WO2006135008A1 - 電気デバイス集合体およびフィルム外装電気デバイス構造体 - Google Patents

電気デバイス集合体およびフィルム外装電気デバイス構造体 Download PDF

Info

Publication number
WO2006135008A1
WO2006135008A1 PCT/JP2006/312037 JP2006312037W WO2006135008A1 WO 2006135008 A1 WO2006135008 A1 WO 2006135008A1 JP 2006312037 W JP2006312037 W JP 2006312037W WO 2006135008 A1 WO2006135008 A1 WO 2006135008A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pressure contact
electrical device
contact member
electrode tab
Prior art date
Application number
PCT/JP2006/312037
Other languages
English (en)
French (fr)
Inventor
Takeshi Kanai
Tadashi Shimamori
Original Assignee
Nec Lamilion Energy, Ltd.
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Lamilion Energy, Ltd., Fuji Jukogyo Kabushiki Kaisha filed Critical Nec Lamilion Energy, Ltd.
Priority to JP2007521340A priority Critical patent/JP4909895B2/ja
Priority to US11/917,744 priority patent/US9017847B2/en
Publication of WO2006135008A1 publication Critical patent/WO2006135008A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrical device assembly configured by assembling a plurality of film-clad electrical devices (for example, film-clad batteries).
  • film-clad electrical devices for example, film-clad batteries
  • FIG. 1 shows a configuration of a conventional general battery cell (film-clad battery).
  • the battery cell 120 has a battery element 122 disposed in a sealed space formed by the exterior film 124.
  • the battery element 122 has a configuration in which the positive electrode plates 111 and the negative electrode plates 115 are alternately stacked via the separators 112, and is housed together with the electrolyte in the sealed space.
  • Electrode tabs 125a and 125b are drawn out from the sealing portion 123 between the exterior films.
  • the positive electrode tab 125 a is connected to each positive electrode plate 111 through a current collector 113.
  • the electrode tab 125b for negative electrode is connected to each negative electrode plate 115 through a current collector 116.
  • the electrode tab may become high temperature (for example, about 60 to 90 ° C.) when the battery is used. There was a risk of leakage.
  • Japanese Patent Laid-Open No. 2004-103258 this problem is solved by configuring the assembled battery as shown in FIG.
  • a pressure contact member 160 having elasticity is disposed between the sealing portions 123 of the stacked battery cells 120, and the sealing portion 123 is pressed by the pressure contact member 160. Therefore, even if the electrode tab 125 becomes high temperature, liquid leakage from the sealing portion hardly occurs. Further, a cavity 161 is formed in the pressure contact member 160, and the sealing part 123 can be cooled by circulating a cooling medium in the cavity. Yes.
  • the electrode tab is made of a thin metal plate.
  • the pressure contact member 160 shown in FIG. 2 has elasticity in addition to the cooling function, it also has a vibration resistance function.
  • the battery senoles 120A and 120B may be arranged in a plane and placed on their own. In such a configuration, even if the cooling air is sent to one battery cell side (the lower side in the figure) as shown by the arrow in the figure, the two batteries It is difficult to cool the cell uniformly. This is because the cooling air is warmed by passing through one battery cell 120A, and this warm cooling air is supplied to the other battery cell 120B, resulting in a variation in cooling between the two battery cells.
  • the entire module is configured to absorb vibration and impact.
  • Such a configuration can adopt a relatively simple shock absorbing structure, but if a local force is applied to the module, the force cannot be absorbed locally and the entire module is exerted. It will be. For example, if a part of the module case is deformed due to a vehicle accident and the module case hits the module, the force may be applied to the entire module and the entire module may be damaged. Therefore, high rigidity is required for the module case, and as a result, the weight of the module case increases.
  • the battery case can protect the battery, so that the module case is not required to have high rigidity, and is also locally localized. It can cope with impact.
  • the battery in order to form an assembled battery, it is necessary to pull out the electrode tab of the film-clad battery outside the battery case and connect it to the electrode tab of the adjacent battery.
  • vibration or impact force is repeatedly applied to the electrode tab, bending force is applied to the base portion of the electrode tab, that is, the connection portion between the electrode tab and the battery element, and the electrode tab is damaged.
  • an impact absorbing member is provided in the opening where the electrode tab is pulled out from the battery case.
  • this shock absorbing member can only be used relatively thin and can only absorb vibrations and shocks. Therefore, it is conceivable that the electrode tab is damaged when a strong impact such as a vehicle collision is applied.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to uniformly cool each film-covered electrical device in an electrical device assembly in which the film-wrapped electrical devices are arranged in parallel.
  • An object of the present invention is to provide an electric device assembly that can be used and that is advantageous for downsizing the entire device.
  • the present invention is to provide an electric device assembly or the like provided with an impact absorbing mechanism.
  • an electrical device assembly includes an electrical device element for storing and outputting electrical energy accommodated in a film package, and an electrode from a sealing portion of the film package.
  • Two or more film-covered electric device forces with tabs drawn out are arranged in IJ, and an electric device assembly in which the vicinity of the electrode tab in each film-covered electric device is pressed by a pressing member,
  • the pressure contact member transfers the cooling air sent from one film-clad electrical device side to the other film-clad electrical device side, and the cooling air is sent to the film-clad electrical device at the other film-clad electrical device side. It has a cooling air passage that is supplied toward the center of the electrical device.
  • the cooling air supplied into the cooling air passage of the pressure contact member bypasses the film-covered electrical device on the front side in the flow direction of the cooling air and is deeper than that. Directly supplied to the side film-clad electrical device. Therefore, the film-side electrical device on the front side and the film-side electrical device on the back side can be cooled uniformly.
  • the cooling air passage is formed in the pressure contact member. That is, the pressure contact member functions as a member that presses the vicinity of the electrode tab, and also functions as a member that forms the cooling air passage. Therefore, it is necessary to add a special member to form the cooling air passage.
  • center side of a film-covered electrical device is not intended to be in the direction toward the central point when the device is viewed from the upper surface side, but is intended to indicate the direction of force from the device periphery to the inside of the device. is there.
  • the cooling air passage is a hollow portion formed in the longitudinal direction of the pressure contact member. And a plurality of air outlets provided in communication with the hollow portion, and each air outlet may open toward the central portion of the film-covered electrical device.
  • the pressure contact member may have a pressing surface for pressing the vicinity of the electrode tab. In this case, the pressing surface may only press the sealing portion. Further, the pressure contact member may press both the electrode tab and the sealing portion. Furthermore, the pressure contact member may press only the electrode tab.
  • the pressure contact member is the film-wrapped electrical device of one of the modules. It may be arranged between the device and the film exterior electrical device of the other module.
  • an air passage passing through the central portion of each film-covered electrical device is formed between the modules adjacent to each other. It is preferable that the inlet side of the ventilation path and the inlet side of the cooling air passage (cavity) of the pressure contact member are opened in the same direction. Further, if both sides of the ventilation path are sealed with the pressure contact member, the flow of the cooling air in the ventilation path is stabilized.
  • the pressure contact member may be an elastic member that applies a reaction force due to elastic deformation to the vicinity of the electrode tab via the pressure surface, and a passage through which a cooling refrigerant flows, separately from the cooling air passage. I have more and more.
  • the electrical device element for storing and outputting electrical energy is accommodated in the film packaging body, and the electrode tab is pulled out from the sealing portion of the film packaging body.
  • a plurality of film-clad electrical devices are laminated, and the electrode tabs in each film-clad electrical device are sandwiched by a plurality of pressure-contact members made of an elastic body, each pressure-contact member Extends beyond the sealing portion in the direction in which the electrode tab is pulled out.
  • each pressure contact member has a solid part having a solid structural force and a hollow part having a thin wall integrally formed with the solid part as an outer peripheral wall.
  • the electrode tab may extend from the sealing portion in a direction in which the electrode tab is pulled out, and the thin wall of the hollow portion may be in contact with a region housing the film-covered electrical device.
  • the solid wall can absorb a relatively large external force, while the thin wall can absorb a relatively weak external force.
  • the pressure contact member of the present invention can absorb from a weak force to a large force by one member having a solid portion and a hollow portion.
  • each press contact member the solid part of each press contact member has a first region for sandwiching the electrode tab and a second region in which the press contact members are in direct contact with each other. It may be laminated.
  • the pressure contact member is rubber
  • such a lamination method behaves as a so-called laminated rubber in the first region and behaves as a block rubber in the second region.
  • the first area it is difficult to deform in the stacking direction and can receive a large load. Therefore, when multiple electrical device elements are housed in the case, they can be fixed with a large load under tension.
  • the first region is easily deformed in the direction orthogonal to the stacking direction, that is, the direction in which the electrode tab is pulled out, and therefore, the force S that can be absorbed smoothly can be absorbed.
  • the friction coefficient between the pressure contact members may be larger than the friction coefficient between the pressure contact member and the electrode tab. That is, by making the first region more slippery than the second region, it is possible to cause shear deformation in the pressure contact member at the boundary between the first region and the second region. As a result, a force weaker than the force that can be absorbed by compression deformation can be absorbed flexibly.
  • the pressure contact members are not bonded to each other.
  • the amount of impact force transmitted to other parts can be reduced. As a result, damage to the entire device can be reduced.
