WO2007007435A1 - 樹脂組成物およびそれからなる成形品 - Google Patents

樹脂組成物およびそれからなる成形品 Download PDF

Info

Publication number
WO2007007435A1
WO2007007435A1 PCT/JP2006/301285 JP2006301285W WO2007007435A1 WO 2007007435 A1 WO2007007435 A1 WO 2007007435A1 JP 2006301285 W JP2006301285 W JP 2006301285W WO 2007007435 A1 WO2007007435 A1 WO 2007007435A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
acid
polymer
core layer
Prior art date
Application number
PCT/JP2006/301285
Other languages
English (en)
French (fr)
Inventor
Sadanori Kumazawa
Yuki Amano
Hiroyuki Ohme
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020077029771A priority Critical patent/KR101227437B1/ko
Priority to KR1020127024652A priority patent/KR101227435B1/ko
Priority to CN2006800250250A priority patent/CN101218298B/zh
Priority to EP06712451.1A priority patent/EP1903077B1/en
Priority to US11/988,414 priority patent/US8829099B2/en
Publication of WO2007007435A1 publication Critical patent/WO2007007435A1/ja
Priority to US14/174,606 priority patent/US20140155534A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/10Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a resin composition and a molded article comprising the same, and more specifically, it is excellent in transparency, heat resistance and fluidity, and in a preferred embodiment it is excellent in impact resistance and hydrolysis resistance.
  • the present invention relates to a resin composition containing a lactic acid-based resin and a molded product that is powerful.
  • biodegradable polymers that are degraded in the natural environment by the action of microorganisms existing in soil and water have attracted attention from the viewpoint of global environmental conservation, and various biodegradable polymers have been developed.
  • biodegradable polymers that can be melt-molded include, for example, polyhydroxybutyrate, polyprolacton, aliphatic dicarboxylic acid components such as succinic acid and adipic acid, and glycol components such as ethylene glycol and butanediol.
  • Aliphatic polyesters and polylactic acid resins are well known.
  • polylactic acid resin can be produced at low cost by fermentation using microorganisms, using lactic acid as a monomer as raw material for corn and other materials, and has transparency and melting point. Is expected to be a high melt moldable biopolymer of approximately 170 ° C
  • polylactic acid resin has a glass transition temperature of around 60 ° C, and has a large thermal deformation and a decrease in rigidity near this temperature. Therefore, when used as various molded products, under normal use conditions. However, there is a problem that it is easily deformable and difficult to use, and a polylactic acid material having excellent heat resistance is desired.
  • Patent Document 1 describes that a resin composition having excellent heat resistance is obtained with respect to a resin composition comprising polylactic acid and an acrylate polymer. However, the transparency of polylactic acid is maintained. In order to obtain a resin composition having excellent transparency, heat resistance, and fluidity, both of which heat resistance is improved in the examples which are not disclosed at all, but transparency and fluidity are not exemplified. There is no suggestion of how to solve this problem.
  • Patent Document 2 describes that a resin composition having excellent hydrolyzability can be obtained with respect to a resin composition comprising a polyhydroxycarboxylic acid-containing polyhydroxycarboxylic acid polymer and poly (meth) acrylate.
  • Patent Document 3 describes that a resin composition excellent in molding cacheability can be obtained for a resin composition comprising polylactic acid and an acrylic compound, both of which have heat resistance and fluidity.
  • a solution for obtaining a resin composition having excellent transparency, heat resistance and fluidity, and excellent deviation no disclosure is made at all.
  • Patent Document 4 describes that a resin composition excellent in transparency and heat resistance can be obtained with respect to a resin composition comprising a polylactic acid polymer and an acrylic polymer.
  • Patent Document 5 describes that a biaxially stretched film made of a resin composition excellent in both transparency and heat resistance can be obtained with respect to a resin composition made of polylactic acid and poly (meth) acrylate.
  • Patent Document 6 describes that a resin composition excellent in transparency and heat resistance and deviation can be obtained with respect to a resin composition comprising polylactic acid and polymethylmetatalate.
  • Patent Documents 1 and 2 describe that the glass transition temperature is improved by mixing polylactic acid and polymethyl methacrylate, but none of the fluidity is disclosed. Both an insufficient effect of improving heat resistance, and further improvement is required not at all suggest solving means for obtaining a transparency, heat resistance and any resin composition excellent in the fluidity.
  • Patent Document 7 a resin composition excellent in all of transparency, heat resistance and impact resistance can be obtained from a resin composition comprising a (meth) acrylic acid ester polymer and a rubbery polymer.
  • a resin composition comprising a (meth) acrylic acid ester polymer and a rubbery polymer.
  • transparency, heat resistance, fluidity and impact resistance can be achieved when blending with polylactic acid resin that does not show one incision.
  • Patent Document 1 US Pat. No. 5,300,576 (page 1-2)
  • Patent Document 2 JP-A-8-59949 (Page 1-12)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-155207 (Pages 1-2)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-269720 (Pages 1-2)
  • Patent Document 5 International Patent Publication No. 2004Z87812 (Pages 1-3)
  • Patent Document 6 JP-A-2005-171204 (Page 12)
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-26891 (Page 12)
  • Non-Patent Document 1 Polymer Preprints Japan, 42 (3), 1180 (1993)
  • Non-Patent Document 2 Polymer, 39 (26), 6891 (1998)
  • the present invention provides a resin composition containing a polylactic acid resin that is excellent in transparency, heat resistance, and fluidity, and in a preferred embodiment is also excellent in impact resistance and hydrolysis resistance, and a molded article that is powerful. The task is to do.
  • the present invention employs the following means in order to solve such problems.
  • the present invention provides:
  • a resin composition comprising (A) a polylactic acid resin and (B) a methacrylic resin, wherein (B) the methacrylic resin satisfies at least one of the following conditions:
  • the outermost layer of the multi-layered polymer composed of the core layer and one or more shell layers covering it is composed of a polymer containing methyl methacrylate units and / or methyl acrylate units.
  • a resin composition comprising (A) a polylactic acid-based resin and (B) a methacrylic resin, wherein (B) the syndiotactic and isotacticity of the methacrylic resin in the resin composition Resin composition having a ratio (syndiotacticity / isotacticity) of 3.0 to 8.0,
  • a molded article comprising the resin composition according to any one of (1) to (: 12),
  • a resin composition comprising a polylactic acid resin that is excellent in transparency, heat resistance, and fluidity, and in a preferred embodiment is also excellent in impact resistance and hydrolysis resistance, and a molded article having the same. Can be provided.
  • the (A) polylactic acid-based resin used in the present invention is a polymer containing L-lactic acid and / or D-lactic acid as a main constituent, but contains a copolymer component other than lactic acid. , Temoyore.
  • copolymer component units that can be used include polyvalent carboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and ratatones. Specifically, oxalic acid, malonic acid, succinic acid, and glutaric acid.
  • Polycarboxylic acids such as phosphoric acid, 5-tetrabutylphosphonium sulfoisophthalic acid, ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclo Hexane dimethanol, neopentylglyco , Glycerin, pentaerythritol, bisphenol A, polyvalent aromatic
  • Hydroxycarboxylic acids such as 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid, and glycolide, ⁇ -strength prolacton glycolide, ⁇ - strength prolatatone, ⁇ -propiolatathone, ⁇ -petite It is possible to use ratatones such as oral ratatones, ⁇ or ⁇ butyrolatatanes, pivalolalatones, and ⁇ valerolatatanes.
  • polylactic acid having a high optical purity of the lactic acid component from the viewpoint of heat resistance. That is, (ii) Among the total lactic acid components of polylactic acid resin, it is preferable that L-form contains 80% or more, or D-form contains 80% or more. L-form contains 90% or more force or D It is more preferable that the body contains 90% or more. Does L body contain 95% or more? It is particularly preferred that 95% or more of the D form is contained. Most preferably, the power containing 98% or more of the L form or 98% or more of the D form is contained. In addition, the upper limit of the content of L-form or D-form is usually 100% or less.
  • the molecular weight and molecular weight distribution of the polylactic acid-based resin are not particularly limited as long as it can be substantially molded, but the weight average molecular weight is from the viewpoint of heat resistance. Preferably, it is 10,000 or more, more preferably 40,000 or more, still more preferably 80,000 or more, particularly preferably 100,000 or more, and most preferably 130,000 or more.
  • the upper limit is not particularly limited, but in terms of fluidity, it is preferably 500,000 or less, more preferably 300,000 or less, more preferably 250,000 or less, and even more preferably 200,000 or less.
  • the weight average molecular weight is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
  • the melting point of the polylactic acid-based resin (A) is not particularly limited, but is preferably 120 ° C or higher, more preferably 150 ° C or higher.
  • the melting point here is the temperature at the peak top of the endothermic peak measured with a differential scanning calorimeter (DSC).
  • a method for producing the (A) polylactic acid-based resin a known polymerization method can be used, and a direct polymerization method from lactic acid or a ring-opening polymerization method via lactide can be used.
  • the (B) methacrylic resin preferably contains other bulle monomer component units as long as it contains a methyl methacrylate component unit as a main component, preferably 70% or more. % Or less, more preferably 20% or less, may be copolymerized.
  • vinylol monomers include aromatic vinyl monomers such as methyl styrene, o-methyl styrene, p-methyl styrene, o-ethyl styrene, p-ethyl styrene, p_t-butyl styrene, Vinyl cyanide monomers such as ronitrinole, metathalonitrile, etalonitrile, glycidyl itaconate, allyl glycidyl ether, styrene _p_glycidyl ether, p-glycidyl styrene, maleic anhydride, N-substituted maleimides such as monoethyl ester maleate, itaconic acid, itaconic anhydride, dartaric anhydride, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmale
  • Bulle system monomer can be used alone or in combination.
  • a copolymer containing a cyclic structural unit such as a rataton ring, maleic anhydride, or dartaric anhydride in the main chain is preferable.
  • a resin that does not contain a ring structure or a methacrylic resin it is more preferable to use a resin that does not contain a ring structure or a methacrylic resin.
  • the (B) methacrylic resin used in the present invention includes two or more methacrylic resins satisfying at least one of the following conditions.
  • the difference in glass transition temperature is preferably 15 ° C. or more, more preferably 20 ° C. or more. If the difference in glass transition temperature is less than 10 ° C, the heat resistance improving effect is insufficient. Further, the upper limit of the difference in glass transition temperature is not particularly limited, but it is preferably 60 ° C. or less from the viewpoint of transparency.
  • the glass transition temperature is a value measured according to the method described in JIS K7121, and is the midpoint glass transition temperature when the temperature is raised by 20 ° CZ by DSC measurement.
  • the difference in syndiotacticity is preferably 5% or more, more preferably 7% or more, more preferably 10% or more. It is even more preferable. If the difference in syndiotacticity is less than 3%, the heat resistance improvement effect is insufficient. Further, the upper limit of the difference in syndiotacticity is not particularly limited, but it is preferably 50% or less from the viewpoint of transparency. Syndiotacticity as used herein is observed as syndiotacticity, heterotacticity, and isotacticity in 1H-NMR measurement using deuterated black mouth form as a solvent. It is a value that can be calculated by expressing the percentage of the integrated intensity of each peak as a percentage, where the total integrated intensity of the straight-chain branched methyl group peaks at 0 ppm and 1.2 ppm is 100%.
  • the (B) methacrylic resin used in the present invention is preferably at least one kind of (B) methacrylic resin having a weight average molecular weight of 50,000 to 450,000 in terms of heat resistance and fluidity. More than 70,000 to 200,000 power, more preferably 90,000 to 150,000.
  • the weight average molecular weight here is a weight average molecular weight in terms of methyl methacrylate (PMMA) measured by GPC using hexafluoroisopropanol as a solvent.
  • the (B) methacrylic resin used in the present invention is preferably at least one kind of (B) methacrylic resin having a glass transition temperature of 110 ° C or higher, preferably 115 ° C or higher. More preferred is 120 ° C or higher.
  • the upper limit is not particularly limited, but is preferably 150 ° C. or lower from the viewpoint of fluidity.
  • the glass transition temperature here is a value measured according to the method described in JIS K7121, and is the midpoint glass transition temperature when the temperature is raised at 20 ° CZ by DSC measurement.
  • the (B) methacrylic resin used in the present invention includes (B) a methacrylic resin in terms of heat resistance. At least one kind of resin Syndiotacticity 40% or more is preferred 45% or more is more preferred 50 / o or more is more preferable 60% or more is particularly preferable in terms of fluidity, and 90% or less is preferable and 80% or less is more preferable.
  • (B) methacrylic resin heterotacticity is preferably 45% or less in terms of heat resistance. It is more preferable that it is less than / o. It is preferable that it is at least / o, more preferably at least 30%.
  • the isotacticity of (B) methacrylic resin is preferably 20% or less in terms of heat resistance, preferably 15% or less, and more preferably 5% or more in terms of fluidity. More preferably, it is 8% or more, more preferably 10% or more.
  • the [0027] (B) used in the present invention the methacrylic resin, in view of flowability, (B) melt at a load of temperature and 37. 2N of at least one force s, 230 ° C for methacrylic resin
  • M FR flow rate
  • the flow rate (M FR) is 0.:! To 40 g / 10 min: more preferably 30 to 10 g / 10 min, and more preferably 2 to 20 g / 10 min preferable. If the MFR is less than 0.1 lg / 10 minutes, the fluidity tends to decrease and the molding processability tends to be inferior. If the MFR exceeds 40 g / 10 minutes, the heat resistance improving effect tends to decrease, such being undesirable.
  • the (B) methacrylic resin used in the present invention is not particularly limited in the composition of two or more methacrylic resins.
  • the glass transition temperature or syndiotacticity is not limited.
  • Methacrylic resin 1 is the methacrylic resin 1
  • the methacrylic resin 2 having the lowest glass transition temperature or syndiotacticity is the methacrylic resin 2.
  • the weight ratio of the resin 2 (methacrylic resin lZ methacrylic resin 2) is preferably 10/90 to 90/10, more preferably 60 / 40-40Z60.
  • the (B) methacrylic resin used in the present invention known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be used.
  • the temperature conditions during the polymerization are not particularly limited, but in terms of heat resistance of the methacrylic resin, 100 ° C or lower is preferable, 70 ° C or lower is more preferable, and 30 ° C or lower is more preferable. It is especially preferred to be below 10 ° C.
  • the blending ratio of (A) polylactic acid resin and (B) methacrylic resin is preferably 99Zl to lZ99 from the viewpoint of heat resistance and fluidity. : More preferably a force of 10/90, more preferably a force of 80/20 to 20/80, particularly preferably a force of 70/3 0 to 30/70, and 59/41 to 35/65 Power S most preferred.
  • a multilayer structure polymer further comprising (C) a core layer and one or more chenole layers covering the core layer.
  • the multilayer structure polymer composed of the core layer and one or more shell layers covering the core layer used in the present invention is composed of the core layer and one or more shell layer forces covering the core layer.
  • This is a polymer having a so-called core-shell type structure in which adjacent layers are composed of different polymers.
  • the number of layers constituting the multilayer structure polymer is particularly limited. However, it may be 3 or more layers or 4 or more layers as long as it is 2 or more layers.
  • the (C) multi-layer structure polymer composed of the core layer and one or more shell layers covering the core layer used in the present invention is a multi-layer structure polymer having at least one rubber layer inside. It is preferable.
  • the type of the rubber layer is not particularly limited as long as it is composed of a polymer component having rubber elasticity.
  • rubber composed of (meth) acrylic component, silicone component, styrene component, nitrile component, conjugation component, urethane component, ethylene propylene component or the like is used.
  • Preferred rubbers include, for example, (meth) acrylic units such as (meth) ethyl acrylate units, (meth) butyl butyl units, (meth) acrylic acid-2-ethyl hexyl units, and (meth) acrylic acid benzyl units.
  • Components silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, styrene components such as styrene units and monomethylstyrene units, nitrile components such as talatonitrile units and metathalonitrile units, butane units and isoprene units
  • a crosslinked rubber obtained by copolymerizing and crosslinking a crosslinkable component such as a dibutenebenzene unit, a (meth) acrylic acid unit or a butylene glycol ditalylate unit is also preferable.
  • a crosslinkable component such as a dibutenebenzene unit, a (meth) acrylic acid unit or a butylene glycol ditalylate unit
  • Cross-linked rubbers are more preferred to be cross-linked rubbers with a glass transition temperature of o ° c or less.
  • examples of such rubber layers include acrylate units, acrylate-2-ethylhexyl units, and acrylic.
  • the butyl methacrylate unit, the benzyl acrylate unit, and the methacrylic acid unit are appropriately selected and used in combination.
  • the allylic methacrylate unit is more preferably used in the range of 0.005 to 3% by weight of the rubber layer constituent unit. Is particularly preferred.
  • the type of the layer other than the rubber layer is not particularly limited as long as it is composed of a polymer component having thermoplasticity.
  • a polymer component having a glass transition temperature higher than that of the rubber layer is preferable.
  • the thermoplastic polymer include unsaturated carboxylic acid alkyl ester units, glycidyl group-containing bull units, unsaturated dicarboxylic anhydride units, aliphatic vinyl units, aromatic bull units, cyanide bull.
  • examples include polymers containing at least one unit selected from system units, maleimide units, unsaturated dicarboxylic acid units, and other vinyl units.
  • unsaturated carboxylic acid alkyl ester units polymers containing at least one unit selected from unsaturated glycidyl group-containing units or unsaturated dicarboxylic acid anhydride units are preferred, and unsaturated glycidinole group-containing units or unsaturated dicarboxylic acid anhydrides are preferred. More preferred is a polymer containing at least one unit whose unit force is also selected.
  • the unsaturated carboxylic acid alkyl ester unit is not particularly limited, and force (meth) acrylic acid alkyl ester is preferably used. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, (meth ) N-hexyl acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, stearyl (meth) acrylate, octadecyl (meth) acrylate, (meth) acrylic acid Phenyl, (meth) acrylic acid benzil, (meth) acrylic acid chloromethyl, (meth) acrylic acid 2-chloroethyl, (meth) atalinoleic acid 2-hydroxyethyl, (meth) acrylic acid
  • the glycidyl group-containing bull-based unit is not particularly limited, but is not limited to glycidyl (meth) talidate, glycidyl itaconate, diglycidyl itaconate, allyl glycidyl ether, styrene_4_glycidyl ether or 4- Examples thereof include glycidyl styrene, and glycidyl (meth) acrylate is preferably used because it has a large effect of improving impact resistance. These units can be used alone or in combination of two or more.
  • Examples of the unsaturated dicarboxylic anhydride unit include maleic anhydride, itaconic anhydride, anhydrous dartaconic acid, citraconic anhydride, or aconitic anhydride, and the viewpoint that the effect of improving impact resistance is great.
  • Maleic anhydride is preferably used. These units can be used alone or in combination of two or more.
  • Aliphatic vinyl units include ethylene, propylene, and butadiene
  • aromatic vinyl units include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 4-methylstyrene, and 4-propylstyrene.
  • maleimide units maleimide, ⁇ -methenoremaleimide, ⁇ -ethenoremaleimide, ⁇ -propinoremaleimide, ⁇ -isopropinoremaleimide, ⁇ ⁇ ⁇ cyclohexylmaleimide, ⁇ phenylmaleimide, ⁇ - ( ⁇ Bromophenyl) Maleimi Or ⁇ — (black-phenyl) maleimide, etc., as unsaturated dicarboxylic acid units, maleic acid, maleic acid monoethyl ester, itaconic acid,
  • the type of the shell layer is not particularly limited.
  • the polymer include units and / or other vinyl-based units, and are composed of a polymer including methyl methacrylate units and polymers containing z or methyl acrylate units in terms of transparency and impact resistance.
  • it is a structural polymer.
  • the multilayer structure polymer composed of (C) the core layer and one or more shell layers covering the core layer used in the present invention a commercially available product may be used as long as the above-mentioned conditions are satisfied. It can also be produced by a known method.
  • Examples of commercially available products include “Metaprene” manufactured by Mitsubishi Rayon, “Kane Ace” manufactured by Kane force, “Paraloid” manufactured by Rohm and Haas, “Staffroid” manufactured by Ganz Kasei, and “Paraface” manufactured by Kuraray. May be used alone or in combination of two or more.
  • an emulsion polymerization method is more preferable.
  • a desired monomer mixture is first emulsion-polymerized to produce core particles, and then another monomer mixture is emulsion-polymerized in the presence of the core particles to form a shell layer around the core particles. Make core shell particles to form. Further, in the presence of the particles, another monomer mixture is emulsion-polymerized to form core-shell particles that form another shell layer.
  • the polymerization temperature for forming the (co) polymer of each layer is preferably 0 to 120 ° C for each layer, more preferably 5 to 90 ° C.
  • the emulsifier used in the emulsion polymerization is not particularly limited, but is selected depending on the polymerization stability and the desired average primary particle size, and is a known emulsifier such as an anionic surfactant, a cationic surfactant, or a nonionic surfactant. It is more preferable to use an anionic surfactant that is preferably used alone or in combination of two or more. Examples of the anionic surfactant include sodium stearate, sodium myristate, sodium carboxylate such as sodium N-lauroyl sarcosinate, sodium dioctylsulfosuccinate, dodecylbenzenes.
  • sulfonates such as sodium sulfonate, sulfate esters such as sodium lauryl sulfate, and ester phosphates such as mono-n-butylphenylpentaoxyethylene sodium phosphate.
  • the addition amount of the emulsifier is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the total amount of monomers used.
  • the polymerization initiator used in the emulsion polymerization is not particularly limited, but inorganic peroxides such as potassium persulfate and ammonium persulfate, ferrous hydrogen peroxide-based, potassium persulfate, Water-soluble redox systems such as acid sodium sulfite and ammonium persulfate-acid sodium sulfite systems IJ, cumene hydride peroxide sodium formaldehyde sulfoxylate, tert butyl hydride peroxide sodium formaldehyde sulfoxylate, etc. Inorganic water-based and oil-soluble redox initiators are preferred among these.
  • the addition amount of the polymerization initiator is preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of the total monomers used.
  • the multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer used in the present invention has at least one of the following conditions in terms of transparency and impact resistance. It is preferable to satisfy.
  • the refractive index of the (C) multi-layer structure polymer comprising the core layer and one or more shell layer forces covering it is more preferably 1. 465-1.495. preferable.
  • the difference from the refractive index is preferably 0.05 or less, more preferably 0.02, and even more preferably 0.01 or less.
  • the refractive index is a value measured at 23 ° C. and a wavelength of 589 nm using an Abbe refractometer.
  • the refractive index of the matrix resin phase composed of (A) polylactic acid resin and (B) methacrylic resin is (B) in 100 parts by weight of the total of (A) polylactic acid resin and (B) methacrylic resin.
  • the amount of methacrylic acid resin is X parts by weight, it can be obtained by 0.03 X x / 100 + l.46.
  • the (C) core layer used in the present invention and one or more shell layer forces covering it have a glass transition temperature of 0 ° C or less in terms of impact resistance. It is more preferable that it contains a constituent component of _30 ° C. or less, more preferably a constituent component of _40 ° C. or less.
  • the glass transition temperature is a value measured at a rate of temperature increase of 20 ° C. using a differential scanning calorimeter.
  • the average primary particle diameter of the multilayer structural polymer comprising (C) the core layer and one or more shell layer forces covering the core layer is not particularly limited, but the transparency and resistance From the point of impact, 10-:! OOOOnm power is preferable S, more preferably 20-:! OOOnm power is more preferable, 50-700 nm power S is particularly preferable, 100-500 nm Force S most preferred.
  • the average primary particle diameter is the number average primary particle diameter obtained by observing at an average magnification of 20,000 times using an electron microscope, measuring the primary particle diameter of 100 arbitrary particles, and averaging. Specifically, it can be determined by observing the dispersion form of the multilayer structure polymer in the resin composition with an electron microscope.
  • the blending amount of the multilayer structural polymer composed of (C) the core layer and one or more shell layer forces covering the core layer is not particularly limited.
  • the total of 100 parts by weight of (A) polylactic acid resin and (B) methacrylic resin 0.:! To 200 parts by weight is preferred 1 to 100 parts by weight is more preferred 5 to 50 parts by weight are more preferred, and 10 to 30 parts by weight are particularly preferred.
  • a multilayer structure polymer comprising (C) a core layer and one or more shell layers covering it in the resin composition.
  • the dispersion particle size of is preferably 1 to:! OOOnm, more preferably 50 to 750 nm, and even more preferably 100 to 500 nm.
  • the dispersed particle size means the number average dispersion obtained by observing the resin composition at an magnification of 20,000 using an electron microscope, measuring the dispersed particle size for 100 arbitrary dispersed particles, and averaging them. The particle size.
  • the dispersed particles are the sum of the number of aggregated particles (1) determined by the criteria shown below and the number of non-aggregated particles (m).
  • the ratio (lZm) of the number of particles (1) to the number of unaggregated particles (m) is 0 to 0. 5 is preferable, and 0 to 0.4 is more preferable.
  • the number of aggregated particles and the number of non-aggregated particles were observed with an electron microscope, and the resin composition was observed at a magnification of 20,000 times. The case where one or more shell layer forces covering the multi-layered polymer dispersed particles in contact with each other was determined as aggregated particles.
  • (D) as a reactive compound in terms of improving transparency, heat resistance and impact resistance and improving hydrolysis resistance, (D) as a reactive compound, a glycidyl group, an acid anhydride can be used. It is preferable to incorporate a reactive compound containing at least one functional group selected from a physical group, a carpositimide group, and an oxazoline group.
  • a reactive compound containing at least one functional group selected from a physical group, a carpositimide group, and an oxazoline group.
  • the reactive compound containing a glycidyl group a glycidyl ether compound, a glycidyl ester compound, a glycidylamine compound, a glycidyl imido compound, or an alicyclic epoxy compound is preferably used. It can. By blending these, a molded product having excellent mechanical properties, moldability, heat resistance and durability can be obtained.
  • Examples of the glycidyl ether compounds include butyl daricidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl daricidyl ether, o-phenylphenyl daricidyl ether, ethylene oxide lauryl alcohol glycidyl ester.
  • Terephthalate ethylene oxide phenol glycidyl ether, ethylene glycol diglycidino dioleo ethere, polyethylene glyconoresin glycidino enoate, propylene glycolinole glycidyl ether, polypropylene glycol diglycidyl ether, neopentino diol diglycidyl ether, polytetramethylene glycol Diglycidyl ether, cyclohexane dimethanol diglycidyl ether, glycerol triglycidyl ether, tri Chi trimethylolpropane triglycidyl ether, pentaerythritol polyglycidyl Siji Bisphenols such as noleether, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) sulfone and epiclor Examples thereof include bisphenol A diglycidyl ether type epoxy resin obtained by condensation
  • glycidyl ester compounds include glycidyl benzoate, p-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester, palmitic acid glycidyl ester, versatic Acid glycidyl ester, oleic acid glycidyl ester, linoleic acid glycidyl ester, linolenic acid glycidyl ester, terephthalic acid diglycidyl ester carboxylic acid diglycidyl ester, bibenzoic acid diglycidinole ester, methyl terephthalic acid diglycidyl ester, hexahydrophthalic acid Diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohex
  • Examples of the glycidylamine compound include tetraglycidylaminodiphenylmethane, triglycidyl monoparaaminophenol, triglycidyl monometaaminophenol, diglycidyl bromoaniline, tetraglycidyl bisaminomethylcyclohexane, triglycidylsia Examples thereof include nurate and triglycidyl isocyanurate.
  • Examples of glycidylimide compounds include N-glycidylphthalimide, N-glycidyl-4-methylphthalimide, N-glycidyl-1,4-dimethylphthalimide, N-glycidinole 3-methylphthalimide, N glycidinole 3, 6— Dimethylphthalimide, N Glycidi _4 _Ethoxyphthalimide, N—Glycidyl mono 4 _Chlor phthalimide, N—Glycidinol 1,4,5-Dichlorophthalimide, N—Glycidyl 1,3,4,5,6—Tetrabromophthalimide, N—Glycidinol 4 _n—butynole 5 _bromophthalimide, N-glycidyl succinimide, N-glycidyl hexahydrophthalimide, N-glycidyl 1, 2, 3, 6-tetrahydrophthalimide, N-glycidyl maleimide, N
  • Examples of the alicyclic epoxy compound include 3,4 epoxycyclohexylmethyl-3,4 epoxycyclohexylcarboxylate, bis (3,4-epoxycyclohexylmethinole) adipate, vinylenocyclohexene diepoxide, ⁇ Methinore 4,5-epoxycyclohexane 1,2,2 dicarboxylic imide, ⁇ ethyl-4,5 epoxycyclohexane 1,2-dicarboxylic imide, ⁇ -phenol 4,5-epoxycyclohexane 1, 2 dicarboxylic acid imide, ⁇ -naphthyl-4,5 epoxycyclohexane-1,2,2-dicarboxylic imide, ⁇ -tolulu-3-methyl-4,5-epoxycyclohexane-1,2,2-dicarboxylic imide, etc.
  • epoxy-modified fatty acid glycerides such as epoxidized soybean oil, epoxidized hamani oil, and epoxidized whale oil, phenol novolac type epoxy resin, cresol nozolac type epoxy resin and the like can be used.
  • examples of the reactive compound containing an acid anhydride group include succinic anhydride, maleic anhydride, and phthalic anhydride. Furthermore, the polymer etc. which contain the above-mentioned compound as a monomer unit can be mentioned.
  • Organic isocyanate can be heated in the presence of a catalyst and produced by decarboxylation.
  • carbodiimide compound examples include diphenylcarbodiimide, dicyclohexylcarbodiimide, G2,6 dimethylphenylcarbodiimide, and diisopropylcarbodiimide.
  • N —di2,6 diisopropylphenylcarbodiimide, 2,6,2 ′, 6 ; -tetraisopropyldiphenylcarbodiimide and polycarbodiimide are preferable.
  • examples of the reactive compound containing an oxazoline group include 2-methoxy 2-oxazoline, 2-ethoxy-2-oxazoline, 2-propoxy 2-oxazoline, 2-butoxy-2-oxazoline, 2-pentyloxy 2-Oxazoline, 2-Hexyloxy 2-Oxazoline, 2-Heptyloxy 2-Oxazoline, 2-Oxyloxy 2-Oxazoline, 2-Nonyloxy 2-Oxazoline, 2-Dedecyloxy _ 2-Oxazoline, 2-Cyclopentyloxy _ 2 —Oxazoline, 2-Cyclohexyloxy 1-Oxazoline, 2-Carboxyoxy_ 2—Oxazoline, 2_Metaloxy 1-Oxazoline, 2_Crotoxyloxy 2-oxazoline, 2-Fenoxy_ 2—Oxazoline, 2— Cresyl _ 2—oxazoline, 2 _o _ Ruphenoxy _ 2—Oxazoline, 2 _
  • the (D) reactive compound is preferably a polymer having a weight average molecular weight of 1000 to 300,000, more preferably 5000 to 250000, in terms of suppressing bleeding out. ,.
  • Such (D) reactive compounds include intramolecular
  • the polymer is preferably a polymer in which at least one selected functional group is introduced into the main chain or side chain of glycidinole group, acid anhydride group, carposimide group, and oxazoline group.
  • the copolymer which can be either a copolymer or a copolymer, any of random copolymers, block copolymers and graft copolymers can be used.
  • the (D) reactive compound is preferably a polymer containing a glycidinole group-containing bulle unit.
  • the raw material monomer for forming the glycidyl group-containing bull unit include glycidyl esters of unsaturated monocarboxylic acids such as glycidyl (meth) acrylate, glycidyl p-styrylcarboxylate, and maleic acid.
  • Monoglycidyl ester or polyglycidyl ester of unsaturated polycarboxylic acid such as itaconic acid
  • unsaturated glycidyl ether such as allyl glycidyl ether, 2-methylallyl glycidyl ether, and styrene-4-glycidyl ether.
  • radical weight radical weight
  • the polymer containing a glycidyl group-containing bull unit preferably contains a bull unit other than the glycidyl group-containing vinyl unit as a copolymerization component. Properties such as glass transition temperature can be adjusted.
  • the bull units other than the glycidyl group-containing bull units include acrylic bull units, carboxylic acid vinyl ester units, aromatic vinyl units, unsaturated dicarboxylic anhydride units, unsaturated dicarboxylic acid units, Examples thereof include aliphatic vinyl units, maleimide units, and other vinyl units.
  • the raw material monomer for forming the acrylic bulle unit include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, acrylic N-butyl acid, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, Cyclohexyl acrylate, cyclohexyl methacrylate, isobornyl acrylate, metathali Isobornyl sulfate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate, hydroxyethyl acrylate, hydroxyethyl acrylate,
  • amino groups such as N, N-dialkylacrylamide, N, N-dialkylmethallylamide, a-hydroxymethyl acrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate
  • Examples include raw material monomers that form acrylic vinyl units, among which acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, and acrylic acid.
  • Acrylic acid methacrylolic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylic acid n-Butyl, n-butyl methacrylate, 2-ethylhexyl acrylate, 2_ethylhexyl methacrylate, acrylonitrile and methacrylonitrile are used. These can be used alone or in combination of two or more.
  • the raw material monomer that forms the carboxylic acid bull ester unit include: formic acid bull, acetic acid bull, propionate bull, butyrate bull, caproic acid bull, strong prill acid bull, strong purinate bull, lauric acid bull, myristic acid Monofunctional aliphatic vinyl carboxylates such as butyl, vinyl palmitate, butyl stearate, isopropenyl acetate, 1-butyr acetate, butyl pivalate, 2-ethyl butyl hexane and butyl hexane hexane, benzoic acid Examples include aromatic carboxylate bulls such as vinyl acrylate and vinyl cinnamate, monochloroacetate bull, adipate dibule, methacrylate methacrylate, vinyl crotonate and vinyl sorbate. However, butyl acetate is preferably used. These can be used alone or in combination of two or more.
  • the raw material monomer for forming the aromatic bul unit include styrene, monomethylstyrene, p-methylstyrene, monomethyl _p-methylstyrene, p-methoxystyrene, o-methoxystyrene, 2 , 4_dimethylstyrene, 1-bulunaphthalene, chlorostyrene, bromostyrene, dibutylbenzene, butyltoluene, etc., among which styrene and monomethylstyrene are preferably used. These can be used alone or in combination of two or more.
  • Examples of the raw material monomer that forms the unsaturated dicarboxylic acid anhydride unit include maleic anhydride, itaconic anhydride, dartaconic anhydride, citraconic anhydride, or aconitic anhydride, among which maleic anhydride is preferred. used. These can be used alone or in combination of two or more.
  • Examples of the raw material monomer for forming the unsaturated dicarboxylic acid unit include maleic acid, maleic acid monoethyl ester, itaconic acid, and phthalic acid. Among these, maleic acid and itaconic acid are preferably used. These can be used alone or in combination of two or more.
  • Raw material monomers for forming aliphatic vinyl units include ethylene, propylene, and butadiene.
  • raw material monomers for forming maleimide units include maleimide, N-methylenomaleimide, N-ethenoremaleimide, Other burs such as N-propinoremaleimide, N-isopropylinolemaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N- (p-bromophenylenole) maleimide or N- (black-mouthed phenyl) maleimide
  • the raw material monomer that forms the system unit include N-vinyljetylamine, N-acetylvinylamine, linoleamine, metalinoleamine, N-methenorealinoleamine, p-aminostyrene, and the like. These can be used alone or in combination of two or more.
  • the glass transition temperature of the polymer containing a glycidyl group-containing bull-based unit is not particularly limited, but is 30 to 100 ° C in that it has excellent handling properties. It is most preferable that it is in the range of 40 to 70 ° C, more preferable is in the range of 50 to 65 ° C.
  • the glass transition temperature here is a value measured by DSC.
  • the glass transition temperature of the polymer containing a glycidyl group-containing vinyl-based unit is It can be controlled by adjusting the composition of the polymerization components. The glass transition temperature can usually be increased by copolymerizing aromatic butyl units such as styrene, and can be decreased by copolymerizing acrylate units such as butyl acrylate.
  • the polymer containing a glycidyl group-containing bull-type unit usually contains a volatile component because unreacted raw material monomers and solvents remain.
  • the amount of the non-volatile component that is the balance is not particularly limited, but it is preferable that the amount of the non-volatile component is large from the viewpoint of suppressing the generation of gas. Specifically, it is preferably 95% by weight or more, more preferably 97% by weight or more, more preferably 98% by weight or more, and particularly preferably 98.5% by weight or more. Most preferably it is.
  • the “non-volatile component” means the remaining ratio when 10 g of a sample is heated at 110 ° C. for 1 hour in a nitrogen atmosphere.
  • a polymer containing a glycidyl group-containing bull unit may use a sulfur compound as a chain transfer agent (molecular weight modifier) in order to obtain a low molecular weight product.
  • the coalescence usually contains sulfur.
  • the sulfur content is not particularly limited, but if it suppresses an unpleasant odor, it is preferable to have a low sulfur content.
  • sulfur atoms lOOOppm or less is preferred, lOOppm or less is preferred, lOppm or less is preferred, and most preferably lppm or less.
  • the method for producing a polymer containing a glycidyl group-containing bull unit is not particularly limited as long as the conditions specified in the present invention are satisfied.
  • Bulk polymerization, solution polymerization, suspension polymerization, A known polymerization method such as emulsion polymerization can be used. When these methods are used, a polymerization initiator, a chain transfer agent, a solvent, and the like may be used, but these remain as impurities in the polymer containing a glycidyl group-containing bulle unit finally obtained.
  • the amount of these impurities is not particularly limited, but from the viewpoint of suppressing the decrease in heat resistance and weather resistance, the amount of impurities is preferably low. Specifically, the amount of impurities is preferably 10% by weight or less, more preferably 5% by weight or less, and further preferably 3% by weight or less, based on the polymer finally obtained. Les, most preferred to be less than wt%.
  • the blending amount of the (D) reactive compound is preferably 0.01 to 30 parts by weight with respect to a total of 100 parts by weight of (A) polylactic acid resin and (B) methacrylic resin. 0. 05-2 0 parts by weight are more preferred 0 .:! ⁇ 10 parts by weight are even more preferred 0.5-3 parts by weight are particularly preferred. (D) When the compounding amount of the reactive compound is less than 0.01 part by weight, the impact resistance improving effect of the resin composition tends to be insufficient, and when it exceeds 30 parts by weight, As a result, the liquidity may be reduced.
  • the short axis length of the inorganic particles in the resin composition is 1 to 300 nm, and the long axis The length of 1 ⁇ lOOOnm is preferred.
  • the length of the short axis of the inorganic particles is preferably 5 to 200 nm, more preferably the force S, and 10 to:
  • the length of the long axis that is more preferably OOnm is More preferred is 10 to 900 nm, even more preferred is 50 to 800 nm.
  • the length of the short axis and the length of the long axis of the inorganic particles are as follows.
  • the resin composition is observed at 20,000 times using an electron microscope, and 20 arbitrary inorganic particles, preferably 100, are observed. Then, the shape is observed and measured, and the shortest length is taken as the short axis direction, the longest length is taken as the long axis direction, and these are average values.
  • the (E) inorganic particles may be any of granular, spherical, plate-like, and fibrous, but are preferably plate-like from the viewpoint of heat resistance.
  • the granular or spherical inorganic particles include zinc oxide, magnesium oxide, iron oxide, titanium oxide, titania, zirconia, ceria, anolemina, silica, calcium carbonate, talc, my strength, kaolin.
  • Graphite powder, carbon black, etc. can be used, and silica is particularly preferable.
  • the plate-like inorganic particles include talc, my strength, glass flakes, monmo Silicates such as lilonite and smectite can be used, and silicates are particularly preferable.
  • the fibrous inorganic particles include glass fiber, carbon fiber, zinc oxide, anolemina, calcium titanate, potassium titanate, barium titanate, aluminum borate, magnesium borate, Magnesium oxysulfate fiber or the like can be used.
  • the inorganic particles are more preferably those containing silicon.
  • Specific examples include silica and silicate, and among these, layered silicate is more preferable.
  • the organically modified layered silicate is more preferable.
  • EDX electron microscope energy dispersive X-ray analyzer
  • the silica may be a powder, water or an organic solvent-dispersed zonore (colloidal silica), but colloidal silica is preferred from the viewpoint of transparency.
  • the surface treatment is performed with at least one functional group selected from a hydroxyl group, an amino group, an amide group, a carboxyl group, a glycidyl group, an acid anhydride group, a carpositimide group, and an oxazoline group. Is preferred.
  • the affinity with the matrix resin is improved, which is effective in suppressing aggregation and dispersibility of inorganic particles, and can be dispersed uniformly in the resin composition.
  • a resin composition having excellent transparency can be obtained.
  • the organically modified layered silicate is a layered silicate in which an exchangeable cation or anion existing between layers is exchanged with an organic ion or an organic anion, and in particular, the exchangeable cation is an organic cation.
  • Layered silicates exchanged with onion ions are preferred.
  • a layered silicate having exchangeable ions between layers has a structure in which plate-like materials having a width of 0.05 to 0.5 zm and a thickness of 6 to 15 angstroms are laminated. There is an exchangeable ion between these layers.
  • the ion exchange capacity is 0.2 to 3 meqZg, and preferably the ion exchange capacity is 0.8 to 1.5 meqZg.
  • layered silicates include smectite clay minerals such as montmorillonite, neiderite, nontronite, saponite, hectorite, and saconite, vermiculite, and halloy.
  • clay minerals such as sight, kanemite, kenyanite, dinoleconium phosphate, titanium phosphate, Li-type fluorine teniolite, Na-type fluorine teniolite, Na-type tetrasilicon fluorine mica, Li-type tetrasilicon fluorine mica, etc. Sites, etc., which can be natural or synthesized.
  • smectite clay minerals such as montmorillonite and hectrite
  • swellable synthetic mica such as Na-type tetrasilicon fluorine mica and Li-type fluorine teniolite are preferred.
  • organic ions examples include ammonium ions, phosphonium ions, sulfonium ions, and the like. Of these, ammonium ions and phosphonium ions are preferred, especially the ammonium ions.
  • Ammonium ion there are 1st grade, 2nd grade, 3rd grade, and 4th grade Ammonium.
  • Examples of the primary ammonium ion include decyl ammonium, dodecyl ammonium, octa decyl ammonium, oleir ammonium, and benzylammonium.
  • secondary ammonium ions include methyl dodecyl ammonium, methyl octadecyl ammonium, and the like.
  • Examples of the tertiary ammonium ion include dimethyldodecyl ammonium, dimethyloctadecyl ammonium, and the like.
  • the quaternary ammonium ions include benzyltrialkylammonium ions such as benzyltrimethylammonium, benzyltriethyl, benzyldimethyloctadecylammonium, benzalkonium, trimethyloctylammonium, and trimethyldodecyl.
  • Dimethyldialkylammonium ions such as ammonium, trimethyloctadecylammonium, dimethyldioctylammonium, dimethyldidodecylammonium, dimethyldioctadecylammonium, trioctyl Nyme ions, benzethonium ions having two benzene rings, and the like.
  • aniline p-phenylenediamine, ⁇ -naphthinoreamine, ⁇ -amino Nodimethylaniline, benzidine, pyridine, piperidine, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, ammonium ions derived from polyalkylene glycol having an amino group at the terminal, etc.
  • benzidine pyridine
  • piperidine 6-aminocaproic acid
  • 11-aminoundecanoic acid 11-aminoundecanoic acid
  • 12-aminododecanoic acid ammonium ions derived from polyalkylene glycol having an amino group at the terminal, etc.
  • ammonium ions include trioctylmethyl ammonium, benzyldimethyldodecyl ammonium, benzyldimethyloctadecyl ammonium, benzalkonium, and the like. These ammonium ions are generally available as a mixture, and the above compound names are representative compound names containing a small amount of analogs. These may be used alone or in combination of two or more.
  • Ammonium ions derived from 12-aminododecanoic acid, polyalkylene glycol having an amino group at the terminal, and the like are also preferred.
  • organic anions include long-chain carboxylic acids such as lauric acid, decanoic acid, stearic acid, dodecadicarboxylic acid, and dimer acid.
  • the organically modified layered silicate can be produced by reacting a layered silicate having an exchangeable cation or anion between layers, an organic ion or an organic anion by a known method.
  • a layered silicate having an exchangeable cation or anion between layers an organic ion or an organic anion by a known method.
  • Specific examples include method power by ion exchange reaction in a polar solvent such as water, methanol, ethanol, and a method by directly reacting liquid or molten organic salt with layered silicate.
  • the amount of organic ions relative to the layered silicate is positive for the layered silicate in terms of dispersibility of the layered silicate, thermal stability at the time of melting, suppression of generation of gas and odor at the time of molding.
  • the ion exchange capacity is in the range of 0.4 to 2.0 equivalents, but is preferably 0.8 to 1.2 equivalents.
  • the organically modified layered silicate after pretreatment with a coupling agent having a reactive functional group in order to obtain better mechanical strength.
  • a coupling agent having a reactive functional group include isocyanate compounds, organic silane compounds, organic titanate compounds, organic borane compounds, and epoxy compounds.
  • the organically modified layered silicate is uniformly dispersed in the resin composition. And are preferred. Uniform dispersion here means that the layered silicate is dispersed in a layered state of 5 layers or less without local lumps.
  • the blending amount of (E) inorganic particles is preferably 0.:! To 50 parts by weight with respect to 100 parts by weight of the total of (A) polylactic acid resin and (B) methacrylol resin. 0.5 to 20 parts by weight Force preferred 1 to 10 parts by weight is particularly preferred.
  • fillers glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber, glass flake, glass bead, ceramic fiber, Ceramic beads, asbestos, wollastonite, talc, clay, my strength, sericite, zeolite, bentonite, dolomite, kaolin, fine powdered kalic acid, feldspar powder, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, Calcium oxide, aluminum oxide, titanium oxide, aluminum silicate, silicon oxide, gypsum, novaquilite, dawsonite, clay, etc.), stabilizer (antioxidant, UV absorber, etc.), lubricant, mold release agent, flame retardant, dye Colorants including pigments, crystal nucleating agents, plasticizers, antistatic agents, etc.
  • a mold release agent is preferably blended in that a resin composition excellent in mechanical properties, moldability, heat resistance, transparency and the like can be obtained.
  • the mold release agent those usually used for mold release agents for thermoplastic resins can be used.
  • the compounding amount of the mold release agent is preferably 0.0 :! to 3 parts by weight with respect to a total of 100 parts by weight of (A) polylactic acid resin and (B) methacrylic resin. The department is even better.
  • thermoplastic resin for example, polyethylene resin, polypropylene resin, polymethylpentene resin, cyclic olefin-based resin, etc.
  • thermoplastic resin for example, polyethylene resin, polypropylene resin, polymethylpentene resin, cyclic olefin-based resin, etc.
  • ABS Acrylonitrile 'butanegen' styrene
  • AS acrylonitrile 'styrene
  • cellulose resin such as cellulose acetate, polyamide resin, polyacetal resin, polyethylene terephthalate resin and poly Polyester resin
  • butylene terephthalate resin polycarbonate resin, polyethylene oxide resin, polyarylate resin, polysulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, polyimide resin, polyetherimide resin) and thermosetting
  • At least one or more resins such as a phenol resin, a melamine resin, a polyester resin, a silicone resin, and an epoxy resin can be further blended.
  • the method for producing the resin composition of the present invention is not particularly limited.
  • a method of uniformly melting and kneading with a single screw or twin screw extruder above the melting point, a method of removing the solvent after mixing in a solution, etc. are used, but in terms of productivity, a single screw or twin screw extruder If a resin composition excellent in transparency, heat resistance and fluidity is obtained, a method of uniformly melting and kneading with a twin screw extruder is preferable. More preferred.
  • the ratio of syndiotactic to isotacticity (syndiotacticity / isotacticity) of the methacrylic resin in the resin composition is 2.5 to 8.0. It is characterized by. Further, in terms of heat resistance and fluidity, it is preferably 3.0 to 8.0, more preferably force S, and 3.0 to 5.5, more preferably S, more preferably 3.0 to 5.0. It is especially preferred.
  • Syndiotacticity, heterotacticity, and isotacticity mentioned here are syndiotacticity, heterotacticity, and isotacticity in 1H-NMR measurement using deuterated black mouth form as a solvent. Calculated by expressing the percentage of the integrated intensity of each peak as a percentage, with the total integrated intensity of the straight-chain branched methyl groups of 0.9 ppm, 1. Oppm, and 1.2 ppm observed as 100%. This is a possible value.
  • the glass transition temperature is preferably 70 ° C or higher, more preferably 75 ° C or higher, more preferably 80 ° C or higher. More preferably, it is particularly preferably 90 ° C or more.
  • the upper limit is not particularly limited, but is preferably 150 ° C. or less, more preferably 120 ° C. or less, from the viewpoint of fluidity.
  • the glass transition temperature is measured by DSC according to the method described in JIS K7121. This is the value of the midpoint glass transition temperature or extrapolation transition end temperature. In DSC measurement, the DSC curve is bent by the change in specific heat capacity, and the glass transition temperature region can be detected by the shape in which the baseline moves in parallel.
  • the glass transition temperature at the midpoint is determined by drawing the tangents of the baselines below the bending point and above the bending point in parallel so that the height between each baseline, that is, the position where the specific heat capacity change is halved. This is the intersection of a DSC curve that is bent with a straight line drawn parallel to the base line.
  • the extrapolation transition end temperature refers to the intersection of the tangent line of the base line of the temperature above the bending point and the tangent line of the point having the maximum inclination at the bent part.
  • the resin composition of the present invention has a load of 0. 0 in accordance with ASTM D648 in terms of heat resistance.
  • Deflection temperature (DTUL) force measured at 45 MPa is preferably 60 ° C or more, more preferably 70 ° C or more, and further preferably 80 ° C or more.
  • the resin composition of the present invention is preferably transparent.
  • the term “transparent” means that there is a portion where the characters can be read when the molded product is overlaid on a printed matter such as newspapers.
  • the haze is 10% or less in terms of excellent transparency, which is preferably 30% or less when formed into a molded product having a thickness of 20 xm or more, preferably lmm. The more preferred haze is 5% or less.
  • haze is a value measured according to JIS K7105.
  • the transparency can also be determined by the total light transmittance measured according to JIS K6714, and the total light transmittance is preferably 80% or more, preferably 85% or more. Is more preferably 90% or more.
  • the melt flow rate is not particularly limited, but in terms of heat resistance, it was measured at 190 ° C and a load of 21.2N according to JIS K7210.
  • the MFR is preferably 30 g / lOmin or less, more preferably 20 g / l0 min or less, and even more preferably 15 gZlO min or less.
  • the MFR exceeds 30 gZlO, the heat resistance tends to decrease.
  • it is preferably 0.1 lg / 10 min or more, more preferably lgZlO min or more, and further preferably 3 g / l0 min or more.
  • the surface hardness is not particularly limited, but it is preferable that the pencil hardness force measured according to JIS K-5600 is HB or more. It is more preferable that it is H or more. If the pencil hardness is lower than HB, the surface will be easily scratched, which is not preferable.
  • the resin composition of the present invention is used as an optical recording medium, it is preferably HB or more in that a reading error or the like that is difficult to be scratched occurs when the substrate is processed. It is more preferable that it is H or more.
  • the force S is preferably 3H or less, and more preferably 2H or less, in that the optical recording medium is destroyed by an impact such as dropping. .
  • the impact strength is not particularly limited.
  • the Izod impact strength measured according to ASTM D256 is preferably 50 j / m or more. It is more preferable that it is 75 j / m or more, and it is even more preferable that it is 100 j / m or more. If the Izod impact strength is lower than 50 j / m, it is not preferable because the Izod impact strength is likely to be damaged due to impact such as dropping.
  • the saturated water absorption is not particularly limited, but the saturated water absorption power measured in accordance with ASTM D570 is preferably 0.4 wt% or less. More preferably, it is 3% by weight or less, more preferably 0.2% by weight or less, and particularly preferably 0.1% by weight or less. The lower limit is not particularly limited. If the saturated water absorption exceeds 0.4% by weight, deformation due to moisture absorption is likely to occur and the possibility of becoming unusable immediately increases.
  • the letter decision (birefringence amount) is not particularly limited. Force Using a commercially available ellipsometer, laser light at 23 ° C and 405 nm is at an angle of 30 ° C with respect to the substrate surface.
  • the letter measurement measured after irradiation is preferably 50 nm or less, more preferably 3 Onm or less, more preferably 20 nm or less, and even more preferably 10 nm or less. Most preferably, it is 5 nm or less.
  • a letter error exceeding 50 nm is not preferable because a reading error tends to occur.
  • the resin composition of the present invention can be used after being processed into various molded products by a method such as injection molding or extrusion molding.
  • Examples of the molded product comprising the resin composition of the present invention include injection molded products, extrusion molded products, blow molded products, films and sheets.
  • a molded product having a portion of 1 mm or more is preferred because it is excellent in heat resistance, and is preferably a molded product having a thickness of 20 xm or more.
  • a molded product having a portion with a thickness of 50 mm or less is preferable, and a molded product having a portion with a thickness of 10 mm or less is more preferable. More preferably, the molded article has
  • the molded product comprising the resin composition of the present invention has a part having a thickness of 20 / im or more, preferably a thickness force of Slmm and a haze of 30% or less in terms of excellent transparency. It is more preferable to have a portion where the haze is preferably 10% or less, more preferably 5% or less.
  • haze is a value measured using a haze meter in accordance with JIS K7105.
  • Molded articles made of the resin composition of the present invention can be used for various applications such as electric / electronic parts, building components, automobile parts, various containers, daily necessities, household goods and sanitary goods.
  • relay cases Specifically, relay cases, coil bobbins, optical pickup chassis, motor cases, notebook computer housings and internal parts, CRT display housings and internal parts, printer housings and internal parts, mobile phones, mopile PCs, handhelds Representative for mobile terminal housing and internal parts such as type mopile, recording media (CD, DVD, PD, FDD, etc.) drive housing and internal parts, copier housing and internal parts, facsimile housing and internal parts, parabolic antenna, etc. Mentioned electrical / electronic components.
  • VTR parts TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, video camera parts, video equipment parts such as projectors, laser discs (registered trademark), compact discs (CDs), CDs -ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD—RW, DVD-RAM, Blu-ray disc and other optical recording media substrates, lighting parts, refrigerator parts, air conditioner parts, typewriter parts And household electrical appliance parts represented by word processor parts, etc.
  • projectors laser discs (registered trademark), compact discs (CDs), CDs -ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD—RW, DVD-RAM, Blu-ray disc and other optical recording media substrates, lighting parts, refrigerator parts, air conditioner parts, typewriter parts And household electrical appliance parts represented by word processor parts, etc.
  • Medical supplies such as supplies, non-woven fabric for medical use (stitching reinforcement, anti-adhesion film, prosthetic repair material), wound dressing, wound tape bandage, sticker base fabric, surgical suture, fracture reinforcement, medical film, etc.
  • Microwave cooking containers Cosmetic containers, wraps, foam buffers, paper lami, shampoo bottles, beverage bottles, cups, candy packaging, shrink labels, lid materials, envelopes with windows, fruit baskets, hand tapes, easy peels Packaging, egg packs, HDD packaging, compost bags, recording media packaging, shopping bags, wrapping films for electrical and electronic parts, etc.
  • Containers and packaging natural fiber composites, polo shirts, T-shirts, inners, uniforms, shirts, socks, ties and other clothing, curtains, chairs, carpets, table cloths, futons, wallpaper, furoshiki, etc.
  • Hot melt binders such as supplies, carrier tape, print laminate, heat-sensitive stencil printing film, release film, porous film, container bag, credit card, cash card, ID card, IC card, paper, leather, non-woven fabric, etc.
  • Binder magnetic substance, zinc sulfide, electrode material powder binder, optical element, conductive embossed tape, IC tray, golf tee, garbage bag, plastic bag, various nets, toothbrush, stationery, draining net, body towel, Hand towel, tea pack, drain filter, clear file, coating agent, adhesive Bag useful chairs, tables, cooler boxes, rakes, Horsley Le, planters, hose nozzles, dining table, the surface of the desk, furniture panels, kitchen cabinets, pen caps, as such as gas lighters.
  • the resin yarn according to the present invention includes CD, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD_RW, DVD-RAM, laser disk (registered trademark), It is useful as a substrate for optical recording media such as Blu-ray discs.
  • a method for producing a substrate of an optical recording medium is not particularly limited, and a known method can be used, and examples thereof include an injection molding method, an extrusion molding method, an injection press molding method, and the like.
  • the injection molding method is preferable because a product having good characteristics can be stably produced in large quantities.
  • Various layers such as a reflective layer, a recording layer, an adhesive layer, a dielectric layer, and a protective layer formed on the substrate can be formed using a known method.
  • the adhesive used for the adhesive layer it is preferable to use a high heat-resistant adhesive such as polyimide from the viewpoint of heat resistance.
  • a reproduction-only type, a write-once type, a rewritable type, and the like can be manufactured.
  • the strength of the optical recording medium means the breaking strength of the optical recording medium, that is, the difficulty of cracking.
  • the strength is further improved if it is preferably 20 degrees or more, more preferably 30 degrees or more.
  • the resin composition of the present invention and a molded article comprising the resin composition can be recycled.
  • a resin composition and a molded article comprising the resin composition are heat-treated at 80 ° C. or higher, preferably 100 ° C. or higher, pulverized, preferably powdered, and then using a solvent such as acetone or tetrahydrofuran.
  • B) The methacrylic resin can be isolated, and then the (A) polylactic acid resin can be isolated from the residue using a solvent such as black mouth form.
  • the isolated resins can be used alone, and the resin composition obtained by blending them can be used in the same manner as the resin composition of the present invention, and can also be formed into a molded product. is there.
  • A-1) Poly L-lactic acid resin (D body 1.2%, weight average molecular weight 120,000)
  • A-2) Poly L-lactic acid resin (D body 1.2%, weight average molecular weight 150,000)
  • B_ 2 Methacrylic resin (Kuraray “Paraped 'HR_L, weight average molecular weight 90,000, glass transition temperature 117 ° C, syndiotacticity 56%, MFR 2g / 10min (230 ° C, 37.2N) )) (B-3) Methacrylic resin ("Sumipex” LG35 manufactured by Sumitomo Chemical Co., Ltd.), weight average molecular weight 100,000, glass transition temperature 90 ° C, syndiotacticity 39%, MFR35g / 10 min (230 ° C, 37. 2 N))
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • a reaction vessel equipped with a reflux condenser is charged with 120 parts by weight of deionized water, 0.2 part by weight of potassium carbonate, 0.2 part by weight of dioctyl sulfosuccinate and 0.005 part by weight of potassium persulfate and stirred under a nitrogen atmosphere. Thereafter, a mixture of 56 parts by weight of butyl acrylate, 12 parts by weight of methyl methacrylate and 1 part by weight of allylic methacrylate was continuously added over 60 minutes, and then kept at 70 ° C. for 30 minutes to obtain a core layer weight. Coalescence was obtained.
  • a reactor equipped with a reflux condenser is charged with 300 parts by weight of deionized water, 1.0 part by weight of sodium stearate and 0.1 part by weight of sodium N-lauroyl sarcosinate and stirred at 70 ° C for 30 minutes. After adding 0.01 parts by weight of potassium sulfate and stirring under a nitrogen atmosphere, a mixture of 50 parts by weight of methyl methacrylate, 2 parts by weight of methyl acrylate and 0.15 parts by weight of allylic methacrylate was continuously added over 60 minutes. Was added at 80 ° C. for 60 minutes to obtain a core layer polymer.
  • This latex is coagulated with sulfuric acid, neutralized with caustic soda, washed with water at 50 ° C warm water and dehydrated three times, and the solid content is dried at 80 ° C for 12 hours to obtain a multilayer polymer (C- The powder of 2) was obtained.
  • C_2 the refractive index was 1.485 and the glass transition temperature of the rubber layer was _34 ° C.
  • Na-type montmorillonite (Kunimine Industries: "Kunipia F", cation exchange capacity 120meq / 100g) 100g was stirred and dispersed in 10 liters of hot water, and 12aminododecanoic acid hydrochloride 30.2g (equivalent to cation exchange capacity) 2 L of warm water in which) was dissolved was added and stirred for 1 hour. The resulting precipitate was filtered and washed with warm water three times, and the resulting solid was vacuum-dried at 80 ° C. to obtain E 1.
  • Standard PMMA equivalent weight average molecular weight measured by gel permeation chromatography GPC
  • Hexafluoroisopropanol was used as a solvent, the flow rate was 0.5 mL / min, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected and measured.
  • 1H value measured by NMR measurement. 1H-NMR measurement was carried out using JEOL 3 ⁇ 4 [NM_AL400, using deuterated chloroform as a solvent and a sample concentration of 20 mgZmL.
  • the values representing the percentage of the integrated intensity in percentage were defined as syndiotacticity, heterotacticity, and isotacticity, respectively.
  • the fluidity of the resin composition was measured in accordance with JIS K7210 at 190 ° C and 21.2N load.
  • the resin composition or (C) core layer and one or more shell layer force covering it are press-molded at 150 ° C to form a 0.5 mm thick sheet, then 5 mm wide, A test piece having a length of 20 mm was cut out, and the refractive index at 23 ° C. and a wavelength of 589 nm was measured with an Abbe refractometer (DR-M2 manufactured by Atago).
  • DRB2 Abbe refractometer
  • TEM transmission electron microscope
  • TEM Transmission electron microscope
  • EDX energy dispersive X-ray analyzer
  • ASTM No. 1 dumbbell molded product was treated for 100 hours in a constant temperature and humidity chamber at 70 ° C and 95% relative humidity, and then the tensile strength was measured to determine the tensile strength retention. It can be said that the higher the tensile strength retention, the better the hydrolysis resistance.
  • the resin composition obtained was injection molded at a cylinder temperature of 200 ° C and a mold temperature of 40 ° C using a Sumitomo Heavy Industries injection molding machine SG75H-MIV. 12. 7mm x 127mm x 3mm product, 3mm thick ASTM No. 1 danbenole product and 5cm
  • Tables 1 and 2 show the results of various evaluations using the obtained molded product.
  • the difference in glass transition temperature between the polylactic acid resin and methacrylic resin is 10 ° C or more, or the difference in syndiotacticity. It can be seen that a resin composition comprising two kinds of methacrylic resins satisfying at least one of the conditions of at least 3% is excellent in heat resistance, transparency, fluidity, strength and pencil hardness.
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • a resin composition comprising a polylactic acid-based resin, a methacrylic resin, and a multilayer structure polymer has a heat resistance and transparency. It can be seen that it has excellent fluidity, impact resistance and strength.
  • heat resistance and transparency can be achieved by using a multilayer structure polymer containing a constituent having a refractive index of 1.45 to 1.50 or a glass transition temperature of 30 ° C or lower. It can also be seen that it has excellent impact resistance.
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • (D-2) a glycidyl group-containing acrylic copolymer (manufactured by NOF Corporation "MARPROOF” G2050M, weight average molecular weight 210,000)
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • a resin composition containing a reactive compound and a reactive compound is excellent in heat resistance, transparency and fluidity. Further, from the comparison between Examples 18 to 23 and Comparative Examples 16 to 17, it is understood that the resin composition obtained by further blending the multilayer structure polymer is excellent in impact resistance.
  • a reactive compound a polymer having a weight average molecular weight of 1000 to 300,000, a polymer containing a glycidyl group-containing bull unit, or a compound containing a carposimide group can be used to improve heat resistance and impact resistance. It can also be seen that it has excellent hydrolysis resistance.
  • polylactic acid resin, methacrylic resin, inorganic particles and / or multilayer structure polymer, and reactive compound are blended.
  • Example 28 polylactic acid resin, methacrylic resin, and colloidal silica were stirred and mixed in 500 parts by weight of tetrahydrofuran for 3 hours, and the precipitate obtained after addition to a large excess of ethanol was dried at 70 ° C. To obtain a resin composition.
  • Tables 7 and 8 show the results of various evaluations.
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • (C) A multilayer structure polymer composed of a core layer and one or more shell layers covering the core layer
  • a resin composition and a molded product were prepared in the same manner as in Example 1 except that fat was blended, and the glass transition temperature, haze, and MFR were determined.
  • a disk substrate on which uneven pits were formed was formed by injection molding using the obtained resin composition.
  • an ultraviolet curable resin SD-1700, manufactured by Dainippon Ink Industries, Ltd.
  • SD-1700 was spin-coated on the disk substrate to form a protective layer.
  • the difference in glass transition temperature is 10 ° C or more, or the difference in syndiotacticity is 3% or more.
  • a resin composition composed of two methacrylic resins that satisfy the conditions satisfies the requirements of heat resistance, transparency, and fluidity, and the optical recording medium that uses it as a substrate can be used without problems.
  • the resin composition of the present invention is excellent in transparency, heat resistance, and fluidity, it is used in various applications such as electrical and electronic parts, building components, automobile parts, various containers, daily necessities, daily necessities, and hygiene goods. Is available.

Abstract

(A)ポリ乳酸系樹脂および(B)メタクリル系樹脂を配合してなる樹脂組成物であって、(B)メタクリル系樹脂が、(a)ガラス転移温度の差が10°C以上もしくは(b)シンジオタクチシチーの差が3%以上の少なくともを満たす2種以上のメタクリル系樹脂を含む樹脂組成物であり、好ましくは、(B)メタクリル系樹脂の少なくとも1種が、重量平均分子量5万~45万、ガラス転移温度110°C以上およびシンジオタクチシチー40%以上であるメタクリル系樹脂であり、(C)コア層とそれを覆う1以上のシェル層から構成される多層構造重合体を配合してなるものである。また、上記樹脂組成物からなる成形品である。

Description

明 細 書
樹脂組成物およびそれからなる成形品
技術分野
[0001] 本発明は、樹脂組成物およびそれからなる成形品に関するものであり、詳しくは、 透明性、耐熱性および流動性に優れ、好ましい態様においては耐衝撃性、耐加水 分解性にも優れるポリ乳酸系樹脂を含む樹脂組成物およびそれ力 なる成形品に関 するものである。
背景技術
[0002] 近年では、地球環境保全の見地から、土中や水中に存在する微生物の作用により 自然環境下で分解される生分解性ポリマーが注目されており、様々な生分解性ポリ マーが開発されている。これらのうち溶融成形が可能な生分解性ポリマーとして、例 えばポリヒドロキシブチレートやポリ力プロラタトン、コハク酸やアジピン酸などの脂肪 族ジカルボン酸成分と、エチレングリコールやブタンジオールなどのグリコール成分と 力 なる脂肪族ポリエステルおよびポリ乳酸樹脂などがよく知られている。これらの中 でも、ポリ乳酸樹脂は、モノマーである乳酸を、とうもろこしなどのバイオマスを原料と して、微生物を利用した発酵法により安価に製造できるようになり、また、透明性を有 し、融点もおよそ 170°Cと高ぐ溶融成形可能なバイオポリマーとして期待されている
[0003] し力 ながら、ポリ乳酸樹脂はガラス転移温度が 60°C付近にあり、この温度近傍で の熱変形や剛性低下が大きいため、各種成形品として用いる場合には、通常の使用 条件においても熱変形しやすく使用が困難になるという問題点があり、耐熱性に優れ るポリ乳酸系材料が望まれてレ、た。
[0004] さらに、射出成形品とする場合には、射出成形工程での成形加工性の点で、流動 性に優れることが重要であり、透明性、耐熱性および流動性のいずれにも優れるポリ 乳酸系材料が望まれていた。
[0005] また、ポリ乳酸樹脂は、脆く耐衝撃性が低いため、各種成形品として用いる場合に は、成形品が割れるなどの破損が発生しやすく使用が困難になるという問題点があり 、耐衝撃性に優れるポリ乳酸系材料が望まれていた。
[0006] 特許文献 1には、ポリ乳酸とアタリレートポリマーからなる樹脂組成物に関し、耐熱 性に優れる樹脂組成物が得られることが記載されてレ、るが、ポリ乳酸の透明性を維持 することについては、一切開示はなぐ実施例においても、耐熱性は向上するものの 透明性および流動性については例示がなぐ透明性、耐熱性および流動性のいず れにも優れる樹脂組成物を得るための解決手段について全く示唆されていない。
[0007] 特許文献 2には、ポリ乳酸を含むひ—ヒドロキシカルボン酸重合体とポリ(メタ)アタリ レートからなる樹脂組成物に関し、加水分解性に優れる樹脂組成物が得られることが 記載されており、特許文献 3には、ポリ乳酸とアクリル系化合物からなる樹脂組成物に 関し、成形カ卩ェ性に優れる樹脂組成物が得られることが記載されているが、いずれも 耐熱性および流動性については、一切開示はなぐ透明性、耐熱性および流動性の レ、ずれにも優れる樹脂組成物を得るための解決手段にっレ、て全く示唆されてレ、なレヽ
[0008] 特許文献 4には、ポリ乳酸系重合体とアクリル系重合体からなる樹脂組成物に関し 、透明性および耐熱性のレ、ずれにも優れる樹脂組成物が得られることが記載されて おり、特許文献 5には、ポリ乳酸とポリ(メタ)アタリレートからなる樹脂組成物に関し、 透明性および耐熱性のいずれにも優れる樹脂組成物からなる二軸延伸フィルムが得 られることが記載されており、特許文献 6には、ポリ乳酸とポリメチルメタタリレートから なる樹脂組成物に関し、透明性および耐熱性のレ、ずれにも優れる樹脂組成物が得ら れることが記載されており、非特許文献 1および 2には、ポリ乳酸とポリメチルメタクリレ ートを混合することにより、ガラス転移温度が向上することが記載されている力 いず れも流動性については、一切開示はな また、いずれも耐熱性向上効果が不十分 であり、さらなる改良が求められており、透明性、耐熱性および流動性のいずれにも 優れる樹脂組成物を得るための解決手段について全く示唆されていない。
[0009] 特許文献 7には、(メタ)アクリル酸エステル系重合体とゴム質重合体からなる樹脂 組成物により、透明性、耐熱性および耐衝撃性のいずれにも優れる樹脂組成物を得 られることが記載されているが、ポリ乳酸系樹脂を配合することについては、一切開 示がなぐポリ乳酸系樹脂を配合した場合に、透明性、耐熱性、流動性および耐衝撃 性のいずれにも優れる樹脂組成物を得るための解決手段について全く示唆されてい ない。
特許文献 1:米国特許第 5300576号公報 (第 1 _ 2頁)
特許文献 2 :特開平 8— 59949号公報 (第 1一 2頁)
特許文献 3:特開 2002— 155207号公報 (第 1 - 2頁)
特許文献 4:特開 2004— 269720号公報(第 1 - 2頁)
特許文献 5:国際公開特許第 2004Z87812号公報 (第 1 - 3頁)
特許文献 6:特開 2005— 171204号公報 (第 1 2頁)
特許文献 7:特開 2003 - 26891号公報 (第 1 2頁)
非特許文献 1 : Polymer Preprints Japan, 42 (3) , 1180 (1993)
非特許文献 2 : Polymer, 39 (26) , 6891 (1998)
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、透明性、耐熱性および流動性に優れ、好ましい態様においては耐衝撃 性、耐加水分解性にも優れるポリ乳酸系樹脂を含む樹脂組成物およびそれ力 なる 成形品を提供することを課題とする。
課題を解決するための手段
[0011] 本発明は、かかる課題を解決するために、次のような手段を採用するものである。
[0012] すなわち、本発明は、
(1) (A)ポリ乳酸系樹脂および (B)メタクリル系樹脂を配合してなる樹脂組成物であ つて、(B)メタクリル系樹脂が下記条件の少なくとも一つを満たす 2種以上のメタクリル 系樹脂を含む樹脂組成物、
(a)ガラス転移温度の差が 10°C以上
(b)シンジオタクチシチ一の差が 3%以上
(2) (B)メタクリル系樹脂の少なくとも 1種力 重量平均分子量 5万〜 45万、ガラス転 移温度 110°C以上およびシンジオタクチシチー 40%以上であるメタクリル系樹脂で ある(1)に記載の樹脂組成物、
(3)さらに(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体 を配合してなる(1)に記載の樹脂組成物、
(4) (C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体が、下 記条件の少なくとも一つを満たすものである(3)に記載の樹脂組成物、
(c)屈折率が 1. 45〜: 1. 50
(d)ガラス転移温度が 30°C以下の構成成分を含む
(5) (C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の最外 層が、メタクリル酸メチル単位および/またはアクリル酸メチル単位を含む重合体から 構成される(3)に記載の樹脂組成物、
(6)樹脂組成物中における(C)コア層とそれを覆う 1以上のシェル層力 構成される 多層構造重合体の分散粒子径が、:!〜 lOOOnmである(3)に記載の樹脂組成物、
(7)樹脂組成物中における(C)コア層とそれを覆う 1以上のシェル層力 構成される 多層構造重合体の凝集粒子数 (1)と凝集してレ、なレ、粒子数 (m)との比 (1/m)力^〜 0. 5である(3)に記載の樹脂組成物、
(8)さらに(D)反応性化合物として、グリシジル基、酸無水物基、カルポジイミド基、ォ キサゾリン基から選択される少なくとも 1種の官能基を含有する反応性化合物を配合 してなる(1)に記載の樹脂組成物、
(9) (D)反応性化合物力 重量平均分子量 1000〜300000の重合体であり、グリシ ジル基含有ビニル系単位を含む重合体である(8)に記載の樹脂組成物、
( 10)さらに (E)無機粒子を配合してなる樹脂組成物であって、樹脂組成物中におけ る無機粒子の短軸の長さが:!〜 300nmであり、長軸の長さが:!〜 lOOOnmである(1
)に記載の樹脂組成物、
(11) (E)無機粒子が、ケィ素を含むものである(10)に記載の樹脂組成物、
(12) (A)ポリ乳酸系樹脂および (B)メタクリル系樹脂を配合してなる樹脂組成物であ つて、樹脂組成物中における(B)メタクリル系樹脂のシンジオタクチシチ一とアイソタ クチシチ一の比(シンジオタクチシチ一/アイソタクチシチ一)が、 3. 0〜8. 0である 樹脂組成物、
(13) (1)〜(: 12)に記載の樹脂組成物からなる成形品、
である。 発明の効果
[0013] 本発明によれば、透明性、耐熱性および流動性に優れ、好ましい態様においては 耐衝撃性、耐加水分解性にも優れるポリ乳酸系樹脂を含む樹脂組成物およびそれ 力 なる成形品を提供することができる。
発明を実施するための最良の形態
[0014] 本発明で用いられる (A)ポリ乳酸系樹脂とは、 L—乳酸および/または D—乳酸を 主たる構成成分とするポリマーであるが、乳酸以外の他の共重合成分を含んでレ、て もよレ、。力かる他の共重合成分単位としては、例えば、多価カルボン酸、多価アルコ ール、ヒドロキシカルボン酸、ラタトンなどが挙げられ、具体的には、シユウ酸、マロン 酸、コハク酸、グルタル酸、アジピン酸、ァゼライン酸、セバシン酸、ドデカンジオン酸 、フマノレ酸、シクロへキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、 2, 6 _ナフタレンジカルボン酸、アントラセンジカルボン酸、 5_ナトリウムスルホイソフタ ル酸、 5—テトラブチルホスホニゥムスルホイソフタル酸などの多価カルボン酸類、ェ チレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、へキサ ンジオール、オクタンジオール、ノナンジオール、デカンジオール、 1, 4ーシクロへキ サンジメタノール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフエ ノール A、ビスフエノールにエチレンォキシドを付加反応させた芳香族多価アルコー ル、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピ レングリコール、ポリテトラメチレングリコールなどの多価アルコール類、グリコーノレ酸、
3—ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 4ーヒドロキシ吉草酸、 6—ヒドロキシカプロン 酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸類、およびグリコリド、 ε一力プロラ クトングリコリド、 ε一力プロラタトン、 β プロピオラタトン、 δ—プチ口ラタトン、 β または γ ブチロラタトン、ピバロラタトン、 δ バレロラタトンなどのラタトン類などを 使用すること力 Sできる。
[0015] 本発明においては、耐熱性の点で、乳酸成分の光学純度が高いポリ乳酸を用いる ことが好ましい。すなわち、(Α)ポリ乳酸系樹脂の総乳酸成分の内、 L体が 80%以上 含まれる力または D体が 80%以上含まれることが好ましぐ L体が 90%以上含まれる 力または D体が 90%以上含まれることがさらに好ましぐ L体が 95%以上含まれるか または D体が 95%以上含まれることが特に好ましぐ L体が 98%以上含まれる力また は D体が 98%以上含まれることが最も好ましい。また、 L体または D体の含有量の上 限は通常 100%以下である。
[0016] (A)ポリ乳酸系樹脂の分子量や分子量分布については、実質的に成形加工が可 能であれば、特に限定されるものではないが、重量平均分子量としては、耐熱性の 点で、好ましくは 1万以上、より好ましくは 4万以上、さらに好ましくは 8万以上、特に好 ましくは 10万以上、最も好ましくは 13万以上であるのがよい。上限は特に制限されな レ、が、流動性の点で、好ましくは 50万以下、さらに好ましくは 30万以下、より好ましく は 25万以下、さらに好ましくは 20万以下であることが望ましい。ここでいう重量平均 分子量とは、溶媒としてへキサフルォロイソプロパノールを用いたゲルパーミエーショ ンクロマトグラフィー(GPC)で測定したポリメチルメタタリレート(PMMA)換算の重量 平均分子量である。
[0017] (A)ポリ乳酸系樹脂の融点については、特に限定されるものではないが、 120°C以 上であることが好ましぐ 150°C以上であることがさらに好ましい。ここでいう融点とは、 示差走査型熱量計 (DSC)で測定した吸熱ピークのピークトップの温度である。
[0018] (A)ポリ乳酸系樹脂の製造方法としては、公知の重合方法を用いることができ、乳 酸からの直接重合法およびラクチドを介する開環重合法などを用いることができる。
[0019] 本発明において、(B)メタクリル系樹脂とは、メタクリル酸メチル成分単位を主成分、 好ましくは 70%以上含むものであればよぐ他のビュル系単量体成分単位を好ましく は 30%以下、より好ましくは 20%以下共重合した共重合体でもよい。その他のビニ ノレ系単量体としては、 ひ一メチルスチレン、 o—メチルスチレン、 p—メチルスチレン、 o—ェチルスチレン、 p—ェチルスチレン、 p_t—ブチルスチレンなどの芳香族ビニ ル系単量体、アタリロニトリノレ、メタタリロニトリル、エタタリロニトリルなどのシアン化ビニ ル系単量体、ィタコン酸グリシジル、ァリルグリシジルエーテル、スチレン _p_グリシ ジルエーテル、 p—グリシジルスチレン、マレイン酸無水物、マレイン酸モノエチルェ ステル、ィタコン酸、ィタコン酸無水物、ダルタル酸無水物、 N—メチルマレイミド、 N —ェチルマレイミド、 N—シクロへキシルマレイミド、 N—フエニルマレイミドなどの N— 置換マレイミド、アクリルアミド、メタクリルアミド、 N—メチルアクリルアミド、ブトキシメチ ノレアタリノレアミド、 N—プロピルメタクリルアミド、アクリル酸、アクリル酸メチル、アタリノレ 酸ェチル、アクリル酸ブチル、アクリル酸シクロへキシル、アクリル酸アミノエチル、ァ クリル酸プロピルアミノエチル、アクリル酸 2—ヒドロキシェチル、アクリル酸 2—ヒドロキ シプロピル、アクリル酸グリシジル、アクリル酸ジシクロペンテニルォキシェチル、ァク リル酸ジシクロペンタニル、ジアクリル酸ブタンジオール、ジアクリル酸ノナンジオール 、ジアクリル酸ポリエチレングリコール、 2_ (ヒドロキシメチル)アクリル酸メチル、 2_ ( ヒドロキシメチル)アクリル酸ェチル、メタクリル酸、メタクリル酸ェチル、メタクリル酸ブ チル、メタクリル酸シクロへキシル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェ チルァミノプロピル、メタクリル酸フエニルアミノエチル、メタクリル酸シクロへキシルアミ ノエチル、メタクリル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプロピル、メタク リル酸グリシジル、メタクリル酸ジシクロペンテニルォキシェチル、メタクリル酸ジシクロ ペンタニル、メタクリル酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、 メタクリル酸ベンジル、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリ コール、ジメタクリル酸ポリエチレングリコール、 N—ビニルジェチルァミン、 N—ァセ チルビニルァミン、ァリルァミン、メタァリルアミン、 N—メチルァリルァミン、 p—アミノス チレン、 2—イソプロぺニルーォキサゾリン、 2—ビュルーォキサゾリン、 2—ァクロイノレ ーォキサゾリンおよび 2—スチリルーォキサゾリンなどが挙げられ、これらのビュル系 単量体は単独または 2種以上を用いることができる。また、耐熱性、低吸湿性、表面 硬度の点で、ラタトン環、マレイン酸無水物、ダルタル酸無水物などの環構造単位を 主鎖に含有する共重合体が好ましい。さらに、環構造を主鎖に含有する共重合体を 用いる場合には、環構造を含有しなレ、メタクリル系樹脂を併用することがより好ましレヽ
[0020] 本発明で用いられる(B)メタクリル系樹脂としては、下記条件の少なくとも一つを満 たす 2種以上のメタクリル系樹脂を含むものである。
[0021] (a)ガラス転移温度の差が 10°C以上
(b)シンジオタクチシチ一の差が 3%以上
このような条件を満たすメタクリル系樹脂を用レ、ることで、ポリ乳酸系樹脂との分子 間相互作用が増大し親和性が向上するため、耐熱性向上効果が大きくなり、透明性 、耐熱性および流動性に優れた樹脂組成物を得ることができる。
[0022] 本発明において、耐熱性および流動性の点で、ガラス転移温度の差が 15°C以上 であることが好ましぐ 20°C以上であることがより好ましい。ガラス転移温度の差が 10 °C未満であると、耐熱性改良効果が不充分である。また、ガラス転移温度の差の上 限は特に限定されなレ、が、透明性の点で、 60°C以下であることが好ましい。ここでレ、 うガラス転移温度は、 JIS K7121に記載されている方法に準じて測定した値であり、 DSC測定により、 20°CZ分で昇温した時の中間点ガラス転移温度である。
[0023] 本発明において、耐熱性および流動性の点で、シンジオタクチシチ一の差が 5%以 上であることが好ましぐ 7%以上であることがより好ましぐ 10%以上であることがさら に好ましい。シンジオタクチシチ一の差が 3%未満であると、耐熱性改良効果が不充 分である。また、シンジオタクチシチ一の差の上限は特に限定されなレ、が、透明性の 点で、 50%以下であることが好ましい。ここでいうシンジオタクチシチ一とは、溶媒とし て、重水素化クロ口ホルムを用いた 1H— NMR測定において、シンジオタクチシチー 、ヘテロタクチシチ一、ァイソタクチシチ一としてそれぞれ観察される 0· 9ppm、 1. 0 ppm、 1. 2ppmの直鎖分岐のメチル基のピークの積分強度の合計を 100%として、 それぞれのピークの積分強度の割合を百分率で表すことにより算出できる値である。
[0024] 本発明で用いられる(B)メタクリル系樹脂としては、耐熱性および流動性の点で、( B)メタクリル系樹脂の少なくとも 1種力 重量平均分子量 5万〜 45万であることが好ま しぐ 7万〜 20万力より好ましく、 9万〜 15万がさらに好ましレ、。ここでいう重量平均分 子量とは、溶媒としてへキサフルォロイソプロパノールを用いた GPCで測定したポリメ チルメタタリレート(PMMA)換算の重量平均分子量である。
[0025] 本発明で用いられる(B)メタクリル系樹脂としては、耐熱性の点で、(B)メタクリル系 樹脂の少なくとも 1種力 ガラス転移温度 110°C以上が好ましぐ 115°C以上がより好 ましぐ 120°C以上がさらに好ましい。上限は特に限定されないが、流動性の点で、 1 50°C以下が好ましい。ここでいうガラス転移温度は、 JIS K7121に記載されている 方法に準じて測定した値であり、 DSC測定により、 20°CZ分で昇温した時の中間点 ガラス転移温度である。
[0026] 本発明で用いられる(B)メタクリル系樹脂としては、耐熱性の点で、(B)メタクリル系 樹脂の少なくとも 1種力 シンジオタクチシチー 40%以上が好ましぐ 45%以上がより 好ましぐ 50。/o以上がさらに好ましぐ 60%以上が特に好ましぐ流動性の点で、 90 %以下が好ましぐ 80%以下がより好ましい。また、(B)メタクリル系樹脂のへテロタク チシチ一は、耐熱性の点で、 45%以下であることが好ましぐ 40。/o以下であることが より好まし 流動性の点で、 20。/o以上であることが好ましぐ 30%以上であることが より好ましい。また、(B)メタクリル系樹脂のアイソタクチシチ一は、耐熱性の点で、 20 %以下であることが好ましぐ 15%以下であることがより好ましぐ流動性の点で、 5% 以上であることが好ましぐ 8%以上であることがより好ましぐ 10%以上であることがさ らに好ましい。
[0027] 本発明で用いられる(B)メタクリル系樹脂としては、流動性の点で、(B)メタクリル系 樹脂の少なくとも 1種力 s、 230°Cの温度かつ 37. 2Nの荷重でのメルトフローレート(M FR)が、 0.:!〜 40g/10分であることが好ましぐ:!〜 30g/10分であることがより好 ましぐ 2〜20g/10分であることがさらに好ましい。 MFRが 0. lg/10分未満では、 流動性が低下し、成形加工性に劣る傾向にあり、 40g/10分を越えると耐熱性向上 効果が低下する傾向にあるため、好ましくない。
[0028] 本発明で用いられる(B)メタクリル系樹脂としては、 2種以上のメタクリル系樹脂の組 成は、特に限定されないが、耐熱性および流動性の点で、ガラス転移温度もしくはシ ンジオタクチシチ一が最も高い値を示すメタクリル系樹脂をメタクリル系樹脂 1とし、ガ ラス転移温度もしくはシンジオタクチシチ一が最も低い値を示すメタクリル系樹脂をメ タクリル系樹脂 2として、メタクリル系樹脂 1とメタクリル系樹脂 2の重量比 (メタクリル系 樹脂 lZメタクリル系樹脂 2)が 10/90〜90/10であることが好ましぐ 60/40-4 0Z60であることがより好ましい。
[0029] 本発明で用いられる(B)メタクリル系樹脂の製造方法としては、塊状重合、溶液重 合、懸濁重合、乳化重合等の公知の重合方法を用いることができる。重合時の温度 条件は特に限定されなレ、が、メタクリル系樹脂の耐熱性の点で、 100°C以下が好まし く、 70°C以下がより好まし 30°C以下がさらに好ましぐ一 10°C以下が特に好まし レ、。
[0030] 本発明において、(A)ポリ乳酸系樹脂および (B)メタクリル系樹脂の配合比は、特 に限定されるものではないが、耐熱性および流動性の点で、重量比((A)ポリ乳酸系 樹脂 Z (B)メタクリル系樹脂)が 99Zl〜lZ99であることが好まし 90/10〜: 10 /90であること力より好ましく、 80/20〜20/80であること力さらに好ましく、 70/3 0〜30/70であること力特に好ましく、 59/41〜35/65であること力 S最も好ましレ、。
[0031] 本発明において、耐衝撃性の点で、さらに(C)コア層とそれを覆う 1以上のシェノレ 層から構成される多層構造重合体を配合することが好ましい。
[0032] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体とは、コア層とそれを覆う 1以上のシェル層力 構成され、また、隣接する 層が異種の重合体から構成される、いわゆるコアシェル型と呼ばれる構造を有する重 合体である。
[0033] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体としては、多層構造重合体を構成する層の数は、特に限定されるもので はなぐ 2層以上であればよぐ 3層以上または 4層以上であってもよい。
[0034] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体としては、内部に少なくとも 1層以上のゴム層を有する多層構造重合体で あることが好ましい。ここで、ゴム層の種類は、特に限定されるものではなぐゴム弾性 を有する重合体成分から構成されるものであればよい。例えば、(メタ)アクリル成分、 シリコーン成分、スチレン成分、二トリル成分、共役ジェン成分、ウレタン成分または エチレンプロピレン成分などを重合させたもの力 構成されるゴムが挙げられる。好ま しいゴムとしては、例えば、(メタ)アクリル酸ェチル単位、(メタ)アクリル酸ブチル単位 、(メタ)アクリル酸— 2 _ェチルへキシル単位および(メタ)アクリル酸ベンジル単位な どの(メタ)アクリル成分、ジメチルシロキサン単位やフエニルメチルシロキサン単位な どのシリコーン成分、スチレン単位やひ一メチルスチレン単位などのスチレン成分、ァ タリロニトリル単位やメタタリロニトリル単位などの二トリル成分またはブタンジェン単位 やイソプレン単位などの共役ジェン成分を重合させたもの力 構成されるゴムである 。また、これらの成分の他に、ジビュルベンゼン単位、(メタ)アクリル酸ァリル単位また はブチレングリコールジアタリレート単位などの架橋性成分を共重合し架橋させた架 橋ゴムも好ましい。これらの中でも、透明性および耐衝撃性の点で、ゴム層としては、 架橋ゴムが好ましぐガラス転移温度が o°c以下の架橋ゴムであることがより好まし このようなゴム層の種類としては、アクリル酸ェチル単位、アクリル酸— 2_ェチルへ キシル単位、アクリル酸ブチル単位、アクリル酸ベンジル単位、メタクリル酸ァリル単 位を適宜選択し併用して用いることがさらに好ましぐメタクリル酸ァリル単位をゴム層 構成単位の 0. 005〜3重量%の範囲で用いるのが特に好ましい。
[0035] 本発明において、多層構造重合体において、ゴム層以外の層の種類は、熱可塑性 を有する重合体成分から構成されるものであれば特に限定されるものではなレ、が、透 明性、耐熱性および耐衝撃性の点で、ゴム層よりもガラス転移温度が高い重合体成 分であることが好ましい。熱可塑性を有する重合体としては、不飽和カルボン酸アル キルエステル系単位、グリシジル基含有ビュル系単位、不飽和ジカルボン酸無水物 系単位、脂肪族ビニル系単位、芳香族ビュル系単位、シアン化ビュル系単位、マレ イミド系単位、不飽和ジカルボン酸系単位またはその他のビニル系単位などから選 ばれる少なくとも 1種以上の単位を含有する重合体が挙げられ、中でも、不飽和カル ボン酸アルキルエステル系単位、不飽和グリシジル基含有単位または不飽和ジカル ボン酸無水物系単位から選ばれる少なくとも 1種以上の単位を含有する重合体が好 ましぐさらに不飽和グリシジノレ基含有単位または不飽和ジカルボン酸無水物系単位 力も選ばれる少なくとも 1種以上の単位を含有する重合体がより好ましい。
[0036] 不飽和カルボン酸アルキルエステル系単位としては、特に限定されるものではない 力 (メタ)アクリル酸アルキルエステルが好ましく使用される。具体的には、(メタ)ァク リル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n—プロピル、(メタ)アタリノレ 酸 n—ブチル、(メタ)アクリル酸 t—ブチル、(メタ)アクリル酸 n—へキシル、(メタ)ァク リル酸 2—ェチルへキシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸ステア リル、(メタ)アクリル酸ォクタデシル、(メタ)アクリル酸フエニル、(メタ)アクリル酸ベン ジル、(メタ)アクリル酸クロロメチル、 (メタ)アクリル酸 2_クロロェチル、(メタ)アタリノレ 酸 2—ヒドロキシェチル、(メタ)アクリル酸 3—ヒドロキシプロピル、(メタ)アクリル酸 2, 3, 4, 5, 6 _ペンタヒドロキシへキシル、(メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシ ペンチル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメ チルアミノエチル、メタクリル酸ェチルァミノプロピル、メタクリル酸フエニルアミノエチ ルまたはメタクリル酸シクロへキシルアミノエチルなどが挙げられ、耐衝撃性を向上す る効果が大きいという観点で、(メタ)アクリル酸メチルが好ましく使用される。これらの 単位は単独なレ、し 2種以上を用いることができる。
[0037] グリシジル基含有ビュル系単位としては、特に限定されるものではなぐ(メタ)アタリ ル酸グリシジル、ィタコン酸グリシジル、ィタコン酸ジグリシジル、ァリルグリシジルエー テル、スチレン _ 4 _グリシジルエーテルまたは 4 -グリシジルスチレンなどが挙げら れ、耐衝撃性を向上する効果が大きいという点で、(メタ)アクリル酸グリシジルが好ま しく使用される。これらの単位は単独ないし 2種以上を用いることができる。
[0038] 不飽和ジカルボン酸無水物系単位としては、無水マレイン酸、無水ィタコン酸、無 水ダルタコン酸、無水シトラコン酸または無水アコニット酸などが挙げられ、耐衝撃性 を向上する効果が大きいという観点で、無水マレイン酸が好ましく使用される。これら の単位は単独なレ、し 2種以上を用いることができる。
[0039] また、脂肪族ビニル系単位としては、エチレン、プロピレンまたはブタジエンなど、芳 香族ビニル系単位としては、スチレン、 α—メチルスチレン、 1—ビニルナフタレン、 4 —メチルスチレン、 4—プロピルスチレン、 4—シクロへキシルスチレン、 4—ドデシル スチレン、 2—ェチルー 4一べンジルスチレン、 4 (フエニルブチル)スチレンまたは ハロゲン化スチレンなど、シアン化ビニル系単位としては、アクリロニトリル、メタクリロ 二トリルまたはエタタリロニトリルなど、マレイミド系単位としては、マレイミド、 Ν—メチ ノレマレイミド、 Ν—ェチノレマレイミド、 Ν—プロピノレマレイミド、 Ν—イソプロピノレマレイミ ド、 Ν シクロへキシルマレイミド、 Ν フエニルマレイミド、 Ν— (ρ ブロモフエニル) マレイミドまたは Ν— (クロ口フエニル)マレイミドなど、不飽和ジカルボン酸系単位とし て、マレイン酸、マレイン酸モノェチルエステル、ィタコン酸、フタル酸など、その他の ビュル系単位としては、アタリノレアミド、メタクリノレアミド、 Ν メチルアクリルアミド、ブト キシメチルアクリルアミド、 Ν—プロピルメタクリルアミド、 Ν—ビニルジェチルァミン、 Ν —ァセチルビ二ルァミン、ァリノレアミン、メタァリルアミン、 Ν メチルァリルァミン、 ρ_ アミノスチレン、 2_イソプロぺニル一ォキサゾリン、 2—ビュル一ォキサゾリン、 2—ァ クロィル一ォキサゾリンまたは 2—スチリル一ォキサゾリンなどを挙げることができ、こ れらの単位は単独なレ、し 2種以上を用いることができる。 [0040] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体としては、シェル層の種類は、特に限定されるものではなぐ不飽和カル ボン酸アルキルエステル系単位、グリシジル基含有ビュル系単位、脂肪族ビュル系 単位、芳香族ビュル系単位、シアンィ匕ビュル系単位、マレイミド系単位、不飽和ジカ ルボン酸系単位、不飽和ジカルボン酸無水物系単位および/またはその他のビニ ル系単位などを含む重合体が挙げられ、透明性および耐衝撃性の点で、メタクリノレ 酸メチル単位および zまたはアクリル酸メチル単位を含む重合体から構成される多 層構造重合体であることが好ましレ、。
[0041] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体としては、上述した条件を満たすものとして、市販品を用いてもよぐまた 、公知の方法により作製することもできる。
[0042] 市販品としては、例えば、三菱レイヨン製"メタプレン"、カネ力製"カネエース"、ロー ムアンドハース製"パラロイド"、ガンツ化成製"スタフイロイド"またはクラレ製"パラフエ イス"などが挙げられ、これらは、単独ないし 2種以上を用いることができる。
[0043] 公知の方法としては、乳化重合法がより好ましレ、。製造方法としては、まず所望の 単量体混合物を乳化重合させてコア粒子を作った後、他の単量体混合物をそのコア 粒子の存在下において乳化重合させてコア粒子の周囲にシェル層を形成するコアシ エル粒子を作る。さらに該粒子の存在下において他の単量体混合物を乳化重合させ て別のシェル層を形成するコアシェル粒子を作る。このような反応を繰り返して所望 のコア層とそれを覆う 1以上のシェル層から構成される多層構造重合体を得る。各層 の(共)重合体を形成させるための重合温度は、各層とも 0〜120°Cが好ましぐ 5〜9 0°Cがより好ましい。
[0044] 乳化重合において用いられる乳化剤は、特に限定されないが、重合安定性および 所望の平均一次粒子径などによって選択され、ァニオン界面活性剤、カチオン界面 活性剤、ノニオン界面活性剤などの公知の乳化剤を単独もしくは 2種以上で使用す ることが好ましぐァニオン界面活性剤がより好ましい。ァニオン界面活性剤としては、 例えばステアリン酸ナトリウム、ミリスチン酸ナトリウム、 N—ラウロイルザルコシン酸ナト リウムなどのカルボン酸塩、ジォクチルスルホコハク酸ナトリウム、ドデシルベンゼンス ルホン酸ナトリウムなどのスルホン酸塩、ラウリル硫酸ナトリウムなどの硫酸エステル塩 、モノ一 n_ブチルフエ二ルペンタォキシエチレンリン酸ナトリウムなどのリン酸エステ ル塩などが挙げられる。上記乳化剤の添加量は、用いる単量体の合計 100重量部に 対し、 0. 01〜: 15重量部が好ましい。
[0045] また、乳化重合に用いられる重合開始剤は、特に限定されないが、過硫酸カリウム 、過硫酸アンモニゥムなどの無機過酸化物、過酸化水素一第一鉄塩系、過硫酸カリ ゥム—酸性亜硫酸ナトリウム系、過硫酸アンモニゥム—酸性亜硫酸ナトリウム系などの 水溶性レドックス系開始斉 IJ、クメンハイド口パーォキシドーナトリウムホルムアルデヒド スルホキシレート系、 tert ブチルハイド口パーォキシドーナトリウムホルムアルデヒド スルホキシレート系などの水溶 油溶レドックス系の開始剤などが挙げられ、この中 でも、無機過酸化物系開始剤、水溶 油溶レドックス系の開始剤が好ましい。上記 重合開始剤の添加量は、用いる単量体の合計 100重量部に対し、 0. 001〜5重量 部が好ましい。
[0046] 本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層から構成される多層 構造重合体としては、透明性および耐衝撃性の点で、下記条件の少なくとも一つを 満たすものであることが好ましい。
[0047] (c)屈折率が 1 · 45〜: 1. 50
(d)ガラス転移温度が 30°C以下の構成成分を含む
さらに、透明性に優れるという点で、(C)コア層とそれを覆う 1以上のシェル層力も構 成される多層構造重合体の屈折率は、 1. 465-1. 495であることがより好ましい。ま た、 (A)ポリ乳酸系樹脂および (B)メタクリル系樹脂からなるマトリックス樹脂相の屈 折率と(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の屈 折率との差が、 0. 05以下であることが好ましぐ 0. 02であることがより好ましぐ 0. 0 1以下であることがさらに好ましい。なお、本発明において、上記屈折率は、アッベ屈 折計を用い、 23°C、 589nmの波長で測定した値である。また、(A)ポリ乳酸系樹脂 および (B)メタクリル系樹脂からなるマトリックス樹脂相の屈折率は、(A)ポリ乳酸系 樹脂および (B)メタクリル系樹脂の合計 100重量部中の(B)メタクリル酸系樹脂の配 合量を X重量部としたときに、 0. 03 X x/100+ l . 46により求めることができる。 [0048] さらに、本発明で用いられる(C)コア層とそれを覆う 1以上のシェル層力 構成され る多層構造重合体としては、耐衝撃性の点で、ガラス転移温度が 0°C以下の構成成 分を含むものであることがより好まし _ 30°C以下の構成成分を含むものであること がさらに好ましく、 _40°C以下の構成成分を含むものであることが特に好ましい。な お、本発明において、上記ガラス転移温度は、示差走查熱量計を用い、昇温速度 2 0°CZ分で測定した値である。
[0049] 本発明において、(C)コア層とそれを覆う 1以上のシェル層力 構成される多層構 造重合体の平均一次粒子径は、特に限定されるものではないが、透明性および耐衝 撃性の点で、 10〜: !OOOOnmであること力 S好ましく、さらに、 20〜: !OOOnmであること 力より好ましく、 50〜700nmであること力 S特に好ましく、 100〜500nmであること力 S 最も好ましい。なお、本発明において、上記平均一次粒子径は、電子顕微鏡を用い 、 2万倍で観察し、任意の 100個について、一次粒子径を測定し、平均した数平均一 次粒子径であり、具体的には、樹脂組成物中の多層構造重合体の分散形態を電子 顕微鏡により観察することにより求めることができる。
[0050] 本発明において、(C)コア層とそれを覆う 1以上のシェル層力 構成される多層構 造重合体の配合量は、特に限定されるものではなレ、が、耐衝撃性の点で、(A)ポリ 乳酸系樹脂および (B)メタクリル系樹脂の合計 100重量部に対し、 0. :!〜 200重量 部が好ましぐ 1〜: 100重量部がより好ましぐ 5〜50重量部がさらに好まし 10〜3 0重量部が特に好ましい。
[0051] 本発明においては、透明性、耐熱性および耐衝撃性の点で、樹脂組成物中にお ける(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の分散 粒子径は、 1〜: !OOOnmであることが好まし 50〜750nmであること力 り好ましく 、 100〜500nmであることがさらに好ましい。なお、本発明において、分散粒子径と は、電子顕微鏡を用い、 2万倍で樹脂組成物を観察し、任意の分散粒子 100個につ いて、分散粒子径を測定し、平均した数平均分散粒子径である。なお、分散粒子と は、下記に示す判断基準により求めた凝集粒子数 (1)と凝集してない粒子数 (m)を 合計した値である。
[0052] 本発明においては、透明性、耐熱性および耐衝撃性の点で、樹脂組成物中にお ける(c)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の凝集 粒子数 (1)と凝集していない粒子数 (m)との比(lZm)が 0〜0. 5であることが好ましく 、 0〜0. 4であることがより好ましい。なお、本発明において、凝集粒子数および凝集 していない粒子数は、電子顕微鏡を用い、 2万倍で樹脂組成物を観察し、任意の分 散粒子 100個について、 (C)コア層とそれを覆う 1以上のシェル層力 構成される多 層構造重合体の分散粒子が接触している場合を凝集粒子と判定した。また、 1は、凝 集に関与する分散粒子の総数を示すものであり、すなわち、 3個の分散粒子が凝集 し一つの凝集体を形成してレ、る場合は、 1= 3として計算する。
[0053] 本発明におレ、ては、透明性、耐熱性および耐衝撃性を向上でき、耐加水分解性を 向上できるという点で、さらに(D)反応性化合物として、グリシジル基、酸無水物基、 カルポジイミド基、ォキサゾリン基から選択される少なくとも 1種以上の官能基を含有 する反応性化合物を配合することが好ましい。また、本発明において、(C)コア層と それを覆う 1以上のシェル層から構成される多層構造重合体を配合する場合には、 多層構造重合体の分散性が向上し、耐衝撃性改良効果が大きくなるため、(D)反応 性化合物を配合することが好ましレ、。
[0054] 本発明において、グリシジル基を含有する反応性化合物としては、グリシジルエー テル化合物、グリシジルエステル化合物、グリシジルァミン化合物、グリシジルイミドィ匕 合物、脂環式エポキシ化合物を好ましく使用することができる。これらを配合すること で、機械特性、成形性、耐熱性および耐久性に優れた成形品を得ることができる。
[0055] グリシジルエーテル化合物の例としては、ブチルダリシジルエーテル、ステアリルグ リシジルエーテル、ァリルグリシジルエーテル、フヱニルダリシジルエーテル、 o—フエ ユルフェニルダリシジルエーテル、エチレンォキシドラウリルアルコールグリシジルェ 一テル、エチレンォキシドフヱノールグリシジルエーテル、エチレングリコールジグリシ ジノレエーテノレ、ポリエチレングリコーノレジグリシジノレエーテノレ、プロピレングリコーノレジ グリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチノレ グリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル 、シクロへキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエー テル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジ ノレエーテル、 2, 2—ビス一(4—ヒドロキシフエ二ノレ)プロパン、 2, 2—ビス一(4—ヒド ロキシフエニル)メタン、ビス(4—ヒドロキシフエニル)スルホンなどのビスフエノール類 とェピクロルヒドリンとの縮合反応から得られるビスフエノール Aジグリシジルエーテル 型エポキシ樹脂、ビスフエノール Fジグリシジルエーテル型エポキシ樹脂、ビスフエノ ール Sジグリシジルエーテル型エポキシ樹脂などを挙げることができる。なかでも、ビ スフヱノール Aジグリシジルエーテル型エポキシ樹脂が好ましい。
[0056] グリシジルエステル化合物の例としては、安息香酸グリシジルエステル、 p—トルイ ル酸グリシジルエステル、シクロへキサンカルボン酸グリシジルエステル、ステアリン 酸グリシジルエステル、ラウリン酸グリシジルエステル、パルミチン酸グリシジルエステ ル、バーサティック酸グリシジルエステル、ォレイン酸グリシジルエステル、リノール酸 グリシジルエステル、リノレン酸グリシジルエステル、テレフタル酸ジグリシジルエステ カルボン酸ジグリシジルエステル、ビ安息香酸ジグリシジノレエステル、メチルテレフタ ル酸ジグリシジルエステル、へキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフ タル酸ジグリシジルエステル、シクロへキサンジカルボン酸ジグリシジルエステル、ァ ジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、セバシン酸ジグリシジ ルエステル、ドデカンジオン酸ジグリシジルエステル、ォクタデカンジカルボン酸ジグ リシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジル エステルなどのを挙げることができる。なかでも、安息香酸グリシジルエステルやバー サテイツク酸グリシジルエステルが好ましレ、。
[0057] グリシジルァミン化合物の例としては、テトラグリシジルアミノジフヱニルメタン、トリグ リシジル一パラアミノフエノール、トリグリシジル一メタアミノフエノール、ジグリシジルァ ブロモア二リン、テトラグリシジルビスアミノメチルシクロへキサン、トリグリシジルシアヌ レート、トリグリシジルイソシァヌレートなどを挙げることができる。
[0058] グリシジルイミド化合物の例としては、 N—グリシジルフタルイミド、 N—グリシジル一 4_メチルフタルイミド、 N—グリシジル一4, 5—ジメチルフタルイミド、 N—グリシジノレ 3—メチルフタルイミド、 N グリシジノレー 3, 6—ジメチルフタルイミド、 N グリシジ ル _4 _エトキシフタルイミド、 N—グリシジル一 4 _クロルフタルイミド、 N—グリシジ ノレ一 4, 5—ジクロルフタルイミド、 N—グリシジル一 3, 4, 5, 6—テトラブロムフタルイ ミド、 N—グリシジノレ一 4 _n—ブチノレ一 5 _ブロムフタルイミド、 N—グリシジルサクシ ンイミド、 N—グリシジルへキサヒドロフタルイミド、 N—グリシジル一1 , 2, 3, 6—テトラ ヒドロフタルイミド、 N—グリシジルマレインイミド、 N—グリシジル一 a , β—ジメチノレ サクシンイミド、 Ν—グリシジル一 a—ェチルサクシンイミド、 N—グリシジル一 α—プ 口ピルサクシンイミド、 Ν—グリシジルベンズアミド、 Ν—グリシジル— ρ _メチルベンズ アミド、 Ν グリシジルナフトアミド、 Ν グリシジルステラミドなどを挙げることができる 。なかでも、 Ν グリシジルフタルイミドが好ましい。
[0059] 脂環式エポキシ化合物の例としては、 3, 4 エポキシシクロへキシルメチルー 3, 4 エポキシシクロへキシルカルボキシレート、ビス(3, 4—エポキシシクロへキシルメ チノレ)アジペート、ビニノレシクロへキセンジエポキシド、 Ν メチノレー 4, 5—エポキシ シクロへキサン一 1 , 2 ジカルボン酸イミド、 Ν ェチルー 4, 5 エポキシシクロへキ サン 1 , 2—ジカルボン酸イミド、 Ν—フエ二ルー 4, 5—エポキシシクロへキサン一 1 , 2 ジカルボン酸イミド、 Ν—ナフチルー 4, 5 エポキシシクロへキサン一 1 , 2 ジ カルボン酸イミド、 Ν—トリルー3—メチルー 4, 5—エポキシシクロへキサン一 1 , 2— ジカルボン酸イミドなどを挙げることができる。また、エポキシ化大豆油、エポキシ化ァ マ二油、エポキシ化鯨油などのエポキシ変性脂肪酸グリセリド、フエノールノボラック 型エポキシ樹脂、クレゾ一ルノゾラック型エポキシ樹脂などを用いることができる。
[0060] 本発明において、酸無水物基を含有する反応性化合物の例としては、無水コハク 酸、無水マレイン酸、無水フタル酸などを挙げることができる。さらには、上記した化 合物をモノマー単位として含む重合体なども挙げることができる。
[0061] 本発明において、カルポジイミド基を含有する反応性化合物とは、分子内に少なく ともひとつの( _ Ν = C = Ν _ )で表されるカルポジイミド基を有する化合物であり、例 えば適当な触媒の存在下に、有機イソシァネートを加熱し、脱炭酸反応で製造できる
[0062] カルボジイミド化合物の例としては、ジフエ二ルカルボジイミド、ジ一シクロへキシル カルボジイミド、ジー 2, 6 ジメチルフエニルカルボジイミド、ジイソプロピルカルボジ イミド、ジォクチルデシルカルポジイミド、ジ _ o _トルィルカルボジイミド、ジ— p—トル ィルカルボジイミド、ジ— p—ニトロフヱニルカルボジイミド、ジ— p—アミノフヱ二ルカ ノレボジイミド、ジ一 p—ヒドロキシフヱニルカルボジイミド、ジ一 p—クロルフヱニルカル ボジイミド、ジ _ o _クロルフヱニルカルボジイミド、ジ— 3, 4—ジクロルフヱ二ルカル ボジイミド、ジ一 2, 5—ジクロルフエ二ルカルボジイミド、 p—フエ二レン一ビス一 o—ト ルイルカルポジイミド、 p _フヱニレン一ビス一ジシクロへキシルカルボジイミド、 p—フ ェニレン一ビス一ジ一 p—クロルフエ二ルカルボジイミド、 2, 6 , 2' , 6' —テトライソ プロピルジフエニルカルポジイミド、へキサメチレン ビスーシクロへキシルカルボジィ ミド、エチレン ビスージフエニルカルボジイミド、エチレン ビス ジーシクロへキシ ルカルボジイミド、 N, N' ジー o トリィルカルボジイミド、 N, N' ジフヱニルカル ボジイミド、 N, Ν'—ジォクチルデシルカルポジイミド、 Ν, Ν'—ジ— 2, 6 ジメチル フエニルカルボジイミド、 Ν トリイルー N'—シクロへキシルカルボジイミド、 Ν, Ν' - ジ一 2, 6 ジイソプロピルフエニルカルボジイミド、 Ν, Ν'—ジ一 2, 6 ジ一 tert - ブチルフエニルカルボジイミド、 N トルイルー —フヱニルカルボジイミド、 N, N' —ジ一 p ニトロフエニルカルボジイミド、 N, Ν'—ジ一 p ァミノフエニルカルボジイミ ド、 Ν, Ν'—ジ一 ρ ヒドロキシフエニルカルボジイミド、 Ν, Ν'—ジ一シクロへキシノレ カルボジイミド、 Ν, N' ジー ρ トルィルカルボジイミド、 Ν, N' —べンジルカルボ ジイミド、 Ν—ォクタデシノレ一 N' —フエ二ルカルボジイミド、 Ν—ベンジル一 N' —フ ェニルカルボジイミド、 Ν—ォクタデシル一N' —トリノレカノレボジイミド、 Ν—シクロへキ シル —トリルカルボジイミド、 Ν—フエニル —トリルカルボジイミド、 Ν— ベンジル一N' —トリノレカノレボジイミド、 Ν, N' —ジ _ ο _ェチルフエニルカルボジィ ミド、 Ν, Nr —ジ _ p _ェチルフエニルカルボジイミド、 N, N' —ジ _ o _イソプロピ ルフエニルカルボジイミド、 N, Nr —ジ— p—イソプロピルフヱニルカルボジイミド、 N , Ν' —ジ _ ο _イソブチルフエニルカルボジイミド、 N, N' —ジ一 ρ—イソブチルフ ェニルカルボジイミド、 Ν, N' —ジ— 2, 6 _ジェチルフヱ二ルカルボジイミド、 Ν, Ν ' —ジ _ 2 _ェチル _ 6 _イソプロピルフエニルカルボジイミド、 N, N' —ジ— 2—ィ ソブチル一 6 _イソプロピルフエ二ルカルボジイミド、 Ν, Nr —ジ一 2, 4, 6 _トリメチ ルフヱニルカルボジイミド、 N, N' —ジー 2, 4, 6—トリイソプロピルフヱニルカルボジ イミド、 N, Nr —ジ一 2, 4, 6 _トリイソブチルフエ二ルカルボジイミドなどのモノ又は ジカルボジイミド化合物、ポリ(1 , 6 _へキサメチレンカルボジイミド)、ポリ(4, 4' - メチレンビスシクロへキシルカルボジイミド)、ポリ(1 , 3—シクロへキシレンカルボジィ ミド)、ポリ(1 , 4—シクロへキシレンカルボジイミド)、ポリ(4, A' —ジフエニルメタン力 ルボジイミド)、ポリ(3, 3' —ジメチル _ 4, 一ジフエニルメタンカルボジイミド)、 ポリ(ナフチレンカルボジイミド)、ポリ(p _フエ二レンカルポジイミド)、ポリ(m_フエ二 レンカルポジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルカルポジイミド)、 ポリ(メチルージイソプロピルフエ二レンカルボジイミド)、ポリ(トリェチルフエ二レン力 ルボジイミド)、ポリ(トリイソプロピルフエ二レンカルボジイミド)などのポリカルボジイミド などが挙げられる。なかでも N, —ジ 2, 6 ジイソプロピルフエニルカルボジイミ ド、 2, 6 , 2' , 6; ーテトライソプロピルジフエニルカルボジイミドおよびポリカルボジ イミドが好ましい。
本発明において、ォキサゾリン基を含有する反応性化合物の例としては、 2—メトキ シー 2—ォキサゾリン、 2—エトキシー 2—ォキサゾリン、 2—プロポキシ 2—ォキサゾ リン、 2—ブトキシー2—ォキサゾリン、 2—ペンチルォキシー2—ォキサゾリン、 2—へ キシルォキシ 2—ォキサゾリン、 2—へプチルォキシー 2—ォキサゾリン、 2—ォクチ ルォキシー 2—ォキサゾリン、 2—ノニルォキシ 2—ォキサゾリン、 2—デシルォキシ _ 2—ォキサゾリン、 2—シクロペンチルォキシ _ 2—ォキサゾリン、 2—シクロへキシ ルォキシ一 2—ォキサゾリン、 2—ァリルォキシ _ 2—ォキサゾリン、 2 _メタァリルォキ シ一 2—ォキサゾリン、 2 _クロチルォキシ一 2—ォキサゾリン、 2—フエノキシ _ 2—ォ キサゾリン、 2—クレジル _ 2—ォキサゾリン、 2 _o _ェチルフエノキシ _ 2—ォキサゾ リン、 2 _ o _プロピルフエノキシ _ 2—ォキサゾリン、 2 _ o _フエユルフェノキシ _ 2 _ ォキサゾリン、 2 _m_ェチルフエノキシ _ 2—ォキサゾリン、 2 _m—プロピルフエノキ シ一 2—ォキサゾリン、 2 _p—フエユルフェノキシ _ 2—ォキサゾリン、 2—メチノレ _ 2 —ォキサゾリン、 2 _ェチル _ 2—ォキサゾリン、 2 _プロピル一 2—ォキサゾリン、 2 _ ブチル _ 2—ォキサゾリン、 2 _ペンチル一 2—ォキサゾリン、 2 _へキシル _ 2—ォキ サゾリン、 2 _ヘプチル一 2—ォキサゾリン、 2—ォクチル _ 2—ォキサゾリン、 2—ノニ ルー 2—ォキサゾリン、 2—デシルー 2—ォキサゾリン、 2—シクロペンチルー 2—ォキ サゾリン、 2—シクロへキシル _ 2—ォキサゾリン、 2—ァリル _ 2—ォキサゾリン、 2—メ タァリル _ 2—ォキサゾリン、 2_クロチル _ 2—ォキサゾリン、 2_フエニル _ 2—ォキ サゾリン、 2 _o_ェチルフエニル _ 2—ォキサゾリン、 2_o_プロピルフエニル一 2_ ォキサゾリン、 2_o_フエユルフェニル _ 2—ォキサゾリン、 2_m_ェチルフエ二ノレ —2—ォキサゾリン、 2— m—プロピルフエニル一 2—ォキサゾリン、 2— p フエニルフ ェニル _ 2—ォキサゾリン、 2, 2^ —ビス(2—ォキサゾリン)、 2, 2^ —ビス(4 メチ ル一 2—ォキサゾリン)、 2, 2' —ビス(4, 一ジメチル _ 2—ォキサゾリン)、 2, 2 ' 一ビス(4ーェチルー 2—ォキサゾリン)、 2, 2' —ビス(4, 4' ジェチルー 2—ォ キサゾリン)、 2, 2' ビス(4 プロピル 2—ォキサゾリン)、 2, 2' ビス(4ーブ チル一 2—ォキサゾリン)、 2, 2' —ビス(4—へキシル 2—ォキサゾリン)、 2, 2' —ビス(4—フエ二ルー 2—ォキサゾリン)、 2, 2' —ビス(4—シクロへキシル 2—ォ キサゾリン)、 2, 2' ビス(4一べンジルー 2 ォキサゾリン)、 2, 2' —p—フエニレ ンビス(2—ォキサゾリン)、 2, 2' — m フエ二レンビス(2—ォキサゾリン)、 2, 2' — o フエ二レンビス(2—ォキサゾリン)、 2, 2' —p フエ二レンビス(4—メチノレ一 2— ォキサゾリン)、 2, 2' —p—フエ二レンビス(4, ージメチノレー 2—ォキサゾリン)、 2, 2' —m フエ二レンビス(4—メチル 2—ォキサゾリン)、 2, 2' — m—フエニレ ンビス(4, ジメチ /レー 2—ォキサゾリン)、 2, 2 —エチレンビス(2—ォキサゾリ ン)、 2, 2' —テトラメチレンビス(2—ォキサゾリン)、 2, 2' —へキサメチレンビス(2 —ォキサゾリン)、 2, 2' —オタタメチレンビス(2—ォキサゾリン)、 2, 2' —デカメチ レンビス(2—ォキサゾリン)、 2, 2' —エチレンビス(4 メチル _ 2—ォキサゾリン)、 2, 2' —テトラメチレンビス(4, 一ジメチル _ 2—ォキサゾリン)、 2, 2' —9, 9' —ジフエノキシェタンビス(2—ォキサゾリン)、 2, 2' —シクロへキシレンビス(2—ォ キサゾリン)、 2, 2' —ジフエ二レンビス(2—ォキサゾリン)などが挙げられる。さらに は、上記した化合物をモノマー単位として含むポリオキサゾリン化合物なども挙げるこ とがでさる。
本発明において、(D)反応性化合物としては、ブリードアウトを抑制できるという点 で、重量平均分子量 1000〜300000の重合体であることが好まし 重量平均分子 量は 5000〜250000がより好ましレ、。このような(D)反応性化合物としては、分子内 の主鎖中または側鎖にグリシジノレ基、酸無水物基、カルポジイミド基、ォキサゾリン基 力 選択される少なくとも 1種類以上の官能基を導入した重合体であることが好ましく 、重合体としては、単独重合体でも共重合体でもいずれでもよぐ共重合体としては、 ランダム共重合体、ブロック共重合体およびグラフト共重合体などのいずれも用いる こと力 Sできる。
[0065] 本発明において、透明性、耐熱性および耐衝撃性の点で、(D)反応性化合物とし ては、グリシジノレ基含有ビュル系単位を含む重合体であることが好ましレ、。
[0066] 本発明において、グリシジル基含有ビュル系単位を形成する原料モノマーの具体 例としては、(メタ)アクリル酸グリシジル、 p—スチリルカルボン酸グリシジルなどの不 飽和モノカルボン酸のグリシジルエステル、マレイン酸、ィタコン酸などの不飽和ポリ カルボン酸のモノグリシジルエステルあるいはポリグリシジルエステル、ァリルグリシジ ルエーテル、 2—メチルァリルグリシジルエーテル、スチレンー4ーグリシジルエーテ ルなどの不飽和グリシジルエーテルなどが挙げられる。これらの中では、ラジカル重
。これらは、単独ないし 2種以上を用いることができる。
[0067] 本発明において、グリシジル基含有ビュル系単位を含む重合体には、グリシジル基 含有ビニル系単位以外のビュル系単位を共重合成分として含むことが好ましぐその 選択により重合体の融点、ガラス転移温度などの特性を調節することができる。グリシ ジル基含有ビュル系単位以外のビュル系単位としては、アクリル系ビュル単位、カル ボン酸ビニルエステル単位、芳香族系ビニル単位、不飽和ジカルボン酸無水物系単 位、不飽和ジカルボン酸系単位、脂肪族系ビニル単位、マレイミド系単位またはその 他のビニル系単位などが挙げられる。
[0068] アクリル系ビュル単位を形成する原料モノマーの具体例としては、アクリル酸、メタク リル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸ェチル、メタクリル酸ェチル、 アクリル酸プロピル、メタクリル酸プロピル、アクリル酸 n—ブチル、メタクリル酸 n—ブ チル、アクリル酸イソブチル、メタクリル酸イソブチル、アクリル酸 t—ブチル、メタクリノレ 酸 t—ブチル、アクリル酸 2—ェチルへキシル、メタクリル酸 2—ェチルへキシル、ァク リル酸シクロへキシル、メタクリル酸シクロへキシル、アクリル酸イソボルニル、メタタリ ル酸イソボルニル、アクリル酸ラウリル、メタクリル酸ラウリル、アクリル酸ステアリル、メ タクリル酸ステアリル、アクリル酸ヒドロキシェチル、メタクリル酸ヒドロキシェチル、ァク リル酸ヒドロキシプロピル、メタクリル酸ヒドロキシプロピル、ポリエチレングリコールや ポリプロピレングリコールのアクリル酸エステルあるいはメタクリル酸エステル、アクリル
、メタタリロニトリノレ、 N, N—ジアルキルアクリルアミド、 N, N—ジアルキルメタタリルァ ミド、 aーヒドロキシメチルアクリル酸エステル、アクリル酸ジメチルアミノエチル、メタク リル酸ジメチルアミノエチルなどのアミノ基を有するアクリル系ビニル単位を形成する 原料モノマーなどが挙げられ、中でも、アクリル酸、メタクリル酸、アクリル酸メチル、メ タクリル酸メチル、アクリル酸ェチル、メタクリル酸ェチル、アクリル酸プロピル、メタタリ ル酸プロピル、アクリル酸 n—ブチル、メタクリル酸 n—ブチル、アクリル酸イソブチル、 メタクリル酸イソブチル、アクリル酸 tーブチル、メタクリル酸 tーブチル、アクリル酸 2— ェチルへキシル、メタクリル酸 2—ェチルへキシル、アクリル酸シクロへキシル、メタァ クリル酸シクロへキシル、アクリル酸イソボルニル、メタクリル酸イソボルニル、アタリ口 二トリル、メタタリロニトリルが好ましぐさらにアクリル酸、メタクリノレ酸、アクリル酸メチル 、メタクリル酸メチル、アクリル酸ェチル、メタクリル酸ェチル、アクリル酸 n—ブチル、メ タクリル酸 n—ブチル、アクリル酸 2—ェチルへキシル、メタクリル酸 2 _ェチルへキシ ル、アクリロニトリル、メタタリロニトリルが使用される。これらは単独ないし 2種以上を用 レ、ることができる。
カルボン酸ビュルエステル系単位を形成する原料モノマーの具体例としては、ギ酸 ビュル、酢酸ビュル、プロピオン酸ビュル、酪酸ビュル、カプロン酸ビュル、力プリル 酸ビュル、力プリン酸ビュル、ラウリン酸ビュル、ミリスチン酸ビュル、パルミチン酸ビ ニル、ステアリン酸ビュル、酢酸イソプロぺニル、酢酸 1—ブテュル、ピバル酸ビュル 、 2—ェチルへキサン酸ビュルおよびシクロへキサンカルボン酸ビュルなどの単官能 脂肪族カルボン酸ビニル、安息香酸ビニルおよび桂皮酸ビニルなどの芳香族カルボ ン酸ビュル、モノクロル酢酸ビュル、アジピン酸ジビュル、メタクリル酸ビュル、クロトン 酸ビニルおよびソルビン酸ビュルなどの多官能カルボン酸ビュルなどが挙げられ、中 でも、酢酸ビュルが好ましく使用される。これらは単独ないし 2種以上を用いることが できる。
[0070] 芳香族系ビュル単位を形成する原料モノマーの具体例としては、スチレン、 ひ一メ チルスチレン、 p—メチルスチレン、 ひ一メチル _p—メチルスチレン、 p—メトキシスチ レン, o—メトキシスチレン、 2, 4_ジメチルスチレン、 1—ビュルナフタレン、クロロス チレン、ブロモスチレン、ジビュルベンゼン、ビュルトルエンなどが挙げられ、中でも、 スチレン、 ひ一メチルスチレンが好ましく使用される。これらは単独ないし 2種以上を 用レ、ることができる。
[0071] 不飽和ジカルボン酸無水物系単位を形成する原料モノマーとしては、無水マレイン 酸、無水ィタコン酸、無水ダルタコン酸、無水シトラコン酸または無水アコニット酸など が挙げられ、中でも、無水マレイン酸が好ましく使用される。これらは単独ないし 2種 以上を用いることができる。
[0072] 不飽和ジカルボン酸系単位を形成する原料モノマーとして、マレイン酸、マレイン酸 モノェチルエステル、ィタコン酸、フタル酸などが挙げられ、中でも、マレイン酸、イタ コン酸が好ましく使用される。これらは単独ないし 2種以上を用いることができる。
[0073] 脂肪族ビニル系単位を形成する原料モノマーとしては、エチレン、プロピレンまたは ブタジエンなど、マレイミド系単位を形成する原料モノマーとしては、マレイミド、 N—メ チノレマレイミド、 N—ェチノレマレイミド、 N—プロピノレマレイミド、 N—イソプロピノレマレ イミド、 N—シクロへキシルマレイミド、 N—フエニルマレイミド、 N— (p—ブロモフエ二 ノレ)マレイミドまたは N— (クロ口フエニル)マレイミドなど、その他のビュル系単位を形 成する原料モノマーとしては N—ビニルジェチルァミン、 N—ァセチルビニルァミン、 ァリノレアミン、メタァリノレアミン、 N—メチノレアリノレアミン、 p—アミノスチレンなどが挙げ られ、これらは単独ないし 2種以上を用いることができる。
[0074] 本発明において、グリシジル基含有ビュル系単位を含む重合体のガラス転移温度 は、特に限定されるものではなレ、が、ハンドリング性に優れるという点で、 30〜: 100°C の範囲であることが好ましぐ 40〜70°Cの範囲であることがより好ましぐ 50〜65°C の範囲であることが最も好ましい。ここでいうガラス転移温度とは DSCで測定した値 である。なお、グリシジル基含有ビニル系単位を含む重合体のガラス転移温度は、共 重合成分の組成を調節することにより制御することができる。ガラス転移温度は通常、 スチレンなどの芳香族系ビュル単位を共重合することにより高くすることができ、アタリ ル酸ブチルなどのアクリル酸エステル単位を共重合することにより低くすることができ る
本発明において、グリシジル基含有ビュル系単位を含む重合体は、未反応の原料 モノマーや溶媒などが残存するために通常、揮発成分を含む。その残部となる不揮 発成分量は、特に限定されるものではないが、ガスの発生を抑制するという観点で、 不揮発成分量が多い方が好ましい。具体的には、 95重量%以上であることが好まし く、中でも 97重量%以上であることが好ましぐさらに 98重量%以上であることがより 好ましぐ特に 98. 5重量%以上であることが最も好ましい。なお、ここでレ、ぅ不揮発 成分とは、試料 10gを窒素雰囲気下、 110°Cで 1時間加熱した場合の残量割合を表 す。
[0075] 本発明において、グリシジル基含有ビュル系単位を含む重合体は、低分子量体を 得るために連鎖移動剤 (分子量調整剤)として硫黄化合物を使用することがあるが、 その場合には重合体は通常硫黄を含む。ここで、硫黄含有量は、特に限定されるも のではなレ、が、不快な臭レ、を抑制するとレ、う観点で、硫黄含有量が少なレ、方が好ま しレ、。具体的には、硫黄原子として lOOOppm以下が好ましぐ中でも lOOppm以下 が好ましぐさらに lOppm以下が好ましぐ特に lppm以下であることが最も好ましい
[0076] 本発明において、グリシジル基含有ビュル系単位を含む重合体の製造方法として は、本発明で規定する条件を満たす限り特に限定されるものではなぐ塊状重合、溶 液重合、懸濁重合、乳化重合などの公知の重合方法を用いることができる。これらの 方法を用いる場合には、重合開始剤、連鎖移動剤および溶媒などを使用することが あるが、これらは最終的に得られるグリシジル基含有ビュル系単位を含む重合体の 中に不純物として残存することがある。これら不純物量は特に限定されるものではな レ、が、耐熱性ゃ耐候性などの低下を抑制するとレ、う観点で、不純物量は少なレ、方が 好ましレ、。具体的には、不純物量が最終的に得られる重合体に対して 10重量%以 下が好ましぐ中でも 5重量%以下が好ましぐさらに 3重量%以下が好ましぐ特に 1 重量%以下であることが最も好ましレ、。
[0077] 以上のような、分子量、ガラス転移温度、不揮発成分量、硫黄含有量、不純物量な どを満足させるグリシジル基含有ビュル系単位を含む重合体の製造方法としては、 1 50°C以上の高温で、かつ加圧条件 (好ましくは IMPa以上)で、短時間(好ましくは 5 分〜 30分)で連続塊状重合する方法が、重合率が高い点、不純物や硫黄含有の原 因となる重合開始剤や連鎖移動剤および溶媒を使用しない点でより好ましい。
[0078] 本発明において、(D)反応性化合物の配合量は、(A)ポリ乳酸系樹脂および (B) メタクリル系樹脂の合計 100重量部に対し、 0. 01〜30重量部が好ましぐ 0. 05〜2 0重量部がより好ましぐ 0.:!〜 10重量部がさらに好ましぐ 0. 5〜3重量部が特に好 ましい。 (D)反応性化合物の配合量が、 0. 01重量部未満では、樹脂組成物の耐衝 撃性改良効果が不充分な傾向にあり、 30重量部を越える場合には、ゲルィ匕などによ り、流動性の低下を招く恐れがある。
[0079] 本発明において、耐熱性の点で、さらに (E)無機粒子を配合することが好ましぐ榭 脂組成物中における無機粒子の短軸の長さが 1〜 300nmであり、長軸の長さが 1〜 lOOOnmであることが好ましレ、。透明性の点で、(E)無機粒子の短軸の長さは、 5〜 200nmであること力 Sより好ましく、 10〜: !OOnmであることがさらに好ましぐ長軸の長 さは、 10〜900nmであることがより好ましぐ 50〜800nmであることがさらに好まし レ、。本発明において、無機粒子の短軸の長さおよび長軸の長さとは、電子顕微鏡を 用レ、、 2万倍で樹脂組成物を観察し、任意の無機粒子 20個、好ましくは 100個につ いて、その形状を観察測定し、最も短い長さを短軸方向とし、最も長い長さを長軸方 向とし、それぞれを平均した値である。
[0080] 本発明において、(E)無機粒子としては、粒状、球状、板状および繊維状のいずれ でもよいが、耐熱性の点で、板状であることが好ましい。
[0081] 本発明において、粒状もしくは球状の無機粒子としては、酸化亜鉛、酸化マグネシ ゥム、酸化鉄、酸化チタン、チタニア、ジルコユア、セリア、ァノレミナ、シリカ、炭酸カル シゥム、タルク、マイ力、カオリン、グラフアイト粉末、カーボンブラックなどを用いること ができ、中でもシリカが好ましい。
[0082] 本発明において、板状の無機粒子としては、タルク、マイ力、ガラスフレーク、モンモ リロナイト、スメクタイトなど珪酸塩などを用いることができ、中でも珪酸塩が好ましい。
[0083] 本発明において、繊維状の無機粒子としては、ガラス繊維、カーボン繊維、酸化亜 鉛、ァノレミナ、チタン酸カルシウム、チタン酸カリウム、チタン酸バリウム、ホウ酸アルミ 二ゥム、ホウ酸マグネシウム、マグネシウムォキシサルフェート繊維などを用いることが できる。
[0084] 本発明において、(E)無機粒子としては、ケィ素を含むものであることがより好ましく 、具体的には、シリカおよび珪酸塩などを挙げることができ、中でも層状珪酸塩である ことがより好ましぐ有機変性層状珪酸塩であることがさらに好ましい。なお、本発明に ぉレ、て、電子顕微鏡 エネルギー分散型 X線分析計 (EDX)を用いて元素分析を行 うことにより、無機粒子であることを判別することができ、また、ケィ素を検出することが できる。
[0085] 本発明において、シリカとは、粉末であっても、水もしくは有機溶媒分散型ゾノレ (コロ ィダルシリカ)であってもよいが、透明性の点で、コロイダルシリカが好ましい。さらに、 透明性の点で、水酸基、アミノ基、アミド基、カルボキシル基、グリシジル基、酸無水 物基、カルポジイミド基、ォキサゾリン基から選択される少なくとも 1種以上の官能基 で表面処理されていることが好ましい。表面処理されたシリカを用いることにより、マト リックス樹脂との親和性が向上し、無機粒子の凝集抑制および分散性向上に効果が あり、樹脂組成物中に均一に分散させることができるようになり、透明性に優れる樹脂 組成物を得ることができる。
[0086] 本発明において、有機変性層状珪酸塩とは、層間に存在する交換性陽イオンまた は陰イオンが有機ォニゥムイオンまたは有機ァニオンで交換された層状珪酸塩であり 、特に交換性陽イオンが有機ォニゥムイオンで交換された層状珪酸塩が好ましい。
[0087] 交換性のイオンを層間に有する層状珪酸塩は、幅 0. 05〜0. 5 z m、厚さ 6〜: 15ォ ングストロームの板状物が積層した構造を持ち、その板状物の層間に交換性のィォ ンを有している。そのイオン交換容量は 0. 2〜3meqZgのものが挙げられ、好ましく はイオン交換容量が 0. 8〜: 1. 5meqZgのものである。
[0088] 層状珪酸塩の具体例としてはモンモリロナイト、ノ イデライト、ノントロナイト、サポナ イト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物、バーミキユライト、ハロイ サイト、カネマイト、ケニヤイト、燐酸ジノレコニゥム、燐酸チタニウムなどの各種粘土鉱 物、 Li型フッ素テニオライト、 Na型フッ素テニオライト、 Na型四珪素フッ素雲母、 Li型 四珪素フッ素雲母等の膨潤性雲母、ハイド口タルサイト等が挙げられ、天然のもので あっても合成されたものであっても良レ、。これらのなかでもモンモリロナイト、ヘクトライ トなどのスメクタイト系粘土鉱物や Na型四珪素フッ素雲母、 Li型フッ素テニオライトな どの膨潤性合成雲母が好ましレ、。
[0089] 有機ォニゥムイオンとしてはアンモニゥムイオンやホスホニゥムイオン、スルホニゥム イオンなどが挙げられる。これらのなかではアンモニゥムイオンとホスホニゥムイオンが 好ましぐ特にアンモニゥムイオンが好んで用いられる。アンモニゥムイオンとしては、 1級アンモニゥム、 2級アンモニゥム、 3級アンモニゥム、 4級アンモニゥムのいずれで ち民い。
[0090] 1級アンモニゥムイオンとしてはデシルアンモニゥム、ドデシルアンモニゥム、ォクタ デシルアンモニゥム、ォレイルアンモニゥム、ベンジルアンモニゥムなどが挙げられる
[0091] 2級アンモニゥムイオンとしてはメチルドデシルアンモニゥム、メチルォクタデシルァ ンモニゥムなどが挙げられる。
[0092] 3級アンモニゥムイオンとしてはジメチルドデシルアンモニゥム、ジメチルォクタデシ ルアンモニゥムなどが挙げられる。
[0093] 4級アンモニゥムイオンとしてはべンジルトリメチルアンモニゥム、ベンジルトリェチル ム、ベンジルジメチルォクタデシルアンモニゥム、ベンザルコニゥムなどのベンジルトリ アルキルアンモニゥムイオン、トリメチルォクチルアンモニゥム、トリメチルドデシルアン モニゥム、トリメチルォクタデシルアンモニゥムなどのアルキルトリメチルアンモニゥムィ オン、ジメチルジォクチルアンモニゥム、ジメチルジドデシルアンモニゥム、ジメチルジ ォクタデシルアンモニゥムなどのジメチルジアルキルアンモニゥムイオン、トリオクチル ニゥムイオン、ベンゼン環を 2個有するベンゼトニゥムイオンなどが挙げられる。
[0094] また、これらの他にもァニリン、 p—フエ二レンジァミン、 α —ナフチノレアミン、 ρ—アミ ノジメチルァ二リン、ベンジジン、ピリジン、ピぺリジン、 6 _アミノカプロン酸、 11—アミ ノウンデカン酸、 12—アミノドデカン酸、末端にアミノ基を有するポリアルキレングリコ ールなどから誘導されるアンモニゥムイオンなども挙げられる。
[0095] これらのアンモニゥムイオンの中でも、好ましい化合物としては、トリオクチルメチル アンモニゥム、ベンジルジメチルドデシルアンモニゥム、ベンジルジメチルォクタデシ ルアンモニゥム、ベンザルコニゥムなどが挙げられる。これらのアンモニゥムイオンは、 一般的には、混合物として入手可能であり、前記の化合物名称は少量の類縁体を含 む代表化合物の名称である。これらは、 1種類で使用しても良いし、 2種類以上を混 合して使用しても良い。
[0096] また、反応性の官能基を持つものや親和性の高いものが好ましぐ 12—アミノドデ カン酸、末端にアミノ基を有するポリアルキレングリコールなどから誘導されるアンモ ニゥムイオンなども好ましい。
[0097] 有機ァニオンとしては、長鎖のカルボン酸などがあり、ラウリン酸、デカン酸、ステア リン酸、ドデカジカルボン酸、ダイマー酸などをあげることができる。
[0098] 本発明において、有機変性層状珪酸塩としては、交換性の陽イオンまたは陰イオン を層間に有する層状珪酸塩と有機ォニゥムイオンまたは有機ァニオンを公知の方法 で反応させることにより製造することができる。具体的には、水、メタノール、エタノー ルなどの極性溶媒中でのイオン交換反応による方法力、層状珪酸塩に液状あるいは 溶融させた有機塩を直接反応させることによる方法などが挙げられる。
[0099] 本発明において、層状珪酸塩に対する有機イオンの量は、層状珪酸塩の分散性、 溶融時の熱安定性、成形時のガス、臭気の発生抑制などの点で、層状珪酸塩の陽ィ オン交換容量に対し通常、 0. 4〜2. 0当量の範囲であるが、 0. 8〜: 1. 2当量である ことが好ましい。
[0100] また、有機変性層状珪酸塩を反応性官能基を有するカップリング剤で予備処理し て使用することは、より優れた機械的強度を得るために好ましい。かかる反応性官能 基を有するカップリング剤としては、イソシァネート系化合物、有機シラン系化合物、 有機チタネート系化合物、有機ボラン系化合物、エポキシィ匕合物などが挙げられる。
[0101] 本発明において、有機変性層状珪酸塩は、樹脂組成物中に均一に分散しているこ とが好ましい。ここでいう均一な分散とは、層状珪酸塩が 5層以下の積層状態で局所 的な固まりを持たずに分散していることをいう。
[0102] 本発明において、(E)無機粒子の配合量は、 (A)ポリ乳酸系樹脂と(B)メタクリノレ 系樹脂の合計 100重量部に対して、 0.:!〜 50重量部が好ましぐ 0. 5〜20重量部 力 り好ましぐ 1〜: 10重量部が特に好ましい。
[0103] 本発明の樹脂組成物においては、本発明の目的を損なわない範囲で、充填剤(ガ ラス繊維、炭素繊維、金属繊維、天然繊維、有機繊維、ガラスフレーク、ガラスビーズ 、セラミックスフアイバー、セラミックビーズ、アスベスト、ワラステナイト、タルク、クレイ、 マイ力、セリサイト、ゼォライト、ベントナイト、ドロマイト、カオリン、微粉ケィ酸、長石粉 、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリゥ ム、酸化カルシウム、酸化アルミニウム、酸化チタン、珪酸アルミニウム、酸化ケィ素、 石膏、ノバキユライト、ドーソナイトおよび白土など)、安定剤(酸化防止剤、紫外線吸 収剤等)、滑剤、離形剤、難燃剤、染料および顔料を含む着色剤、結晶核剤、可塑 剤、帯電防止剤などを添加することができる。中でも、機械特性、成形性、耐熱性お よび透明性などに優れた樹脂組成物が得られるという点で、離型剤を配合することが 好ましい。離型剤としては、通常熱可塑性樹脂の離型剤に用いられるものを用いるこ とができる。具体的には、脂肪酸、脂肪酸金属塩、ォキシ脂肪酸、脂肪酸エステル、 脂肪族部分鹼化エステル、パラフィン、低分子量ポリオレフイン、脂肪酸アミド、アル キレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多 価アルコールエステル、脂肪酸ポリダリコールエステル、変成シリコーンなどを挙げる こと力できる。離型剤の配合量は、(A)ポリ乳酸系樹脂と (B)メタクリル系樹脂の合計 100重量部に対して、 0. 0:!〜 3重量部が好ましぐ 0. 03〜2重量部がさらに好まし レ、。
[0104] また、本発明で用いられる樹脂組成物に対して、本発明の目的を損なわない範囲 で、他の熱可塑性樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリメチル ペンテン樹脂、環状ォレフィン系樹脂、アクリロニトリル 'ブタンジェン 'スチレン (ABS )樹脂、アクリロニトリル 'スチレン (AS)樹脂、酢酸セルロースなどのセルロース系樹 脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂およびポリ ブチレンテレフタレート樹脂などのポリエステル樹脂、ポリカーボネート樹脂、ポリフエ 二レンオキサイド樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフエ二レンサルファ イド樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂な ど)および熱硬化性樹脂 (例えばフエノール樹脂、メラミン樹脂、ポリエステル樹脂、シ リコーン樹脂、エポキシ樹脂など)などの少なくとも 1種以上をさらに配合することがで きる。
[0105] 本発明の樹脂組成物の製造方法は、特に限定されるものではないが、例えば、(A )ポリ乳酸系樹脂、(B)メタクリル系樹脂および必要に応じてその他の添加剤を予め ブレンドした後、融点以上において、一軸または二軸押出機で均一に溶融混練する 方法、溶液中で混合した後に溶媒を除く方法などが用いられるが、生産性の点で、 一軸または二軸押出機で均一に溶融混練する方法が好ましぐ透明性、耐熱性およ び流動性に優れた樹脂組成物を得られるとレ、う点で、二軸押出機で均一に溶融混 練する方法がより好ましい。
[0106] 本発明の樹脂組成物について、樹脂組成物中におけるメタクリル系樹脂のシンジ オタクチシチ一とアイソタクチシチ一の比(シンジオタクチシチ一/アイソタクチシチ 一)が、 2. 5〜8· 0であることを特徴とする。さらに、耐熱性および流動性の点で、 3. 0〜8. 0であること力 Sより好ましく、 3. 0〜5. 5であること力 Sさらに好ましく、 3. 0〜5. 0 であることが特に好ましレ、。ここでいうシンジオタクチシチ一、ヘテロタクチシチ一、ァ イソタクチシチ一とは、溶媒として、重水素化クロ口ホルムを用いた 1H— NMR測定 において、シンジオタクチシチ一、ヘテロタクチシチ一、アイソタクチシチ一としてそれ ぞれ観察される 0. 9ppm、 1. Oppm、 1. 2ppmの直鎖分岐のメチル基のピークの積 分強度の合計を 100%として、それぞれのピークの積分強度の割合を百分率で表す ことにより算出できる値である。
[0107] 本発明の樹脂組成物について、耐熱性の点で、ガラス転移温度が、 70°C以上であ ることが好ましぐ 75°C以上であることがより好ましぐ 80°C以上であることがさらに好 ましぐ 90°C以上であることが特に好ましい。上限は特に限定されないが、流動性の 点で、 150°C以下であることが好ましぐ 120°C以下であることがより好ましい。ここで レ、うガラス転移温度は、 JIS K7121に記載されている方法に準じて DSCにより測定 した値であり、中間点ガラス転移温度もしくは補外転移終了温度のレ、ずれでもよレ、。 DSC測定においては、比熱容量の変化により DSC曲線が屈曲し、ベースラインが平 行移動する形状によりガラス転移温度領域を検出できる。中間点ガラス転移温度とは 、屈曲点以下および屈曲点以上のそれぞれのベースラインの接線を並行になるよう に引き、各ベースライン間の高さ、すなわち、比熱容量変化が半分となる位置に各べ ースラインと並行になるように直線を引き、その直線と屈曲する DSC曲線の交点のこ とをいう。また、補外転移終了温度とは、屈曲点以上での温度のベースラインの接線 と、屈曲した部分で傾きが最大となる点の接線との交点のことをいう。
[0108] 本発明の樹脂組成物について、耐熱性の点で、 ASTM D648に準じて、荷重 0.
45MPaにて測定した荷重たわみ温度(DTUL)力 60°C以上であることが好ましぐ 70°C以上であることがより好ましぐ 80°C以上であることがさらに好ましい。
[0109] 本発明の樹脂組成物としては、透明であることが好ましい。ここで、透明とは、新聞 など文字が印刷されている印刷物に成形品を重ねたときに、その文字を読みとること ができる部分があることをいう。具体的には、厚み 20 x m以上、好ましくは lmmの成 形品とした時のヘイズが 30%以下であることが好ましぐ透明性に優れるという点で、 ヘイズが 10%以下であることがより好ましぐヘイズが 5%以下であることがさらに好ま しい。本発明において、ヘイズは、 JIS K7105に準じて測定した値である。また、透 明性については、 JIS K6714に準じて測定される全光線透過率でも判定することが 可能であり、全光線透過率が 80%以上であることが好ましぐ 85%以上であることが より好まし 90%以上であることがさらに好ましい。
[0110] 本発明の樹脂組成物について、メルトフローレート(MFR)は特に限定されなレ、が、 耐熱性の点で、 JIS K7210に準じて、 190°C、 21. 2N荷重にて測定した MFRが、 30g/l0分以下であることが好ましぐ 20g/l0分以下であることがより好ましぐ 15 gZlO分以下であることがさらに好ましい。 MFRが 30gZlO分を越えると耐熱性が 低下する傾向にある。また、流動性の点で、 0. lg/10分以上であることが好ましぐ lgZlO分以上であることがより好まし 3g/l0分以上であることがさらに好ましい。 MFRが 0. lgZlO分より小さいと流動性が低下し、射出成形時の加工性が低下す る ί頃向にある。 [0111] 本発明の樹脂組成物について、表面硬度は特に限定されなレ、が、 JIS K-5600 に準じて測定した鉛筆硬度力 HB以上であることが好ましぐ F以上であることがより 好ましぐ H以上であることがさらに好ましい。鉛筆硬度が HBより低いと、表面に傷が つきやすくなるため好ましくない。本発明の樹脂組成物を光記録媒体として使用する 場合には、基板に加工した際に傷が付きにくぐ読みとりエラーなどが発生しに《な るという点で、 HB以上であることが好まし H以上であることがより好ましぐまた、落 下などの衝撃に対して光記録媒体が破壊されに《なるという点で、 3H以下であるこ と力 S好ましく、 2H以下であることがより好ましい。
[0112] 本発明の樹脂組成物について、衝撃強度は特に限定されなレ、が、耐衝撃性の点 で、 ASTM D256に準じて測定したアイゾット衝撃強度が 50j/m以上であることが 好ましぐ 75j/m以上であることがより好ましぐ 100j/m以上であることがさらに好 ましい。アイゾット衝撃強度が 50j/mより低いと、落下などの衝撃により破損しやすく なるため好ましくない。
[0113] 本発明の樹脂組成物について、飽和吸水率は特に限定されなレ、が、 ASTM D5 70に準じて測定した飽和吸水率力 0. 4重量%以下であることが好ましぐ 0. 3重量 %以下であることがより好ましぐ 0. 2重量%以下であることがさらに好ましぐ 0. 1重 量%以下であることが特に好ましい。下限は特に制限されない。飽和吸水率が 0. 4 重量%を越えると吸湿による変形が発生しやすぐ使用できなくなる可能性が大きく なるため好ましくない。
[0114] 本発明の樹脂組成物について、レターデーシヨン (複屈折量)は特に限定されない 力 市販のエリプソメーターを用い 23°C、 405nmのレーザー光を基板面に対して 30 °Cの角度で照射して測定したレターデーシヨンが 50nm以下であることが好ましぐ 3 Onm以下であることがより好ましぐ 20nm以下であることがさらに好ましぐ 10nm以 下であることが特に好ましぐ 5nm以下であることが最も好ましい。本発明の樹脂組成 物を光記録媒体として使用する場合には、レターデーシヨンが 50nmを越えると読み とりエラーなどが発生しやすくなるため好ましくない。
[0115] 本発明の樹脂組成物は、射出成形や押出成形などの方法によって、各種成形品 に加工し利用することができる。 [0116] 本発明の樹脂組成物からなる成形品としては、射出成形品、押出成形品、ブロー 成形品、フィルム、シートなどが挙げられる。本発明においては、耐熱性に優れると レ、う点で、厚みが 20 x m以上の部分を有する成形品であることが好ましぐ 1mm以 上の部分を有する成形品であることがより好ましい。さらに、耐熱性および耐衝撃性 に優れるという点で、厚みが 50mm以下の部分を有する成形品であることが好ましく 、 10mm以下の部分を有する成形品であることがより好ましぐ 5mm以下の部分を有 する成形品であることがさらに好ましい。
[0117] 本発明の樹脂組成物からなる成形品は、透明性に優れるという点で、成形品の厚 みが 20 /i m以上、好ましくは厚み力 Slmmで、ヘイズが 30%以下である部分を有す ることが好ましぐヘイズが 10%以下である部分を有することがより好ましぐ 5%以下 である部分を有することがさらに好ましい。本発明において、ヘイズは、 JIS K7105 に準じ、ヘイズメーターを用いて測定した値である。
[0118] 本発明の樹脂組成物からなる成形品は、電気 ·電子部品、建築部材、自動車部品 、各種容器、 日用品、生活雑貨および衛生用品など各種用途に利用することができ る。
[0119] 具体的には、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース 、ノートパソコンハウジングおよび内部部品、 CRTディスプレーハウジングおよび内部 部品、プリンターハウジングおよび内部部品、携帯電話、モパイルパソコン、ハンドへ ルド型モパイルなどの携帯端末ハウジングおよび内部部品、記録媒体(CD、 DVD、 PD、 FDDなど)ドライブのハウジングおよび内部部品、コピー機のハウジングおよび 内部部品、ファクシミリのハウジングおよび内部部品、パラボラアンテナなどに代表さ れる電気 ·電子部品を挙げることができる。更に、 VTR部品、テレビ部品、アイロン、 ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジヱ クタ一などの映像機器部品、レーザーディスク(登録商標)、コンパクトディスク(CD) 、 CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD— RW、 DVD -RAM,ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、ェ アコン部品、タイプライター部品、ワードプロセッサー部品、などに代表される家庭'事 務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲ ーム機などのハウジングや内部部品、各種ギヤ一、各種ケース、センサー、 LEPラン プ、コネクター、ソケット、抵抗器、リレーケース、スィッチ、コイルボビン、コンデンサー 、ノ リコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配 線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気へッ ドベース、パワーモジュール、半導体、液晶、 FDDキャリッジ、 FDDシャーシ、モータ 一ブラッシュホルダー、トランス部材、コイルボビンなどの電気'電子部品、サッシ戸車 、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガス メーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャ スター、ブラ束、天井釣り具、階段、ドア一、床などの建築部材、釣り糸、漁網、海藻 養殖網、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット 、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥 •ヘドロ脱水袋、コンクリート型枠などの土木関連部材、エアフローメーター、エアポン プ、サーモスタットハウジング、エンジンマウント、ィグニッシヨンホビン、ィグニッシヨン ケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、 バキュームスイッチングバルブ、 ECUハウジング、バキュームポンプケース、インヒビ タースィッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイル ベース、 ABS用ァクチユエ一ターケース、ラジェータタンクのトップ及びボトム、クーリ ングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイノレキヤッ プ、オイノレノ ン、オイノレフイノレター、フューェノレキャップ、フューエノレストレーナ一、デ イストリビューターキャップ、ベーハ0—キヤニスターハウジング、エアクリーナーノヽウジ ング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ 、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用ァ ンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、 ウォッシャーレバー、ウィンドレギュレーターハンドノレ、ウィンドレギュレーターハンドノレ のノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングな どの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミ ラーステー、スポイラ一、フードノレーノ 一、ホイ一ノレカノく一、ホイ一ノレキャップ、グリノレ エプロンカバーフレーム、ランプリフレタター、ランプべゼル、ドアハンドルなどの自動 車用外装部品、ワイヤーハーネスコネクター、 SMJコネクター、 PCBコネクター、ドア グロメットコネクターなど各種自動車用コネクター、歯車、ねじ、パネ、軸受、レバー、 キーステム、カム、ラチヱット、ローラー、給水部品、玩具部品、ファン、テグス、パイプ 、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マル チフィルム、トンネル用フィルム、防鳥シート、植生保護用不織布、育苗用ポット、植 生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防 根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、 土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、紙おむつ、生理用品包材、 綿棒、おしぼり、便座ふきなどの衛生用品、医療用不織布 (縫合部補強材、癒着防 止膜、人工器官補修材)、創傷被服材、キズテープ包帯、貼符材基布、手術用縫合 糸、骨折補強材、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等 の包装用フィルム、トレイ、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラス チック缶、バウチ、コンテナー、タンク、カゴなどの容器'食器類、ホットフィル容器類、 電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボト ル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、 果物かご、手切れテープ、イージーピール包装、卵パック、 HDD用包装、コンポスト 袋、記録メディア包装、ショッピングバック、電気'電子部品等のラッピングフィルムな どの容器 ·包装、天然繊維複合、ポロシャツ、 Tシャツ、インナー、ユニホーム、セータ 一、靴下、ネクタイなどの各種衣料、カーテン、イス貼り地、カーペット、テーブルクロ ス、布団地、壁紙、ふろしきなどのインテリア用品、キャリアーテープ、プリントラミ、感 熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジット力 ード、キャッシュカード、 IDカード、 ICカード、紙、皮革、不織布等のホットメルトバイン ダー、磁性体、硫化亜鉛、電極材料等粉体のバインダー、光学素子、導電性ェンボ ステープ、 ICトレイ、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、水 切りネット、ボディタオル、ハンドタオル、お茶パック、排水溝フィルター、クリアフアイ ル、コート剤、接着剤、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリー ル、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペン キャップ、ガスライターなどとして有用である。 [0120] 特に、本発明の樹脂糸且成物は、 CD、 CD-ROM, CD-R, CD-RW, DVD-ROM 、 DVD-R, DVD_RW、 DVD-RAM,レーザーディスク(登録商標)、ブルーレイデ イスクなどの光記録媒体の基板として有用である。
[0121] 本発明において、光記録媒体の基板の製造方法は特に限定されることなく公知の 方法を用いることができ、例えば、射出成形法、押出成形法、射出プレス成形法等が 挙げられ、良好な特性を有する製品を安定して大量に製造できる点で、射出成形法 が好ましい。また、基板の上に形成される反射層、記録層、接着層、誘電体層、保護 層などの種々の層は、公知の方法を用いて形成させることができる。なお、接着層に 用いる接着剤としては、耐熱性の点で、ポリイミド系などの高耐熱性の接着剤を用い ること力 S好ましい。また、基板上に形成させる層の種類や積層数などを変えることによ り、再生専用型、追記型、書き換え型などをそれぞれ製造することができる。
[0122] 本発明において、光記録媒体の強度とは、光記録媒体の破壊強度、すなわち、割 れにくさのことをいう。本発明においては、光記録媒体の一端を万力などで固定した 状態で、他端を手で持ち折り曲げたときの割れるまでの角度で判定することができ、 1 5度以上であれば割れにくいといえる。好ましくは 20度以上、より好ましくは 30度以 上であれば強度がさらに向上したといえる。
[0123] 本発明の樹脂組成物およびそれからなる成形品は、リサイクルすることが可能であ る。例えば、樹脂組成物およびそれからなる成形品を 80°C以上、好ましくは 100°C以 上で熱処理した後、粉砕し、好ましくは粉末状とした後、アセトンもしくはテトラヒドロフ ランなどの溶媒を用いて、(B)メタクリル系樹脂を単離し、その後、クロ口ホルムなどの 溶媒を用いて、残留物から (A)ポリ乳酸系樹脂を単離することができる。単離した樹 脂は、それぞれ単独で用いることができ、さらにそれぞれを配合して得られる樹脂組 成物は、本発明の樹脂組成物と同じように使用でき、成形品とすることも可能である。 実施例
[0124] 以下、実施例により本発明の構成、効果をさらに詳細に説明する。ここで、実施例 中の配合比は重量部を示す。また、使用した原料および表中の符号を以下に示す。
[0125] (A)ポリ乳酸系樹脂
(A— 1)ポリ L乳酸樹脂 (D体 1. 2%、重量平均分子量 12万) (A— 2)ポリ L乳酸樹脂 (D体 1. 2%、重量平均分子量 15万)
(A 3)ポリ L乳酸樹脂 (D体 1. 2%、重量平均分子量 21万)
(B)メタクリル系樹脂
(B_ l)メタクリル樹脂(住友化学製"スミペックス LG21"重量平均分子量 8万、ガ ラス転移温度 105。C、シンジオタクチシチー 41%、 MFR21gZlO分(230°C、 37. 2N) )
(B_ 2)メタクリル樹脂(クラレ製"パラぺッド 'HR_L、重量平均分子量 9万、ガラス転 移温度 117°C、シンジオタクチシチー 56%、 MFR2g/10分(230°C、 37. 2N) ) (B— 3)メタクリル樹脂(住友化学製"スミペックス" LG35、重量平均分子量 10万、ガ ラス転移温度 90°C、シンジオタクチシチー 39%、 MFR35g/10分(230°C、 37. 2 N) )
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C- 1)製造例 1により得られた重合体
(C 2)製造例 2により得られた重合体
(C - 3)クラレ製"パラフェイス" ME— 120 (コア:アクリル系重合体、シェル:メタクリル 酸メチル共重合体、屈折率 1. 468、ゴム層のガラス転移温度 50°C)
(C— 4)三菱レイヨン製"メタプレン" S2001 (コア:シリコーン/アクリル重合体、シェ ル:メタクリル酸メチル重合体、屈折率 1. 448)
(C - 5)カネ力製"カネエース" M511 (コア:ブタジエン Zスチレン重合体、シェル:メ タクリル酸メチル重合体、屈折率 1. 518、ゴム層のガラス転移温度— 100°C) (D)反応性化合物
(D_ 1)グリシジノレ基含有アクリル/スチレン系共重合体 (東亞合成製" ARUFON "UG4040,重量平均分子量 1万)
(D— 2)グリシジノレ基含有アクリル系共重合体(日本油脂製"マープノレーフ" G205 0M、重量平均分子量 21万)
(D- 3)ォキサゾリン基含有スチレン系重合体(日本触媒製"ェポクロス" RPS - 100 0、重量平均分子量 14万)
(D— 4)テレフタル酸ジグリシジルエステル(ナガセケムテックス製"デナコール EL 一 711"、重量平均分子量 260)
(D- 5)ポリカルボジイミド(日清紡製 "カルポジライド' HMV_8CA、重量平均分 子量 2000)
(E)無機粒子
(E—1)製造例 3により得られた 12—アミノドデカン酸塩酸塩で交換されたモンモリ ロナイト (有機変性層状珪酸塩)
(E— 2)コロイダルシリカ(触媒化成工業製" OSCAL")
[製造例 1] ( (C 1)の製造例)
環流冷却器付きの反応容器に、脱イオン水 120重量部、炭酸カリウム 0. 2重量部 、スルホコハク酸ジォクチル 0. 2重量部および過硫酸カリウム 0. 005重量部を仕込 み、窒素雰囲気下で撹拌後、アクリル酸ブチル 56重量部、メタクリル酸メチル 12重量 部およびメタクリル酸ァリル 1重量部からなる混合物を 60分かけて連続的に添加した 後、 70°Cで 30分間保持して、コア層重合体を得た。次いで、過硫酸カリウム 0. 005 重量部を添加した後、メタクリル酸メチル 19重量部およびアクリル酸メチル 10重量部 からなる混合物を 60分かけて連続的に添加し、 70°Cで 60分間保持して、シェル層( 第 2層)を重合させた。このラテックスを硫酸で凝固し、苛性ソーダで中和した後、 50 °C温水で水洗脱水を 3回繰り返し、固形分を 80°C12時間乾燥して、 2層構造の多層 構造重合体(C-1)の粉体を得た。 C—1に関し、屈折率は 1. 472、ゴム層のガラス 転移温度は— 30°Cであった。
[製造例 2] ( (C— 2)の製造例)
還流冷却器付き反応容器に、脱イオン水 300重量部、ステアリン酸ナトリウム 1. 0 重量部および N—ラウロイルザルコシン酸ナトリウム 0. 1重量部を仕込み、 70°Cで 30 分間撹拌した後、過硫酸カリウム 0. 01重量部を添加し、窒素雰囲気下で撹拌後、メ タクリル酸メチル 50重量部、アクリル酸メチル 2重量部およびメタクリル酸ァリル 0. 15 重量部からなる混合物を 60分かけて連続的に添加し、 80°Cで 60分間保持して、コ ァ層重合体を得た。次いで、過硫酸カリウム 0. 01重量部を添加した後、アクリル酸ブ チル 58重量部、スチレン 12重量部およびメタクリル酸ァリル 1重量部からなる混合物 を 60分かけて連続的に添加し、 70°Cで 30分間保持して、シェル層(第 2層)を重合さ せた。次いで、過硫酸カリウム 0. 01重量部を添加した後、メタクリル酸メチル 29重量 部およびアクリル酸メチル 1重量部からなる混合物を 60分かけて連続的に添加し、 7 0°Cで 60分間保持して、シェル層(第 3層)を重合させた。このラテックスを硫酸で凝 固し、苛性ソーダで中和した後、 50°C温水で水洗脱水を 3回繰り返し、固形分を 80 °C12時間乾燥して、 3層構造の多層構造重合体 (C-2)の粉体を得た。 C_ 2に関し 、屈折率は 1. 485、ゴム層のガラス転移温度は _ 34°Cであった。
[製造例 3] ( (E— 1)の製造例)
Na型モンモリロナイト(クニミネ工業:"クニピア F"、陽イオン交換容量 120m当量/ 100g) 100gを温水 10リットルに攪拌分散し、ここに 12 アミノドデカン酸塩酸塩 30 . 2g (陽イオン交換容量と等量)を溶解させた温水 2Lを添加して 1時間攪拌し、生じ た沈殿の濾別、温水洗浄を 3回行い、得られた固体を 80°Cで真空乾燥することで E 1を得た。
また、本発明で用いた測定方法および判定方法を以下に示す。
(1)重量平均分子量 (Mw)
ゲルパーミエーシヨンクロマトグラフィー(GPC)により測定した標準 PMMA換算の 重量平均分子量の値である。溶媒にへキサフルォロイソプロパノールを用い、流速 0 . 5mL/minとし、試料濃度 lmg/mLの溶液を 0. lmL注入して測定した。
(2)シンジオタクチシチ一およびアイソタクチシチー
1H— NMR測定により測定した値である。 1H— NMR測定は、 日本電子 ¾[NM_ AL400を用いて、溶媒として重水素化クロ口ホルムを用レ、、試料濃度 20mgZmLと して測定した。シンジオタクチシチ一、ヘテロタクチシチ一、アイソタクチシチ一として それぞれ観察される 0. 9ppm、 1. 0ppm、 1. 2ppmの直鎖分岐のメチル基のピーク の積分強度の合計を 100%として、それぞれのピークの積分強度の割合を百分率で 表した値をそれぞれシンジオタクチシチ一、ヘテロタクチシチ一、アイソタクチシチー とした。
(3)ガラス転移温度 (Tg)
JIS K7121に準じて、示差走查型熱量計(セイコー電子製 RDC220)により測定 した。測定条件は、試料 10mg、窒素雰囲気下中、昇温速度 20°C/分である。 (4)耐熱性 (DTUL)
ASTM D648に準じて、 12. 7mm X 127mm X 3mmの成形品の荷重たわみ温 度(荷重 0. 45MPa)を測定した。
(5)透明性
日本電色工業製ヘイズメーター NDH— 300Aを用いて、 JIS— K7105に準じ、 5c m X 5cm X 1mmの板状成形品のヘイズを測定した。
(6)流動性 (MFR)
樹脂組成物の流動性について、 JIS K7210に準じて、 190°C、 21. 2N荷重にお いて測定した。
(7)引張強度
ASTM法 D638に準じて、 ASTM1号ダンベル成形品を用いて、引張試験を行つ た。
(8)鉛筆硬度
JIS K5600— 5— 4に準じて、 5cm X 5cm X lmmの板状成形品の鉛筆硬度を測 定した。
(9)衝撃特性
ASTM D256に準じて、 3mm厚ノッチ付き短冊状成形品のアイゾット衝撃強度を 測定した。
(10)屈折率
樹脂組成物もしくは(C)コア層とそれを覆う 1以上のシェル層力 構成される多層構 造重合体を 150°Cでプレス成形し、厚さ 0. 5mmのシートとした後、幅 5mm、長さ 20 mmの大きさの試験片を切り出し、アッベ屈折計(ァタゴ製 DR—M2)によって、 23°C 、 589nm波長における屈折率を測定した。
(11)樹脂組成物中における(C)コア層とそれを覆う 1以上のシェル層力も構成される 多層構造重合体の分散状態
透過型電子顕微鏡 (TEM)を用い、 2万倍で観察し、任意の 100個の分散粒子に ついて、一次粒子径を測定し、平均値を分散粒子径とした。また、コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の凝集粒子数 (1)と凝集していない 粒子数 (m)との比 (lZm)に関しては、透過型電子顕微鏡を用い、 2万倍で観察し、 任意の 100個の分散粒子について、 (C)コア層とそれを覆う 1以上のシェル層力 構 成される多層構造重合体の分散粒子が接触してレ、る場合を凝集粒子と判定し、 1/ mを求めた。なお、 12. 7mm X I 27mm X 3mmの成形品中心部を観察した。
(12)樹脂組成物中における (E)無機粒子の分散状態
透過型電子顕微鏡 (TEM)—エネルギー分散型 X線分析計 (EDX)を用レ、、 2万倍 で観察し、 EDXにてケィ素含有粒子と判定できた任意の 20個の粒子について、短 軸の長さおよび長軸の長さを測定し、平均値を求めた。
(13)耐加水分解性
ASTM 1号ダンベル成形品を、 70°C、相対湿度 95 %の恒温恒湿槽中で 100時間 処理した後、引張強度を測定し引張強度保持率を求めた。引張強度保持率が大き レ、ほど、耐加水分解性に優れると言える。
[実施例:!〜 5、比較例:!〜 8]
表 1,表 2に示すようにポリ乳酸系樹脂、メタクリル系樹脂を配合し、 30mm径のニ 軸押出機を用い、シリンダー温度 200°C、回転数 200rpmの条件で溶融混練を行い ペレット状の樹脂組成物を得た。
[0127] 得た樹脂組成物を住友重工業製射出成形機 SG75H— MIVを用い、シリンダー温 度 200°C、金型温度 40°Cで射出成形を行レ、、 3mm厚のノッチ付き成形品、 12. 7m m X 127mm X 3mmの成开品、 3mm厚の ASTM1号ダンべノレ成开品および 5cm
X 5cm X 1mmの板状成形品を得た。
[0128] 得た成形品を用いて、各種評価を行った結果を表 1 ,表 2に示す。
[0129] [表 1]
Figure imgf000044_0001
(A)ポリ乳酸系樹脂
(A— 1 )ポリ L乳酸樹脂(D体 1. 2%、 Mw12万)
(A— 2)ポリ L乳酸樹脂(D体 1. 2%、 Mwl 5万)
(A— 3)ポリし乳酸樹脂(D体 1.2%、 Mw21万)
(B)メタクリル系樹脂
(8—1)メタクリル樹脂(住友化学製"スミぺックス"1_621、1\1«8万、丁§105¾、シンジォタクチシチー41%、1\1 21§ 10分(230¾、 37.2N))
(B— 2)メタクリル樹脂(クラレ製"パラベッド' HR—し Mw9万、 Tg117°C、シンジオタクチシチ一 56%、MFR2gZ10分(230°C、37. 2N))
(B— 3)メタクリノレ樹月旨(住友 ί匕学製"スミペックス" LG35、 Mwl 0万、 Tg90°C、シンジ才タクチシチ一 39%、 MFR35g/10分(230°C、 37.2N) )
表 2
Figure imgf000046_0001
(A)ポリ乳酸系樹脂
(A— 1 )ポリ L乳酸樹脂(D体 1 . 2%、 Mwl 2万)
(A—2)ポリ L乳酸樹脂(D体 1 · 2%、 Mwl 5万)
(A— 3)ポリし乳酸樹脂(D体 1■ 2%. Mw21万)
(B)メタクリル系樹脂
(B— 1 )メタクリノレ樹月旨(住友 1匕学製 "スミペックス" LG21、 Mw8万、 Tgl 05。C、シンジオタクチシチー 41 "¼、 MFR21 gZl 0分(230°C、 37. 2N) ) (B— 2)メタクリル樹脂(クラレ製"パラぺッド 'HR—し Mw9万、 Tg1 1フ。 C、シンジオタクチシチー 56%、 MFR2g/1 0分(230°C、 37. 2N) ) (B-3)メタクリル樹脂(住友化学製"スミペックス" LG35、 Mwl 0万、 Tg90°C、シンジオタクチシチー 39%、 MF 35g/1 0分(230°C、 37. 2N) )
[0131] 表 1,表 2の結果より以下のことが明らかである。
[0132] 実施例:!〜 5と比較例:!〜 8との比較から、ポリ乳酸系樹脂、メタクリル系樹脂として、 ガラス転移温度の差が 10°C以上、もしくはシンジオタクチシチ一の差が 3%以上のい ずれか一つ以上の条件を満たす 2種のメタクリル系樹脂を配合してなる樹脂組成物 は、耐熱性、透明性、流動性、強度、鉛筆硬度に優れることがわかる。
[実施例 6〜: 14、比較例 9〜: 12]
表 3,表 4に示すようにポリ乳酸系樹脂、メタクリル系樹脂および多層構造重合体を 配合する以外は、全て実施例 1と同様に樹脂組成物および成形品を得た。各種評価 を行った結果を表 3,表 4に示す。
[0133] [表 3]
〔〕 表 3
Figure imgf000048_0001
(A)ポリ乳酸系樹脂
(A— 1)ポリ L乳酸樹脂(D体 1.2%、Mw12万)
(A— 2)ポリ L乳酸樹脂(D体 1.2%、Mw15万)
(B)メタクリル系樹脂
(B— 1 )メタクリル樹脂(住友化学製"スミペックス" LG21、 Mw8万、 Tg105°C、シンジオタクチシチー 41 %、 MFR21 g/10分(230°C、 37.2N))
(B— 2)メタクリル樹脂(クラレ製"パラベッド 'HR—し Mw9万、 Tg117°C、シンジオタクチシチー 56%、MFR2g 10分(230°C、 37.2N))
(B— 3)メタクリル樹脂(住友化学製"スミペックス" LG35、 Mw10万、 Tg90°C、シンジオタクチシチー 39%、 MFR35gZ10分(230°C、 37.2N))
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C— 1)製造例 1により得られた重合体(コア:アクリル酸ブチル メタクリル酸メチル共重合体、シェル:アクリル酸メチル メタクリル酸メチル共重合体、 屈折率 1.472、ゴム層の Tg— 30°G)
(C一 2)製造例 2により得られた重合体(コア:アクリル酸メチル メタクリル酸メチル共重合体、シェル:アクリル酸メチル /メタクリル酸メチル共重合体、 屈折率"! .485.ゴム層の Tg— 34°C)
一 クラレ製"パラフェイス' コア:アクリル系重合体、シ ル:メタクリル酸メチル共重合体、屈折率 、ゴム層の
(C— 三菱レイヨン製"メタブレン" S2001 (コア:シリコーン/アクリル重合体、シェル:メタクリル酸メチル重合体、屈折率 1- 448)
(C— 5)カネ力製' 'カネエース" M511 コア:ブタジエン ,Ζスチレン重合体、シェル:メタクリル酸メチル重合体、屈折率 1.518.zfAg0Tg-1OO°C)
〔〕
表 4
Figure imgf000049_0001
Figure imgf000049_0002
«1: 重 の 粒子 (0と していない 子 (m)との :
(A)ポリ乳酸系樹脂
(A— 2)ポリ L乳酸樹脂(D体 1.2%、 Mw15万)
(B)メタクリル系樹脂
(B— 2)メタクリル樹脂(クラレ製"パラベッド' HR—し、 Mw9万、 Tgl 17°C、シンジオタクチシチー 56%、 MFR2gZ10分(230°C、 37.2N))
(B— 3)メタクリル樹脂(住友化学製"スミペックス" LG35、 MwlO万、 Tg90°C、シンジオタクチシチー 39%、 MFR35gZ10分(230°C、 37. 2N))
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C一 1 )製造例 1により得られた重合体(コア:アクリル酸ブチル Zメタクリル酸メチル共重合体、シェル:アクリル酸メチルノメタクリル酸メチル共重合体、 屈折率 1.472、ゴム層の Tg— 30°C)
[0136] 実施例 6〜: 14と比較例 9〜: 12の比較から、ポリ乳酸系樹脂、メタクリル系樹脂およ び多層構造重合体を配合してなる樹脂組成物は、耐熱性、透明性、流動性、耐衝撃 性、強度に優れることがわかる。中でも、多層構造重合体として、屈折率が 1. 45〜1 . 50、もしくはガラス転移温度が 30°C以下の構成成分を含む多層構造重合体を用 レ、ることにより、耐熱性、透明性および耐衝撃性に優れることがわかる。
[実施例 15〜23、比較例 13〜: 17]
表 5,表 6に示すようにポリ乳酸系樹脂、メタクリル系樹脂、反応性化合物および/ もしくは多層構造重合体を配合する以外は、全て実施例 1と同様にして樹脂組成物 および成形品を得た。各種評価を行った結果を表 5,表 6に示す。
[0137] [表 5]
〔〕
¾tt 表 5
Figure imgf000051_0001
※"!: 層 造重合 の凝集粒子 (I)と凝集していない粒子 (m)との比
(A)ポリ乳酸系樹脂
(A— 2)ポ UL乳酸樹脂(D体 1 . 2%、 Mw1 5万)
(B)メタクリル系樹脂
(B— 2)メタクリル樹脂(クラレ製"パラベッド' HR—し Mw9万、 Tg1 1 7°C、シンジオタクチシチー56%、 MFR2g/1 0分(230°C、 37. 2N) )
(B— 3)メタクリル樹脂(住友化学製"スミペックス LG35、 Mw1 0万、 Tg90°C、シンジオタクチシチー39½、 MFR35gノ 1 0分(230°C、 37. 2N) )
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C一 1 )製造例 1により得られた重合体(コア:アクリル酸ブチルノメタクリル酸メチル共重合体、シェル:アクリル酸メチル /メタクリル酸メチル共重合体、 屈折率 1 . 472、ゴム層の Tg— 30°C)
(D)反応性化合物
(D— 1 )ゲリシジル基含有アクリル Zスチレン系共重合体(東亞合成製" ARUFON"UG4040、重量平均分子量 1万)
(D— 2)グリシジル基含有アクリル系共重合体(日本油脂製"マープルーフ" G2050M、重量平均分子量21万)
(D— 3)ォキサゾリン基含有スチレン系重合体(日本触媒製"ェポクロス" RPS— "1 000、重量平均分子量 "1 4万)
(D— 4)亍レフタル酸ジグリシジルエステル(ナガセケムテックス製' 'デナコール" EX— 71 1、重量平均分子暈 260)
(D— 5)ボリカルボジイミド '(曰清紡製 "カルポジライト" HMV— 8CA、重量平均分子量 2000)
〕s ^s^^
表 6
Figure imgf000052_0002
(A)ポリ乳酸系樹脂
Figure imgf000052_0001
(A— 2)ポリ L乳酸樹脂(D体 1. 2% Mw15万)
(B)メタクリル系樹脂
(B— 2)メタクリル樹脂(クラレ製"パラぺッに HR—し、 Mw9万、 Tgl 17°C、シンジオタクチシチ一 56% MFR2g 10分(230°C 37. 2N))
(C)コア層とそれを覆う1以上のシェル層から構成される多層構造重合体
(C—1 )製造例 1により得られた重合体(コア:アクリル酸ブチル メタクリル酸メチル共重合体、シェル:アクリル酸メチル /メタクリル酸メチル共重合体、 屈折率 1. 472、ゴム層の Tg— 30¾)
(C— 3)クラレ製"パラフェイス" ME— 120(コア:アクリル系重合体、シェル:メタクリル酸メチル共重合体、屈折率 1. 468、ゴム層の Tg— 50°C)
(D)反応性化合物
(D— 1 )グリシジル基含有アクリル/スチレン系共重合体(東亞合成製" ARUFON"UG4040、重量平均分子量 1万)
よび反応性化合物を配合してなる樹脂組成物は、耐熱性、透明性および流動性に 優れることがわかる。また、実施例 18〜23と比較例 16〜: 17の比較から、さらに多層 構造重合体を配合してなる樹脂組成物は、耐衝撃性にも優れることがわかる。中でも 、反応性化合物として、重量平均分子量が 1000〜300000の重合体であり、グリシ ジル基含有ビュル系単位を含む重合体、もしくはカルポジイミド基を含有する化合物 を用いることにより、耐熱性、耐衝撃性および耐加水分解性に優れることがわかる。
[実施例 24〜28、比較例 18〜21]
実施例 24〜27および比較例 18〜21については、表 7,表 8に示すようにポリ乳酸 系樹脂、メタクリル系樹脂、無機粒子および/もしくは多層構造重合体、反応性化合 物を配合する以外は、全て実施例 1と同様にして樹脂組成物および成形品を得た。 実施例 28については、ポリ乳酸系樹脂、メタクリル系樹脂、コロイダルシリカをテトラヒ ドロフラン 500重量部中で、 3時間撹拌混合し、大過剰のエタノールに投入後得られ る沈殿物を 70°Cで乾燥させ樹脂組成物を得た。各種評価を行った結果を表 7,表 8 に示す。
[表 7]
表フ
Figure imgf000054_0001
(A)ポリ乳酸系樹脂
(A— 2)ポリ L乳酸横脂(D体 1 . 2%、Mw1 5万)
(B)メタクリル系樹脂
(B— 2)メタクリル樹脂(クラレ製"パラベッド' HR—し、 Mw9万、 Tg1 1 7¾、シンジオタクチシチー 56%、MFR2g 10分(230ΐ、37. 2Ν) ) (Β— 3)メタクリル樹脂(住友化学製"スミペックス" LG35、Mw10万、 Tg90°C、シンジオタクチシチ一 39%、MFR35g/1 0分(230°C、37. 2N) )
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C— 1 )製造例 1により得られた璽合体 (コア:アクリル酸ブチル /メタクリル酸メチル共重合体、シェル:アクリル酸メテル/メタクリル酸メチル共重合体、 屈折率 1 . 472.ゴム層の Tg— 30¾)
(D)反応性化合物
(D— 1 )グリシジル基含アクリル/スチレン系共重合体(東亞合成製" ARUFON"UG4040、重量平均分子量 1万)
(Ε) β機粒ェ
(Ε— 1 )製造例 3により得られた 1 2—アミノドデカン酸塩酸塩で交換されたモンモリロナイト (有機変性層状珪酸塩)
(Ε— 2)コロイダルシリカ(触媒化成工業製" OSCAじ)
表 8 0
0
Figure imgf000055_0002
(A)ポリ乳酸系樹脂
(A—2)ポリ L乳酸樹脂(D体 1 . 2%、 Mw1 5万)
(B)メタクリル系樹脂
(B— 2)メタクリル樹脂(クラレ製"パラぺッに HR—し Mw9万、 Tg1 1 7¾、シンジオタクチシチ _56%、 MFR2g/10分(230 、 37. 2N) )
(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体
(C—1 )製造例 1により得られた重合体 (コア:アクリル酸ブチル /メタクリル酸メチル共重合体.
シェル:アクリル酸メチル メタクリル酸メチル共重合体、屈折率 1 . 472、ゴム gの Tg— 30°C)
(D)反応性化合物
(D— 1 )グリシジル基含アクリル/スチレン系共重合体 (東亞合成製" ARUFON UG4040、重 ¾平均分子量 1万)
(E、無機粒子
製造例 3により得られた 1 2—アミノト'デカン酸塩酸塩で交換されたモンモリロナイト (有機変性層状珪酸塩)
Figure imgf000055_0001
脂を配合する以外は、全て実施例 1と同様にして樹脂組成物および成形品を作成し 、ガラス転移温度、ヘイズ、 MFRを求めた。
[0145] 続いて、得られた樹脂組成物を用いて射出成形により、凹凸のピットが形成された ディスク基板を作成した。得たディスク基板にアルミニウムの反射膜をスパッタ蒸着さ せた後、その上に紫外線硬化型樹脂(大日本インキ工業社製 SD-1700)をスピンコ ートし、保護層を形成させ、再生専用型の光記録媒体であるコンパクトディスクを作成 した。
[0146] 作成した光記録媒体の強度について、半円部を万力で固定した後、もう一方の半 円部の頂点を手で持ち折り曲げたときの割れるまでの角度を測定し、下記基準により 判定した。
[0147] (§) : 30度以上
〇:20〜30度
△ : 15〜20度
X: 15度以下
作成した光記録媒体の再生特性について、熱風乾燥機を用いて 70°C、 200時間 処理した後、もしぐ恒温恒湿槽を用いて温度 50°C、相対湿度 95% (95%RH)の条 件で 200時間処理した後、プレーヤーで音声を再生できるかどうか、下記基準により 判断した。また、未処理品についても同様に再生特性を確認した。
[0148] ◎:問題なく再生することができる。
[0149] 〇:やや変形してレ、るものの、再生することができる。
[0150] △:読みとりエラーが一部あり、再生が不充分である。
[0151] X:全く再生できない。
[0152] 結果を表 9に示す。
[0153] [表 9] 表 9
Figure imgf000057_0001
(A)ポリ乳酸系樹脂
(A— 1)ポリし乳酸樹脂(D体 1. 2%、 Mw12万)
(A— 2)ポリ L乳酸樹脂(D体 1. 2%、 Mw15万)
(A— 3)ポリ L乳酸樹脂(D体 1. 2%、 Mw21万)
(B)メタクリル系樹脂
(B-1)メタクリル樹脂(住友化学製"スミペックス" LG21、 Mw8万、 Tg105°C、シンジオタクチシチ一 41 %、 MFR21 g/10分(230°C、 37.2N) )
(B— 2)メタクリル樹脂(クラレ製"パラペット" HR—し Mw9万、 Tg117°C、シンジオタクチシチ一 56%、 MFR2g 10分(230°C、 37.2N))
(B— 3)メタクリル樹脂(住友化学製"スミペックス" LG35、 MwlO万、 Tg90°C、シンジオタクチシチー39<½、 MFR35gZ10分(230°C、 37.2N))
[0154] 表 9の結果より以下のことが明らかである。
[0155] 実施例 29〜30から、ポリ乳酸系樹脂、メタクリル系樹脂として、ガラス転移温度の 差が 10°C以上、もしくはシンジオタクチシチ一の差が 3%以上のいずれか一つ以上 の条件を満たす 2種のメタクリル系樹脂を配合してなる樹脂組成物は、耐熱性、透明 性および流動性に優れており、それを基板に用いた光記録媒体は、問題なく使用で きること力わ力る。
産業上の利用可能性
[0156] 本発明の樹脂組成物は、透明性、耐熱性、流動性に優れることから、電気'電子部 品、建築部材、 自動車部品、各種容器、 日用品、生活雑貨および衛生用品など各種 用途に利用可能である。

Claims

請求の範囲
[1] (A)ポリ乳酸系樹脂および (B)メタクリル系樹脂を配合してなる樹脂組成物であって 、(B)メタクリル系樹脂が下記条件の少なくとも一つを満たす 2種以上のメタクリル系 樹脂を含む樹脂組成物。
(a)ガラス転移温度の差が 10°C以上
(b)シンジオタクチシチ一の差が 3%以上
[2] (B)メタクリル系樹脂の少なくとも 1種力 重量平均分子量 5万〜 45万、ガラス転移温 度 110°C以上およびシンジオタクチシチー 40%以上であるメタクリル系樹脂である請 求項 1に記載の樹脂組成物。
[3] さらに(C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体を配 合してなる請求項 1に記載の樹脂組成物。
[4] (C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体が、下記条 件の少なくとも一つを満たすものである請求項 3に記載の樹脂組成物。
(c)屈折率が 1. 45〜: 1. 50
(d)ガラス転移温度が 30°C以下の構成成分を含む
[5] (C)コア層とそれを覆う 1以上のシェル層から構成される多層構造重合体の最外層が
、メタクリル酸メチル単位および Zまたはアクリル酸メチル単位を含む重合体から構 成される請求項 3に記載の樹脂組成物。
[6] 樹脂組成物中における(C)コア層とそれを覆う 1以上のシェル層力も構成される多層 構造重合体の分散粒子径が、:!〜 lOOOnmである請求項 3に記載の樹脂組成物。
[7] 樹脂組成物中における(C)コア層とそれを覆う 1以上のシェル層力 構成される多層 構造重合体の凝集粒子数 (1)と凝集してレ、なレ、粒子数 (m)との比 (1/m)が 0〜0. 5 である請求項 3に記載の樹脂組成物。
[8] さらに (D)反応性化合物として、グリシジル基、酸無水物基、カルポジイミド基、ォキ サゾリン基力 選択される少なくとも 1種の官能基を含有する反応性化合物を配合し てなる請求項 1に記載の樹脂組成物。
[9] (D)反応性化合物力 重量平均分子量 1000〜300000の重合体であり、グリシジ ル基含有ビニル系単位を含む重合体である請求項 8に記載の樹脂組成物。
[10] さらに (E)無機粒子を配合してなる樹脂組成物であって、樹脂組成物中における無 機粒子の短軸の長さが 1〜300nmであり、長軸の長さが 1〜 1 OOOnmである請求項 1に記載の樹脂組成物。
[11] (E)無機粒子が、ケィ素を含むものである請求項 10に記載の樹脂組成物。
[12] (A)ポリ乳酸系樹脂および (B)メタクリル系樹脂を配合してなる樹脂組成物であって 、樹脂組成物中における(B)メタクリル系樹脂のシンジオタクチシチ一とアイソタクチ シチ一の比(シンジオタクチシチー Zアイソタクチシチ一)が、 3. 0〜8. 0である樹脂 組成物。
[13] 請求項 1〜: 12に記載の樹脂組成物からなる成形品。
PCT/JP2006/301285 2005-07-08 2006-01-27 樹脂組成物およびそれからなる成形品 WO2007007435A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077029771A KR101227437B1 (ko) 2005-07-08 2006-01-27 수지 조성물 및 이것으로 이루어진 성형품
KR1020127024652A KR101227435B1 (ko) 2005-07-08 2006-01-27 수지 조성물 및 이것으로 이루어진 성형품
CN2006800250250A CN101218298B (zh) 2005-07-08 2006-01-27 树脂组合物和由该树脂组合物形成的成型品
EP06712451.1A EP1903077B1 (en) 2005-07-08 2006-01-27 Resin composition and molded article comprising the same
US11/988,414 US8829099B2 (en) 2005-07-08 2006-01-27 Resin composition and molded article composed of the same
US14/174,606 US20140155534A1 (en) 2005-07-08 2014-02-06 Resin composition and molded article composed of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-199985 2005-07-08
JP2005199985 2005-07-08
JP2005286529 2005-09-30
JP2005-286529 2005-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/988,414 A-371-Of-International US8829099B2 (en) 2005-07-08 2006-01-27 Resin composition and molded article composed of the same
US14/174,606 Division US20140155534A1 (en) 2005-07-08 2014-02-06 Resin composition and molded article composed of the same

Publications (1)

Publication Number Publication Date
WO2007007435A1 true WO2007007435A1 (ja) 2007-01-18

Family

ID=37636836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301285 WO2007007435A1 (ja) 2005-07-08 2006-01-27 樹脂組成物およびそれからなる成形品

Country Status (6)

Country Link
US (2) US8829099B2 (ja)
EP (2) EP1903077B1 (ja)
KR (2) KR101227437B1 (ja)
CN (1) CN101218298B (ja)
TW (2) TWI464210B (ja)
WO (1) WO2007007435A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130225A2 (en) 2007-04-19 2008-10-30 Synbra Technology B.V. A polymer mixture, a method for producing an extruded product, methods for producing a starting material for a foamed moulded product and methods for producing a foamed moulded product, the products obtained with said methods and applications thereof
US20100204404A1 (en) * 2007-09-11 2010-08-12 Kaneka Corporation Liquid resin composition and cured product using the liquid resin composition
US20110217523A1 (en) * 2008-10-30 2011-09-08 Lg Hausys, Ltd. Wallpaper and method for manufacturing the same
US20110287206A1 (en) * 2009-01-30 2011-11-24 3M Innovative Properties Company Polylactic Acid-Containing Resin Composition, Polylactic Acid-Containing Resin Film and Methods Thereof
JP2015519860A (ja) * 2012-04-26 2015-07-09 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ 電気機械
KR20170024583A (ko) * 2014-06-30 2017-03-07 주식회사 쿠라레 메타크릴 수지 또는 메타크릴 수지 조성물
US10196510B2 (en) * 2013-05-16 2019-02-05 Kuraray Co., Ltd. Methacrylic resin composition and molded body thereof
CN111934094A (zh) * 2020-08-13 2020-11-13 铭薪电子(深圳)有限公司 一种自动调节卫星锅的电视机

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260149A1 (de) 2002-12-20 2004-07-01 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Bestimmung des Leitwertes von Wäsche, Wäschetrockner und Verfahren zur Verhinderung von Schichtbildung auf Elektroden
US20090018237A1 (en) * 2004-06-16 2009-01-15 Unitika Ltd. Polylactic acid-containing resin composition and product molded therefrom
WO2008051443A1 (en) * 2006-10-20 2008-05-02 Natureworks Llc Impact modified polylactide resins
CN101802091A (zh) * 2007-09-27 2010-08-11 尤尼吉可株式会社 树脂组合物和将其成型而得的成型体
CN101809090A (zh) * 2007-10-01 2010-08-18 阿科玛股份有限公司 可生物降解的聚合物以及丙烯酸共聚物的共混物
JP5355022B2 (ja) 2007-10-12 2013-11-27 キヤノン株式会社 ポリエステル樹脂組成物および成形体
KR20100112610A (ko) * 2008-01-09 2010-10-19 이 아이 듀폰 디 네모아 앤드 캄파니 내가수분해성 폴리에스테르 조성물
US8829112B1 (en) 2008-01-09 2014-09-09 E I Du Pont De Nemours And Company Polyester composition resistant to hydrolysis
US20100330236A1 (en) * 2008-04-18 2010-12-30 Ohki Co. Ltd Fiber sheet
US20110034607A1 (en) * 2008-04-24 2011-02-10 Polyone Corporation Heat resistant polylactic acid compounds
JP5473244B2 (ja) * 2008-04-25 2014-04-16 キヤノン株式会社 ポリエステル樹脂組成物の製造方法、ポリエステル樹脂組成物および成形体
KR101233371B1 (ko) * 2008-12-30 2013-02-18 제일모직주식회사 폴리유산 수지 조성물
KR101233373B1 (ko) * 2008-12-30 2013-02-18 제일모직주식회사 폴리유산 수지 조성물
KR20110048377A (ko) * 2009-11-02 2011-05-11 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
CN102597100A (zh) * 2009-11-17 2012-07-18 阿科玛法国公司 抗冲击丙烯酸掺杂物
US9987820B2 (en) 2009-11-17 2018-06-05 Arkema France Multilayer structures containing biopolymers
US8936740B2 (en) * 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
KR101034050B1 (ko) * 2010-08-31 2011-05-11 주식회사 폴리사이언텍 생분해성 수지조성물 및 이로부터 제조된 생분해성 환경친화형 필름 및 용기
TWI413659B (zh) * 2010-10-05 2013-11-01 Ind Tech Res Inst 生質材料組合物及光學元件
US20130236723A1 (en) * 2010-11-26 2013-09-12 Nitto Denko Corporation Polylactic acid-based film or sheet
EA201300514A1 (ru) * 2010-12-15 2013-11-29 3М Инновейтив Пропертиз Компани Разлагаемые волокна
TWI478976B (zh) * 2010-12-31 2015-04-01 Chi Mei Corp 熱可塑性樹脂組成物
CN102368032A (zh) * 2011-06-28 2012-03-07 苏州方暨圆节能科技有限公司 具有薄膜的铝散热器热管
KR101427452B1 (ko) * 2011-08-01 2014-08-08 주식회사 엘지화학 폴리락트산 수지 조성물 및 그 제조 방법
CN103958602B (zh) * 2011-11-29 2016-09-07 东丽株式会社 树脂组合物、树脂组合物片材、半导体器件及其制备方法
US8975305B2 (en) 2012-02-10 2015-03-10 Kimberly-Clark Worldwide, Inc. Rigid renewable polyester compositions having a high impact strength and tensile elongation
JP6320380B2 (ja) * 2012-08-03 2018-05-09 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改良されたガラス繊維補強複合体
WO2014115029A2 (en) * 2013-01-22 2014-07-31 University Of Guelph Poly (lactic actd)-based biocomposite materials having improved toughness and heat distortion temperature and methods of making and using thereof
JP5653508B2 (ja) * 2013-03-29 2015-01-14 太陽インキ製造株式会社 プリント配線板用硬化型組成物、これを用いた硬化塗膜及びプリント配線板
CN105209501B (zh) * 2013-05-16 2017-09-26 株式会社可乐丽 薄膜
KR101895635B1 (ko) * 2013-07-11 2018-09-05 (주)엘지하우시스 친환경 쿠션바닥재 및 이의 제조방법
KR20160079806A (ko) * 2013-10-29 2016-07-06 도레이 카부시키가이샤 섬유 강화 수지 조성물 및 섬유 강화 복합 재료
CN103772838B (zh) * 2014-01-08 2018-09-28 合肥杰事杰新材料股份有限公司 一种水滑石改性聚苯乙烯微球材料与制备方法及其在3d打印中的应用
TWI651356B (zh) * 2014-01-23 2019-02-21 可樂麗股份有限公司 薄膜
CN106459597A (zh) * 2014-05-29 2017-02-22 宝洁公司 光泽制品
CN106414599B (zh) * 2014-05-30 2020-12-15 株式会社可乐丽 甲基丙烯酸类树脂组合物
HK1200650A2 (en) * 2015-03-23 2015-08-07 馮家鴻 號 Mechanical thermostat
WO2016167315A1 (ja) * 2015-04-17 2016-10-20 住友化学株式会社 コーティングイネ種子及びその製造方法
CN107529715A (zh) * 2015-04-17 2018-01-02 住友化学株式会社 包衣水稻种子及其制备方法
WO2017030147A1 (ja) * 2015-08-18 2017-02-23 株式会社クラレ 樹脂組成物、成形品および積層体
US9897133B2 (en) * 2016-04-18 2018-02-20 Linkwin Technology Co., Ltd. Carbon fiber washer
JP6151423B1 (ja) * 2016-08-30 2017-06-21 旭化成株式会社 メタクリル系樹脂組成物、光学フィルム、及び光学部品
DE102016224245A1 (de) * 2016-12-06 2018-06-07 Robert Bosch Gmbh Handwerkzeugmaschine mit einem Feder-Rastwerk
KR102074032B1 (ko) * 2017-02-23 2020-02-05 (주)엘지하우시스 Pla 박막 필름 및 이를 포함하는 주거용 바닥재
CN108738187A (zh) * 2018-06-11 2018-11-02 太仓双赢电子电气成套设备有限公司 微波炉
CN110749947B (zh) * 2019-10-29 2021-06-01 浙江龙游道明光学有限公司 一种高可视对比度反光膜的制造方法
CN112505816B (zh) * 2020-11-30 2022-03-25 中国科学院新疆理化技术研究所 化合物硼酸钾钡和硼酸钾钡双折射晶体及制备方法和用途
CN115505196B (zh) * 2021-06-07 2023-12-01 中国石油化工股份有限公司 一种用于加工通信电缆绝缘层的聚乙烯组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253107A (ja) * 2002-03-05 2003-09-10 Kanebo Ltd ポリエステル樹脂組成物ならびにその用途
JP2003286396A (ja) * 2002-01-24 2003-10-10 Toray Ind Inc 脂肪族ポリエステル樹脂組成物およびそれからなる成形品

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300576A (en) 1991-10-03 1994-04-05 Camelot Technologies, Inc. Higher heat degradable polymer alloys
CA2101957A1 (en) * 1992-08-18 1994-02-19 Samuel J. Makower Acrylic thermoplastic elastomer
FR2702484B1 (fr) 1993-03-12 1995-05-12 Atochem Elf Sa Compositions thermoplastiques à base de polyméthacrylate de méthyle transparentes résistantes au choc et à tenue à la la chaleur améliorée.
JPH0859949A (ja) 1994-08-19 1996-03-05 Mitsubishi Rayon Co Ltd 加水分解性に優れた樹脂組成物
JPH10158369A (ja) 1996-11-29 1998-06-16 Mitsui Chem Inc 樹脂組成物及びそれからなる成形物
JPH11228611A (ja) 1998-02-17 1999-08-24 Mitsubishi Rayon Co Ltd メタクリル樹脂の製造方法
JP2001335626A (ja) * 2000-05-26 2001-12-04 Toray Ind Inc 脂肪族ポリエステル樹脂および成形品
AU2002211017A1 (en) * 2000-11-13 2002-05-21 Asahi Kasei Kabushiki Kaisha Light guide and method for producing transparent thermoplastic resin compositionfor light guide
JP4178742B2 (ja) 2000-11-20 2008-11-12 東レ株式会社 熱可塑性組成物およびそれからなるフィルム
JP4032656B2 (ja) * 2001-03-16 2008-01-16 東レ株式会社 樹脂成形品およびその製造方法
JP4863579B2 (ja) 2001-07-12 2012-01-25 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物
JP3925176B2 (ja) 2001-12-04 2007-06-06 東レ株式会社 ポリエステル樹脂組成物
US20050143502A1 (en) * 2002-04-24 2005-06-30 Shinichiro Yamada Biodegradable flame retardant composite composition and process for producing the same
JP4808367B2 (ja) 2003-03-06 2011-11-02 ユニチカ株式会社 ポリ乳酸系成形体の製造方法
JP2004269720A (ja) 2003-03-10 2004-09-30 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
EP1609819B1 (en) 2003-03-28 2010-09-29 Toray Industries, Inc. Polylactic acid resin composition, process for producing the same, biaxially stretched polylactic acid film, and molded articles thereof
JP3894901B2 (ja) 2003-04-28 2007-03-22 ユニチカ株式会社 環境低負荷性化粧品容器
JP4469149B2 (ja) * 2003-08-07 2010-05-26 ダイセルポリマー株式会社 熱可塑性樹脂組成物及び成形品
JP2005060637A (ja) * 2003-08-20 2005-03-10 Fujitsu Ltd 生分解性樹脂組成物とそれを用いた樹脂筐体
JP2005171204A (ja) * 2003-12-15 2005-06-30 Unitika Ltd 樹脂組成物及びそれより得られる成形体
CN100506912C (zh) 2004-03-05 2009-07-01 三菱丽阳株式会社 热塑性树脂组合物以及使用该组合物的成型品
US20090018237A1 (en) 2004-06-16 2009-01-15 Unitika Ltd. Polylactic acid-containing resin composition and product molded therefrom
KR101075653B1 (ko) 2005-03-11 2011-10-21 후지쯔 가부시끼가이샤 식물성 수지 조성물 및 식물성 수지 성형체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286396A (ja) * 2002-01-24 2003-10-10 Toray Ind Inc 脂肪族ポリエステル樹脂組成物およびそれからなる成形品
JP2003253107A (ja) * 2002-03-05 2003-09-10 Kanebo Ltd ポリエステル樹脂組成物ならびにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1903077A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130225A3 (en) * 2007-04-19 2010-04-29 Synbra Technology B.V. Polymer blend containing polylactic acid and a polymer having a tg higher than 60°c
WO2008130225A2 (en) 2007-04-19 2008-10-30 Synbra Technology B.V. A polymer mixture, a method for producing an extruded product, methods for producing a starting material for a foamed moulded product and methods for producing a foamed moulded product, the products obtained with said methods and applications thereof
KR101573551B1 (ko) * 2007-09-11 2015-12-01 카네카 코포레이션 액상 수지 조성물, 및 그 액상 수지 조성물을 사용한 경화물
US20100204404A1 (en) * 2007-09-11 2010-08-12 Kaneka Corporation Liquid resin composition and cured product using the liquid resin composition
US8742014B2 (en) * 2007-09-11 2014-06-03 Kaneka Corporation Liquid resin composition and cured product using the liquid resin composition
US20110217523A1 (en) * 2008-10-30 2011-09-08 Lg Hausys, Ltd. Wallpaper and method for manufacturing the same
US9309628B2 (en) * 2008-10-30 2016-04-12 Lg Hausys, Ltd. Wallpaper and method for manufacturing same
US20110287206A1 (en) * 2009-01-30 2011-11-24 3M Innovative Properties Company Polylactic Acid-Containing Resin Composition, Polylactic Acid-Containing Resin Film and Methods Thereof
US9090771B2 (en) * 2009-01-30 2015-07-28 3M Innovative Properties Company Release film formed from polylactic acid-containing resin
JP2015519860A (ja) * 2012-04-26 2015-07-09 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ 電気機械
US9991758B2 (en) 2012-04-26 2018-06-05 Spal Automotive S.R.L. Electric machine
US10196510B2 (en) * 2013-05-16 2019-02-05 Kuraray Co., Ltd. Methacrylic resin composition and molded body thereof
KR20170024583A (ko) * 2014-06-30 2017-03-07 주식회사 쿠라레 메타크릴 수지 또는 메타크릴 수지 조성물
US10526430B2 (en) * 2014-06-30 2020-01-07 Kuraray Co., Ltd. Methacrylic resin or methacrylic resin composition
KR102394025B1 (ko) 2014-06-30 2022-05-03 주식회사 쿠라레 메타크릴 수지 또는 메타크릴 수지 조성물
CN111934094A (zh) * 2020-08-13 2020-11-13 铭薪电子(深圳)有限公司 一种自动调节卫星锅的电视机

Also Published As

Publication number Publication date
TWI432517B (zh) 2014-04-01
KR101227437B1 (ko) 2013-01-29
KR101227435B1 (ko) 2013-01-29
CN101218298B (zh) 2011-07-20
US20090030132A1 (en) 2009-01-29
EP1903077A4 (en) 2013-08-07
EP2740767A1 (en) 2014-06-11
KR20080025072A (ko) 2008-03-19
TWI464210B (zh) 2014-12-11
US8829099B2 (en) 2014-09-09
EP1903077A1 (en) 2008-03-26
TW200702385A (en) 2007-01-16
EP1903077B1 (en) 2014-09-03
CN101218298A (zh) 2008-07-09
TW201300450A (zh) 2013-01-01
KR20120120469A (ko) 2012-11-01
US20140155534A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2007007435A1 (ja) 樹脂組成物およびそれからなる成形品
JP5135742B2 (ja) 樹脂組成物およびそれからなる成形品
JP5298496B2 (ja) 樹脂組成物およびそれからなる成形品
JP5167807B2 (ja) 成形品およびその製造方法
TWI396712B (zh) 樹脂組成物及其成形品
JP5298467B2 (ja) 樹脂組成物およびそれからなる成形品
JP5082289B2 (ja) ポリ乳酸樹脂を含むシート、その製造方法、および容器
JP2008156616A (ja) 樹脂組成物およびそれからなる成形品
JP2012193370A (ja) 成形体
JP2005002174A (ja) 樹脂組成物およびそれからなる成形品
JP5565469B2 (ja) ポリ乳酸樹脂組成物、その製造方法およびそれからなる成形品
JP2004339454A (ja) 樹脂組成物およびそれからなる成形品
JP5398106B2 (ja) 樹脂組成物およびそれからなる成形品
JP4759918B2 (ja) 樹脂組成物およびそれからなる成形品
JP5087843B2 (ja) 樹脂組成物およびそれからなる成形品
JP2005154479A (ja) 樹脂組成物およびそれからなる成形品
JP5267307B2 (ja) 樹脂組成物の製造方法
JP2009155411A (ja) 樹脂組成物およびそれからなる成形品
JP2008133466A (ja) 樹脂組成物およびそれからなる成形品
JP5218685B2 (ja) 樹脂組成物およびそれからなる成形品
JP2013018995A (ja) 成形品およびその製造方法
JP2015010119A (ja) ポリ乳酸樹脂およびポリ乳酸樹脂組成物、それらの製造方法およびそれらからなる成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077029771

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11988414

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680025025.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712451

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020127024652

Country of ref document: KR