WO2008098555A1 - Befestigung von energiespeicherzellen in einem gehäuse - Google Patents

Befestigung von energiespeicherzellen in einem gehäuse Download PDF

Info

Publication number
WO2008098555A1
WO2008098555A1 PCT/DE2008/000222 DE2008000222W WO2008098555A1 WO 2008098555 A1 WO2008098555 A1 WO 2008098555A1 DE 2008000222 W DE2008000222 W DE 2008000222W WO 2008098555 A1 WO2008098555 A1 WO 2008098555A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
housing
storage cells
energy
enclosure
Prior art date
Application number
PCT/DE2008/000222
Other languages
English (en)
French (fr)
Inventor
Swen Wiethoff
Nevzat GÜNER
Stefan Dr. Migge
Peter Dr. Birke
Michael Keller
Original Assignee
Temic Automotive Electric Motors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temic Automotive Electric Motors Gmbh filed Critical Temic Automotive Electric Motors Gmbh
Priority to DE112008000341.6T priority Critical patent/DE112008000341B4/de
Publication of WO2008098555A1 publication Critical patent/WO2008098555A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an energy store according to the preamble of claim 1.
  • Hybrid drives for motor vehicles have, in addition to an internal combustion engine, an electric machine in conjunction with at least one energy store.
  • the rechargeable energy storage has mainly the task of receiving energy recovered by recuperation with an electric motor brake to store the energy and this - due to the electric machine - to return the support of the internal combustion engine or the electrical system in a suitable form.
  • lithium-ion batteries for hybrid vehicles must have a significantly longer life. To avoid the ingress of water over the side welds of the composite film over this period, significantly wider welds are required. Generally 1 year weld width is assumed per year. Thus, for the life requirements of at least 10 years, a weld width of at least 10 mm is required.
  • the present invention is therefore based on the object to remedy the disadvantages of folding the welds and the resulting mechanical stress at the folds or kinks and to dispense with an adhesive bond or tapes on the cell surface can.
  • the inventive solution of the problem provides that the energy storage cells are secured in the housing by clamping at least one enclosure between housing parts.
  • the housing is preferably modular, i. It consists of several housing modules, which are arranged one above the other or next to each other and connected or connected.
  • the housing modules are isolated before assembly, i. they are separated from each other.
  • the clamping of the enclosure of the energy storage cells between the housing modules is then preferably carried out by the connecting surface between the individual modules, which are biased by suitable means against each other.
  • the housing consists of modules which are flexibly interconnected, for example by molded hinges.
  • the clamping of the enclosures of the energy storage cells is in this case also at least partially by the superposed surfaces of adjacent housing modules.
  • the enclosures of the energy storage cells are preferably fixed by the clamping force-fit between two housing modules.
  • the frictional clamping is based on the enclosure acting contact pressure of two housing modules and the coefficient of friction between the enclosure and housing module surface.
  • a frictional clamping is considered sufficient for the attachment of the energy storage cells in the housing; These parameters can be adapted sufficiently to the requirements by means of the parameters contact force and friction coefficient.
  • a frictional attachment has the advantage that the borders are not deformed and thus the stability and function of the flexible house, which is preferably formed by a composite film, are hardly affected.
  • a positive attachment possibly paired with a frictional attachment of the enclosures between the housing modules possible.
  • this affects the stability and function of the bezels much more than with a purely non-positive attachment.
  • the enclosures mounted between the modules of the housing have no electrical arresters. These would lessen the jamming of the adjacent facing.
  • the energy storage cells may be separated from each other by housing liners. These protect the flexible house of the energy storage cells from mechanical damage and avoid breakdown voltages at high loads.