  • the pressure contact members may have different weights. By doing so, it is possible to prevent resonance at a certain frequency.
  • the present invention is also applicable to a single film-clad electrical device. That is, the film-clad electrical device structure according to the present invention is a film in which an electrical device element that stores and outputs electrical energy is accommodated in a film packaging body, and an electrode tab is pulled out from a sealing portion of the film packaging body.
  • An exterior electrical device, and a pressure contact member that presses the vicinity of the electrode tab in the film exterior electrical device, and the pressure contact member includes a cooling air passage that transfers cooling air along the sealing portion; The cooling air is supplied toward the center of the film-covered electrical device at the downstream side in the flow direction of the cooling air.
  • any of the film-covered electrical devices arranged in parallel can be cooled uniformly. Further, the film-covered electrical device can be protected from vibration and impact force by the pressure contact member of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a conventional general battery cell.
  • FIG. 2 is a view showing an example of a conventional assembled battery in which a pressure contact member is disposed at a sealing portion of a film.
  • FIG. 3 is a top view for explaining cooling of two battery cells arranged in parallel.
  • FIG. 4 is an external perspective view of an assembled battery according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing a single battery cell used in the assembled battery according to the embodiment of the present invention.
  • FIG. 6 is an exploded perspective view showing a configuration of modules arranged in parallel.
  • FIG. 7A is a front view showing a configuration of a pressure contact member.
  • FIG. 7B is a cross-sectional view taken along the line AA showing the configuration of the pressure contact member.
  • FIG. 8 is a cross-sectional view showing a pressure contact member and its peripheral structure in a completed state of the assembled battery.
  • FIG. 9 is a cross-sectional view showing another configuration example of the pressure contact member.
  • FIG. 10A is a schematic diagram of an example of a battery cell holding structure using a pressure contact member.
  • FIG. 10B is a schematic view of another example of a battery cell holding structure using a pressure contact member.
  • FIG. 11A is a schematic diagram for explaining shear deformation of a pressure contact member when the pressure contact member of the present invention is viewed from the Z direction, and shows a state before a force S is applied in the X direction.
  • FIG. 11B is a schematic diagram for explaining shear deformation of the pressure contact member when the pressure contact member of the present invention is viewed in the Z direction force, and shows a state where the force force S is applied in the X direction.
  • FIG. 12 is a diagram for explaining absorption of external force due to deformation of a thin-walled portion.
  • FIG. 13 is a side sectional view of a module case housing a module of the present invention.
  • FIG. 4 is an external perspective view of the assembled battery of this embodiment.
  • FIG. 5 is a perspective view showing a battery cell unit used in the assembled battery of this embodiment.
  • the assembled battery 80 has a configuration in which parallel arrangement modules 50 holding two battery cells 20A and 20B (also referred to as “battery cell 20”) are stacked in six layers. It has become. Further, pressure contact members 60 are disposed on both sides (X direction in the drawing) of the parallel arrangement module 50.
  • the battery cell 20 is a lithium ion secondary battery, and a battery element 22 is accommodated together with an electrolytic solution in a sealed space formed by two exterior films 24 constituting a film package.
  • a battery element 22 is accommodated together with an electrolytic solution in a sealed space formed by two exterior films 24 constituting a film package.
  • Four sides of the outer peripheral portion of the outer film 24 are sealed portions 23 in which the films are heat sealed.
  • two side forces on the short side, and sheet-like electrode tabs 25a and 25b are drawn out.
  • Each exterior film 24 is formed with a concave portion (not shown with a reference numeral) having a shape corresponding to the battery element 22.
  • the recess is composed of a flat central portion 26a formed in a region covering the upper surface (or lower surface) of the battery element 22, and an inclined surface 26b formed around the central portion 26a. When cooling the battery cell 20, it is most effective to cool the central portion 26a.
  • each parallel arrangement module 50 two battery cells 20A and 20B are arranged in parallel on one cell holder 55.
  • the cell holder 55 It has a flat support portion 56 that supports the sealing portion 23 (long side) of the pond cell. Then, by attaching the pressing members 51A and 51B from above the battery cells, the battery cell sealing portion 23 is sandwiched between the clamping portion 56 and a part of the pressing member.
  • Each of the cell holder 55 and the pressing members 51A and 51B may be a resin molded product.
  • the present embodiment is a force in which two battery cells are arranged, and is not limited to this. Three or more battery cells may be arranged.
  • a notch is provided on the lower side of the side wall 57 of the cell holder 55, and this notch is an opening on the inlet side of the inter-cell ventilation path 65.
  • a similar notch is provided in the side wall 57 on the opposite side in the Y direction in the figure, so that the cooling air supplied from the front side in the Y direction in the figure passes through the inter-battery ventilation path 65 and is located in the back. It comes out to the side.
  • the cell holder 55 has a flat support portion 56 that supports the sealing portion 23 (long side) of each battery cell. By attaching the pressing members 51A and 51B from above each battery cell, the sealing portion 23 of the battery cell is clamped between the clamping portion 56 and a part of the pressing member.
  • the pressure contact member 60 is an elastic member such as urethane foam or rubber, for example, and presses the vicinity of the electrode tab 25 of each battery cell 20A, 20B by a reaction force generated by elastic deformation, and from the outside by the elasticity. Absorbs vibration and shock.
  • the pressure contact member 60 extends straight along the Y direction in the figure, and its length is set to be longer than two battery cells. Since the length of the pressure contact member 60 is longer than the width of the electrode tab 25, the region A sandwiching the electrode tab 25 and the region B where the pressure contact members 60 are in contact with each other are formed by stacking.
  • a cavity 61 is formed in the pressure contact member 60 over its entire length. That is, the pressure contact member 60 is a long cylindrical member, and its hollow portion opens at one end portion 60a, and the opposite end portion 60b (the end on the battery cell 20B side in FIG. 4). Part) is closed.
  • a plurality of outlets 62 are mutually connected. Are formed at predetermined intervals. As a result, the cooling air supplied into the cavity 61 is blown out from each outlet 62.
  • the region where the air outlet 62 is formed has a length corresponding to the length of the battery cell in the short direction. Also, in FIG. 7B, the force at which the air outlet 62 is depicted as a circular opening is not limited to this and may be a rectangle or an oval.
  • the cross-sectional shape of the pressure contact member 60 includes a solid portion 66 and a hollow portion 61 as shown in FIGS. 7B and 8.
  • the upper and lower surfaces of the solid portion 66 are flat pressing surfaces 63, and the hollow portion 61 is formed of a thin wall 61a that is easily deformed.
  • one pressure contact member 60 is disposed between adjacent modules 50, and the cavity 61 and the inter-battery ventilation path 65 are both open in the same direction. It has become.
  • Such a configuration is advantageous in that a duct (not shown) for supplying cooling air to each ventilation path 65 and each cavity 61 can be easily configured.
  • a duct for supplying cooling air to each ventilation path 65 and a duct for supplying cooling air to each cavity 61 may be provided separately.
  • the cooling wind power supplied to each of the air passages 65 between the batteries flows in the air passage 65 while being in contact with the battery cells 20A and 20B, whereby heat is exchanged between the cooling air and the battery cells.
  • Each battery cell (four in this embodiment) facing the ventilation path 65 is cooled.
  • the cooling air supplied into the cavity 61 is transferred to the battery cell 20B without contacting the central part 26a (see Fig. 5) of the battery cell 20A, and is sent from the outlet 62 to the center of the battery cell 20B. It blows out toward the part side. That is, the cooling air bypasses the front battery cell 20A and is directly supplied to the back battery cell 20B.
  • the force that the cooling air that has passed through the battery cell 20A is also supplied to the back battery cell 20B through the ventilation path 65.
  • This cooling air has already received heat from the battery cell 20A. There is no particular problem even if the temperature is high. This is because, according to the configuration of the present embodiment, the cooling air can be directly supplied to the back battery cell 20B through the cavity 61, so that the back battery cell can be well cooled. .
  • each of the contact surfaces 64 of the thin wall 61a is inclined to the inclined surface of each battery cell.
  • both sides (the X direction in the figure) of the inter-battery air passage 65 are sealed by the pressure contact member 60. Since the inter-battery air passage 65 is hermetically sealed, the circulation of the cooling air in the passage is stabilized, and a decrease in cooling efficiency due to leakage of the cooling air is prevented.
  • bypass cooling air passage as described above is composed of the hollow portion 61 and the air outlet 62 provided in the pressure contact member 60, the cooling air passage is formed. There is no need to add special parts (ducts, etc.) to do this. Therefore, this configuration is advantageous for downsizing the entire battery pack.
  • each pressing surface 63 may be configured to press only the electrode tab 25. Also, each pressing surface 63 is configured to press both the electrode tab 25 and the sealing portion.
  • a passage 67 may be formed in the vicinity of each pressure surface 63 separately from the cavity 61, and a cooling medium (including a cooling liquid) may be circulated therethrough.
  • a cooling medium including a cooling liquid
  • the cooling to each battery cell is performed. It is preferable to make the air supply amount uniform.
  • the present invention is applicable to only one battery cell.
  • the pressure contact member 60 as described above for one relatively large battery cell in which the cooling varies between the upstream side and the downstream side in the flow direction of the cooling air, the upstream side Variation in cooling between the side and the downstream side can be suppressed. [Shock absorbing effect of pressure contact member]
