (zh) 2013-05-21
US20090176036A1 (en) 2009-07-09
EP1918413A1 (en) 2008-05-07
KR20080037038A (ko) 2008-04-29
JP4001296B2 (ja) 2007-10-31
TW200714723A (en) 2007-04-16
JP2007056330A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2007023737A1 (ja) 有機材料の真空蒸着方法およびその装置
EP0711847B1 (en) Arc assisted CVD method and apparatus
US20050072361A1 (en) Multi-layered radiant thermal evaporator and method of use
JP2007128898A (ja) 有機電界発光膜蒸着用蒸着源
JP2002522637A (ja) 固体の蒸発、アーク放電、及びイオン化と蒸発の測定のための諸システムを含んだプラズマ強化真空蒸着システム
WO2005111259A1 (ja) 有機材料用蒸発源及び有機蒸着装置
TWI397595B (zh) 蒸發系統
US20130160712A1 (en) Evaporation cell and vacuum deposition system the same
KR101846692B1 (ko) 스피팅 방지 구조체를 구비한 증착장치용 증발원
JP2001323367A (ja) 有機化合物の蒸着方法、及び有機化合物の精製方法
JP5789992B2 (ja) 蓋付ハースライナーおよび蓋付ハースライナーを用いた蒸着方法
JP4110966B2 (ja) 蒸着装置および蒸着方法
KR20070099636A (ko) 입상 물질의 공급 방법
JP4086786B2 (ja) ハイブリッドebセルとそれを使用した成膜材料蒸発方法
JP2004503680A (ja) 炭素及び炭素系材料の製造
KR101153934B1 (ko) 발열부 일체형 진공 박막 증착용 분자빔 증발원, 그 제작 방법 및 증발기
JP2002167662A (ja) 蒸着源材料供給設備
JPWO2006075401A1 (ja) 蒸発源及び蒸着装置
JP2526182B2 (ja) 化合物薄膜の形成方法及び装置
JP2013503969A (ja) 気相から基板を被覆するための方法及び装置
JP2019002038A (ja) 間接加熱蒸着源
JP5179716B2 (ja) 電子ビーム真空蒸着方法およびその装置
JP2002371353A (ja) 電子線衝撃型蒸着源
JP6265721B2 (ja) 鉛化合物薄膜の製造方法
JPH08225932A (ja) 電子線加熱蒸着方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087004100

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006796543

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11990829

Country of ref document: US