  • the housing intermediate layers located between the energy storage cells can reduce the mechanical load, for example vibrations, which acts on the energy storage cells by additional support or support.
  • the housing liners can also be advantageously introduced cooling channels for air or liquid cooling.
  • the distance to the energy storage cell enclosing the upper and lower housing liners can be ensured by compressible stabilizers, which additionally allow cellular respiration. But it is also conceivable that these housing liners are themselves made of a flexible encapsulation, which is sufficient in terms of capacity for cells that have low cellular respiration.
  • the energy storage cells can be fixed without massive housing liners in the housing.
  • the energy storage cells are preferably separated by stabilizers, which allow due to their compressible properties due to cellular respiration.
  • the stabilizers are preferably arranged so that they form coolant channels between the energy storage cells. These coolant channels are particularly suitable for the passage of air; In principle, however, an implementation of cooling liquid is conceivable.
  • FIG. 1 housing module with inserted energy storage cell
  • FIG. 1 shows a housing module (6) of a housing (2) for an energy store (1).
  • an energy storage cell (3) is inserted, which is surrounded by a flexible house (4).
  • the flexible house (4) consists of a Composite films, preferably of an aluminum composite foil, and surrounds the electrode pairs of the energy storage cell (3) tightly fitting.
  • the open ends of the house (4) are sealed together by a seam, not shown in the figures, so that the pairs of electrodes are shielded from the environment.
  • the seam can be made by various methods; for example, by welding, gluing, sewing, knurling (mechanical interlocking of the foil pairs) or their combination with each other.
  • the seam Since the seam has to be made very wide, especially in the case of energy storages with a long service life, in order to ensure tightness over the entire service life, the seam creates a rather wide enclosure (5).
  • the energy storage cell (3) After inserting the energy storage cell (3) into a housing module (6), at least parts of the enclosure (5) of the energy storage cell extend into the connecting surfaces of the individual housing modules (6).
  • FIG. 2 shows an energy store (1), which consists of the housing modules (6) with inserted energy storage cell (3) described in FIG.
  • the housing modules (6) are arranged one above the other depending on the desired voltage of the energy storage in a certain number and fixed.
  • the housing modules from FIG. 2 have housing intermediate layers (7) between the individual energy storage cells (3).
  • These housing liners (7) additionally protect the flexible house (4) of the energy storage cells (3) from damaging influences such as vibrations, since the support of the energy storage cells (3) is additionally improved by the housing liners (7).
  • the housing liners (7) have coolant channels (8), by means of which the energy storage cells (3) can be cooled.
  • FIG. 3 shows an energy store (1) as described in FIG. 2, with the difference that it has no housing intermediate layers (7) between the individual energy storage cells (3).
  • the distance between the energy storage cells (3) is ensured here by stabilizers (9) (see Figure 1), which are mounted between the energy storage cells (3).
  • the stabilizers (9) consist of a compressible material, which further ensures the already described cell respiration of the energy storage cells (3).
  • the stabilizers (9) are mounted between the energy storage cells (3) such that coolant channels (10) are formed between the stabilizers (9). This allows cooling of the energy storage cells (3) by means of cooling air, but liquid cooling is also conceivable. LIST OF REFERENCE NUMBERS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft einen Energiespeicher (1 ) für elektrische Energie, bestehend unter anderem aus einem Gehäuse (2), mindestens einer in dem Gehäuse (2) angebrachten und befestigten Energiespeicherzelle (3), welche aus mindestens einem allseitig von einer flexiblen Hausung (4) umschlossenen Elektrodenpaar besteht, wobei die flexible Hausung (4) an mindestens einer Seite der Energiespeicherzelle (3) durch eine Naht dicht verschlossen ist, wodurch eine an das Elektrodenpaar angrenzende Einfassung (5) entsteht. Die Energiespeicherzellen (3) werden im Gehäuse (2) durch Einklemmen von mindestens einer Einfassung (5) zwischen den Gehäusemodulen (6) befestigt.

