WO2006137224A1 - 非水系電解液及びそれを用いた非水系電解液二次電池 - Google Patents

非水系電解液及びそれを用いた非水系電解液二次電池 Download PDF

Info

Publication number
WO2006137224A1
WO2006137224A1 PCT/JP2006/309423 JP2006309423W WO2006137224A1 WO 2006137224 A1 WO2006137224 A1 WO 2006137224A1 JP 2006309423 W JP2006309423 W JP 2006309423W WO 2006137224 A1 WO2006137224 A1 WO 2006137224A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
aqueous electrolyte
negative electrode
iii
general formula
Prior art date
Application number
PCT/JP2006/309423
Other languages
English (en)
French (fr)
Inventor
Noriko Shima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP06746233A priority Critical patent/EP1898485A4/en
Priority to CN2006800309926A priority patent/CN101248552B/zh
Publication of WO2006137224A1 publication Critical patent/WO2006137224A1/ja
Priority to US11/955,692 priority patent/US7803487B2/en
Priority to US12/713,750 priority patent/US20100216036A1/en
Priority to US13/280,051 priority patent/US20120040252A1/en
Priority to US13/285,617 priority patent/US20120045698A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery using the same.
  • secondary batteries using a negative electrode active material containing Si, Sn, Pb, etc. are suitable for increasing the capacity.
  • safety is lowered and a negative electrode active material is deteriorated due to charge and discharge, and charge and discharge efficiency is lowered and cycle characteristics are deteriorated.
  • a cyclic carbonate or carbonate is included in the electrolyte.
  • a nonaqueous electrolytic solution containing a multimer of the above and a phosphate triester see Patent Document 1.
  • a heterocyclic compound containing a sulfur atom and Z or oxygen atom in the ring is added to the non-aqueous electrolyte.
  • Patent Document 2 a method for improving the charge / discharge cycle characteristics of a battery by forming a film on the surface of the negative electrode active material has also been proposed (see Patent Document 2).
  • non-aqueous electrolyte secondary batteries using various negative electrode materials In order to improve characteristics such as load characteristics, cycle characteristics, storage characteristics, and low temperature characteristics, an electrolyte and a main solvent In addition to the above, electrolytic solutions containing various compounds have been proposed.
  • an electrolytic solution containing vinylene carbonate and a derivative thereof (for example, a patent document) is used to suppress decomposition of the electrolytic solution of a non-aqueous electrolyte secondary battery using a graphite negative electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 176470
  • Patent Document 2 JP 2004-87284 A
  • Patent Document 3 Japanese Patent Laid-Open No. 8-45545
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-40526
  • Patent Document 5 JP-A-11-195429
  • an object of the present invention is to provide a high charge capacity in a non-aqueous electrolyte secondary battery using a negative electrode active material having at least one kind of atom selected from the group consisting of Si atom, Sn atom and Pb atom.
  • a non-aqueous electrolyte secondary battery having excellent characteristics over a long period of time, particularly excellent in cycle characteristics (discharge capacity retention ratio), and a non-aqueous electrolyte used for the non-aqueous electrolyte It is.
  • Another object of the present invention is a non-aqueous electrolyte secondary battery using various materials such as graphite as a negative electrode active material, having a high charge capacity and excellent characteristics over a long period of time.
  • a negative electrode active material having at least one atom selected from the group consisting of Si atom, Sn atom and Pb atom.
  • a carbonate having at least one of an unsaturated bond and a halogen atom in the non-aqueous electrolyte and at least one of components (i) to (iii) described below ( It has been found that the above-mentioned problems can be solved by adding a specific component).
  • each of the component (i) and the component (ii) exhibits the same effect without using a specific carbonate
  • the component (iii) is a secondary material using the specific negative electrode active material described above.
  • the present invention has been completed by finding that the same effect can be achieved in secondary batteries using various negative electrode active materials such as graphite materials, without being limited to batteries.
  • the gist of the present invention includes a negative electrode and a positive electrode that can occlude and release lithium ions, and a non-aqueous electrolyte, and the negative electrode is selected from the group consisting of Si atoms, Sn atoms, and Pb atoms.
  • a non-aqueous electrolyte solution containing a carbonate having at least one of an unsaturated bond and a halogen atom containing a carbonate having at least one of an unsaturated bond and a halogen atom, and (i) a compound represented by the following general formula (I) and a saturated cyclic carbonate, (ii) A non-aqueous electrolyte characterized by containing at least one of a compound represented by the formula ( ⁇ ) and (m) a compound represented by the following general formula (III 1).
  • n represents an integer of 3 or more
  • m represents an integer of 1 or more.
  • the sum of n and m is 5 or more.
  • n and m are integers different from each other (claim 2).
  • the concentration of the compound represented by the general formula (I) in the non-aqueous electrolyte is preferably 5% by volume or more and 95% by volume or less (Claim 3).
  • the concentration of the saturated cyclic carbonate in the non-aqueous electrolyte is 5% by volume or more.
  • each of- is independently an alkyl group having 1 to 3 carbon atoms which is unsubstituted or substituted with a fluorine atom. (Claim 5) .
  • the concentration of the compound represented by the general formula (II) in the non-aqueous electrolyte is 0 It is preferable that the content be from 01% by weight to 10% by weight (claim 6).
  • the compound power represented by the general formula (III 1) is preferably selected from the compound power represented by the following general formula (III 2) (claim 7).
  • X 1 and X 2 each independently represent an element other than hydrogen
  • z represents any element or group
  • n each independently represents an integer of 1 or more.
  • each Z may be the same or different.
  • the compound power represented by the above general formula (III-1) is preferably selected from the compound power represented by the following general formula (III 3) (claim 8).
  • R each independently has a substituent, and represents an alkyl group or an aryl group. A plurality of R may be bonded to each other to form a ring.
  • the concentration of the compound represented by the general formula (III-1) in the non-aqueous electrolyte is preferably 0.01 wt% or more and 10 wt% or less (claim 9).
  • the concentration of the carbonate having at least one of the unsaturated bond and the halogen atom in the nonaqueous electrolytic solution is preferably 0.01 wt% or more and 70 wt% or less (claims). Item 10).
  • the carbonate having an unsaturated bond or a halogen atom is selected from the group consisting of vinylene carbonate, butyl ethylene carbonate, fluoro ethylene carbonate, difluoro ethylene carbonate, and derivatives thereof.
  • the above carbonates are preferred (claim 11).
  • it further comprises at least one carbonate selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, jetyl carbonate, methyl n-propyl carbonate, ethyl n-propyl carbonate, and di-n-propyl carbonate.
  • at least one carbonate selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, jetyl carbonate, methyl n-propyl carbonate, ethyl n-propyl carbonate, and di-n-propyl carbonate.
  • another gist of the present invention includes a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, wherein the negative electrode is composed of Si atoms, Sn atoms and Pb atoms.
  • n represents an integer of 3 or more
  • m represents an integer of 1 or more.
  • the sum of n and m is 5 or more.
  • n and m are preferably different integers (claim 15).
  • the concentration power of the compound represented by the general formula (I) in the non-aqueous electrolyte is preferably 5 vol% or more and 95 vol% or less (claim 16).
  • the concentration power of the saturated cyclic carbonate in the non-aqueous electrolyte is preferably 5% by volume or more and 50% by volume or less (claim 17).
  • another gist of the present invention includes a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, wherein the negative electrode is composed of Si atoms, Sn atoms, and Pb atoms.
  • each of the scales 1 to! ⁇ Is independently an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms substituted with a fluorine atom (claims). 19).
  • the concentration of the compound represented by the general formula (II) in the nonaqueous electrolytic solution is preferably 0.01 wt% or more and 10 wt% or less (claim 20).
  • Another aspect of the present invention includes a negative electrode capable of inserting and extracting lithium ions, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode is selected from the group consisting of Si atoms, Sn atoms, and Pb atoms.
  • a non-aqueous electrolyte solution comprising the negative electrode active material having at least one kind of atom and the non-aqueous electrolyte solution according to any one of claims 1 to 20. It exists in a secondary battery (claim 21).
  • Another aspect of the present invention is a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery including a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte comprising at least one of an unsaturated bond and a carbonate having a halogen atom and a compound represented by the following general formula (III-1) (claim 22): .
  • the compound power represented by the general formula (III 1) is preferably selected from compounds represented by the following general formula (III 2) (claim 23).
  • X 1 and X 2 each independently represent an element other than hydrogen
  • Z represents any element or group
  • n each independently represents an integer of 1 or more.
  • each Z may be the same or different.
  • the compound power represented by the general formula (III 1) is preferably selected (compound power represented by the following general formula (III 3)) (claim 24).
  • R each independently has a substituent, and represents an alkyl group or an aryl group. A plurality of R may be bonded to each other to form a ring. )
  • the concentration of the compound represented by the general formula (III-1) in the non-aqueous electrolyte is preferably 0.01 wt% or more and 10 wt% or less (claim 25).
  • another gist of the present invention includes a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is according to any one of claims 22 to 25.
  • the non-aqueous electrolyte secondary battery is characterized in that it is a non-aqueous electrolyte solution according to claim 2.
  • the non-aqueous electrolyte secondary battery of the present invention has a high charge capacity, excellent characteristics over a long period of time, and is particularly excellent in discharge capacity maintenance rate.
  • the non-aqueous electrolyte solution according to the first aspect of the present invention (hereinafter abbreviated as “the first non-aqueous electrolyte solution of the present invention” as appropriate) will be described.
  • the first non-aqueous electrolyte of the present invention comprises a negative electrode capable of occluding and releasing lithium ions, a positive electrode, and a non-aqueous electrolyte, and the negative electrode is selected from the group consisting of Si atoms, Sn atoms and Pb atoms.
  • the first non-aqueous electrolyte of the present invention like a general non-aqueous electrolyte, usually has an electrolyte and a non-aqueous solvent that dissolves it as its main component. Further, at least one of the components (i) to (iii) described below (hereinafter referred to as “specific component” as appropriate) and a carbonate having at least one of an unsaturated bond and a halogen atom (hereinafter referred to as appropriate). And “specific carbonate”). It may contain other components (additives, etc.).
  • the specific component according to the present invention is at least one of the following components (i) to (iii).
  • Component (i) a compound represented by the following general formula (I) and a saturated cyclic carbonate.
  • Component (ii) A compound represented by the following general formula (II).
  • the first non-aqueous electrolyte solution of the present invention containing component (i), component (ii), and component (iii), respectively, These are called “electrolyte (1)”, “non-aqueous electrolyte (11)”, “non-aqueous electrolyte (111)”, etc. If these are not particularly distinguished, they are simply referred to as “the first non-aqueous electrolyte of the present invention”.
  • the first nonaqueous electrolytic solution of the present invention may contain any one of the above-mentioned components (i) to (m) alone, and two or more of them may be arbitrarily selected. You may have it in combination and a ratio. Therefore, for example, in the case of “non-aqueous electrolyte (1)”, not only the above-mentioned component (i) is contained alone, but also the above-mentioned component (ii) and Z or (iii) may be included. Shall be included. The same applies to other cases.
  • Component (i) is a compound represented by the following general formula (I) (hereinafter referred to as “specific compound (I ;) ". ) And a saturated cyclic carbonate.
  • the specific compound (I) is a chain carbonate represented by the following general formula (I).
  • n represents an integer of 3 or more
  • m represents an integer of 1 or more, provided that the sum of n and m is 5 or more, and a partial or total force of a hydrogen atom. It may be substituted with a fluorine atom.
  • n Is usually 3 or more, usually 6 or less, preferably 5 or less. If n exceeds this upper limit, the viscosity of the non-aqueous electrolyte tends to increase.
  • the reason why the number n of carbon atoms of the first substituent is 3 or more is that the negative electrode active material containing the metal atom has a chain shape with the number of carbon atoms n of the first substituent being 3 or more. This is to suppress cycle deterioration by lowering the activity of the carbonate. In addition, a low molecular weight force-bonate is prone to cycle deterioration due to side activity with high activity, but a chain carbonate having a first substituent with n of 3 or more increases the molecular weight and alleviates this problem.
  • an n-propyl group, an n-butyl group, and an n-xyl group are particularly preferable.
  • a methyl group and an ethyl group are particularly preferable.
  • a part or all of the hydrogen atoms of the first substituent and Z or the second substituent of the specific compound (I) may be substituted with a fluorine atom.
  • Fluorine atoms are preferred as substitution elements because of their high oxidation resistance.
  • the number of fluorine atoms substituted in the specific compound (I) is not particularly limited, but is preferably 6 or less.
  • the molecular weight of the specific compound (I) is usually 132 or more, usually 188 or less, preferably 160 or less. Molecular weight force S Above this upper limit, the solute tends to be difficult to dissolve.
  • methylbutyl carbonate, ethylpropyl carbonate, ethylbutyl Carbonate is preferred from the viewpoint of basic properties such as viscosity and conductivity as an electrolytic solution.
  • methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, and dipropyl carbonate are also preferable because of their good battery characteristics such as cycle characteristics.
  • ethylpropyl carbonate, ethylbutyl carbonate, and dipropyl carbonate are particularly preferred!
  • the specific compound (I) may be used alone in the first non-aqueous electrolyte (I) or in combination of two or more in any combination and ratio. Oh ,.
  • the compounding amount of the specific compound (I) is usually 50% by volume or more, preferably 60% by volume or more, and usually 95% by volume or less, preferably with respect to the first non-aqueous electrolyte (I). Is 90% by volume or less. If the amount of the specific compound (I) is too small, the degree of dissociation of the lithium salt may decrease, and the electrical conductivity of the resulting non-aqueous electrolyte may decrease. On the other hand, the specific compound (I) When there is too much compounding quantity, there exists a tendency for the viscosity of the nonaqueous electrolyte solution obtained to rise.
  • saturated cyclic carbonate used in combination with the specific compound (I) include ethylene carbonate, propylene carbonate, butylene carbonate and the like.
  • any hydrogen atom in these cyclic carbonates may be substituted with a fluorine atom.
  • Examples of the compound in which an arbitrary hydrogen atom of the cyclic carbonate is substituted with a fluorine atom include, for example,
  • ethylene carbonate, propylene carbonate, fluoroethylene strength carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4 (fluoromethyl) ethylene carbonate have a high dielectric constant. Therefore, the cycle characteristics are good when the solute dissolves or the battery is immediately used.
  • saturated cyclic carbonates may be used alone or in combination of two or more in any combination and ratio.
  • the blending amount of the saturated cyclic carbonate is usually 5% by volume or more, preferably 10% by volume or more, and usually 50% by volume or less, preferably 40% by volume or less with respect to the non-aqueous electrolyte (I). is there. If the amount of the saturated cyclic carbonate is too small, it tends to be difficult to dissolve the solute. On the other hand, when the amount of the saturated cyclic carbonate is too large, the viscosity of the obtained nonaqueous electrolytic solution tends to increase.
  • the non-aqueous electrolyte (I) contains a chain carbonate (specific compound (I)) represented by the general formula (I), a saturated cyclic carbonate, and a specific carbonate described later.
  • the specific carbonate is added to the non-aqueous electrolyte (I) in the form of an additive, so here the specific compound (I) and the saturated cyclic carbonate (hereinafter referred to as non-aqueous electrolyte) In the explanation of (I), these may be collectively referred to as “non-aqueous solvents”).
  • nonaqueous solvents in the nonaqueous electrolytic solution (I) and combinations thereof include the following (a) , (b).
  • the preferred content of the specific compound (I) in the non-aqueous electrolyte (I) as described above is usually 50% by volume or more, preferably 60% by volume or more, and usually 95% by volume or less, preferably Is 90% by volume or less, and the suitable content of the saturated cyclic carbonate in the non-aqueous electrolyte (I) is usually 5% by volume or more, preferably 10% by volume or more, and usually 50% by volume or less, preferably 40%.
  • the volume ratio of the specific compound (I) to the saturated cyclic carbonate is preferably 50:50 to 95 even when the non-aqueous electrolyte (I) contains other chain carbonates. : 5, preferably 60:40 to 90:10.
  • the ratio of the chain carbonate is too small, the viscosity of the obtained non-aqueous electrolyte increases, and if too large, the degree of dissociation of the lithium salt decreases and the electrical conductivity of the obtained non-aqueous electrolyte decreases. There is.
  • the volume ratio of the other chain carbonate to the total of the specific compound (I) and the saturated cyclic carbonate is usually 30% by volume or less, preferably 25% by volume or less.
  • the combination of the non-aqueous solvent and the volume ratio thereof are particularly preferred.
  • the present invention is not limited to the following.
  • EPC 10: 90-40: 60, more preferably 20: 80-30: 70
  • EBC 10: 90-40: 60, more preferably ⁇ 20: 80-30: 70
  • FEC Fluoroethylene carbonate
  • EPC ethyl ⁇ propyl carbonate
  • EPC 10: 90-40: 60, more preferably ⁇ 20: 80-30: 70
  • EBC 10: 90-40: 60, more preferably ⁇ 20: 80-30: 70
  • DMC dimethylolene carbonate
  • EMC ethinoremethinoremethinorecarbonate
  • DEC jetinorecarbonate
  • EPC, DPC, and EBC may be those in which the hydrogen atom of the alkyl group is substituted with a fluorine atom.
  • the specific carbonate described below is usually at least 0.01 wt%, preferably at least 0.1 wt%, more preferably at least 0.1 wt% with respect to the non-aqueous electrolyte (I). It is preferable to cover in the range of 3% by weight or more, usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less. The reason for this range will be described later.
  • the specific compound (I) contained in the non-aqueous electrolyte (I) has an alkyl group or fluoroalkyl group having 3 or more carbon atoms, so that the negative electrode active material containing the metal atom can Therefore, side reactions are suppressed and cycle deterioration is suppressed.
  • the same effect can be obtained by having a carbon number greater than or equal to the total carbon number of the alkyl group or fluoroalkyl group of the chain carbonate. In this manner, in the situation where the side reaction of the chain carnate is suppressed, a good film is formed by the specific carbonate described later.
  • the charge / discharge cycle characteristics can also be improved by increasing the solubility of the electrolyte by the saturated cyclic carbonate.
  • the effect of the present invention by using such a specific compound (I), a saturated cyclic carbonate, and a specific carbonate described below is effective as a Si atom, a Sn atom and a Pb atom as the negative electrode active material. It is unique when a substance containing at least one kind of atoms selected is used. As shown in [Example, Comparative Example Group I] described later, a carbon material is used as a negative electrode active material. When used, such an effect of improving the long-term charge / discharge cycle characteristics cannot be obtained.
  • Component (ii) is a compound represented by the following general formula (II) (hereinafter abbreviated as “specific compound (II)” as appropriate).
  • X represents the above SO— or SO—, but —SO
  • ⁇ To 6 represent each independently an unsubstituted alkyl group or an alkyl group substituted with a halogen atom.
  • the alkyl group usually has 1 or more, 6 or less, preferably 3 or less carbon atoms. If n is too large, the effect per weight of the specific compound (II) may be diminished, and the effect of containing the specific compound ( ⁇ ) may not be sufficiently exhibited.
  • alkyl group examples include
  • a methyl group, an ethyl group, and an n-propyl group are particularly preferable.
  • ⁇ to 6 are an alkyl group substituted with a halogen atom
  • a part of the hydrogen atoms in the alkyl group may be substituted with a halogen atom, or the whole may be substituted with a halogen atom.
  • the halogen atom include a fluorine atom and a chlorine atom, and a fluorine atom is preferred because of high oxidation resistance.
  • the number of halogen atoms substituted is not particularly limited, but is preferably 6 or less per alkyl group, and more preferably 3 or less.
  • the alkyl group substituted with a rogen atom and a halogen atom being a fluorine atom
  • groups obtained by substituting the fluorine atoms of the groups exemplified above with other halogen atoms are also exemplified as examples of alkyl groups substituted with halogen atoms.
  • ⁇ ⁇ are the same group, and in the general formula (II)! ⁇ ⁇ Represents the same group and is unsubstituted or substituted with a fluorine atom.
  • an alkyl group of 2 is particularly preferred.
  • an unsubstituted alkyl group having 1 to 2 carbon atoms is particularly preferable.
  • the molecular weight of the specific compound (II) is not limited, and is an arbitrary force as long as the effects of the present invention are not significantly impaired. Usually, it is 100 or more, preferably 110 or more. There is no particular upper limit
  • the production method of the specific compound (II) is not particularly limited, and a known method is arbitrarily selected. It is possible to build.
  • the amount of the specific compound (II) to the non-aqueous electrolyte (II) is not particularly limited as long as the effect of the present invention is not significantly impaired, but the non-aqueous electrolyte (II) is not limited. On the other hand, it is desirable to contain it at a concentration of usually 0.01% by weight or more, preferably 0.1% by weight or more, and usually 10% by weight or less, preferably 5% by weight or less. If the compounding amount of the specific compound (II) is too small, when the non-aqueous electrolyte is used in a non-aqueous electrolyte secondary battery, the obtained non-aqueous electrolyte secondary battery has a sufficient cycle characteristic improving effect. It may be difficult to express.
  • weight of the specific compound (II) Z weight of the specific carbonate is usually 0.0001 or more, preferably 0.001 or more, more preferably 0.01 or more, and usually 1000 or less, preferably 100 or less, more preferably 10 or less. A range is desirable. If the relative weight ratio is too low or too high, it may be difficult to obtain a synergistic effect.
  • the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery can be improved.
  • the specific compound (II) contained in the non-aqueous electrolyte solution (i) and the specific carbonate react together to form a good protective coating layer on the surface of the negative electrode active material, thereby forming a secondary coating. Reaction is suppressed
  • the effect of the present invention by using such a specific compound (II) in combination with the specific carbonate described later is at least selected from the group consisting of Si atom, Sn atom and Pb atom as the negative electrode active material. It is unique when a substance containing one kind of atom is used. As shown in [Example / Comparative Example Group II], when a carbon material is used as the negative electrode active material, such an effect of improving the long-term charge / discharge cycle characteristics cannot be obtained.
  • Component (m) is a compound represented by the following general formula (in-1) (hereinafter, abbreviated as “specific compound (m)” as appropriate).
  • A is preferably other than a group having an aryl group or an aryl group as a substituent. That is, A is preferably an element or group other than an aryl group, and is preferably an element or group other than a group having an aryl group as a substituent.
  • A has a substituent in various functional groups that are preferably halogen as an element.
  • substituents linear or cyclic, saturated or unsaturated alkyl groups are preferred.
  • each R independently represents an optionally substituted alkyl group or aryl group. Note that a plurality of R may be bonded to each other to form a ring. o)
  • X 1 and X 2 each independently represent an element other than hydrogen.
  • any element other than hydrogen can be used as long as the chemical structure of the above formula (III-2) is established.
  • Specific examples of preferable X 1 include a carbon atom, a sulfur atom, and a phosphorus atom.
  • Specific examples of suitable X 2 include an oxygen atom and a nitrogen atom.
  • Z represents an arbitrary element or group.
  • suitable examples of Z include an alkyl group. Of these, a methyl group and an ethyl group are particularly preferable, in which a methyl group, an ethyl group, a fluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2,2-trifluoroethyl group, and the like are preferable.
  • m is 2 or more, each Z may be the same or different.
  • a plurality of Z may be bonded to each other to form a ring as appropriate.
  • each R 1 independently represents an alkyl group.
  • R 1 include the alkyl groups exemplified above as preferred specific examples of Z in the formula (III 2).
  • each R independently represents an optionally substituted alkyl group or aryl group.
  • R when R is an alkyl group, a methyl group, an ethyl group, a fluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2, 2, 2-trifluoroethyl group Groups and the like. Of these, a methyl group and an ethyl group are preferable.
  • R when R is an aryl group, specific examples include a phenol group, o-tosyl group, m-tosyl group, p-tosyl group, o-fluorophenol group, m-fluorophenyl group. Group, p-fluorine phenyl group and the like.
  • Rs may be the same or different from each other. Further, a plurality of R may be bonded to each other to form a ring.
  • the amount of the specific compound (III) to be added to the non-aqueous electrolyte (III) is not particularly limited as long as the effect of the present invention is not significantly impaired, but the non-aqueous electrolyte (III) is not limited.
  • usually 0.0 It is 1% by weight or more, preferably 0.1% by weight or more, and usually 10% by weight or less, preferably 5% by weight or less.
  • Below the lower limit of this range when the non-aqueous electrolyte is used in a non-aqueous electrolyte secondary battery, the resulting non-aqueous electrolyte secondary battery may not exhibit a sufficient cycle characteristic improving effect.
  • the upper limit is exceeded, the reactivity in the non-aqueous electrolyte increases, and the battery characteristics of the resulting non-aqueous electrolyte secondary battery may deteriorate.
  • the production method of the specific compound (III) is not particularly limited, and any known method can be arbitrarily used.
  • the ratio of the specific compound (III) to the specific carbonate described later is also arbitrary, but is expressed by "weight of the specific compound (III) Z weight of the specific carbonate".
  • the relative weight ratio between the two is usually 0.001 or more, preferably 0.01 or more, more preferably 0.1 or more, and usually 1000 or less, preferably 100 or less, more preferably 10 or less. If the relative weight ratio is too low or too high, it may be difficult to obtain a synergistic effect by the combined use of the specific compound (III) and the specific carbonate.
  • the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery can be improved. Become. Although the details of this reason are not clear, it is estimated as follows. That is, the specific compound (III) contained in the non-aqueous electrolyte (III) reacts with the specific carbonate to form a good protective coating layer on the surface of the negative electrode active material, thereby causing side reactions. It is presumed that cycle deterioration is suppressed.
  • the specific carbonate according to the present invention is a carbonate having at least one of an unsaturated bond and a halogen atom. That is, the specific carbonate according to the present invention may have both an unsaturated bond and a halogen atom, which may have only an unsaturated bond or may have only a halogen atom. .
  • the carbonate having an unsaturated bond (this is appropriately abbreviated as "unsaturated carbonate”) is a carbonate having a carbon-carbon unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond. Any other unsaturated carbonate with no restrictions Can be used. Carbonate having an aromatic ring is also included in the force bond having an unsaturated bond.
  • Examples of unsaturated carbonates include beylene carbonate derivatives, ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, phenol carbonates, bull carbonates, And aryl carbonates.
  • bi-rene carbonate derivatives include
  • ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond include:
  • phenolic carbonates include
  • aryl carbonates include
  • unsaturated carbonates as the specific carbonate, vinylene carbonate derivatives, ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond are particularly preferred.
  • Len carbonate, 4,5-diphenyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, and vinylenoethylene carbonate are more preferably used because they form a stable interface protective film.
  • the carbonate having a halogen atom (this is appropriately abbreviated as "no, rogenated carbonate”) is not particularly limited as long as it has a halogen atom. Can be used.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.
  • the number of halogen atoms contained in the halogenated carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the halogenated carbonate has a plurality of halogen atoms, they may be the same as or different from each other.
  • halogenated carbonate examples include ethylene carbonate derivatives, dimethyl carbonate derivatives, ethyl methyl carbonate derivatives, and jetyl carbonate derivatives.
  • dimethyl carbonate derivatives include 4, 4-dichloro-5,5-dimethylethylene carbonate, etc.
  • ethylmethyl carbonate derivatives include 2-fluoroethylmethyl carbonate,
  • Examples include 2,2-dichloroethinole chloromethylolate carbonate, 2-chloroethinoresyl chloromethylolate carbonate, ethyltrichloromethyl carbonate, and the like.
  • decyl carbonate derivatives include ethyl (2-fluoroethyl) carbonate, ethinole (2, 2-difunoleoloetinole) carbonate, Bis (2-funoleoroechinole) carbonate,
  • halogenated carbonates carbonates having fluorine atoms are preferred, and ethylene carbonate derivatives having fluorine atoms are more preferred.
  • fluoroethylene carbonate, 4 (fluoromethyl) ethylene carbonate, 4, 4-diph Fluoroethylene carbonate and 4,5-difluoroethylene carbonate are more preferably used because they form an interface protective film.
  • halogenated unsaturated carbonate a carbonate having both an unsaturated bond and a halogen atom (this is abbreviated as "halogenated unsaturated carbonate” as appropriate) can also be used.
  • halogenated unsaturated carbonate any halogenated unsaturated carbonate can be used as long as the effect of the present invention is not particularly impaired.
  • halogenated unsaturated carbonate examples include bi-ethylene carbonate derivatives, ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, and aryl carbonates.
  • bi-rene carbonate derivatives examples include bi-rene carbonate derivatives, ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, and aryl carbonates.
  • ethylene carbonate derivatives substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond include
  • phenolic carbonates include:
  • vinyl carbonates include
  • aryl carbonates include
  • the specific carbonates are highly effective when used alone, and include beylene carbonate, butylethylene carbonate, fluoroethylene carbonate, and 4,5-diflurane. It is particularly preferable to use at least one selected from the group strength consisting of ethylene carbonate and these derivatives.
  • the molecular weight of the specific carbonate is not particularly limited, and is an arbitrary force as long as the effects of the present invention are not significantly impaired. Usually 50 or more, preferably 80 or more, and usually 250 or less, preferably 150 or less. . If the molecular weight is too large, the solubility of the specific carbonate in the non-aqueous electrolyte is lowered, and the effects of the present invention may not be sufficiently exhibited.
  • the production method of the specific carbonate is not particularly limited and can be produced by arbitrarily selecting a known method.
  • the first nonaqueous electrolytic solution of the present invention may contain any one kind of force alone, and two or more kinds may be used in any combination and ratio. May be.
  • the amount of the specific carbonate added to the first non-aqueous electrolyte of the present invention is not limited, and may be arbitrary as long as the effects of the present invention are not significantly impaired.
  • the first non-aqueous electrolyte of the present invention It is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and usually 70% by weight or less, preferably 50% by weight or less, more preferably It is desirable to contain at a concentration of 40% by weight or less.
  • the non-aqueous electrolyte secondary battery exhibits a sufficient cycle characteristic improvement effect. If the ratio of the specific carbonate is too large, when the first non-aqueous electrolyte of the present invention is used in a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery There is a tendency that the high-temperature storage characteristics and the charge characteristics of the batteries are deteriorated, and in particular, the amount of gas generation increases and the discharge capacity maintenance ratio may decrease.
  • the above-mentioned specific compound (I) and Z or saturated cyclic carbonate are carbonates having an unsaturated bond and Z or a halogen atom. Cases are also conceivable. In such a case, since the specific compound (I) and Z or saturated cyclic force carbonate also function as the specific carbonate, it is not necessary to use another specific carbonate.
  • any solvent can be used as long as the effects of the present invention are not significantly impaired.
  • a non-aqueous solvent may be used individually by 1 type, and 2 or more types may be used together by arbitrary combinations and ratios.
  • cyclic carbonate there are no particular restrictions on the type of cyclic carbonate, but examples of commonly used cyclic carbonates include those other than the carbonates that fall under the specific carbonates described above.
  • the first nonaqueous electrolytic solution of the present invention preferably contains ethylene carbonate and Z or propylene carbonate as a nonaqueous solvent in addition to the carbonate corresponding to the above-mentioned specific carbonate.
  • the type of chain carbonate is not particularly limited, but examples of those that are usually used include carbonates other than the carbonates that correspond to the specific carbonates described above.
  • the first non-aqueous electrolyte solution of the present invention includes, as a non-aqueous solvent, in addition to carbonates corresponding to the above-mentioned specific carbonates, dimethyl carbonate, ethyl methyl carbonate, jetyl carbonate, methyl n- It preferably contains at least one selected from the group consisting of propyl carbonate, ethyl n- propyl carbonate, and di- n -propyl carbonate. Of these, jetyl carbonate, methyl-n-propyl power carbonate, and ethyl-propyl carbonate are preferred. Especially when jetty carbonate is used as a non-aqueous electrolyte secondary battery, cycle characteristics are good. ,.
  • the type of chain carboxylic acid ester is not particularly limited, but examples of commonly used ones include
  • the type of the cyclic carboxylic acid ester is not particularly limited, but examples of commonly used ones include
  • ⁇ -butyrolatatone is more preferable.
  • chain ether is not particularly limited, but examples of commonly used ones include
  • dimethoxyethane and diethoxyethane are more preferable.
  • the type of cyclic ether is not particularly limited, but examples of commonly used ones include
  • Examples include 2-methyltetrahydrofuran.
  • the type of the phosphorus-containing organic solvent is not particularly limited, but examples of commonly used ones include
  • Phosphate esters such as phosphoric acid phosphate
  • Phosphites such as triphosphite; Trimethylphosphine oxide,
  • Phosphine oxides such as triphenylphosphine oxide; and the like.
  • the type of the sulfur-containing organic solvent is not particularly limited.
  • cyclic carbonates such as ethylene carbonate and Z or propylene carbonate, and it is preferable to use these in combination with a chain carbonate.
  • the preferred content of the chain carbonate in the non-aqueous solvent in the first non-aqueous electrolyte of the present invention is: Usually 30% by weight or more, preferably 50% by weight or more, and usually 95% by weight or less, preferably 90% by weight or less.
  • the preferred content of the cyclic carbonate in the non-aqueous solvent in the first non-aqueous electrolyte of the present invention is usually 5% by weight or more, preferably Is 10% by weight or more, usually 50% by weight or less, preferably 40% by weight or less.
  • the viscosity of the first non-aqueous electrolyte of the present invention may increase, and if the proportion of the chain carbonate is too large, the degree of liberation of the lithium salt that is the electrolyte is reduced. In some cases, the electrical conductivity of the first non-aqueous electrolyte of the present invention may decrease.
  • the saturated cyclic carbonate functions as a non-aqueous solvent. Therefore, in addition to the specific compound (I) and the saturated cyclic carbonate, other non-aqueous solvents are used. May be contained, but is not essential. When other non-aqueous solvent is used in combination, it is preferable that the total amount of the saturated cyclic carbonate and the other non-aqueous solvent satisfies the above-mentioned range of the content of the non-aqueous solvent.
  • the electrolyte used for the first non-aqueous electrolyte of the present invention there is no limitation on the electrolyte used for the first non-aqueous electrolyte of the present invention, and any known one can be used as long as it is used as an electrolyte in the intended non-aqueous electrolyte secondary battery.
  • a lithium salt is usually used as an electrolyte.
  • Inorganic lithium salts such as LiBF;
  • Fluorine-containing organic lithium salt such as LiBF (C F SO)
  • Lithium tris (oxalato) phosphate Lithium tris (oxalato) phosphate
  • Lithium salt containing dicarboxylic acid complex such as lithium difluorooxalate borate
  • LiPF LiBF, LiCF SO, LiN (CF SO), LiN (C F SO), Li
  • Titanium 1,2-tetrafluoroethanedisulfonylimide is preferred, especially LiPF, LiBF
  • the electrolyte one kind may be used alone, or two or more kinds may be used in any combination and in any ratio.
  • two types of specific inorganic lithium salts are used in combination, or when an inorganic lithium salt and a fluorine-containing organic lithium salt are used in combination, gas generation during trickle charging is suppressed, or deterioration after high-temperature storage is prevented. Since it is suppressed, it is preferable.
  • lithium salts such as LiPF and LiBF, and LiCF SO, LiN (CF SO), L
  • fluorine-containing organic lithium salt such as 4 6 4 3 3 3 2 2 iN (C 2 SO 4).
  • LiBF is usually 0.1% to the entire electrolyte.
  • LiBF dissociates
  • the resistance of the electrolyte may be increased.
  • inorganic lithium salts such as LiPF and LiBF, and LiCF SO, LiN (CF SO), LiN (C
  • the proportion of the lithium salt is usually in the range of 70% by weight to 99% by weight.
  • the fluorine-containing organic lithium salt has a large molecular weight and an excessively high ratio as compared with the inorganic lithium salt, the ratio of the solvent in the whole electrolyte solution may decrease, and the resistance of the electrolyte solution may be increased.
  • the concentration of the first lithium salt in the nonaqueous electrolytic solution of the present invention, the force usually 0. 5mol'dm_ 3 or more is not limited unless executed significantly effect of the present invention, preferably 0. 6 mol'dm— 3 or more, more preferably 0.8 mol'dm_ 3 or more, usually 3 mol'dm_ 3 or less, preferably 2 mol'dm_ 3 or less, more preferably 1.5 mol'dm_ 3 or less. . If this concentration is too low, the electrical conductivity of the non-aqueous electrolyte may be insufficient.If the concentration is too high, the electrical conductivity will decrease due to an increase in viscosity, and the first non-aqueous electrolysis of the present invention will occur. The performance of the non-aqueous electrolyte secondary battery using the solution may deteriorate.