  • the cell case of this embodiment is not configured to sandwich all four sealing portions around the battery element of the battery cell 20, and only the long side portion where the electrode tab 25 does not extend is the cell holder 55. And the holding member 51. That is, the cell case of the present embodiment is not configured to cover the battery cell 20 as a whole and extend the electrode tab 25 from the opening formed in the case. As shown in FIG. 8, the electrode tab 25 is sandwiched between the pressure surfaces 63 of the pressure contact member 60.
  • the electrode tab 25 When the electrode tab 25 is sandwiched between the press contact members 60 as in the configuration of FIG. 8, for example, even if the battery cell body vibrates and a stress is repeatedly applied to the electrode tab, the press contact Due to the vibration damping effect of the member 60, the electrode tab 25 is not easily broken.
  • the pressure contact member 60 clamps only the sealing portion 23 (see Fig. 4)
  • the base portion of the electrode tab 25 (the drawing portion from the sealing portion) ) May concentrate stress. This may cause breakage of the electrode tab at the base portion, or may reduce the reliability of the sealing portion. Therefore, in order to cope with such a problem, it is preferable to adopt a configuration in which the electrode tab is pressed by the pressure contact member as shown in FIG.
  • the laminated pressure contact member 60 is formed with the region A sandwiching the electrode tab 25 and the region B where the pressure contact members 60 are in contact with each other. That is, a region B in which the pressure contact members 60 are in contact with each other is formed on both sides of the region A sandwiching the electrode tab 25. Note that the regions A and B are merely in contact and are not firmly fixed by adhesion or the like, and slippage occurs when an external force exceeds a certain level.
  • the characteristics of the region A, the region B, the regions A and B, the boundaries between the regions A and B, and the thin wall 61a will be described with reference to FIGS. 4 and 10 to 12, respectively.
  • the pressing force in the Z direction on the region A of the pressing member 60 may be made weaker than the pressing force on the region B.
  • the area A part is partitioned by the electrode tab 25.
  • the deformation is regulated by In other words, it has a laminated rubber structure in which elastic members with thickness h are laminated (Fig. 4).
  • the area A can be held and held by the entire module because it is difficult to deform even if a force in the Z direction is applied, but it can be deformed if a shear force in the X and Y directions is applied. It can absorb vibrations in the X and Y directions flexibly.
  • the five stacked pressure contact members 60 function as one elastic member (block rubber) having a thickness of 5 h with respect to the force in the Z direction.
  • the region B absorbs more vibration in the Z direction than the region A because it compresses more than the region A.
  • the region B In the X and Y directions, it can be deformed easily and can absorb vibrations flexibly in the X and Y directions.
  • the region A has a characteristic as a laminated rubber
  • the region B has a characteristic of a block rubber. For this reason, the freedom degree of design can be expanded.
  • FIGS. 10A and 10B show a comparison of battery cell holding structures using pressure contact members.
  • FIGS. 10A and 10B each show a state in which one battery cell is supported, and is a view as seen in the direction of arrow a in FIG. 8, that is, in the direction in which the electrode tab extends from the battery element.
  • FIG. 1 OA shows a holding structure in which two pressure contact members 60 of this embodiment are stacked.
  • FIG. 10B shows an example of a holding structure in which the battery cell is housed in the cell case 90, the electrode tab 25 is taken out from the opening 91, and the pressure contact member 60 ′ is provided in the opening 91. All holding structures have a height of 2h. Further, the opening height of the opening 91 in FIG. 10B is assumed to be h.
  • each press contact member 60 can be set to h because the thickness is not restricted by these members.
  • the pressure contact member 60 ′ is subjected to the size restriction of the opening 91 and the cell case 90, and the thickness per sheet cannot be h, and the thickness is less than h, for example, 0.5h I can't give power.
  • the holding structure of the present embodiment can improve the sealing characteristics by increasing the thickness of the pressure contact member 60.
  • the electrode tab 25 is merely sandwiched between the two pressure contact members 60, and is not configured to be applied with a sealant. Therefore, leakage of cooling air from between these becomes a problem.
  • the thickness of the pressure contact member 60 can be increased, the gap between the pressure contact member 60 and the electrode tab 25 is eliminated by applying a large pressure in the vertical direction (Z direction). Can do.
  • the pressure contact member 60 is not housed in the case, the deformation is not restricted by the case, and the degree of freedom of deformation is high.
  • the pressing member 60 can follow the displacement of the electrode tab 25 in the Z direction well, even if the electrode tab 25 is deformed, a gap is not easily formed. As shown in FIG. 8, since the thin wall 61a is pressed against the battery cell, the leakage of the cooling air is prevented at this portion. It can be said that it is preferable to take this measure.
  • the electrode tab 25 is sandwiched by the pressure contact member 60 in such a state that the electrode tab 25 slips on the pressure surface 63 which is not applied or adhered to the pressure contact member 60. For this reason, when the electrode tab 25 is sandwiched in the Z direction, the electrode tab 25 slides on the pressing surface 63, so that the electrode tab 25 can be sealed without applying excessive force.
  • FIG. 11A and FIG. 1IB show schematic views of the pressure contact member 60 of the present embodiment as viewed in the Z direction.
  • FIG. 11A shows the pressing member 60 in a state before a force S is applied in the X direction
  • FIG. 11B shows a deformed state of the pressing member 60 in a state where a force is applied in the X direction.
  • 11A and 1B show only the solid portion 66 of the pressure contact member 60, and the cavity portion 60 is omitted.
  • the former is the friction coefficient in the region A where the pressure contact member 60 is in contact with the electrode tab 25 and the friction coefficient in the region B where the pressure contact members 60 are in direct contact with each other. Is small.
  • the pressure contact member 60 is slippery on the surface of the electrode tab 25 which is a metal plate, and in the region B, it is slippery. That is
  • the region A which is not simply formed by laminating the pressure contact members 60, is laminated in a state where the region A is slippery and the region B is not slippery.
  • the region A may sandwich the sealing portion in addition to the electrode tab 25. This is because even if the region A is configured to sandwich the sealing portion, the region A is slippery compared to the region B, and it is not changed.
  • the relationship between the rubber panel constant and the stroke differs depending on whether the pressure is applied in the compressing direction or the shearing deformation direction.
  • the relationship between the panel constant k due to compression and the panel constant k due to pruning is generally given by the shape factor.
  • the amount of expansion / contraction of the rubber member when a shearing force is applied to the rubber member is larger than the amount of expansion / contraction when applying a compressive force.
  • rubber with low hardness but rubber with low hardness cannot absorb a large external force. Therefore, in order to absorb only a compressive force from a relatively small force such as micro vibrations to a large force such as impact force, it is necessary to prepare a rubber having a corresponding hardness.
  • the thin part 61a has a function of absorbing a relatively weak external force in addition to forming the cavity part 61. That is, when the solid portion of the region A of the pressure contact member 60 is displaced toward the battery cell 20 side (X direction), the thin wall portion 6 la is bent into the hollow portion 61 as shown in FIG. A relatively small force is prevented from being transmitted to the battery cell 20.
  • the pressure contact members 60 having different hardnesses may be used in combination.
  • the hardness of the pressure contact member 60 located in the lower layer may be higher than the hardness of the pressure contact member 60 located in the upper layer. Accordingly, it is possible to prevent the pressure contact member 60 located in the lower layer from being crushed more than necessary due to the lamination.
  • the hardness of the pressure contact member 60 positioned on both ends in the stacking direction may be different from that of the pressure contact member 60 positioned on the inside.
  • FIG. 13 shows a side sectional view of a module case in which the module of this embodiment is housed.
  • a module 50 having a length (L-2L) is accommodated in a module case having an outer dimension L.
  • a pressure contact member 60 having a length L is attached to both sides of the module 50. Press contact part
  • the length L of the material 60 is the elastic member deformation region, and L is the region where the elastic member is deformed and the module.
  • the length L of the pressure contact member 60 is
  • the battery element 22 constituting the lithium ion secondary battery specifically includes a positive electrode active material such as lithium 'manganese composite oxide or lithium cobalt oxide.
  • a positive electrode plate coated on both surfaces such as aluminum foil and a negative electrode plate coated on both surfaces such as a copper foil with a lithium-doped and detachable carbon material are alternately laminated via separators. Moyore.
  • the battery element 22 may constitute other types of chemical batteries such as a nickel metal hydride battery, a nickel cadmium battery, a lithium metal primary battery or a secondary battery, and a lithium polymer battery. Good.
  • the battery element 22 is not limited to the laminated type as in the present embodiment, and a belt-like positive electrode side active electrode and a negative electrode side active electrode are stacked with a separator interposed between them, and then compressed into a flat shape. Winding type with a structure in which positive electrode side active electrodes and negative electrode side active electrodes are alternately stacked It may be.
  • the electric device element constituting the film-clad electric device may be a capacitor such as an electric double layer capacitor or a capacitor element exemplified by an electrolytic capacitor.
  • the exterior film 24 is, for example, a laminate film
  • the laminate film may be any one that can satisfactorily hermetically seal the battery element.
  • a resin layer that has heat melting properties and an inner side surface, a non-venting layer made of a metal thin film, and a protective layer (for example, nylon) that is an outer side surface are laminated in this order.
  • a protective layer for example, nylon
  • the film package is not limited to the one constituted by the two exterior films 24, and may be a package in which, for example, one exterior film is folded and its three sides are heat-sealed.
  • the drawing position of each electrode tab 25 is not particularly limited, and two electrode tabs for the positive electrode and the negative electrode may be drawn from one side of the sealing portion of the film package.