Description

Beschreibung
Befestigung von Energiespeicherzellen in einem Gehäuse
Die Erfindung betrifft einen Energiespeicher gemäß dem Oberbegriff des Anspruchs 1.
Hybridantriebe für Kraftfahrzeuge weisen neben einer Verbrennungskraftmaschine eine elektrische Maschine in Verbindung mit mindestens einem Energiespeicher auf. Der wiederaufladbare Energiespeicher hat hauptsächlich die Aufgabe, durch Rekuperation mit einer elektromotorischen Bremse gewonnene elektrische Energie aufzunehmen, die Energie zu speichern und diese - über die elektrische Maschine - zur Unterstützung des Verbrennungsmotors oder des Bordnetzes in geeigneter Form zurückzuführen.
Als Energiespeicher können verschiedene Technologien verwendet werden, beispielsweise Bleibatterien, Kondensatoren, Nickel-Metallhydrid-Batterien oder Lithium-Ionen-Batterien. Um einerseits ausreichend Energie zu speichern und andererseits kurzzeitig hohe Energiemengen abgeben zu können, sind entsprechend hohe Systemspannungen erforderlich, welche nur durch serielle Schaltungen vieler Einzelzellen erreicht werden können.
Während Bleibatterien und Nickel-Metallhydrid-Batterien nur mit einem massiven Gehäuse betrieben werden können, sind für Lithium-Ionen-Zellen sowohl starre Gehäuse aus Metall oder Kunststoff als auch flexible Hausungen z.B. aus mehrschichtigen Aluminium- Verbundfolien bekannt. Besondere Vorteile von Energiespeicherzellen mit flexiblen Hausungen sind das geringe Verpackungsgewicht, eine gewisse äußere Flexibilität der gesamten Zelle sowie die Möglichkeit, im Inneren entstehende Gasmengen durch Ausdehnung der Folie reversibel auszugleichen.
Aus der deutschen Auslegeschrift DE 1 154 845 ist eine derartige Energiespeicherzelle mit flexibler Hausung bekannt. Das Elektrodenpaket ist dort von einer gas- und flüssigkeitsdichten elastischen Kunststoffhülle umschlossen, die von den Stromanschlüssen abgedichtet durchsetzt ist, wobei der Innenraum der Hülle nur wenig größer als das Elektrodenpaketvolumen ist. Mehrere solcher flachen Energiespeicherzellen können mit ihrer Außenfläche aneinander liegend zu Zellenpaketen vereinigt und elektrisch hintereinander geschaltet werden. Die Öffnungen der das Elektrodenpaar umgebenden Kunststoffhülle werden gas- und flüssigkeitsdicht verschlossen, indem diese verschweißt werden. Die Schweißnaht bringt eine relativ breite Einfassung mit sich, um den Dichtigkeitsanforderungen zu genügen.
Anders als in Anwendungen für mobile Kommunikationstechnik müssen Lithium-Ionen- Batterien für Hybridfahrzeuge eine bedeutend längere Lebensdauer erfüllen. Um das Eindringen von Wasser über die seitlichen Schweißnähte der Verbundfolie in diesem Zeitraum zu vermeiden, sind bedeutend breitere Schweißnähte erforderlich. Allgemein wird je Jahr Lebensdauer 1 mm Schweißnahtbreite angenommen. Somit ist für die Lebensdauerforderungen von zumindest 10 Jahren eine Schweißnahtbreite von zumindest 10 mm erforderlich.
In bisherigen Konstruktionen werden die Schweißnähte in verschiedenen Formen abgekantet, einfach gefaltet oder gar mehrfach gefaltet. Dies erfordert nachteilige zusätzliche Arbeitsschritte in der Zellfertigung und führt besonders an den Ecken der Energiespeicherzelle zu mechanischem Streß in den mehrschichtigen Verbundfolien. Außerdem wird ein räumlich nicht klar definierter seitlicher Rand geschaffen.
Um solche prismatische Energiespeicherzellen mit flexibler Hausung fest in ein Gehäuse zu integrieren, werden diese in Plastikschalen eingelegt und durch Klebeverbindungen oder Klebebänder fixiert. Da aber nicht abschätzbar ist, wie sich die Klebeverbindungen über die Lebensdauer des Energiespeichers verhalten - sowohl von der Klebefestigkeit als auch von der chemischen Reaktion mit der Verbundfolie bzw. dem Gehäuse - ist es wünschenswert auf eine Klebeverbindung zu verzichten.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, die Nachteile des Faltens der Schweißnähte und den daraus resultierenden mechanischen Streß an den Falz- oder Knickstellen abzustellen und auf eine Klebeverbindung oder Klebebänder auf der Zelloberfläche verzichten zu können.
Die erfindungsgemäße Lösung der Aufgabe sieht vor, dass die Energiespeicherzellen im Gehäuse befestigt werden durch Einklemmen von mindestens einer Einfassung zwischen Gehäuseteilen.