  • the first non-aqueous electrolyte of the present invention preferably contains various additives within a range that does not significantly impair the effects of the present invention.
  • a conventionally well-known thing can be arbitrarily used as an additive.
  • one additive may be used alone, or two or more additives may be used in any combination and ratio.
  • Examples of the additive include an overcharge inhibitor and an auxiliary agent for improving capacity retention characteristics and cycle characteristics after high-temperature storage.
  • Fluorine-containing azole compounds such as 2, 6 difluoro-ol, and the like.
  • overcharge inhibitors may be used alone or in combinations of two or more in any combination.
  • the concentration thereof is arbitrary as long as the effect of the present invention is not significantly impaired, but it is usually in the whole non-aqueous electrolyte. 0.
  • the content be in the range of 1 to 5% by weight.
  • Dicanolenic acid anhydrides such as phthalenolic acid
  • Carbonate compounds other than those corresponding to specific carbonates such as spirobisdimethylene carbonate;
  • Sulfur-containing compounds such as N, N-jetylmethanesulfonamide
  • Nitrogen-containing compounds such as N-methylsuccinimide
  • Hydrocarbon compounds such as cycloheptane
  • Fluorine-containing aromatic compounds such as benzotrifluoride; and the like.
  • auxiliaries may be used alone or in combination of two or more in any combination and ratio.
  • the first non-aqueous electrolyte of the present invention contains an auxiliary agent
  • its concentration is arbitrary as long as the effect of the present invention is not significantly impaired, but it is usually 0.1 to the whole non-aqueous electrolyte. It is preferable to be in the range of not less than 5% by weight and not more than 5% by weight.
  • first non-aqueous electrolyte secondary battery of the present invention a non-aqueous electrolyte secondary battery using the first non-aqueous electrolyte of the present invention described above (hereinafter abbreviated as “first non-aqueous electrolyte secondary battery of the present invention”) will be described.
  • a first non-aqueous electrolyte secondary battery of the present invention includes a negative electrode capable of inserting and extracting lithium ions, a positive electrode, and a non-aqueous electrolyte, and the negative electrode is a group consisting of Si atoms, Sn atoms, and Pb atoms And a non-aqueous electrolyte solution that includes the negative electrode active material having at least one atom selected from the above-described first non-aqueous electrolyte solution of the present invention.
  • the first non-aqueous electrolyte secondary battery of the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery except for the negative electrode and the non-aqueous electrolyte, and usually the first non-aqueous electrolyte secondary battery of the present invention.
  • a positive electrode and a negative electrode are laminated via a porous membrane (separator) impregnated with a non-aqueous electrolyte solution, and these are housed in a case (exterior body). Therefore, the shape of the first non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • non-aqueous electrolyte As the non-aqueous electrolyte, the above-described first non-aqueous electrolyte of the present invention is used. It should be noted that other non-aqueous electrolytes can be mixed with the first non-aqueous electrolyte of the present invention without departing from the spirit of the present invention.
  • the negative electrode in the first non-aqueous electrolyte secondary battery of the present invention may be composed of Si (Cay) atom, Sn (Sud) atom and Pb (Lead) atom (hereinafter referred to as “specific metal element”).
  • Specific metal element force Examples of the negative electrode active material having at least one selected atom include a single metal of any one specific metal element, an alloy having two or more specific metal element forces, one or two types Examples include the above-mentioned specific metal elements and other one or more metal elements and powerful alloys, and compounds containing one or more specific metal elements. By using these simple metals, alloys or metal compounds as the negative electrode active material, a high capacity of the battery can be achieved.
  • Examples of the compound containing one or more specific metal elements include one or two. Examples thereof include composite compounds such as carbides, oxides, nitrides, sulfides, and phosphides containing at least a specific metal element.
  • examples of the composite compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a non-metallic element can be given. More specifically, for example, in Si and Sn, an alloy of these elements and a metal that does not operate as a negative electrode can be used. Also, for example, Sn does not operate as a negative electrode other than Sn and Si, Sn, and Pb, and further does not operate as a negative electrode! It contains 5 to 6 elements in combination of metal and non-metallic elements. Also complex compounds can be used.
  • any one element of a specific metal element, an alloy of two or more specific metal elements, a specific metal element Oxides, carbides, nitrides, and the like of Si, Z, and Sn are particularly preferable, and simple metals, alloys, oxides, carbides, nitrides, and the like of Si, Z, and Sn are also preferable in terms of capacity per unit weight and environmental load.
  • Si, Z or Sn with an element ratio of Si, Z or Sn to oxygen of usually 0.5 to 1.5, preferably 0.7 to 1.3, more preferably 0.9 to 1.1 Oxides.
  • Si, Z or Sn with an element ratio of Si and Z or Sn to nitrogen of usually 0.5 to 1.5, preferably 0.7 to 1.3, more preferably 0.9 to 1.1 Nitrides.
  • any one of the negative electrode active materials described above may be used alone, or two or more may be used in any combination and ratio.
  • the negative electrode in the first non-aqueous electrolyte secondary battery of the present invention can be produced according to a conventional method.
  • a method for producing a negative electrode for example, a method in which a negative electrode active material containing a binder or a conductive material is rolled into a sheet electrode as it is, or a pellet electrode by compression molding.
  • a coating method, a vapor deposition method, a sputtering method, a plating method, etc. on a current collector for a negative electrode hereinafter sometimes referred to as a “negative electrode current collector”
  • a method of forming a thin film layer (negative electrode active material layer) containing the negative electrode active material described above is used.
  • a binder, a thickener, a conductive material, a solvent, etc. are added to the negative electrode active material described above to form a slurry, which is applied to the negative electrode current collector, dried, and then pressed to increase the density.
  • a negative electrode active material layer is formed on the negative electrode current collector.
  • Examples of the material of the negative electrode current collector include steel, copper alloy, nickel, nickel alloy, and stainless steel. Of these, copper foil is preferred because it is easy to apply force to the thin film and is low in cost.
  • the thickness of the negative electrode current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may decrease too much, and conversely if it is too thin, handling may be difficult.
  • the surface of the negative electrode current collector is preferably subjected to a roughening treatment in advance.
  • a roughening treatment the surface of the current collector is polished with a blasting process, rolling with a rough surface roll, abrasive cloth paper with abrasive particles fixed thereto, a mortar, emerypuff, a wire brush equipped with steel wire, etc. Examples include mechanical polishing, electrolytic polishing, and chemical polishing.
  • a perforated negative electrode current collector such as an expanded metal or a punching metal can be used.
  • the weight can be changed to white by changing the aperture ratio.
  • the negative electrode active material layer is more difficult to peel off due to the rivet effect through this hole.
  • the aperture ratio becomes too high, the contact area between the negative electrode active material layer and the negative electrode current collector becomes small, and the adhesion strength may be lowered.
  • the slurry for forming the negative electrode active material layer is usually prepared by adding a binder, a thickener and the like to the negative electrode material.
  • the “negative electrode material” in this specification refers to a material obtained by combining a negative electrode active material and a conductive material.
  • the content of the negative electrode active material in the negative electrode material is usually 70% by weight or more, particularly 75% by weight or more, and usually 97% by weight or less, and particularly preferably 95% by weight or less.
  • Negative electrode active If the content of the material is too small, the capacity of the secondary battery using the obtained negative electrode tends to be insufficient, and if the content is too large, the content of the binder or the like is relatively insufficient, resulting in a negative electrode obtained. There is a tendency for the strength of the pole to be insufficient. When two or more negative electrode active materials are used in combination, the total amount of negative electrode active materials should satisfy the above range.
  • Examples of the conductive material used for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black. These may be used alone or in combination of two or more in any combination and ratio. In particular, it is preferable to use a carbon material as the conductive material because the carbon material also acts as an active material.
  • the content of the conductive material in the negative electrode material is usually 3% by weight or more, particularly 5% by weight or more, and usually 30% by weight or less, particularly 25% by weight or less. If the content of the conductive material is too small, the conductivity tends to be insufficient. If the content is too large, the content of the negative electrode active material or the like is relatively insufficient, and the battery capacity and strength tend to decrease. If two or more conductive materials are used in combination, the total amount of conductive materials should satisfy the above range.
  • any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • the content of the binder is usually 0.5 parts by weight or more, particularly 1 part by weight or more, and usually 10 parts by weight or less, particularly 8 parts by weight or less based on 100 parts by weight of the negative electrode material. .
  • the binder content is too small, the strength of the obtained negative electrode tends to be insufficient, and when it is too large, the content of the negative electrode active material, etc. is relatively insufficient, and thus the battery capacity and conductivity tend to be insufficient. It becomes. If two or more binders are used in combination, the total amount of the binder should be within the above range.
  • Examples of the thickener used for the negative electrode include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, acid starch, phosphorylated starch, and casein. These may be used alone, or two or more may be used in any combination and ratio. Use thickeners as needed. However, when used, it is preferably used in the range where the content of the thickener in the negative electrode active material layer is usually 0.5% by weight or more and 5% by weight or less.
  • the negative electrode active material is mixed with a conductive agent, a binder, and a thickener as necessary, and an aqueous solvent or an organic solvent is used as a dispersion medium.
  • a conductive agent e.g., tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, tungsten, n-silicon, sulfate, a sulfate, a sulfate, ethylene glycol dimediol, glycerin, ethylene glycol dime, glycerin, ethylene glycol dime, glycerin, ethylene glycol glycol, glycerin, ethylene glycol glycol glycol glycol glycol glycol, glycerin, ethylene glycol glycol
  • cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide, N, N-dimethylacetamide, asol, toluene, xylene, etc.
  • linear amides such as N, N-dimethylformamide, N, N-dimethylacetamide, asol, toluene, xylene, etc.
  • aromatic hydrocarbons alcohols such as butanol and cyclohexanol, among which cyclic amides such as N-methylbicycloidone, N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • Chain amides are preferred.
  • any one of these may be used alone, or two or more may be used in any combination and ratio.
  • the viscosity of the slurry is not particularly limited as long as it can be applied onto the current collector. What is necessary is just to prepare suitably by changing the usage-amount of a solvent, etc. at the time of preparation of a slurry so that it may become the viscosity which can be apply
  • the obtained slurry is applied onto the negative electrode current collector described above, dried, and then pressed to form a negative electrode active material layer.
  • the coating method is not particularly limited, and a method known per se can be used.
  • the drying method is not particularly limited, and a known method such as natural drying, heat drying, or reduced pressure drying can be used.
  • the electrode structure when the negative electrode active material is electrodeposited by the above method is not particularly limited, but the density of the active material present on the current collector is preferably lg 'cm- 3 or more. preferably 1. 2g'cm_ 3 or more, still more preferably 1. 3g'cm_ 3 or more, 2G'cm_ 3 hereinafter, preferably not more than 1. 9g'cm_ 3 or less, more preferably 1. 8G'cm_ 3 or less, still more preferably from 1. 7g'cm _3 below.
  • the positive electrode in the first non-aqueous electrolyte secondary battery of the present invention contains a positive electrode active material as in the case of a normal non-aqueous electrolyte secondary battery.
  • Examples of the positive electrode active material include transition metal oxides, transition metal / lithium composite oxides (lithium transition metal composite oxides), transition metal sulfides, inorganic compounds such as metal oxides, lithium Examples of the metal include lithium metal, lithium alloy, and composites thereof. Specifically, transition metal oxides such as MnO, V 2 O, V 2 O, and TiO; LiCoO or the basic composition is LiCoO
  • is lithium manganese complex oxide, lithium nickel manganese cobalt complex acid
  • lithium transition metal composite oxides such as lithium nickel cobalt aluminum composite oxides; transition metal sulfides such as TiS and FeS; metal oxides such as SnO and SiO.
  • lithium transition metal composite oxides specifically LiCoO or basic composition L
  • LiMnO lithium manganese composite oxide lithium nickel manganese oxide
  • the composite oxide of lithium and the lithium nickel cobalt aluminum composite oxide are preferably used because they can achieve both high capacity and high site characteristics.
  • lithium transition metal composite oxides contain a part of cobalt, nickel or manganese such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, etc. Substitution with other metals is preferable because the structure can be stabilized.
  • These positive electrode active materials may be used alone or in combination of two or more in any combination and ratio.
  • the positive electrode in the first non-aqueous electrolyte secondary battery of the present invention can be produced according to a conventional method.
  • a method for producing the positive electrode for example, a method in which the above-described positive electrode active material with a binder or a conductive material is rolled as it is to form a sheet electrode, compression molding and a pellet electrode
  • a method of forming a thin film layer (positive electrode active material layer) is generally used, but the positive electrode active material layer is usually formed using a coating method V.
  • a binder, thickener, conductive material, solvent, etc. are added to the positive electrode active material described above to form a slurry, which is applied to the positive electrode current collector, dried and then pressed to increase the density.
  • a positive electrode active material layer is formed on the positive electrode current collector.
  • Examples of the material of the positive electrode current collector include aluminum, titanium, and tantalum, and alloys containing one or more of these. Of these, aluminum and its alloys are preferable.
  • the thickness of the positive electrode current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 m or less. If the thickness of the positive electrode current collector is too thick, the capacity of the entire battery will decrease too much, and conversely if it is too thin, handling may be difficult.
  • the surface of the positive electrode current collector is preferably subjected to a roughening treatment in advance.
  • a roughening treatment the surface of the current collector is polished with a blasting process, rolling with a rough surface roll, abrasive cloth paper with abrasive particles fixed thereto, a mortar, emerypuff, a wire brush equipped with steel wire, etc. Examples include mechanical polishing, electrolytic polishing, and chemical polishing.
  • a perforated positive electrode current collector such as an expanded metal or a punching metal can be used.
  • This type of positive electrode current collector can be freely changed in weight by changing its aperture ratio.
  • peeling of the positive electrode active material layer is less likely to occur due to a rivet effect through this hole.
  • the aperture ratio becomes too high, the contact area between the positive electrode active material layer and the positive electrode current collector becomes small, so that the adhesive strength may be lowered.
  • the positive electrode active material layer usually contains a conductive material in order to enhance conductivity.
  • a conductive material there are no particular restrictions on the type of conductive material, but specific examples include metal materials such as copper and nickel, graphite such as natural black lead and artificial graphite (graphite), carbon black such as acetylene black, and needle coats. Examples thereof include carbon materials such as amorphous carbon.
  • these Substances may be used alone, or two or more substances may be used in any combination and ratio.
  • the proportion of the conductive material in the positive electrode active material layer is usually 0.01 wt% or more, preferably 0.1 wt% or more, more preferably 1 wt% or more, and usually 50 wt% or less. Preferably it is 30% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive material is too low, the conductivity may be insufficient. Conversely, if it is too high, the battery capacity may be reduced.
  • the binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that is stable with respect to the liquid medium used in electrode production may be used.
  • Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethylol methacrylate, aromatic polyamides, cellulose, nitrocellulose and other rosin polymers, SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), Fluoro rubber, isoprene rubber, butadiene rubber, rubbery polymers such as ethylene propylene rubber, styrene 'butadiene' styrene block copolymer and hydrogenated products thereof, EPDM (ethylene propylene 'gen terpolymer) ), Thermoplastic elastomeric polymers such as styrene 'ethylene' butadiene 'ethylene copolymer, styrene' isoprene s
  • the ratio of the binder in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less, more preferably 40% by weight or less, and most preferably 10% by weight or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate the battery performance such as the vital characteristics. And may lead to a decrease in conductivity.
  • the liquid medium for forming the slurry may be any solvent that can dissolve or disperse the positive electrode active material, the conductive agent, the binder, and the thickener used as necessary. Any of an aqueous solvent and an organic solvent may be used as long as the type is not particularly limited.
  • Examples of the aqueous medium include water, a mixed solvent of alcohol and water, and the like.
  • Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; acetone, methyl ether, and the like.
  • Ketones such as tilketone and cyclohexanone; esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N—N-dimethylaminopropylamine; jetyl ether and propylene oxide And ethers such as tetrahydrofuran (THF); amides such as N-methylpyrrolidone (NMP), dimethylformamide and dimethylacetamide; non-protonic polar solvents such as hexamethylphosphalamide and dimethyl sulfoxide. it can.
  • aqueous medium it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR).
  • Thickeners are usually used to adjust the viscosity of the slurry.
  • the thickening agent is not particularly limited, and specific examples thereof include carboxy methenoresenorelose, methinoresenorelose, hydroxy methenoresenorelose, ethinoresenorelose, polybulu alcohol, oxidized starch, phosphorylated starch. , Casein and salts thereof. These may be used alone or in combination of two or more in any combination and ratio.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more.
  • the upper limit is usually 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds the upper limit, the proportion of the active material in the positive electrode active material layer may decrease, resulting in a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
  • the viscosity of the slurry is not particularly limited as long as it can be applied onto the current collector, and can be adjusted appropriately by changing the amount of solvent used when preparing the slurry so that the viscosity can be applied. Good.
  • the obtained slurry was applied onto the positive electrode current collector described above, dried, and then pressed. Thus, a negative electrode active material layer is formed.
  • the coating method is not particularly limited, and a method known per se can be used.
  • the drying method is not particularly limited, and known methods such as natural drying, heat drying, and vacuum drying can be used.
  • the positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material.
  • density of the positive electrode active material layer is preferably 1. 5g 'cm- 3 or more, more preferably 2 g' cm- 3 or more on, and even more preferably at 2. 2g 'cm_ 3 or more, and the upper limit is, preferably 3. 5g 'cm_ 3 hereinafter, and more preferably 3 g' cm- 3 or less, more preferably in the range of 2. 8g 'cm- 3 or less. If this range is exceeded, the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector Z active material interface may decrease, and the charge / discharge characteristics at high current density may decrease. On the other hand, if it is lower, the conductivity between the active materials may be reduced, and the battery resistance may be increased.
  • a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
  • the first non-aqueous electrolyte of the present invention is usually used by impregnating the separator.
  • polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, polyethersulfone, a glass filter and the like can be used.
  • glass filters and polyolefins are preferred, and polyolefins are more preferred.
  • the thickness of the separator is arbitrary force Usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more Preferably it is 30 m or less. If the separator is too thin, the insulation and mechanical strength may decrease, and if it is too thick, battery performance such as rate characteristics may decrease. The energy density of the entire aqueous electrolyte secondary battery may decrease.
  • the porosity of the separator is an arbitrary force. Usually 20% or more, preferably 35% or more, more preferably 45 % Or more, usually 90% or less, preferably 85% or less, more preferably 75% or less. If the porosity is too small, the film resistance tends to increase and the rate characteristics tend to be poor. On the other hand, if it is too large, the mechanical strength of the separator is lowered, and the insulation tends to be lowered.
  • the force with which the average pore diameter of the separator is also arbitrary is usually 0.5 ⁇ m or less, preferably 0.2 m or less, and usually 0.05 m or more. If the average pore diameter is too large, short-circuiting tends to occur, and if it is too small, the membrane resistance increases and the rate characteristics may deteriorate.
  • the first non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body. There are no restrictions on the exterior body, and any known one can be adopted as long as the effect of the present invention is not significantly impaired.
  • the force of the exterior body is arbitrary.
  • iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like subjected to nickel plating is used.
  • the shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large shape, and the like.
  • non-aqueous electrolyte solution non-aqueous electrolyte solution according to the second gist of the present invention, which contains component (i) (specific compound (I) and saturated cyclic carbonate) and does not require specific carbonate).
  • second non-aqueous electrolyte As appropriate, abbreviated as “second non-aqueous electrolyte” etc.) and non-aqueous electrolyte secondary battery using the same (hereinafter referred to as “second non-aqueous electrolyte secondary battery of the present invention” as appropriate) ) Will be explained.
  • the second non-aqueous electrolyte of the present invention comprises a negative electrode capable of inserting and extracting lithium ions and A non-aqueous electrolyte secondary comprising a positive electrode and a non-aqueous electrolyte, wherein the negative electrode contains a negative electrode active material having at least one kind of atom (specific metal element) selected from the group consisting of Si atom, Sn atom and Pb atom It is a non-aqueous electrolyte used for a battery.
  • atom specific metal element
  • the second non-aqueous electrolyte contains the above-mentioned component (i), that is, the above-mentioned specific compound (I) and a saturated cyclic carbonate. Details regarding the specific compound (I) and the saturated cyclic force carbonate are as described above in the section ⁇ 1 1 1. Component (i)>. In addition, the ratio of the specific compound (I) and the saturated cyclic carbonate to the second non-aqueous electrolyte is also the non-aqueous electrolyte (I) described in the section ⁇ 1 1 1. Component (i)> above. The ratio is the same as the ratio of the specific compound (I) and the saturated cyclic carbonate.
  • the second non-aqueous electrolyte solution does not contain a specific carbonate, and the charge / discharge cycle of the non-aqueous electrolyte secondary battery using the negative electrode active material having the specific metal element described above is used.
  • the characteristics can be improved. The details of this reason are not clear, but are presumed as follows.
  • the specific compound (I) contained in the second nonaqueous electrolytic solution has an alkyl group or fluoroalkyl group having 3 or more carbon atoms, whereby activity for the negative electrode active material having the specific metal element is increased. As a result, side reactions are suppressed and cycle deterioration is suppressed. In addition, the same effect can be obtained when the total number of carbon atoms of the alkyl group or fluoroalkyl group of the specific compound (I) is 5 or more.
  • the saturated cyclic carbonate used in combination with the specific compound (I) can improve the charge / discharge cycle characteristics by increasing the solubility of the electrolyte.
  • the effect is remarkable as compared with the case where no specific carbonate is present (that is, the second non-aqueous electrolyte).
  • the specific compound (I) when the specific compound (I), the saturated cyclic carbonate, and the specific carbonate coexist, not only a protective coating layer is formed on the surface of the negative electrode active material, but also side reactions are suppressed and the protective layer is protected. It is presumed to improve the properties of the coating.
  • the above-mentioned specific compound (i) can be included in the non-aqueous electrolyte alone without using it together with the specific carbonate, thereby improving the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery. It is possible.
  • a non-aqueous electrolyte solution containing a specific compound ( ⁇ ) and not requiring a specific carbonate a non-aqueous electrolyte solution according to the third aspect of the present invention.
  • the third non-aqueous electrolyte secondary battery of the present invention a “third non-aqueous electrolyte solution” or the like as appropriate) And a non-aqueous electrolyte secondary battery using the same (hereinafter referred to as “the third non-aqueous electrolyte secondary battery of the present invention”).
  • the third non-aqueous electrolyte of the present invention includes a negative electrode capable of occluding and releasing lithium ions, a positive electrode, and a non-aqueous electrolyte, and the negative electrode is selected from the group consisting of Si atoms, Sn atoms, and Pb atoms.
  • This is a non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery containing a negative electrode active material having at least one kind of atom (specific metal element).
  • the third non-aqueous electrolytic solution is characterized by containing the above-mentioned specific compound ( ⁇ ). Details regarding the specific compound ( ⁇ ) are as described in the above section 1-1-2, component (ii)>.
  • the ratio of the specific compound (II) to the third non-aqueous electrolyte is the same as that of the non-aqueous electrolyte (II) described in the above section I-1-2. This is the same as the ratio of compound (II).
  • the third non-aqueous electrolyte solution does not contain the specific carbonate, and the charge / discharge cycle of the non-aqueous electrolyte secondary battery using the negative electrode active material having the specific metal element described above is used. It is possible to improve the characteristics. Although the details of this reason are not clear, the specific compound ( ⁇ ) forms a good protective coating layer on the surface of the negative electrode active material, thereby suppressing side reactions and suppressing cycle deterioration. It is guessed.
  • the non-aqueous electrolyte containing the specific compound (III) together with the specific carbonate is a negative electrode active material having at least one atom (specific metal element) selected from the group consisting of Si atom, Sn atom and Pb atom.
  • the charge / discharge cycle characteristics are It is possible to improve.
  • a non-aqueous electrolyte solution in a form that does not limit the type of the negative electrode active material (a non-aqueous electrolyte solution according to the fourth aspect of the present invention.
  • fourth non-aqueous electrolyte solution abbreviated as “fourth non-aqueous electrolyte solution” or the like as appropriate.
  • a non-aqueous electrolyte secondary battery (hereinafter referred to as “the fourth non-aqueous electrolyte secondary battery of the present invention” or the like as appropriate) using the same will be described.
  • the fourth non-aqueous electrolyte of the present invention is a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery comprising a negative electrode capable of inserting and extracting lithium ions and a positive electrode and a non-aqueous electrolyte. And containing the above-mentioned specific compound (III) and specific carbonate
  • the non-aqueous electrolyte secondary battery using the fourth non-aqueous electrolyte (fourth non-aqueous electrolyte secondary battery) is used differently from the first non-aqueous electrolyte secondary battery described above.
  • the negative electrode active material used in the fourth non-aqueous electrolyte secondary battery will be described.
  • the negative electrode active material is not particularly limited, and for example, a carbonaceous material, metal material, lithium metal, lithium alloy, or the like that can occlude and release lithium can be used. Also, one type of negative electrode active material may be used alone. Use two or more types in any combination and ratio.
  • carbonaceous materials alloys composed of one or more metals capable of inserting and extracting lithium and lithium, and borides, oxides, nitrides, sulfides and phosphides of these metals.
  • composite compound materials such as
  • any force can be used as the carbonaceous material.
  • graphite or the surface of graphite is coated with amorphous carbon compared to graphite. Things are preferred.
  • graphite has a lattice plane (002 plane) d value (interlayer distance) of 0.335 nm or more, usually 0.335 nm or less, preferably 0, as determined by X-ray diffraction using the Gakushin method. Those having a wavelength of 337 nm or less are preferable.
  • the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is usually 3
  • Onm or more preferably 50 nm or more, more preferably lOOnm or more is desirable.
  • the ash content of graphite is usually 1 wt% or less, preferably 0.5 wt% or less, more preferably Is preferably 0.1% by weight or less.
  • graphite whose surface is coated with amorphous carbon is based on graphite whose d value of the lattice plane (002 plane) in X-ray diffraction is usually 0.335 nm to 0.338 nm. It is preferable to use a material having a carbonaceous material adhering to its surface having a larger d-value on the lattice plane (002 plane) in X-ray diffraction than the core material. Sarakuko, the nuclear material, and the d-value of the lattice plane (002) in X-ray diffraction attached to the surface of the nuclear material is larger than that of the nuclear material, and the ratio of carbonaceous material is usually 99Zl. More preferred is ⁇ 80Z20. When this is used, a negative electrode can be produced with a high capacity and hardly reacting with a non-aqueous electrolyte.
  • the particle size of the carbonaceous material is arbitrary as long as the effects of the present invention are not impaired, but the median diameter by a laser single diffraction / scattering method is usually 1 ⁇ m or more, preferably 3 m or more. It is 5 m or more, more preferably 7 m or more.
  • the upper limit is usually 100 m or less, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less. If the lower limit of the above range is not reached, the specific surface area may become too large, and if the upper limit is exceeded, the specific surface area force may become too small.
  • the specific surface area of the carbonaceous material by the BET method is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 m 2 Zg or more, preferably 0.5 m 2 Zg or more, more preferably It is 0.7 m 2 Zg or more, more preferably 0.8 m 2 Zg or more.
  • the upper limit is usually 25.Om 2 Zg or less, preferably 20.0 m 2 Zg or less, more preferably 15.0 m 2 Zg or less, and even more preferably 10.0 m 2 Zg or less. If the lower limit of the above range is not reached, a sufficient area may not be secured for lithium ion insertion / extraction, and if the upper limit is exceeded, the reactivity with the electrolyte solution may become too high.
  • the carbonaceous material has a peak intensity I of peak P in the range of 1570 cm- 1 to 1620 cm _1 and 130 when analyzed by a Raman spectrum using an argon ion laser beam.
  • Ocm ⁇ R value expressed by the ratio of peak intensity I of peak P in the range of 1 to 1400cm _1 (
  • I / ⁇ is usually in the range of 0.01 or more and 0.7 or less.
  • the half width of the peak in the range of 1570 cm- 1 to 1620 cm _1 is obtained. In order to obtain good battery characteristics, it is usually 26 cm_1 or less, preferably 25 cm_1 or less.
  • these composite compound materials are used, as these alloy and composite material, an alloy containing a plurality of metal elements may be used, or the composite material may be used.
  • metal alloys, complex compounds such as borides, oxides, nitrides, sulfides, phosphides, etc. of metal borides may be used.
  • Si is preferable to use a material containing Sn or Pb, and it is more preferable to use a material containing Si or Sn.
  • the fourth non-aqueous electrolyte solution is not limited to the negative electrode active material having the specific metal element, but the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery using various negative electrode active materials. Can be improved. Although the details of this reason are not clear, as with the first non-aqueous electrolyte (non-aqueous electrolyte ( ⁇ )), the specific compound (III) contained in the non-aqueous electrolyte (III) It is inferred that the reaction with the specific carbonate forms a good protective coating layer on the surface of the negative electrode active material, which suppresses side reactions and suppresses cycle deterioration.
  • the non-aqueous electrolyte secondary battery was assembled and evaluated according to the following procedure, and the results obtained are shown in Table I.
  • the obtained slurry was uniformly applied onto an 18-m thick copper foil as a negative electrode current collector, and then naturally dried, and finally dried under reduced pressure at 85 ° C. for a whole day and night. After that, it was pressed to an electrode density of about 1.5 g and cm- 3, and punched into a disk shape with a diameter of 12.5 mm to obtain a negative electrode (a key alloy negative electrode).
  • negative electrode active material 100 parts by weight of artificial graphite powder (trade name “KS-6” manufactured by Timcal) was used, and 83.5 parts by weight of N-methylpyrrolidone solution containing 12 parts by weight of PVDF. -50 parts by weight of methylpyrrolidone was added and mixed with a disperser to form a slurry. The obtained slurry was uniformly applied onto a 18 m thick copper foil as a negative electrode current collector, dried naturally, and finally dried under reduced pressure at 85 ° C. overnight. Thereafter, the electrode was pressed so that the electrode density was about 1.5 g ′ cm ⁇ 3 and punched into a disk shape having a diameter of 12.5 mm to obtain a negative electrode (graphite negative electrode).
  • KS-6 artificial graphite powder
  • LiCoO (“C5” manufactured by Nihon Kagaku Kogyo Co., Ltd.)
  • Bon Black (trade name “Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) 6 parts by weight, polyvinyl fluoride 9 parts by weight of Yuriden KF-1000 (trade name “KF-1000” manufactured by Kureha Chemical Co., Ltd.) was mixed and dispersed, and dispersed with N-methyl 2-pyrrolidone to form a slurry.
  • the obtained slurry was uniformly applied onto a 20 m thick aluminum foil as a positive electrode current collector so that it would be 90% of the theoretical capacity of the negative electrode used, dried at 100 ° C for 12 hours, 12.
  • a positive electrode was punched into a 5mm disk.
  • coin-type cells (Examples I 1 to 14 and Comparative Examples I 1 to 14)
  • An aqueous electrolyte secondary battery was produced. That is, the negative electrode was placed through a polyethylene separator impregnated with an electrolytic solution on a positive electrode accommodated in a stainless steel can body also serving as a positive electrode conductor. This can body and a sealing plate that also serves as a negative electrode conductor were sealed by being pressed through an insulating gasket to produce a coin-type cell.
  • the aforementioned key alloy negative electrode or graphite negative electrode is selected according to the description in the column of [Negative electrode] in the columns of [Example] and [Comparative Example] in Table I below. It was.
  • the discharge capacity and discharge capacity were maintained according to the following procedure.
  • the rate was evaluated. That is, using each coin cell, under the condition of 25 ° C, the charge end voltage is 4.2V—3mA, the charge end current is 0.15A constant current and constant voltage charge, and the discharge end voltage is 3.OV 3mA constant. 50 cycles of charge / discharge were performed with one cycle of current discharge. At this time, the discharge capacities at the 1st, 10th and 50th cycles were measured, and the discharge capacity retention rate after 10 and 50 cycles was calculated by the following formula.
  • Comparative Example I 1 I 2 is represented by the specific compound (I) (shown by the above general formula (I) in the non-aqueous electrolyte solution. No chain carbonate), so both have low discharge capacity retention after cycle test
  • Comparative Examples I 3 and I 4 use a carbon material as the negative electrode active material, and the non-aqueous electrolyte solution of Comparative Example I 3 does not contain the specific compound (I).
  • the aqueous electrolyte contains the specific compound (I).
  • Comparative Examples 1-3 and I4 are compared, since the negative electrode active material is a carbon material, the discharge capacity retention rate after the cycle test does not improve even when the specific compound (I) is used. Thus, it can be seen that when the carbon material is used as the negative electrode active material, the effect of improving the cycle characteristics by the specific compound (I) cannot be obtained.
  • Examples I-1 to 11 including the specific compound (I), the saturated cyclic carbonate, and the specific carbonate in the non-aqueous electrolyte using the negative electrode active material such as the above-described key alloy.
  • the discharge capacity retention rate is greatly increased and the cycle characteristics are good as compared with Comparative Examples I1 and I2.
  • Examples 1-13 and 1-14 which contain the specific compound (I) and saturated cyclic carbonate in the non-aqueous electrolyte and do not include the specific power carbonate, are also slightly inferior to the above-mentioned Examples 11 to 112. However, compared with Comparative Examples I 1 and I 2, the discharge capacity retention after the cycle test is also greatly improved.
  • a non-aqueous electrolyte secondary battery was assembled and evaluated according to the following procedure, and the results obtained are shown in Tables ⁇ -1 to 6-6.
  • a negative electrode (a key alloy negative electrode) was prepared in the same manner as described in the column ⁇ Preparation of key alloy negative electrode> in [Example / Comparative Group I] above.
  • a negative electrode (graphite negative electrode) was prepared in the same manner as described in the column ⁇ Preparation of graphite negative electrode> in [Example / Comparative Example Group I] above. [Fabrication of positive electrode]
  • a positive electrode was prepared in the same manner as described in [Preparation of positive electrode] in [Example / Comparative Example Group I] above.
  • a non-aqueous electrolyte solution (non-aqueous electrolyte solutions of Example II-1 11-28 and Comparative Example II-1 11-14) was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備えた非水系電解液二次電池であって、高い充電容量を有すると共に、長期に亘り優れた特性を有し、特に放電容量維持率に優れた非水系電解液二次電池を得る。  非水系電解液に、(i)下記一般式(I)で表わされる化合物、及び、飽和環状カーボネート、(ii)下記一般式(II)で表わされる化合物、並びに、(iii)下記一般式(III-1)で表わされる化合物のうち、少なくとも何れかを含有させる。 (上記式(I)中、nは3以上の整数を表わし、mは1以上の整数を表わす。但し、nとmとの和が5以上である。且つ、水素原子の一部又は全部が、フッ素原子により置換されていてもよい。) (上記式(II)中、Xは、-SO2-又は-SO-を表わし、R1~R6は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたアルキル基を表わす。) (上記式(III-1)中、Aは水素以外の元素又は基を表わす。)