Abstract

 組電池(80)は、並列に並べられた2つの電池セル(20A、20B)を有し、これらは1つの並列配置モジュール(50)内に収容されている。並列配置モジュール同士の間には電池間通風路(65)が形成されており、ここを冷却風が通るようになっている。圧接部材(60)は、中実部(66)と薄肉部(61a)で形成された空洞部(61)を有し、積層されている。空洞部(61)は冷却風通路を形成しており、該冷却風通路に供給された冷却風は、奥側の電池セル(20B)まで送られると共に、電池セル(20B)の中央部側に向かって供給される。中実部(66)の領域Aは電極タブ(25)を挟持し、領域Bは圧接部材(60)同士が当接している。

Description

明 細 書
電気デバイス集合体およびフィルム外装電気デバイス構造体
技術分野
[0001] 本発明は、フィルム外装電気デバイス (例えばフィルム外装電池)を複数集合させ て構成した電気デバイス集合体に関する。
背景技術
[0002] 近年、電気自動車などの駆動用電源として、例えばフィルムで外装されたリチウムィ オン二次電池を複数集合させて構成した組電池が用いられている。また、そのような 組電池において、電池の充放電性能を最大限に発揮させるためには(あるいは電池 の寿命を短縮させないためには)、各フィルム外装電池を冷却する必要があることが 知られている。
[0003] 図 1は、従来一般的な電池セル(フィルム外装電池)の構成を示してレ、る。電池セル 120は、外装フィルム 124によって形成された密閉空間内に配置された電池要素 12 2を有している。電池要素 122は、正極板 111及び負極板 115がセパレータ 112を 介して交互に積層された構成となつており、密閉空間内に電解液と共に収容されて いる。外装フィルム同士の封止部 123からは電極タブ 125a、 125bが引き出されてい る。正極用の電極タブ 125aは、集電体 113を介して各正極板 111に接続されている 。負極用の電極タブ 125bは、集電体 116を介して各負極板 115に接続されている。
[0004] このような構成の電池セル 120は、電池の使用時に電極タブが高温(例えば 60〜9 0°C程度)となることがあり、そのため、フィルム同士の封止部 123から電解液が漏れ るおそれがあった。特開 2004— 103258号公報では、組電池を図 2のような構成と することによりこの問題の解決を図っている。
[0005] 組電池 150では、積層された各電池セル 120の封止部 123同士の間に弾性を有 する圧接部材 160が配置され、封止部 123は圧接部材 160により押圧されている。し たがって、仮に電極タブ 125が高温になったとしても封止部からの液漏れが生じにく レ、ものとなっている。また、圧接部材 160には空洞部 161が形成されており、この空 洞部内に冷却媒体を流通させることにより、封止部 123を冷却することも可能となって いる。
[0006] このように、組電池を機能させるための熱対策は非常に重要な課題である。
[0007] 一方、組電池が電気自動車に搭載された場合、熱対策の他、防振対策も非常に重 要である。特に、電極タブは薄い金属板からなり、周期的な振動力かかると疲労破壊 しゃすい。
[0008] 図 2に示す圧接部材 160は、冷却機能のほか、弾性を有していることから、耐振動 機能も確保している。
[0009] この他、耐振動対策としては、フィルム外装電池を複数接続してなるモジュールを モジュールケースに収納し、モジュールケースに防振ゴムを取り付けて用いる場合が ある。
発明の開示
[0010] 組電池を構成する際、図 3に示すように電池セノレ 120A、 120Bを平面的に並べて 酉己置することもある。このような構成では、冷却風を、例えば図示矢印にて示すように 一方の電池セル側(図示下側)力 他方の電池セル側(図示上側)に向けて送ったと しても、 2つの電池セルを均一に冷却することは困難である。一方の電池セル 120A を通過することで冷却風が暖められ、他方の電池セル 120Bにはこの暖まった冷却 風が供給されることとなり、 2つの電池セルの間で冷却のバラツキが生じるためである
[0011] 上記特開 2004— 103258号公報では、外装フィルム同士の封止部 123を冷却す ることにつレ、ては開示されてレ、るものの、電池セルの中央部を冷却することにつレ、て は開示されていない。他方、図 3の構成において、例えば、冷却風を供給するダクト( 不図示)の形状を適宜調整し、冷却風が電池セルの双方に均一に供給されるように することも可能であろうが、こうしたダクトを設けることで組電池が大型化されてしまう。
[0012] 一方、振動対策に関しては、組電池を車両に搭載することを考えた場合、常時かか る振動の他、車両の衝突といった強い衝撃力に対しても考慮しておく必要がある。
[0013] 強レ、衝撃の吸収を主目的とする衝撃吸収機構を、ゴム等の弾性部材で構成する場 合、高硬度のものを使用する必要がある。し力しながら、高硬度の弾性部材は比較的 弱い振動等は吸収しにくいため、比較的弱い力を吸収する機構が別途必要となる。 [0014] また、モジュールケースに衝撃吸収機構を備え、モジュールケースによって振動、 衝撃を吸収する構造では、モジュールケース内でモジュールがしつ力りと固定されて レ、ることが必要である。しつ力り固定されてレヽなレ、とモジュールがモジュールケースに 衝突しモジュールが損傷してしまう場合があるためである。し力 ながら、この場合、 固定用部品が必要となるだけでなくこれによる重量増カロ、また、固定に要する手間の 発生といった問題が生じる。
[0015] また、モジュールケースに衝撃吸収機構を備える構成の場合、モジュール全体で 振動、衝撃を吸収する構成となっている。このような構成は、比較的簡単な衝撃吸収 構造を採用することができるものの、モジュールに局部的な力がかかった場合、局部 的にその力を吸収できず、モジュール全体に力が及んでしまうこととなる。例えば、車 両事故によりモジュールケースの一部が変形し、モジュールケースがモジュールに突 き当たった場合、その力がモジュール全体に及びモジュール全体が破損してしまうこ とが考えられる。よって、モジュールケースに高い剛性が要求され、結果としてモジュ ールケースの重量が増加してしまう。
[0016] フィルム外装電池を個別に電池ケース内に収納した構成の場合、電池ケースが電 池を保護することができるため、モジュールケースに高い剛性が要求されることもなく 、また、局部的な衝撃に対しても対応しうる。もっとも、電池ケースに収納した場合で あっても、組電池を構成するためにはフィルム外装電池の電極タブを電池ケース外 に引き出し、隣接する電池の電極タブと接続する必要がある。電極タブに繰り返し振 動や衝撃力が印加された場合、電極タブの付け根部分、すなわち、電極タブと電池 要素との接続部分には曲げ応力力かかり電極タブが破損してしまう。電極タブの破損 を防止するため、電池ケースから電極タブを引き出す開口部分に衝撃吸収部材が設 けられる。し力 ながら、この衝撃吸収部材は、電池ケースと電池の寸法の都合上、 比較的薄レ、ものしか用いることができず、振動、衝撃を十分に吸収することができな レ、。よって、車両の衝突などによる強い衝撃が印加された場合、電極タブがダメージ を受けてしまうことが考えられる。
[0017] 以上、フィルム外装電池を例に挙げて説明した力 S、上記のような問題は電池に限ら ず、例えばフィルム包装体内に電気デバイス要素としてキャパシタ等が配置されたデ バイスにおいても同様に生じうるものである。
[0018] 本発明は、以上のような問題点に鑑みてなされたものであり、その目的は、フィルム 外装電気デバイスが並列配置された電気デバイス集合体において、各フィルム外装 電気デバイスを均一に冷却することができ、かつデバイス全体の小型化にも有利な 電気デバイス集合体等を提供することにある。
[0019] また、本発明は、衝撃吸収機構をも備えた電気デバイス集合体等を提供することに ある。
[0020] 上記目的を達成するため本発明の電気デバイス集合体は、電気的エネルギーを貯 留及び出力する電気デバイス要素がフィルム包装体内に収容されると共に前記フィ ルム包装体の封止部から電極タブが引き出されたフィルム外装電気デバイス力 並 歹 IJに 2つ以上並べられると共に、前記各フィルム外装電気デバイスにおける前記電 極タブの近傍が圧接部材によって押圧されている電気デバイス集合体であって、前 記圧接部材は、一の前記フィルム外装電気デバイス側から送り込まれた冷却風を他 の前記フィルム外装電気デバイス側まで移送すると共に、該他のフィルム外装電気 デバイスのところで、前記冷却風をフィルム外装電気デバイスの中央部側に向けて供 給する冷却風通路を有してレ、る。
[0021] このように構成された電気デバイス集合体では、圧接部材の冷却風通路内に供給 された冷却風は、冷却風の流れ方向手前側のフィルム外装電気デバイスを迂回して 、それより奥側のフィルム外装電気デバイスに直接供給される。したがって、手前側 のフィルム外装電気デバイスと奥側のフィルム外装電気デバイスとを均一に冷却する ことができるようになる。また、本発明においては、この冷却風通路が圧接部材に形 成されている。つまり、圧接部材は、電極タブ近傍を押圧する部材として機能すると 共に、上記冷却風通路を形成する部材としても機能するようになっている。したがつ て、冷却風通路を形成するための特別な部材を追加する必要もなレ、。なお、フィルム 外装電気デバイスの「中央部側」とは、デバイスを上面側から見てその中央の一点に 向かう方向を意図するものではなぐデバイス周縁部からデバイス内側に向力 方向 を意図するものである。
[0022] 上記冷却風通路は、具体的には、前記圧接部材の長手方向に形成された空洞部 と、該空洞部に連通して設けられた複数の吹出口とからななり、前記各吹出口が前 記フィルム外装電気デバイスの前記中央部側に向かって開口しているものであって もよレ、。また、圧接部材は、前記電極タブ近傍を押圧するための加圧面を有するもの であってもよぐこの場合、該加圧面が前記封止部のみを押圧するものであってもよ レ、。また、圧接部材は、前記電極タブと前記封止部との双方を押圧するものであって もよレ、。さらには、圧接部材は、前記電極タブのみを押圧するものであってもよい。
[0023] 上記本発明はまた、並列配置された 2つ以上の前記フィルム外装電気デバイスを 一組とするモジュールが 2段以上積層され、前記圧接部材が、一方の前記モジユー ルの前記フィルム外装電気デバイスと、他方の前記モジュールの前記フィルム外装 電気デバイスとの間に配置されているものであってもよレ、。また、このように積層した 場合には、互いに隣接する前記モジュール同士の間に、前記各フィルム外装電気デ バイスの前記中央部を通過する通風路が形成されていることが好ましぐまた、該通 風路の入口側と、前記圧接部材の冷却風通路(空洞部)の入口側はレ、ずれも同じ方 向に向かって開口していることが好ましい。また、上記通風路の両側が前記圧接部 材によって密閉される構成とすれば、通風路内での冷却風の流通が安定化する。
[0024] 上記圧接部材は、弾性変形による反力を前記加圧面を介して前記電極タブ近傍に 付与する弾性部材であればよぐまた、前記冷却風通路とは別に、冷却冷媒が流通 する通路を更に有してレ、てもよレ、。
[0025] また、本発明の電気デバイス集合体は、電気的エネルギーを貯留及び出力する電 気デバイス要素がフィルム包装体内に収容されると共に前記フィルム包装体の封止 部から電極タブが引き出された複数のフィルム外装電気デバイスが積層されるととも に、前記各フィルム外装電気デバイスにおける前記電極タブが弾性体からなる複数 の圧接部材によって挟持されている電気デバイス集合体であって、前記各圧接部材 は、前記電極タブの引き出し方向に向けて前記封止部よりも延出している。
[0026] 電極タブを挟持して保持するための圧接部材を電極タブよりも延出させておくこと で、電極タブの引き出し方向にかかる外力が電気デバイスの本体部分に力、かる前に この外力が圧接部材で受けることができる。また、圧接部材が弾性体であることより衝 撃吸収部材として機能させることができる。 [0027] また、各圧接部材は、中実構造力 なる中実部と、前記中実部と一体的に形成され た薄肉壁を外周壁とする空洞部とを有し、前記中実部が前記電極タブの引き出し方 向に向けて前記封止部よりも延出し、前記空洞部の前記薄肉壁が前記フィルム外装 電気デバイスを収容している領域に当接しているものであってもよい。中実部が比較 的大きな外力を吸収することができるのに対して薄肉壁は比較的弱い外力を吸収す ること力 Sできる。つまり、本発明の圧接部材は中実部と空洞部ひとつの部材によって、 弱い力から大きな力まで吸収することができる。
[0028] また、各圧接部材は、前記各圧接部材の前記中実部が、前記電極タブを挟持する 第 1の領域と、前記圧接部材同士が直接接触する第 2の領域とを有するように積層さ れているものであってもよい。
[0029] 圧接部材がゴムである場合、このような積層方法によって、第 1の領域ではいわゆる 積層ゴムとして挙動し、第 2の領域ではブロックゴムとして挙動する。第 1の領域では 積層方向には変形しにくく大きな荷重を受けることができるので、複数の電気デバィ ス要素をケース内に収納して用いる場合、大きな荷重かけてしつ力り固定することが できる。一方、第一の領域は積層方向に対して直交する方向、すなわち、電極タブが 引き出されている方向には変形しやすいので、この方向に力かる力をしなやかに吸 収すること力 Sできる。
[0030] また、第 2の領域では圧接部材の積層方向および電極タブの引き出し方向のいず れに対しても変形しやすくなるため、いずれの方向の力もしなやかに吸収することが できる。
[0031] また、前記圧接部材同士の摩擦係数が、前記圧接部材と前記電極タブとの摩擦係 数よりも大きいものであってもよい。すなわち、第 1の領域を第 2の領域よりも滑りやす い状態にすることで第 1の領域と第 2の領域との境界部分で圧接部材にせん断変形 を生じさせることができる。これにより圧縮変形で吸収することができる力よりも弱い力 をしなやかに吸収させることができる。
[0032] また、前記各圧接部材は互いに接着されていないようにするのが好ましい。互いに 接着等によって固定させることがなく摺動可能の状態にしておくことで、例えば、局部 的な衝撃力 Sかかった場合、他の部分に衝撃力の伝達量を小さくすることができるので 、デバイス全体としての損傷を小さくすることができる。
[0033] 前記各圧接部材の重量が異なるものであってもよい。このようにすることで、ある所 定の振動数に共振してしまうのを防止することができる。
[0034] 本発明は、単一のフィルム外装電気デバイスに対しても適用可能である。すなわち 、本発明によるフィルム外装電気デバイス構造体は、電気的エネルギーを貯留及び 出力する電気デバイス要素がフィルム包装体内に収容されると共に前記フィルム包 装体の封止部から電極タブが引き出されたフィルム外装電気デバイスと、該フィルム 外装電気デバイスにおける前記電極タブの近傍を押圧する圧接部材とを有し、前記 圧接部材は、前記封止部に沿って冷却風を移送する冷却風通路を有し、前記冷却 風の流れ方向下流側のところで、前記冷却風が前記フィルム外装電気デバイスの中 央部側に向けて供給されるようになっている。
[0035] 本発明の圧接部材を用いることで並列配置されたフィルム外装電気デバイスのい ずれも均一に冷却することができる。また、本発明の圧接部材によって、振動、衝撃 力からフィルム外装電気デバイスを保護することができる。
図面の簡単な説明
[0036] [図 1]従来一般的な電池セルの構成を示す断面図である。
[図 2]フィルムの封止部に圧接部材が配置された従来の組電池の一例を示す図であ る。
[図 3]並列配置された 2つの電池セルに対する冷却について説明するための上面図 である。
[図 4]本発明の実施の形態に係る組電池の外観斜視図である。
[図 5]本発明の実施の形態に係る組電池に用いられる電池セル単体を示す斜視図で ある。
[図 6]並列配置されたモジュールの構成を示す分解斜視図である。
[図 7A]圧接部材の構成を示す正面図である。
[図 7B]圧接部材の構成を示す A— A切断線における断面図である。
[図 8]組電池の完成状態における圧接部材及びその周辺構造を示す断面図である。
[図 9]圧接部材の他の構成例を示す断面図である。 [図 10A]圧接部材を用いた電池セルの保持構造の一例の模式図である。
[図 10B]圧接部材を用いた電池セルの保持構造の他の例の模式図である。
[図 11A]本発明の圧接部材を Z方向から見た、圧接部材のせん断変形を説明するた めの模式図であり、 X方向に力力 Sかかる前の状態を示している。
[図 11B]本発明の圧接部材を Z方向力 見た、圧接部材のせん断変形を説明するた めの模式図であり、 X方向に力力 Sかかった状態を示している。
[図 12]薄肉部の変形による外力の吸収を説明するための図である。
[図 13]本発明のモジュールを収納したモジュールケースの側断面図である。
発明を実施するための最良の形態
[0037] 以下、本発明の電気デバイス集合体の実施の形態について、フィルム外装電池が 集合した組電池を例に挙げ、図面を参照しながら説明する。図 4は、本実施形態の 組電池の外観斜視図である。図 5は、本実施形態の組電池に用いられる電池セル単 体を示す斜視図である。
[0038] 図 4に示すように、組電池 80は、 2つの電池セル 20A、 20B (「電池セル 20」ともレ、う )を保持した並列配置モジュール 50が 6段重ねに積層された構成となっている。また 、並列配置モジュール 50の両側(図示 X方向)には圧接部材 60が配置されている。
[0039] 電池セノレ 20としては、図 5に示すような従来一般的なフィルム外装電池を用いるこ とが可能である。電池セル 20はリチウムイオン二次電池であり、フィルム包装体を構 成する 2枚の外装フィルム 24によって形成された密閉空間内に、電池要素 22が電解 液と共に収容されている。外装フィルム 24の外周部の 4辺は、フィルム同士を熱シー ルした封止部 23となっている。 4つの封止部 23のうち短辺側の 2辺力、らシート状の電 極タブ 25a、 25bが引き出されている。
[0040] 各外装フィルム 24には、電池要素 22に対応した形状の凹部(符号を付して示さず) が形成されている。凹部は、電池要素 22の上面(又は下面)を覆う領域に形成された 平坦な中央部 26aと、その周囲に形成された傾斜面 26bとで構成されている。なお、 電池セル 20を冷却する場合、この中央部 26aを冷却することが最も効果的である。
[0041] 図 6に示すように、各並列配置モジュール 50では、 1つのセル保持体 55上に 2つの 電池セル 20A、 20Bが並列に配置されるようになっている。セル保持体 55は、各電 池セルの封止部 23 (長辺側)を支持する平坦な支持部 56を有している。そして、押さ ぇ部材 51A、 51Bを各電池セルの上方から取り付けることによって、電池セルの封止 部 23が、挟持部 56と押さえ部材の一部との間で挟持されるようになっている。
[0042] セル保持体 55及び押さえ部材 51A、 51Bはいずれも樹脂成形品であってもよい。
また、本実施形態は 2つの電池セルが並べられたものである力 これに限らず 3っ以 上の電池セルが並べられてレ、てもよレ、。
[0043] セル保持体 55の側壁 57の下部側には切欠きが設けられており、この切欠き部が電 池間通風路 65の入口側の開口部となっている。図示しないが、図示 Y方向反対側の 側壁 57にも同様の切欠き部が設けられており、これにより、図示 Y方向手前側から供 給された冷却風が電池間通風路 65を通って奥側に抜けるようになつている。
[0044] セル保持体 55は、各電池セルの封止部 23 (長辺側)を支持する平坦な支持部 56 を有する。押さえ部材 51A、 51Bを各電池セルの上方から取り付けることによって、 電池セルの封止部 23が、挟持部 56と押さえ部材の一部との間で挟持される。
[0045] 次に、圧接部材 60の構成及びその作用(冷却作用、衝撃吸収作用)について説明 する。
[圧接部材の構成]
圧接部材 60は、例えばウレタンフォームやゴム等の弾性部材であり、弾性変形によ つて生じた反力により、各電池セル 20A、 20Bの電極タブ 25近傍を押圧するとともに 、その弾性により外部からの振動や衝撃を吸収する。例えば図 4に示すように、圧接 部材 60は図示 Y方向に沿ってまっすぐに延びており、その長さは、電池セル 2つ分よ りも長く設定されている。圧接部材 60の長さは電極タブ 25の幅よりも長いため、積層 することで電極タブ 25を挟み込んでいる領域 Aと圧接部材 60同士が接触している領 域 Bが形成される。
[0046] 図 7A、図 7Bに示すように、圧接部材 60の内部には、そのほぼ全長にわたって長 尺な空洞部 61が形成されている。つまり、圧接部材 60は長尺筒状の部材であり、そ の空洞部は、一方の端部 60aにおいて開口し、反対側の端部 60b (図 4で電池セル 2 0B側となる方の端部)では閉じられている。
[0047] 圧接部材 60のうち、端部 60b側のほぼ半分の領域には、複数の吹出口 62が互い に所定の間隔をおいて形成されている。これにより、空洞部 61内に供給された冷却 風は各吹出口 62から吹き出されるようになっている。なお、本実施形態では、吹出口 62が形成される領域は、電池セルの短手方向の長さに対応した長さとなっている。ま た、図 7Bでは吹出口 62が円形の開口部として描かれている力 これに限定されるも のではなぐ矩形又は長円形等であってもよい。
[0048] 圧接部材 60の断面形状は、図 7B及び図 8に示す通り、中実部 66と空洞部 61とを 有する。中実部 66の上面及び下面が平坦な加圧面 63となっており、空洞部 61は変 形しやすい薄肉壁 61aで形成されている。
[圧接部材の冷却作用]
圧接部材 60は、図 4に示した通り、互いに隣接するモジュール 50同士の間に 1つ ずつ配置され、また、空洞部 61と電池間通風路 65は、いずれも同じ方向に向かって 開口するようになっている。このような構成は、各通風路 65及び各空洞部 61に冷却 風を供給するダクト(不図示)を構成し易い点で有利である。もっとも、各通風路 65に 冷却風を供給するためのダクトと、各空洞部 61に冷却風を供給するダクトとを別個に 設けることも可能である。
[0049] 各電池間通風路 65内に供給された冷却風力 電池セル 20A、 20Bに接触しなが ら通風路 65内を流れることによって、冷却風と電池セルとの間で熱交換がされ、通風 路 65に面する各電池セル (本実施形態では 4つ)が冷却される。
[0050] 空洞部 61内に供給された冷却風は、電池セル 20Aの中央部 26a (図 5参照)には 接することなく電池セル 20B側まで移送され、吹出口 62から、電池セル 20Bの中央 部側に向かって吹き出される。つまり、冷却風は、手前側の電池セル 20Aを迂回して 奥側の電池セル 20Bに直接供給されるようになってレ、る。
[0051] 奥側の電池セル 20Bに対しては、通風路 65を通じて、電池セル 20Aを通過してき た冷却風も供給されるわけである力 この冷却風が電池セル 20Aからの熱を受けて 既に高温となっていたとしても特に問題はない。本実施形態の構成によれば、奥側 の電池セル 20Bに対し、空洞部 61を通じて冷却風を直接供給することができるため 、奥側の電池セルの冷却も良好に行うことができるためである。
[0052] 図 8に示すように、薄肉壁 61aの当接面 64のそれぞれは、各電池セルの傾斜面に 密着するようになっており、これにより、電池間通風路 65の両側(図示 X方向)が圧接 部材 60によって密閉される。電池間通風路 65が密閉されていることで、通路内にお ける冷却風の流通が安定し、冷却風が漏洩することによる冷却効率の低下なども防 止される。
[0053] また、本実施形態では、上記のような迂回用の冷却風通路が、圧接部材 60に設け られた空洞部 61と吹出口 62とで構成されていることから、冷却風通路を形成するた めの特別な部材 (ダクト等)を追加する必要もなレ、。したがって本構成は組電池全体 の小型化にも有利である。
[0054] 図 4に示すように、圧接部材 60の加圧面 63が各電池セル 20A、 20Bの封止部 23 を押圧する構成となっている場合、特開 2004— 103258号公報の構成(図 2参照)と 同様の効果が得られる。すなわち、圧接部材 60からの押圧力が、封止部 23に対して その厚さ方向に付与されているため、仮に電極タブ 25が高温になったとしても封止 部 23からの液漏れは生じにくいものとなる。
[0055] もっとも本発明は、圧接部材 60が封止部 23のみを押圧する形態に限定されるもの ではない。例えば図 8に示すように、各加圧面 63が電極タブ 25のみを押圧するよう に構成されていてもよい。また、各加圧面 63が電極タブ 25と封止部との双方を押圧 するように構成されてレ、てもよレ、。
[0056] なお、本発明は上記に述べた形態に限定されるものではなレ、。例えば、図 9に示す ように、空洞部 61とは別に、各加圧面 63の近傍に通路 67を形成し、その中を冷却冷 媒 (冷却用液体も含む)が流通するようにしてもよい。また、 1つの並列配置モジユー ル上に電池セルが 3つ以上配置される場合、例えば、圧接部材に形成する吹出口 6 2の大きさ又は数を適宜調整することで、各電池セルへの冷却風供給量を均一にす ることが好ましい。
[0057] また、上記実施形態では 2つの電池セルが並列に配置された構成について説明し た力 本発明は 1つの電池セルのみに対しても適用可能である。つまり、冷却風の流 れ方向上流側と下流側とで冷却にバラツキが生じてしまうような比較的大型な 1つの 電池セルに対して、上記のような圧接部材 60を利用することで、上流側と下流側と間 の冷却のバラツキを抑えることができるようになる。 [圧接部材の衝撃吸収作用]