Dies hat den Vorteil, dass auf das allgemein übliche Falten der Schweißnähte verzichtet werden kann. Dadurch können zusätzliche Arbeitsschritte entfallen und die die Elektroden umschließende Verbundfolie wird einem geringeren mechanischen Streß ausgesetzt, was ihrer Funktionszuverlässigkeit zu Gute kommt. Außerdem kann auf Klebeverbindungen der Energiespeicherzellen zur Befestigung im Gehäuse verzichtet werden. Dadurch besteht nicht mehr die Gefahr, dass sich Klebeverbindungen über die Betriebsdauer lösen oder chemisch mit der Verbundfolie der Energiespeicherzellen reagieren. Dies dient wiederum der Erhöhung der Zuverlässigkeit des gesamten Energiespeichers. Des weiteren wird durch die erfindungsgemäße Lösung eine Bewegung der Zellen im Gehäuse ausreichend verhindert.
Das Gehäuse ist vorzugsweise modular aufgebaut, d.h. es besteht aus mehreren Gehäusemodulen, welche übereinander oder nebeneinander angeordnet und miteinander verbunden werden bzw. verbunden sind.
Vorzugsweise liegen die Gehäusemodule vor dem Zusammenbau vereinzelt vor, d.h. sie sind voneinander getrennt. Das Einklemmen der Einfassung der Energiespeicherzellen zwischen den Gehäusemodulen erfolgt dann vorzugsweise durch die Verbindungsfläche zwischen den einzelnen Modulen, welche durch geeignete Mittel gegeneinander vorgespannt sind.
Es ist aber auch denkbar, dass das Gehäuse aus Modulen besteht, welche flexibel miteinander verbunden sind, beispielsweise durch angespritzte Scharniere. Das Einklemmen der Einfassungen der Energiespeicherzellen erfolgt in diesem Fall ebenfalls zumindest teilweise durch die aufeinander liegenden Flächen benachbarter Gehäusemodule.
Die Einfassungen der Energiespeicherzellen sind durch die Klemmung vorzugsweise kraftschlüssig zwischen zwei Gehäusemodulen befestigt. Die kraftschlüssige Klemmung beruht auf die Einfassung wirkende Anpresskraft zweier Gehäusemodule und die Reibzahl zwischen Einfassung und Gehäusemoduloberfläche. Eine kraftschlüssige Klemmung wird für die Befestigung der Energiespeicherzellen im Gehäuse als ausreichend betrachtet; über die Parameter Anpresskraft und Reibzahl lässt sich diese in ausreichendem Maße an die Anforderungen anpassen. Eine kraftschlüssige Befestigung hat den Vorteil, dass die Einfassungen nicht verformt werden und somit die Stabilität und Funktion der flexiblen Hausung, welche vorzugsweise durch eine Verbundfolie gebildet wird, kaum beeinträchtigt werden.
Mit dieser Art der Befestigung wird auch eine Besonderheit jeder Lithium-Ionen-Zelle - der Veränderung der Elektrodendicke während der Prozesse Laden und Entladen der Zelle (Zellatmung) - Rechnung getragen. Eine Zellatmung ist ungehindert möglich, da der seitliche Kraftschluss keinen Druck auf die Zelloberfläche verursacht.
Alternativ ist auch eine formschlüssige Befestigung, eventuell gepaart mit einer kraftschlüssigen Befestigung der Einfassungen zwischen den Gehäusemodulen möglich. Diese beeinträchtigt die Stabilität und Funktion der Einfassungen jedoch weit mehr als bei einer rein kraftschlüssigen Befestigung. Vorzugsweise weisen die zwischen den Modulen des Gehäuses befestigten Einfassungen keine elektrischen Ableiter auf. Diese würden die Klemmung der angrenzenden Einfassung vermindern.
Die Energiespeicherzellen können voneinander durch Gehäusezwischenlagen getrennt sein. Diese schützen die flexible Hausung der Energiespeicherzellen vor mechanischer Beschädigung und vermeiden bei hoher Belastung Durchschlagsspannungen. Außerdem können die zwischen den Energiespeicherzellen befindlichen Gehäusezwischenlagen die auf die Energiespeicherzellen wirkende mechanische Belastung, beispielsweise Vibrationen, durch zusätzliche Halterung bzw. Stützung verringern. In die Gehäusezwischenlagen können auch vorteilhafterweise Kühlkanäle für eine Luft- oder Flüssigkeitskühlung eingebracht sein.
Der Abstand zu den die Energiespeicherzelle umschließenden oberen und unteren Gehäusezwischenlagen kann durch kompressible Stabilisatoren gewährleistet werden, welche zusätzlich eine Zellatmung erlauben. Es ist aber auch denkbar, dass diese Gehäusezwischenlagen selbst aus einem flexiblen Verguss hergestellt sind, was bei Zellen, die eine geringe Zellatmung aufweisen, hinsichtlich Ausdehungsvermögen ausreichend ist.