Description

明 細 書
非水系電解液及びそれを用いた非水系電解液二次電池
技術分野
[0001] 本発明は、非水系電解液及びそれを用いた非水系電解液二次電池に関する。
背景技術
[0002] 近年の電気製品の軽量化、小型化に伴!、、高!、エネルギー密度を持つ非水系電 解液二次電池、例えばリチウム二次電池の開発が進められている。また、リチウム二 次電池の適用分野が拡大するにつれて、電池特性のより一層の改善が要望されて いる。
[0003] このような状況にぉ 、て、金属リチウムを負極とする二次電池が、高容量化を達成 できる電池として研究されてきた。し力しながら、金属リチウムには、充放電の繰り返し により金属リチウムがデンドライト状に成長し、これが正極に達し電池内部での短絡が 生じてしまうという課題があり、これが金属リチウムを負極とするリチウム二次電池を実 用化する際の最大の障害となっている。
[0004] これに対し、金属リチウムに代えて、コータス、人造黒鉛又は天然黒鉛等のリチウム を吸蔵 '放出することが可能な炭素質材料を負極に用いた非水系電解液二次電池 が提案されている。このような非水系電解液二次電池では、リチウムがデンドライト状 に成長しないため、電池寿命と安全性とを向上させることができる。これらグラフアイト 類を負極として用いた場合、容量としては通常 300mAh'g_1、 500mAh'cm_3程度 であることが知られている。
[0005] 近年、ケィ素(Si)、スズ (Sn)、鉛 (Pb)など、リチウムと合金化し得る金属元素の単 体や、これらの金属元素を少なくとも含む合金、これらの金属元素を含有する金属化 合物などを用いた負極活物質 (以下「Si、 Sn、 Pb等を有する負極活物質」という場合 がある。)が提案されている。これらは、体積当たりの容量が 2000mAh'cm_3程度 又はそれ以上と、グラフアイト類の 4倍程度或いはそれ以上である為、これらを用いる ことにより、より高い容量を得る事が出来る。
[0006] しかし、 Si、 Sn、 Pb等を有する負極活物質を用いた二次電池は、高容量化に適し ているものの、安全性が低下するという課題や、充放電によって負極活物質が劣化し 、充放電効率が低下してサイクル特性が悪ィ匕すると 、う課題があった。
[0007] そこで、このような二次電池に用いられる非水系電解液として、安全性を確保しつ つ電池の放電容量の低下を防止するために、電解液中に環状炭酸エステル又は炭 酸エステルの多量体と、リン酸トリエステルを含有する非水系電解液が提案されて ヽ る(特許文献 1参照)。また、電池の充放電サイクル特性を向上することを目的に、環 内に硫黄原子及び Z又は酸素原子を含む複素環式ィ匕合物を非水系電解液に加え
、負極活物質の表面に被膜を形成して電池の充放電サイクル特性を向上させる方法 も提案されて ヽる (特許文献 2参照)。
[0008] また、様々な負極材料を用いた非水系電解液二次電池につ!、て、その負荷特性、 サイクル特性、保存特性、低温特性等の特性向上のために、電解質と主たる溶媒と に加えて、種々の化合物を含有させた電解液が提案されている。
[0009] 例えば、黒鉛系負極を用いた非水系電解液二次電池の電解液の電解液分解を抑 制するため、ビニレンカーボネート及びその誘導体を含む電解液 (例えば、特許文献
3参照)や、側鎖に非共役系不飽和結合を有するエチレンカーボネート誘導体を含 む電解液 (例えば、特許文献 4参照)等の、不飽和結合を有するカーボネート誘導体 を含む電解液が提案されて 、る。
[0010] これらの化合物を含む電解液は、前記化合物が負極表面で還元分解されて被膜 を形成し、この被膜により電解液の過度の分解が抑制される。また、ハロゲンを含む カーボネートも同様に提案されている(例えば、特許文献 5参照)。
[0011] 特許文献 1 :特開平 11 176470号公報
特許文献 2 :特開 2004— 87284号公報
特許文献 3 :特開平 8— 45545号公報
特許文献 4:特開 2000— 40526号公報
特許文献 5:特開平 11— 195429号公報
発明の開示
発明が解決しょうとする課題
[0012] しかしながら、特許文献 1及び特許文献 2等の従来の二次電池では、負極材料に ケィ素(Si)等の元素を使用することでより高い容量が得られるものの、より長期の充 放電サイクルでの性能、特に放電容量維持率の点で未だ不十分であった。
[0013] また、上述の特許文献 3〜5等に記載の技術も、サイクル特性 (放電容量維持率) の点では充分でな!、ことから、様々な負極材料を用いた非水系電解液二次電池に っ ヽて、サイクル特性 (放電容量維持率)を更に改善する技術が求められて 、た。
[0014] 本発明は、上記課題に鑑みてなされたものである。
即ち、本発明の目的は、 Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少な くとも一種の原子を有する負極活物質を用いた非水系電解液二次電池において、高 い充電容量を有すると共に、長期に亘り優れた特性を有し、特にサイクル特性 (放電 容量維持率)に優れた非水系電解液二次電池、及びそれに使用する非水系電解液 を提供することを目的とするものである。
また、本発明の別の目的は、負極活物質として黒鉛等の各種の材料を用いた非水 系電解液二次電池において、高い充電容量を有すると共に、長期に亘り優れた特性 を有し、特にサイクル特性 (放電容量維持率)に優れた非水系電解液二次電池、及 びそれに使用する非水系電解液を提供することを目的とするものである。
課題を解決するための手段
[0015] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、 Si原子、 Sn原 子及び Pb原子よりなる群から選ばれる少なくとも一種の原子を有する負極活物質を 用いた非水系電解液二次電池において、非水系電解液に不飽和結合及びハロゲン 原子のうち少なくとも一方を有するカーボネートと、後述の成分 (i)〜(iii)のうち少なく とも何れか 1種の成分 (特定成分)とを含有させること〖こよって、上記課題を解決でき ることを見出した。また、成分 (i)及び成分 (ii)は、それぞれ、特定カーボネートを併用 しなくとも同様の効果を発揮すること、更に、成分 (iii)は、上述の特定の負極活物質 を用いた二次電池に制限されず、黒鉛材料等の各種の負極活物質を用いた二次電 池においても同様の効果を発揮することを見出して、本発明を完成させるに至った。
[0016] 即ち、本発明の要旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と非水 系電解液とを備え、該負極が Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少 なくとも一種の原子を有する負極活物質を含む非水系電解液二次電池に用いられる 非水系電解液であって、不飽和結合及びハロゲン原子のうち少なくとも一方を有する カーボネートを含有するとともに、 (i)下記一般式 (I)で表わされる化合物及び飽和環 状カーボネート、(ii)下記一般式 (Π)で表わされる化合物、並びに、(m)下記一般式 (III 1)で表わされる化合物のうち、少なくとも何れかを含有することを特徴とする、 非水系電解液に存する。
[化 1]
Figure imgf000006_0001
(上記式 (I)中、
nは 3以上の整数を表わし、 mは 1以上の整数を表わす。但し、 nと mとの和が 5以上 である。
且つ、水素原子の一部又は全部が、フッ素原子により置換されていてもよい。 ) [化 2]
——
Figure imgf000006_0002
(上記式 (II)中、
Xは、
[化 3] O
—— S——
O 又は
[化 4]
0
—— s—— を表わし、
!^〜 は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたァ ルキル基を表わす。 )
[化 5]
A N=C=0 ( i n - 1 )
(上記式 (III 1)中、 Aは水素以外の元素又は基を表わす。 )
[0017] ここで、上記一般式 (I)にお 、て、 nと mが互いに異なる整数であることが好まし 、 ( 請求項 2)。
[0018] また、非水系電解液中における、上記一般式 (I)で表わされる化合物の濃度が、 5 体積%以上 95体積%以下であることが好ましレ、 (請求項 3)。
[0019] また、非水系電解液中における、飽和環状カーボネートの濃度が、 5体積%以上 5
0体積%以下であることが好ま 、 (請求項 4)。
[0020] また、上記一般式 (II)において、 〜 が、それぞれ独立に、無置換又はフッ素原 子で置換された炭素数 1〜3のアルキル基であることが好ま U、(請求項 5)。
[0021] また、非水系電解液中における、上記一般式 (II)で表わされる化合物の濃度が、 0 . 01重量%以上 10重量%以下であることが好ましい(請求項 6)。
また、上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 2)で表わされ る化合物力 選ばれることが好まし ヽ(請求項 7)。
[化 6]
Figure imgf000008_0001
(上記一般式 (III 2)中、
X1及び X2はそれぞれ独立に、水素以外の元素を表わし、
zは、任意の元素又は基を表わし、
m及び nはそれぞれ独立に、 1以上の整数を表わす。
mが 2以上の場合、各 Zは同一であってもよぐ異なっていてもよい。 )
また、上記一般式 (III— 1)で表わされる化合物力 下記一般式 (III 3)で表わされ る化合物力 選ばれることが好まし ヽ(請求項 8)。
[化 7]
R
R— Si—— N= C= 0 π ( I I I 3 )
(上記一般式 (III 3)中、 Rはそれぞれ独立に、置換基を有してもょ 、アルキル基又はァリール基を表わす。 なお、複数の Rが互いに結合して環を形成していてもよい。 )
[0024] また、非水系電解液中における、上記一般式 (III— 1)で表わされる化合物の濃度 力 0. 01重量%以上 10重量%以下であることが好ましい(請求項 9)。
[0025] また、非水系電解液中における上記の不飽和結合及びハロゲン原子のうち少なくと も一方を有するカーボネートの濃度が、 0. 01重量%以上、 70重量%以下であること が好ましい(請求項 10)。
[0026] また、上記の不飽和結合又はハロゲン原子を有するカーボネートが、ビニレンカー ボネート、ビュルエチレンカーボネート、フルォロエチレンカーボネート、及びジフル ォロエチレンカーボネート、並びにこれらの誘導体よりなる群から選ばれる 1種以上の カーボネートであることが好まし ヽ(請求項 11)。
[0027] また、エチレンカーボネート及び Z又はプロピレンカーボネートを更に含有すること が好ましい (請求項 12)。
[0028] また、ジメチルカーボネート、ェチルメチルカーボネート、ジェチルカーボネート、メ チルー n—プロピルカーボネート、ェチルー n—プロピルカーボネート、及びジー n— プロピルカーボネートよりなる群力 選ばれる少なくとも 1種のカーボネートを更に含 有することが好ま Uヽ(請求項 13)。
[0029] また、本発明の別の要旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と 非水系電解液とを備え、該負極が Si原子、 Sn原子及び Pb原子よりなる群カゝら選ば れる少なくとも一種の原子を有する負極活物質を含む非水系電解液二次電池に用 いられる非水系電解液であって、下記一般式 (I)で表わされる化合物、及び、飽和環 状カーボネートを含有することを特徴とする、非水系電解液に存する (請求項 14)。
[化 8]
H 2n+1
Figure imgf000009_0001
( I ) (上記式 (I)中、
nは 3以上の整数を表わし、 mは 1以上の整数を表わす。但し、 nと mとの和が 5以上 である。
且つ、水素原子の一部又は全部が、フッ素原子により置換されていてもよい。 ) [0030] ここで、上記一般式 (I)にお 、て、 nと mが互いに異なる整数であることが好まし ヽ( 請求項 15)。
[0031] また、非水系電解液中における、上記一般式 (I)で表わされる化合物の濃度力 5 体積%以上 95体積%以下であることが好ましい (請求項 16)。
[0032] また、非水系電解液中における、飽和環状カーボネートの濃度力 5体積%以上 5 0体積%以下であることが好ま ヽ (請求項 17)。
[0033] また、本発明の別の要旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と 非水系電解液とを備え、該負極が Si原子、 Sn原子及び Pb原子よりなる群カゝら選ば れる少なくとも一種の原子を有する負極活物質を含む非水系電解液二次電池に用 V、られる非水系電解液であって、下記一般式 (II)で表わされる化合物を少なくとも含 有することを特徴とする、非水系電解液に存する(請求項 18)。
[化 9]
Figure imgf000010_0001
(上記式 (II)中、
Xは、
Figure imgf000011_0001
又は
[化 11]
Figure imgf000011_0002
を表わし、
!^〜 は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたァ ルキル基を表わす。 )
[0034] ここで、上記一般式 (II)において、尺1〜!^が、それぞれ独立に、無置換又はフッ素 原子で置換された炭素数 1〜3のアルキル基であることが好ましい(請求項 19)。
[0035] また、非水系電解液中における、上記一般式 (II)で表わされる化合物の濃度が、 0 . 01重量%以上 10重量%以下であることが好ましい(請求項 20)。
[0036] また、本発明の別の要旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と 非水系電解液とを備え、該負極が、 Si原子、 Sn原子及び Pb原子よりなる群から選ば れる少なくとも一種の原子を有する負極活物質を含有するとともに、該非水系電解液 力 請求項 1〜20の何れか一項に記載の非水系電解液であることを特徴とする、非 水系電解液二次電池に存する(請求項 21)。
[0037] また、本発明の別の要旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と 非水系電解液とを備えた非水系電解液二次電池に用いられる非水系電解液であつ て、不飽和結合及びハロゲン原子のうち少なくとも一方を有するカーボネートと、下記 一般式 (III— 1)で表わされる化合物とを少なくとも含有することを特徴とする、非水系 電解液に存する(請求項 22)。
[化 12] A— N=C=0 ( i i i - i )
(上記式 (III 1)中、 Aは水素以外の元素又は基を表わす。 )
[0038] ここで、上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 2)で表わさ れる化合物から選ばれることが好まし ヽ(請求項 23)。
[化 13]
Figure imgf000012_0001
(上記一般式 (III 2)中、
X1及び X2はそれぞれ独立に、水素以外の元素を表わし、
Zは、任意の元素又は基を表わし、
m及び nはそれぞれ独立に、 1以上の整数を表わす。
mが 2以上の場合、各 Zは同一であってもよぐ異なっていてもよい。 )
[0039] また、上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 3)で表わされ る化合物力 選ばれることが好ま ヽ(請求項 24)。
[化 14] R
R ~ -Si ~ -N= C= 0
R ( I I I - 3 )
(上記一般式 (III 3)中、
Rはそれぞれ独立に、置換基を有してもょ 、アルキル基又はァリール基を表わす。 なお、複数の Rが互いに結合して環を形成していてもよい。 )
[0040] また、非水系電解液中における、上記一般式 (III— 1)で表わされる化合物の濃度 力 0. 01重量%以上 10重量%以下であることが好ましい(請求項 25)。
[0041] また、本発明の別の趣旨は、リチウムイオンを吸蔵及び放出し得る負極及び正極と 非水系電解液とを備え、該非水系電解液が、請求項 22〜25の何れか一項に記載 の非水系電解液であることを特徴とする、非水系電解液二次電池に存する(請求項 2
6)。
発明の効果
[0042] 本発明の非水系電解液二次電池は、高い充電容量を有すると共に、長期に亘り優 れた特性を有し、特に放電容量維持率に優れている。
発明を実施するための最良の形態
[0043] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要 件の説明は、本発明の実施態様の一例 (代表例)であり、本発明はその要旨を超え ない限り、これらの内容に特定されるものではない。
[0044] [I.第 1の非水系電解液]
まず、本発明の第 1の要旨に係る非水系電解液 (以下適宜「本発明の第 1の非水系 電解液」と略称する。 )について説明する。
本発明の第 1の非水系電解液は、リチウムイオンを吸蔵及び放出し得る負極及び 正極と非水系電解液とを備え、該負極が Si原子、 Sn原子及び Pb原子よりなる群から 選ばれる少なくとも一種の原子を有する負極活物質を含有する非水系電解液二次 電池に用いられる非水系電解液である。
[0045] 本発明の第 1の非水系電解液は、一般的な非水系電解液と同様、通常はその主成 分として、電解質及びこれを溶解する非水溶媒を有する。更に、後述の (i)〜(iii)のう ち少なくとも何れか 1種の成分 (以下適宜「特定成分」という。)と、不飽和結合及びハ ロゲン原子のうち少なくとも一方を有するカーボネート(以下適宜、「特定カーボネー ト」という。)とを含有する。カロえて、その他の成分 (添加剤等)を含有していてもよい。
[0046] 以下の記載では、まず特定成分及び特定カーボネートにつ!、て説明し、続、て電 解質及び非水溶媒について説明した上で、その他の成分についても触れることにす る。
[0047] 〔I 1.特定成分〕
本発明に係る特定成分は、下記成分 (i)〜(iii)のうち少なくとも何れか 1種の成分 である。
•成分 (i):後述の一般式 (I)で表わされる化合物及び飽和環状カーボネート。
,成分 (ii):後述の一般式 (II)で表わされる化合物。
•成分 (iii):後述の一般式 (III 1)で表わされる化合物。
[0048] 以下の記載では、説明の便宜上、成分 (i)、成分 (ii)、成分 (iii)をそれぞれ含有す る本発明の第 1の非水系電解液を区別する場合、それぞれ「非水系電解液 (1)」、「 非水系電解液 (11)」、「非水系電解液 (111)」等と呼び分けることとする。また、これらを 特に区別しない場合、単に「本発明の第 1の非水系電解液」と言うものとする。
[0049] なお、本発明の第 1の非水系電解液は、上述の成分 (i)〜 (m)のうち、何れか一種 を単独で含有して ヽてもよく、二種以上を任意の組み合わせ及び比率で併有して ヽ てもよい。よって、例えば「非水系電解液 (1)」という場合でも、上述の成分 (i)を単独 で含有する場合のみならず、更に上述の成分 (ii)及び Z又は (iii)を併有する場合も 含むものとする。他の場合についても同様である。
[0050] 以下、成分 (i)〜 (iii)の各々につ 、て説明する。
[0051] < 1 1 1.成分 (i) >
成分 (i)は、後述の一般式 (I)で表わされる化合物 (これを以下適宜「特定化合物 (I ;)」と略称する。)と、飽和環状カーボネートとの組み合わせである。
[0052] ·Ι 1 la.特定ィ匕合物 (I) :
特定化合物 (I)は、下記一般式 (I)で表わされる鎖状カーボネートである。
[化 15]
Figure imgf000015_0001
(上記式 (I)中、 nは 3以上の整数を表わし、 mは 1以上の整数を表わす。但し、 nと m との和が 5以上である。且つ、水素原子の一部又は全部力 フッ素原子により置換さ れていてもよい。 )
[0053] 上記一般式 (I)において、 C H (これを以下「第 1置換基」と称す場合がある。
n 2n+ l
)の炭素数 nは通常 3以上、また、通常 6以下、好ましくは 5以下である。 nがこの上限 を上回ると、非水系電解液の粘性が上がる傾向がある。
[0054] 本発明において、第 1置換基の炭素数 nを 3以上とする理由は、上記金属原子を含 む負極活物質に対して、第 1置換基の炭素数 nを 3以上として鎖状カーボネートの活 性を下げることにより、サイクル劣化を抑制するためである。また、分子量が小さい力 ーボネートは活性が高ぐ副反応によりサイクル劣化が生じやすいが、 nが 3以上の第 1置換基を有する鎖状カーボネートであれば、分子量が大きくなり、この課題が軽減 される。
[0055] 第 1置換基の具体例としては、
n—プロピル基、
i—プロピル基、
n—ブチノレ基、
t ブチル基、
n—ペンチノレ基、
1 メチルブチル基、 2—メチルブチル基、
3—メチルブチル基、
1, 2—ジメチノレプロピノレ基、
1 ェチルプロピル基、
n キシル基、
1ーメチルペンチル基、
2—メチルペンチル基、
3—メチルペンチル基、
4ーメチルペンチル基、
1. 2—ジメチルブチル基、
1. 3 ジメチルブチル基、
2, 3 ジメチルブチル基、
2—ェチルブチル基、
3—ェチルブチル基、等が挙げられる。
これらの中でも特に、 n—プロピル基、 n—ブチル基、 n キシル基が好ましい。
[0056] 一方、上記一般式 (I)において、 C H (これを以下「第 2置換基」と称す場合
m 2m+ l
がある。)の炭素数 mは 1以上で、 nと mの和力 通常 5以上、また、好ましくは 9以下、 より好ましくは 7以下となる整数である。 n+mが、この下限を下回ると、この鎖状カー ボネートの分子量が小さいことにより活性が高くなり、副反応によるサイクル劣化を生 じゃすい。 n+m力 Sこの上限を上回ると溶質が溶解し難くなり、電解液ィ匕が困難となる
[0057] 第 2置換基の具体例としては、
メチル基、
ェチル基、
n—プロピル基、
i—プロピル基、
n—ブチノレ基、
t ブチル基、 n—ペンチノレ基、
1 メチルブチル基、
2—メチルブチル基、
3—メチルブチル基、
1, 2—ジメチノレプロピノレ基、
1 ェチルプロピル基、
n キシル基、
1ーメチルペンチル基、
2—メチルペンチル基、
3—メチルペンチル基、
4ーメチルペンチル基、
1. 2—ジメチルブチル基、
1. 3 ジメチルブチル基、
2, 3 ジメチルブチル基、
2—ェチルブチル基、
3—ェチルブチル基、等が挙げられる。
これらの中でも、特に、メチル基、ェチル基が好ましい。
[0058] 更に、特定化合物 (I)の第 1置換基及び Z又は第 2置換基が有する水素原子は、 その一部又は全部がフッ素原子により置換されていてもよい。フッ素原子は耐酸化性 が高いので置換元素として好ましい。特定化合物 (I)中のフッ素原子の置換数は特 に制限はないが、 6以下が好ましい。
[0059] 特定ィ匕合物 (I)の分子量は、通常 132以上であり、通常 188以下、好ましくは 160 以下である。分子量力 Sこの上限を上回ると、溶質が溶解し難くなる傾向がある。
[0060] 特定ィヒ合物 (I)の具体例としては、
ジー n プロピノレカーボネート、
ジイソプロピルカーボネート、
n -プロピノレイソプロピノレカーボネート、
ジー n ブチノレカーボネート、 ジー i プロピノレカーボネート、
ジー t ブチノレカーボネート、
n ブチノレ i プチルカーボネート、
n -ブチノレ t ブチノレカーボネート、
i -ブチル t ブチノレカーボネート、
n ブチルメチルカーボネート、
i -ブチノレメチノレ力ーボネート、
t ブチノレメチノレカーボネート、
ェチルー n プロピルカーボネート、
n -ブチルェチルカ一ボネート、
iーブチノレエチノレカーボネート、
t ブチルェチノレ力ーボネート、
n ブチル n プロピル力ーボネート、
i ブチル n プロピルカーボネート、
t ブチル n プロピルカーボネート、
n プチ/レー i プロピ/レカーボネート、
i ブチル i プロピルカーボネート、
t ブチル i プロピルカーボネート、等が挙げられる。
また、特定化合物(I)にお 、て、水素原子がフッ素原子で置換された鎖状力 ートの具体例としては、
4 モノフルォロブチルメチルカーボネート、
4, 4ージフルォロブチルメチルカーボネート、
4, 4, 4 トリフノレオロブチノレカーボネート、
メチルー 3, 3, 4, 4, 4 ペンタフルォロブチルカーボネート、
2, 2, 3, 3, 4, 4, 4 ヘプタフノレォロブチノレメチノレカーボネート、 ェチルー 3—モノフルォロプロピルカーボネート、
3, 3—ジフルォロプロピルェチルカーボネート、
ェチルー 3, 3, 3—トリフルォロプロピルカーボネート、 ェチルー 2, 2, 3, 3, 3 ペンタフルォロカーボネート、
2—モノフルォロェチルプロピルカーボネート、
2, 2—ジフルォロェチルプロピルカーボネート、
プロピル 2, 2, 2—トリフルォロェチルカーボネート、
2, 2, 2 トリフルォロェチルー 3, 3, 3 トリフルォロプロピルカーボネート、
3, 3, 3, 2, 2 ペンタフルォロプロピル 2, 2, 2 トリフルォロェチルカーボネート
3—モノフルォロプロピルプロピルカーボネート、
3, 3—ジフルォロプロピルプロピルカーボネート、
プロピル 3, 3, 3—トリフルォロプロピルカーボネート、
3, 3, 3, 2, 2 ペンタフルォロプロピルプロピルカーボネート、
ビス 2—モノフルォロプロピルカーボネート、
ビス 2, 2—ジフルォロプロピルカーボネート、
ビス 2, 2, 2—トリフルォロプロピルカーボネート、
ビス 3, 3, 3, 2, 2 ペンタフルォロプロピルカーボネート、等が挙げられる。
[0062] 上記一般式 (I)にお 、て、 nと mが異なる整数である化合物、即ち非対称カーボネ ートが好ましぐそれらの中でも、メチルブチルカーボネート、ェチルプロピルカーボ ネート、ェチルブチルカーボネートが、電解液としての粘度、伝導度などの基礎特性 の観点から好ましい。また、メチルブチルカーボネート、ェチルプロピルカーボネート 、ェチルブチルカーボネート、ジプロピルカーボネートが、サイクル特性などの電池特 性が良好である点力も好ましい。これらの中でも、ェチルプロピルカーボネート、ェチ ルブチルカーボネート、ジプロピルカーボネートが特に好まし!/、。
[0063] 特定ィ匕合物 (I)は、第 1の非水系電解液 (I)中に 1種を単独で用いてもよぐ 2種以 上を任意の組み合わせ及び比率で併用してもょ 、。
[0064] 特定化合物 (I)の配合量は、第 1の非水系電解液 (I)に対して、通常 50体積%以 上、好ましくは 60体積%以上、また、通常 95体積%以下、好ましくは 90体積%以下 である。特定ィ匕合物 (I)の配合量が少な過ぎると、リチウム塩の解離度が低下して、 得られる非水系電解液の電気伝導率が低下する場合がある。一方、特定化合物 (I) の配合量が多過ぎると、得られる非水系電解液の粘度が上昇する傾向がある。
[0065] ·Ι 1 lb.飽和環状カーボネート:
上記特定化合物 (I)と併用される飽和環状カーボネートの例としては、エチレン力 ーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。また、こ れらの環状カーボネートの任意の水素原子がフッ素原子で置換されて 、てもよ 、。
[0066] 上記環状カーボネートの任意の水素原子がフッ素原子で置換されたィヒ合物として は、例えば、
フノレオ口エチレンカーボネート、
クロ口エチレンカーボネート、
4, 4ージフルォロエチレンカーボネート、
4, 5—ジフルォロエチレンカーボネート、
4, 4ージクロ口エチレンカーボネート、
4, 5—ジクロ口エチレンカーボネート、
4 フルオロー 4 メチルエチレンカーボネート、
4 クロロー 4ーメチノレエチレンカーボネート、
4, 5—ジフルオロー 4 メチルエチレンカーボネート、
4, 5—ジクロロー 4ーメチノレエチレンカーボネート、
4 フルオロー 5—メチルエチレンカーボネート、
4 クロロー 5—メチノレエチレンカーボネート、
4, 4ージフルオロー 5—メチルエチレンカーボネート、
4, 4ージクロロー 5—メチノレエチレンカーボネート、
4 (フルォロメチル) エチレンカーボネート、
4— (クロロメチノレ)一エチレンカーボネート、
4 (ジフルォロメチル) エチレンカーボネート、
4 (ジクロロメチノレ) エチレンカーボネート、
4 (トリフルォロメチル) エチレンカーボネート、
4 (トリクロロメチル) エチレンカーボネート、
4 (フルォロメチル)ー4 フルォロエチレンカーボネート、 4 (クロロメチノレ)ー4 クロ口エチレンカーボネート、
4 (フルォロメチル) 5—フルォロエチレンカーボネート、
4 (クロロメチノレ)ー5—クロ口エチレンカーボネート、
4 フルオロー 4, 5—ジメチルエチレンカーボネート、
4 クロロー 4, 5—ジメチノレエチレンカーボネート、
4, 5—ジフルオロー 4, 5—ジメチルエチレンカーボネート、
4, 5—ジクロロー 4, 5—ジメチルエチレンカーボネート、
4, 4ージフルオロー 5, 5—ジメチルエチレンカーボネート、
4, 4ージクロロー 5, 5—ジメチルエチレンカーボネート、等が挙げられる。
[0067] これらのうち、エチレンカーボネート、プロピレンカーボネート、フルォロエチレン力 ーボネート、 4, 4ージフルォロエチレンカーボネート、 4, 5—ジフルォロエチレンカー ボネート、 4 (フルォロメチル) エチレンカーボネートが、誘電率が高いため溶質 が溶解しやすぐ電池にしたときにサイクル特性が良 、点で好ま 、。
[0068] これらの飽和環状カーボネートは、 1種を単独で用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもょ 、。