本実施形態のセルケースは、電池セル 20の電池要素周辺の 4つの封止部を全て 挟持する構成とはなっておらず、電極タブ 25が延出していない長辺部分のみをセル 保持体 55と押さえ部材 51によって挟持するようになっている。すなわち、本実施形 態のセルケースは電池セル 20を全体的に覆い込み、ケースに形成された開口部か ら電極タブ 25を延出させる構成とはしていなレ、。電極タブ 25は図 8に示すように圧接 部材 60の加圧面 63にて挟持されている。
[0058] 図 8の構成のように、電極タブ 25が圧接部材 60によって挟持されている場合、例え ば、電池セル本体が振動し、電極タブに対して繰り返し応力が加えられたとしても、 圧接部材 60による振動減衰効果により、電極タブ 25の折損等が生じにくいものとな る。
[0059] 圧接部材 60が封止部 23のみを挟持する構成(図 4参照)では、例えば電極タブが 変形しにくい部材である場合に、電極タブ 25の根元部分 (封止部からの引出し部)に 応力が集中する可能性もある。これは、当該根元部分での電極タブの折損の原因と なったり、あるいは封止部の信頼性を低下させる原因となったりもする。したがって、こ のような問題に対処するには、図 8に示すような、圧接部材で電極タブを押さえる構 成とすることが好ましい。
[0060] 上述したように、積層された圧接部材 60には電極タブ 25を挟み込んでいる領域 A と圧接部材 60同士が接触している領域 Bが形成されている。つまり、電極タブ 25を 挟み込んでいる領域 Aの両側に圧接部材 60同士が接触している領域 Bが形成され ている。なお、領域 Aおよび領域 Bは単に接触しているだけで接着等によって強固に 固定されてはおらず、一定以上の外力に対しては滑りが生じるようになってレ、る。
[0061] 以下、領域 A、領域 B、領域 Aおよび B、領域 A、 Bの境界、薄肉壁 61aの特性につ いて、図 4、図 10〜図 12を用いてそれぞれ説明する。なお、本願発明の効果をより 顕著にするため、圧接部材 60の領域 Aへの Z方向への加圧力を領域 Bへの加圧力 よりも弱くするものであってもよい。
[領域 A]
積層された圧接部材 60のうち領域 Aの部分は、電極タブ 25で仕切られていること で変形が規制されている。つまり、厚さ hの弾性部材が積層された積層ゴムの構造と なっている(図 4)。
[0062] よって、領域 Aの部分は Z方向の力が力かっても変形しにくいことよりモジュール全 体をしつ力、り保持することができる一方、 X、 Y方向のせん断力力かかると変形しやす レ、ことより X、 Y方向の振動をしなやかに吸収することができる。
[領域 B]
積層された圧接部材 60のうち領域 Bの部分は、本実施形態では 5つの圧接部材 6 0が積層されてレ、ることから厚さ H = h X 5の厚みを有することとなる(図 4)。領域 Bは 、圧接部材間に電極タブが介在しないことより、積層された 5つの圧接部材 60は Z方 向の力に対しては厚さ 5hの 1つの弾性部材(ブロックゴム)として機能する。
[0063] よって、領域 Aと領域 Bとに Z方向に同じ大きさの力力 Sかかった場合、領域 Bは領域 Aよりも大きく圧縮されることより Z方向の振動を領域 Aよりも多く吸収することができる とともに、 X、 Y方向については領域 Aと同様に変形しやすく振動をしなやかに吸収 すること力 Sできる。
[0064] 図 2に示すような、積層された個々の電池間に弾性を有する圧接部材を挟み込む 構成の場合、積層ゴムの特性のみを有するものである。これに対して、本願発明は領 域 Aが積層ゴムとしての特性を有し、領域 Bがブロックゴムの特性を有することとなる。 このため、設計の自由度を拡げることができる。
[領域 Aおよび領域 B]
図 10A、図 10Bに圧接部材を用いた電池セルの保持構造の比較を示す。なお、図 10Aおよび図 10Bはそれぞれ 1つの電池セルを支持した状態を示しており、図 8の 矢視 a方向、すなわち、電池要素から電極タブが延出した方向に見た図である。図 1 OAは本実施形態の圧接部材 60を 2つ積み重ねた保持構造を示している。図 10Bは セルケース 90内に電池セルを収納し、開口部 91から電極タブ 25を取り出し、開口部 91に圧接部材 60'を設けた保持構造の一例を示したものである。なお、いずれの保 持構造も高さを 2hとしている。また、図 10Bの開口部 91の開口高さは hであるものと する。
[0065] 図 10Aに示す本実施形態の場合、図 6に示す押さえ部材 51とセル保持体 55を用 いていることより、これらの部材によって厚みを規制されることがないので圧接部材 60 の一枚当たりの厚さを hとすることができる。一方、図 10Bの場合、圧接部材 60'は開 口部 91、セルケース 90の寸法規制を受け、一枚当たりの厚さを hとすることはできず 、 h以下の例えば 0. 5hの厚みし力もたせることができない。
[0066] このように本実施形態の保持構造は圧接部材 60の厚みを厚くすることができること でシール特性を向上させることができる。電極タブ 25は 2つの圧接部材 60に挟み込 まれただけであり、シール剤を塗布した構成とはなっていない。よって、これらの間か ら冷却風の漏洩が問題となる。しかし、本実施形態の場合、圧接部材 60の厚みを厚 くすることができることから、上下方向(Z方向)に大きな加圧力をかけることで圧接部 材 60と電極タブ 25との隙間をなくすことができる。また、圧接部材 60はケースに収納 されていないのでケースによって変形が規制されず、変形の自由度が高い。よって圧 接部材 60は電極タブ 25の Z方向の変位に対して良好に追従することができるので、 電極タブ 25が変形しても隙間が形成されにくい。なお、図 8に示すように、薄肉壁 61 aを電池セルに押し付けてレ、るので冷却風の漏洩はこの部分で防止されてレ、るが、 経年劣化を考慮すると、このような二重の対策を施すことは好ましいといえる。
[0067] また、電極タブ 25は圧接部材 60に対してシール剤の塗布や接着がなされているも のではなぐ加圧面 63上で滑りを生じるような状態で圧接部材 60によって挟持されて いる。このため、電極タブ 25が Z方向に橈んだ場合、電極タブ 25は加圧面 63上で滑 るので電極タブ 25に無理な力をかけずにシールすることができる。
[領域 Aと領域 Bとの境界]
図 11A、図 1 IBに本実施形態の圧接部材 60を Z方向に見た模式図を示す。図 11 Aは X方向に力力 Sかかる前の状態の圧接部材 60を示しており、図 11Bは X方向に力 力かかった状態の圧接部材 60の変形状態を示している。なお、図 11A、図 1 IBは圧 接部材 60の中実部 66のみを図示したものであり、空洞部 60は省略している。
[0068] 本実施形態の積層構造の場合、圧接部材 60が電極タブ 25に接触している領域 A における摩擦係数と圧接部材 60同士が直接接触している領域 Bにおける摩擦係数 とでは前者の方が小さい。領域 Aにおいては圧接部材 60は金属板である電極タブ 2 5の表面上を滑りやすい状態にあり、領域 Bにおいては滑りにくい状態にある。つまり 、本実施形態は、単に圧接部材 60を積層させたものではなぐ領域 Aは滑りやすぐ 領域 Bは滑りにくい状態で積層させている。なお、領域 Aは電極タブ 25の他、封止部 も挟持するものであってもよい。領域 Aが封止部を挟持する構成であったとしても、領 域 Bに比べると滑りやすレ、ことに変わりはなレ、からである。
[0069] ところでゴムのパネ定数とストロークの関係は、圧力を圧縮する方向に印加する場 合と剪断変形させる方向に印加する場合とでは異なる。圧縮によるパネ定数 kと、剪 断によるパネ定数 kとの関係は形状係数をひとすると、一般に
k =k / 5
の関係があり、ゴム部材に、剪断力を印加した場合のゴム部材の伸縮量は、圧縮力と して印加した場合の伸縮量に比べて大きくなる。つまり、弱い外力を圧縮のみによつ て吸収しょうとすると硬度の低いゴムを用いるのが好ましいが、硬度の低いゴムは大き な外力を吸収しきれなレ、。よって、圧縮力のみで微小振動といった比較的小さな力か ら衝撃力といった大きな力まで吸収するにはそれぞれに対応した硬度のゴムを用意 しなければならない。しかしながら、本実施形態の場合、圧接部材 60が圧縮変形だ けでなぐ領域 Aと領域 Bとの境界でせん断変形もするので、 X方向への微小振動と レ、つた比較的小さな力が電池セル 20本体に伝達するために硬度の低いゴムを別途 用意する必要がない。
[薄肉壁]
薄肉部 61aは、空洞部 61を形成する他、比較的弱い外力を吸収する機能を有する 。すなわち、圧接部材 60の領域 Aの中実部分が電池セル 20側 (X方向)に変位する ことで図 12に示すように薄肉部 6 laが空洞部 61内に折れ込むように橈むことで比較 的小さい力が電池セル 20に伝達されるのを防止する。
[0070] 次に、圧接部材 60を積層することでさらに得られる他の効果について説明する。
[0071] 電極タブ 25の厚さに対して十分に厚肉である圧接部材 60を積層することで上下方 向からのより大きな衝撃を吸収することができる。また、圧接部材 60を積層することで 上下方向の入力に対して大きく橈ませることができ、これにより、衝撃を吸収すること ができる。
[0072] また、本実施形態は重量や寸法が異なる圧接部材 60を組合わせて用いることがで きる。これにより、車両に積載した場合、電池モジュールが車両の振動と共振するの を防止すること力 Sできる。
[0073] また、硬度が異なる圧接部材 60を組合わせて用いるものであってもよい。例えば、 モジュール 50を載置した場合、下層に位置する圧接部材 60の硬度を上層に位置す る圧接部材 60の硬度よりも高いものにしてもよい。これにより、下層に位置する圧接 部材 60が、積層されることにより必要以上につぶれてしまうのを防止することができる 。あるいは積層した圧接部材 60のうち、積層方向の両端側に位置する圧接部材 60と 内側に位置する圧接部材 60との硬度を異なるものとしてもよい。
[モジユーノレケース]
図 13に本実施形態のモジュールを収納したモジュールケースの側断面図を示す。
[0074] 外寸 Lのモジュールケース内に長さ(L— 2L )のモジュール 50が収納されている。
0
モジュール 50の両側には長さ L の圧接部材 60が取り付けられている。なお、圧接部
C
材 60の長さ L は弾性部材変形領域であり、 Lは弾性部材が変形する領域とモジュ
C 0
ールケースが変形する領域とを含んだ変形領域である。圧接部材 60の長さ L は弾
C
性部材変形領域である。
[0075] モジュールケースの外寸 Lの 15%まで変形したとしても、セル本体の損傷を免れる ため、モジュールケースの外寸 Lとの関係を L =L X 10%とし、 L X 20%≥L =L X c o
12%とするのが好ましい。
[0076] なお、以上の説明では詳細に述べなかったが、リチウムイオン二次電池を構成する 電池要素 22は、具体的には、リチウム 'マンガン複合酸化物、コバルト酸リチウム等の 正極活物質をアルミニウム箔などの両面に塗布した正極板と、リチウムをドープ '脱ド ープ可能な炭素材料を銅箔などの両面に塗布した負極板とを、セパレータを介して 交互に積層したものであってもよレ、。電池要素 22はリチウムイオン二次電池の他にも 、ニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池あるいは二次 電池、リチウムポリマー電池等、他の種類の化学電池を構成するものであってもよい 。また、電池要素 22は本実施形態のような積層型のものに限らず、帯状の正極側活 電極と負極側活電極とをセパレータを介して重ねこれを捲回した後、扁平状に圧縮 することによって正極側活電極と負極側活電極とが交互に積層された構造の捲回型 であってもよい。フィルム外装電気デバイスを構成する電気デバイス要素としては、更 に、電気二重層キャパシタなどのキャパシタあるいは電解コンデンサなどに例示され るキャパシタ要素等であってもよい。
また、外装フィルム 24は例えばラミネートフィルムであり、このラミネートフィルムとし ては電池要素を良好に気密封止できるものであればょレ、。具体的な一例を挙げれば 、熱溶融性を有し内側面となる樹脂層と、金属薄膜などからなる非通気層と、外側面 となる保護層(例えばナイロン等)とが、この順番に積層されたラミネートフィルムであ つてもよレ、。また、フィルム包装体は、 2枚の外装フィルム 24によって構成されるもの に限らず、例えば 1枚の外装フィルムを折り返して、その 3辺が熱シールされた包装 体であってもよい。各電極タブ 25の引き出し位置も特に限定されるものではなぐフィ ルム包装体の封止部のうちの一辺から、正極用及び負極用の 2つの電極タブが引き 出されていてもよい。

Claims

請求の範囲
[1] 電気的エネルギーを貯留及び出力する電気デバイス要素がフィルム包装体内に収 容されると共に前記フィルム包装体の封止部から電極タブが引き出されたフィルム外 装電気デバイスが、並列に 2つ以上並べられると共に、前記各フィルム外装電気デバ イスにおける前記電極タブの近傍が圧接部材によって押圧されている電気デバイス 集合体であって、
前記圧接部材は、一の前記フィルム外装電気デバイス側から送り込まれた冷却風 を他の前記フィルム外装電気デバイス側まで移送させると共に、該他のフィルム外装 電気デバイスのところで、前記冷却風をフィルム外装電気デバイスの中央部側に向 けて供給する冷却風通路を有する電気デバイス集合体。
[2] 前記冷却風通路は、前記圧接部材の長手方向に形成された空洞部と、該空洞部 に連通して設けられた複数の吹出口とかならなり、前記各吹出口は、前記フィルム外 装電気デバイスの前記中央部側に向けて開口している、請求項 1に記載の電気デバ イス集合体。
[3] 前記圧接部材は、前記電極タブ近傍を押圧する加圧面を有し、該加圧面は前記封 止部のみに接してレ、る、請求項 1に記載の電気デバイス集合体。
[4] 前記圧接部材は、前記電極タブ近傍を押圧する加圧面を有し、該加圧面は、前記 電極タブのみに接している、請求項 1に記載の電気デバイス集合体。
[5] 前記圧接部材は、前記電極タブ近傍を押圧する加圧面を有し、該加圧面は、前記 電極タブと前記封止部との双方に接してレ、る、請求項 1に記載の電気デバイス集合 体。
[6] 並列配置された 2つ以上の前記フィルム外装電気デバイスを一組とするモジュール 力 ¾段以上積層され、
前記圧接部材は、一方の前記モジュールの前記フィルム外装電気デバイスと、他 方の前記モジュールの前記フィルム外装電気デバイスとの間に配置されている、請 求項 1に記載の電気デバイス集合体。
[7] 互いに隣接する前記モジュール同士の間には、前記各フィルム外装電気デバイス の前記中央部を通過する通風路が形成されており、該通風路の入口側と、前記圧接 部材の冷却風通路の入口側は、いずれも同じ方向に向かって開口している、請求項
6に記載の電気デバイス集合体。
[8] 前記通風路の両側が前記圧接部材によって密閉されている、請求項 7に記載の電 気デバイス集合体。
[9] 前記圧接部材は、弾性変形による反力を、前記加圧面を介して前記電極タブ近傍 に付与する弾性部材である、請求項 1に記載の電気デバイス集合体。
[10] 前記圧接部材は、前記冷却風通路とは別に、冷却冷媒が流通する通路を更に有し ている、請求項 1に記載の電気デバイス集合体。
[11] 電気的エネルギーを貯留及び出力する電気デバイス要素がフィルム包装体内に収 容されると共に前記フィルム包装体の封止部から電極タブが引き出された複数のフィ ルム外装電気デバイスが積層されるとともに、前記各フィルム外装電気デバイスにお ける前記電極タブが弾性体からなる複数の圧接部材によって挟持されている電気デ バイス集合体であって、
前記各圧接部材は、前記電極タブの引き出し方向に向けて前記封止部よりも延出 してレ、る電気デバイス集合体。
[12] 前記各圧接部材は、中実構造力 なる中実部と、前記中実部と一体的に形成され た薄肉壁を外周壁とする空洞部とを有し、前記中実部が前記電極タブの引き出し方 向に向けて前記封止部よりも延出し、前記空洞部の前記薄肉壁が前記フィルム外装 電気デバイスに当接してレ、る、請求項 11に記載の電気デバイス集合体。
[13] 前記各圧接部材の前記中実部が、前記電極タブを挟持する第 1の領域と、前記圧 接部材同士が直接接触する第 2の領域とを有するように積層されている、請求項 11 に記載の電気デバイス集合体。
[14] 前記圧接部材同士の摩擦係数が、前記圧接部材と前記電極タブとの摩擦係数より も大きい、請求項 11に記載の電気デバイス集合体。
[15] 前記各圧接部材は互いに接着されてレ、ない、請求項 11に記載の電気デバイス集 合体。
[16] 前記各圧接部材の重量が異なる、請求項 11に記載の電気デバイス集合体。
[17] 電気的エネルギーを貯留及び出力する電気デバイス要素がフィルム包装体内に収 容されると共に前記フィルム包装体の封止部から電極タブが引き出されたフィルム外 装電気デバイスと、該フィルム外装電気デバイスにおける前記電極タブの近傍を押 圧する圧接部材とを有し、
前記圧接部材は、前記封止部に沿って冷却風を移送する冷却風通路を有し、前記 冷却風の流れ方向下流側のところで、前記冷却風が前記フィルム外装電気デバイス の中央部側に向けて供給されるようになっているフィルム外装電気デバイス構造体。
PCT/JP2006/312037 2005-06-17 2006-06-15 電気デバイス集合体およびフィルム外装電気デバイス構造体 WO2006135008A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007521340A JP4909895B2 (ja) 2005-06-17 2006-06-15 電気デバイス集合体およびフィルム外装電気デバイス構造体
US11/917,744 US9017847B2 (en) 2005-06-17 2006-06-15 Electric device assembly and film-covered electric device structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005177812 2005-06-17
JP2005-177812 2005-06-17
JP2005-265174 2005-09-13
JP2005265174 2005-09-13

Publications (1)

Publication Number Publication Date
WO2006135008A1 true WO2006135008A1 (ja) 2006-12-21

Family

ID=37532362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312037 WO2006135008A1 (ja) 2005-06-17 2006-06-15 電気デバイス集合体およびフィルム外装電気デバイス構造体

Country Status (3)

Country Link
US (1) US9017847B2 (ja)
JP (2) JP4909895B2 (ja)
WO (1) WO2006135008A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098555A1 (de) * 2007-02-17 2008-08-21 Temic Automotive Electric Motors Gmbh Befestigung von energiespeicherzellen in einem gehäuse
JP2008204763A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 蓄電装置
JP2008235825A (ja) * 2007-03-23 2008-10-02 Nissan Diesel Motor Co Ltd 蓄電装置
JP2008235170A (ja) * 2007-03-23 2008-10-02 Nec Tokin Corp リチウムイオン二次電池パック
JP2009043724A (ja) * 2007-07-26 2009-02-26 Lg Chem Ltd 電池をその中に保持するための電池キャリアを有する電池キャリア組立体
JP2009277561A (ja) * 2008-05-16 2009-11-26 Nec Tokin Corp 電池パック
GB2465481A (en) * 2008-11-21 2010-05-26 Bosch Gmbh Robert Retaining device having at least one battery cell
JP2010225552A (ja) * 2009-03-25 2010-10-07 Sanyo Electric Co Ltd 組電池
US20110008665A1 (en) * 2007-11-09 2011-01-13 Lg Chem, Ltd. Battery cell having improved thermal stability and middle or large-sized battery module employed with the same
US20110023290A1 (en) * 2007-06-01 2011-02-03 Yoshitaka Shinyashiki Method for manufacturing battery module
WO2011092305A1 (de) 2010-01-28 2011-08-04 Magna E-Car Systems Gmbh & Co Og Akkumulator mit vorrichtung zur temperierung der akkumulatorzellen
US20110206970A1 (en) * 2009-09-18 2011-08-25 Toshiki Itoi Battery module, method for fabricating the same, and temperature adjusting system
US20110293973A1 (en) * 2010-05-26 2011-12-01 Myeongcheol Kim Battery pack
EP2401779A1 (de) * 2009-02-27 2012-01-04 Li-tec Battery GmbH Galvanische zelle mit rahmen und verfahren zu ihrer herstellung
EP2418714A1 (de) * 2010-08-09 2012-02-15 ads-tec GmbH Temperierkreislauf für einen Akkupack
KR101259757B1 (ko) 2009-12-04 2013-05-07 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
JP2013122917A (ja) * 2011-12-09 2013-06-20 Samsung Sdi Co Ltd 2次電池
JP2013537999A (ja) * 2010-09-02 2013-10-07 アカソル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 冷却モジュールおよび冷却モジュールの製造方法
JP2013541133A (ja) * 2010-08-16 2013-11-07 エルジー・ケム・リミテッド 優れた熱放射特性を有する小型構造のバッテリーモジュール、及びそのバッテリーモジュールを使用する中型又は大型のバッテリーパック
JP2018520463A (ja) * 2015-06-16 2018-07-26 エルジー・ケム・リミテッド 電池モジュール

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052254A1 (de) * 2009-11-06 2011-05-12 Behr Gmbh & Co. Kg Energiespeichervorrichtung
JP4898975B2 (ja) * 2010-01-13 2012-03-21 パナソニック株式会社 リチウムイオン二次電池およびその製造方法
JP5830926B2 (ja) * 2010-05-31 2015-12-09 日産自動車株式会社 薄型電池
DE102010026133A1 (de) * 2010-07-05 2012-01-05 Ads-Tec Gmbh Kühlvorrichtung in einem Akkublock
DE102010033791A1 (de) * 2010-08-09 2012-02-09 Ads-Tec Gmbh Akkupack mit Temperierelementen
JP5553163B2 (ja) 2010-09-09 2014-07-16 ソニー株式会社 バッテリユニット
JP5699536B2 (ja) * 2010-10-26 2015-04-15 ソニー株式会社 電池ユニット
DE102011084000A1 (de) * 2010-11-30 2012-05-31 Behr Gmbh & Co. Kg Vorrichtung zum Führen eines Kühlfluids und Kühlsystem zum Kühlen einer elektrischen Komponente
DE102011011238A1 (de) * 2011-02-15 2012-08-16 Li-Tec Battery Gmbh Gehäuse zur Aufnahme einer flachen elektrochemischen Zelle
IT1404312B1 (it) 2011-02-24 2013-11-22 Ferrari Spa Sistema di accumulo di energia elettrica a ridotto spessore per un veicolo con propulsione elettrica.
US9793584B2 (en) * 2011-06-10 2017-10-17 Samsung Sdi Co., Ltd. Battery module
AT511666B1 (de) 2011-06-30 2015-05-15 Avl List Gmbh Wiederaufladbare elektrische batterie
AT511669B1 (de) * 2011-06-30 2015-06-15 Avl List Gmbh Wiederaufladbare elektrische batterie
JP5917899B2 (ja) * 2011-11-29 2016-05-18 日産自動車株式会社 薄型電池及び薄型電池の製造方法
CN103219558B (zh) * 2012-01-18 2016-12-14 格朗吉斯铝业(上海)有限公司 动力电池温度调节装置及其制造方法
DE102012112294A1 (de) * 2012-12-14 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrischer Energiespeicher
AT514061B1 (de) * 2013-04-03 2014-10-15 Avl List Gmbh Wiederaufladbare Batterie
KR101709562B1 (ko) * 2013-07-31 2017-03-08 주식회사 엘지화학 전지모듈 어셈블리
KR101805757B1 (ko) * 2013-08-23 2017-12-07 주식회사 엘지화학 전면에 bms의 통신단자가 돌출되어 있는 전지모듈 어셈블리
GB201406692D0 (en) * 2014-04-14 2014-05-28 Williams Grand Prix Eng Heat transfer system
WO2016004079A1 (en) 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
KR101865995B1 (ko) * 2015-03-27 2018-06-08 주식회사 엘지화학 배터리 모듈
WO2016208361A1 (ja) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 蓄電装置
DE102016014866A1 (de) 2016-12-14 2017-07-20 Daimler Ag Zellblock
CN110366790B (zh) * 2017-03-07 2023-05-09 远景Aesc日本有限公司 电池组以及电池组的制造方法
CN107240504A (zh) * 2017-07-21 2017-10-10 中车青岛四方车辆研究所有限公司 硬壳化软包电容模组及系统
JP6472857B1 (ja) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 組電池
CN108336286A (zh) * 2018-03-26 2018-07-27 珠海格力电器股份有限公司 一种大软包锂离子电池及其制备方法
CN113178652B (zh) * 2021-04-13 2022-11-11 江苏华梓车业有限公司 电动汽车电池用保护装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103258A (ja) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd 組電池
JP2004288527A (ja) * 2003-03-24 2004-10-14 Panasonic Ev Energy Co Ltd 電池パック
JP2004306726A (ja) * 2003-04-04 2004-11-04 Toyota Motor Corp バッテリパック冷却構造
JP2005268004A (ja) * 2004-03-18 2005-09-29 Fuji Heavy Ind Ltd 蓄電体装置
JP2005294023A (ja) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd 組電池
JP2006185894A (ja) * 2004-11-30 2006-07-13 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292381A (en) * 1980-01-30 1981-09-29 Energy Research Corporation Battery construction for uniform electrode current density
JPH1116546A (ja) 1997-06-24 1999-01-22 Yuasa Corp 偏平形電池
JPH11329518A (ja) * 1998-05-21 1999-11-30 Toshiba Battery Co Ltd 電池装置
JP4242665B2 (ja) * 2002-05-13 2009-03-25 パナソニック株式会社 組電池の冷却装置及び二次電池
JP4214450B2 (ja) * 2002-06-03 2009-01-28 日本電気株式会社 モジュール
JP3624903B2 (ja) * 2002-07-04 2005-03-02 日産自動車株式会社 モジュール電池
JP4239780B2 (ja) 2003-10-10 2009-03-18 日産自動車株式会社 組電池とその製造方法
JP4543653B2 (ja) 2003-10-10 2010-09-15 日産自動車株式会社 組電池
JP4706170B2 (ja) 2003-10-14 2011-06-22 株式会社Gsユアサ 組電池
JP4485187B2 (ja) * 2003-12-24 2010-06-16 本田技研工業株式会社 バッテリケース
CN100490215C (zh) * 2004-03-31 2009-05-20 日本电气株式会社 膜覆盖电子装置、框架部件和用于膜覆盖电子装置的壳体系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103258A (ja) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd 組電池
JP2004288527A (ja) * 2003-03-24 2004-10-14 Panasonic Ev Energy Co Ltd 電池パック
JP2004306726A (ja) * 2003-04-04 2004-11-04 Toyota Motor Corp バッテリパック冷却構造
JP2005268004A (ja) * 2004-03-18 2005-09-29 Fuji Heavy Ind Ltd 蓄電体装置
JP2005294023A (ja) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd 組電池
JP2006185894A (ja) * 2004-11-30 2006-07-13 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098555A1 (de) * 2007-02-17 2008-08-21 Temic Automotive Electric Motors Gmbh Befestigung von energiespeicherzellen in einem gehäuse
DE112008000341B4 (de) 2007-02-17 2023-05-17 Vitesco Technologies Germany Gmbh Befestigung von Energiespeicherzellen in einem Gehäuse
JP2008204763A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 蓄電装置
US8298699B2 (en) 2007-02-20 2012-10-30 Toyota Jidosha Kabushiki Kaihsa Power storage device
JP2008235825A (ja) * 2007-03-23 2008-10-02 Nissan Diesel Motor Co Ltd 蓄電装置
JP2008235170A (ja) * 2007-03-23 2008-10-02 Nec Tokin Corp リチウムイオン二次電池パック
JP2012212693A (ja) * 2007-03-23 2012-11-01 Nec Energy Devices Ltd リチウムイオン二次電池パック
US20110023290A1 (en) * 2007-06-01 2011-02-03 Yoshitaka Shinyashiki Method for manufacturing battery module
US8309247B2 (en) * 2007-06-01 2012-11-13 Sanyo Electric Co., Ltd. Method for compressing individual cells in battery module
JP2009043724A (ja) * 2007-07-26 2009-02-26 Lg Chem Ltd 電池をその中に保持するための電池キャリアを有する電池キャリア組立体
US20110008665A1 (en) * 2007-11-09 2011-01-13 Lg Chem, Ltd. Battery cell having improved thermal stability and middle or large-sized battery module employed with the same
US9343713B2 (en) * 2007-11-09 2016-05-17 Lg Chem, Ltd. Battery cell having improved thermal stability and middle or large-sized battery module employed with the same
JP2009277561A (ja) * 2008-05-16 2009-11-26 Nec Tokin Corp 電池パック
GB2465481A (en) * 2008-11-21 2010-05-26 Bosch Gmbh Robert Retaining device having at least one battery cell
JP2012519349A (ja) * 2009-02-27 2012-08-23 リ−テック・バッテリー・ゲーエムベーハー フレームを備えるガルバニ電池およびその製造方法
EP2401779A1 (de) * 2009-02-27 2012-01-04 Li-tec Battery GmbH Galvanische zelle mit rahmen und verfahren zu ihrer herstellung
JP2010225552A (ja) * 2009-03-25 2010-10-07 Sanyo Electric Co Ltd 組電池
US20110206970A1 (en) * 2009-09-18 2011-08-25 Toshiki Itoi Battery module, method for fabricating the same, and temperature adjusting system
KR101259757B1 (ko) 2009-12-04 2013-05-07 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
WO2011092305A1 (de) 2010-01-28 2011-08-04 Magna E-Car Systems Gmbh & Co Og Akkumulator mit vorrichtung zur temperierung der akkumulatorzellen
US9263713B2 (en) * 2010-05-26 2016-02-16 Samsung Sdi Co., Ltd. Battery pack
US20110293973A1 (en) * 2010-05-26 2011-12-01 Myeongcheol Kim Battery pack
EP2418714A1 (de) * 2010-08-09 2012-02-15 ads-tec GmbH Temperierkreislauf für einen Akkupack
JP2013541133A (ja) * 2010-08-16 2013-11-07 エルジー・ケム・リミテッド 優れた熱放射特性を有する小型構造のバッテリーモジュール、及びそのバッテリーモジュールを使用する中型又は大型のバッテリーパック
US9520624B2 (en) 2010-08-16 2016-12-13 Lg Chem, Ltd. Battery module with compact structure and excellent heat radiation characteristics and middle or large-sized battery pack employed with the same
JP2013537999A (ja) * 2010-09-02 2013-10-07 アカソル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 冷却モジュールおよび冷却モジュールの製造方法
JP2013122917A (ja) * 2011-12-09 2013-06-20 Samsung Sdi Co Ltd 2次電池
JP2018520463A (ja) * 2015-06-16 2018-07-26 エルジー・ケム・リミテッド 電池モジュール

Also Published As

Publication number Publication date
JP4909895B2 (ja) 2012-04-04
US9017847B2 (en) 2015-04-28
JP2012094526A (ja) 2012-05-17
JPWO2006135008A1 (ja) 2009-01-08
US20090208828A1 (en) 2009-08-20
JP5363556B2 (ja) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5363556B2 (ja) 電気デバイス集合体
US7816029B2 (en) Battery module
JP6049745B2 (ja) 中大型電池パックアセンブリ
KR101150247B1 (ko) 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
US9680178B2 (en) Restraining of battery cells by way of a cambered design of the battery housing
CN109411667A (zh) 一种软包电池模组
JP4547886B2 (ja) 組電池
JP5485578B2 (ja) 密閉式角形電池を用いた電池モジュール
US20090253026A1 (en) Electrical Battery Comprising Flexible Generating Elements and a System for the Mechanical and Thermal Conditioning of Said Elements
WO2007043510A1 (ja) フィルム外装電気デバイス収納システム
JP4932484B2 (ja) 収納部材、収納ケースおよび組電池
EP4044339A1 (en) Battery module and battery pack including same
JP7083773B2 (ja) 電池モジュール
CN209169233U (zh) 一种软包电池模组
KR20220015252A (ko) 탄성부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
KR20210133566A (ko) 전지 모듈 및 이를 포함하는 전지팩
EP4220831A1 (en) Battery module and battery pack including same
EP4203144A1 (en) Battery module and battery pack comprising same
EP4199191A1 (en) Battery module and battery pack comprising same
JP2024509134A (ja) 電池モジュール及びこれを含む電池パック
JP2023107493A (ja) 電池パック
KR20230010598A (ko) 전지 모듈 및 이를 포함하는 전지 팩
KR20240045544A (ko) 배터리 팩 및 이를 포함하는 자동차
CN117769784A (zh) 电池组和包括该电池组的装置
JP2022081141A (ja) 電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11917744

Country of ref document: US

Ref document number: 2007521340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766771

Country of ref document: EP

Kind code of ref document: A1