Des weiteren können die Energiespeicherzellen ohne massive Gehäusezwischenlagen im Gehäuse befestigt sein. In diesem Fall sind die Energiespeicherzellen vorzugsweise durch Stabilisatoren getrennt, welche durch deren kompressiblen Eigenschaften bedingt eine Zellatmung erlauben. Die Stabilisatoren sind vorzugsweise so angeordnet, dass diese Kühlmittelkanäle zwischen den Energiespeicherzellen bilden. Diese Kühlmittelkanäle sind vor allem zur Durchführung von Luft geeignet; grundsätzlich ist aber auch eine Durchführung von Kühlflüssigkeit denkbar.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen.
Es zeigen:
Figur 1 Gehäusemodul mit eingelegter Energiespeicherzelle
Figur 2 Energiespeicher aus mehreren Gehäusemodulen mit Gehäusezwischenlage
Figur 3 Energiespeicher aus mehreren Gehäusemodulen ohne Gehäusezwischenlage
Figur 1 zeigt ein Gehäusemodul (6) eines Gehäuses (2) für einen Energiespeicher (1). In dieses Gehäusemodul (6) ist eine Energiespeicherzelle (3) eingelegt, welche von einer flexiblen Hausung (4) umschlossen ist. Die flexible Hausung (4) besteht aus einer Verbundfolien, vorzugsweise aus einer Aluminium-Verbundfolie, und umgibt die Elektrodenpaare der Energiespeicherzelle (3) dicht anliegend. Die offenen Enden der Hausung (4) sind durch eine in den Figuren nicht gezeigte Naht miteinander dicht verbunden, so dass die Elektrodenpaare von der Umgebung abgeschirmt sind. Die Naht kann durch verschiedene Methoden hergestellt sein; beispielsweise durch Verschweißen, Verkleben, Nähen, Verrändeln (mechanisches ineinander Eingreifen der Folienpaare) oder deren Kombination miteinander. Da die Naht vor allem bei Energiespeichern mit langer Lebensdauer sehr breit ausgeführt werden muss um die Dichtigkeit über die gesamte Lebensdauer zu gewährleisten, entsteht durch die Naht eine recht breite Einfassung (5). Nach Einlegen der Energiespeicherzelle (3) in ein Gehäusemodul (6) erstrecken sich zumindest Teile der Einfassung (5) der Energiespeicherzelle bis in die Verbindungsflächen der einzelnen Gehäusemodule (6). Nach Aufsetzen und Befestigen eines anderen Gehäusemoduls (6) auf das Gehäusemodul (6) mit der eingelegten Energiespeicherzelle (3) werden somit die in die Verbindungsflächen reichenden Einfassungen (5) zwischen den beiden Gehäusemodulen (6) eingeklemmt.
Figur 2 zeigt einen Energiespeicher (1), welcher aus den in Figur 1 beschriebenen Gehäusemodulen (6) mit eingelegter Energiespeicherzelle (3) besteht. Die Gehäusemodule (6) sind je nach gewünschter Spannung des Energiespeichers in einer bestimmten Anzahl übereinander angeordnet und befestigt. Die Gehäusemodule aus Figur 2 weisen Gehäusezwischenlagen (7) zwischen den einzelnen Energiespeicherzellen (3) auf. Diese Gehäusezwischenlagen (7) schützen die flexible Hausung (4) der Energiespeicherzelien (3) zusätzlich vor schädigenden Einflüssen wie beispielsweise Vibrationen, da die Abstützung der Energiespeicherzellen (3) durch die Gehäusezwischenlagen (7) zusätzlich verbessert ist. Die Gehäusezwischenlagen (7) weisen Kühlmittelkanäle (8) auf, mittels derer die Energiespeicherzellen (3) gekühlt werden können.
Figur 3 zeigt einen Energiespeicher (1) wie in Figur 2 beschrieben, mit dem Unterschied, dass dieser keine Gehäusezwischenlagen (7) zwischen den einzelnen Energiespeicherzellen (3) aufweist. Der Abstand zwischen den Energiespeicherzellen (3) wird hier durch Stabilisatoren (9) gewährleistet (siehe Figur 1), welche zwischen den Energiespeicherzellen (3) angebracht sind. Die Stabilisatoren (9) bestehen aus einem kompressiblen Material, wodurch weiterhin die bereits beschriebene Zellatmung der Energiespeicherzellen (3) gewährleistet wird. Die Stabilisatoren (9) sind derart zwischen den Energiespeicherzellen (3) angebracht, dass zwischen den Stabilisatoren (9) Kühlmittelkanäle (10) gebildet werden. Dies ermöglicht eine Kühlung der Energiespeicherzellen (3) mittels Kühlluft, aber auch eine Flüssigkeitskühlung ist denkbar. Bezugszeichenliste
Energiespeicher Gehäuse Energiespeicherzelle flexible Hausung Einfassung Gehäusemodul Gehäusezwischenlage Kühlmittelkanal Stabilisator Kühlmittelkanal

Claims

Patentansprüche
1. Energiespeicher (1) für elektrische Energie, bestehend unter anderem aus einem Gehäuse (2), mindestens einer in dem Gehäuse (2) angebrachten und befestigten Energiespeicherzelle (3), welche aus mindestens einem allseitig von einer flexiblen Hausung (4) umschlossenen Elektrodenpaar besteht, wobei die flexible Hausung (4) an mindestens einer Seite der Energiespeicherzelle (3) durch eine Naht dicht verschlossen ist, wodurch eine an das Elektrodenpaar angrenzende Einfassung (5) entsteht, dadurch gekennzeichnet, dass die Energiespeicherzellen (3) im Gehäuse (2) befestigt werden durch Einklemmen von mindestens einer Einfassung (5) zwischen den Gehäusemodulen (6).
2. Energiespeicher (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Einfassung (5) zwischen zwei Gehäusemodulen (6) kraftschlüssig eingeklemmt ist.
3. Energiespeicher (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die zwischen den Gehäusemodulen (6) eingeklemmten Einfassungen (5) keine elektrischen Ableiter aufweisen.
4. Energiespeicher (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Energiespeicherzellen (3) durch obere und untere Gehäusezwischenlagen (7) voneinander getrennt sind.
5. Energiespeicher (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Gehäusezwischenlagen (7) aus einem flexiblen Verguss gebildet sind.
6. Energiespeicher (1 ) nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Gehäusezwischenlagen (7) Kühlmittelkanäle (8) aufweisen.
7. Energiespeicher (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Energiespeicherzellen (3) durch Stabilisatoren (9) voneinander getrennt sind.
8. Energiespeicher (1) nach Anspruch 8, dadurch gekennzeichnet, dass die Stabilisatoren (9) Kühlmittelkanäle (10) zwischen den Energiespeicherzellen (3) bilden.
9. Energiespeicher nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Energiespeicherzellen (3) Lithium-Ionen-Zellen sind.
PCT/DE2008/000222 2007-02-17 2008-02-09 Befestigung von energiespeicherzellen in einem gehäuse WO2008098555A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008000341.6T DE112008000341B4 (de) 2007-02-17 2008-02-09 Befestigung von Energiespeicherzellen in einem Gehäuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007007986.0 2007-02-17
DE200710007986 DE102007007986A1 (de) 2007-02-17 2007-02-17 Befestigung von Energiespeicherzellen in einem Gehäuse

Publications (1)

Publication Number Publication Date
WO2008098555A1 true WO2008098555A1 (de) 2008-08-21

Family

ID=39434114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000222 WO2008098555A1 (de) 2007-02-17 2008-02-09 Befestigung von energiespeicherzellen in einem gehäuse

Country Status (2)

Country Link
DE (2) DE102007007986A1 (de)
WO (1) WO2008098555A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002907A1 (en) * 2011-01-24 2012-01-05 Guoan Feng Power battery pack cooling apparatus
WO2012010468A1 (de) 2010-07-23 2012-01-26 Evonik Degussa Gmbh Lithium-zellen und -batterien mit verbesserter stabilität und sicherheit, verfahren zu ihrer herstellung und anwendung in mobilen und stationären elektrischen energiespeichern
WO2012072348A1 (de) * 2010-11-30 2012-06-07 Behr Gmbh & Co. Kg Vorrichtung zum führen eines kühlfluids und kühlsystem zum kühlen einer elektrischen komponente
EP2793289A3 (de) * 2013-03-29 2014-12-31 Samsung SDI Co., Ltd. Batteriemodul
US20220247025A1 (en) * 2021-02-01 2022-08-04 Samsung Electronics Co., Ltd. Battery assembly and electronic device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511887B1 (de) * 2011-09-12 2016-05-15 Avl List Gmbh Wiederaufladbare batterie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103258A (ja) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd 組電池
EP1583170A2 (de) * 2004-03-31 2005-10-05 Nissan Motor Co., Ltd. Batterie
WO2006135008A1 (ja) * 2005-06-17 2006-12-21 Nec Lamilion Energy, Ltd. 電気デバイス集合体およびフィルム外装電気デバイス構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1154845B (de) 1953-06-17 1963-09-26 Dr H C Hans Vogt Gasdicht und fluessigkeitsdicht verschlossen zu betreibender Akkumulator
JP4214450B2 (ja) 2002-06-03 2009-01-28 日本電気株式会社 モジュール
JP4617098B2 (ja) 2004-04-12 2011-01-19 内山工業株式会社 バッテリーセル用ケース
US9653748B2 (en) 2005-04-14 2017-05-16 Enerdel, Inc. Apparatus and method for securing battery cell packs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103258A (ja) * 2002-09-04 2004-04-02 Nissan Motor Co Ltd 組電池
EP1583170A2 (de) * 2004-03-31 2005-10-05 Nissan Motor Co., Ltd. Batterie
WO2006135008A1 (ja) * 2005-06-17 2006-12-21 Nec Lamilion Energy, Ltd. 電気デバイス集合体およびフィルム外装電気デバイス構造体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010468A1 (de) 2010-07-23 2012-01-26 Evonik Degussa Gmbh Lithium-zellen und -batterien mit verbesserter stabilität und sicherheit, verfahren zu ihrer herstellung und anwendung in mobilen und stationären elektrischen energiespeichern
DE102010038308A1 (de) 2010-07-23 2012-01-26 Evonik Degussa Gmbh Lithium-Zellen und -Batterien mit verbesserter Stabilität und Sicherheit, Verfahren zu ihrer Herstellung und Anwendung in mobilen und stationären elektrischen Energiespeichern
WO2012072348A1 (de) * 2010-11-30 2012-06-07 Behr Gmbh & Co. Kg Vorrichtung zum führen eines kühlfluids und kühlsystem zum kühlen einer elektrischen komponente
US9546827B2 (en) 2010-11-30 2017-01-17 Mahle International Gmbh Device for conducting a cooling fluid, and cooling system for cooling an electrical component
WO2012002907A1 (en) * 2011-01-24 2012-01-05 Guoan Feng Power battery pack cooling apparatus
EP2793289A3 (de) * 2013-03-29 2014-12-31 Samsung SDI Co., Ltd. Batteriemodul
US20220247025A1 (en) * 2021-02-01 2022-08-04 Samsung Electronics Co., Ltd. Battery assembly and electronic device including the same

Also Published As

Publication number Publication date
DE112008000341B4 (de) 2023-05-17
DE102007007986A1 (de) 2008-09-04
DE112008000341A5 (de) 2009-11-05

Similar Documents

Publication Publication Date Title
DE102013201021A1 (de) Batteriemodul mit mehreren Batteriezellen sowie Behälter zur Aufnahme einer Batteriezelle
WO2013189593A1 (de) Wandlerzelle mit einem zellgehäuse, batterie mit zumindest zwei dieser wandlerzellen und verfahren zum herstellen einer wandlerzelle
DE102008034873A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE60300048T2 (de) Batteriemodul
WO2008098555A1 (de) Befestigung von energiespeicherzellen in einem gehäuse
DE102010031462A1 (de) Batteriezellenmodul, Batterie und Kraftfahrzeug
WO2013110461A2 (de) Elektrochemische energiewandlereinrichtung mit einem zellgehäuse, batterie mit zumindest zwei dieser elektrochemischen energiewandlereinrichtungen und verfahren zum herstellen einer elektrochemischen energiewandlereinrichtung
WO2012062396A1 (de) Batterie mit einem zellverbund
DE102018010029A1 (de) Montagevorrichtung und Verfahren zur Montage eines Zellblocks für eine Batterie, sowie eine entsprechender Zellblock für eine Batterie
WO2021144098A1 (de) Gehäusedeckel für ein batteriegehäuse mit partikelschutz und hitzeschutz, batteriegehäuse, traktionsbatterie sowie kraftfahrzeug
DE102013016618A1 (de) Batterieeinzelzelle und Hochvoltbatterie
DE102012224330A9 (de) Elektrische Akkumulatorvorrichtung mit elastischen Elementen
DE102020003882A1 (de) Batterie sowie Montagevorrichtung und Verfahren zur Montage der Batterie
WO2011012201A1 (de) Batterie und verfahren zum herstellen einer batterie
WO2014040734A2 (de) Isolation von elektrochemischen energiespeichern
EP2467886A1 (de) Elektrochemische zelle
DE102015225705A1 (de) Batteriezelle mit einem metallischen Gehäuse und Verfahren zu deren Herstellung sowie Batterie
DE102010013031A1 (de) Batterie mit einem Zellenstapel von Batterieeinzelzellen
WO2018220197A2 (de) Elektrochemische zellbaugruppe, energiespeichermodul und verfahren zum zusammenbau davon
DE102020216452A1 (de) Pouchzelle
DE102010012932A1 (de) Batterie mit einem Stapel von Batterieeinzelzellen
DE102008059963B4 (de) Einzelzelle für eine Batterie und Verfahren zu deren Herstellung
DE102012005788A1 (de) Wandlerzelle mit einem Zellgehäuse, Batterie mit zumindest zwei dieser Wandlerzellen und Verfahren zum Herstellen einer Wandlerzelle
DE102012002051A1 (de) Elektrochemische Energiewandlereinrichtung mit einem Zellgehäuse, Batterie mit zumindest zwei dieser elektrochemischen Energiewandlereinrichtungen sowie Verfahren zum Herstellen einer elektrochemischen Energiewandlereinrichtung
DE102015008275A1 (de) Zellblock und elektrochemischer Energiespeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080003416

Country of ref document: DE

REF Corresponds to

Ref document number: 112008000341

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08715455

Country of ref document: EP

Kind code of ref document: A1