[0069] 飽和環状カーボネートの配合量は、非水系電解液 (I)に対して、通常 5体積%以上 、好ましくは 10体積%以上、また、通常 50体積%以下、好ましくは 40体積%以下で ある。飽和環状カーボネートの配合量が少な過ぎると、溶質を溶かす際に溶け難くな る傾向がある。一方、飽和環状カーボネートの配合量が多過ぎると、得られる非水系 電解液の粘度が上昇する傾向がある。
[0070] -Ι- 1 - lc.特定化合物 (I)と飽和環状カーボネートとの成分配合比:
非水系電解液 (I)は、前記一般式 (I)で示される鎖状カーボネート (特定化合物 (I) )と、飽和環状カーボネートと、後述する特定カーボネートとを含有する。これらのうち 特定カーボネートは、非水系電解液 (I)に対していわば添加剤のような形で加えるた め、ここでは特定ィ匕合物 (I)と飽和環状カーボネート (以下、非水系電解液 (I)に関す る説明においては、これらを「非水溶媒」と総称することがある。)の配合比について 述べ。。
[0071] 非水系電解液 (I)における非水溶媒の好ま 、組み合わせの例としては、次の(a) , (b)が挙げられる。
(a)特定化合物と、飽和環状カーボネートとの組み合わせ。
(b)特定化合物と、飽和環状カーボネートと、好ましい非水溶媒として後述するその 他の鎖状カーボネートの組み合わせ。
[0072] 前述の如ぐ非水系電解液 (I)中の特定化合物 (I)の好適な含有量は、通常 50体 積%以上、好ましくは 60体積%以上で、通常 95体積%以下、好ましくは 90体積% 以下であり、非水系電解液 (I)中の飽和環状カーボネートの好適な含有量は、通常 5 体積%以上、好ましくは 10体積%以上で、通常 50体積%以下、好ましくは 40体積 %以下であり、非水系電解液 (I)中にその他の鎖状カーボネートを含む場合であつ ても、特定化合物 (I)と飽和環状カーボネートとの体積比は、好ましくは 50 : 50〜95: 5、ょり好ましくは60 :40〜90 : 10でぁる。鎖状カーボネートの比率が少な過ぎると、 得られる非水系電解液の粘度が上昇し、多過ぎると、リチウム塩の解離度が低下して 、得られる非水系電解液の電気伝導率が低下することがある。
[0073] また、特定化合物 (I)と飽和環状カーボネートの合計に対する、その他の鎖状カー ボネートの体積比は、通常 30体積%以下、好ましくは 25体積%以下である。非水系 電解液 (I)中にその他の鎖状カーボネートを含有させることにより、特定化合物 (I)と 飽和環状カーボネートのみでは溶質が溶け難 、場合にぉ 、ても溶け易くすると 、う 効果が奏されるが、その含有割合力 Sこの上限を超えると、サイクル特性が悪ィ匕するこ とちある。
[0074] 非水系電解液 (I)にお 、て、特に好ま 、非水溶媒の組み合わせとその体積比は 次の通りである力 本発明は以下のものに限定されるものではない。
[0075] (1)エチレンカーボネート(EC)とェチル n—プロピルカーボネート(EPC)
EC: EPC = 10 : 90〜40: 60、より好ましくは 20: 80〜30: 70
(2) ECとジプロピルカーボネート(DPC)
EC: DPC = 10 : 90〜40: 60、より好ましくは 20: 80〜30: 70
(3) ECとェチルー n ブチルカーボネート(EBC)
EC: EBC = 10 : 90〜40: 60、より好ましく ίま 20: 80〜30: 70
(4)フルォロエチレンカーボネート(FEC)と ECとェチルー η プロピルカーボネート (EPC)
FEC: EC: EPC = 5: 5: 90〜25: 25: 50、より好ましく ίま、 10 : 10 : 80〜20: 20:
60
(5) FECと EPC
FEC: EPC = 10 : 90〜40: 60、より好ましく ίま 20: 80〜30: 70
(6) FECと DPC
FEC: DPC= 10: 90〜40: 60、より好ましく ίま 20: 80〜30: 70
(7) FECと EBC
FEC: EBC = 10 : 90〜40: 60、より好ましく ίま 20: 80〜30: 70
[0076] また、上記(1)〜(7)の組み合わせに、更にその他の鎖状カーボネートであるジメ チノレカーボネート (DMC)、ェチノレメチノレメチノレカーボネート (EMC)、ジェチノレカー ボネート (DEC)を組み合わせてもよぐ例えば次のような組み合わせと体積比のもの が挙げられる。
[0077] (8) EC + EPC + DEC
EC: EPC: DEC = 10〜40: 40〜80: 10〜30
(9) EC + DPC + DEC
EC: DPC: DEC= 10〜40: 40〜80: 10〜30
(10) FEC + EPC + DEC
FEC: EPC: DEC = 10〜40: 40〜80: 10〜30
(1 D FEC + DPC + DEC
FEC: DPC: DEC = 10〜40: 40〜80: 10〜30
[0078] なお、上記の好適な組み合わせ例にぉ 、て、 EPC、 DPC、 EBCは、そのアルキル 基の水素原子がフッ素原子で置換されたものであってもよい。
[0079] そして、上記の組み合わせにカ卩えて、後述の特定カーボネートを非水系電解液 (I) に対し、通常 0. 01重量%以上、好ましくは 0. 1重量%以上、より好ましくは 0. 3重量 %以上、また、通常 50重量%以下、好ましくは 40重量%以下、より好ましくは 30重 量%以下の範囲でカ卩えるのが好ましい。この範囲の理由については後述する。
[0080] 'I—l— ld.その他: 上記特定の鎖状カーボネート (特定化合物 (I) )と飽和環状カーボネート、並びに後 述の特定カーボネートを含有する非水系電解液 (I)により、充放電サイクル特性が向 上する理由の詳細は明らかではないが、次のように推定される。
[0081] 即ち、非水系電解液 (I)中に含まれる特定ィ匕合物 (I)が炭素数 3以上のアルキル基 又はフルォロアルキル基を有することにより、上記金属原子を含む負極活物質に対 する活性が低いものとなり、これにより副反応が抑えられ、サイクル劣化が抑制される 。また、この鎖状カーボネートのアルキル基又はフルォロアルキル基の合計の炭素数 力 以上であることによつても、同様の効果が得られる。このようにして鎖状カーネート の副反応が抑制された状況で、後述の特定カーボネートにより良好な被膜が形成さ れる。そして、飽和環状カーボネートにより、電解質の溶解性が高められることによつ ても充放電サイクル特性の向上が図れる。
[0082] なお、このような特定化合物 (I)と、飽和環状カーボネートと、後述の特定カーボネ 一トとを併用することによる本発明の効果は、負極活物質として Si原子、 Sn原子及び Pb原子よりなる群力 選ばれる少なくとも 1種の原子を含有する物質を用いた場合に 特有のものであり、後述の [実施例,比較例群 I]に示されるように、負極活物質として 炭素材料を用いた場合には、このような長期充放電サイクル特性の向上効果は得ら れない。
[0083] <1 1 2.成分(ii) >
成分 (ii)は、下記一般式 (II)で表わされる化合物 (これを以下適宜「特定化合物 (II) 」と略称する。)である。
[化 16]
R 一
Figure imgf000024_0001
[0084] (上記式 (II)中、 Xは、
[化 17]
Figure imgf000025_0001
れを以下 「一 S〇2—」 と記載する場合がある。
、又は、
[化 18]
0
- "~ s (これを以下 「― s o 」 と記載する場合がある。 ) を表わし、
!^〜 は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたァ ルキル基を表わす。 )
[0085] 上記一般式(II)において、 Xは、上記の SO—又は SO—を表わすが、—SO
2 2 の場合は硫酸エステル (サルフェート構造をとる化合物)であり、 SO の場合は 亜硫酸エステル (サルファイト構造をとる化合物)である。
[0086] 上記一般式 (II)にお 、て、!^〜尺6は、それぞれ独立に無置換アルキル基又はハロ ゲン原子で置換されたアルキル基を表わす。このアルキル基の炭素数は、通常 1以 上、 6以下、好ましくは 3以下である。 nが大き過ぎると、特定化合物(II)の重量当たり の効果が薄れ、特定化合物 (Π)を含有することによる効果が十分発現しなくなる場合 がある。
[0087] アルキル基の具体例としては、
メチル基、
ェチル基、 n- -プロピノレ基、
i— -プロピル基、
n- -ブチル基、
s_ -ブチル基、
i— -ブチル基、
t- -ブチル基、
n- -ペンチル基、
1 - -メチノレブチノレ基、
2- -メチルブチノレ基、
3- -メチルブチル基、
1, 2—ジメチルプロピル基、
1 - -ェチノレプロピノレ基、
n-一へキシノレ基、
1 - -メチルペンチル基、
2- -メチルペンチル基、
3 -メチルペンチル基、
4- -メチルペンチル基、
1, 2—ジメチルブチル基、
1, 3—ジメチルブチル基、
2, 3—ジメチルブチル基、
2 -ェチルブチノレ基、
3 -ェチルブチル基、等が挙げられる。
これらの中でも特に、メチル基、ェチル基、 n—プロピル基が好ましい。
!^〜尺6が、ハロゲン原子で置換されたアルキル基の場合、アルキル基の水素原子 の一部がハロゲン原子で置換されていても、全部がハロゲン原子により置換されてい てもよい。ハロゲン原子としては、フッ素原子、塩素原子等が挙げられるが、耐酸化性 が高いことからフッ素原子が好ましい。ハロゲン原子の置換数は特に制限はないが、 アルキル基 1つあたり 6以下が好ましぐ更には 3以下が好ましい。 ノ、ロゲン原子で置換されたアルキル基として、ハロゲン原子がフッ素原子である場 合について例示すると、
フルォロメチル基、
1一フルォロェチル基、
2—フルォロェチル基、
1一フルォロ— n—プロピル基、
2 -フルォロ— n—プロピル基、
3 -フルォロ— n—プロピル基、
ジフルォロメチル基、
1, 1 -ジフルォロェチル基、
1, 2-ジフルォロェチル基、
2, 2-ジフルォロェチル基、
1, 1 -ジフルォロ一 n—プロピル基、
1, 2-ジフノレオ口一 n—プロピノレ基、
1, 3-ジフノレオ口一 n—プロピノレ基、
2, 2-ジフノレオ口一 n—プロピル基、
2, 3- -ジフノレオ口一 n—プロピノレ基、
3, 3- -ジフノレオ口一 n—プロピノレ基、
トリフルォロメチル基、
1, 1, 2-トリフルォロェチル基、
1, 2, 2-トリフルォロェチル基、
2, 2, 2-トリフルォロェチル基、
1, 1, 2- -トリフルオロー n—プロピル基、
1, 2, 2-トリフルオロー n—プロピル基、
1, 1, 3- -トリフルオロー n—プロピル基、
1, 2, 3- -トリフルオロー n—プロピル基、
1, 3, 3- -トリフルオロー n—プロピル基、
2, 2, 3-トリフルオロー n—プロピル基、 2, 3, 3 トリフルォロ— n—プロピル基、
3, 3, 3—トリフルォロ— n—プロピル基、等が挙げられる。
また、以上例示した基のフッ素原子をその他のハロゲン原子に置き換えて得られる 基も、ハロゲン原子で置換されたアルキル基の例として同様に挙げられる。
[0090] これらの中でも、安定性や製造の容易さから
フルォロメチル基、
トリフルォロメチル基、
2—フルォロェチル基、
2, 2—ジフルォロェチル基、
2, 2, 2—トリフルォロェチル基、
3 -フルォロ n プロピル基、
3, 3, 3—トリフルォロ— n—プロピル基、が好ましい。
[0091] 上記一般式(II)において、!^〜 は互いに同一であっても異なっていてもよいが、 製造の容易さから同一であることが好ましい。
[0092] したがって、特定化合物(II)の具体例としては、
ビス(トリメチルシリル)サルフェート、
ビス {トリス(フルォロメチル)シリル }サルフェート、
ビス(トリエチルシリル)サルフェート、
ビス {トリス(2—フルォロェチル) }サルフェート、
ビス {トリス(2, 2—ジフルォロェチル) }サルフェート、
ビス {トリス(2, 2, 2—トリフルォロェチル)}サルフェート、
ビス(トリ— n プロピル)サルフェート、
ビス {トリス( 3—フルォロ n プロピル) }サルフェート、
ビス {トリス(3, 3, 3—トリフルォロ— n—プロピル)}サルフェート、等のケィ素含有硫 酸エステル;
ビス(トリメチルシリル)サルファイト、
ビス {トリス(フルォロメチル)シリル }サルファイト、
ビス(トリエチルシリル)サルファイト、 ビス {トリス(2—フルォロェチル) }サルファイト、
ビス {トリス(2, 2—ジフルォロェチル) }サルファイト、
ビス {トリス(2, 2, 2—トリフルォロェチル)}サルフアイト、
ビス(トリー n—プロピル)サノレフアイト、
ビス {トリス(3—フルォロ一 n—プロピル) }サルファイト、
ビス {トリス(3, 3, 3—トリフルォロ— n—プロピル)}サルフアイト、等のケィ素含有亜硫 酸エステル;などが挙げられる。
[0093] 中でも、前記一般式 (II)における!^〜 力 それぞれ独立に、無置換又はフッ素 原子で置換された炭素数 1〜3のアルキル基であるものが好まし 、。その具体例とし ては、
ビス(トリメチルシリル)サルフェート、
ビス(トリエチルシリル)サルフェート、
ビス {トリス(2—フルォロェチル) }サルフェート、
ビス {トリス(2, 2, 2—トリフルォロェチル)}サルフェート、
ビス(トリ— n—プロピル)サルフェート、
ビス(トリメチルシリル)サルファイト、
ビス(トリエチルシリル)サルファイト、
ビス {トリス(2—フルォロェチル) }サルファイト、
ビス {トリス(2, 2, 2—トリフルォロェチル)}サルフアイト、
ビス(トリー n—プロピル)サルファイト、等が挙げられる。
[0094] これらの中でも、!^〜 が同一の基であることが好ましぐ更に、前記一般式 (II)に おける!^〜 が同一の基を表わし、無置換又はフッ素原子で置換された炭素数 1〜
2のアルキル基であることが特に好ましい。工業的入手の容易さの点からは、無置換 の炭素数 1〜2のアルキル基であることが特に好ましい。
[0095] 特定ィ匕合物 (II)の分子量に制限は無ぐ本発明の効果を著しく損なわない限り任 意である力 通常 100以上、好ましくは 110以上である。上限にも特に制限は無いが
、粘性が上昇することから、通常 400以下、好ましくは 300以下が実用的である。
[0096] 特定化合物 (II)の製造方法にも特に制限は無ぐ公知の方法を任意に選択して製 造することが可能である。
[0097] 以上説明した特定化合物 (II)は、非水系電解液 (II)中に、何れか 1種を単独で用 いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもょ 、。
[0098] 非水系電解液 (II)に対する特定ィ匕合物 (II)の配合量に特に制限は無ぐ本発明の 効果を著しく損なわない限り任意であるが、非水系電解液 (II)に対して、通常 0. 01 重量%以上、好ましくは 0. 1重量%以上、また、通常 10重量%以下、好ましくは 5重 量%以下の濃度で含有させることが望ま 、。特定化合物 (II)の配合量が少な過ぎ ると、非水系電解液を非水系電解液二次電池に用いた場合に、得られる非水系電 解液二次電池が十分なサイクル特性向上効果を発現し難くなる場合がある。一方、 特定ィ匕合物 (II)の配合量が多過ぎると、非水系電解液内での反応性が上昇し、得ら れる非水系電解液二次電池の電池特性が低下する場合がある。
[0099] 非水系電解液 (II)にお!/、て、特定化合物(II)と後述の特定カーボネートとの比率も 任意であるが、「特定化合物(II)の重量 Z特定カーボネートの重量」で表わされる両 者の相対重量比が、通常 0. 0001以上、好ましくは 0. 001以上、より好ましくは 0. 0 1以上、また、通常 1000以下、好ましくは 100以下、より好ましくは 10以下の範囲で あることが望ましい。上記相対重量比が低過ぎても高過ぎても、相乗効果が得られ難 くなる場合がある。
[0100] 上記の特定化合物(II)と後述の特定カーボネートとを含有する非水系電解液 (II)を 用いると、非水系電解液二次電池の充放電サイクル特性を向上させることが可能とな る。この理由の詳細は明らかではないが、次のように推定される。即ち、非水系電解 液 (Π)中に含まれる特定化合物(II)と特定カーボネートとがともに反応する事によつ て、負極活物質の表面に良好な保護被膜層を形成し、これにより副反応が抑えられ
、サイクル劣化が抑制されるものと推察される。詳細は不明であるが、特定化合物 (II
)と特定カーボネートとが同時に電解液中に存在することで、何らかの形で保護被膜 の特性を向上させることに寄与して 、るものと推察される。
[0101] なお、このような特定化合物(II)と、後述の特定カーボネートとを併用することによる 本発明の効果は、負極活物質として Si原子、 Sn原子及び Pb原子よりなる群から選 ばれる少なくとも 1種の原子を含有する物質を用いた場合に特有のものであり、後述 の [実施例 ·比較例群 II]に示されるように、負極活物質として炭素材料を用いた場合 には、このような長期充放電サイクル特性の向上効果は得られない。
[0102] <1 1 3.成分(iii) >
成分 (m)は、下記一般式 (in - 1)で表わされる化合物 (これを以下適宜「特定化合 物(m)」と略称する。)である。
[0103] [化 19]
A N= C= 0 ( i n - 1 )
[0104] 上記式 (III 1)において、 Aは、水素以外の任意の元素又は基を表わす。但し、式
(III 1)で表わされる化合物の電気化学的な安定性から、 Aは、ァリール基又はァリ 一ル基を置換基として有する基以外であることが好ましい。即ち、 Aは、ァリール基以 外の元素又は基であることが好ましぐまた、ァリール基を置換基として有する基以外 の元素又は基であることが好まし 、。
[0105] さらには、特定化合物 (III)の有機物としての安定性や、生成する保護被膜層の安 定性から、 Aは、元素ではハロゲンが好ましぐ各種官能基では、置換基を有してもよ い、鎖状又は環状の、飽和又は不飽和の、アルキル基が好ましい。
[0106] また、特定ィ匕合物(III)の中でも、下記の一般式 (III 2)又は一般式 (III 3)で表 わされるものが好ましい。
[0107] [化 20]
Figure imgf000031_0001
( I I I— 2 ) (上記式 (III— 2)において、 X1及び X2はそれぞれ独立に、水素以外の元素を表わし 、 Zは、任意の元素又は基を表わし、 m及び nはそれぞれ独立に、 1以上の整数を表 わす。 mが 2以上の場合、各 Zは同一であってもよぐ異なっていてもよい。 )
[0108] [化 21]
R
R—— Si ~ -N= C= 0
Figure imgf000032_0001
(上記式 (m— 3)において、 Rはそれぞれ独立に、置換基を有してもよいアルキル基 又はァリール基を表わす。なお、複数の Rが互いに結合して環を形成していてもよい o )
[0109] 以下、式 (III 2)、式 (III— 3)について更に詳しく説明する。
式 (III— 2)において、 X1及び X2はそれぞれ独立に水素以外の元素を表わす。 X1, X2は、上記式 (III— 2)の化学構造を成立せしめる限り、水素以外の任意の元素を用 いることができる。 X1の好適なものの具体例としては、炭素原子、硫黄原子、リン原子 等を挙げることができる。また、 X2の好適なものの具体例としては、酸素原子、窒素原 子等を挙げることができる。
[0110] さらに、式(III 2)において、 Zは、任意の元素又は基を表わす。 Zの好適なものの 具体例としてはアルキル基などが挙げられる。中でも、メチル基、ェチル基、フルォロ メチル基、トリフルォロメチル基、 2—フルォロェチル基、 2, 2, 2—トリフルォロェチル 基等が好ましぐメチル基、ェチル基が特に好ましい。なお、 mが 2以上の場合、各 Z は同一であってもよぐ異なっていてもよい。また、適宜、複数の Zが互いに結合して 環を形成して ヽても構わな ヽ。
[0111] また、式(III 2)において、 m及び nはそれぞれ 1以上の整数を表わす。 式 (III— 2)で表される特定ィ匕合物の中で好ま 、ものの具体例としては、以下の化 合物が挙げられる。なお、以下の例示化合物において、 R1はそれぞれ独立にアルキ ル基を表わす。 R1の具体例としては、式 (III 2)の Zの好適な具体例として先に例示 したアルキル基が挙げられる。
[0112] [化 22]
Figure imgf000033_0001
[0113] 一方、式(III— 3)において、 Rはそれぞれ独立に、置換基を有してもよいアルキル 基又はァリール基を表わす。
[0114] ここで、 Rの具体例としては、 Rがアルキル基である場合、メチル基、ェチル基、フル ォロメチル基、トリフルォロメチル基、 2—フルォロェチル基、 2, 2, 2—トリフルォロェ チル基等が挙げられる。中でも、メチル基、ェチル基が好ましい。 [0115] また、 Rがァリール基である場合、具体例としては、フエ-ル基、 o—トシル基、 m—ト シル基、 p—トシル基、 o—フルオロフェ-ル基、 m—フルオロフェ-ル基、 p—フルォ 口フ ニル基等が挙げられる。
[0116] なお、 Rは互いに同種でもよぐ異種であってもよい。さらに、複数の Rが互いに結 合して環を形成して 、てもよ 、。
[0117] 特定化合物(III)の具体例としては、以下のものが挙げられる。
[化 23]
CH3 CH2F
H3C—— Si—— N=C=0 FH2C—— Si—— =C^=0
CH3 CH2F
CH2CH3 CH2CH2F CH2CF3
H3CH2C—— Si—— N=C=0 FH2CH2C—— Si—— N==C^O F3CH2C—— Si—— N=C=0
CH2CH3 CH2CH2F CH2CF3
[0118] [化 24]
H3C—— 0—— C—— N=C=0 FH2C—— C—— N=C=0
o II o II
H3CH2C—— O—— C—— N=C= FH2CH2C—— 0—— C ~N=C=0 F3CH2C—— —— C =C=0
0 II 0 II 0 II
C=0
C=0
Figure imgf000035_0001
[0119] [化 25]
H N=C=0
Figure imgf000035_0002
[0120] 特定ィ匕合物(III)は、非水系電解液 (III)中に、 1種を単独で用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用してもょ 、。
[0121] 特定ィ匕合物 (III)の分子量に制限は無ぐ本発明の効果を著しく損なわない限り任 意である力 通常 100以上である。また、上限に特に制限は無いが、通常 300以下、 好ましくは 200以下が実用的である。
[0122] 非水系電解液 (III)に対する特定ィ匕合物 (III)の配合量に特に制限は無ぐ本発明 の効果を著しく損なわない限り任意であるが、非水系電解液 (III)に対して、通常 0. 0 1重量%以上、好ましくは 0. 1重量%以上、また、通常 10重量%以下、好ましくは 5 重量%以下である。この範囲の下限を下回ると、非水系電解液を非水系電解液二次 電池に用いた場合に、得られる非水系電解液二次電池が十分なサイクル特性向上 効果を発現しなくなる場合がある。また、この上限を上回ると、非水系電解液内での 反応性が上昇し、得られる非水系電解液二次電池の電池特性が低下する場合があ る。
[0123] なお、特定ィヒ合物 (III)の製造方法にも特に制限は無ぐ公知の方法を任意に用い ることがでさる。
[0124] 非水系電解液 (III)にお 、て、特定化合物(III)と後述の特定カーボネートとの比率 も任意であるが、「特定化合物(III)の重量 Z特定カーボネートの重量」で表わされる 両者の相対重量比が、通常 0. 001以上、好ましくは 0. 01以上、より好ましくは 0. 1 以上、また、通常 1000以下、好ましくは 100以下、より好ましくは 10以下が望ましい 。上記相対重量比が低過ぎても高過ぎても、特定ィ匕合物 (III)と特定カーボネートとの 併用による相乗効果が得られ難くなる場合がある。
[0125] 上記の特定化合物(III)と後述の特定カーボネートとを含有する非水系電解液 (III) を用いることにより、非水系電解液二次電池の充放電サイクル特性を向上させること が可能となる。この理由の詳細は明らかではないが、次のように推定される。即ち、非 水系電解液 (III)中に含まれる特定化合物 (III)と特定カーボネートとがともに反応す る事によって、負極活物質の表面に良好な保護被膜層を形成し、これにより副反応 が抑えられ、サイクル劣化が抑制されるものと推察される。
[0126] [1- 2.特定カーボネート〕
本発明に係る特定カーボネートは、不飽和結合及びハロゲン原子のうち少なくとも 一方を有するカーボネートである。即ち、本発明に係る特定カーボネートは、不飽和 結合のみを有していてもよぐハロゲン原子のみを有していてもよぐ不飽和結合及び ハロゲン原子の双方を有して 、てもよ 、。
[0127] 不飽和結合を有するカーボネート(これを適宜「不飽和カーボネート」と略称する。 ) としては、炭素 炭素二重結合や炭素 炭素三重結合等の炭素 炭素不飽和結 合を有するカーボネートであればその他に制限は無ぐ任意の不飽和カーボネート を用いることができる。なお、芳香環を有するカーボネートも、不飽和結合を有する力 ーボネートに含まれるものとする。
[0128] 不飽和カーボネートの例としては、ビ-レンカーボネート誘導体類、芳香環又は炭 素 炭素不飽和結合を有する置換基で置換されたエチレンカーボネート誘導体類、 フエ-ルカーボネート類、ビュルカーボネート類、ァリルカーボネート類等が挙げられ る。
[0129] ビ-レンカーボネート誘導体類の具体例としては、
ビニレンカーボネート、
メチノレビ二レンカーボネート、
4, 5—ジメチルビ-レンカーボネート、
フエ-ルビ-レンカーボネート、
4, 5—ジフエ-ルビ-レンカーボネート、等が挙げられる。
[0130] 芳香環又は炭素 炭素不飽和結合を有する置換基で置換されたエチレンカーボ ネート誘導体類の具体例としては、
ビュルエチレンカーボネート、
4, 5—ジビュルエチレンカーボネート、
フエニノレエチレンカーボネート、
4, 5—ジフエ-ルエチレンカーボネート、等が挙げられる。
[0131] フエ-ルカーボネート類の具体例としては、
ジフエ二ノレカーボネート、
ェチルフエニルカーボネート、
メチルフエニルカーボネート、
t ブチルフエ-ルカーボネート、等が挙げられる。
[0132] ビュルカーボネート類の具体例としては、
ジビニノレカーボネート、
メチルビ-ルカーボネート、等が挙げられる。
[0133] ァリルカーボネート類の具体例としては、
ジァリルカーボネート、 ァリルメチルカーボネート、等が挙げられる。
[0134] これらの不飽和カーボネートの中でも、特定カーボネートとしては、ビニレンカーボ ネート誘導体類、芳香環又は炭素 炭素不飽和結合を有する置換基で置換された エチレンカーボネート誘導体類が好ましぐ特に、ビ-レンカーボネート、 4, 5—ジフ ェニルビ二レンカーボネート、 4, 5—ジメチルビ二レンカーボネート、ビニノレエチレン カーボネートは、安定な界面保護被膜を形成するので、より好適に用いられる。
[0135] 一方、ハロゲン原子を有するカーボネート(これを適宜「ノ、ロゲン化カーボネート」と 略称する。)としては、ハロゲン原子を有するものであれば、その他に特に制限は無く 、任意のハロゲン化カーボネートを用いることができる。
[0136] ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が 挙げられる。この中でも、好ましくはフッ素原子又は塩素原子であり、フッ素原子が特 に好ましい。また、ハロゲン化カーボネートが有するハロゲン原子の数も、 1以上であ れば特に制限されないが、通常 6以下、好ましくは 4以下である。ハロゲン化カーボネ ートが複数のハロゲン原子を有する場合、それらは互いに同一でもよぐ異なってい てもよい。
[0137] ハロゲン化カーボネートの例としては、エチレンカーボネート誘導体類、ジメチルカ ーボネート誘導体類、ェチルメチルカーボネート誘導体類、ジェチルカーボネート誘 導体類等が挙げられる。
[0138] エチレンカーボネート誘導体類の具体例としては、
フノレオ口エチレンカーボネート、
クロ口エチレンカーボネート、
4, 4ージフルォロエチレンカーボネート、
4, 5—ジフルォロエチレンカーボネート、
4, 4ージクロ口エチレンカーボネート、
4, 5—ジクロ口エチレンカーボネート、
4 フルオロー 4 メチルエチレンカーボネート、
4 クロロー 4ーメチノレエチレンカーボネート、
4, 5—ジフルオロー 4 メチルエチレンカーボネート、 4, 5—ジクロロー 4ーメチノレエチレンカーボネート、
4 フルオロー 5—メチルエチレンカーボネート、
4 クロロー 5—メチノレエチレンカーボネート、
4, 4ージフルオロー 5—メチルエチレンカーボネート、
4, 4ージクロロー 5—メチノレエチレンカーボネート、
4 (フルォロメチル) エチレンカーボネート、
4— (クロロメチノレ)一エチレンカーボネート、
4 (ジフルォロメチル) エチレンカーボネート、
4 (ジクロロメチノレ) エチレンカーボネート、
4 (トリフルォロメチル) エチレンカーボネート、
4 (トリクロロメチル) エチレンカーボネート、
4 (フルォロメチル)ー4 フルォロエチレンカーボネート、
4 (クロロメチノレ)ー4 クロ口エチレンカーボネート、
4 (フルォロメチル) 5—フルォロエチレンカーボネート、
4 (クロロメチノレ)ー5—クロ口エチレンカーボネート、
4 フルオロー 4, 5—ジメチルエチレンカーボネート、
4 クロロー 4, 5—ジメチノレエチレンカーボネート、
4, 5—ジフルオロー 4, 5—ジメチルエチレンカーボネート、
4, 5—ジクロロー 4, 5—ジメチルエチレンカーボネート、
4, 4ージフルオロー 5, 5—ジメチルエチレンカーボネート、
4, 4ージクロロー 5, 5—ジメチルエチレンカーボネート、等が挙げられる ジメチルカーボネート誘導体類の具体例としては、
