WO2007004369A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2007004369A1
WO2007004369A1 PCT/JP2006/310626 JP2006310626W WO2007004369A1 WO 2007004369 A1 WO2007004369 A1 WO 2007004369A1 JP 2006310626 W JP2006310626 W JP 2006310626W WO 2007004369 A1 WO2007004369 A1 WO 2007004369A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic tire
sipe
shoulder
tread
width direction
Prior art date
Application number
PCT/JP2006/310626
Other languages
English (en)
French (fr)
Inventor
Takashi Kukimoto
Kazuki Sakuraba
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2007004369A1 publication Critical patent/WO2007004369A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • B60C11/047Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section the groove bottom comprising stone trapping protection elements, e.g. ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/124Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern inclined with regard to a plane normal to the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire having a block pattern on a tread, and more particularly, to heel and toe wear on a shoulder block while maintaining good drainage and traction performance until the end of wear.
  • the present invention relates to a pneumatic tire capable of suppressing the Background art
  • the block pattern includes a plurality of blocks (land portions) defined by a plurality of main grooves (rib grooves) extending in the circumferential direction of the tire and a plurality of sub grooves (lag grooves) extending across the main grooves. ing.
  • the block pattern has an all-weather property that exhibits good traction not only on dry roads but also on wet and snowy road surfaces, so the proportion applied to heavy load pneumatic tires is increasing.
  • a pneumatic tire has been proposed in which deformation of a block at the time of tire contact is suppressed to prevent occurrence of heel and toe wear (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-297917
  • the present invention has been made to solve these problems, and its object is to provide heel and block in a shoulder block while maintaining good drainage and traction performance until the end of wear in a pneumatic tire. It is to suppress the occurrence of toe wear.
  • the invention of claim 1 is a plurality of main grooves extending in the circumferential direction of the tire, and a plurality of main grooves arranged in the circumferential direction of the tire between the outermost main grooves on both sides in the tire width direction and the tread end.
  • An outer lug groove extending to a heel position not reaching the outermost main groove, and a position connecting the outer lug groove with a position not opposed to the tread center side edge of the outer lug groove in the outermost main groove It is characterized by being divided by 1 sipes.
  • the pneumatic tire according to claim 2 is the pneumatic tire according to claim 1, wherein the first sipe does not reach the tread end from the position in the outermost main groove toward the tread end. It is characterized in that it comprises an extending shoulder width direction inner sipe and a shoulder circumferential direction sipe connecting the shoulder width direction inner side sipe and the outer lug groove.
  • the invention of claim 3 is characterized in that, in the pneumatic tire according to claim 1, the width of the block is 12 to 35% of the width of the tread.
  • the invention according to claim 4 is characterized in that in the pneumatic tire according to claim 1, the width of the outer lug groove is 12 to 30% of the arrangement pitch of the blocks in the tire circumferential direction.
  • the invention according to claim 5 is characterized in that in the pneumatic tire according to claim 1, the length of the outer lug groove is 20 to 80% of the width of the block.
  • the invention according to claim 6 relates to the pneumatic tire according to claim 2, wherein the shoulder width direction is The length of the medial-side sipe is 20 to 80% of the width of the block.
  • the invention according to claim 7 is characterized in that in the pneumatic tire according to claim 2, the length of the shoulder circumferential direction sipe is 20 to 60% of the arrangement pitch of the blocks in the tire circumferential direction.
  • the invention according to claim 8 is characterized in that, in the pneumatic tire according to claim 2, the widths of the shoulder widthwise inner sipes and the shoulder circumferential sipes are 0.5 to 3.0 mm.
  • the invention according to claim 9 is the pneumatic tire according to any one of claims 1 to 8, wherein the outer lug groove is inclined or stepped from the center side in the tire width direction toward the tread end side. It is characterized by becoming deep.
  • the invention according to claim 10 is characterized in that in the pneumatic tire according to claim 9, the shallowest part of the outer lug groove and the deepest part are 20 to 60% of the depth of the part.
  • the pneumatic tire according to an eleventh aspect of the present invention is the pneumatic tire according to the ninth aspect, wherein the tire extends in the tire width direction and the circumferential direction at a portion where the depth in the outer lug groove is relatively shallow, and the first tire It is characterized by having a second sipe connected.
  • the invention according to claim 12 is characterized in that in the pneumatic tire according to any one of claims 1 to 10, the first sipe has one or more inclined portions in the depth direction.
  • the invention according to claim 13 is the pneumatic tire according to claim 12, wherein at least one inclined portion of the first sipe is provided with a pair of protrusions which are opposed so as to face each other with opposing wall forces sandwiching the inclined portion. It is characterized by having.
  • the invention according to claim 14 is characterized in that, in the pneumatic tire according to claim 13, the sum of the protrusion amounts of the pair of protrusions corresponds to the first sipe width.
  • the invention according to claim 15 is characterized in that, in the pneumatic tire according to claim 13 or 14, the number of pairs of projections is at least four.
  • the invention according to claim 16 is the pneumatic tire according to any one of claims 13 to 15, wherein the sum of the cross-sectional areas of the protrusions is the total area of the wall surfaces facing each other across the inclined portion of the first sipe. It is characterized by 1.5 to 50%.
  • the invention according to claim 17 is the pneumatic tire according to any one of claims 13 to 16.
  • the inclined surface of the first sipe has at least one protrusion pair.
  • the invention according to claim 18 is characterized in that, in the pneumatic tire according to any one of claims 13 to 17, the shape of the cross section of the projection is a circle, a cross or a polygon.
  • the tire circumferential end of each block constituting the shoulder block row is divided by the outer lugs on the tread end side and the tread center side is divided by the first sipe.
  • the end positions are different between the tread end side and the tread center side.
  • the first sipe forms the boundary between blocks adjacent in the tire circumferential direction, and the pressing force acting between the adjacent blocks sandwiching the sipe at the time of tire grounding complements the rigidity of the block, and the block Suppress the deformation.
  • the block rigidity of the shoulder block is enhanced, and thus blocks adjacent to each other in the tire circumferential direction easily interfere with each other, thereby improving the partial abrasion resistance.
  • the portions contact with each other to interfere with each other, and the uneven wear resistance is improved.
  • the contact pressure of the wall surfaces opposed to each other across the inclined portion is increased, and the effect of suppressing the deformation by complementing the block rigidity is further enhanced. improves.
  • the blocks forming the shoulder block row are substantially S-shaped, and the adjacent blocks are opposed to each other with the sipe interposed therebetween, making the bottom upper part of the lug groove unnecessary and making the end of wear It is possible to suppress the occurrence of heel and toe wear on the shoulder block while maintaining good drainage performance and traction performance.
  • FIG. 1 is a developed plan view of a tread pattern of a pneumatic tire according to a first embodiment of the present invention.
  • FIG. 2 is a view for explaining the operation of a shoulder circumferential direction sipe in the first embodiment of the present invention.
  • FIG. 3 is a view for explaining the operation of shifting the phases in the tire circumferential direction of the outer lug groove and the shoulder width direction inner sipe in the first embodiment of the present invention.
  • FIG. 4 is an enlarged view of a shoulder block according to the first embodiment of the present invention.
  • FIG. 5 is a developed plan view of a tread pattern of a pneumatic tire according to a second embodiment of the present invention.
  • Fig. 6 is a cross-sectional view of the outer lug groove and the periphery thereof in Fig. 5 as well as the tire circumferential force.
  • FIG. 7 is a developed plan view of a tread pattern of a pneumatic tire according to a third embodiment of the present invention.
  • FIG. 8 A diagram showing the configuration of an inner three-dimensional sipe in the shoulder width direction of FIG.
  • FIG. 9 is a view showing a configuration of an inner three-dimensional sipe in a shoulder width direction in a tread of a pneumatic tire according to a fourth embodiment of the present invention.
  • FIG. 10 is a view showing a configuration of an inner three-dimensional sipe in a shoulder width direction in a tread of a pneumatic tire according to a fifth embodiment of the present invention.
  • FIG. 11 is a view showing a configuration of an inner three-dimensional sipe in a shoulder width direction in a tread of a pneumatic tire according to a sixth embodiment of the present invention.
  • FIG. 12 is a view showing a configuration of an inner three-dimensional sipe in a shoulder width direction in a tread of a pneumatic tire according to a sixth embodiment of the present invention.
  • FIG. 13 is a view showing a configuration of a shoulder widthwise inner three-dimensional sipe in a tread of a pneumatic tire according to eighth and ninth embodiments of the present invention.
  • FIG. 14 is a view showing a tread pattern of a comparative example.
  • FIG. 1 is a developed plan view of a tread pattern of a pneumatic tire according to a first embodiment of the present invention.
  • the tread pattern 1 of this pneumatic tire has a pair of center main grooves 2 and both side main grooves 3 extending in the circumferential direction on both sides of the tire equator, and an inner lug groove connecting the center main groove 2 and both side main grooves 3.
  • branch grooves 5 alternately branched from the central main groove 2 in the tire width direction center side, that is, toward the opposing central main groove 2, and a connection groove 6 for connecting between adjacent branch grooves 5.
  • These grooves form a pair of center block rows 7 and second block rows 8 extending in the tire circumferential direction.
  • the tread pattern 1 is directed from the tread end toward the both-side main groove 3, that is, toward the center in the tire width direction, and does not reach the both-side main groove 3 !
  • the shoulder circumference connecting the tread end side of the shoulder width direction inner sipe 10 and the tire circumferential direction edge of the outer lug groove 9 extending beyond the tread and reaching the tread end and extending to the position It has a directional sipe 11.
  • the shoulder width direction inner sipe 10 and the shoulder circumferential direction sipe 11 correspond to the first sipe in the present invention.
  • a pair of shoulder block rows 12 extending in the tire circumferential direction is formed.
  • the shoulder block row 12 is a force formed on both sides of the tire equator. The same applies to each embodiment described later).
  • the outer ends of the shoulder blocks 13 constituting the shoulder block row 12 in the tire width direction coincide with the tread ends, and the inner ends of the shoulder blocks 13 in the tire width direction coincide with the outer ends of the main grooves 3 on both sides. Further, with respect to the end in the tire circumferential direction of the shoulder block 13, the position (phase) in the circumferential direction is different between the tread end side and the tread center side. That is, the tread end side is defined by the circumferential edge of the outer lug groove 9 in the tire circumferential direction, and the tread center side is defined by the shoulder width direction inner sipe 10.
  • the shoulder circumferential sipe 11 constitutes the boundary in the tire width direction of the shoulder blocks 13 adjacent to each other in the tire circumferential direction
  • the shoulder widthwise inner sipe 10 constitutes the boundary in the tire circumferential direction.
  • the shoulder width direction inner sipe 10 and the shoulder circumferential direction sipe 11 are both linear in a plan view, and they are connected in a broken line shape, but these sipes are formed into one smooth curved line It may be configured. Also, straight lines and curves may be mixed.
  • FIG. 2 is a view for explaining the action of the shoulder width direction inner sipe 10
  • FIG. 3 is because the phases in the tire circumferential direction of the outer lug groove 9 and the shoulder width direction inner sipe 10 are different. It is a figure for demonstrating an effect
  • FIG. 2A shows the tread pattern of FIG. 1.
  • two shoulder blocks adjacent in the tire circumferential direction are illustrated as shoulder blocks 13-1 and 13-2 for the sake of convenience.
  • FIG. 2B is a view of a portion encircled in FIG. 2A as viewed from a line parallel to the position force of the both-side main groove 3 and the shoulder width direction inner side 10.
  • FIG. 2C is a schematic view of shoulder block local deformation with and without the shoulder width direction inner groove 10.
  • the tire rolls freely as shown by the arrow a in FIG. 2B.
  • the shoulder block 13-2 on the front side in the rotational direction contacts the road surface e.
  • the shoulder block 13-2 When the shoulder block 13-2 receives a frictional force as shown by the arrow b from the road surface e In the shoulder width direction inner sipe 10, press it in contact with the shoulder block 13-1. At this time, the shoulder block 13-2 is an anti-stick shown in the arrow c as a reaction when pressing the shoulder block 13-1 from the contact surface with the shoulder block 13-1.
  • the quadrilateral h in this figure is the shoulder
  • the local deformation of the shoulder block is a large quadrilateral of falling down as shown by a broken line in FIG. Collapse is reduced and deformation is suppressed.
  • the shoulder circumferential direction sipe 11 similarly suppresses the deformation of the shoulder block 13-1 in the tire width direction. That is, deformation of the shoulder block during contact with the road surface e is made by the sipes in the width direction and the circumferential direction of the tire which form the boundary between adjacent shoulder blocks.
  • the road surface e force is also suppressed by the shoulder block that is disengaging.
  • FIG. 3A shows two shoulder blocks adjacent in the tire circumferential direction as shoulder blocks 13-1 and 13-2, and the shoulder block 13-1 has tread edge portions 13- It is divided into la, tread central side 13-lb, and connecting part 13-lc.
  • 3B and 3D show the shoulder block 13-1 viewed from the tread surface at different timings
  • FIGS. 3C and 3E show the shoulders from the position of the both-side main groove 3 in the timing of FIGS. 3B and 3D, respectively. It is the figure which looked at block 13-1.
  • FIG. 3F is a schematic view showing the local deformation of the shoulder block according to the present embodiment and the shoulder block of a normal rectangular shape.
  • the dashed line indicates the boundary between the tread end side 13-1a, the tread central side 13-lb, and the connecting portion 13-lc (the connecting portion 13-lc is omitted in B and D).
  • the connecting portion 13-lc is omitted in B and D.
  • the friction force shown by arrow f acts on 3-la, and the tread end side 13-la is the tire circumference
  • a shear force acts on the joint 13-lc to suppress deformation of the tread end side 13-la.
  • the quadrilateral h in this figure is a schematic representation of the local deformation of the shoulder block. Normal rectangle
  • the local deformation is a large quadrilateral of falling down as shown by a broken line in FIG. 3F, whereas in this embodiment, the falling down is reduced as shown by a solid line in the same drawing, and the deformation is suppressed. ing.
  • a ground portion d2 is present from the tip end side of the tread end side 13-la of the shoulder block 13-1 in the rotational direction to the tip end side of the tread center side 13-lb.
  • a ground portion d2 is present from the tip end side of the tread end side 13-la of the shoulder block 13-1 in the rotational direction to the tip end side of the tread center side 13-lb.
  • Frictional force acts. Also, since the tread end side 13-la is in contact with the road surface, the friction with the road surface causes a tensile force opposite to the frictional force f as shown by the arrow g. Because of this,
  • a shear force is applied to the part 13-lc to suppress deformation of the tread center end 13-lb.
  • the quadrilateral h in E in this figure is a schematic representation of the local deformation of the shoulder block. Normal rectangle
  • the local deformation is a large quadrilateral of falling down as shown by a broken line in FIG. 3F, whereas in this embodiment, the falling down is reduced as shown by a solid line in the same drawing, and the deformation is suppressed. ing.
  • the timing at which the shoulder block 13-1 depresses the road surface and the timing at which the shoulder block 13-1 kicks are the tread end side 13-la and the tread center side 13
  • the tread end side 13 -la that is kicking out and the tread center side 13-1b that has already disengaged constrain the movement of each other
  • the shoulder block 13-1 is formed by restraining the movement of the tread end side 13-la remaining on the road surface and the tread central side 1 3-lb during kicking, mutually constraining each other.
  • the shoulder block 13 has a substantially S-shape, a crank shape, or a similar shape by shifting the phase in the tire circumferential direction of the outer lug groove 9 and the shoulder width direction inner sipe 10, By suppressing the deformation of the shoulder block 13).
  • the width W of the shoulder block 13 is set to 12 to 35% of the width W of the tread (see FIG. 1).
  • the width of the shoulder block 13 is too narrow, and the entire shoulder block 13 may be worn before the S-shaped block deformation suppressing effect is exerted, which may lead to shoulder wear, exceeding 35% And the shoulder block 13 becomes too large and the effect of S character decreases, and it will exhibit the wear form (heel and toe wear) similar to the rectangular block.
  • the width W of the outer lug groove 9 is 12 mm of the arrangement pitch L0 of the shoulder block 13 in the tire circumferential direction.
  • the length of the outer lug groove 9 (dimension in the tread width direction) L is the width W of the shoulder block 20
  • each of the dove central parts have a certain width and balancing the two, the narrower one can be worn first and the possibility of partial wear can be eliminated.
  • the circumferential circumferential length L of the shoulder circumferential sipe 11 is the tire of the shoulder block 13
  • sipes are intended to complement the block rigidity by the pressure between the shoulder blocks, a narrow width is desirable for achieving the purpose, but if it is less than 0.5 mm, a molding for forming the sipes The durability of the blade is low and impractical. In addition, if it exceeds 3.0 mm, the inner surfaces of the sipes do not easily come in contact with each other.
  • FIG. 5 is a developed plan view of a tread pattern of a pneumatic tire according to a second embodiment of the present invention.
  • the same or corresponding components as in the first embodiment shown in FIG. 1 are denoted by the same reference numerals as those components in FIG.
  • the circumferential sipes in the outer lug grooves 9 of the tread pattern according to the first embodiment 14 and widthwise sipes (hereinafter referred to as outer lug groove widthwise sipes) 15 are provided.
  • the outer lug groove inner circumferential sipes 14 and the outer lug groove inner width sipes 15 correspond to the second sipes in the present invention.
  • the outer lug groove inner circumferential sipe 14 is the tip of the shoulder circumferential sipe 11, that is, the tire circumferential edge of the outer lug groove 9 from the tire circumferential edge of the outer lug groove 9 in the width direction (tire circumferential direction).
  • the outer lug groove widthwise sipe 15 extends in the direction from the tip of the outer lug groove inner circumferential sipe 14 to the tread end beyond the central portion in the longitudinal direction (tire width direction) of the outer lug groove 9. It extends linearly in plan view. Therefore, the shoulder width direction inner sipe 10, the shoulder circumferential direction sipe 11 and the outer lug groove inner circumferential sipe 14 and the outer lug groove inner width direction sipe 15 form three broken lines in plan view.
  • FIG. 6 is a cross-sectional view of the portion encircled in FIG. 5, that is, the outer lug groove 9 and the periphery thereof as viewed from the tire circumferential direction.
  • FIGS. 6A and 6B are two structural examples of the outer lug groove 9 and the rib formed on the inner side thereof.
  • the bottom surface of the outer lug groove 9 is stepped toward the tread end side from the center side (right side in the figure) in the tire width direction and becomes deeper stepwise.
  • the bottom surface of the outer lug groove 9 is inclined and deep from the center side in the tire width direction toward the tread end side.
  • the depth does not change in the tire circumferential direction in any of the configurations shown in FIGS. 6A and 6B.
  • the depth in the tire width direction is preferably set to 20% or more and 60% or less (more preferably 20% or more and 40% or less) of the depth of the deepest portion of the deepest portion. If it is less than 20%, the shallow part is too shallow and the treatment performance on the wet road surface is reduced. If it exceeds 60%, the effect of complementing the uneven wear resistance is insufficient. It will be a minute.
  • the depth of the shallowest part is the bottom surface of the outer lug groove 9 at the center end P in the width direction of the shallow step of the bottom of the outer lug groove 9 and the tread surface (here Shoulder
  • the depth of the shallowest part is the bottom of the outer lug groove 9 at the end P on the center side in the tire width direction of the inclined surface of the bottom of the outer lug groove 9.
  • the depth of the deepest part is the difference between the tread surface and the bottom of the outer lug groove 9 at the tread end side end P of the region where the slope in the tire width direction of the tread surface is constant (point P in the figure P
  • the inclination of the outer lug groove 9 is set so as to be less than%.
  • both the outer lug groove inner circumferential sipe 14 and the outer lug groove inner width direction sipe 15 are formed in shallower steps. Further, in FIG. 6B, the outer lug groove inner circumferential sipe 14 is formed in the vicinity of the most shallow portion of the slope, and the outer lug groove inner width direction sipe 15 is formed over the deep portion . That is, in both FIGS. 6A and 6B, the outer lug groove inner circumferential sipe 14 is formed in the shallow portion of the outer lug groove 9, and the outer lug groove inner width sipe 15 is at least shallow in the outer lug groove 9. It is formed.
  • the block rigidity of the shoulder block 13 is increased by providing the shallow portion in the outer lug groove 9, the blocks adjacent in the tire circumferential direction are likely to interfere with each other. As a result, the uneven wear resistance is improved.
  • the outer lug grooves inner circumferential sipes 14 and outer lug grooves inner width sipes 15 formed in the outer lug grooves 9 act in the same manner as the shoulder circumferential sipes 11 and shoulder width direction inner sipes 10 respectively. Therefore, when the portions facing each other across the sipes come into contact with each other, they interfere with each other, and the uneven wear resistance is improved.
  • the outer lug groove inner circumferential sipes 14 and the outer lug groove inner sipes 15 remain. Therefore, it is possible to secure the wet treatment performance by the edge effect.
  • the outer lug groove inner circumferential sipe 14 and the outer lug groove inner width direction sipe 15 are arranged to form two broken lines, but two sipes are arranged. It may be configured in a smooth single curve. Also, the four sipes in the shoulder width direction inner sipe 10 to the outer lug groove inner width direction sipe 15 may be configured in a smooth curved line. Furthermore, the number of steps in FIG. 6A may be three or more, or the steps in FIG. 6A may be mixed or combined with the inclined surfaces in FIG. 6B. In addition, the outer lug groove (the second embodiment) in which the sipes are formed inside may be mixed with the! /! Outer lug groove (the first embodiment).
  • FIG. 7 is a developed plan view of a tread pattern of a pneumatic tire according to a third embodiment of the present invention.
  • the same components as in the first embodiment shown in FIG. 1 are given the same reference numerals as those components in FIG.
  • the inner side in the shoulder width direction 3 A dimensional sipe 16 and a shoulder circumferential direction three-dimensional sipe 17 are provided.
  • the shape of the shoulder width direction inner three-dimensional sipe 16 and the shoulder circumferential direction three-dimensional sipe 17 viewed from the direction perpendicular to the tread surface is respectively the shoulder width direction inner sipe 10 and the shoulder circumferential direction sipe 11
  • the same force as that of the three-dimensional sipe whose shape changes in the depth direction improves the function of suppressing the fall of the sipe.
  • the pattern of change in the depth direction of the shoulder width direction inner three-dimensional sipe 16 and the shoulder circumferential direction three-dimensional sipe 17 may be the same or different, but in the present embodiment the same pattern is used.
  • the 16 shapes will be described.
  • FIG. 8 is a view showing the configuration of the inner three-dimensional sipe 16 in the shoulder width direction.
  • FIG. 8A is a cross-sectional view taken along the line X-X in FIG. 7, and
  • FIG. 8B is a wall surface of the block 13 facing each other across the inclined portion 18 of the sipe 16 in FIG.
  • Figure 8C shows the dimensions of the projection in Figure 8 when the direction force perpendicular to the part 18 facing the part 18) is seen. It is a figure for demonstrating.
  • the shoulder width direction inner three-dimensional sipe 16 has a first vertical portion 17 vertically extending from the surface of the shoulder block 13 to the inside thereof (downward in the figure), and a first vertical portion 17
  • the tip portion of the shoulder block 13 has a slope 18 extending obliquely downward, and the tip portion of the slope 18 has a second vertical portion 19 extending perpendicularly into the shoulder block 13.
  • the amount of protrusion of the protrusion 22 is the maximum length in the direction perpendicular to the wall surface 20 of the protrusion 22
  • the amount of protrusion of the protrusion 23 is the maximum length in the direction perpendicular to the wall surface 21 of the protrusion 23.
  • the phases in the tire circumferential direction of the outer lug groove 9 and the shoulder width direction inner three-dimensional sipe 16 are shifted.
  • the shoulder block 13 into an S-shaped block, deformation of the shoulder block 13 can be suppressed.
  • the shoulder width direction inner three-dimensional sipe 16 and the shoulder circumferential direction three-dimensional sipe 17 act in the same manner as the shoulder width direction inner sipe 10 and the shoulder circumferential direction sipe 11, the parts facing each other across these sipes By contacting with each other, they interfere with each other and complement the block rigidity to improve the uneven wear resistance.
  • the shoulder width direction inner three-dimensional sipe 16 and the shoulder circumferential direction three-dimensional sipe 17 have the pair of opposed protrusions, the contact pressure is increased, and the effect of complementing the block rigidity is further improved.
  • the gap between the sipes is maintained without contacting other parts of the pair, so the gaps in the sipes are crushed and the drainage path is blocked, and drainage performance is lowered. Can be prevented.
  • shoulder width direction inner three-dimensional sipe 16 and shoulder circumferential direction three-dimensional sipe 17 each width, shoulder width direction inner three-dimensional sipe 16 shoulder width of tire width direction Width of lock 13 Ratio to W, length in circumferential direction of shoulder circumferential direction 3-dimensional sipe 17 in circumferential direction of tire
  • the two-dimensional specifications of the original sipes are the same as the corresponding specifications of the shoulder widthwise inner sipe 10 and the shoulder circumferential sipe 11 in the first embodiment.
  • the number of projection pairs (22, 23) is not particularly limited, but in order to increase the block rigidity, it is preferable to use four or more.
  • the sum of the cross sectional areas of the projections 22 and 23 is the sum of the areas of the inclined portions 18, that is, 1.5 to 50% of the sum of the areas of the walls 20 and 21 when the projections 22 and 23 are removed from the walls 20 and 21. It is more preferable to make it 10% or more which is preferable. If the ratio is less than 1.5%, the opposing blocks sandwiching the sipes have almost no effect of supporting each other, the blocks fall down and the drainage channel is blocked, resulting in poor drainage performance. If it exceeds 50%, it will be difficult to pull out the vulcanized tire from the mold, which will lower productivity.
  • the diameter of the projections 22 and 23 is preferably 0.5 to 2.0 mm.
  • the cross-sectional shape (same as seen from the direction perpendicular to the tread surface) of the projections 22 and 23 is a cruciform, but the cross-sectional shape of the projections is circular, polygonal, etc.
  • the shape may be a closed loop formed by the connection of The diameter of those shapes is the diameter of the circumscribed circle of the closed loop. If the diameter is smaller than 0.5 mm, the protrusion is crushed by the pressing of the pair of protrusions, and the drainage channel is blocked, resulting in poor drainage performance. If it is larger than 2.0 mm, after vulcanization, when it is removed from the mold, burrs and chips are likely to occur.
  • the shape of the shoulder width direction inner three-dimensional sipe 16 and the shoulder circumferential three-dimensional sipe 17 viewed in a direction perpendicular to the tread surface is a straight line. Although they are connected in a broken line, as described in the first embodiment, these three-dimensional sipes may be configured in a smooth single curved line. Also, straight lines and curves may be mixed. In addition, it may be in a zigzag shape (zigzag sipes) as in the ninth embodiment (FIG. 13B) described later. In this case, it is preferable to set the amplitude of the zigzag to 2 to 5 mm, and the angle formed by the adjacent line segments of the zigzag to 90 to 130 degrees.
  • the width of the zigzag sipe is preferably 0.5 to 1.0 mm, and the depth is preferably 50 to 100% of the main groove. Furthermore, Make it a waveform as in the sixth embodiment ( Figure 11)!
  • FIG. 9 is a view showing a configuration (corresponding to FIG. 8 of the third embodiment) of a shoulder width direction inner three-dimensional sipe in a tread of a pneumatic tire according to a fourth embodiment of the present invention.
  • the plan development view of the tread pattern is the same as that of the third embodiment (FIG. 7).
  • the shoulder width direction inner three-dimensional sipe 31 has a first vertical portion 32 extending vertically (downward in the drawing) from the surface of the shoulder block 13 to a tip force of the first vertical portion 32.
  • the first inclined portion 33 extending diagonally downward, the tip end force of the first inclined portion 33, the second vertical portion 34 extending vertically into the shoulder block 13, and the tip force shoulder of the second vertical portion 34
  • a third vertical portion 36 vertically extending into the tip end shoulder block 13 of the second inclined portion 35.
  • the inclination directions of the first inclined portion 33 and the second inclined portion 35 are opposite to each other.
  • Opposing projections 37 and 38 are formed on the wall surfaces of the block 13 facing each other across the first inclined portion 33, and the wall surfaces of the block 13 facing each other across the second inclined portion 35 are opposed to each other.
  • An outbreak 39 and 40 is formed.
  • the shape of these projections 37 to 40 when viewed in a direction perpendicular to the wall surface is a cruciform.
  • the sum of the height of the protrusion 37 and the height of the protrusion 38 and the sum of the height of the protrusion 39 and the height of the protrusion 40 are both in the shoulder width direction inner three-dimensional sipe 31. It corresponds to the width.
  • the number of the inclined portions is increased by one and the two inclined portions are provided in the shoulder one width direction inner three-dimensional sipe 16 shown in FIG. It can be said that a vertical part was provided between
  • the internal structure of the shoulder width direction inner three-dimensional sipe 31 has been described above, but the shoulder circumferential direction three-dimensional sipe (not shown) is configured in the same manner. Further, the specifications of these three-dimensional sipes are the same as the specifications of the three-dimensional sipes in the third embodiment.
  • the number of inclined portions is two, and the number of inclined portions may be three or more.
  • FIG. 10 is a view showing a configuration (corresponding to FIG. 8 of the third embodiment) of a shoulder one width direction inner side three-dimensional sipe in a tread of a pneumatic tire according to a fifth embodiment of the present invention.
  • the developed top view of the tread pattern in this embodiment is the same as that of the third embodiment.
  • the shoulder width direction inner three-dimensional sipe 41 extends obliquely downward in the shoulder block 13 from the first inclined portion 42 extending obliquely downward from the surface of the shoulder block 13 and the tip force of the first inclined portion 42. It comprises a second inclined portion 43 and a third inclined portion 44 which extends diagonally downward in the shoulder block 13 of the tip force of the second inclined portion 43.
  • the inclination direction of the second inclined portion 43 is opposite to the inclination direction of the first inclined portion 42
  • the inclination direction of the third inclined portion 44 is the same as the inclination direction of the first inclined portion 42. That is, the slopes of the first to third sloped portions 42 to 44 change in a zigzag manner.
  • Opposing projections 45 and 46 are formed on the wall surfaces of the block 13 facing each other across the first inclined portion 42, and the wall surfaces of the block 13 facing each other across the second inclined portion 43 are opposed to each other.
  • Protrusions 47 and 48 are formed, and opposing protrusions 49 and 50 are formed on the wall surface of the block 13 opposite to each other with the third inclined portion 44 interposed therebetween.
  • the shape of these projections 45 to 50 viewed in the direction perpendicular to the wall surface is cruciform.
  • the sum of the heights of the pair of opposing protrusions corresponds to the width of the three-dimensional sipe 41 in the shoulder width direction.
  • the force shoulder circumferential direction three-dimensional sipe (not shown) described above for the internal structure of the shoulder width direction inner three-dimensional sipe 41 is configured in the same manner.
  • the specifications of these three-dimensional sipes are the same as the specifications of the three-dimensional sipes in the third embodiment.
  • FIG. 11 is a view of a shoulder width direction inner three-dimensional sipe 51 and a shoulder circumferential three-dimensional sipe 52 according to a sixth embodiment of the present invention as viewed from a direction perpendicular to the tread surface.
  • the plan development view of the tread pattern in the present embodiment is the same as the third embodiment except for these three-dimensional sipes.
  • the shapes on the tread surface side of the shoulder width direction inner three-dimensional sipe 51 and the shoulder circumferential direction three-dimensional sipe 52 are both corrugated.
  • the amplitude of this wave and the angular difference in the direction of travel before and after the position of the maximum amplitude of the wave are the same as the amplitude of the zig-zag mentioned in the third embodiment and the angle between the line segments.
  • the internal shape of these three-dimensional sipes has the same configuration as any one of the three-dimensional sipes of the third to fifth embodiments. There is.
  • FIG. 12 is a view showing a configuration (corresponding to FIG. 8 of the third embodiment) of a shoulder widthwise inner three-dimensional sipe 61 in the tread of the pneumatic tire according to the seventh embodiment of the present invention.
  • the developed top view of the tread pattern in this embodiment is the same as that of the third embodiment.
  • the depressions are continuously and alternately formed, and the ridges and depressions are provided with a concavo-convex row having a shape in which the ridges and the depressions are arranged with a half period shift in the depth direction of the chip 61.
  • the ridges of the second row of concavo-convex rows 63 are arranged below the depressions of the top row of concavo-convex rows 62.
  • protrusions 66 having a cross shape in cross section are provided on the surfaces of the bumps and depressions in the sipe 61 .
  • the projections formed on the surfaces of the opposing ridges and depressions formed on the wall surfaces of the opposing block 13 sandwiching the sipe 61 are arranged to face each other. In this figure, the same is true for the second and subsequent stages where the opposing projections 66 and 68 are illustrated in the uppermost concavo-convex rows 62 and 64.
  • FIG. 13A is a view showing a configuration (corresponding to FIG. 8 of the third embodiment) of a shoulder widthwise inner three-dimensional sipe 71 in a tread of a pneumatic tire according to an eighth embodiment of the present invention.
  • the shape on the tread surface side of the tread pattern is the same as that of the third embodiment.
  • a plurality of quadrangular frustum shapes are provided in the extending direction (substantially the tire width direction) and the depth direction of the tread surface of the sipe 71.
  • a convex portion row consisting of convex portions, and a concave portion row also having a plurality of concave portions having a shape obtained by inverting the convex portions Three-dimensional uneven patterns of alternately arranged shapes are provided.
  • reference numeral 72 denotes a row of convex portions arranged in the extending direction of the tread surface of the sipe 71
  • reference numeral 73 with a notch is an array of concave portions arranged in the same direction.
  • the convex portion and the concave portion are arranged with a half cycle shift in the extending direction of the tread surface of the sipe 71.
  • cruciform projections similar to those of the third to seventh embodiments are formed on the four slopes of the quadrangular frustum of the convex portion and the four slopes of the concave portion. (The illustration of the recess is omitted for convenience.) Furthermore, although not shown in the drawings, the relationship between the convex portion row 72 and the concave portion row 73 and the convex portion row and the concave portion row facing them is such that the convex portion, the inclined surface and the inclined surface of the concave portion are opposed. .
  • the force shoulder one circumferential direction three-dimensional sipe (not shown) described above for the internal structure of the shoulder width direction inner three-dimensional sipe 71 is configured in the same manner.
  • the specifications of these three-dimensional sipes are the same as the specifications of the three-dimensional sipes in the third embodiment.
  • FIG. 13B is a view showing a configuration (corresponding to FIG. 8 of the third embodiment) of a shoulder widthwise inner three-dimensional sipe 81 in the tread of the pneumatic tire according to the ninth embodiment of the present invention.
  • the developed top view of the tread pattern in this embodiment is the same as that of the third embodiment.
  • the shoulder width direction inner three-dimensional sipe 81 of the present embodiment is a zigzag sipe.
  • the extending direction of the tread surface of the sipe 81 (the eighth embodiment shown in FIG. 13A)
  • a row of convex portions having a plurality of quadrangular truncated pyramidal convex portions in the substantially tire width direction) and a depth direction and a row of concave portions having a plurality of concave force having a shape obtained by inverting the convex portions are alternately arranged.
  • a three-dimensional uneven pattern of shape is formed.
  • the individual convex portions constituting the convex portion row 82 and the individual concave portions constituting the concave portion row 83 are arranged so as to be shifted by a half cycle in the extending direction of the tread surface of the sipes 81.
  • a cruciform protrusion similar to that of the eighth embodiment is formed on the four inclined surfaces of the quadrangular frustum of the convex portion and the four inclined surfaces of the concave portion. Is not shown for convenience.
  • the relationship between the convex portion row 82 and the concave portion row 83 and the convex portion row and the concave portion row facing them is the arrangement of the convex portion, the inclined surface and the inclined surface of the concave portion facing each other.
  • the portion where the convex portion row and the concave portion row are formed is formed in a zigzag shape.
  • the internal structure of the shoulder widthwise inner three-dimensional sipe 81 in the shoulder width direction is configured similarly to the three-dimensional sipe (not shown) in the circumferential direction. Further, the specifications of these three-dimensional sipes are the same as the specifications of the three-dimensional sipes in the third embodiment.
  • the protrusion pairs are provided on all the wall surfaces facing each other across the inclined portion of the three-dimensional sipe, the protrusion pairs are provided on a part of the wall surfaces facing each other. May be provided. Further, in each of the above embodiments, the sum of the protrusion amounts of the pair of protrusions is equivalent to the width of the three-dimensional sipe. It may be smaller than the width of the dimensional sipe. Furthermore, a sloped surface having asperities in the tire circumferential direction and the width direction may be provided by providing a curved asperity array like a notch on the surface of the washing plate inside the three-dimensional sipe.
  • Example 1 in this table has the tread pattern shown in FIG. 1, and the tire of Example 2 has the tread pattern shown in FIG.
  • each of Examples 3 to 6 has the three-dimensional sipes shown in each of the third to ninth embodiments, and A to G are third, fourth, fifth, seventh, sixth, eighth, and ninth, respectively. It corresponds to the embodiment.
  • Example 3 has no projections, and Examples 4, 5 and 6 each have a circular, square, or X-shaped protrusion in cross-sectional shape.
  • the shoulder width direction inner sipe 10 and the shoulder circumferential direction sipe 11 of the second embodiment are three-dimensional sipes
  • the eighth embodiment is a three-dimensional sipe of the seventh embodiment provided with projections. is there.
  • Example 9 is the one in which sipes 14 and 15 of Example 8 are removed.
  • shoulder blocks 93 constituting the shoulder block row 92 are rectangular blocks.
  • the width W of the shoulder block 13 is 17 of the tread width W.
  • Outer lug groove 9 length L is shoulder block 13 width W 60% of shoulder width direction
  • Inner Sipe 10 Length L is 46% of the width W of the shoulder block 13, shoulder circumferential direction
  • 11 length L is 42% of the arrangement pitch L and width W in the shoulder width direction inner sipe 10
  • the width W of the shoulder circumferential sipe 11 is 0.7 mm.
  • the comparative example 1 is obtained by making the depth of the lug groove 24 shallower than that of the main groove 25, and the comparative example 2 has the lug groove 24.
  • the depth of the groove is equal to that of the main groove 25.
  • the depth of the outer lug groove 9 is equal to the depth of the both-side main groove 3, and is substantially constant in the tire width direction.
  • the depth of the bottom of the outer lug groove 9 is stepped as shown in FIG. 6A, and the depth of the shallowest part is 40% of the depth of the deepest part.
  • the depth of the deepest part and the depth of the outer lug groove 9 of the tire of Example 1 are the same and equal to the depths of the both-side main grooves 3.
  • the depth of the both-sides main groove 3 is equal to the depth of the main groove 25 of the comparative example 2.
  • On-site driving was performed for Examples 1 to 9 and Comparative Examples 1 and 2, and the amount of heel and toe was measured.
  • 80% of the test distance traveled on the expressway (average speed 80km / h) and 20% local (non-paved road) traveled (average speed 30km / hour).
  • the test conditions are as follows.
  • Vehicle 2D4 (Threee-axis force of steering shaft, drive shaft and floating shaft, and it is a vehicle type in which the steering shaft is at the front of the vehicle, the driving shaft at the rear is from the front, and the floating shaft is in order)
  • the heel and toe wear amount of the tire of Example 1 is about 1/2 of Comparative Example 1 at 20,000 km traveling and 1/6 of Comparative Example 2 at 40,000 km traveling. About 1/2 of Example 1 and 1/3 of Comparative Example 2 were confirmed to be significantly reduced.
  • the wear amount of heel and toe is 60% at 20,000 km traveling and about 77% at 40,000 km traveling, and is further reduced. It was confirmed. That is, even if the depth of the outer lug groove 9 is set as deep as in Comparative Example 2 according to Example 1, heel and toe wear significantly exceeds that of Comparative Example 1 in which the block groove is increased by making the lug groove 24 shallow. It has been demonstrated that it has a suppressive effect. In addition, it is demonstrated from Example 2 that providing the outer lug groove 9 with a shallow portion further improves the heel and toe wear suppression effect.
  • the comparative example is obtained at 20,000 km traveling regardless of the presence or absence of the protrusion and the shape of the protrusion.
  • the block rigidity was further improved by the three-dimensionalization because it was reduced further than 1.
  • a wet trajectory test was conducted to measure the performance degradation when the block pattern changed due to the wear of the shoulder block. This test is the acceleration when traveling at an engine speed of 2000 rpm on an iron plate road with a water film thickness of 2 mm, and the index is based on the average value of the measurement results for each tire as 100 for the acceleration of the new comparative example. Table 2 shows the
  • Table 3 shows the results of examination of the wear rates at disposal of 50 each of Examples 1 to 9 and Comparative Examples 1 and 2.
  • Comparative Example 1 was discarded at 65 to 85% abrasion and Comparative Example 2 at 45 to 75% abrasion, while Examples 1 to 9 were discarded at 75 to 100% (full abrasion). As a result, it was confirmed that the tires could be used effectively without wasting them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りタイヤにおいて摩耗末期まで排水性及びトラクション性能を良好に維持しつつショルダーブロックにおけるヒールアンドトウ摩耗の発生を抑制する。  ショルダーブロック列(12)を構成するショルダーブロック(13)は、両側主溝(3)と、トレッド端と、外側ラグ溝(9)と、ショルダー幅方向内側サイプ(10)と、ショルダー幅方向内側サイプ(10)と外側ラグ溝(9)とを連結するショルダー周方向サイプ(11)とにより区画される。これらのサイプにより、タイヤ周方向に隣り合うショルダーブロック(13)同士が剛性を補完し合うことで変形を抑制し、耐偏摩耗性を高める。また、ショルダーブロック(13)が路面を踏み込むタイミングと蹴り出すタイミングとがトレッド端側部とトレッド中央側部とでずれており、それらが互いの動きを拘束し合うことで、ショルダーブロックの変形を抑制する。

Description

明 細 書
空気入りタイヤ
技術分野
[0001] 本発明は、トレッドにブロックパターンを備えた空気入りタイヤに関し、詳細には、摩 耗末期まで良好な排水性及びトラクシヨン性能を維持しつつショルダーブロックにお けるヒールアンドトウ摩耗 (偏摩耗)の抑制を可能にした空気入りタイヤに関する。 背景技術
[0002] 近年、タイヤのトレッドに形成するトレッドパターンとして、ブロックパターンが多用さ れている。ブロックパターンは、タイヤ周方向に延びる複数本の主溝 (リブ溝)と、この 主溝に交差して延びる多数の副溝 (ラグ溝)とによって区画される多数のブロック(陸 部)を備えている。ブロックパターンは乾燥路は勿論のこと、ウエット路面や氷雪路面 でも良好なトラクシヨンを発揮する全天候性を有するため、重荷重用空気入りタイヤに 適用される割合が増加しつつある。
[0003] しかし、重荷重用空気入りタイヤに使用される場合のトレッドのブロックパターンは 溝が深ぐしかも高荷重下で使用されるため、個々のブロックが変形し易くなつている 。このため、タイヤ接地時のブロックの変形 (倒れ込み)が大きくなることで、特にショ ルダーブロックにおいてタイヤ周方向の前後で蹴り出し側ほど多く摩耗するヒールァ ンドトウ摩耗が発生し易い。ヒールアンドトウ摩耗は、タイヤ転動時にブロックが路面か ら離脱しょうとする際、ブロック蹴り出し部に路面力 の制動力とブロックのクラッシン グ変形による剪断力との合力が作用して滑りが生じ、早期に摩耗が進展し、各ブロッ クが鋸刃状に摩耗する現象である。
[0004] そこで、タイヤ周方向に並ぶショルダーブロック列のブロックの間の副溝に底上げ 部を形成して副溝を主溝よりも浅くすることにより、ブロックのタイヤ周方向の曲げ剛 性を高め、タイヤ接地時のブロックの変形を抑制してヒールアンドトウ摩耗の発生を防 止するようにした空気入りタイヤが提案されて 、る(特許文献 1)。
特許文献 1:特開平 6-297917号公報
発明の開示 発明が解決しょうとする課題
[0005] し力しながら、ショルダーブロックの変形を十分に抑えられる程度にタイヤ周方向の 曲げ剛性を高めるには、ラグ溝の大部分にわたって底上げ部を形成する必要があり 、その結果、摩耗中期以降における排水性やトラクシヨン性能の低下が避けられなか つた o
[0006] 本発明はこのような問題を解決するためになされたもので、その目的は、空気入りタ ィャにおいて摩耗末期まで排水性及びトラクシヨン性能を良好に維持しつつショルダ 一ブロックにおけるヒールアンドトウ摩耗の発生を抑制することである。
課題を解決するための手段
[0007] 請求項 1の発明は、タイヤ周方向に延びる複数本の主溝と、タイヤ幅方向の両側の 各々の最も外側の主溝とトレッド端との間のタイヤ周方向に配列された複数のブロッ タカ なるショルダーブロック列とをトレッドに備えた空気入りタイヤであって、前記ブ ロックは、前記最も外側の主溝と、トレッド端と、前記トレッド端からタイヤ幅方向中央 に向力つて前記最も外側の主溝に到達しな ヽ位置まで延びる外側ラグ溝と、前記最 も外側の主溝における前記外側ラグ溝のトレッド中央側縁と対向しない位置と前記外 側ラグ溝とを連結する第 1のサイプとにより区画されることを特徴とする。
請求項 2の発明は、請求項 1記載の空気入りタイヤにおいて、前記第 1のサイプは、 前記最も外側の主溝における前記位置から前記トレッド端に向かって前記トレッド端 に到達しな 、位置まで延びるショルダー幅方向内側サイプと、該ショルダー幅方向内 側サイプと前記外側ラグ溝とを連結するショルダー周方向サイプとからなることを特徴 とする。
請求項 3の発明は、請求項 1記載の空気入りタイヤにおいて、前記ブロックの幅は 前記トレッドの幅の 12乃至 35%であることを特徴とする。
請求項 4の発明は、請求項 1記載の空気入りタイヤにおいて、前記外側ラグ溝の幅 は前記ブロックのタイヤ周方向の配列ピッチの 12乃至 30%であることを特徴とする。 請求項 5の発明は、請求項 1記載の空気入りタイヤにおいて、前記外側ラグ溝の長 さは前記ブロックの幅の 20乃至 80%であることを特徴とする。
請求項 6の発明は、請求項 2記載の空気入りタイヤにおいて、前記ショルダー幅方 向内側サイプの長さは前記ブロックの幅の 20乃至 80%であることを特徴とする。 請求項 7の発明は、請求項 2記載の空気入りタイヤにおいて、前記ショルダー周方 向サイプの長さは前記ブロックのタイヤ周方向の配列ピッチの 20乃至 60%であること を特徴とする。
請求項 8の発明は、請求項 2記載の空気入りタイヤにおいて、前記ショルダー幅方 向内側サイプ及び前記ショルダー周方向サイプの幅は 0.5乃至 3.0mmであることを特 徴とする。
請求項 9の発明は、請求項 1乃至 8の何れかに記載の空気入りタイヤにおいて、前 記外側ラグ溝は、タイヤ幅方向中央側からトレッド端側に向カゝつて傾斜状又は階段状 に深くなることを特徴とする。
請求項 10の発明は、請求項 9記載の空気入りタイヤにおいて、前記外側ラグ溝の 最も浅 、部位の深さが最も深 、部位の深さの 20乃至 60%であることを特徴とする。 請求項 11の発明は、請求項 9記載の空気入りタイヤにおいて、前記外側ラグ溝内 の深さが相対的に浅い部位に、タイヤ幅方向及び周方向に延び、かつ前記第 1のサ イブに接続された第 2のサイプを有することを特徴とする。
請求項 12の発明は、請求項 1乃至 10の何れかに記載の空気入りタイヤにおいて、 前記第 1のサイプは深さ方向に 1つ以上の傾斜部を有することを特徴とする。
請求項 13の発明は、請求項 12記載の空気入りタイヤにおいて、前記第 1のサイプ の少なくとも 1つの傾斜部に、該傾斜部を挟んで対向する壁面力 対向するように突 出する突起対を有することを特徴とする。
請求項 14の発明は、請求項 13記載の空気入りタイヤにおいて、前記突起対の一 対の突出量の和が前記第 1のサイプ幅に相当することを特徴とする。
請求項 15の発明は、請求項 13又は 14に記載の空気入りタイヤにおいて、前記突 起対の数は少なくとも 4つであることを特徴とする。
請求項 16の発明は、請求項 13乃至 15の何れかに記載の空気入りタイヤにおいて 、前記突起の断面積の総和が、前記第 1のサイプの傾斜部を挟んで対向する壁面の 総面積の 1.5乃至 50%であることを特徴とする。
請求項 17の発明は、請求項 13乃至 16の何れかに記載の空気入りタイヤにおいて 、前記第 1のサイプの傾斜面が少なくとも 1つの突起対を有することを特徴とする。 請求項 18の発明は、請求項 13乃至 17の何れかに記載の空気入りタイヤにおいて 、前記突起の断面の形状が円形、十字形、又は多角形であることを特徴とする。
[0008] (作用)
本発明によれば、ショルダーブロック列を構成する各ブロックのタイヤ周方向の端は 、トレッド端側は外側ラグにより区画され、トレッド中央側は第 1のサイプにより区画さ れるため、タイヤ周方向の端の位置がトレッド端側とトレッド中央側とで異なる。これに より、ブロックのトレッド端側とトレッド中央側とで、タイヤ接地時の踏み'蹴りのタイミン グをずらすことができるので、路面に接触している部分と既に離脱した部分とが互い の動きを拘束し合い、変形を抑制する。
また、第 1のサイプはタイヤ周方向に隣り合うブロック間の境界を構成しており、タイ ャ接地時にサイプを挟んで隣り合うブロック間に作用する押圧力がブロックの剛性を 補完し、ブロックの変形を抑制する。
さらに、外側ラグ溝に浅い部分を設けたことにより、ショルダーブロックのブロック剛 性が高まるため、タイヤ周方向に隣接するブロック同士が干渉し易くなることで、耐偏 摩耗性が向上する。
また、外側ラグ溝内に形成した第 2のサイプを挟んで対向して 、る部分が互いに接 触することで、互いに干渉し合い、耐偏摩耗性が向上する。
さらに、第 1のサイプに傾斜部を設けて 3次元化することにより、その傾斜部を挟ん で対向する壁面の接触圧が高まることで、ブロック剛性を補完して変形を抑制する効 果がより向上する。
また、第 1のサイプの少なくとも 1つの傾斜部に、その傾斜部を挟んで対向する壁面 力 対向するように突出する突起対を設けたことにより、突起対のみが接触して押し 合うものの突起対以外の部位は接触せずにサイプの隙間が保持されるため、サイプ の隙間が潰れて排水路が塞がれ、排水性が低下する事態を防止できる。
発明の効果
[0009] 本発明によれば、ショルダーブロック列を構成するブロックを略 S字状とし、サイプを 挟んで隣接ブロックを対向させることにより、ラグ溝の底上部を不要とし、摩耗末期ま で排水性及びトラクシヨン性能を良好に維持しつつショルダーブロックにおけるヒール アンドトウ摩耗の発生を抑制できる。 図面の簡単な説明
[図 1]本発明の第 1の実施形態に係る空気入りタイヤのトレッドパターンの展開平面図 である。
[図 2]本発明の第 1の実施形態におけるショルダー周方向サイプの作用を説明するた めの図である。
[図 3]本発明の第 1の実施形態における外側ラグ溝とショルダー幅方向内側サイプと のタイヤ周方向の位相をずらしたことによる作用を説明するための図である。
[図 4]本発明の第 1の実施形態におけるショルダーブロックの拡大図である。
[図 5]本発明の第 2の実施形態に係る空気入りタイヤのトレッドパターンの展開平面図 である。
[図 6]図 5における外側ラグ溝及びその周辺をタイヤ周方向力も見た断面図である。
[図 7]本発明の第 3の実施形態に係る空気入りタイヤのトレッドパターンの展開平面図 である。
[図 8]図 7のショルダー幅方向内側 3次元サイプの構成を示す図である。
[図 9]本発明の第 4の実施形態に係る空気入りタイヤのトレッドにおけるショルダー幅 方向内側 3次元サイプの構成を示す図である。
[図 10]本発明の第 5の実施形態に係る空気入りタイヤのトレッドにおけるショルダー幅 方向内側 3次元サイプの構成を示す図である。
[図 11]本発明の第 6の実施形態に係る空気入りタイヤのトレッドにおけるショルダー幅 方向内側 3次元サイプの構成を示す図である。
[図 12]本発明の第 6の実施形態に係る空気入りタイヤのトレッドにおけるショルダー幅 方向内側 3次元サイプの構成を示す図である。
[図 13]本発明の第 8及び第 9の実施形態に係る空気入りタイヤのトレッドにおけるショ ルダ一幅方向内側 3次元サイプの構成を示す図である。
[図 14]比較例のトレッドパターンを示す図である。
符号の説明 [0011] 1…トレッドパターン、 2…中央主溝、 3…両側主溝、 4…内側ラグ溝、 9…外 側ラグ溝、 10· · 'ショルダー幅方向内側サイプ、 11 · · 'ショルダー周方向サイプ、 12 · · •ショルダーブロック列、 13 · · ·ショルダーブロック、 14· · '外側ラグ溝内周方向サイプ 、 15 · · ·外側ラグ溝内幅方向サイプ、 16· · ·ショルダー幅方向内側 3次元サイプ、 17· · ·ショルダー周方向 3次元サイプ、 18, 33, 35, 42, 43, 44· · ·傾斜部、 22, 23, 37, 38 , 47, 48, 49, 50, 66, 68· ·,突起。
発明を実施するための最良の形態
[0012] 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
[第 1の実施形態]
図 1は本発明の第 1の実施形態に係る空気入りタイヤのトレッドパターンの展開平 面図である。
この空気入りタイヤのトレッドパターン 1は、タイヤ赤道の両側において周方向に延 びるそれぞれ一対の中央主溝 2及び両側主溝 3と、中央主溝 2と両側主溝 3とを連結 する内側ラグ溝 4と、中央主溝 2からタイヤ幅方向中央側、即ち対向する中央主溝 2 に接近する方向へ互い違いに分岐した分岐溝 5と、隣り合う分岐溝 5の間を連結する 連結溝 6とを備えている。これらの溝により、タイヤ周方向に延びるそれぞれ一対のセ ンターブロック列 7及びセカンドブロック列 8が形成される。
[0013] また、このトレッドパターン 1は、トレッド端から両側主溝 3の方向、即ちタイヤ幅方向 中央に向カゝつて両側主溝3に到達しな!ヽ位置まで延びる外側ラグ溝 9と、両側主溝 3 のトレッド端側の縁の外側ラグ溝 9に対向しない部位からトレッド端に向カゝつて、外側 ラグ溝 9のタイヤ幅方向内側(中央側)端に対応するタイヤ半径方向位置を越え、トレ ッド端に到達しな 、位置まで延びるショルダー幅方向内側サイプ 10と、ショルダー幅 方向内側サイプ 10のトレッド端側と外側ラグ溝 9のタイヤ周方向側の縁とを連結する ショルダー周方向サイプ 11とを備えている。ここで、ショルダー幅方向内側サイプ 10と 、ショルダー周方向サイプ 11とが、本発明における第 1のサイプに対応する。これらの 溝及びサイプをタイヤ周方向に所定のピッチで配列することにより、タイヤ周方向に 延びる一対のショルダーブロック列 12が形成される。なお、ショルダーブロック列 12は タイヤ赤道の両側に形成される力 便宜上、この図では、左側のみに符号を付した( 後述する各実施形態にっ ヽても同じ)。
[0014] ショルダーブロック列 12を構成するショルダーブロック 13のタイヤ幅方向の外側端は トレッド端に一致し、ショルダーブロック 13のタイヤ幅方向の内側端は両側主溝 3の外 側端に一致する。また、ショルダーブロック 13のタイヤ周方向の端については、トレツ ド端側とトレッド中央側とで周方向の位置 (位相)が異なる。即ちトレッド端側は外側ラ グ溝 9のタイヤ周方向の縁により位置が規定され、トレッド中央側はショルダー幅方向 内側サイプ 10により位置が規定される。さらに、ショルダー周方向サイプ 11は、タイヤ 周方向に隣り合うショルダーブロック 13同士のタイヤ幅方向の境界を構成し、ショルダ 一幅方向内側サイプ 10はそのタイヤ周方向の境界を構成している。なお、ここでは、 ショルダー幅方向内側サイプ 10、ショルダー周方向サイプ 11は何れも平面視直線状 であり、それらを折れ線状に連結しているが、これらのサイプを滑らかな 1本の曲線状 に構成してもよい。また、直線と曲線とを混在させてもよい。
[0015] 次に、図 2及び 3を参照しながら、本実施形態に係る空気入りタイヤの転動時の作 用を説明する。ここで、図 2はショルダー幅方向内側サイプ 10の作用を説明するため の図であり、図 3は外側ラグ溝 9とショルダー幅方向内側サイプ 10とのタイヤ周方向の 位相を異ならせたことによる作用を説明するための図である。
[0016] まず図 2に基づいて説明する。ここで、図 2Aは図 1のトレッドパターンを示すもので あり、特にショルダーブロック列 12において、タイヤ周方向に隣り合う 2個のショルダー ブロックを説明の便宜上、ショルダーブロック 13- 1, 13-2としたものである。また、図 2 Bは図 2Aにて丸で囲んだ部分を両側主溝 3の位置力 ショルダー幅方向内側サイ プ 10に平行な視線で見たときの図である。さらに、図 2Cはショルダー幅方向内側サ イブ 10を設けた場合及び設けない場合のショルダーブロック局所変形を模式化した ものである。ここでは、図 2Bに示すように、タイヤが自由転動により図 2Bにて矢印 a
1 の方向(反時計回り)に回転し、ショルダーブロック 13-1, 13-2の順で路面 eに接触す
1 る場合について説明する。
[0017] 図 2Bに示すように、回転方向前方側のショルダーブロック 13-2は路面 eに接触して
1 おり、回転方向後方側のショルダーブロック 13-1は既に路面 eから離れている。この
1
とき、ショルダーブロック 13-2は、路面 eから矢印 bに示すような摩擦力を受けること で変形し、ショルダー幅方向内側サイプ 10を挟んで対向して!/、るショルダーブロック 1 3-1に接触して押圧する。このとき、ショルダーブロック 13-2は、ショルダーブロック 13- 1との接触面から、ショルダーブロック 13-1を押圧した反作用として矢印 cに示す抗カ
1
を受けるため、それ以上の変形が抑制される。この図における四辺形 hはショルダー
0
ブロックの局所変形を模式ィ匕したものである。ショルダー幅方向内側サイプ 10を設け な 、場合、ショルダーブロックの局所変形は図 2Cに破線で示すように倒れ込みの大 きな四辺形であるのに対し、本実施形態では同図に実線で示すように倒れ込みが小 さくなり、変形が抑制されている。
ここまではショルダー幅方向内側サイプ 10によるタイヤ周方向の変形抑制作用を説 明したが、タイヤ幅方向についても同様にショルダー周方向サイプ 11がショルダーブ ロック 13-1の変形を抑制する。つまり、隣り合うショルダーブロックの境界を構成するタ ィャ幅方向及び周方向のサイプにより、路面 eに接触中のショルダーブロックの変形
1
が路面 e力も離脱しているショルダーブロックにより抑制されることになる。
1
[0018] 次に図 3に基づいて説明する。ここで、図 3Aは図 2Aと同様、タイヤ周方向に隣り合 う 2個のショルダーブロックをショルダーブロック 13-1, 13-2とすると共に、ショルダー ブロック 13-1についてはトレッド端側部 13-la、トレッド中央側部 13-lb、及び連結部 1 3-lcに区分したものである。また、図 3B、 Dはそれぞれショルダーブロック 13-1を異な るタイミングでトレッド表面側から見た図であり、図 3C、 Eはそれぞれ図 3B、 Dのタイミ ングで両側主溝 3の位置からショルダーブロック 13-1を見た図である。さらに、図 3F は本実施形態に係るショルダーブロックと通常の矩形のショルダーブロックの局所変 形を模式ィ匕したものである。なお、図 3A, B, Dにおける破線は、トレッド端側部 13- 1 a、トレッド中央側部 13-lb、連結部 13-lcの境界線 (B, Dでは連結部 13-lcを省略)を 示す。以下、タイヤが自由転動により図 3C, Eにて矢印 aの方向(反時計回り)に回
1
転し、ショルダーブロック 13-1, 13-2の順で路面に接触する場合について説明する。
[0019] 図 3B、 Cに示すように、ショルダーブロック 13-1のトレッド端側部 13-laの回転方向 先端側に接地部 (路面との接触部) dが存在する時点では、路面からトレッド端側部 1
1
3-laに対し、矢印 f に示す摩擦力が作用することで、トレッド端側部 13- laはタイヤ周
1
方向に変形し、連結部 13-lcを圧縮する。このとき、圧縮力は連結部 13- lcを介して、 既に路面力 離脱しているトレッド中央側部 13- lbを押圧するので、トレッド中央側部 13-lbから矢印 gに示すような摩擦力 f と逆向きの反発力が作用する。このため、連
1 1
結部 13- lcに剪断力が働き、トレッド端側部 13- laの変形が抑制される。この図の こ おける四辺形 hはショルダーブロックの局所変形を模式ィ匕したものである。通常の矩
1
形のショルダーブロックでは、その局所変形は図 3Fに破線で示すように倒れ込みの 大きな四辺形であるのに対し、本実施形態では同図に実線で示すように倒れ込みが 小さくなり、変形が抑制されている。
[0020] また、図 3D、 Eに示すように、ショルダーブロック 13-1のトレッド端側部 13- laの回転 方向先端側からトレッド中央側部 13- lbの先端側にわたって接地部 d2が存在する時 点(図 3B、 Cよりも早い)では、路面からトレッド中央側部 13- lbに対し、矢印 f に示す
2 摩擦力が作用する。また、トレッド端側部 13- laは路面に接触しているので、路面との 摩擦により、矢印 gに示すような摩擦力 f と逆向きの引張力を受ける。このため、連結
2 2
部 13- lcに剪断力が働き、トレッド中央端部 13- lbの変形が抑制される。この図の Eに おける四辺形 hはショルダーブロックの局所変形を模式ィ匕したものである。通常の矩
2
形のショルダーブロックでは、その局所変形は図 3Fに破線で示すように倒れ込みの 大きな四辺形であるのに対し、本実施形態では同図に実線で示すように倒れ込みが 小さくなり、変形が抑制されている。
[0021] つまり、図 3B、 C及び D、 Eの何れのタイミングにおいても、ショルダーブロック 13-1 が路面を踏み込むタイミングと蹴り出すタイミングとがトレッド端側部 13-laとトレッド中 央側部 13-lbとでずれており、図 3B、 Cの場合は、蹴り出し中であるトレッド端側部 13 -laと既に離脱したトレッド中央側部 13- lbとが互いの動きを拘束し合い、図 3D、 Eの 場合は、路面に残っているトレッド端側部 13-laと蹴り出し中であるトレッド中央側部 1 3-lbとが互いの動きを拘束し合うことで、ショルダーブロック 13-1の変形を抑制する。 このように、外部ラグ溝 9とショルダー幅方向内側サイプ 10のタイヤ周方向の位相を ずらすことで、ショルダーブロック 13を略 S字状、クランク状、或いはそれらに類似した 形状 (以下、 S字ブロック)にすることにより、ショルダーブロック 13の変形を抑制する。
[0022] 次に、図 4に示すショルダーブロック 13の拡大図を参照しながらショルダーブロック 1 3の形状及び寸法について説明する。 ショルダーブロック 13の幅 Wは、トレッドの幅 W (図 1参照)の 12乃至 35%に設定す
1 0
ることが好ましい。 12%に満たないとショルダーブロック 13の幅が狭過ぎて S字ブロッ クの変形抑制効果が発揮される前にショルダーブロック 13全体が摩耗し、ショルダー 摩耗に至る可能性があり、 35%を越えるとショルダーブロック 13が大きくなり過ぎて S 字の効果が低下し、矩形ブロックと同様な摩耗形態 (ヒールアンドトウ摩耗)を呈する ことになる。
[0023] 外側ラグ溝 9の幅 Wはショルダーブロック 13のタイヤ周方向の配列ピッチ L0の 12乃
2
至 30%に設定する。 12%に満たないと溝の容積が過小となりウエット路面でのトラクシ ヨン性能が損なわれる問題が生じ易ぐ 30%を越えるとショルダーブロック 13のタイヤ 周方向長が短くなり、耐摩耗性及び耐偏摩耗性が損なわれる可能性がある。
[0024] 外側ラグ溝 9の長さ(トレッド幅方向の寸法) Lはショルダーブロックの幅 Wの 20乃
1 1 至 80%に設定する。ウエット路面でのトラクシヨン性能の観点からは、ラグ溝は長い方 が有利であるが、 S字ブロックを有効に機能させるためには、ショルダーブロック 13の トレッド端側部分及びトレッド中央側部分の各々がある程度の幅を持つことが必要と なるからである。
[0025] ショルダー幅方向内側サイプ 10のタイヤ幅方向の長さ Lはショルダーブロック 13の
2
幅 Wの 20乃至 80%とする。これにより、ショルダーブロック 13のトレッド端側部分、トレ
1
ッド中央側部分の各々にある程度の幅を持たせ、かつ両者のバランスをとることにより 、幅の狭い方が先行して摩耗し、偏摩耗に至る可能性をなくすことができる。
[0026] ショルダー周方向サイプ 11のタイヤ周方向の長さ Lはショルダーブロック 13のタイヤ
3
周方向の配列ピッチ Lの 20乃至 60%とする。これにより、ショルダーブロック 13のトレ
0
ッド端側部分及びトレッド中央側部分の各々にある程度の長さを持たせ、かつ両者の ノ ランスをとることにより、長さの短い方が先行して摩耗し、偏摩耗に至る可能性をな くすことができる。
[0027] ショルダー幅方向内側サイプ 10の幅 W、ショルダー周方向サイプ 11の幅 Wは、何
3 4 れも 0.5乃至 3.0mm、好ましくは 0.5乃至 1.5mmとする。これらのサイプはショルダーブ ロック間の押圧力によるブロック剛性の補完を図るものであるから、その目的達成の ためには幅が狭いことが望ましいが、 0.5mm未満ではサイプを形成するためのモール ドのブレードの耐久性が低くなり実用的でない。また、 3.0mmを越えるとサイプの内面 同士が接触し難くなる。
[0028] [第 2の実施形態]
図 5は本発明の第 2の実施形態に係る空気入りタイヤのトレッドパターンの展開平 面図である。この図において、図 1に示す第 1の実施形態と同一又は対応する構成 要素には、図 1におけるそれらの構成要素と同じ符号を付した。
[0029] 図 5に示すように、本実施形態に係るトレッドパターンは、第 1の実施形態に係るトレ ッドパターンにおける外側ラグ溝 9内に周方向サイプ (以下、外側ラグ溝内周方向サ イブと言う) 14及び幅方向サイプ (以下、外側ラグ溝内幅方向サイプと言う) 15を設け たものである。この外側ラグ溝内周方向サイプ 14及び外側ラグ溝内幅方向サイプ 15 が本発明における第 2のサイプに対応する。外側ラグ溝内周方向サイプ 14は、ショル ダ一周方向サイプ 11の先端、即ち外側ラグ溝 9のタイヤ周方向の縁から外側ラグ溝 9 の幅方向(タイヤ周方向)の略中央迄平面視直線状に延びており、外側ラグ溝内幅 方向サイプ 15は、外側ラグ溝内周方向サイプ 14の先端からトレッド端の方向へ外側ラ グ溝 9の長手方向(タイヤ幅方向)の中央部を越える位置迄平面視直線状に延びて いる。従って、ショルダー幅方向内側サイプ 10、ショルダー周方向サイプ 11及び外側 ラグ溝内周方向サイプ 14、並びに外側ラグ溝内幅方向サイプ 15は、平面視で 3つの 折れ線となる。
[0030] 図 6は図 5にて丸で囲んだ部分、即ち外側ラグ溝 9及びその周辺をタイヤ周方向か ら見た断面図である。ここで、図 6A、 Bは外側ラグ溝 9及びその内側に形成されたサ イブの二つの構成例である。図 6Aに示す構成例では、外側ラグ溝 9の底面が、タイ ャ幅方向中央側(図における右側)からトレッド端側に向力つて、階段状に深くなつて いる。また、図 6Bに示す構成例では、外側ラグ溝 9の底面が、タイヤ幅方向中央側か らトレッド端側に向力つて、傾斜状に深くなつている。図 6A、 B何れの構成例もタイヤ 周方向については深さは変化しない。タイヤ幅方向の深さについては、好ましくはそ の最も浅い部位の深さが最も深い部位の深さの 20%以上 60%以下 (より好ましくは 20 %以上 40%以下)に定める。 20%未満であると浅い部分が浅過ぎるためにウエット路 面でのトラクシヨン性能が低下し、 60%を越えると耐偏摩耗性を補完する効果が不十 分になる。
[0031] 図 6Aの場合、最も浅い部位の深さは、外側ラグ溝 9の底面の浅い方の段のタイヤ 幅方向の中央側の端 Pにおける外側ラグ溝 9の底面とトレッド表面 (ここではショルダ
1
一ブロック 13の表面)との段差(図の点 Pと Pとの距離)であり、最も深い部位の深さ
1 2
は、トレッド表面のタイヤ幅方向の傾斜が一定の領域のトレッド端側の端 Pにおける
4 外側ラグ溝 9の底面とトレッド表面との段差(図の点 Pと Pとの距離)である。従って、
3 4
Pと Pとの間の距離が Pと Pとの間の距離の 20%以上 60%以下になるように、外側ラ
1 2 3 4
グ溝 9の階段の深さを設定する。また、図 6Bの場合、最も浅い部位の深さは、外側ラ グ溝 9の底面の傾斜面のタイヤ幅方向の中央側の端 Pにおける外側ラグ溝 9の底面
5
とトレッド表面(ここではショルダーブロック 13の表面)との段差(図の点 Pと Pとの距離
5 6
)であり、最も深い部位の深さは、トレッド表面のタイヤ幅方向の傾斜が一定の領域の トレッド端側の端 Pにおける外側ラグ溝 9の底面とトレッド表面との段差(図の点 Pと P
8 7 との距離)である。従って、 Pと Pとの間の距離が Pと Pとの間の距離の 20%以上 60
8 5 6 7 8
%以下になるように、外側ラグ溝 9の傾斜を設定する。
[0032] 図 6Aでは、外側ラグ溝内周方向サイプ 14、外側ラグ溝内幅方向サイプ 15の双方が 浅い方の段に形成されている。また、図 6Bでは、外側ラグ溝内周方向サイプ 14は傾 斜面の最も浅 ヽ部位の付近に形成されており、外側ラグ溝内幅方向サイプ 15は浅 ヽ 部位力も深い部位にわたって形成されている。つまり、図 6A、 Bの双方において、外 側ラグ溝内周方向サイプ 14は外側ラグ溝 9の浅い部位に形成され、外側ラグ溝内幅 方向サイプ 15は外側ラグ溝 9の少なくとも浅 、部位に形成されて 、る。
[0033] 本実施形態に係る空気入りタイヤによれば、外側ラグ溝 9に浅い部分を設けたこと により、ショルダーブロック 13のブロック剛性が高まるため、タイヤ周方向に隣接する ブロック同士が干渉し易くなることで、耐偏摩耗性が向上する。また、外側ラグ溝 9内 に形成した外側ラグ溝内周方向サイプ 14、外側ラグ溝内幅方向サイプ 15が、それぞ れショルダー周方向サイプ 11、ショルダー幅方向内側サイプ 10と同様に作用するた め、それらのサイプを挟んで対向している部分が互いに接触することで、互いに干渉 し合い、耐偏摩耗性が向上する。さらに、外側ラグ溝 9の浅い部分が摩耗して溝の底 面が露出しても外側ラグ溝内周方向サイプ 14、外側ラグ溝内幅方向サイプ 15は残る ため、エッジ効果によるウエットトラクシヨン性能の確保が可能である。
[0034] なお、以上説明した第 2の実施形態では、外側ラグ溝内周方向サイプ 14と外側ラグ 溝内幅方向サイプ 15とが 2つの折れ線を構成するように配置したが、 2つのサイプを 滑らかな 1本の曲線状に構成してもよい。また、ショルダー幅方向内側サイプ 10から 外側ラグ溝内幅方向サイプ 15迄の 4つのサイプを滑らかな 1本の曲線状に構成しても よい。さらに、図 6Aにおける階段を 3段以上にしてもよいし、図 6Aにおける階段と図 6Bにおける傾斜面とを混在又は組み合わせてもよい。また、内部にサイプが形成さ れた外側ラグ溝 (第 2の実施形態)と形成されて!、な!/、外側ラグ溝 (第 1の実施形態) とを混在させてもよい。
[0035] [第 3の実施形態]
図 7は本発明の第 3の実施形態に係る空気入りタイヤのトレッドパターンの展開平 面図である。この図において、図 1に示す第 1の実施形態と同一の構成要素には、図 1におけるそれらの構成要素と同じ符号を付した。
[0036] 図 7に示すように、本実施形態のトレッドパターンは、第 1の実施形態のトレッドパタ ーンにおけるショルダー幅方向内側サイプ 10、ショルダー周方向サイプ 11に代えて、 それぞれショルダー幅方向内側 3次元サイプ 16、ショルダー周方向 3次元サイプ 17を 設けたものである。図 7に示すように、ショルダー幅方向内側 3次元サイプ 16及びショ ルダ一周方向 3次元サイプ 17をトレッド表面に垂直な方向から見た形状は、それぞれ ショルダー幅方向内側サイプ 10、ショルダー周方向サイプ 11と同じである力 その形 状が深さ方向に変化する 3次元サイプとすることで、サイプの倒れ込みを抑制する機 能を向上させて 、る。ショルダー幅方向内側 3次元サイプ 16及びショルダー周方向 3 次元サイプ 17の深さ方向の変化のパターンは同一でも異なるものでもよいが、本実 施形態では同一とし、以下、ショルダー幅方向内側 3次元サイプ 16の形状について 説明する。
[0037] 図 8はショルダー幅方向内側 3次元サイプ 16の構成を示す図である。ここで、図 8A は図 7における X— X断面図、図 8Bは図 8Aにおける前記サイプ 16の傾斜部 18を挟ん で対向するブロック 13の壁面(ブロック 13の壁面のうち、サイプ 16内で傾斜部 18を挟 んで対向している部分)に垂直な方向力 見た図、図 8Cは図 8における突起の寸法 を説明するための図である。
[0038] 図 8Aに示すように、ショルダー幅方向内側 3次元サイプ 16は、ショルダーブロック 1 3の表面からその内部(図の下方)へ垂直に延びる第 1垂直部 17と、第 1垂直部 17の 先端力 ショルダーブロック 13内の斜め下方に延びる傾斜部 18と、傾斜部 18の先端 力 ショルダーブロック 13内に垂直に延びる第 2垂直部 19と力 なる。
[0039] 傾斜部 18を挟んで対向するブロック 13の壁面 20及び 21には、対向する突起 22及び 23が形成されている。図 8B〖こ示すよう〖こ、これらの突起 22及び 23を壁面 20及び 21に 垂直な方向から見た形状は十字形である。また、図 8Cに示すように、突起 22の突出 量 mと突起 23の突出量 mとの和がショルダー幅方向内側 3次元サイプ 16の幅(=壁
1 2
面 20と壁面 21との間隔)に相当する(等しい)。ここで、突起 22の突出量は、突起 22の 壁面 20に垂直な方向の最大長であり、突起 23の突出量は、突起 23の壁面 21に垂直 な方向の最大長である。
[0040] 以上の構成を有する本実施形態に係る空気入りタイヤによれば、第 1の実施形態と 同様に、外部ラグ溝 9とショルダー幅方向内側 3次元サイプ 16のタイヤ周方向の位相 をずらすことで、ショルダーブロック 13を S字ブロックにしたことにより、ショルダーブロ ック 13の変形を抑制することができる。また、ショルダー幅方向内側 3次元サイプ 16、 ショルダー周方向 3次元サイプ 17がショルダー幅方向内側サイプ 10、ショルダー周方 向サイプ 11と同様に作用するため、それらのサイプを挟んで対向している部分が互 いに接触することで、互いに干渉し合い、ブロック剛性を補完することにより耐偏摩耗 性が向上する。さらに、ショルダー幅方向内側 3次元サイプ 16、ショルダー周方向 3次 元サイプ 17は、対向する突起対を有するため、接触圧が高まることで、ブロック剛性を 補完する効果がより向上する。また、対向する突起対のみが接触して押し合うものの 突起対以外の部位は接触せずにサイプの隙間が保持されるため、サイプの隙間が 潰れて排水路が塞がれ、排水性が低下する事態を防止できる。
[0041] ショノレダ一幅方向内側 3次元サイプ 16、ショノレダ一周方向 3次元サイプ 17の諸元に ついて説明する。
ショルダー幅方向内側 3次元サイプ 16及びショルダー周方向 3次元サイプ 17の各 々の幅、ショルダー幅方向内側 3次元サイプ 16のタイヤ幅方向の長さのショルダーブ ロック 13の幅 Wに対する比、ショルダー周方向 3次元サイプ 17のタイヤ周方向の長さ
1
のショルダーブロック 13のタイヤ周方向の配列ピッチ Lに対する比、即ちこれらの 3次
0
元サイプの二次元的な諸元については、それぞれ第 1の実施形態におけるショルダ 一幅方向内側サイプ 10及びショルダー周方向サイプ 11の該当する諸元と同じである
[0042] 突起対 (22, 23)の数には特に制限はないが、ブロック剛性を高めるためには 4個以 上にすることが好適である。このとき、突起 22及び 23の断面積の総和が、傾斜部 18の 面積の総和、即ち壁面 20及び 21から突起 22及び 23を除去したときの壁面 20及び 21 面積の総和の 1.5乃至 50%とすることが好ましぐ 10%以上とすることが更に好ましい 。 1.5%未満ではサイプを挟んで対向するブロック同士が支え合う効果が殆どなくなる ため、ブロックが倒れ込んで排水路が塞がれてしまい、排水性が悪ィ匕する。 50%を越 えると、加硫後のタイヤをモールドから抜き取ることが困難となり、生産性が低下する
[0043] 突起 22, 23の径は 0.5乃至 2.0mmとするのが好ましい。図 8では突起 22, 23の断面 形状 (トレッド表面に垂直な方向から見た形状と同じ)は十字形であるが、突起の断面 形状は円形、多角形等、互いに交差しない複数の直線又は曲線の連結により形成さ れた閉ループを外周とする形状でよい。それらの形状の径とは、その閉ループの外 接円の直径である。この径が 0.5mmより小さいと、突起対の押し合いにより突起が潰 れ、排水路が塞がれてしまうため、排水性が悪ィ匕する。 2.0mmより大きいと、加硫後、 モールドから抜き取るときに、もげや欠けが発生しやすくなる。
[0044] なお、図 8では、第 1の実施形態と同様にショルダー幅方向内側 3次元サイプ 16、シ ョルダ一周方向 3次元サイプ 17をトレッド表面に垂直な方向から見た形状は直線であ り、それらを折れ線状に連結しているが、第 1の実施形態にて説明したように、これら の 3次元サイプを滑らかな 1本の曲線状に構成してもよい。また、直線と曲線とを混在 させてもよい。また、後述する第 9の実施形態(図 13B)のようなジグザグ形状 (ジグザ グサイプ)にしてもよい。この場合、ジグザグの振幅を 2乃至 5mm、ジグザグの隣接す る線分のなす角度を 90乃至 130度とすることが好適である。また、ジグザグサイプの幅 は 0.5乃至 1.0mm、深さは主溝の 50乃至 100%とすることが好適である。さらに、後述 する第 6の実施形態(図 11)のように波形にしてもよ!、。
[0045] [第 4の実施形態]
図 9は本発明の第 4の実施形態に係る空気入りタイヤのトレッドにおけるショルダー 幅方向内側 3次元サイプの構成 (第 3の実施形態の図 8に対応)を示す図である。本 実形態にトレッドパターンの平面展開図は第 3の実施形態(図 7)と同じである。
[0046] このショルダー幅方向内側 3次元サイプ 31は、ショルダーブロック 13の表面からその 内部へ垂直(図の下方)に延びる第 1垂直部 32と、第 1垂直部 32の先端力 ショルダ 一ブロック 13内の斜め下方へ延びる第 1傾斜部 33と、第 1傾斜部 33の先端力 ショル ダーブロック 13内へ垂直に延びる第 2垂直部 34と、第 2垂直部 34の先端力 ショルダ 一ブロック 13内の斜め下方へ延びる第 2傾斜部 35と、第 2傾斜部 35の先端力 ショル ダーブロック 13内に垂直に延びる第 3垂直部 36とからなる。ここで、第 1傾斜部 33と第 2傾斜部 35の傾斜方向は反対である。
[0047] 第 1傾斜部 33を挟んで対向するブロック 13の壁面には、対向する突起 37及び 38が 形成されており、第 2傾斜部 35を挟んで対向するブロック 13の壁面には、対向する突 起 39及び 40が形成されている。図 9Bに示すように、これらの突起 37乃至 40を壁面に 垂直な方向力 見た形状は十字形である。また、第 3の実施形態と同様、突起 37の 高さと突起 38の高さとの和、及び突起 39の高さと突起 40の高さとの和は、共にショル ダ一幅方向内側 3次元サイプ 31の幅に相当する。
[0048] つまり、本実施形態のショルダー幅方向内側 3次元サイプ 31は、図 8に示すショル ダ一幅方向内側 3次元サイプ 16において、傾斜部の数を 1個増やすと共に、 2個の 傾斜部の間に垂直部を設けたものと言える。以上、ショルダー幅方向内側 3次元サイ プ 31の内部構造につ 、て説明したが、ショルダー周方向 3次元サイプ(図示せず)も 同様に構成されている。また、これらの 3次元サイプの諸元は第 3の実施形態におけ る 3次元サイプの諸元と同じである。なお、図 9では傾斜部の数は 2である力 この数 を 3以上にしてもよい。
[0049] [第 5の実施形態]
図 10は本発明の第 5の実施形態に係る空気入りタイヤのトレッドにおけるショルダ 一幅方向内側 3次元サイプの構成 (第 3の実施形態の図 8に対応)を示す図である。 本実形態にトレッドパターンの展開平面図は第 3の実施形態と同じである。
[0050] このショルダー幅方向内側 3次元サイプ 41は、ショルダーブロック 13の表面から内部 の斜め下方へ延びる第 1傾斜部 42と、第 1傾斜部 42の先端力 ショルダーブロック 13 内の斜め下方へ延びる第 2傾斜部 43と、第 2傾斜部 43の先端力 ショルダーブロック 13内の斜め下方へ延びる第 3傾斜部 44とからなる。ここで、第 2傾斜部 43の傾斜方向 は第 1傾斜部 42の傾斜方向と反対であり、第 3傾斜部 44の傾斜方向は第 1傾斜部 42 の傾斜方向と同じである。つまり、第 1乃至第 3傾斜部 42乃至 44の傾斜部の傾斜はジ グザグ状に変化していることになる。
[0051] 第 1傾斜部 42を挟んで対向するブロック 13の壁面には、対向する突起 45及び 46が 形成されており、第 2傾斜部 43を挟んで対向するブロック 13の壁面には、対向する突 起 47及び 48が形成されており、第 3傾斜部 44を挟んで対向するブロック 13の壁面に は、対向する突起 49及び 50が形成されている。図 10Bに示すように、これらの突起 45 乃至 50を壁面に垂直な方向から見た形状は十字形である。また、第 3の実施形態と 同様、一対の対向する突起の高さの和はショルダー幅方向内側 3次元サイプ 41の幅 に相当する。
[0052] 以上、ショルダー幅方向内側 3次元サイプ 41の内部構造について説明した力 ショ ルダ一周方向 3次元サイプ(図示せず)も同様に構成されている。また、これらの 3次 元サイプの諸元は第 3の実施形態における 3次元サイプの諸元と同じである。
[0053] [第 6の実施形態]
図 11は本発明の第 6の実施形態のショルダー幅方向内側 3次元サイプ 51及びショ ルダ一周方向 3次元サイプ 52をトレッド表面に垂直な方向から見た図である。本実形 態にトレッドパターンの平面展開図は、これらの 3次元サイプ以外は第 3の実施形態 と同じである。
[0054] この図に示すように、ショルダー幅方向内側 3次元サイプ 51及びショルダー周方向 3次元サイプ 52のトレッド表面側の形状は共に波形である。この波の振幅、及び波の 最大振幅位置の前後の進行方向の角度差は、第 3の実施形態にて言及したジグザ グの振幅及びその線分のなす角度と同じである。また、これらの 3次元サイプの内部 の形状は、第 3乃至 5の実施形態の 3次元サイプの何れか一つと同じ構成を備えて いる。
[0055] [第 7の実施形態]
図 12は本発明の第 7の実施形態に係る空気入りタイヤのトレッドにおけるショルダ 一幅方向内側 3次元サイプ 61の構成 (第 3の実施形態の図 8に対応)を示す図である 。本実形態にトレッドパターンの展開平面図は第 3の実施形態と同じである。
[0056] 本実施形態のショルダー幅方向内側 3次元サイプ 61を挟んで対向するブロック 13 の壁面には、そのサイプのトレッド表面の延設方向(略タイヤ幅方向)に、断面が三角 形状の隆起と窪みとが連続的に交互に形成され、かつその隆起と窪みとがそのサイ プ 61の深さ方向に半周期ずれて配置された形状の凹凸列が設けられている。図 12 A、 Bに示すように、例えば最上段の凹凸列 62の窪みの下に第 2段の凹凸列 63の隆 起が配置されている。
また、図 12Aに示すように、前記サイプ 61内の隆起及び窪みの表面には、断面形 状が十字形の突起 66が設けられている。さらに、図 12Cに示すように、前記サイプ 61 を挟んで対向するブロック 13の壁面に形成された対向する隆起及び窪みの表面に 形成された突起同士が対向するように配置されている。この図では、最上段の凹凸 列 62及び 64にて対向する突起 66及び 68を図示した力 第 2段以下についても同様で ある。
以上、ショルダー幅方向内側 3次元サイプ 61について説明した力 ショルダー周方 向 3次元サイプ(図示せず)についても同様である。また、これらの 3次元サイプの諸 元は第 3の実施形態における 3次元サイプの諸元と同じである。
[0057] [第 8の実施形態]
図 13Aは本発明の第 8の実施形態に係る空気入りタイヤのトレッドにおけるショルダ 一幅方向内側 3次元サイプ 71の構成 (第 3の実施形態の図 8に対応)を示す図である 。本実形態にトレッドパターンのトレッド表面側の形状は第 3の実施形態と同じである
[0058] 本実施形態のショルダー幅方向内側 3次元サイプ 71内の壁面には、そのサイプ 71 のトレッド表面の延設方向(略タイヤ幅方向)及び深さ方向に、複数の四角錐台状の 凸部からなる凸部列と、その凸部を反転した形状の複数の凹部力もなる凹部列とが 交互に配置された形の 3次元凹凸パターンが設けられている。この図において、符号 72はサイプ 71のトレッド表面の延設方向に配列された凸部列を示し、ノ、ツチングが付 された符号 73は同方向に配列された凹部列を示している。図示のように、凸部と凹部 とは、上記サイプ 71のトレッド表面の延設方向に半周期ずれて配置されている。
[0059] また、凸部を構成する四角錐台の四個の斜面、及び凹部を構成する四個の傾斜面 には第 3乃至 7の実施形態と同様な十字形の突起が形成されている(凹部について は、便宜上、図示を省略)。さらに、図示されていないが、凸部列 72及び凹部列 73と、 それらに対向する凸部列及び凹部列との関係は、凸部と傾斜面と凹部の傾斜面とが 対向する配置となる。
[0060] 以上、ショルダー幅方向内側 3次元サイプ 71の内部構造について説明した力 ショ ルダ一周方向 3次元サイプ(図示せず)も同様に構成されている。また、これらの 3次 元サイプの諸元は第 3の実施形態における 3次元サイプの諸元と同じである。
[0061] [第 9の実施形態]
図 13Bは本発明の第 9の実施形態に係る空気入りタイヤのトレッドにおけるショルダ 一幅方向内側 3次元サイプ 81の構成 (第 3の実施形態の図 8に対応)を示す図である 。本実形態にトレッドパターンの展開平面図は第 3の実施形態と同じである。
[0062] 本実施形態のショルダー幅方向内側 3次元サイプ 81はジグザグサイプである。
図 13Bに示すように、本実施形態のショルダー幅方向内側 3次元サイプ 81内の壁 面には、図 13Aに示す第 8の実施形態と同様に、そのサイプ 81のトレッド表面の延設 方向(略タイヤ幅方向)及び深さ方向に、複数の四角錐台状の凸部カもなる凸部列と 、その凸部を反転した形状の複数の凹部力 なる凹部列とが交互に配置された形の 3次元凹凸パターンが形成されている。凸部列 82を構成する個々の凸部と、凹部列 8 3を構成する個々の凹部とは上記サイプ 81のトレッド表面の延設方向に半周期ずれ て配置されている。また、凸部を構成する四角錐台の四個の傾斜面、及び凹部を構 成する四個の傾斜面には第 8の実施形態と同様な十字形の突起が形成されている( 凹部については、便宜上、図示を省略)。さらに、図示されていないが、凸部列 82及 び凹部列 83と、それらに対向する凸部列及び凹部列との関係は、凸部と傾斜面と凹 部の傾斜面とが対向する配置となる。 [0063] つまり、本実施形態は、第 8の実施形態において、サイプ内の壁面のうち、凸部列 及び凹部列が形成されている部位をジグザグ状に構成したものと言える。以上、ショ ルダ一幅方向内側 3次元サイプ 81の内部構造について説明した力 ショルダー周方 向 3次元サイプ(図示せず)も同様に構成されている。また、これらの 3次元サイプの 諸元は第 3の実施形態における 3次元サイプの諸元と同じである。
[0064] なお、以上説明した第 3乃至 9の実施形態では、 3次元サイプの傾斜部を挟んで対 向する全ての壁面に突起対を設けているが、対向する一部の壁面に突起対を設け てもよい。また、以上の各実施形態では、一対の突起対の突出量の和が 3次元サイ プの幅に相当するものとした力 負荷力 Sかかったときに押し合う範囲内において突出 量の和を 3次元サイプの幅より小さくしてもよい。さらに、 3次元サイプの内部に、洗濯 板の表面の刻み目のような湾曲した凹凸列を設けることで、タイヤ周方向及び幅方向 に凹凸を有する傾斜面を設けてもよい。
[0065] [実施例]
本発明の効果を確認するために、実施例 1乃至 9、並びに比較例 1及び 2を各 50本 作成し、各種テストを行った結果について以下に説明する。このテストに使用したタイ ャのサイズは、実施例 1乃至 9、並びに比較例 1及び 2の全てが 11R22.5、リム幅は 7.5 インチ、内圧は 900kPaである。また、実施例 1乃至 9、並びに比較例 1及び 2のトレッド パターンの詳細と、ヒールアンドトウ摩耗量のタイヤ毎の平均値の測定結果は表 1の とおりである。
[0066] [表 1]
Figure imgf000023_0001
[0067] この表における実施例 1のタイヤは図 1に示すトレッドパターンを有するものであり、 実施例 2のタイヤは図 5に示すトレッドパターンを有するものである。さらに、実施例 3 乃至 6の各々は、第 3乃至 9の各実施形態に示す 3次元サイプを有するものであり、 A 〜Gはそれぞれ第 3、 4、 5、 7、 6、 8、 9の実施形態に対応する。ここで、実施例 3は 突起を有しないもの、実施例 4、 5、 6はそれぞれ断面形状が円形、正方形、 X形突 起を有するものである。また、実施例 7は実施例 2のショルダー幅方向内側サイプ 10 及びショルダー周方向サイプ 11を 3次元サイプとしたものであり、実施例 8は実施例 7 の 3次元サイプに突起を設けたものである。さらに、実施例 9は実施例 8のサイプ 14及 び 15を除去したものである。さらに、比較例 1、 2のタイヤは図 14に示すように、ショル ダーブロック列 92を構成するショルダーブロック 93を矩形ブロックとしたものである。
[0068] 実施例 1乃至 9のタイヤにおいて、ショルダーブロック 13の幅 Wはトレッド幅 Wの 17
1 0
%、外側ラグ溝 9の幅 Wはショルダーブロック 13のタイヤ周方向の配列ピッチ Lの 18
2 0
%、外側ラグ溝 9の長さ Lはショルダーブロック 13の幅 Wの 60%、ショルダー幅方向
1 1
内側サイプ 10の長さ Lはショルダーブロック 13の幅 Wの 46%、ショルダー周方向サイ
2 1
プ 11の長さ Lは、前記配列ピッチ Lの 42%、ショルダー幅方向内側サイプ 10の幅 W
3 0 3
、ショルダー周方向サイプ 11の幅 Wは共に 0.7mmである。
4
[0069] 比較例 1はラグ溝 24の深さを主溝 25よりも浅くしたものであり、比較例 2はラグ溝 24 の深さを主溝 25と同等にしたものである。また、実施例 1及び 3乃至 6のタイヤにおい て、外側ラグ溝 9の深さは両側主溝 3の深さと同等であり、タイヤ幅方向に略一定であ る。実施例 2及び 7乃至 9のタイヤにおいて、外側ラグ溝 9の底面の深さは図 6Aに示 す階段状であり、最も浅い部位の深さは最も深い部位の深さの 40%である。ここで、 最も深い部位の深さと実施例 1のタイヤの外側ラグ溝 9の深さとが同じであり、かつ両 側主溝 3の深さと同等である。そして、この両側主溝 3の深さは、比較例 2の主溝 25の 深さと同等である。
[0070] 〔1〕ヒールアンドトウ摩耗の抑制効果
実施例 1乃至 9、並びに比較例 1、 2について、実地走行を行い、ヒールアンドトウの 量を測定した。ここで、実地走行の内容は、テスト走行距離のうち、 80%を高速道路 で走行 (平均時速 80km)し、 20%を地場 (非舗装路)で走行 (平均時速 30km)した。 試験条件は以下のとおりである。
車両: 2D4 (操舵軸、駆動軸、遊動軸の 3軸力 なり、車両フロント部に操舵軸、リャ 部に前から駆動軸、遊動軸の順に配置された車両形式)
方式:装着位置固定、車両間ローテーション
内容:フロント軸に装着したタイヤにて、 2万 km、 4万 km走行時に測定
[0071] 表 1より、実施例 1のタイヤのヒールアンドトウ摩耗量は、 2万 km走行時では比較例 1 の約 1/2、比較例 2の 1/6、 4万 km走行時では比較例 1の約 1/2、比較例 2の 1/3であり 、大幅に低減していることを確認した。実施例 2のタイヤについては、実施例 1と比較 しても、ヒールアンドトウ摩耗量は、 2万 km走行時で 60%、 4万 km走行時で約 77%で あり、さらに低減していることを確認した。つまり、実施例 1により、外側ラグ溝 9の深さ を比較例 2と同等に深く設定しても、ラグ溝 24を浅くしてブロック剛性を高めた比較例 1を大幅に上回るヒールアンドトウ摩耗抑制効果があることが実証された。また、実施 例 2により、外側ラグ溝 9に浅い部分を設けることで、ヒールアンドトウ摩耗抑制効果が さらに向上することが実証された。
[0072] さらに、表 1より、実施例 1のサイプ 10及び 11を 3次元化した実施例 3乃至 6について は、突起の有無及び突起の形状とは無関係に、 2万 km走行時では比較例 1の 1/4、 比較例 2の 1/10、 4万 km走行時では比較例 1の約 1/3、比較例 2の 1/5であり、実施例 1よりもさらに低減して 、るから、 3次元化したことによりブロック剛性がより向上して ヽ ることが確認できた。
[0073] また、実施例 2のサイプ 10及び 11を 3次元化した実施例 7及び 8、実施例 2からサイ プ 14及び 15を除去した実施例 9については、突起並びにサイプ 14及び 15の有無とは 無関係に、 2万 km走行時では比較例 1の 1/6、比較例 2の 1/15、 4万 km走行時では 比較例 1の約 1/3.6、比較例 2の 1/6であり、実施例 2よりもさらに低減しているから、 3 次元化したことによりブロック剛性がより向上していることが確認できた。
[0074] 〔2〕性能低下抑制効果
ショルダーブロックの摩耗によりブロックパターンが変化したときの性能低下を測定 するために、ウエットトラクシヨン試験を行った。この試験は水膜厚さが 2mmの鉄板路 上をエンジン回転数 2000rpmで走行したときの加速度であり、その測定結果のタイヤ 毎の平均値を比較例 1の新品時の加速度を 100とした指数で表したのが表 2である。
[0075] [表 2]
Figure imgf000025_0001
[0076] この表より、実施例 1乃至 9のタイヤは新品時、 50%摩耗時、 75%摩耗時の全てに おいて比較例 1及び 2よりも高い加速度が得られており、特に 75%摩耗時に差異が 最大になっているので、摩耗末期まで良好なウエットトラクシヨン性能が維持されてい ることが確認された。また、サイプを 3次元化し、その内部に突起を形成した実施例 4 乃至 6並びに 8及び 9につ 、ては、他の実施例よりも高 、加速度が得られて 、ること から、 3次元サイプが突起対のみで押し合い、排水路が確保されることにより、高い排 水性が得られていることが確認された。なお、実施例 2が実施例 1よりも低い理由、及 び実施例 8及び 9が実施例 4乃至 6よりも低い理由は、ラグ溝の深さの相違によるもの と考える。 [0077] 〔3〕寿命延長効果
タイヤは偏摩耗、トレッドパターンの外観変化が原因で完全摩耗に至る前に廃棄さ れることが多い。実施例 1乃至 9、並びに比較例 1及び 2の、各々 50本の廃棄時の摩 耗率調査結果を表 3に示す。
[0078] [表 3]
Figure imgf000026_0001
この表より、比較例 1は 65乃至 85%摩耗時、比較例 2は 45乃至 75%摩耗時に廃棄 されているのに対し、実施例 1乃至 9では 75乃至 100% (完全摩耗)時に廃棄されてい るので、タイヤを無駄にすることなく有効に使用できることが確認された。

Claims

請求の範囲
[1] タイヤ周方向に延びる複数本の主溝と、タイヤ幅方向の両側の各々の最も外側の 主溝とトレッド端との間のタイヤ周方向に配列された複数のブロック力もなるショルダ 一ブロック列とをトレッドに備えた空気入りタイヤであって、
前記ブロックは、前記最も外側の主溝と、トレッド端と、前記トレッド端カゝらタイヤ幅方 向中央に向力つて前記最も外側の主溝に到達しな ヽ位置まで延びる外側ラグ溝と、 前記最も外側の主溝における前記外側ラグ溝のトレッド中央側縁と対向しない位置と 前記外側ラグ溝とを連結する第 1のサイプとにより区画されることを特徴とする空気入 りタイヤ。
[2] 請求項 1記載の空気入りタイヤにおいて、
前記第 1のサイプは、前記最も外側の主溝における前記位置から前記トレッド端に 向力つて前記トレッド端に到達しな 、位置まで延びるショルダー幅方向内側サイプと 、該ショルダー幅方向内側サイプと前記外側ラグ溝とを連結するショルダー周方向サ イブとからなることを特徴とする空気入りタイヤ。
[3] 請求項 1記載の空気入りタイヤにおいて、
前記ブロックの幅は前記トレッドの幅の 12乃至 35%であることを特徴とする空気入り タイヤ。
[4] 請求項 1記載の空気入りタイヤにおいて、
前記外側ラグ溝の幅は前記ブロックのタイヤ周方向の配列ピッチの 12乃至 30%で あることを特徴とする空気入りタイヤ。
[5] 請求項 1記載の空気入りタイヤにおいて、
前記外側ラグ溝の長さは前記ブロックの幅の 20乃至 80%であることを特徴とする空 気入りタイヤ。
[6] 請求項 2記載の空気入りタイヤにおいて、
前記ショノレダ一幅方向内側サイプの長さは前記ブロックの幅の 20乃至 80%であるこ とを特徴とする空気入りタイヤ。
[7] 請求項 2記載の空気入りタイヤにおいて、
前記ショルダー周方向サイプの長さは前記ブロックのタイヤ周方向の配列ピッチの 20乃至 60%であることを特徴とする空気入りタイヤ。
[8] 請求項 2記載の空気入りタイヤにおいて、
前記ショノレダ一幅方向内側サイプ及び前記ショノレダ一周方向サイプの幅は 0.5乃 至 3.0mmであることを特徴とする空気入りタイヤ。
[9] 請求項 1乃至 8の何れかに記載の空気入りタイヤにおいて、
前記外側ラグ溝は、タイヤ幅方向中央側からトレッド端側に向かって傾斜状又は階 段状に深くなることを特徴とする空気入りタイヤ。
[10] 請求項 9記載の空気入りタイヤにおいて、
前記外側ラグ溝の最も浅 、部位の深さが最も深 、部位の深さの 20乃至 60%である ことを特徴とする空気入りタイヤ。
[11] 請求項 9記載の空気入りタイヤにおいて、
前記外側ラグ溝内の深さが相対的に浅 、部位に、タイヤ幅方向及び周方向に延び 、かつ前記第 1のサイプに接続された第 2のサイプを有することを特徴とする空気入り タイヤ。
[12] 請求項 1乃至 10の何れかに記載の空気入りタイヤにおいて、
前記第 1のサイプは深さ方向に 1つ以上の傾斜部を有することを特徴とする空気入 りタイヤ。
[13] 請求項 12記載の空気入りタイヤにおいて、
前記第 1のサイプの少なくとも 1つの傾斜部に、該傾斜部を挟んで対向する壁面か ら対向するように突出する突起対を有することを特徴とする空気入りタイヤ。
[14] 請求項 13記載の空気入りタイヤにおいて、
前記突起対の一対の突出量の和が前記第 1のサイプ幅に相当することを特徴とす る空気入りタイヤ。
[15] 請求項 13又は 14に記載の空気入りタイヤにおいて、
前記突起対の数は少なくとも 4つであることを特徴とする空気入りタイヤ。
[16] 請求項 13乃至 15の何れかに記載の空気入りタイヤにおいて、
前記突起の断面積の総和が、前記第 1のサイプの傾斜部を挟んで対向する壁面の 総面積の 1. 5乃至 50%であることを特徴とする空気入りタイヤ。
[17] 請求項 13乃至 16の何れかに記載の空気入りタイヤにおいて、
前記第 1のサイプの各傾斜部を挟んで対向する壁面が少なくとも 1つの突起対を有 することを特徴とする空気入りタイヤ。
[18] 請求項 13乃至 17の何れかに記載の空気入りタイヤにおいて、
前記突起の断面の形状が円形、十字形、又は多角形であることを特徴とする空気 入りタイヤ。
PCT/JP2006/310626 2005-06-30 2006-05-29 空気入りタイヤ WO2007004369A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005191256 2005-06-30
JP2005-191256 2005-06-30
JP2005256931 2005-09-05
JP2005-256931 2005-09-05
JP2005-351141 2005-12-05
JP2005351141A JP4863351B2 (ja) 2005-06-30 2005-12-05 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2007004369A1 true WO2007004369A1 (ja) 2007-01-11

Family

ID=37604245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310626 WO2007004369A1 (ja) 2005-06-30 2006-05-29 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JP4863351B2 (ja)
WO (1) WO2007004369A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058145A1 (en) * 2006-08-30 2009-05-13 Bridgestone Corporation Pneumatic tire
JP2010042765A (ja) * 2008-08-14 2010-02-25 Yokohama Rubber Co Ltd:The 空気入りタイヤ
EP2174805A1 (en) * 2007-05-29 2010-04-14 Bridgestone Corporation Pneumatic tire
CN108790615A (zh) * 2017-04-28 2018-11-13 住友橡胶工业株式会社 轮胎

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743755B2 (ja) * 2005-09-06 2011-08-10 株式会社ブリヂストン 空気入りタイヤ
BR112015014951A2 (pt) * 2012-12-20 2017-07-11 Bridgestone Americas Tire Operations Llc reforço de ranhura transversal
JP5722932B2 (ja) * 2013-02-01 2015-05-27 株式会社ブリヂストン 空気入りタイヤ
WO2015029442A1 (ja) * 2013-08-28 2015-03-05 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP6981925B2 (ja) * 2018-06-04 2021-12-17 株式会社ブリヂストン タイヤ加硫方法および装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345504A (ja) * 1991-05-22 1992-12-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JPH09132007A (ja) * 1995-11-10 1997-05-20 Bridgestone Corp 乗用車および小型トラック用空気入りラジアル・タイヤ
JPH10250315A (ja) * 1997-03-10 1998-09-22 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH11105512A (ja) * 1997-10-02 1999-04-20 Bridgestone Corp 空気入りタイヤ
JP2000177330A (ja) * 1998-12-18 2000-06-27 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2001071330A (ja) * 1999-09-07 2001-03-21 Bridgestone Corp 空気入りタイヤ及びモールド
JP2001180227A (ja) * 1999-12-24 2001-07-03 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2001219717A (ja) * 1999-12-02 2001-08-14 Bridgestone Corp 空気入りタイヤ
JP2004314758A (ja) * 2003-04-15 2004-11-11 Bridgestone Corp 空気入りタイヤ
JP2005178548A (ja) * 2003-12-19 2005-07-07 Bridgestone Corp 空気入りタイヤ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345504A (ja) * 1991-05-22 1992-12-01 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JPH09132007A (ja) * 1995-11-10 1997-05-20 Bridgestone Corp 乗用車および小型トラック用空気入りラジアル・タイヤ
JPH10250315A (ja) * 1997-03-10 1998-09-22 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH11105512A (ja) * 1997-10-02 1999-04-20 Bridgestone Corp 空気入りタイヤ
JP2000177330A (ja) * 1998-12-18 2000-06-27 Yokohama Rubber Co Ltd:The スタッドレスタイヤ
JP2001071330A (ja) * 1999-09-07 2001-03-21 Bridgestone Corp 空気入りタイヤ及びモールド
JP2001219717A (ja) * 1999-12-02 2001-08-14 Bridgestone Corp 空気入りタイヤ
JP2001180227A (ja) * 1999-12-24 2001-07-03 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2004314758A (ja) * 2003-04-15 2004-11-11 Bridgestone Corp 空気入りタイヤ
JP2005178548A (ja) * 2003-12-19 2005-07-07 Bridgestone Corp 空気入りタイヤ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2058145A1 (en) * 2006-08-30 2009-05-13 Bridgestone Corporation Pneumatic tire
EP2058145A4 (en) * 2006-08-30 2011-08-24 Bridgestone Corp PNEUMATIC
EP2174805A1 (en) * 2007-05-29 2010-04-14 Bridgestone Corporation Pneumatic tire
EP2174805A4 (en) * 2007-05-29 2011-08-31 Bridgestone Corp PNEUMATIC
US9623710B2 (en) 2007-05-29 2017-04-18 Bridgestone Corporation Pneumatic tire
JP2010042765A (ja) * 2008-08-14 2010-02-25 Yokohama Rubber Co Ltd:The 空気入りタイヤ
CN108790615A (zh) * 2017-04-28 2018-11-13 住友橡胶工业株式会社 轮胎

Also Published As

Publication number Publication date
JP4863351B2 (ja) 2012-01-25
JP2007091197A (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2007004369A1 (ja) 空気入りタイヤ
JP4521829B2 (ja) 空気入りタイヤ
JP5685319B2 (ja) 複数の摩耗層を有するタイヤトレッド
EP2308697B1 (en) Tire
JP3180160B2 (ja) スタッドレスタイヤ
JP5519721B2 (ja) 空気入りタイヤ
JP2006044648A (ja) タイヤトレッド、および3次元トレッドサイプを形成するモールドブレード
WO2006013694A1 (ja) 空気入りタイヤとその製造方法
JP2003118322A (ja) 空気入りタイヤ
JPH1199810A (ja) 雪路用空気入りタイヤ
JP2010012879A (ja) 空気入りタイヤ
JP2006096324A (ja) 空気入りタイヤ
JP2008213673A (ja) 空気入りタイヤ
WO2006062156A1 (ja) 空気入りタイヤ
JP2003182314A (ja) 空気入りタイヤ
JP5519176B2 (ja) 空気入りタイヤ
JP2002187412A (ja) 空気入りタイヤ
JP5769427B2 (ja) 空気入りタイヤ
JPH02293204A (ja) 冬期走行用空気入りタイヤ
JPH01175507A (ja) 空気入りタイヤ
JP2005329793A (ja) 空気入りタイヤ
JP3686112B2 (ja) 空気入りタイヤ
JPH0332906A (ja) 非対称トレッドを備えた空気入りタイヤ
JP7098947B2 (ja) 空気入りタイヤ
JP7192325B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756671

Country of ref document: EP

Kind code of ref document: A1