フルォロメチルメチルカーボネート、
ジフノレ才ロメチノレメチノレカーボネート、
トリフルォロメチルメチルカーボネート、
ビス(フルォロメチル)カーボネート、
ビス(ジフルォロ)メチルカーボネート、
ビス(トリフルォロ)メチルカーボネート、 クロロメチノレメチノレカーボネート、
ジクロロメチノレメチノレカーボネート、
トリクロロメチルメチルカーボネート、
ビス(クロロメチノレ)カーボネート、
ビス(ジクロ口)メチルカーボネート、
ビス(トリクロ口)メチルカーボネート、等が挙げられる。
[0140] ェチルメチルカーボネート誘導体類の具体例としては、 2—フルォロェチルメチルカーボネート、
ェチルフルォロメチルカーボネート、
2, 2—ジフノレォロェチノレメチノレカーボネート、
2—フノレォロェチノレフノレォロメチノレカーボネート、 ェチルジフルォロメチルカーボネート、
2, 2, 2—トリフノレォロェチノレメチノレカーボネート、 2, 2—ジフルォロェチルフルォロメチルカーボネート、 2—フルォロェチルジフルォロメチルカーボネート、 ェチルトリフルォロメチルカーボネート、
2—クロロェチノレメチノレカーボネート、
ェチノレクロロメチノレカーボネート、
2, 2—ジクロロェチルメチノレカーボネート、
2—クロロェチノレクロロメチノレカーボネート、
ェチノレジクロロメチノレカーボネート、
2, 2, 2—トリクロ口ェチルメチルカーボネート、
2, 2—ジクロロェチノレクロロメチノレカーボネート、 2—クロロェチノレジクロロメチノレカーボネート、 ェチルトリクロロメチルカーボネート、等が挙げられる。
[0141] ジェチルカーボネート誘導体類の具体例としては、 ェチルー(2—フルォロェチル)カーボネート、 ェチノレー(2, 2—ジフノレオロェチノレ)カーボネート、 ビス(2—フノレオロェチノレ)カーボネート、
ェチルー(2, 2, 2—トリフルォロェチル)カーボネート、
2, 2—ジフルォロェチルー 2,ーフノレオロェチノレカーボネート、
ビス(2, 2—ジフノレ才ロェチノレ)カーボネート、
2, 2, 2—トリフルォロェチルー 2'—フルォロェチルカーボネート、
2, 2, 2—トリフルォロェチルー 2,, 2,ージフルォロェチルカーボネート、 ビス(2, 2, 2—トリフルォロェチル)カーボネート、
ェチノレー(2—クロロェチノレ)カーボネート、
ェチノレー(2, 2—ジクロロェチノレ)カーボネート、
ビス(2—クロロェチノレ)カーボネート、
ェチルー(2, 2, 2—トリクロロェチル)カーボネート、
2, 2—ジクロロェチノレー 2,一クロロェチノレカーボネート、
ビス(2, 2—ジクロロェチノレ)カーボネート、
2, 2, 2—トリクロロェチノレー 2,一クロロェチノレカーボネート、
2, 2, 2—トリクロロェチルー 2,, 2,ージクロロェチノレカーボネート、
ビス(2, 2, 2—トリクロロェチル)カーボネート、等が挙げられる。
[0142] これらのハロゲン化カーボネートの中でも、フッ素原子を有するカーボネートが好ま しぐフッ素原子を有するエチレンカーボネート誘導体類が更に好ましぐ特にフルォ 口エチレンカーボネート、 4 (フルォロメチル) エチレンカーボネート、 4, 4ージフ ルォロエチレンカーボネート、 4, 5—ジフルォロエチレンカーボネートは、界面保護 被膜を形成するので、より好適に用いられる。
[0143] 更に、特定カーボネートとしては、不飽和結合とハロゲン原子とを共に有するカーボ ネート (これを適宜「ハロゲン化不飽和カーボネート」と略称する。)を用いることもでき る。ハロゲンィ匕不飽和カーボネートとしては、特に制限は無ぐ本発明の効果を著しく 損なわない限り、任意のハロゲン化不飽和カーボネートを用いることができる。
[0144] ハロゲン化不飽和カーボネートの例としては、ビ-レンカーボネート誘導体類、芳香 環又は炭素 炭素不飽和結合を有する置換基で置換されたエチレンカーボネート 誘導体類、ァリルカーボネート類等が挙げられる。 [0145] ビ-レンカーボネート誘導体類の具体例としては、
フノレオロビニレンカーボネート、
4 フルオロー 5—メチルビ二レンカーボネート、
4—フルオロー 5—フエ-ルビ-レンカーボネート、
クロロビニレンカーボネート、
4—クロ口一 5—メチルビ二レンカーボネート、
4—クロ口一 5—フエ-ルビ-レンカーボネート、等が挙げられる。
[0146] 芳香環又は炭素 炭素不飽和結合を有する置換基で置換されたエチレンカーボ ネート誘導体類の具体例としては、
4 フルオロー 4 ビュルエチレンカーボネート、
4 フルオロー 5—ビュルエチレンカーボネート、
4, 4 ジフルォロ 4 ビュルエチレンカーボネート、
4, 5—ジフルォロ 4 ビュルエチレンカーボネート、
4 クロロー 5—ビニノレエチレンカーボネート、
4, 4ージクロロー 4ービニノレエチレンカーボネート、
4, 5—ジクロロ一 4—ビュルエチレンカーボネート、
4 フノレオ口 4, 5—ジビニノレエチレンカーボネート、
4, 5—ジフルオロー 4, 5—ジビュルエチレンカーボネート、
4—クロ口一 4, 5—ジビニルエチレンカーボネート、
4, 5—ジクロロー 4, 5—ジビニノレエチレンカーボネート、
4ーフノレオロー 4 フエ-ノレエチレンカーボネート、
4ーフノレオロー 5—フエ-ノレエチレンカーボネート、
4, 4ージフルオロー 5—フエ-ルエチレンカーボネート、
4, 5—ジフルオロー 4 フエ-ルエチレンカーボネート、
4 クロロー 4 フエニノレエチレンカーボネート、
4—クロ口一 5—フエニノレエチレンカーボネート、
4, 4ージクロロー 5—フエニノレエチレンカーボネート、
4, 5—ジクロロ一 4—フエ-ノレエチレンカーボネート、 4, 5—ジフルオロー 4, 5—ジフエ-ルエチレンカーボネート、 4, 5—ジクロロー 4, 5—ジフエ-ルエチレンカーボネート、等が挙げられる [0147] フエ-ルカーボネート類の具体例としては、
フルォロメチルフエニルカーボネート、
2—フノレオロェチノレフエ二ルカーボネート、
2, 2—ジフルォロェチルフエニルカーボネート、
2, 2, 2—トリフルォロェチルフエ-ルカーボネート、
クロロメチノレフェニノレカーボネート、
2—クロロェチノレフェニノレカーボネート、
2, 2—ジクロロェチノレフエ二ノレカーボネート、
2, 2, 2—トリクロ口ェチルフエニルカーボネート、等が挙げられる。
[0148] ビニルカーボネート類の具体例としては、
フルォロメチルビ二ルカ一ボネート、
2—フルォロェチルビ二ノレカーボネート、
2, 2—ジフルォロェチルビ-ルカーボネート、
2, 2, 2—トリフルォロェチルビニルカーボネート、
クロロメチルビ二ルカーボネート、
2—クロロェチルビ二ノレカーボネート、
2, 2—ジクロロェチノレビ二ノレカーボネート、
2, 2, 2—トリクロロェチルビ-ルカーボネート、等が挙げられる。
[0149] ァリルカーボネート類の具体例としては、
フルォロメチルァリルカーボネート、
2—フルォロェチルァリルカーボネート、
2, 2—ジフルォロェチルァリルカーボネート、
2, 2, 2—トリフルォロェチルァリルカーボネート、
クロロメチルァリルカーボネート、
2—クロロェチルァリルカーボネート、
2, 2—ジクロロェチルァリルカーボネート、 2, 2, 2—トリクロロェチルァリルカーボネート、等が挙げられる。
[0150] 上述したハロゲン化不飽和カーボネートの例の中でも、特定カーボネートとしては、 単独で用いた場合に効果が高 、ビ-レンカーボネート、ビュルエチレンカーボネート 、フルォロエチレンカーボネート及び 4, 5—ジフルォロエチレンカーボネート、並び にこれらの誘導体よりなる群力 選ばれる 1種以上のものを用いることが特に好ましい
[0151] なお、特定カーボネートの分子量に特に制限は無ぐ本発明の効果を著しく損なわ ない限り任意である力 通常 50以上、好ましくは 80以上、また、通常 250以下、好ま しくは 150以下である。分子量が大き過ぎると、非水系電解液に対する特定カーボネ ートの溶解性が低下し、本発明の効果を十分に発現し難くなる場合がある。
[0152] また、特定カーボネートの製造方法にも特に制限は無ぐ公知の方法を任意に選 択して製造することが可能である。
[0153] 以上説明した特定カーボネートについても、本発明の第 1の非水系電解液中に、 何れ力 1種を単独で含有させてもよぐ 2種以上を任意の組み合わせ及び比率で併 有させてもよい。
[0154] また、本発明の第 1の非水系電解液に対する特定カーボネートの配合量に制限は 無ぐ本発明の効果を著しく損なわない限り任意であるが、本発明の第 1の非水系電 解液に対して、通常 0. 01重量%以上、好ましくは 0. 1重量%以上、より好ましくは 0 . 3重量%以上、また、通常 70重量%以下、好ましくは 50重量%以下、より好ましく は 40重量%以下の濃度で含有させることが望ましい。この範囲の下限を下回ると、本 発明の第 1の非水系電解液を非水系電解液二次電池に用いた場合に、その非水系 電解液二次電池が十分なサイクル特性向上効果を発現し難くなる場合があり、また、 特定カーボネートの比率が大き過ぎると、本発明の第 1の非水系電解液を非水系電 解液二次電池に用いた場合に、その非水系電解液二次電池の高温保存特性及びト リクル充電特性が低下する傾向があり、特に、ガス発生量が多くなり、放電容量維持 率が低下する場合がある。
[0155] なお、非水系電解液 (I)にお!/、ては、上述の特定化合物 (I)及び Z又は飽和環状 カーボネートが、不飽和結合及び Z又はハロゲン原子を有するカーボネートである 場合も考えられる。このような場合には、その特定化合物 (I)及び Z又は飽和環状力 ーボネートが、特定カーボネートとしても機能することになるので、更に他の特定カー ボネートを使用する必要はない。
[0156] [1- 3.非水溶媒〕
本発明の第 1の非水系電解液が含有する非水溶媒としては、本発明の効果を著し く損なわない範囲において、任意のものを用いることができる。なお、非水溶媒は、 1 種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ ヽ。
[0157] 通常使用される非水溶媒の例としては、
環状カーボネート、
鎖状カーボネート、
鎖状及び環状カルボン酸エステル、
鎖状及び環状エーテル類、
含リン有機溶媒、
含硫黄有機溶媒、などが挙げられる。
[0158] 環状カーボネートの種類に特に制限は無いが、通常使用されるものの例としては、 前述の特定カーボネートに該当するカーボネート以外では、
エチレンカーボネート、
プロピレンカーボネート、
ブチレンカーボネート、等が挙げられる。
[0159] これらの中でも、エチレンカーボネート、プロピレンカーボネートが、誘電率が高い ため溶質が溶解し易ぐ非水系電解液二次電池にしたときにサイクル特性が良いと いう点で好ましい。従って、本発明の第 1の非水系電解液は、非水溶媒として、前述 の特定カーボネートに該当するカーボネートの他に、エチレンカーボネート及び Z又 はプロピレンカーボネートを含むことが好まし 、。
[0160] また、鎖状カーボネートの種類にも特に制限は無いが、通常使用されるものの例と しては、前述の特定カーボネートに該当するカーボネート以外では、
ジメチルカーボネート、
ェチルメチルカーボネート、 ジェチノレカーボネート、
メチル n プロピルカーボネート、
ェチルー n プロピルカーボネート、
ジー n プロピノレカーボネート、等が挙げられる。
[0161] 従って、本発明の第 1の非水系電解液は、非水溶媒として、前述の特定カーボネー トに該当するカーボネートの他に、ジメチルカーボネート、ェチルメチルカーボネート 、ジェチルカーボネート、メチルー n—プロピルカーボネート、ェチルー n—プロピル カーボネート、ジー n—プロピルカーボネートよりなる群力 選ばれる少なくとも 1種を 含むことが好ましい。これらの中でも、ジェチルカーボネート、メチルー n—プロピル力 ーボネート、ェチルー n プロピルカーボネートが好ましぐ特にジェチルカーボネー トが非水系電解液二次電池にしたときにサイクル特性が良 、点で好ま U、。
[0162] 更に、鎖状カルボン酸エステルの種類にも特に制限は無いが、通常使用されるもの の例としては、
酢酸メチル、
酢酸ェチル、
酢酸—n—プロピル、
酢酸— i—プロピル、
酢酸 n—ブチル、
酢酸 iーブチル、
酢酸 tーブチル、
プロピオン酸メチル、
プロピオン酸ェチル、
プロピオン酸 n プロピノレ、
プロピオン酸 i プロピル、
プロピオン酸 n ブチノレ、
プロピオン酸 i ブチノレ、
プロピオン酸—tーブチル、等が挙げられる。
これらの中でも、酢酸ェチル、プロピオン酸メチル、プロピオン酸ェチルがより好まし い。
[0163] また、環状カルボン酸エステルの種類にも特に制限は無いが、通常使用されるもの の例としては、
y ブチロラタトン、
y ノ レロラクトン、
δ—バレロラタトン、等が挙げられる。
これらの中でも、 γ ブチロラタトンがより好ましい。
[0164] 更に、鎖状エーテルの種類にも特に制限は無いが、通常使用されるものの例として は、
ジメトキシメタン、
ジメトキシェタン、
ジエトキシメタン、
ジエトキシェタン、
エトキシメトキシメタン、
エトキシメトキシェタン、等が挙げられる。
これらの中でも、ジメトキシェタン、ジエトキシェタンがより好ましい。
[0165] また、環状エーテルの種類にも特に制限は無いが、通常使用されるものの例として は、
テトラヒドロフラン、
2—メチルテトラヒドロフラン、等が挙げられる。
[0166] 更に、含リン有機溶媒の種類にも特に制限は無いが、通常使用されるものの例とし ては、
リン酸トリメチル、
リン酸トリェチル、
リン酸トリフエ-ル、等のリン酸エステル類;
亜リン酸トリメチル、
亜リン酸トリェチル、
亜リン酸トリフエ-ル、等の亜リン酸エステル類; トリメチルホスフィンォキシド、
トリェチルホスフィンォキシド、
トリフエ-ルホスフィンォキシド、等のホスフィンォキシド類;などが挙げられる。
[0167] また、含硫黄有機溶媒の種類にも特に制限は無いが、通常使用されるものの例とし ては、
エチレンサルファイト、
1, 3 プロパンスノレトン、
1, 4 ブタンスノレトン、
メタンスルホン酸メチル、
ブスノレファン、
スノレホラン、
スノレホレン、
ジメチルスルホン、
ジフエニノレスノレホン、
メチルフエ-ルスルホン、
ジブチルジスルフイド、
ジシクロへキシルジスルフイド、
テトラメチルチウラムモノスルフイド、
N, N ジメチノレメタンスノレホンアミド、
N, N ジェチルメタンスルホンアミド、等が挙げられる。
[0168] これらの中でも、環状カーボネートであるエチレンカーボネート及び Z又はプロピレ ンカーボネートを用いることが好ましぐ更にこれらと鎖状カーボネートとを併用するこ とが好ましい。
[0169] このように環状カーボネートと鎖状カーボネートとを非水溶媒として併用する場合、 本発明の第 1の非水系電解液中の非水溶媒中に占める鎖状カーボネートの好適な 含有量は、通常 30重量%以上、好ましくは 50重量%以上、また、通常 95重量%以 下、好ましくは 90重量%以下である。一方、本発明の第 1の非水系電解液中の非水 溶媒中に占める環状カーボネートの好適な含有量は、通常 5重量%以上、好ましく は 10重量%以上、また、通常 50重量%以下、好ましくは 40重量%以下である。鎖状 カーボネートの割合が少な過ぎると、本発明の第 1の非水系電解液の粘度が上昇す る場合があり、鎖状カーボネートの割合が多過ぎると、電解質であるリチウム塩の解 離度が低下して、本発明の第 1の非水系電解液の電気伝導率が低下する場合があ る。
[0170] なお、非水系電解液 (I)においては、飽和環状カーボネートが非水溶媒としての機 能を果たすため、上述の特定化合物 (I)及び飽和環状カーボネートに加えて、他の 非水溶媒を含有していてもよいが、必須ではない。他の非水溶媒を併用する場合に は、飽和環状カーボネートと他の非水溶媒との合計量が、上述の非水溶媒の含有量 の範囲を満たすようにすることが好ま 、。
[0171] [1-4.電解質〕
本発明の第 1の非水系電解液に用いる電解質に制限は無ぐ目的とする非水系電 解液二次電池に電解質として用いられるものであれば公知のものを任意に採用する ことができる。本発明の第 1の非水系電解液をリチウム二次電池に用いる場合には、 通常は、電解質としてリチウム塩を用いる。
[0172] 電解質の具体例としては、
LiCIO、
4
LiAsF、
6
LiPF、
6
Li CO、
2 3
LiBF、等の無機リチウム塩;
4
LiCF SO、
3 3
LiN (CF SO ) 、
3 2 2
LiN (C F SO ) ,
2 5 2 2
リチウム 1, 3—へキサフルォロプロパンジスルホ-ルイミド、
リチウム 1, 2—テトラフルォロェタンジスルホ-ルイミド、
LiN (CF SO ) (C F SO )、
3 2 4 9 2
LiC (CF SO ) 、 LiPF (CF ) 、
4 3 2
LiPF (C F ) 、
4 2 5 2
LiPF (CF SO ) 、
4 3 2 2
LiPF (C F SO ) 、
4 2 5 2 2
LiBF (CF ) 、
2 3 2
LiBF (C F ) 、
2 2 5 2
LiBF (CF SO ) 、
2 3 2 2
LiBF (C F SO ) 、等の含フッ素有機リチウム塩;
2 2 5 2 2
リチウムビス (ォキサラト)ボレート、
リチウムトリス (ォキサラト)フォスフェート、
リチウムジフルォロォキサラトボレート、等の含ジカルボン酸錯体リチウム塩;
KPF、
6
NaPF、
6
NaBF、
4
NaCF SO、等のナトリウム塩又はカリウム塩;などが挙げられる。
3 3
[0173] これらのうち、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (C F SO ) 、リ
6 4 3 3 3 2 2 2 5 2 2 チウム 1, 2—テトラフルォロェタンジスルホニルイミド、が好ましぐ特に LiPF、 LiBF
6 が好ましい。
4
[0174] また、電解質は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比 率で併用してもよい。中でも、特定の無機リチウム塩の 2種を併用したり、無機リチウ ム塩と含フッ素有機リチウム塩とを併用したりすると、トリクル充電時のガス発生が抑 制され、若しくは高温保存後の劣化が抑制されるので好ましい。特に、 LiPFと LiBF
6 との併用や、 LiPF、 LiBF等の無機リチウム塩と、 LiCF SO、 LiN (CF SO ) 、 L
4 6 4 3 3 3 2 2 iN (C F SO ) 等の含フッ素有機リチウム塩とを併用することが好ましい。
2 5 2 2
[0175] 更に、 LiPFと LiBFとを併用する場合、電解質全体に対して LiBFが通常 0. 01
6 4 4
重量%以上、 20重量%以下の比率で含有されていることが好ましい。 LiBFは解離
4 度が低ぐ比率が高過ぎると電解液の抵抗を高くする場合がある。
[0176] 一方、 LiPF、 LiBF等の無機リチウム塩と、 LiCF SO、 LiN (CF SO ) 、 LiN (C
6 4 3 3 3 2 2 F SO )等の含フッ素有機リチウム塩とを併用する場合、電解質全体に占める無機
2 5 2 2
リチウム塩の割合は、通常 70重量%以上、 99重量%以下の範囲であることが望まし い。一般に含フッ素有機リチウム塩は無機リチウム塩と比較して分子量が大きぐ比 率が高過ぎると電解液全体に占める溶媒の比率が低下し電解液の抵抗を高くする場 合がある。
[0177] また、本発明の第 1の非水系電解液中におけるリチウム塩の濃度は、本発明の効 果を著しく行なわない限り任意である力 通常 0. 5mol'dm_3以上、好ましくは 0. 6 mol'dm—3以上、より好ましくは 0. 8mol'dm_3以上、また、通常 3mol'dm_3以下、 好ましくは 2mol'dm_3以下、より好ましくは 1. 5mol'dm_3以下の範囲である。この 濃度が低過ぎると、非水系電解液の電気伝導率が不十分となる場合があり、濃度が 高過ぎると、粘度上昇のため電気伝導率が低下し、本発明の第 1の非水系電解液を 用いた非水系電解液二次電池の性能が低下する場合がある。
[0178] [1- 5.添加剤〕
本発明の第 1の非水系電解液は、本発明の効果を著しく損なわない範囲において 、各種の添加剤を含有していることが好ましい。添加剤としては、従来公知のものを 任意に用いることができる。なお、添加剤は、 1種を単独で用いてもよぐ 2種以上を 任意の組み合わせ及び比率で併用してもょ 、。
[0179] 添加剤の例としては、過充電防止剤や、高温保存後の容量維持特性やサイクル特 性を改善するための助剤などが挙げられる。
[0180] 過充電防止剤の具体例としては、
ビフエ二ノレ、
アルキルビフヱニル、
ターフェ二ノレ、
ターフ ニルの部分水素化体、
シクロへキシノレベンゼン、
tーブチノレベンゼン、
t アミノレベンゼン、
ジフエニルエーテル、 ジベンゾフラン、等の芳香族化合物;
2 -フルォロビフエ-ル、
o シクロへキシノレフノレオ口ベンゼン、
p シクロへキシルフルォロベンゼン、等の前記芳香族化合物の部分フッ素化物;
2, 4ージフルォロア-ノール、
2, 5 ジフルォロア-ノール、
2, 6 ジフルォロア-オール、等の含フッ素ァ-ソール化合物;などが挙げられる。
[0181] なお、これらの過充電防止剤は、 1種を単独で用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用してもょ 、。
[0182] 本発明の第 1の非水系電解液が過充電防止剤を含有する場合、その濃度は本発 明の効果を著しく損なわない限り任意であるが、非水系電解液全体に対して通常 0.
1重量%以上、 5重量%以下の範囲とすることが望ましい。非水系電解液に過充電防 止剤を含有させることによって、過充電による非水系電解液二次電池の破裂'発火を 抑制することができ、非水系電解液二次電池の安全性が向上するので好ましい。
[0183] 一方、高温保存後の容量維持特性やサイクル特性を改善するための助剤の具体 例としては、
=3ノヽク酸、
マレイン酸、
フタノレ酸、等のジカノレボン酸の無水物;
エリスリタンカーボネート、
スピロ ビス ジメチレンカーボネート、等の特定カーボネートに該当するもの以外 のカーボネート化合物;
エチレンサルファイト、
1, 3 プロパンスノレトン、
1, 4 ブタンスノレトン、
メタンスルホン酸メチル、
ブスノレファン、
スノレホラン、 スノレホレン、
ジメチルスルホン、
ジフエニノレスノレホン、
メチルフエ-ルスルホン、
ジブチルジスルフイド、
ジシクロへキシルジスルフイド、
テトラメチルチウラムモノスルフイド、
N, N—ジメチノレメタンスノレホンアミド、
N, N—ジェチルメタンスルホンアミド、等の含硫黄化合物;
1ーメチルー 2—ピロリジノン、
1ーメチルー 2—ピペリドン、
3—メチルー 2—ォキサゾリジノン、
1, 3—ジメチルー 2—イミダゾリジノン、
N—メチルスクシイミド、等の含窒素化合物;
ヘプタン、
才クタン、
シクロヘプタン、等の炭化水素化合物;
フノレ才ロベンゼン、
ジフルォロベンゼン、
ベンゾトリフルオライド、等の含フッ素芳香族化合物;などが挙げられる。
[0184] なお、これらの助剤は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及 び比率で併用してもよい。
[0185] 本発明の第 1の非水系電解液が助剤を含有する場合、その濃度は本発明の効果 を著しく損なわない限り任意であるが、非水系電解液全体に対して通常 0. 1重量% 以上、 5重量%以下の範囲とすることが好ましい。
[0186] [II.第 1の非水系電解液二次電池]
次いで、上述した本発明の第 1の非水系電解液を用いた非水系電解液二次電池( これを以下「本発明の第 1の非水系電解液二次電池」と略称する。 )について説明す る。
本発明の第 1の非水系電解液二次電池は、リチウムイオンを吸蔵及び放出し得る 負極及び正極と非水系電解液とを備え、負極が、 Si原子、 Sn原子及び Pb原子よりな る群から選ばれる少なくとも一種の原子を有する負極活物質を含有するとともに、非 水系電解液力 上述の本発明の第 1の非水系電解液であることを特徴とするもので ある。
[0187] 〔II 1.電池構成〕
本発明の第 1の非水系電解液二次電池は、負極及び非水系電解液以外の構成に ついては、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の第 1 の非水系電解液が含浸されている多孔膜 (セパレータ)を介して正極と負極とが積層 され、これらがケース (外装体)に収納された形態を有する。従って、本発明の第 1の 非水系電解液二次電池の形状は特に制限されるものではなぐ円筒型、角形、ラミネ ート型、コイン型、大型等の何れであってもよい。
[0188] 〔II 2.非水系電解液〕
非水系電解液としては、上述の本発明の第 1の非水系電解液を用いる。なお、本 発明の趣旨を逸脱しない範囲において、本発明の第 1の非水系電解液に対し、その 他の非水系電解液を混合して用いることも可能である。
[0189] 〔II 3.負極〕
本発明の第 1の非水系電解液二次電池における負極は、 Si (ケィ素)原子、 Sn (ス ズ)原子及び Pb (鉛)原子 (これらを以下「特定金属元素」 、う場合がある。)よりなる 群から選ばれる少なくとも一種の原子を有する負極活物質を含有する。
[0190] 特定金属元素力 選ばれる少なくとも一種の原子を有する負極活物質の例として は、何れか一種の特定金属元素の金属単体、二種以上の特定金属元素力 なる合 金、一種又は二種以上の特定金属元素とその他の一種又は二種以上の金属元素と 力 なる合金、並びに、一種又は二種以上の特定金属元素を含有する化合物が挙 げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで 、電池の高容量ィ匕が可能である。
[0191] 一種又は二種以上の特定金属元素を含有する化合物の例としては、一種又は二 種以上の特定金属元素を含有する炭化物、酸化物、窒化物、硫化物、燐化物等の 複合化合物が挙げられる。
また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素 と複雑に結合したィ匕合物も例として挙げることができる。より具体的には、例えば Siや Snでは、これらの元素と負極として動作しない金属との合金を用いることができる。ま た例えば Snでは、 Snと Si、 Sn、 Pb以外で負極として作用する金属と、更に負極とし て動作しな!、金属と、非金属元素との組み合わせで 5〜6種の元素を含むような複雑 な化合物も用いることができる。
[0192] これらの負極活物質の中でも、電池にしたときに単位重量当りの容量が大きいこと から、何れか一種の特定金属元素の金属単体、二種以上の特定金属元素の合金、 特定金属元素の酸化物や炭化物、窒化物等が好ましぐ特に、 Si及び Z又は Snの 金属単体、合金、酸化物や炭化物、窒化物等が、単位重量当りの容量及び環境負 荷の観点力も好ましい。
[0193] また、金属単体又は合金を用いるよりは単位重量当りの容量には劣るものの、サイ クル特性に優れることから、 Si及び Z又は Snを含有する以下の化合物も好まし 、。 •Si及び Z又は Snと酸素との元素比が通常 0. 5〜1. 5、好ましくは 0. 7〜1. 3、更 に好ましくは 0. 9〜1. 1の、 Si及び Z又は Snの酸化物。
•Si及び Z又は Snと窒素との元素比が通常 0. 5〜1. 5、好ましくは 0. 7〜1. 3、更 に好ましくは 0. 9〜1. 1の、 Si及び Z又は Snの窒化物。
•Si及び Z又は Snと炭素との元素比が通常 0. 5〜1. 5、好ましくは 0. 7〜1. 3、更 に好ましくは 0. 9〜1. 1の、 Si及び Z又は Snの炭化物。
[0194] なお、上述の負極活物質は、何れか 1種を単独で用いてもよぐ 2種以上を任意の 組み合わせ及び比率で併用してもよ!、。
[0195] 本発明の第 1の非水系電解液二次電池における負極は、常法に従って製造するこ とが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質 に結着剤や導電材等をカ卩えたものをそのままロール成型してシート電極とする方法 や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体( 以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メツキ法等 の手法により、上述の負極活物質を含有する薄膜層 (負極活物質層)を形成する方 法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等 を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度 化することにより、負極集電体上に負極活物質層を形成する。
[0196] 負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が 挙げられる。これらのうち、薄膜に力卩ェし易いという点及びコストの点から、銅箔が好 ましい。
[0197] 負極集電体の厚さは、通常 1 μ m以上、好ましくは 5 μ m以上であり、通常 100 μ m 以下、好ましくは 50 m以下である。負極集電体の厚さが厚過ぎると、電池全体の容 量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがある。
[0198] なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極 集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法として は、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砲石、 ェメリパフ、鋼線などを備えたワイヤーブラシなどで集電体表面を研磨する機械的研 磨法、電解研磨法、化学研磨法等が挙げられる。
[0199] また、負極集電体の重量を低減させて電池の重量当たりのエネルギー密度を向上 させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集 電体を使用することもできる。このタイプの負極集電体は、その開口率を変更すること で、重量も白在に変更可能である。また、このタイプの負極集電体の両面に負極活 物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥 離が更に起こり難くなる。しかし、開口率があまりに高くなつた場合には、負極活物質 層と負極集電体との接触面積が小さくなるため、力えって接着強度は低くなることが ある。
[0200] 負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘 剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導 電材とを合わせた材料を指すものとする。
[0201] 負極材中における負極活物質の含有量は、通常 70重量%以上、特に 75重量% 以上、また、通常 97重量%以下、特に 95重量%以下であることが好ましい。負極活 物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾 向があり、多過ぎると相対的に結着剤等の含有量が不足することにより、得られる負 極の強度が不足する傾向にある。なお、二以上の負極活物質を併用する場合には、 負極活物質の合計量が上記範囲を満たすようにすればょ 、。
[0202] 負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブ ラック等の炭素材料などが挙げられる。これらは 1種を単独で用いてもよぐ 2種以上 を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用 いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材 の含有量は、通常 3重量%以上、特に 5重量%以上、また、通常 30重量%以下、特 に 25重量%以下であることが好ま 、。導電材の含有量が少な過ぎると導電性が不 足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより 、電池容量や強度が低下する傾向となる。なお、二以上の導電材を併用する場合に は、導電材の合計量が上記範囲を満たすようにすればょ 、。
[0203] 負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して 安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビ-リ デン、ポリテトラフルォロエチレン、ポリエチレン、ポリプロピレン、スチレン 'ブタジエン ゴム、イソプレンゴム、ブタジエンゴム、エチレン 'アクリル酸共重合体、エチレン 'メタ クリル酸共重合体等が挙げられる。これらは 1種を単独で用いてもよぐ 2種以上を任 意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材 100重量 部に対して通常 0. 5重量部以上、特に 1重量部以上、また、通常 10重量部以下、特 に 8重量部以下であることが好ま 、。結着剤の含有量が少な過ぎると得られる負極 の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足 することにより、電池容量や導電性が不足する傾向となる。なお、二以上の結着剤を 併用する場合には、結着剤の合計量が上記範囲を満たすようにすればょ ヽ。
[0204] 負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース 、ヒドロキシメチルセルロース、ェチルセルロース、ポリビニルアルコール、酸ィ匕スター チ、リン酸化スターチ、カゼイン等が挙げられる。これらは 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ ヽ。増粘剤は必要に応じて使 用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が 通常 0. 5重量%以上、 5重量%以下の範囲で用いることが好ましい。
[0205] 負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導 電剤ゃ結着剤、増粘剤を混合し、水系溶媒又は有機溶媒を分散媒として用いて調 製される。水系溶媒としては、通常は水が用いられる力 エタノール等のアルコール 類や N—メチルピロリドン等の環状アミド類などの水以外の溶媒を、水に対して 30重 量%以下程度の割合で併用することもできる。また、有機溶媒としては、通常、 N—メ チルピロリドン等の環状アミド類、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセ トアミド等の直鎖状アミド類、ァ-ソール、トルエン、キシレン等の芳香族炭化水素類、 ブタノール、シクロへキサノール等のアルコール類が挙げられ、中でも、 N—メチルビ 口リドン等の環状アミド類、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド 等の直鎖状アミド類等が好ましい。なお、これらは何れか一種を単独で使用してもよく 、二種以上を任意の組み合わせ及び比率で併用してもよ!/、。
[0206] スラリーの粘度は、集電体上に塗布することが可能な粘度であれば、特に制限され ない。塗布が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて 、適宜調製すればよい。
[0207] 得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることによ り、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方 法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧 乾燥等の公知の手法を用いることができる。
[0208] 上記手法により負極活物質を電極ィ匕した際の電極構造は特には限定されないが、 集電体上に存在している活物質の密度は、好ましくは lg' cm—3以上、より好ましくは 1. 2g'cm_3以上、更に好ましくは 1. 3g'cm_3以上であり、上限として 2g'cm_3以 下、好ましくは 1. 9g'cm_3以下、より好ましくは 1. 8g'cm_3以下、更に好ましくは 1. 7g'cm_3以下の範囲である。この範囲を上回ると活物質粒子が破壊され、初期不可 逆容量の増加や、集電体 Z活物質界面付近への非水系電解液の浸透性低下によ る高電流密度充放電特性悪化を招く場合がある。また下回ると活物質間の導電性が 低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。 [0209] 〔II 4.正極〕
本発明の第 1の非水系電解液二次電池における正極は、通常の非水系電解液二 次電池と同様、正極活物質を含有してなる。
[0210] 正極活物質としては、遷移金属の酸化物、遷移金属とリチウムとの複合酸化物(リチ ゥム遷移金属複合酸化物)、遷移金属の硫化物、金属酸化物等の無機化合物、リチ ゥム金属、リチウム合金若しくはそれらの複合体が挙げられる。具体的には、 MnO、 V O、 V O 、 TiO等の遷移金属酸化物; LiCoO又は基本組成が LiCoOである
2 5 6 13 2 2 2 リチウムコバルト複合酸化物、 LiNiO又は基本糸且成が LiNiOであるリチウムニッケ
2 2
ル複合酸化物、 LiMn O若しくは LiMnO又は基本組成が LiMn O若しくは LiM
2 4 2 2 4
ηθであるリチウムマンガン複合酸ィ匕物、リチウムニッケルマンガンコバルト複合酸ィ匕
2
物、リチウムニッケルコバルトアルミニウム複合酸ィ匕物等のリチウム遷移金属複合酸 化物; TiS、 FeS等の遷移金属硫化物; SnO、 SiO等の金属酸化物が挙げられる。
2 2
中でも、リチウム遷移金属複合酸化物、具体的には、特に LiCoO又は基本組成が L
2
iCoOであるリチウムコバルト複合酸化物、 LiNiO又は基本組成が LiNiOであるリ
2 2 2 チウムニッケル複合酸化物、 LiMn O若しくは LiMnO又は基本組成が LiMn O
2 4 2 2 4 若しくは LiMnOであるリチウムマンガン複合酸化物、リチウムニッケルマンガンコバ
2
ルト複合酸化物、リチウムニッケルコバルトアルミニウム複合酸ィ匕物は、高容量と高サ イタル特性とを両立させ得るので好適に用いられる。また、リチウム遷移金属複合酸 ィ匕物は、コバルト、ニッケル又はマンガンの一部を Al、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Li 、 Ni、 Cu、 Zn、 Mg、 Ga、 Zr等の他の金属で置換することにより、その構造を安定ィ匕 させることができるので好ましい。これらの正極活物質は、何れか 1種を単独で用いて もよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ 、。
[0211] 本発明の第 1の非水系電解液二次電池における正極は、常法に従って製造するこ とが可能である。具体的に、正極の製造方法としては、例えば、上述の正極活物質 に結着剤や導電材等をカ卩えたものをそのままロール成型してシート電極とする方法、 圧縮成形してペレット電極とする方法、正極用の集電体 (以下「正極集電体」という場 合がある。)上に活物質を塗布して正極活物質層を形成する方法 (塗布法)、正極集 電体上に蒸着法、スパッタ法、メツキ法等の手法により、上述の正極活物質を含有す る薄膜層(正極活物質層)を形成する方法等が挙げられるが、通常は、塗布法を用 V、て正極活物質層を形成する。
塗布法を用いる場合、上述の正極活物質に結着剤、増粘剤、導電材、溶媒等を加 えてスラリー状とし、これを正極集電体に塗布、乾燥した後にプレスして高密度化す ることにより、正極集電体上に正極活物質層を形成する。
[0212] 正極集電体の材質としては、アルミニウム、チタン及びタンタル、並びにこれらのうち 一種又は二種以上を含む合金等が挙げられる。中でも、アルミニウム及びその合金 が好ましい。
[0213] 正極集電体の厚さは、通常 1 μ m以上、好ましくは 5 μ m以上、また、通常 100 μ m 以下、好ましくは 50 m以下である。正極集電体の厚さが厚過ぎると、電池全体の容 量が低下し過ぎることになり、逆に薄過ぎると、取り扱いが困難になることがある。
[0214] なお、表面に形成される正極活物質層との結着効果を向上させるため、これら正極 集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法として は、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砲石、 ェメリパフ、鋼線などを備えたワイヤーブラシなどで集電体表面を研磨する機械的研 磨法、電解研磨法、化学研磨法等が挙げられる。
[0215] また、正極集電体の重量を低減させて電池の重量当たりのエネルギー密度を向上 させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの正極集 電体を使用することもできる。このタイプの正極集電体は、その開口率を変更すること で、重量も自在に変更可能である。また、このタイプの正極集電体の両面に正極活 物質層を形成させた場合、この穴を通してのリベット効果により、正極活物質層の剥 離が更に起こり難くなる。しかし、開口率があまりに高くなつた場合には、正極活物質 層と正極集電体との接触面積が小さくなるため、かえって接着強度は低くなることが ある。
[0216] 正極活物質層には、通常、導電性を高めるために導電材を含有させる。導電材の 種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒 鉛、人造黒鉛等の黒鉛 (グラフアイト)、アセチレンブラック等のカーボンブラック、ニー ドルコータス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの 物質は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用し てもよい。
[0217] 正極活物質層中の導電材の割合は、通常 0. 01重量%以上、好ましくは 0. 1重量 %以上、更に好ましくは 1重量%以上であり、また、通常 50重量%以下、好ましくは 3 0重量%以下、更に好ましくは 15重量%以下である。導電材の割合が低過ぎると導 電性が不十分になることがあり、逆に高過ぎると電池容量が低下することがある。
[0218] 正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は 、電極製造時に用いる液体媒体に対して安定な材料であれば良い。具体例としては 、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチノレメタタリレート、 芳香族ポリアミド、セルロース、ニトロセルロース等の榭脂系高分子、 SBR (スチレン' ブタジエンゴム)、 NBR (アクリロニトリル 'ブタジエンゴム)、フッ素ゴム、イソプレンゴム 、ブタジエンゴム、エチレン.プロピレンゴム等のゴム状高分子、スチレン 'ブタジエン' スチレンブロック共重合体及びその水素添カ卩物、 EPDM (エチレン ·プロピレン'ジェ ン三元共重合体)、スチレン'エチレン'ブタジエン 'エチレン共重合体、スチレン 'イソ プレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマ一状 高分子、シンジオタクチック 1, 2—ポリブタジエン、ポリ酢酸ビュル、エチレン '酢酸 ビュル共重合体、プロピレン' a一才レフイン共重合体等の軟質榭脂状高分子、ポリ フッ化ビ-リデン、ポリテトラフルォロエチレン、フッ素化ポリフッ化ビ-リデン、ポリテト ラフルォロエチレン ·エチレン共重合体等のフッ素系高分子、アルカリ金属イオン (特 にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらの 物質は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用し てもよい。
[0219] 正極活物質層中の結着剤の割合は、通常 0. 1重量%以上、好ましくは 1重量%以 上、更に好ましくは 5重量%以上であり、通常 80重量%以下、好ましくは 60重量%以 下、更に好ましくは 40重量%以下、最も好ましくは 10重量%以下である。結着剤の 割合が低過ぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サ イタル特性等の電池性能を悪化させてしまう場合があり、高過ぎると、電池容量や導 電性の低下につながる場合がある。 [0220] スラリーを形成するための液体媒体としては、正極活物質、導電剤、結着剤、並び に必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、 その種類に特に制限はなぐ水系溶媒と有機系溶媒のどちらを用いてもよい。
[0221] 水系媒体としては、例えば、水、アルコールと水との混合溶媒等が挙げられる。有 機系媒体としては、例えば、へキサン等の脂肪族炭化水素類;ベンゼン、トルエン、 キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化 合物;アセトン、メチルェチルケトン、シクロへキサノン等のケトン類;酢酸メチル、ァク リル酸メチル等のエステル類;ジエチレントリァミン、 N— N—ジメチルァミノプロピルァ ミン等のアミン類;ジェチルエーテル、プロピレンォキシド、テトラヒドロフラン (THF) 等のエーテル類; N—メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルァセト アミド等のアミド類;へキサメチルホスフアルアミド、ジメチルスルホキシド等の非プロト ン性極性溶媒等を挙げることができる。
[0222] 特に水系媒体を用いる場合、増粘剤と、スチレン 'ブタジエンゴム(SBR)等のラテツ タスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製す るために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシ メチノレセノレロース、メチノレセノレロース、ヒドロキシメチノレセノレロース、ェチノレセノレロース 、ポリビュルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩 等が挙げられる。これらは、 1種を単独で用いても、 2種以上を任意の組み合わせ及 び比率で併用してもよい。更に増粘剤を使用する場合には、活物質に対する増粘剤 の割合は、通常 0. 1質量%以上、好ましくは 0. 5質量%以上、より好ましくは 0. 6質 量%以上であり、また、上限としては通常 5質量%以下、好ましくは 3質量%以下、よ り好ましくは 2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下す る場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容 量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。 スラリーの粘度は、集電体上に塗布が可能な粘度であれば特に制限されず、塗布 が可能な粘度となるように、スラリーの調製時に溶媒の使用量等を変えて適宜調整す ればよい。
[0223] 得られたスラリーを上述の正極集電体上に塗布し、乾燥した後、プレスすることによ り、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方 法を用いることができる。乾燥の手法も特に制限されないが、 自然乾燥、加熱乾燥、 減圧乾燥等の公知の手法を用いることができる。
[0224] 塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるた めに、ハンドプレス、ローラープレス等により圧密化することが好ましい。
[0225] 正極活物質層の密度は、好ましくは 1. 5g ' cm—3以上、より好ましくは 2g ' cm—3以 上、更に好ましくは 2. 2g ' cm_3以上であり、また上限は、好ましくは 3. 5g ' cm_3以 下、より好ましくは 3g ' cm—3以下、更に好ましくは 2. 8g ' cm—3以下の範囲である。こ の範囲を上回ると集電体 Z活物質界面付近への非水系電解液の浸透性が低下し、 特に高電流密度での充放電特性が低下する場合がある。また下回ると活物質間の 導電性が低下し、電池抵抗が増大する場合がある。
[0226] 〔II 5. セパレータ〕
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。 この場合、本発明の第 1の非水系電解液は、通常はこのセパレータに含浸させて用 いる。
[0227] セパレータの材料や形状については特に制限は無ぐ本発明の効果を著しく損な わない限り、公知のものを任意に採用することができる。中でも、本発明の第 1の非水 系電解液に対し安定な材料で形成された、保液性に優れた多孔性シート又は不織 布等を用いるのが好ましい。
[0228] セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフイン 、ポリテトラフルォロエチレン、ポリエーテルスルホン、ガラスフィルタ一等を用いること 力 Sできる。中でも好ましくはガラスフィルター、ポリオレフインであり、更に好ましくはポ リオレフインである。これらの材料は 1種を単独で用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもょ 、。
[0229] セパレータの厚さは任意である力 通常 1 μ m以上、好ましくは 5 μ m以上、より好ま しくは 10 μ m以上であり、通常 50 μ m以下、好ましくは 40 μ m以下、より好ましくは 3 0 m以下である。セパレータが薄過ぎると、絶縁性や機械的強度が低下する場合 があり、厚過ぎるとレート特性等の電池性能が低下する場合があるば力りでなぐ非 水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
[0230] 更に、セパレータとして多孔性シートゃ不織布等の多孔質のものを用いる場合、セ パレータの空孔率は任意である力 通常 20%以上、好ましくは 35%以上、より好まし くは 45%以上であり、通常 90%以下、好ましくは 85%以下、より好ましくは 75%以下 である。空孔率が小さ過ぎると膜抵抗が大きくなつてレート特性が悪ィ匕する傾向にあ る。また、大き過ぎるとセパレータの機械的強度が低下し、絶縁性が低下する傾向に ある。
[0231] また、セパレータの平均孔径も任意である力 通常 0. 5 μ m以下、好ましくは 0. 2 m以下であり、通常 0. 05 m以上である。平均孔径が大き過ぎると短絡が生じ易 くなり、小さ過ぎると膜抵抗が大きくなりレート特性が低下する場合がある。
[0232] 〔II 6.外装体〕
本発明の第 1の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正 極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無ぐ本発 明の効果を著しく損なわない限り公知のものを任意に採用することができる。
[0233] 具体的に、外装体の材質は任意である力 通常は、例えばニッケルメツキを施した 鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
[0234] また、外装体の形状も任意であり、例えば円筒型、角型、ラミネート型、コイン型、大 型等の何れであってもよ 、。
[0235] [III.その他]
〔III 1.第 2の非水系電解液及び非水系電解液二次電池〕
なお、上述の成分 (i) (特定化合物 (I)及び飽和環状カーボネート)は、特定カーボ ネートと併用しなくとも、非水系電解液に単独で含有させることにより、非水系電解液 二次電池の充放電サイクル特性を向上させることが可能である。以下、成分 (i) (特定 化合物 (I)及び飽和環状カーボネート)を含有し、特定カーボネートを必須としな 、 形態の非水系電解液 (本発明の第 2の要旨に係る非水系電解液。以下適宜「第 2の 非水系電解液」等と略称する。)と、それを用いた非水系電解液二次電池 (以下適宜 「本発明の第 2の非水系電解液二次電池」等と称する。 )について説明する。
[0236] 本発明の第 2の非水系電解液は、リチウムイオンを吸蔵及び放出し得る負極及び 正極と非水系電解液とを備え、負極が Si原子、 Sn原子及び Pb原子よりなる群から選 ばれる少なくとも一種の原子 (特定金属元素)を有する負極活物質を含有する非水 系電解液二次電池に用いられる非水系電解液である。
[0237] そして、第 2の非水系電解液は、上述の成分 (i)、即ち、上述の特定ィ匕合物 (I)及び 飽和環状カーボネートを含有することを特徴とする。特定化合物 (I)及び飽和環状力 ーボネートに関する詳細は、上述の <1 1 1.成分 (i) >の欄で説明した通りであ る。また、第 2の非水系電解液に対する特定ィ匕合物 (I)及び飽和環状カーボネートの 比率も、上述の <1 1 1.成分 (i) >の欄で説明した非水系電解液 (I)に対する特 定化合物 (I)及び飽和環状カーボネートの比率と同様である。
[0238] 第 2の非水系電解液における特定ィ匕合物 (I)及び飽和環状カーボネート以外の成 分 (非水溶媒、電解質、添加剤等)の詳細 (要否、種類、比率等)については、上述 の [I.第 1の非水系電解液]の各項目(〔1 3.非水溶媒〕、 [1-4.電解質〕、 [1- 5. 添加剤〕)において説明した通りである。
[0239] 第 2の非水系電解液は、上述のように、特定カーボネートを含有しなくとも、上記の 特定金属元素を有する負極活物質を用いた非水系電解液二次電池の充放電サイク ル特性を向上させることが可能となる。この理由の詳細は明らかではないが、以下の ように推測される。
[0240] 即ち、第 2の非水系電解液に含有される特定化合物 (I)が炭素数 3以上のアルキル 基又はフルォロアルキル基を有することにより、上記の特定金属元素を有する負極 活物質に対する活性が低いものとなり、これにより副反応が抑えられ、サイクル劣化 が抑制される。また、この特定ィ匕合物(I)のアルキル基又はフルォロアルキル基の合 計の炭素数が 5以上であることによつても、同様の効果が得られる。そして、このような 特定化合物 (I)と併用する飽和環状カーボネートにより、電解質の溶解性が高められ ることによつても充放電サイクル特性の向上が図れる。
[0241] なお、第 2の非水系電解液を用いた非水系電解液二次電池 (第 2の非水系電解液 二次電池)の非水系電解液以外の詳細については、上述の [II.第 1の非水系電解 液二次電池]の各項目 ( [II- 1.電池構成〕、〔II 3.負極〕、〔II 4.正極〕、〔II 5. セパレータ〕、〔11— 6.外装体〕)において説明した通りである。 [0242] 但し、特定化合物 (I)及び飽和環状カーボネートに加えて特定カーボネートが非水 系電解液中に共存している場合 (即ち、上述の第 1の非水系電解液 (1) )の方が、特 定カーボネートが存在しない場合 (即ち、第 2の非水系電解液)と比べ、その効果が 顕著である。上述のように、特定ィ匕合物 (I)及び飽和環状カーボネートと特定カーボ ネートとが共存すると、負極活物質の表面に保護被膜層が形成されるのみならず、 副反応が抑えられ、保護被膜の特性を向上させるものと推察される。
[0243] 〔III 2.第 3の非水系電解液及び非水系電解液二次電池〕
また、上述の特定ィ匕合物 (Π)も、特定カーボネートと併用しなくとも、非水系電解液 に単独で含有させることにより、非水系電解液二次電池の充放電サイクル特性を向 上させることが可能である。以下、特定化合物 (Π)を含有し、特定カーボネートを必須 としない形態の非水系電解液 (本発明の第 3の要旨に係る非水系電解液。以下適宜 「第 3の非水系電解液」等と略称する。)と、それを用いた非水系電解液二次電池 (以 下適宜「本発明の第 3の非水系電解液二次電池」等と称する。 )について説明する。
[0244] 本発明の第 3の非水系電解液は、リチウムイオンを吸蔵及び放出し得る負極及び 正極と非水系電解液とを備え、負極が Si原子、 Sn原子及び Pb原子よりなる群から選 ばれる少なくとも一種の原子 (特定金属元素)を有する負極活物質を含有する非水 系電解液二次電池に用いられる非水系電解液である。
[0245] そして、第 3の非水系電解液は、上述の特定化合物 (Π)を含有することを特徴とす る。特定ィ匕合物(Π)に関する詳細は、上述のく 1—1— 2.成分 (ii) >の欄で説明した 通りである。また、第 3の非水系電解液に対する特定ィ匕合物 (II)の比率も、上述のく I — 1— 2.成分 (ii) >の欄で説明した非水系電解液 (II)に対する特定化合物 (II)の比 率と同様である。
[0246] 第 3の非水系電解液における特定化合物 (II)以外の成分 (非水溶媒、電解質、添 加剤等)の詳細(要否、種類、比率等)については、上述の [I.第 1の非水系電解液] の各項目(〔1 3.非水溶媒〕、 [1-4.電解質〕、 [1- 5.添加剤〕)において説明した 通りである。
[0247] 第 3の非水系電解液は、上述のように、特定カーボネートを含有しなくとも、上記の 特定金属元素を有する負極活物質を用いた非水系電解液二次電池の充放電サイク ル特性を向上させることが可能となる。この理由の詳細は明らかではないが、特定ィ匕 合物 (Π)が負極活物質の表面に良好な保護被膜層を形成し、これにより副反応が抑 えられ、サイクル劣化が抑制されるものと推察される。
[0248] なお、第 3の非水系電解液を用いた非水系電解液二次電池 (第 3の非水系電解液 二次電池)の非水系電解液以外の詳細については、上述の [II.第 1の非水系電解 液二次電池]の各項目 ( [II- 1.電池構成〕、〔II 3.負極〕、〔II 4.正極〕、〔II 5. セパレータ〕、〔11— 6.外装体〕)において説明した通りである。
[0249] 但し、特定化合物(II)にカ卩えて特定カーボネートが非水系電解液中に共存してい る場合 (即ち、上述の第 1の非水系電解液 (Π) )の方が、特定カーボネートが存在しな い場合 (即ち、第 3の非水系電解液)と比べ、その効果が顕著である。上述のように、 特定化合物 (Π)と特定カーボネートとが共存すると、負極活物質の表面に保護被膜 層が形成されるのみならず、副反応が抑えられ、保護被膜の特性を向上させるものと 推察される。
[0250] 〔III 3.第 4の非水系電解液及び非水系電解液二次電池〕
また、上述の特定化合物 (III)を特定カーボネートと共に含有する非水系電解液は 、 Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少なくとも一種の原子 (特定金 属元素)を有する負極活物質を用いた非水系電解液二次電池のみならず、その他の 負極活物質 (黒鉛材料等の非水系電解液)を用いた非水系電解液二次電池にぉ 、 ても、充放電サイクル特性を向上させることが可能である。以下、負極活物質の種類 を限定しない形態の非水系電解液 (本発明の第 4の要旨に係る非水系電解液。以下 適宜「第 4の非水系電解液」等と略称する。)と、それを用いた非水系電解液二次電 池 (以下適宜「本発明の第 4の非水系電解液二次電池」等と称する。 )について説明 する。
[0251] 本発明の第 4の非水系電解液は、リチウムイオンを吸蔵及び放出し得る負極及び 正極と非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液 であって、上述の特定化合物(III)及び特定カーボネートを含有することを特徴とする
[0252] 特定ィ匕合物(III)及び特定カーボネートに関する詳細は、上述の <1 1 3.成分( iii) >及び〔1— 2.特定カーボネート〕の欄で説明した通りである。また、第 4の非水系 電解液に対する特定ィ匕合物(III)及び特定カーボネートの比率も、上述の < I 1 3 .成分 (iii) >及び〔I 2.特定カーボネート〕の欄で説明した非水系電解液 (III)に対 する特定ィ匕合物(III)及び特定カーボネートの比率と同様である。
[0253] 第 4の非水系電解液における特定ィ匕合物(III)及び特定カーボネート以外の成分( 非水溶媒、電解質、添加剤等)の詳細 (要否、種類、比率等)については、上述の [I .第 1の非水系電解液]の各項目(〔1 3.非水溶媒〕、 [1-4.電解質〕、 [1- 5.添加 剤〕)にお 、て説明した通りである。
[0254] 第 4の非水系電解液を用いた非水系電解液二次電池 (第 4の非水系電解液二次 電池)は、上述の第 1の非水系電解液二次電池と異なり、使用可能な負極活物質の 種類に特に制限がない。以下、第 4の非水系電解液二次電池に使用される負極活 物質について説明する。
[0255] 負極活物質に制限は無く任意であるが、例えば、リチウムを吸蔵及び放出可能な、 炭素質材料、金属材料、リチウム金属、リチウム合金などを用いる事ができる。また、 負極活物質は 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で 併用してちょい。
[0256] 中でも好ましいのは、炭素質材料、リチウムを吸蔵及び放出可能な金属の 1種以上 とリチウムとからなる合金、及びこれらの金属の硼化物、酸化物、窒化物、硫化物、燐 化物等の複合化合物材料が挙げられる。
[0257] 負極活物質として炭素質材料を用いる場合、この炭素質材料としては任意のものを 用いることができる力 例えば、黒鉛や、黒鉛の表面を黒鉛に比べて非晶質の炭素 で被覆したものが好まし 、。
[0258] ここで、黒鉛は、学振法による X線回折で求めた格子面 (002面)の d値 (層間距離) が通常 0. 335nm以上、また、通常 0. 338nm以下、好ましくは 0. 337nm以下であ るものが好ましい。
[0259] さらに、黒鉛としては、学振法による X線回折で求めた結晶子サイズ (Lc)は、通常 3
Onm以上、好ましくは 50nm以上、より好ましくは lOOnm以上であることが望ましい。
[0260] また、黒鉛の灰分は、通常 1重量%以下、好ましくは 0. 5重量%以下、より好ましく は 0. 1重量%以下であることが望ましい。
[0261] また、黒鉛の表面を非晶質の炭素で被覆したものとしては、 X線回折における格子 面(002面)の d値が通常 0. 335nm〜0. 338nmである黒鉛を核材とし、その表面 に該核材よりも X線回折における格子面 (002面)の d値が大き ヽ炭素質材料が付着 したものを用いることが好ましい。さら〖こ、核材と、核材の表面に付着した X線回折に おける格子面 (002面)の d値が核材よりも大き 、炭素質材料との割合が、重量比で、 通常 99Zl〜80Z20のものがより好ましい。これを用いると、高い容量で、かつ非水 系電解液と反応しにく 、負極を製造することができる。
[0262] さらに、炭素質材料の粒径は本発明の効果を損なわない限り任意であるが、レーザ 一回折 ·散乱法によるメジアン径で、通常 1 μ m以上、好ましくは 3 m以上、より好ま しくは 5 m以上、さらに好ましくは 7 m以上である。一方、上限は、通常 100 m 以下、好ましくは 50 μ m以下、より好ましくは 40 μ m以下、さらに好ましくは 30 μ m以 下である。上記範囲の下限を下回ると比表面積が大きくなり過ぎる場合があり、上限 を上回ると比表面積力 、さくなり過ぎる場合がある。
[0263] また、炭素質材料の BET法による比表面積も本発明の効果を著しく損なわない限 り任意であるが、通常 0. 3m2Zg以上、好ましくは 0. 5m2Zg以上、より好ましくは 0. 7m2Zg以上、さらに好ましくは 0. 8m2Zg以上である。一方、上限は通常 25. Om2 Zg以下、好ましくは 20. 0m2Zg以下、より好ましくは 15. 0m2Zg以下、さらに好ま しくは 10. 0m2Zg以下である。上記範囲の下限を下回るとリチウムイオンの挿入脱 離に十分な面積が確保できなくなる場合があり、上限を上回ると電解液との反応性が 高くなり過ぎる場合がある。
[0264] さらに、炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析 したときに、 1570cm―1〜 1620cm_1の範囲にあるピーク Pのピーク強度 I と、 130
A A
Ocm―1〜 1400cm_1の範囲にあるピーク Pのピーク強度 Iとの比で表される R値(=
B B
I /\ )が、通常 0. 01以上、 0. 7以下の範囲であるもの力 良好な電池特性を得る
B A
上で好ましい。
[0265] また、これに関連して、炭素質材料は、アルゴンイオンレーザー光を用いたラマンス ベクトルで分析したときに、 1570cm―1〜 1620cm_1の範囲にあるピークの半値幅が 、通常 26cm_1以下、好ましくは 25cm_1以下であるものが良好な電池特性を得る上 で望ましい。
[0266] また、負極活物質として、リチウムを吸蔵及び放出可能な金属の 1種以上とリチウム とからなる合金、又は、これらの金属の硼化物、酸化物、窒化物、硫化物、燐化物等 の複合化合物材料を用いる場合、これらの合金や複合ィ匕合物材料としては、複数の 金属元素を含む合金を用いてもよぐ更にその複合ィ匕合物を用いてもよい。例えば、 金属の合金や合金の硼化物、酸化物、窒化物、硫化物、燐化物等の複合化合物等 力 更に複雑に化学的に結合したものを用いるようにしてもょ 、。
[0267] さらに、これらの合金や複合ィ匕合物材料力 なる負極活物質の中でも、非水系電 解液二次電池にしたときに負極の単位重量当りの容量を大きくできる観点から、 Si、 Sn又は Pbなどを含有するものを用いることが好ましぐ特に、 Si又は Snを含有するも のを用いることがより好まし 、。
[0268] また、第 4の非水系電解液二次電池の負極における負極活物質の割合や、負極活 物質以外の詳細については、上述の [II.第 1の非水系電解液二次電池]の〔II 3. 負極〕の欄において説明した通りである。
[0269] また、第 4の非水系電解液二次電池の非水系電解液及び負極以外の詳細につい ても、上述の [II.第 1の非水系電解液二次電池]の各項目(〔11 1.電池構成〕、〔II -4.正極〕、〔11— 5.セパレータ〕、〔11— 6.外装体〕)において説明した通りである。
[0270] 第 4の非水系電解液は、上述のように、特定金属元素を有する負極活物質のみな らず、各種の負極活物質を用いた非水系電解液二次電池の充放電サイクル特性を 向上させることが可能となる。この理由の詳細は明らかではないが、第 1の非水系電 解液 (非水系電解液 (ΠΙ) )の場合と同様、非水系電解液 (III)中に含まれる特定化合 物(III)と特定カーボネートとがともに反応することによって、負極活物質の表面に良 好な保護被膜層を形成し、これにより副反応が抑えられ、サイクル劣化が抑制される ものと推察される。
[0271] 但し、上記の特定金属元素を有する負極活物質を用いた非水系電解液二次電池( 即ち、第 1の非水系電解液)の場合の方が、その他の負極活物質を用いた非水系電 解液二次電池 (即ち、第 4の非水系電解液)の場合と比べ、その効果が顕著である。 実施例
[0272] 次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超え な 、限り、以下の実施例の記載に限定されるものではな 、。
[0273] [実施例'比較例群 I]
〔実施例 I 1〜1 14及び比較例 I 1〜1 4〕
以下の手順で非水系電解液二次電池を組み立て、その評価を行ない、得られた結 果を表 Iに示した。
[0274] 〔負極の作製〕
〈ケィ素合金負極の作製:実施例 I 1〜1 14、比較例 1—1、 I 2〉 負極活物質として、非炭素材料であるケィ素 73. 2重量部及び銅 8. 1重量部と、人 造黒鉛粉末 (ティムカル社製商品名「KS— 6」) 12. 2重量部とを用い、これらにポリフ ッ化ビユリデン(poly(vinylidene fluoride):以下「PVDF」と略する。)を 12重量部含有 する N メチルピロリドン溶液 54. 2重量部、及び、 N メチルピロリドン 50重量部を 加え、デイスパーザーで混合してスラリー状とした。得られたスラリーを、負極集電体 である厚さ 18 mの銅箔上に均一に塗布し、ー且自然乾燥した後、最終的には 85 °Cで一昼夜減圧乾燥した。その後、電極密度が 1. 5g, cm—3程度となるようにプレス し、直径 12. 5mmの円盤状に打ち抜いて負極 (ケィ素合金負極)とした。
[0275] 〈グラフアイト負極の作製:比較例 1— 3、 1—4〉
負極活物質として、人造黒鉛粉末 (ティムカル社製商品名「KS— 6」) 100重量部を 用い、これに PVDFを 12重量部含有する N—メチルピロリドン溶液 83. 5重量部、及 び、 N—メチルピロリドン 50重量部をカ卩え、デイスパーサーで混合してスラリー状とし た。得られたスラリーを、負極集電体である厚さ 18 mの銅箔上に均一に塗布し、一 且自然乾燥した後、最終的には 85°Cで一昼夜減圧乾燥した。その後、電極密度が 1 . 5g' cm—3程度となるようにプレスし、直径 12. 5mmの円盤状に打ち抜いて負極 (グ ラフアイト負極)とした。
[0276] 〔正極の作製〕
正極活物質として LiCoO (日本ィ匕学工業社製「C5」) 85重量部を用い、これに力
2
一ボンブラック (電気化学工業社製商品名「デンカブラック」) 6重量部、ポリフッ化ビ ユリデン KF— 1000 (呉羽化学社製商品名「KF— 1000」)9重量部をカ卩えて混合し 、 N—メチル 2—ピロリドンで分散してスラリー状とした。得られたスラリーを、正極集 電体である厚さ 20 mのアルミニウム箔上に、用いる負極の理論容量の 9割となるよ うに均一に塗布し、 100°Cで 12時間乾燥した後、直径 12. 5mmの円盤状に打ち抜 いて正極とした。
[0277] 〔非水系電解液の調製〕
後出の表 Iの各 [実施例]及び [比較例]の列における、 [特定カーボネート]、 [その 他の化合物]、 [特定成分]の欄に記載の化合物を、同欄に記載の割合で混合し、更 に、電解質塩として LiPFを lmol' dm—3の濃度となるように溶解して、非水系電解液
6
(実施例 I— 1〜1 14及び比較例 I— 1〜1 4の非水系電解液)を調製した。
[0278] 〔コイン型セルの作製〕
上記の正極及び負極と、各実施例及び比較例で調製した非水系電解液とを用い て、以下の手順でコイン型セル(実施例 I 1〜1 14及び比較例 I 1〜1 4の非水 系電解液二次電池)を作製した。即ち、正極導電体を兼ねるステンレス鋼製の缶体 に正極を収容し、その上に電解液を含浸させたポリエチレン製のセパレータを介して 負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを 介して力しめて密封し、コイン型セルを作製した。なお、負極としては、後出の表 Iの 各 [実施例]及び [比較例]の列における [負極]の欄の記載に従い、上述のケィ素合 金負極又はグラフアイト負極を選択して用いた。
[0279] 〔コイン型セルの評価 (放電容量及び放電容量維持率)〕
上記手順で得られたコイン型セル (実施例 I— 1〜1— 14及び比較例 I— 1〜1— 4の 非水系電解液二次電池)について、以下の手順で放電容量及び放電容量維持率の 評価を行なった。即ち、各コイン型セルを用いて、 25°Cの条件下、充電終止電圧 4. 2V— 3mA、充電終了電流 0. 15 Aの定電流定電圧充電と、放電終止電圧 3. OV 3mAの定電流放電とを 1サイクルとして、 50サイクル充放電を実施した。この時の 、 1サイクル目、 10サイクル目及び 50サイクル目の放電容量を測定し、 10サイクル後 及び 50サイクル後における放電容量維持率を下記式で算出した。
[0280] [数 1] — ( 1 0サイクル目又は 5 0サイクル目の放電容量)
― ( 1サイクル Sの放電容量)
[0281] 各実施例及び比較例のコイン型セルにっ ヽて得られた、 1サイクル目、 10サイクル 目及び 50サイクル目の放電容量、並びに 10サイクル目及び 50サイクル目における 放電容量維持率(%)を、下記表 Iの [電池評価]の欄に示す。なお、下記表 I中、放 電容量の値は何れも、負極活物質の単位重量当たりの容量 (mAh'g—1)として示し た。また、「wt%」は「重量%」を表わす。
[0282] [表 1]
Figure imgf000074_0001
[0283] 上記表 Iの結果より、次のことが明らかである。
[0284] 比較例 I 1 I 2は、非水系電解液に特定化合物 (I) (上記一般式 (I)で示される 鎖状カーボネート)を含まないため、何れもサイクル試験後の放電容量維持率が低い
[0285] 比較例 I 3、 I 4は、負極活物質として炭素材料を用いたものであり、比較例 I 3 の非水系電解液は特定化合物 (I)を含まず、比較例 I 4の非水系電解液は特定ィ匕 合物 (I)を含む。しかしながら、比較例 1— 3、 I 4を比較した場合、負極活物質が炭 素材料であるため、特定化合物 (I)を用いた場合でもサイクル試験後の放電容量維 持率が向上しない。これにより、炭素材料を負極活物質に用いた場合には、特定ィ匕 合物 (I)によるサイクル特性の向上効果が得られないことが分かる。
[0286] これに対して、上記ケィ素合金等の負極活物質を用い、非水系電解液中に特定ィ匕 合物 (I)及び飽和環状カーボネートと特定カーボネートとを含む実施例 I— 1〜1— 12 の非水系電解液二次電池では、比較例 I 1、 I 2と比べて、何れも放電容量維持 率が大きく増加しており、サイクル特性が良好であることが分かる。
また、非水系電解液中に特定化合物 (I)及び飽和環状カーボネートを含み特定力 ーボネートを含まない実施例 1—13、 1—14も、上述の実施例1 1〜1 12に比べれ ばやや劣るものの、比較例 I 1、 I 2と比較すると、サイクル試験後の放電容量維 持率がやはり大きく改善されて 、る。
[0287] [実施例'比較例群 II]
〔実施例 II— 1〜11— 28及び比較例 II— 1〜11— 14〕
以下の手順で非水系電解液二次電池を組み立て、その評価を行ない、得られた結 果を表 Π— 1〜Π— 6に示した。
[0288] 〔負極の作製〕
〈ケィ素合金負極の作製:実施例11 1〜11 28、比較例11 1〜11 3、 11— 9、 II 10〉
上記 [実施例 ·比較例群 I]の〈ケィ素合金負極の作製〉の欄の記載と同様の手順に より、負極 (ケィ素合金負極)を作製した。
[0289] 〈グラフアイト負極の作製:比較例 II 4〜11 8、 II 11〜11 14〉
上記 [実施例 ·比較例群 I]の〈グラフアイト負極の作製〉の欄の記載と同様の手順に より、負極 (グラフアイト負極)を作製した。 [0290] 〔正極の作製〕
上記 [実施例 ·比較例群 I]の〔正極の作製〕の欄の記載と同様の手順により、正極を 作製した。
[0291] 〔非水系電解液の調製〕
後出の表 II 1 11 6の各 [実施例]及び [比較例]の列における、 [特定カーボネ ト]、 [その他の化合物]、 [特定ィ匕合物]の欄に記載の化合物を、同欄に記載の割 合で混合し、更に、電解質塩として LiPFを lmol' dm—3の濃度となるように溶解して
6
、非水系電解液(実施例 II— 1 11— 28及び比較例 II— 1 11— 14の非水系電解液) を調製した。
[0292] 〔コイン型セルの作製〕
上記の正極及び負極と、各実施例及び比較例で調製した非水系電解液とを用い て、上記 [実施例 ·比較例群 I]の〔コイン型セルの作製〕の欄の記載と同様の手順によ り、コイン型セル(実施例 II— 1 11— 28及び比較例 II— 1 11— 14の非水系電解液 二次電池)を作製した。
[0293] 〔コイン型セルの評価 (放電容量及び放電容量維持率)〕
上記手順で得られたコイン型セル (実施例 II— 1 Π— 28及び比較例 II— 1 Π— 1 4の非水系電解液二次電池)について、上記 [実施例 ·比較例群 I]の〔コイン型セル の評価〕の欄の記載と同様の手順により、 1サイクル目及び 10サイクル目の放電容量 を測定し、 10サイクル目における放電容量維持率を下記式により算出した。
[0294] [数 2] ttr ί ハ 一( 1 0サイクル目の放電容量) ハ 放 ¾谷丑难 ί寸率 ) = ~ rT^ Tレ ITの放電龍) ~ x 1 0 0
[0295] 各実施例及び比較例のコイン型セルについて得られた、 1サイクル目及び 10サイク ル目の放電容量、並びに 10サイクル後における放電容量維持率(%)を、下記表 II 1 11 6の [電池評価]の欄に示す。なお、下記表 II 1 11 6中、放電容量の値 は何れも、負極活物質の単位重量当たりの容量 (mAh'g—1)として示した。また、「wt %」は「重量%」を表わし、「vt%」は「体積%」を表わす。 表 II一 1
Figure imgf000077_0001
〔s〔029 表 II— 2
塑 〔¾029
Figure imgf000078_0001
表 II一 3
¾ 〔¾〔029
Figure imgf000079_0001
表 II一 4
〔§〔03
Figure imgf000080_0001
表 II一 5
〔〕
Figure imgf000081_0001
Figure imgf000082_0001
[0302] 上記表 II 1 11 6の結果より、次のことが明らかである。
[0303] 特定化合物 (II)及び特定カーボネートを含む非水系電解液を使用している実施例 II 1 11 20、 II 27、 II 28は、特定化合物(II)及び特定カーボネートの何れも 含まなレヽ非水系電解液を使用して ヽる比較例 Π— 3と比較して、サイクル試験後の放 電容量維持率が大きく改善されている。
また、特定化合物(Π)のみを含み特定カーボネートを含まな ヽ非水系電解液を使 用している実施例 11 21〜11 26も、上述の実施例11 1〜11 20、 II 27、 II 28 に比べればやや劣るものの、比較例 II 3と比較すると、サイクル試験後の放電容量 維持率はやはり大きく改善されている。
[0304] これに対し、特定カーボネートを含み特定ィ匕合物(Π)を含まな ヽ非水系電解液を使 用している比較例 II— 1、 II— 2は、放電容量維持率が向上してはいるものの、実施例 II 1〜11 20、 II 27、 II— 28には大きく及ばない。
[0305] 一方、比較例 II 4〜11 8、 II 11〜11 14は負極活物質として炭素材料のみを 用いたものであり、比較例 II— 4、 11— 9、 II— 11の非水系電解液は特定ィ匕合物(II)及 び特定カーボネートを何れも含まな 、。比較例 II 5の非水系電解液は特定ィ匕合物( II)を含み特定カーボネートを含まな ヽ。比較例 II 4と比較例 II 5の放電容量維持 率を比較すると、特定化合物 (Π)を含有して!/ヽても放電容量維持率に変化がな!ヽこと が分かる。
また、比較例 II— 6、 II 10、 II— 12の非水系電解液は、特定カーボネートを含み 特定ィ匕合物(II)を含まない。比較例 II— 4、 II 9、 II 11と比較例 II 6、 II 10、 II— 12の放電容量維持率を比較すると、特定カーボネートを含むことにより放電容量維 持率が向上していることが分かる。
一方で、非水系電解液に特定化合物(II)及び特定カーボネートを含む比較例 II 7、 11— 8、 II 14を、特定ィ匕合物(II)及び特定カーボネートの何れも含まない比較例 II 4、 Π— 9、 Π— 11と比較すると、放電容量維持率が悪化していることが分かる。
[0306] 負極活物質が炭素材料のみである比較例 II— 4〜11— 8、 II— 11〜11— 14に比べ、 負極活物質がケィ素合金である実施例 Π— 1〜Π— 20、 Π- 27、 Π— 28は、放電容量 が高い。また、上記のように負極活物質が炭素材料である場合には、非水系電解液 が特定カーボネート又は特定ィ匕合物(Π)を含むことにより放電容量維持率の改善は 認められるものの、特定ィ匕合物(II)及び特定カーボネートを含む場合、それらを使用 しない場合、又はそれらを単独で使用する場合よりも、放電容量維持率が悪化してい る。 [0307] 一方で、負極活物質がケィ素合金である場合には、特定化合物 (Π)のみを含有し て特定カーボネートを含有しな 、電解液を用いた電池では、特定化合物(Π)及び特 定カーボネートの何れも含まな!/ヽ電解液を用いた電池よりも放電容量維持率が悪ィ匕 して ヽるが、特定カーボネート及び特定化合物(Π)を両方とも含有する電解液を使用 する電池では、放電容量維持率が向上していることが分かる。
[0308] [実施例'比較例群 III]
〔実施例 III 1〜ΠΙ— 19及び比較例 III 1〜ΠΙ— 7〕
以下の手順で非水系電解液二次電池を組み立て、その評価を行ない、得られた結 果を表 111— 1、 III 2に示した。
[0309] 〔負極の作製〕
〈ケィ素合金負極の作製:実施例 III 1〜11 11、比較例 II 1〜11 4〉 上記 [実施例 ·比較例群 I]の〈ケィ素合金負極の作製〉の欄の記載と同様の手順に より、負極 (ケィ素合金負極)を作製した。
[0310] 〈グラフアイト負極の作製:実施例 III 12〜11 19、比較例 II 5〜11 7〉
上記 [実施例 ·比較例群 I]の〈グラフアイト負極の作製〉の欄の記載と同様の手順に より、負極 (グラフアイト負極)を作製した。
[0311] 〔正極の作製〕
上記 [実施例 ·比較例群 I]の〔正極の作製〕の欄の記載と同様の手順により、正極を 作製した。
[0312] 〔非水系電解液の調製〕
後出の表 III 1、 III 2の各 [実施例]及び [比較例]の列における [特定ィ匕合物(III ) ]及び [特定カーボネート]の欄に記載の化合物を、同欄に記載の割合で混合し、更 に、電解質塩として LiPFを lmol' dm—3の濃度となるように溶解して、非水系電解液
6
(実施例 III— 1〜111 19及び比較例 III— 1〜111 7の非水系電解液)を調製した。
[0313] 〔コイン型セルの作製〕
上記の正極及び負極と、各実施例及び比較例で調製した非水系電解液とを用い て、上記 [実施例 ·比較例群 I]の〔コイン型セルの作製〕の欄の記載と同様の手順によ り、コイン型セル(実施例 III 1〜ΠΙ— 19及び比較例 III 1〜ΠΙ— 7の非水系電解液 二次電池)を作製した。
[0314] 〔コイン型セルの評価 (放電容量及び放電容量維持率)〕
上記手順で得られた実施例 III 1〜111 11及び比較例 III 1〜ΠΙ— 4の非水系電 解液二次電池 (コイン型セル)につ 、て、上記 [実施例 ·比較例群 I]の〔コイン型セル の評価〕の欄の記載と同様の手順により、 1サイクル目及び 100サイクル目の放電容 量を測定し、 100サイクル目における放電容量維持率を下記式により算出した。
[0315] [数 3]
( 1 0 0サイクル目の放電容量)
放電容量維持率 (%) X 1 0 0
( 1サイクル目の放電容量)—
[0316] また、上記手順で得られた実施例 III— 12〜ΠΙ— 19及び比較例 III— 5〜ΠΙ— 7の非 水系電解液二次電池 (コイン型セル)については、上記 [実施例 ·比較例群 I]の〔コィ ン型セルの評価〕の欄の記載と同様の手順により、 1サイクル目及び 10サイクル目の 放電容量を測定し、 10サイクル目における放電容量維持率を上記式により算出した
[0317] [数 4]
( 1 0サイクル目の放電容量)
放電容量維持率 (%) = X 1 0 0
( 1サイクル目の放電容量)
[0318] 各実施例及び比較例のコイン型セルにっ 、て得られた、 100サイクル目における 放電容量維持率(%)を、下記表 III 1、 III 2の [電池評価]の欄に示す。なお、表 II 1— 1、 III— 2中、放電容量の値は何れも、負極活物質の単位重量当たりの容量 (mA h'g_1)として示した。また、「wt%」は「重量0 /0」を表わす。
[0319] [表 8] 表 III— 1
非水系電解液 電池評価 特定化合物 特定カーボネー卜 負梪 100サイクル目 放電容量 構造 添加景 名称 添加量 維持率
CH3
実施例 H3C— Si— N==C^=0 2重量%
III一 1 ビニ カーボネート 2重量% グラフアイト 92%
CH3
CHa
実施例 3C— Si—— 4重量% ビニレンカーボネート
-2 2重量 ¾ グラフアイト 93%
CH3
実施例 重量% ビニレンカーボネート 4重量%
m— 3 H Si—— ゲラフ ィ卜
CH3 実施例
2重量% ビニルエチレン力一ボネ一ト 2重量%
m— 4 グラフアイ卜 90% 実施例 ォロ
[1]— 5 2重置% カーボネート 2重量% グラフアイ卜 90¾ 実施例 ジフルォ口エチレン
[1】一 6 2重量% 力—ポネート 2重量% グラフアイ卜 90% ビニレンカーボネート 2重量%
実施例
【11— 7 重量% + グラフアイ卜 93%
ビニルエチレンカーボネート 2重釁½
Figure imgf000086_0001
CH3 ビニ カーボネート
量 W
実施例 H3C— Si—— N^C^O 2重量% + 2重
III -8 才ロ ゲラファイト 94¾
2重量%
CH3 エチレンカーボネート
CH3 ビニレンカーボネート
¾
実施例 H3C— Si—— N=C=0 2重量 ¾ + 2重曼
III -9 ゲラファイ卜 94%
ジ ォロ 2重量%
CH3 エチレン力一ボネ一ト
0
実施例
【11—1 0 T 2重量 ビニレン力一ポネート 2重量% グラフアイト 93% 実施例 Z 2重量%
□1—1 1 ビニレンカーボネート 2重量 ¾
If グラフアイ卜 比較例
[II- Ί 一 ビニ 力一ボネート 簠量% グラフアイ卜 腦 ビニレンカーボネ一ト 重量%
比較例
- + +
-2 ゲラファイ卜
ビニルエチレンカーボネート 2重量%
CH3
比較例 H3C— Si C=0
III一 3 - ― グラフアイ卜
CH3 比較例
-4 T ― ― グラフアイト ] 表 HI— 2
非水系電解液 電池評価
10サイクル目 特定化合物 (IH) 特定カーボネート 負極
¾容_¾ 構造 添加量 名称 添加重 維持率 実施例
2重量% ビニレンカーボネート 2重量%
111- 1 2 ケィ素合金 93.5%
Figure imgf000087_0001
実施例
レンカーボネート 2重量%
[II- 1 3 1 2重量% ビニ ケィ素合金 94.8% 0
実施例 フル才ロエチレン
2重量%
III- 1 4 カーボネート 2重量% ケィ素合金 94.3% 0
実施例 ジフル才ロエチレン
III - 1 5 τ 2重量1 ½ カーボネート 2重量 ¾ ケィ素合金 94.5% 。
実施例 フル才ロエチレン
2重量% 30重量%
III -1 6 τ ケィ素合金 96.5%
カーボ 実施例 ジフルォロエチレン
III一 1 7 2重量% 30重量% ケィ素合金 96.3%
カーボ
Figure imgf000087_0002
。 ビニレンカーボネート
実施例 +
I 2重量% 2重量1 ½
III- 1 8 フルォロ ケィ素合金 95.9%
エチレンカーボネート 。 ビニレンカーボネ
実施例 +
2重量% 2重量%
111—1 9 ジフルォロ ケィ素合金 96.1%
\ エチレンカーボ 比較例
III -5 一 ― ビニレンカーボネート 2重量1 ½ ケィ素合金 89.9% ビニレンカーボネート 2重量 <½
比較例
III一 6 一 一 + + ケィ素合金 91.2%
ビニルエチレンカーボネート 2重量% 。
比較例 、
2重量%
[II- 7 一 - ゲイ素合金 89.2%
\ [0321] 上記表 111—1、 III 2中の結果より、次のことが明らかである。
[0322] 負極にグラフアイトを用いた場合、非水系電解液中に特定ィ匕合物 (III)及び特定力 ーボネートを含有させた実施例 III 1〜ΠΙ— 11においては、比較例 III 1〜ΠΙ— 4に 対して、放電容量維持率が向上しており、サイクル特性が良好であることが分かる。
[0323] また、負極にケィ素合金を用いた実施例 III— 12〜ΠΙ— 19と比較例 III— 5〜ΠΙ— 7 との比較においても、同様の傾向を示すことが分かる。
産業上の利用可能性
[0324] 本発明の非水系電解液二次電池は、長期の充放電サイクル特性に優れているた め、ノートパソコン、ペン入力パソコン、モパイルパソコン、電子ブックプレーヤー、携 帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオ ムービー、液晶テレビ、ハンディークリーナー、ポータブル CD、ミニディスク、トランシ 一バー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、ノ ックアツ プ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、電力のロー ドレべリング等の電源をはじめ、電気自転車、電気スクーター、電気自動車等に用い ることがでさる。
[0325] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更及び変形が可能であることは、当業者にとって明らかである。
なお、本出願は、 2004年 11月 10日付で出願された日本特許出願 (特願 2004— 326672)、 2005年 3月 1曰付で出願された曰本特許出願(特願 2005— 055337) 、 2005年 6月 23日付で出願された日本特許出願 (特願 2005 - 183846)に基づ ヽ ており、その全体が引用により援用される。

Claims

請求の範囲
リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備え、該負 極が Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少なくとも一種の原子を有 する負極活物質を含む非水系電解液二次電池に用いられる非水系電解液であって 不飽和結合及びハロゲン原子のうち少なくとも一方を有するカーボネートを含有す るとともに、
(i)下記一般式 (I)で表わされる化合物、及び、飽和環状カーボネート、
(ii)下記一般式 (II)で表わされる化合物、並びに、
(iii)下記一般式 (III 1)で表わされる化合物
のうち、少なくとも何れかを含有する
ことを特徴とする、非水系電解液。
[化 1]
Η2η+1
Figure imgf000089_0001
(上記式 (I)中、
nは 3以上の整数を表わし、 mは 1以上の整数を表わす。但し、 nと mとの和が 5以上 である。
且つ、水素原子の一部又は全部が、フッ素原子により置換されていてもよい。 ) [化 2]
Figure imgf000089_0002
( I I ) (上記式 (II)中、
Xは、
[化 3]
0
—— s -
0 又は
[化 4]
Figure imgf000090_0001
を表わし、
!^〜 は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたァ ルキル基を表わす。 )
[化 5]
A N=C=0 ( i l l - 1 )
(上記式 (III 1)中、 Aは水素以外の元素又は基を表わす。 )
[2] 上記一般式 (I)にお 、て、 nと mが互 ヽに異なる整数である
ことを特徴とする、請求項 1記載の非水系電解液。
[3] 非水系電解液中における、上記一般式 (I)で表わされる化合物の濃度が、 5体積% 以上 95体積%以下である
ことを特徴とする、請求項 1又は請求項 2に記載の非水系電解液。 [4] 非水系電解液中における、飽和環状カーボネートの濃度が、 5体積%以上 50体積 %以下である
ことを特徴とする、請求項 1〜3の何れか一項に記載の非水系電解液。
[5] 上記一般式 (II)において、 〜 が、それぞれ独立に、無置換又はフッ素原子で 置換された炭素数 1〜3のアルキル基である
ことを特徴とする、請求項 1〜4の何れか一項に記載の非水系電解液。
[6] 非水系電解液中における、上記一般式 (II)で表わされる化合物の濃度力 0. 01 重量%以上 10重量%以下である
ことを特徴とする、請求項 1〜5の何れか一項に記載の非水系電解液。
[7] 上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 2)で表わされる化 合物から選ばれる
ことを特徴とする、請求項 1〜6の何れか一項に記載の非水系電解液。
[化 6]
Figure imgf000091_0001
(上記一般式 (III 2)中、
X1及び X2はそれぞれ独立に、水素以外の元素を表わし、
Zは、任意の元素又は基を表わし、
m及び nはそれぞれ独立に、 1以上の整数を表わす。
mが 2以上の場合、各 Zは同一であってもよぐ異なっていてもよい。 )
[8] 上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 3)で表わされる化 合物から選ばれる ことを特徴とする、請求項 1〜7の何れか一項に記載の非水系電解液。
[化 7]
R
R— Si— N= C= 0
π ( I I I— 3 )
(上記一般式 (III 3)中、
Rはそれぞれ独立に、置換基を有してもょ 、アルキル基又はァリール基を表わす。 なお、複数の Rが互いに結合して環を形成していてもよい。 )
[9] 非水系電解液中における、上記一般式 (III— 1)で表わされる化合物の濃度が、 0.
01重量%以上 10重量%以下である
ことを特徴とする、請求項 1〜8の何れか一項に記載の非水系電解液。
[10] 非水系電解液中における上記の不飽和結合及びハロゲン原子のうち少なくとも一 方を有するカーボネートの濃度力 0. 01重量%以上、 70重量%以下である ことを特徴とする、請求項 1〜9の何れか一項に記載の非水系電解液。
[11] 上記の不飽和結合又はハロゲン原子を有するカーボネートが、ビ-レンカーボネー ト、ビュルエチレンカーボネート、フルォロエチレンカーボネート、及びジフルォロェ チレンカーボネート、並びにこれらの誘導体よりなる群から選ばれる 1種以上のカー ボネートである
ことを特徴とする、請求項 1〜10の何れか一項に記載の非水系電解液。
[12] エチレンカーボネート及び Z又はプロピレンカーボネートを更に含有する
ことを特徴とする、請求項 1〜11の何れか一項に記載の非水系電解液。
[13] ジメチノレカーボネート、ェチノレメチノレカーボネート、ジェチノレカーボネート、メチノレ n プロピルカーボネート、ェチルー n プロピルカーボネート、及びジー n プロ ピルカーボネートよりなる群力 選ばれる少なくとも 1種のカーボネートを更に含有す る
ことを特徴とする、請求項 1〜12の何れか一項に記載の非水系電解液。
[14] リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備え、該負 極が Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少なくとも一種の原子を有 する負極活物質を含む非水系電解液二次電池に用いられる非水系電解液であって 下記一般式 (I)で表わされる化合物、及び、飽和環状カーボネートを含有する ことを特徴とする、非水系電解液。
[化 8]
Η2η+1
Figure imgf000093_0001
(上記式 (I)中、
nは 3以上の整数を表わし、 mは 1以上の整数を表わす。但し、 nと mとの和が 5以上 である。
且つ、水素原子の一部又は全部が、フッ素原子により置換されていてもよい。 ) [15] 上記一般式 (I)において、 nと mが互いに異なる整数である
ことを特徴とする、請求項 14記載の非水系電解液。
[16] 非水系電解液中における、上記一般式 (I)で表わされる化合物の濃度力 5体積% 以上 95体積%以下である
ことを特徴とする、請求項 14又は請求項 15に記載の非水系電解液。
[17] 非水系電解液中における、飽和環状カーボネートの濃度が、 5体積%以上 50体積 %以下である
ことを特徴とする、請求項 14〜16の何れか一項に記載の非水系電解液。
[18] リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備え、該負 極が Si原子、 Sn原子及び Pb原子よりなる群から選ばれる少なくとも一種の原子を有 する負極活物質を含む非水系電解液二次電池に用いられる非水系電解液であって 下記一般式 (II)で表わされる化合物を少なくとも含有する
ことを特徴とする、非水系電解液。
[化 9]
Figure imgf000094_0001
(上記式 (II)中、
Xは、
[化 10]
0
-S- 0
又は
[化 11]
0
-S- を表わし、
R1〜; R6は、それぞれ独立に、無置換アルキル基又はハロゲン原子で置換されたァ ルキル基を表わす。 )
上記一般式 (II)において、 R1 !^が、それぞれ独立に、無置換又はフッ素原子で 置換された炭素数 1〜3のアルキル基である
ことを特徴とする、請求項 18記載の非水系電解液。
[20] 非水系電解液中における、上記一般式 (II)で表わされる化合物の濃度力 0. 01 重量%以上 10重量%以下である
ことを特徴とする、請求項 18又は請求項 19に記載の非水系電解液。
[21] リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備え、 該負極が、 Si原子、 Sn原子及び Pb原子よりなる群力 選ばれる少なくとも一種の 原子を有する負極活物質を含有するとともに、
該非水系電解液力 請求項 1〜20の何れか一項に記載の非水系電解液である ことを特徴とする、非水系電解液二次電池。
[22] リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備えた非 水系電解液二次電池に用いられる非水系電解液であって、
不飽和結合及びハロゲン原子のうち少なくとも一方を有するカーボネートと、下記 一般式 (III— 1)で表わされる化合物とを少なくとも含有する
ことを特徴とする、非水系電解液。
[化 12]
A— N=C=0 ( i n - 1 )
(上記式 (III 1)中、 Aは水素以外の元素又は基を表わす。 )
[23] 上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 2)で表わされる化 合物から選ばれる
ことを特徴とする、請求項 22記載の非水系電解液。
[化 13]
Figure imgf000096_0001
(上記一般式 (III 2)中、
X1及び X2はそれぞれ独立に、水素以外の元素を表わし、
Zは、任意の元素又は基を表わし、
m及び nはそれぞれ独立に、 1以上の整数を表わす。
mが 2以上の場合、各 Zは同一であってもよぐ異なっていてもよい。 )
[24] 上記一般式 (III 1)で表わされる化合物力 下記一般式 (III 3)で表わされる化 合物から選ばれる
ことを特徴とする、請求項 22又は請求項 23に記載の非水系電解液。
[化 14]
Figure imgf000096_0002
(上記一般式 (III 3)中、
Rはそれぞれ独立に、置換基を有してもょ 、アルキル基又はァリール基を表わす。 なお、複数の Rが互いに結合して環を形成していてもよい。 ) [25] 非水系電解液中における、上記一般式 (III— 1)で表わされる化合物の濃度が、 0. 01重量%以上 10重量%以下である
ことを特徴とする、請求項 22〜24の何れか一項に記載の非水系電解液。
[26] リチウムイオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備え、 該非水系電解液力 請求項 22〜25の何れか一項に記載の非水系電解液である ことを特徴とする、非水系電解液二次電池。
PCT/JP2006/309423 2005-06-23 2006-05-10 非水系電解液及びそれを用いた非水系電解液二次電池 WO2006137224A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06746233A EP1898485A4 (en) 2005-06-23 2006-05-10 NONAQUEOUS ELECTROLYTE AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
CN2006800309926A CN101248552B (zh) 2005-06-23 2006-05-10 非水电解液及使用它的非水电解质二次电池
US11/955,692 US7803487B2 (en) 2005-06-23 2007-12-13 Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
US12/713,750 US20100216036A1 (en) 2005-06-23 2010-02-26 Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
US13/280,051 US20120040252A1 (en) 2005-06-23 2011-10-24 Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
US13/285,617 US20120045698A1 (en) 2005-06-23 2011-10-31 Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-183846 2005-06-23
JP2005183846 2005-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/955,692 Continuation US7803487B2 (en) 2005-06-23 2007-12-13 Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2006137224A1 true WO2006137224A1 (ja) 2006-12-28

Family

ID=37570260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309423 WO2006137224A1 (ja) 2005-06-23 2006-05-10 非水系電解液及びそれを用いた非水系電解液二次電池

Country Status (6)

Country Link
US (4) US7803487B2 (ja)
EP (3) EP2278652B1 (ja)
JP (1) JP5792610B2 (ja)
KR (1) KR100989309B1 (ja)
CN (2) CN101248552B (ja)
WO (1) WO2006137224A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2190054A1 (en) * 2007-09-12 2010-05-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP2010232118A (ja) * 2009-03-30 2010-10-14 Hitachi Vehicle Energy Ltd リチウム二次電池
WO2014163055A1 (ja) * 2013-04-01 2014-10-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222555B2 (ja) 2005-06-23 2013-06-26 三洋電機株式会社 非水電解液二次電池及び非水電解液
US20090253045A1 (en) * 2006-06-02 2009-10-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US20080305395A1 (en) * 2007-06-05 2008-12-11 Sony Corporation Anode and secondary battery
US20100028784A1 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
WO2010053962A1 (en) * 2008-11-04 2010-05-14 California Institute Of Technology Hybrid electrochemical generator with a soluble anode
CN101740822B (zh) * 2008-11-21 2012-12-12 上海比亚迪有限公司 电解液及含有该电解液的锂离子电池
WO2011142276A1 (ja) 2010-05-10 2011-11-17 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用非水電解液
WO2012029645A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池およびそれに用いる二次電池用電解液
JP5593982B2 (ja) * 2010-09-03 2014-09-24 日産自動車株式会社 非水電解質組成物及び非水電解質二次電池
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US8734668B2 (en) 2011-06-09 2014-05-27 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US20120315534A1 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
CA2844796C (en) * 2011-09-02 2020-12-29 E. I. Du Pont De Nemours And Company Lithium ion battery with nonaqueous electrolyte comprising fluorinated acyclic carboxylic acid ester and/or fluorinated acyclic carbonate
WO2013058224A1 (ja) 2011-10-17 2013-04-25 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
KR102064194B1 (ko) 2012-06-01 2020-01-09 솔베이(소시에떼아노님) 리튬 이온 배터리
CA2908044C (en) 2013-04-04 2022-08-23 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions
WO2015017230A1 (en) 2013-08-02 2015-02-05 General Electric Company Magneto-caloric assemblies
WO2015040709A1 (ja) * 2013-09-18 2015-03-26 株式会社 東芝 非水電解質電池及び電池パック
US9851128B2 (en) 2014-04-22 2017-12-26 Haier Us Appliance Solutions, Inc. Magneto caloric heat pump
US9466857B1 (en) * 2015-06-22 2016-10-11 Wildcat Discovery Technologies, Inc. Electrolyte formulations for lithium ion batteries
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
CN107403957A (zh) * 2016-05-19 2017-11-28 宁德新能源科技有限公司 电解液及锂离子电池
CN107403956A (zh) * 2016-05-19 2017-11-28 宁德新能源科技有限公司 电解液及锂离子电池
CN107482246A (zh) * 2016-06-08 2017-12-15 中国科学院福建物质结构研究所 一种锂离子电池电解液
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
WO2018044884A1 (en) 2016-08-30 2018-03-08 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
CN108242557B (zh) * 2016-12-26 2020-08-28 宁德时代新能源科技股份有限公司 电解液及二次电池
CN107046150A (zh) * 2017-02-06 2017-08-15 安徽鹰龙工业设计有限公司 一种锂电池用电解液及其制备方法
CN106684446A (zh) * 2017-02-06 2017-05-17 深圳市斯诺实业发展股份有限公司 一种锂电池电解液及其制备方法
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
CN109920978A (zh) * 2017-12-13 2019-06-21 上海杉杉科技有限公司 一种含稳定结构硅基薄膜电极的高容量电池
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11322778B2 (en) 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
CN111048830B (zh) * 2018-10-12 2021-01-15 微宏动力系统(湖州)有限公司 非水电解液及锂离子二次电池
KR102138128B1 (ko) 2018-11-26 2020-07-27 동우 화인켐 주식회사 전해액 조성물 및 이를 이용한 이차전지
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
CN111834669B (zh) * 2019-04-15 2022-03-15 比亚迪股份有限公司 锂离子电池电解液以及锂离子电池
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN110931868B (zh) * 2019-11-27 2022-04-15 惠州锂威新能源科技有限公司 一种非水电解液及含有该电解液的锂离子电池
KR102288569B1 (ko) * 2020-01-30 2021-08-11 울산과학기술원 리튬 공기 전지 전해질 조성물 및 이를 포함하는 리튬 공기 전지
CN111668547B (zh) * 2020-06-30 2021-09-24 远景动力技术(江苏)有限公司 非水电解液及使用了其的蓄电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JPH11176470A (ja) * 1997-10-07 1999-07-02 Hitachi Maxell Ltd 有機電解液二次電池
JPH11195429A (ja) * 1998-01-05 1999-07-21 Hitachi Ltd 非水電解液二次電池
EP1005098A2 (en) 1998-11-25 2000-05-31 Wilson Greatbatch Ltd. Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a passivation inhibitor additive
JP2001176548A (ja) * 1999-12-13 2001-06-29 Wilson Greatbatch Ltd 非水性電解液再充電電池の硫酸エステル添加剤
JP2002008719A (ja) 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
JP2003217656A (ja) 2002-01-17 2003-07-31 Yuasa Corp 非水電解質電池
US20040151987A1 (en) 2002-11-19 2004-08-05 Kenichi Kawase Battery

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719161B1 (fr) 1994-04-22 1996-08-02 Accumulateurs Fixes Générateur électrochimique rechargeable au lithium à anode de carbone.
US5753389A (en) * 1995-03-17 1998-05-19 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
CN1161036A (zh) * 1995-06-09 1997-10-01 三井石油化学工业株式会社 氟取代的环状碳酸酯以及含有该氟取代环状碳酸酯的电解液和电池
JP4489207B2 (ja) 1998-05-20 2010-06-23 三井化学株式会社 二次電池用非水電解液及び非水電解液二次電池
US6420415B1 (en) * 1998-09-21 2002-07-16 Takeda Chemical Industries, Ltd. Thiol compounds, their production and use
DE10042149A1 (de) * 1999-09-17 2001-05-17 Merck Patent Gmbh Nichtwäßriger Elektrolyt sowie diesen enthaltende elektrochemische Zelle
WO2001022519A1 (fr) * 1999-09-20 2001-03-29 Sony Corporation Cellule secondaire
US6905762B1 (en) * 2001-02-13 2005-06-14 The United States Of America As Represented By The Secretary Of The Army Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same
EP1317013B1 (en) * 2001-07-10 2017-03-15 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
JP3797197B2 (ja) * 2001-11-01 2006-07-12 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
JP4412885B2 (ja) 2002-08-27 2010-02-10 三洋電機株式会社 リチウム二次電池
JP4030443B2 (ja) * 2003-02-27 2008-01-09 三洋電機株式会社 非水電解質二次電池
CN1194439C (zh) * 2003-03-08 2005-03-23 汕头市金光高科有限公司 二次锂离子电池电解液的制备方法
KR100515298B1 (ko) * 2003-03-24 2005-09-15 삼성에스디아이 주식회사 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2005015660A1 (ja) * 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池
JP2005078820A (ja) 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd 非水電解質二次電池
KR100657225B1 (ko) * 2003-09-05 2006-12-14 주식회사 엘지화학 전지의 안전성을 향상시키기 위한 전해액 용매 및 이를포함하는 리튬 이차 전지
JP4537736B2 (ja) * 2003-10-28 2010-09-08 日東電工株式会社 電池
EP2472636A3 (en) * 2003-12-15 2012-09-05 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
JP5390736B2 (ja) * 2004-12-07 2014-01-15 富山薬品工業株式会社 電気化学デバイス用非水電解液

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032184A1 (en) * 1997-01-16 1998-07-23 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
JPH11176470A (ja) * 1997-10-07 1999-07-02 Hitachi Maxell Ltd 有機電解液二次電池
JPH11195429A (ja) * 1998-01-05 1999-07-21 Hitachi Ltd 非水電解液二次電池
US6350546B1 (en) 1998-01-20 2002-02-26 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
EP1005098A2 (en) 1998-11-25 2000-05-31 Wilson Greatbatch Ltd. Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a passivation inhibitor additive
JP2000164251A (ja) * 1998-11-25 2000-06-16 Wilson Greatbatch Ltd 不動態化禁止添加剤を含む非水性電解液で活性化された改良されたカソ―ドを有するアルカリ金属電気化学電池
JP2001176548A (ja) * 1999-12-13 2001-06-29 Wilson Greatbatch Ltd 非水性電解液再充電電池の硫酸エステル添加剤
JP2002008719A (ja) 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
JP2003217656A (ja) 2002-01-17 2003-07-31 Yuasa Corp 非水電解質電池
US20040151987A1 (en) 2002-11-19 2004-08-05 Kenichi Kawase Battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1898485A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515351B2 (en) 2007-06-11 2016-12-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2158635A4 (en) * 2007-06-11 2012-08-08 Lg Chemical Ltd WATER-FREE ELECTROLYTE AND SECONDARY BATTERY THEREWITH
EP2645463A1 (en) * 2007-06-11 2013-10-02 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2158635A1 (en) * 2007-06-11 2010-03-03 LG Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US9673484B2 (en) 2007-06-11 2017-06-06 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
EP2190054A1 (en) * 2007-09-12 2010-05-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
EP2190054A4 (en) * 2007-09-12 2015-03-25 Mitsubishi Chem Corp WATER-FREE ELECTROLYTE SOLUTION FOR SECONDARY BATTERY AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
JP2010232118A (ja) * 2009-03-30 2010-10-14 Hitachi Vehicle Energy Ltd リチウム二次電池
US8409757B2 (en) 2009-03-30 2013-04-02 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
WO2014163055A1 (ja) * 2013-04-01 2014-10-09 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP5729525B2 (ja) * 2013-04-01 2015-06-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JPWO2014163055A1 (ja) * 2013-04-01 2017-02-16 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
US9934911B2 (en) 2013-04-01 2018-04-03 Ube Industries, Ltd. Nonaqueous electrolyte solution and electricity storage device using same

Also Published As

Publication number Publication date
CN101248552A (zh) 2008-08-20
US7803487B2 (en) 2010-09-28
CN101867063A (zh) 2010-10-20
US20120040252A1 (en) 2012-02-16
US20120045698A1 (en) 2012-02-23
EP2528153B1 (en) 2016-07-06
CN101248552B (zh) 2011-06-22
JP2012059715A (ja) 2012-03-22
EP1898485A4 (en) 2010-03-31
EP2278652A3 (en) 2011-04-27
JP5792610B2 (ja) 2015-10-14
EP2528153A1 (en) 2012-11-28
KR20080017473A (ko) 2008-02-26
US20100216036A1 (en) 2010-08-26
EP2278652B1 (en) 2013-02-13
CN101867063B (zh) 2012-07-04
KR100989309B1 (ko) 2010-10-22
EP1898485A1 (en) 2008-03-12
US20080102375A1 (en) 2008-05-01
EP2278652A2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2006137224A1 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
KR101137747B1 (ko) 비수계 전해액 및 비수계 전해액 이차 전지, 그리고 카보네이트 화합물
JP4604505B2 (ja) ジフルオロリン酸リチウムの製造方法、ならびに、非水系電解液及びこれを用いた非水系電解液二次電池
JP4797403B2 (ja) 非水系電解液二次電池及び非水系電解液二次電池用電解液
JP5338037B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2007019012A (ja) 非水系電解液及び非水系電解液二次電池
JP4952074B2 (ja) 非水系電解液および非水系電解液二次電池
JP5387333B2 (ja) 非水系電解液、それを用いた電池及びリン酸エステル化合物
JP5315594B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2012109240A (ja) 非水系電解液二次電池
JP5109288B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP4952075B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5654191B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5050416B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5070759B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP4872207B2 (ja) 非水系電解液二次電池及び非水系電解液二次電池用電解液
JP4407237B2 (ja) 非水系電解液及びそれを用いる非水系電解液二次電池
JP4581501B2 (ja) 二次電池用非水電解液及びそれを用いる非水電解液二次電池
CN103765664A (zh) 非水电解质及非水电解质二次电池
JP5900569B2 (ja) 非水系電解液二次電池
CN118263514A (zh) 电解液、电化学装置以及电子装置
JP2014003029A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030992.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746233

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11955692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE