WO2006132144A1 - ポリイミド樹脂及び電解質膜 - Google Patents

ポリイミド樹脂及び電解質膜 Download PDF

Info

Publication number
WO2006132144A1
WO2006132144A1 PCT/JP2006/311080 JP2006311080W WO2006132144A1 WO 2006132144 A1 WO2006132144 A1 WO 2006132144A1 JP 2006311080 W JP2006311080 W JP 2006311080W WO 2006132144 A1 WO2006132144 A1 WO 2006132144A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide resin
acid
carbon atoms
substituted
Prior art date
Application number
PCT/JP2006/311080
Other languages
English (en)
French (fr)
Inventor
Masahiro Watanabe
Kenji Miyatake
Hiroyuki Uchida
Original Assignee
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Yamanashi filed Critical University Of Yamanashi
Priority to JP2007520077A priority Critical patent/JP4934822B2/ja
Publication of WO2006132144A1 publication Critical patent/WO2006132144A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyimide resin and an electrolyte membrane.
  • a fuel cell is a power generation device that directly converts the chemical reaction energy of fuel (for example, hydrogen, methanol, etc.) and oxygen into electrical energy, and is a clean next generation that does not generate greenhouse gases or harmful substances.
  • fuel for example, hydrogen, methanol, etc.
  • DMF C methanol direct fuel cells
  • PEFC solid polymer electrolyte fuel cells
  • DMF C methanol direct fuel cells
  • electrolyte membranes used for PEFC and DMF C electrolyte membranes that only allow protons to pass through in a wet state are required.
  • electrolyte membranes that mainly contain perfluoroalkylsulfonic acid polymers are used. Yes.
  • the operating temperature is set higher than the current (for example, 80 ° C or less) ° C or higher.
  • the electrolyte membrane containing the perfluoroalkylsulfonic acid polymer described above deteriorates in proton conductivity and mechanical strength under temperature conditions of 100 ° C or higher, so that it can be operated at a high temperature of 100 ° C or higher. There is a problem that it is difficult to provide.
  • there are problems such as easy permeation of fuel gas (hydrogen or methanol) and high cost.
  • Electrolyte membranes containing polyimide resin with sulfonic acid groups introduced into the polymer have high heat resistance, oxidation resistance and mechanical strength, low manufacturing costs, easy introduction of substituents, and even higher Since it has proton conductivity, it is considered as one of the promising candidates for an electrolyte membrane for a fuel cell (see, for example, Patent Documents 1 to 4).
  • Such polyimide resin containing sulfonic acid groups introduced into the polymer is included.
  • the electrolyte membrane suppresses the problem that the proton conductivity and the mechanical strength decrease at 100 ° C or higher. Yes.
  • the electrolyte membrane containing polyimide resin described in Patent Documents 2 to 4 is a polyimide having a substituent containing a sulfonic acid group (for example, an acid alkoxy group) introduced in the side chain of the polymer.
  • a sulfonic acid group for example, an acid alkoxy group
  • Patent Document 1 Japanese Translation of Special Publication 2000-510511
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-105199
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-105200
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-155998
  • an object of the present invention is to provide a polyimide resin having improved hydrolysis resistance.
  • Another object of the present invention is to provide an electrolyte membrane containing such excellent polyimide resin. To do.
  • the present inventors as an acidic group to be introduced into the side chain of the polyimide resin, (a) an acid alkoxy group having 7 or more carbon atoms, (B) Improve hydrolysis resistance by using any of the acidic groups of acid perfluoroalkoxy group, (c) acid alkyl group or (d) acid alkylthio group. As a result, the present invention has been completed.
  • the polyimide resin of the present invention is characterized by including a structural unit represented by the general formula (1).
  • Ar 1 is an aromatic ring having 6 to 20 carbon atoms and forms an imide ring having 5 or 6 atoms with an adjacent imide group. Atoms may be substituted with S, N, 0, SO or CO, and some or all of the hydrogen atoms
  • It may be substituted with an aliphatic group, a halogen atom or a perfluoroaliphatic group.
  • Ar 2 is an aromatic ring having 6 to 13 carbon atoms, and at least a part of hydrogen atoms in the aromatic ring is substituted with an acid alkoxy group having 7 or more carbon atoms. Note that some carbon atoms in the acid alkoxy group may be substituted with S, N, 0, SO, or CO.
  • Some or all of the hydrogen atoms may be substituted with an aliphatic group, a halogen atom, or a perfluoroaliphatic group.
  • the polyimide resin of the present invention a long-chain acid alkoxy group having 7 or more carbon atoms is present between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. Therefore, the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are better separated.
  • the main component of the hydrophobic polyimide resin Compared with polyimide resin having a relatively short-chain acid alkoxy group having 6 or less carbon atoms, the imide bond present in the chain is not easily attacked by water molecules with hydrophilic acidic basic force. Hydrolyzability is improved.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are well separated. That is, the hydrophilic region and the hydrophobic region are better separated.
  • protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin, and therefore the number of carbon atoms is 6 or less.
  • proton conductivity is improved.
  • the acid alkoxy group is an acid alkoxy group having 7 to 9 carbon atoms.
  • the acid alkoxy group is More preferably, it is an acid alkoxy group having 10 or more carbon atoms.
  • Ar 2 is preferably a group having a structure represented by the general formula (2).
  • X 1 and X 2 are substituents containing an acidic group, May be.
  • I 1 and f represent the number of carbon atoms of the acid alkoxy group, each of which is an integer of 7 or more.
  • I 1 and I 2 may be the same or different.
  • the polyimide resin of the present invention is characterized by including a structural unit represented by the general formula (3).
  • Ar 1 is an aromatic ring having 6 to 20 carbon atoms, and forms an imide ring having 5 or 6 atoms with an adjacent imide group. Atoms may be substituted with S, N, 0, SO or CO, and some or all of the hydrogen atoms
  • It may be substituted with an aliphatic group, a halogen atom or a perfluoroaliphatic group.
  • Ar 3 is an aromatic ring having 6 to 13 carbon atoms, and at least a part of hydrogen atoms in the aromatic ring is substituted with an acid perfluoroalkoxy group. Note that some of the carbon atoms in the acid perfluoroalkoxy group are substituted with S, N, 0, SO, or CO.
  • fluorine atoms may be substituted with an aliphatic group, another halogen atom or a perfluoroaliphatic group.
  • the polyimide resin of the present invention an acid perfluoroalkoxy group having high hydrophobicity is present between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. Therefore, the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are well separated. As a result, according to the polyimide resin of the present invention, the imide bond existing in the main chain of the hydrophobic polyimide resin is not easily attacked by water molecules having a hydrophilic acidic basic force. Compared to polyimide resin having an alkoxy group, the hydrolysis resistance is improved.
  • the hydrophilic acid group and the main chain of the hydrophobic polyimide resin can be satisfactorily separated from each other in the polyimide resin of the present invention. That is, the hydrophilic region and the hydrophobic region are well separated.
  • protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin.
  • perfluoroalkoxy groups have higher electron withdrawing properties than alkoxy groups.
  • the acidity in the acidic group is increased, and acidic basic protons are easily released. For this reason, according to the polyimide resin of the present invention, proton conductivity is improved as compared with the polyimide resin having the same carbon number acid alkoxy group.
  • the acid perfluoroalkoxy group is an acid perfluoroalkoxy group having 6 or less carbon atoms. More preferably, the acid perfluoroalkoxy group is an acid perfluoroalkoxy group having 7 or more carbon atoms!
  • a long-chain acid perfluoroalkoxy group having 7 or more carbon atoms exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are more favorably separated.
  • the imide bond present in the main chain of the hydrophobic polyimide resin is less susceptible to attack by water molecules with a hydrophilic acidic basic force, so a comparatively short-chain acid perfume having 6 or less carbon atoms.
  • the hydrolysis resistance is further improved as compared with a polyimide resin having a fluoroalkoxy group.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are more favorably separated. That is, the hydrophilic region and the hydrophobic region are more favorably separated.
  • protons generated in the hydrophilic region move more favorably through the hydrophilic region unevenly distributed in the polyimide resin, so that a relatively short-chain acid perfluid having 6 or less carbon atoms is obtained.
  • polyimide resin having a fluoroalkoxy group proton conductivity is further improved.
  • a long-chain acid perfluoroalkoxy group having 7 or more carbon atoms exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. , Carbon number 6 or less Compared with the comparatively short chain, the electron withdrawing property by the perfluoroalkoxy group is further increased. As a result, the acidity of the acidic group is further increased, so that the proton is more easily released from the acidic group, compared with a polyimide resin having a relatively short-chain acid perfluoroalkoxy group having 6 or less carbon atoms. Proton conductivity is further improved.
  • Ar 3 is preferably a group having a structure represented by the general formula (4).
  • X 1 and X 2 are substituents containing an acidic group and may be the same or different.
  • M 1 and m 2 are the acid perfluoroalkoxy groups. And each represents an integer of 1 or more, and m 1 and m 2 may be the same or different.
  • the polyimide resin of the present invention is characterized by including a structural unit represented by the general formula (5).
  • Ar 1 is an aromatic ring having 6 to 20 carbon atoms, and forms an imide ring having 5 or 6 atoms with an adjacent imide group. Atoms may be substituted with S, N, 0, SO or CO, and some or all of the hydrogen atoms
  • It may be substituted with an aliphatic group, a halogen atom or a perfluoroaliphatic group.
  • Ar 4 is an aromatic ring having 6 to 13 carbon atoms, and at least a part of hydrogen atoms in the aromatic ring is substituted with an acid alkyl group. Note that some of the carbon atoms in the acid alkyl group may be substituted with S, N, 0, SO, or CO.
  • Part of the hydrogen atoms may be substituted with an aliphatic group, a halogen atom or a perfluoroaliphatic group.
  • the imide bond present in the main chain of the hydrophobic polyimide resin is less susceptible to attack by water molecules having a hydrophilic acid basis, so that the acid alkoxy group having the same carbon number is used. Hydrolysis resistance is improved as compared with a polyimide resin having a water content.
  • the hydrophilic acid group and the main chain of the hydrophobic polyimide resin can be well separated in the polyimide resin of the present invention. That is, the hydrophilic region and the hydrophobic region are well separated.
  • protons generated in the hydrophilic region move favorably along the hydrophilic region unevenly distributed in the polyimide resin, so that the acid having the same carbon number can be obtained.
  • proton conductivity is improved.
  • the acid alkyl group is an acid alkyl group having 6 or less carbon atoms, but the acid alkyl group has 7 or less carbon atoms. More preferred is the above acid alkyl group! /.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are more favorably separated. That is, the hydrophilic region and the hydrophobic region are more favorably separated.
  • protons generated in the hydrophilic region move more favorably through the hydrophilic region unevenly distributed in the polyimide resin, so that a relatively short-chain acid alkyl group having 6 or less carbon atoms.
  • Proton conductivity S is further improved compared to polyimide resin having
  • the polyimide resin according to (6) above is preferably that the acid alkyl group is perfluorinated! /, But preferably the acid alkyl group. Is more preferably an acid perfluoroalkyl group.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are more favorably separated. That is, the hydrophilic region and the hydrophobic region are more favorably separated. As a result, protons generated in the hydrophilic region move better through the hydrophilic region unevenly distributed in the polyimide resin.
  • the perfluorinated alkyl group has a higher electron withdrawing property than the alkyl group. As a result, the acidity of the acidic group is further increased, and protons are more easily released from the acidic group. For these reasons, the proton conductivity is further improved as compared with a polyimide resin that is perfluorinated and has an acid alkyl group.
  • Ar 4 is preferably a group having a structure represented by the general formula (6).
  • X 1 and X 2 are substituents containing an acidic group and may be the same or different.
  • N 1 and n 2 represent the number of carbon atoms of the acid alkyl group. Each represents an integer of 1 or more, and n 1 and n 2 may be the same or different.
  • the polyimide resin of the present invention is characterized by including a structural unit represented by the general formula (7).
  • Ar 1 is an aromatic ring having 6 to 20 carbon atoms, and forms an imide ring having 5 or 6 atoms together with an adjacent imide group. Atoms may be substituted with S, N, 0, SO or CO, and some or all of the hydrogen atoms
  • Ar 5 is an aromatic ring having 6 to 13 carbon atoms, and at least a part of hydrogen atoms in the aromatic ring is substituted with an acid alkylthio group. Some carbon atoms in this acid alkylthio group may be substituted with S, N, 0, SO, or CO.
  • all the hydrogen atoms may be replaced with an aliphatic group, a halogen atom or a perfluoroaliphatic group.
  • an acid alkylthio group having a sulfur atom larger than an oxygen atom is present between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. Will exist.
  • the imide bond existing in the main chain of the hydrophobic polyimide resin is not easily attacked by water molecules from the hydrophilic acidic group due to the steric hindrance of the sulfur atom. Therefore, the hydrolysis resistance is improved as compared with the polyimide resin having the same carbon number acid alkoxy group.
  • the acid alkylthio group is an acid alkylthio group having 6 or less carbon atoms, but it is preferable that the acid alkylthio group has 7 carbon atoms.
  • the acid alkylthio group is more preferable.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are favorably separated. That is, the hydrophilic region and the hydrophobic region are well separated. As a result, protons generated in the hydrophilic region move well through the hydrophilic region that is unevenly distributed in the polyimide resin, and therefore have a relatively short-chain acid alkylthio group having 6 or less carbon atoms. Compared with polyimide resin, proton conductivity is improved.
  • the acid alkylthio group is perfluorinated, but the acid alkylthio group is acid perfluoro. More preferably, it is an oloalkylthio group.
  • an acid perfluoroalkylthio group having high hydrophobicity exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. Therefore, the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are well separated.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are favorably separated. That is, the hydrophilic region and the hydrophobic region are well separated.
  • the polyimide resin of the present invention protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin.
  • the perfluoroalkylthio group is higher than the alkylthio group and has an electron-withdrawing property.
  • the acidity of the acidic group is increased, and protons are easily released from the acidic group. For these reasons, proton conductivity is improved as compared with a polyimide resin having an alkylthio group that is not perfluorinated.
  • Ar 5 is preferably a group having a structure represented by the general formula (8).
  • X 1 and ⁇ are substituents containing an acidic group. May be. o 1 and o 2 represent the number of carbon atoms of the acid alkylthio group, each of which is an integer of 1 or more. O 1 and o 2 may be the same or different. ) [0047] Thus, by using a group having a structure represented by the general formula (8) as Ar 5, hydrolysis resistance and proton conductivity in polyimide ⁇ is further improved.
  • an acid alkoxy group, an acid perfluoroalkoxy group, an acid alkyl group or an acid alkylthio group It is preferable that the number of carbon atoms is 20 or less.
  • the structural unit has a carbon number.
  • It is preferably a structural unit obtained by polycondensation of a diamine compound containing 7 or more acid alkoxy groups, acid perfluoroalkoxy groups, acid alkyl groups or acid alkylthio groups with tetracarboxylic dianhydride. ,.
  • An electrolyte membrane of the present invention includes the polyimide resin according to any one of the above (1) to (15).
  • the electrolyte membrane of the present invention is an electrolyte membrane containing excellent polyimide resin having high hydrolysis resistance and proton conductivity as described above. It becomes possible to increase the fuel cell performance from the present level, and it is possible to achieve a wide range of practical applications.
  • the polyimide resin according to Embodiment 1 is a polyimide resin containing the structural unit represented by the general formula (1).
  • the polyimide resin according to Embodiment 1 has a length of 7 or more carbon atoms between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. Since the acid alkoxy group of the chain is present, the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are better separated. As a result, according to the polyimide resin according to Embodiment 1, the imide bond existing in the main chain of the hydrophobic polyimide resin is less susceptible to attack by water molecules from the hydrophilic acidic group. Compared with a polyimide resin having a relatively short-chain acid alkoxy group of 6 or less, hydrolysis resistance is improved.
  • the polyimide resin according to Embodiment 1 can be favorably separated from the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. That is, the hydrophilic region and the hydrophobic region are well separated.
  • protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin, so that the number of carbon atoms is 6
  • Proton conductivity is improved compared to the following polyimide resin having relatively short-chain acid alkoxy groups
  • the acid alkoxy group is an acid alkoxy group having 10 or more carbon atoms.
  • Ar 2 is preferably a group having a structure represented by the above general formula (2).
  • Ar 1 and Ar 2 are not necessarily the same, and may be a copolymer or a mixture in which a plurality of substituents are mixed.
  • the molecular weight is not particularly limited. However, from the viewpoint of maintaining the mechanical strength of the electrolyte membrane, the polymerization average molecular weight is preferably at least 5000 or more. Better ,.
  • the structure of the polyimide resin includes the structural unit represented by the general formula (1), but may include other structural units (copolymerization components).
  • block weight It may be a polymer, an alternating copolymer or a random copolymer!
  • the method for producing the polyimide resin according to Embodiment 1 will be described with an example.
  • the method for producing the polyimide resin according to Embodiment 1 is not limited to this.
  • the polyimide resin according to Embodiment 1 includes a plurality of monomers composed of a diamino compound containing an acid alkoxy group and a tetracarboxylic dianhydride compound in the presence of an organic acid, a tertiary amine, and an organic solvent. It can be produced by polymerizing under.
  • diamino compound containing an acid alkoxy group for example, the following compounds can be preferably used.
  • the diamino compound may be used as a single compound or a mixture of a plurality of compounds.
  • crosslinking agent for improving the stability of the obtained polyimide resin for example, the following diamino compound, triamino compound, tetraamino compound and the like can be appropriately added.
  • tetracarboxylic dianhydride compound for example, the following compounds can be preferably used.
  • naphthalene-1, 8: 4 5-tetracarboxylic dianhydride is particularly preferably used from the viewpoint of the stability of the resulting polyimide resin. I'll do it.
  • the tetracarboxylic dianhydride compound may be used as a single compound or a mixture of a plurality of compounds.
  • the diamino compound and the tetracarboxylic dianhydride compound react at a molar ratio of 1: 1. Obedience Thus, the amount of the diamino compound and the tetracarboxylic dianhydride compound is adjusted so that the molar ratio is about 1: 1.
  • the method for producing polyimide resin according to Embodiment 1 includes a dissolution step, a polymerization step, and a modification step. In addition, the process according to need can be included.
  • the dissolution step is a step in which a mixture of a diamino compound (0.lmM to 5M), a tertiary amine (0.lmM to 20M), and an organic solvent is heated and dissolved.
  • Tertiary amine is used to dissolve a diamino compound having an acidic group in an organic solvent.
  • the temperature at which the mixture is heated is not particularly limited, but the monomer can be easily and uniformly dissolved in the solvent by adjusting the temperature to about 20 to 150 ° C.
  • the tertiary amine is not particularly limited, and trimethylamine, triethylamine, tripropylamine, diazabicycloundecene and the like can be preferably used. Of these, triethylamine can be particularly preferably used. These tertiary amines can be used alone or as a mixture of two or more tertiary amines.
  • Preferred organic solvents are those having a high boiling point and high polarity, such as phenol, m-cresol, m-chlorophenol, p-chlorophenol, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and N-methyl.
  • phenol m-cresol, m-chlorophenol, p-chlorophenol, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and N-methyl.
  • 2-pyrrolidinone, N-cyclohexyl-2-pyrrolidinone and the like can be preferably used.
  • m-cresol, dimethyl sulfoxide and N-methyl 2-pyrrolidinone can be particularly preferably used.
  • These organic solvents may be used alone or as a mixture of two or more organic solvents.
  • a tetracarboxylic dianhydride compound (0.1 lmM to 5M) is added to a solution obtained by uniformly dissolving a diamino compound in a solvent, and an organic acid (0.01 mM to 20M) is added. It is a process of heating and polymerizing in the presence.
  • the organic acid serves as a polymerization 'ring-closing reaction catalyst, and promotes formation of a polyamic acid and formation of an imide ring by the ring-closing.
  • the organic acid benzoic acid, methylbenzoic acid, dimethylbenzoic acid, salicylic acid, etc., which have a high boiling point and high solubility in the above-mentioned organic solvent, and preferred compounds are preferably used. Can do. Of these, benzoic acid can be particularly preferably used.
  • the organic acid may be added in the dissolution process described above if it is present in the polymerization process.
  • the amount of the organic acid to be added is not particularly limited, but in the case of benzoic acid, it is based on the tetracarboxylic dianhydride compound. It is preferable to cover about 1 to 6 moles.
  • the temperature for heating the mixture is at least 40 ° C. or more, preferably about 150 to 180 ° C., the polymerization reaction proceeds efficiently, and a high molecular weight polyimide resin can be obtained.
  • the modifying step is a step of correcting the physical defects in the mixture (polymerized polyimide resin) and improving the physical and thermal properties of the polyimide resin.
  • the structural defect is a defect based on an unclosed portion (amic acid) in the polyimide resin.
  • the mixture is heated at a temperature higher than that in the polymerization step to carry out a dehydration reaction, thereby generating imids at the unclosed portion.
  • the temperature for heating the mixture is preferably 190 to 220 ° C, more preferably at least 150 ° C or more. With such a temperature, the ring-closing reaction proceeds efficiently, and a polyimide resin having no structural defects can be obtained.
  • the electrolyte membrane according to Embodiment 1 can be produced by forming the polyimide resin according to Embodiment 1 by a known method.
  • a film forming method for example, a general method such as a casting method in which a solution is cast on a flat plate, a method in which a solution is applied on a flat plate by a die coater, a comma coater, or a method in which a melt is stretched is preferably used. it can.
  • polyimide resin can be used alone or in combination with other polymer compounds, polymer electrolytes, low molecular plasticizers and the like.
  • the polyimide resin according to Embodiment 2 is a polyimide resin containing the structural unit represented by the above general formula (3).
  • the polyimide resin according to Embodiment 2 there is an acid perfluoroalkoxy group having high hydrophobicity between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin.
  • the hydrophilic acidic group and the hydrophobic polyimide resin main chain are well separated.
  • the imide bond existing in the main chain of the hydrophobic polyimide resin is not easily attacked by water molecules having a hydrophilic acidic basic force. Hydrolysis resistance is improved as compared with polyimide resin having several acid alkoxy groups.
  • the hydrophilic resin group and the main chain of the hydrophobic polyimide resin are favorably separated from the polyimide resin according to the second embodiment. That is, the hydrophilic region and the hydrophobic region are well separated.
  • protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin.
  • Perfluoroalkoxy groups have higher electron withdrawing properties than alkoxy groups.
  • the acidity of the acidic group is increased, and protons are easily released from the acidic group force. For this reason, according to the polyimide resin according to Embodiment 2, the proton conductivity is improved as compared with the polyimide resin having the same number of acid alkoxy groups.
  • the acid perfluoroalkoxy group is of course preferably an acid perfluoroalkoxy group having 6 or less carbon atoms. It is more preferably 7 or more acid perfluoroalkoxy groups.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are separated more satisfactorily. That is, the hydrophilic region and the hydrophobic region are more favorably separated. As a result, protons generated in the hydrophilic region move more favorably through the hydrophilic region unevenly distributed in the polyimide resin, so that a relatively short-chain acid perfluid having 6 or less carbon atoms is obtained. Compared with polyimide resin having a fluoroalkoxy group, proton conductivity is further improved.
  • a long-chain acid perfluoroalkoxy group having 7 or more carbon atoms exists between the hydrophilic acidic group and the hydrophobic polyimide resin main chain.
  • the electron withdrawing property by the perfluoroalkoxy group is further increased.
  • the acidity of the acidic group is further increased, so that the proton is more easily released from the acidic group, compared with a polyimide resin having a relatively short-chain acid perfluoroalkoxy group having 6 or less carbon atoms. Proton conductivity is further improved.
  • Ar 1 and Ar " 3 are not necessarily the same, and may be a copolymer or a mixture in which a plurality of substituents are mixed.
  • diamino compound containing an acid perfluoroalkoxy group for example, the following compounds can be preferably used.
  • the electrolyte membrane according to Embodiment 2 can be produced by forming the polyimide resin according to Embodiment 2 by a known method. This is the same as the case of the electrolyte membrane according to Embodiment 1.
  • the polyimide resin according to Embodiment 3 is a polyimide resin containing the structural unit represented by the general formula (5).
  • a hydrophobic acid alkyl group exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin.
  • the acidic acidic group and the main chain of the hydrophobic polyimide resin are well separated.
  • the imide bond present in the main chain of the hydrophobic polyimide resin is less susceptible to attack by water molecules with hydrophilic acidic base, so the same carbon Hydrolysis resistance is improved compared to polyimide resin having a prime acid alkoxy group
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are favorably separated. That is, the hydrophilic region and the hydrophobic region are well separated.
  • protons generated in the hydrophilic region move well through the hydrophilic region unevenly distributed in the polyimide resin.
  • the proton conductivity is improved as compared with the polyimide resin having the same carbon number acid alkoxy group.
  • the acid alkyl group is preferably an acid alkyl group having 6 or less carbon atoms, but is preferably an acid alkyl group having 7 or more carbon atoms. More preferred ,.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are more favorably separated. That is, the hydrophilic region and the hydrophobic region are more favorably separated.
  • protons generated in the hydrophilic region move more favorably through the hydrophilic region unevenly distributed in the polyimide resin, so that a relatively short-chain acid alkyl group having 6 or less carbon atoms.
  • Proton conductivity S is further improved compared to polyimide resin having
  • polyimide resin according to Embodiment 3 it is also preferable that it is an acid alkyl group strength acid perfluoroalkyl group.
  • an acid perfluoroalkyl group having high hydrophobicity exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin can be separated more satisfactorily.
  • the imide bond existing in the main chain of the hydrophobic polyimide resin is less susceptible to attack by water molecules from the hydrophilic acid group, the polyimide resin having an acid alkyl group that is not perfluorinated. Compared with fat, hydrolysis resistance is further improved.
  • the hydrophilic acidic group and the hydrophobic polyimide resin main chain are more favorably separated. That is, the hydrophilic region and the hydrophobic region are more favorably separated. As a result, protons generated in the hydrophilic region move better through the hydrophilic region unevenly distributed in the polyimide resin.
  • the perfluorinated alkyl group has higher electron withdrawing properties than the alkyl group, the acidity of the acidic group is further increased, and the proton of the acidic group is more likely to be released. For this reason, the proton conductivity is further improved as compared with a polyimide resin having an acid alkyl group that is not perfluorinated.
  • the chemical structures represented by Ar 1 and Ar 4 do not have to be the same, and may be a copolymer or a mixture in which a plurality of substituents are mixed.
  • diami compound containing an acid alkyl group for example, the following compounds can be preferably used.
  • the electrolyte membrane according to Embodiment 3 can be manufactured by forming the polyimide resin according to Embodiment 3 by a known method. This is the same as the case of the electrolyte membrane according to Embodiment 1.
  • the polyimide resin according to Embodiment 4 is a polyimide resin containing the structural unit represented by the general formula (7).
  • an acid alkylthio group having a sulfur atom larger than an oxygen atom exists between the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin. It will be.
  • the steric hindrance of the sulfur atom causes the imide bond present in the main chain of the hydrophobic polyimide resin to attack with water molecules having a hydrophilic acidic basic force. Since it is difficult to receive, hydrolysis resistance is improved as compared with a polyimide resin having an acid alkoxy group having the same carbon number.
  • the acid alkylthio group is of course preferably an acid alkylthio group having 6 or less carbon atoms, but more preferably an acid alkylthio group having 7 or more carbon atoms. Better!/,.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are favorably separated. That is, the hydrophilic region and the hydrophobic region are well separated. As a result, protons generated in the hydrophilic region move well through the hydrophilic region that is unevenly distributed in the polyimide resin, and therefore have a relatively short-chain acid alkylthio group having 6 or less carbon atoms. Compared with polyimide resin, proton conductivity is improved.
  • the polyimide resin according to Embodiment 4 is also preferably an acid alkylthio group acid perfluoroalkylthio group! /.
  • the hydrophilic acidic group and the main chain of the hydrophobic polyimide resin are well separated. That is, the hydrophilic region and the hydrophobic region are well separated. As a result, protons generated in the hydrophilic region move well through the hydrophilic region that is unevenly distributed in the polyimide resin.
  • the perfluoroalkylthio group has a higher electron withdrawing property than the alkylthio group. As a result, the acidity of the acidic group is increased, and protons are easily released from the acidic group. For these reasons, the proton conductivity is improved as compared with the polyimide resin having an acid alkylthio group after being perfluorinated.
  • Ar 1 and Ar 5 are not necessarily the same, and may be a copolymer or a mixture in which a plurality of substituents are mixed.
  • diamino compound containing an acid alkylthio group for example, the following compounds can be preferably used.
  • the electrolyte membrane according to Embodiment 4 can be produced by forming the polyimide resin according to Embodiment 4 by a known method. This is the same as the case of the electrolyte membrane according to Embodiment 1.
  • the reaction solution became reddish brown. Thereafter, the mixture was heated for 15 hours with stirring at 175 ° C under a nitrogen stream. The reaction solution became viscous (polymerization step).
  • the obtained polyimide polymer solution was formed into a film by a casting method.
  • the copolymer solution produced on the glass plate was poured as it was, and then the film was dried at 60 ° C for one day to form a film. Thereafter, after drying at 80 ° C. for 12 hours under normal pressure, further drying under reduced pressure at 80 ° C. for 12 hours was performed.
  • the obtained film was immersed in 400 mL of a 1N ethanol ethanol solution and stirred for 12 hours (acid treatment step). This acid treatment step was repeated two more times. Thereafter, it was washed with ethanol. Thereafter, it was dried under reduced pressure at 60 ° C for 12 hours to obtain a test sample.
  • test sample was obtained according to the method of Example 1 except that 3,3, -bis (sulfomethyl) benzidine was used instead of 3,3, -bis (sulfodecyloxy) benzidine.
  • test sample was obtained according to the method of Example 1 except that 3,3, -bis (sulfoethylthio) benzidine was used instead of 3,3, -bis (sulfodecyloxy) benzidine.
  • test sample was obtained according to the method of Example 1 except that 3,3, -bis (sulfopropyloxy) benzidine was used instead of 3,3, -bis (sulfodecyloxy) benzidine.
  • test sample according to Examples 1 to 4 and Comparative Example 1 was subjected to Fenton's reagent (2 ppm of iron sulfate). In 3% aqueous hydrogen peroxide solution) at 80 ° C. The appearance of each test sample was observed over time. The time at which the sample film began to dissolve and the time at which it completely dissolved was recorded.
  • test sample according to Examples 1 to 4 and Comparative Example 1 was exposed to an atmosphere of high temperature and high humidity (140 ° C., humidity 100%) for 24 hours. After the test, the appearance of each test sample was observed.
  • Each test sample according to Examples 1 to 4 and Comparative Example 1 was cut into a size of 5 ⁇ 40 mm, and the AC impedance was measured by the 4-terminal method. The measurement was performed under the conditions of 80 ° C or 100 ° C, a relative humidity of 65%, a current value of 0.005 mA constant current, and a sweep frequency of 10 to 20000 Hz. Proton conductivity was calculated from the obtained impedance, distance between membrane terminals (10 mm), and film thickness (50 / z m).
  • Table 1 shows the evaluation results for each test sample according to Examples 1 to 4 and Comparative Example 1.

Description

明 細 書
ポリイミド樹脂及び電解質膜
技術分野
[0001] 本発明は、ポリイミド榭脂及び電解質膜に関する。
背景技術
[0002] 燃料電池は、燃料 (例えば、水素、メタノールなど。 )と酸素との化学反応エネルギ 一を電気エネルギーに直接変換する発電装置であり、温室ガスや有害物質を発生し ないクリーンな次世代エネルギー源として有望視されている。とりわけ高分子固体電 解質型燃料電池(以下、 PEFCという。)やメタノール直接型燃料電池(以下、 DMF Cという。)は小型軽量ィ匕が可能で、電気自動車用、家庭用、携帯機器用などの電源 として有望視されているため、現在活発に研究開発が行われている。 PEFCや DMF Cに用いられる電解質膜としては、湿潤状態でプロトンのみを透過する電解質膜が求 められており、現在では主にパーフルォロアルキルスルホン酸高分子を含む電解質 膜が用いられている。
[0003] ところで、 PEFCや DMFCにつ 、て、現在よりも性能を高めて広範な実用化を図る ためには、運転温度を現在 (例えば、 80°C以下。)よりも高く(例えば、 120°C以上。) することが求められている。しかしながら、上記したパーフルォロアルキルスルホン酸 高分子を含む電解質膜は、 100°C以上の温度条件下でプロトン伝導度及び機械的 強度が低下してしまうため、 100°C以上の高温運転に供することは困難であるという 問題がある。また、燃料ガス (水素又はメタノール)を透過し易いという問題やコストが 高いなどの問題がある。
[0004] このような問題を解決するため、ポリマー内にスルホン酸基が導入されたポリイミド 榭脂を含む電解質膜が提案されている。ポリマー内にスルホン酸基が導入されたポリ イミド榭脂を含む電解質膜は、耐熱性、耐酸化性及び機械的強度が高ぐ製造コスト が安価で、置換基導入が容易であり、さらには高いプロトン伝導度を有するため、燃 料電池用の電解質膜の有望な候補の一つとして考えられている (例えば、特許文献 1〜4参照。 )。このような、ポリマー内にスルホン酸基が導入されたポリイミド榭脂を含 む電解質膜は、上記したパーフルォロアルキルスルホン酸高分子を含む電解質膜と 比較しても、 100°C以上でプロトン伝導度及び機械的強度が低下してしまうという問 題が抑制されている。
[0005] なかでも、特許文献 2〜4に記載されたポリイミド榭脂を含む電解質膜は、ポリマー の側鎖にスルホン酸基を含む置換基 (例えば、酸アルコキシ基。)が導入されたポリイ ミド榭脂を含む電解質膜であるため、ポリマーの主鎖の芳香環にスルホン酸基が直 接導入された特許文献 1に記載されたポリイミド榭脂を含む電解質膜と比較しても、 1 00°C以上でプロトン伝導度及び機械的強度が低下してしまうという問題がさらに抑制 されている。
[0006] 特許文献 1 :特表 2000— 510511号公報
特許文献 2 :特開 2002— 105199号公報
特許文献 3 :特開 2002— 105200号公報
特許文献 4:特開 2004— 155998号公報
発明の開示
発明が解決しょうとする課題
[0007] しカゝしながら、特許文献 1〜4に記載されたポリイミド榭脂を含む電解質膜は耐加水 分解性が低 、と 、う問題がある。
すなわち、燃料電池用の電解質膜としての性能を高めるためにポリイミド榭脂にお けるプロトン伝導度を高めようとすれば、ポリイミド榭脂にスルホン酸基を高濃度に導 入することが必要となる。しかしながら、スルホン酸基は極めて高い親水性を有するた め、ポリイミド榭脂にスルホン酸基を高濃度に導入することに伴い、ポリイミド榭脂全 体が親水性化される結果、ポリイミド榭脂におけるイミド結合が加水分解を受け易くな り、耐加水分解性が低下するのである。
[0008] なお、この問題は、ポリイミド榭脂にスルホン酸基を高濃度に導入した場合だけに 見られるのではなぐポリイミド榭脂にスルホン酸基以外の強い酸性基を高濃度に導 入した場合にも同様に見られる問題である。
[0009] そこで、本発明は、耐加水分解性の向上されたポリイミド榭脂を提供することを目的 とする。また、そのような優れたポリイミド榭脂を含む電解質膜を提供することを目的と する。
課題を解決するための手段
[0010] 本発明者らは、上記の目的を達成するために鋭意検討を重ねた結果、ポリイミド榭 脂の側鎖に導入する酸性基として、(a)炭素数が 7以上の酸アルコキシ基、(b)酸パ 一フルォロアルコキシ基、(c)酸アルキル基又は(d)酸アルキルチオ基のうちの!/ヽず れかの酸性基を用いることにより、耐加水分解性を向上させることが可能となることを 見出し、本発明を完成させるに至った。
[0011] (1)すなわち、本発明のポリイミド榭脂は、一般式(1)で示される構造単位を含むこと を特徴とする。
[化 1]
Figure imgf000005_0001
(一般式(1)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar2は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は炭素数 7以上の酸アルコキシ基で置換されている。なお、この酸アルコキ シ基における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐ
2
また、一部または全部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂 肪族基で置換されていてもよい。 )
[0012] このため、本発明のポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミ ド榭脂の主鎖との間には、炭素数が 7以上の長鎖の酸アルコキシ基が存在することに なるため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがより良好に分離される ようになる。その結果、本発明のポリイミド榭脂によれば、疎水性のポリイミド榭脂の主 鎖に存在するイミド結合が親水性の酸性基力 の水分子による攻撃を受け難くなるた め、炭素数が 6以下の比較的短鎖の酸アルコキシ基を有するポリイミド榭脂と比較し て、耐加水分解性が向上する。
[0013] また、本発明のポリイミド榭脂においては、上記したように、親水性の酸性基と疎水 性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水性領域と 疎水性領域とがより良好に分離されるようになる。その結果、本発明のポリイミド榭脂 によれば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親水性領 域を伝って良好に移動するようになるため、炭素数が 6以下の比較的短鎖の酸アル コキシ基を有するポリイミド榭脂と比較して、プロトン伝導度が向上する。
[0014] 上記(1)に記載のポリイミド榭脂においては、前記酸アルコキシ基が炭素数 7以上 9 以下の酸アルコキシ基である場合ももちろん好ましいが、上記に鑑みれば、前記酸ァ ルコキシ基が炭素数 10以上の酸アルコキシ基であることがさらに好ましい。
[0015] なお、この明細書で、「S、 N、 0、 SO又は COで置換されていてもよい」とは、炭素
2
原子のみが置換される場合のほか、炭素原子に結合して!/、る水素原子もあわせて置 換されることを含む意味である。また、 Nで置換される場合には、結合した水素原子 の数が変化することもある。
[0016] (2)上記(1)に記載のポリイミド榭脂においては、 Ar2が一般式(2)で示される構造を 有する基であることが好まし 、。
[化 2]
Figure imgf000006_0001
(一般式 (2)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 I1及び fは、前記酸アルコキシ基の炭素数を表し、それぞれ 7以上の整 数である。また、 I1及び I2は、それぞれ同一であっても異なっていてもよい。 )
[0017] このように、 Ar2として一般式(2)で示される構造を有する基を用いることにより、ポリ イミド榭脂における耐加水分解性及びプロトン伝導度がさらに向上する。
[0018] (3)本発明のポリイミド榭脂は、一般式 (3)で示される構造単位を含むことを特徴とす る。
[化 3]
Figure imgf000007_0001
(一般式 (3)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar3は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸パーフルォロアルコキシ基で置換されている。なお、この酸パーフル ォロアルコキシ基における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されて
2
いてもよぐまた、一部または全部のフッ素原子は、脂肪族基、他のハロゲン原子又 はパーフルォロ脂肪族基で置換されていてもよい。 )
[0019] このため、本発明のポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミ ド榭脂の主鎖との間には、高い疎水性を有する酸パーフルォロアルコキシ基が存在 することになるため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分 離されるようになる。その結果、本発明のポリイミド榭脂によれば、疎水性のポリイミド 榭脂の主鎖に存在するイミド結合が親水性の酸性基力 の水分子による攻撃を受け 難くなるため、同じ炭素数の酸アルコキシ基を有するポリイミド榭脂と比較して、耐加 水分解性が向上する。 [0020] また、本発明のポリイミド榭脂にぉ 、ては、上記したように、親水性の酸性基と疎水 性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水性領域と 疎水性領域とが良好に分離されるようになる。その結果、本発明のポリイミド榭脂によ れば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親水性領域を 伝って良好に移動するようになる。また、パーフルォロアルコキシ基はアルコキシ基と 比較して高い電子吸引性を有している。その結果、本発明のポリイミド榭脂によれば 、酸性基における酸性度が高まり、酸性基力 プロトンが放出され易くなる。このため 、本発明のポリイミド榭脂によれば、同じ炭素数の酸アルコキシ基を有するポリイミド 榭脂と比較して、プロトン伝導度が向上する。
[0021] (4)上記(3)に記載のポリイミド榭脂においては、前記酸パーフルォロアルコキシ基 が炭素数 6以下の酸パーフルォロアルコキシ基である場合ももちろん好ま 、が、前 記酸パーフルォロアルコキシ基が炭素数 7以上の酸パーフルォロアルコキシ基であ ることがより好まし!/、。
[0022] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸パーフルォロアルコキシ基が存在することになる ため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離される ようになる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性 の酸性基力 の水分子による攻撃をさらに受け難くなるため、炭素数が 6以下の比較 的短鎖の酸パーフルォロアルコキシ基を有するポリイミド榭脂と比較して、耐加水分 解性がさらに向上する。
[0023] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになるため、炭素数が 6以 下の比較的短鎖の酸パーフルォロアルコキシ基を有するポリイミド榭脂と比較して、 プロトン伝導度がさらに向上する。
[0024] また、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との間には、炭素数が 7以 上の長鎖の酸パーフルォロアルコキシ基が存在することになるため、炭素数が 6以下 の比較的短鎖の場合と比較して、パーフルォロアルコキシ基による電子吸引性がさら に高くなる。その結果、酸性基における酸性度がさらに高くなるため、酸性基からプロ トンがさらに放出され易くなり、炭素数が 6以下の比較的短鎖の酸パーフルォロアル コキシ基を有するポリイミド榭脂と比較して、プロトン伝導度がさらに向上する。
[0025] (5)上記(3)に記載のポリイミド榭脂においては、 Ar3が一般式 (4)で示される構造を 有する基であることが好まし 、。
[化 4]
Figure imgf000009_0001
(一般式 (4)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 m1及び m2は、前記酸パーフルォロアルコキシ基の炭素数を表し、それ ぞれ 1以上の整数である。また、 m1及び m2は、それぞれ同一であっても異なってい てちよい。 )
[0026] このように、 Ar3として一般式 (4)で示される構造を有する基を用いることにより、ポリ イミド榭脂における耐加水分解性及びプロトン伝導性がさらに向上する。
[0027] (6)本発明のポリイミド榭脂は、一般式 (5)で示される構造単位を含むことを特徴とす る。
[化 5]
Figure imgf000010_0001
(一般式 (5)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar4は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸アルキル基で置換されている。なお、この酸アルキル基における一部 の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全
2
部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて いてもよい。 )
[0028] このため、本発明のポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミ ド榭脂の主鎖との間には、疎水性の酸アルキル基が存在することになるため、親水性 の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。その結果
、本発明のポリイミド榭脂によれば、疎水性のポリイミド榭脂の主鎖に存在するイミド 結合が親水性の酸性基力もの水分子による攻撃を受け難くなるため、同じ炭素数の 酸アルコキシ基を有するポリイミド榭脂と比較して、耐加水分解性が向上する。
[0029] また、本発明のポリイミド榭脂にぉ 、ては、上記したように、親水性の酸性基と疎水 性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水性領域と 疎水性領域とが良好に分離されるようになる。その結果、本発明のポリイミド榭脂によ れば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親水性領域を 伝って良好に移動するようになるため、同じ炭素数の酸アルコキシ基を有するポリイミ ド榭脂と比較して、プロトン伝導度が向上する。
[0030] (7)上記(6)に記載のポリイミド榭脂においては、前記酸アルキル基が炭素数 6以下 の酸アルキル基である場合ももちろん好ま 、が、前記酸アルキル基が炭素数 7以 上の酸アルキル基であることがより好まし!/、。
[0031] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸アルキル基が存在することになるため、親水性 の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離されるようになる。そ の結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性基から の水分子による攻撃をさらに受け難くなるため、炭素数が 6以下の比較的短鎖の酸ァ ルキル基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0032] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになるため、炭素数が 6以 下の比較的短鎖の酸アルキル基を有するポリイミド榭脂と比較して、プロトン伝導度 力 Sさらに向上する。
[0033] (8)上記(6)に記載のポリイミド榭脂にぉ 、ては、前記酸アルキル基がパーフルォロ 化されて!/、な 、ものであることも好まし 、が、前記酸アルキル基が酸パーフルォロア ルキル基であることがより好まし 、。
[0034] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、高い疎水性を有する酸パーフルォロアルキル基が存在することになるため、 親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離されるように なる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸 性基からの水分子による攻撃をさらに受け難くなるため、パーフルォロ化されていな い酸アルキル基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0035] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになる。また、パーフルォ 口アルキル基はアルキル基と比較して高い電子吸引性を有している、その結果、酸 性基における酸性度がさらに高まり、酸性基力もプロトンがさらに放出され易くなる。 これらのため、パーフルォロ化されて 、な 、酸アルキル基を有するポリイミド榭脂と比 較して、プロトン伝導度がさらに向上する。
[0036] (9)上記(6)に記載のポリイミド榭脂においては、 Ar4が一般式 (6)で示される構造を 有する基であることが好まし 、。
[化 6]
Figure imgf000012_0001
(一般式 (6)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 n1及び n2は、前記酸アルキル基の炭素数を表し、それぞれ 1以上の整 数である。また、 n1及び n2は、それぞれ同一であっても異なっていてもよい。 )
[0037] このように、 Ar4として一般式 (6)で示される構造を有する基を用いることにより、ポリ イミド榭脂における耐加水分解性及びプロトン伝導性がさらに向上する。
[0038] (10)本発明のポリイミド榭脂は、一般式 (7)で示される構造単位を含むことを特徴と する。
[化 7]
Figure imgf000012_0002
(一般式 (7)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。 また、 Ar5は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸アルキルチオ基で置換されている。なお、この酸アルキルチオ基にお ける一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部
2
又は全部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置 換されていてもよい。 )
[0039] このため、本発明のポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミ ド榭脂の主鎖との間には、酸素原子よりも大きな硫黄原子を有する酸アルキルチオ 基が存在することになる。その結果、本発明のポリイミド榭脂によれば、硫黄原子の立 体障害により、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性 基からの水分子による攻撃を受け難くなるため、同じ炭素数の酸アルコキシ基を有す るポリイミド榭脂と比較して、耐加水分解性が向上する。
[0040] (11)上記(10)に記載のポリイミド榭脂においては、前記酸アルキルチオ基が炭素 数 6以下の酸アルキルチオ基である場合ももちろん好ま U、が、前記酸アルキルチオ 基が炭素数 7以上の酸アルキルチオ基であることがより好ましい。
[0041] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸アルキルチオ基が存在することになるため、親 水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。その 結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性基力 の 水分子による攻撃を受け難くなるため、炭素数が 6以下の比較的短鎖の酸アルキル チォ基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0042] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に 分離されるようになる。すなわち、親水性領域と疎水性領域とが良好に分離されるよう になる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親 水性領域を伝って良好に移動するようになるため、炭素数が 6以下の比較的短鎖の 酸アルキルチオ基を有するポリイミド榭脂と比較して、プロトン伝導度が向上する。
[0043] (12)上記(10)に記載のポリイミド榭脂においては、前記酸アルキルチオ基がパーフ ルォロ化されて ヽな 、ものであることも好まし 、が、前記酸アルキルチオ基が酸パー フルォロアルキルチオ基であることがより好まし 、。 [0044] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、高い疎水性を有する酸パーフルォロアルキルチオ基が存在することになる ため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるように なる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸 性基からの水分子による攻撃をより受け難くなるため、パーフルォロ化されていない 酸アルキルチオ基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上す る。
[0045] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に 分離されるようになる。すなわち、親水性領域と疎水性領域とが良好に分離されるよう になる。その結果、本発明のポリイミド榭脂によれば、親水性領域で発生したプロトン は、ポリイミド榭脂中に偏在する親水性領域を伝って良好に移動するようになる。また 、パーフルォロアルキルチオ基はアルキルチオ基と比較して高 、電子吸引性を有し ている、その結果、酸性基における酸性度が高まり、酸性基力もプロトンが放出され 易くなる。これらのため、パーフルォロ化されていない酸アルキルチオ基を有するポリ イミド榭脂と比較して、プロトン伝導度が向上する。
[0046] (13)上記(10)に記載のポリイミド榭脂においては、 Ar5が一般式 (8)で示される構 造を有する基であることが好まし 、。
[化 8]
Figure imgf000014_0001
(一般式 (8)中、 X1及び ΧΊま、酸性基を含む置換基であり、同一であっても異なって いてもよい。 o1及び o2は、前記酸アルキルチオ基の炭素数を表し、それぞれ 1以上の 整数である。また、 o1及び o2は、それぞれ同一であっても異なっていてもよい。 ) [0047] このように、 Ar5として一般式 (8)で示される構造を有する基を用いることにより、ポリ イミド榭脂における耐加水分解性及びプロトン伝導性がさらに向上する。
[0048] なお、上記(1)、 (3)、(6)又は(10)に記載のポリイミド榭脂においては、酸アルコ キシ基、酸パーフルォロアルコキシ基、酸アルキル基又は酸アルキルチオ基の炭素 数は 20以下であることが好まし 、。
[0049] このように構成することにより、原料の入手や製造が容易になり、製造コストも安価な ものとなる。また、ポリイミド榭脂の一定重量当たりに含まれる酸性基の割合が減じら れることがなくなり、高いプロトン伝導度を実現することができる。
[0050] (14)上記(2)、(5)、(9)又は(13)に記載のポリイミド榭脂においては、 X1及び X2
、スルホン酸基、ホスホン酸基、カルボン酸基又はフエノール性水酸基を含む置換基 であることが好ましい。
[0051] このように構成することにより、酸性基の酸解離度が高くなり、酸性基力 プロトンが 放出され易くなるため、プロトン伝導性がさらに向上する。
[0052] (15)上記(1)〜(14)に記載のポリイミド榭脂においては 前記構造単位が、炭素数
7以上の酸アルコキシ基、酸パーフルォロアルコキシ基、酸アルキル基又は酸アルキ ルチオ基を含むジァミン化合物と、四カルボン酸二無水物との重縮合により得られる 構造単位であることが好まし 、。
[0053] このように構成することにより、ポリイミド榭脂の合成が容易で、製造コストも安価なも のになる。
[0054] (16)本発明の電解質膜は、上記(1)〜(15)のいずれかに記載のポリイミド榭脂を含 むことを特徴とする。
[0055] このため、本発明の電解質膜は、上記したように耐加水分解性及びプロトン伝導度 の高い、優れたポリイミド榭脂を含む電解質膜であるため、燃料電池の運転温度を 1 00°C以上にすることが可能になり、燃料電池の性能を現在よりも高めて広範な実用 化を図ることが可能になる。
[0056] また、従来力も汎用されているパーフルォロアルキルスルホン酸高分子よりも低コス トで製造することが可能になる。
発明を実施するための最良の形態
[0057] 本発明のポリイミド榭脂及び電解質膜を実施形態に基づいて詳細に説明する。
[0058] [実施形態 1]
(ポリイミド榭脂)
実施形態 1に係るポリイミド榭脂は、上記した一般式(1)で示される構造単位を含む ポリイミド榭脂である。
[0059] 実施形態 1に係るポリイミド榭脂にぉ 、ては、上記したように、親水性の酸性基と疎 水性のポリイミド榭脂の主鎖との間には、炭素数が 7以上の長鎖の酸アルコキシ基が 存在することになるため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがより良 好に分離されるようになる。その結果、実施形態 1に係るポリイミド榭脂によれば、疎 水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性基からの水分子に よる攻撃を受け難くなるため、炭素数が 6以下の比較的短鎖の酸アルコキシ基を有 するポリイミド榭脂と比較して、耐加水分解性が向上する。
[0060] また、実施形態 1に係るポリイミド榭脂にぉ 、ては、上記したように、親水性の酸性 基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水 性領域と疎水性領域とが良好に分離されるようになる。その結果、実施形態 1に係る ポリイミド榭脂によれば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在 する親水性領域を伝って良好に移動するようになるため、炭素数が 6以下の比較的 短鎖の酸アルコキシ基を有するポリイミド榭脂と比較して、プロトン伝導度が向上する
[0061] なお、実施形態 1に係るポリイミド榭脂においては、酸アルコキシ基が炭素数 10以 上の酸アルコキシ基であることがさらに好ましい。
[0062] 上記した一般式(1)における Ar1としては、例えば、以下に示す置換基を好ましく用 いることがでさる。
[0063] (Ar1)
[化 9]
Figure imgf000017_0001
[0064] また、上記した一般式(1)における Ar2としては、例えば、以下に示す置換基を好ま しく用レ、ることができる。
[0065] (Ar2)
[化 10]
Figure imgf000017_0002
[0066] なかでも、 Ar2が上記した一般式(2)で示される構造を有する基であることが好まし い。
[0067] なお、 Ar1及び Ar2で示されるそれぞれの化学構造は、すべて同じである必要はな ぐ複数の置換基が混在した共重合体又は混合物であってもよい。
[0068] 上記した一般式(2)における X1又は X2としては、以下に示す置換基を好ましく用い ることがでさる。
Figure imgf000018_0001
[化 11]
Figure imgf000018_0002
[0070] 実施形態 1に係るポリイミド榭脂においては、分子量は特に限定されないが、電解 質膜としたときの機械的強度を維持する観点から、重合平均分子量が少なくとも 500 0以上であることが好まし 、。
[0071] なお、ポリイミド榭脂の構造は、上記した一般式(1)で示される構造単位を含むもの であるが、他の構造単位 (共重合成分)を含んでいてもよい。この場合、ブロック共重 合体、交互共重合体又はランダム共重合体の!/、ずれでも構わな 、。
[0072] 次に、実施形態 1に係るポリイミド榭脂を製造する方法について、一例を挙げて説 明する。なお、実施形態 1に係るポリイミド榭脂の製造方法は、これに限定されるもの ではない。
[0073] 実施形態 1に係るポリイミド榭脂は、酸アルコキシ基を含むジァミノ化合物と、四カル ボン酸二無水物化合物とからなる複数のモノマーを、有機酸、第三級ァミン及び有機 溶媒の存在下で重合させて製造することができる。
[0074] この製造方法においては、ジァミノ化合物のァミノ基の部分力 四カルボン酸二無 水物化合物の酸無水物の部分と反応することで重合反応が進行し、イミド結合を持 つポリイミド榭脂が形成される。
[0075] 酸アルコキシ基を含むジァミノ化合物としては、例えば、以下に示す化合物を好ま しく用いることができる。
[0076] (酸アルコキシ基を含むジァミノ化合物)
[化 12]
Figure imgf000020_0001
[0077] ジァミノ化合物は、単一の化合物で用いてもよ!、し、複数の化合物を混合して用い てもよい。
[0078] 得られるポリイミド榭脂の安定性を向上させるための架橋剤として、例えば、下記の ジァミノ化合物、トリァミノ化合物、テトラアミノ化合物などを適宜添加することもできる
[0079] (ジァミノ化合物)
[化 13]
Figure imgf000021_0001
(テトラアミノ化合物)
[化 15]
Figure imgf000022_0001
[0082] 四カルボン酸二無水物化合物としては、例えば、以下に示す化合物を好ましく用い ることがでさる。
[0083] (四カルボン酸二無水物化合物)
[化 16]
Figure imgf000023_0001
[0084] 上記した四カルボン酸二無水物化合物のなかでも、得られるポリイミド樹脂の安定 性の観点から、ナフタレン—1, 8 :4, 5—四カルボン酸二無水物を特に好ましく用い ることがでさる。
[0085] 四カルボン酸二無水物化合物は、単一の化合物で用いてもょ 、し、複数の化合物 を混合して用いてもよい。
[0086] ジァミノ化合物と四カルボン酸二無水物化合物とは、 1: 1のモル比で反応する。従 つて、ジァミノ化合物と四カルボン酸二無水物化合物とを加える量は、モル比が 1 : 1 程度になるように調整する。
[0087] 実施形態 1に係るポリイミド榭脂の製造方法は、溶解工程、重合工程及び改質工程 を含む。その他必要に応じた工程を含むこともできる。
[0088] 溶解工程は、ジァミノ化合物(0. lmM〜5M)と、第三級ァミン(0. lmM〜20M) と、有機溶媒との混合物を加熱して溶解する工程である。第三級ァミンは、酸性基を 有するジァミノ化合物を有機溶媒に溶解させるために用いる。混合物を加熱する温 度としては特に限定しないが、 20〜150°C程度とすることでモノマーを容易に均一に 溶媒中に溶解することができる。
[0089] 第三級ァミンとしては特に限定されず、トリメチルァミン、トリェチルァミン、トリプロピ ルァミン、ジァザビシクロウンデセン等を好ましく用いることができる。なかでも、トリエ チルァミンを特に好ましく用いることができる。これら第三級ァミンは、単独で用いても よ!、し、 2つ以上の第三級ァミンの混合物として用いてもょ 、。
[0090] 有機溶媒としては、高沸点、高極性のものが好ましぐフエノール、 m クレゾール、 m—クロ口フエノール、 p クロ口フエノール、ジメチルホルムアミド、ジメチルァセトアミ ド、ジメチルスルホキシド、 N—メチル—2—ピロリジノン、 N—シクロへキシル—2—ピ ロリジノン等を好ましく用いることができる。なかでも、 m—クレゾール、ジメチルスルホ キシド及び N—メチル 2ピロリジノンを特に好ましく用いることができる。これら有機 溶媒は、単独で用いてもよいし、 2つ以上の有機溶媒の混合物として用いてもよい。
[0091] 重合工程は、溶媒中にジァミノ化合物を均一に溶解して得られる溶液に四カルボン 酸二無水物化合物(0. lmM〜5M)を加えて、有機酸(0. 01mM〜20M)の存在 下で加熱して重合させる工程である。有機酸は、重合'閉環反応触媒としての役割を 果たし、ポリアミック酸の生成とこれの閉環によるイミド環形成を促進する。
[0092] 有機酸としては、高沸点、かつ、上記有機溶媒への溶解性が高!、ィ匕合物が好まし ぐ安息香酸、メチル安息香酸、ジメチル安息香酸、サリチル酸等を好ましく用いるこ とができる。なかでも、安息香酸を特に好ましく用いることができる。有機酸は重合ェ 程で存在するならば上記した溶解工程で添加してもよ ヽ。有機酸を添加する量として は特に限定しないが、安息香酸の場合には、四カルボン酸二無水物化合物に対し て 1〜6倍モル程度カ卩えることが好ましい。また、混合物を加熱する温度としては少な くとも 40°C以上であり、好ましくは 150〜180°C程度とすることで効率よく重合反応が 進行し、高分子量ポリイミド榭脂を得ることができる。
[0093] 改質工程は、混合物 (重合したポリイミド榭脂)中の構造欠陥を是正して、ポリイミド 榭脂の物理的'ィ匕学的 ·熱的特性を向上する工程である。構造欠陥とは、ポリイミド榭 脂中の未閉環部分 (ァミック酸)に基づく欠陥である。改質工程では、混合物を重合 工程よりもさらに高い温度で加熱することで脱水反応を行い、未閉環部分のイミドィ匕 を生起させる。混合物を加熱する温度としては少なくとも 150°C以上が好ましぐ 190 〜220°Cがさらに好ましい。このような温度とすることで閉環反応が効率よく進行し、 構造欠陥のな ヽポリイミド榭脂を得ることができる。
[0094] (電解質膜)
実施形態 1に係る電解質膜は、実施形態 1に係るポリイミド榭脂を公知の方法で製 膜することによって製造することができる。製膜方法としては、例えば、溶液を平板上 にキャストするキャスト法、ダイコータ、コンマコータ等により平板上に溶液を塗布する 方法、溶融液を延伸等する方法などの一般的な方法を好ましく用いることができる。 この場合、ポリイミド榭脂を単独で用いるほか、その他の高分子化合物、高分子電解 質、低分子可塑剤等と混合して用いることができる。
[0095] [実施形態 2]
(ポリイミド榭脂)
実施形態 2に係るポリイミド榭脂は、上記した一般式 (3)で示される構造単位を含む ポリイミド榭脂である。
[0096] 実施形態 2に係るポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミド 榭脂の主鎖との間には、高い疎水性を有する酸パーフルォロアルコキシ基が存在す ることになるため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離さ れるようになる。その結果、実施形態 2に係るポリイミド榭脂によれば、疎水性のポリイ ミド榭脂の主鎖に存在するイミド結合が親水性の酸性基力 の水分子による攻撃を 受け難くなるため、同じ炭素数の酸アルコキシ基を有するポリイミド榭脂と比較して、 耐加水分解性が向上する。 [0097] また、実施形態 2に係るポリイミド榭脂にぉ 、ては、上記したように、親水性の酸性 基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水 性領域と疎水性領域とが良好に分離されるようになる。その結果、実施形態 2に係る ポリイミド榭脂によれば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在 する親水性領域を伝って良好に移動するようになる。また、パーフルォロアルコキシ 基はアルコキシ基と比較して高い電子吸引性を有している。その結果、実施形態 2に 係るポリイミド榭脂によれば、酸性基における酸性度が高まり、酸性基力もプロトンが 放出され易くなる。このため、実施形態 2に係るポリイミド榭脂によれば、同じ炭素数 の酸アルコキシ基を有するポリイミド榭脂と比較して、プロトン伝導度が向上する。
[0098] 実施形態 2に係るポリイミド榭脂にぉ 、ては、酸パーフルォロアルコキシ基は、炭素 数 6以下の酸パーフルォロアルコキシ基であることももちろん好まし 、が、炭素数 7以 上の酸パーフルォロアルコキシ基であることがより好ましい。
[0099] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸パーフルォロアルコキシ基が存在することになる ため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離される ようになる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性 の酸性基力 の水分子による攻撃をさらに受け難くなるため、炭素数が 6以下の比較 的短鎖の酸パーフルォロアルコキシ基を有するポリイミド榭脂と比較して、耐加水分 解性がさらに向上する。
[0100] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになるため、炭素数が 6以 下の比較的短鎖の酸パーフルォロアルコキシ基を有するポリイミド榭脂と比較して、 プロトン伝導度がさらに向上する。
[0101] また、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との間には、炭素数が 7以 上の長鎖の酸パーフルォロアルコキシ基が存在することになるため、炭素数が 6以下 の比較的短鎖の場合と比較して、パーフルォロアルコキシ基による電子吸引性がさら に高くなる。その結果、酸性基における酸性度がさらに高くなるため、酸性基からプロ トンがさらに放出され易くなり、炭素数が 6以下の比較的短鎖の酸パーフルォロアル コキシ基を有するポリイミド榭脂と比較して、プロトン伝導度がさらに向上する。
[0102] 上記した一般式(3)における Ar1としては、実施形態 1の場合と同様、上記した一般 式(1)における Ar1と同様の置換基を好ましく用いることができる。
[0103] 上記した一般式(3)における Ar3としては、以下に示す置換基を好ましく用いること ができる。
[0104] (Ar3)
[化 17]
Figure imgf000027_0001
[0105] なお、 Ar1及び Ar"3で示されるそれぞれの化学構造はすべて同じである必要はなく 、複数の置換基が混在した共重合体または混合物であってもよ ヽ。
[0106] 酸パーフルォロアルコキシ基を含むジァミノ化合物としては、例えば、以下に示す 化合物を好ましく用いることができる。
[0107] (酸パーフルォロアルコキシ基を含むジァミノ化合物)
[化 18]
Figure imgf000028_0001
[0108] (電解質膜)
実施形態 2に係る電解質膜は、実施形態 2に係るポリイミド榭脂を公知の方法で製 膜すること〖こよって製造することができる。実施形態 1に係る電解質膜の場合と同様 である。
[0109] [実施形態 3]
(ポリイミド榭脂)
実施形態 3に係るポリイミド榭脂は、上記した一般式 (5)で示される構造単位を含む ポリイミド榭脂である。
[0110] 実施形態 3に係るポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミド 榭脂の主鎖との間には、疎水性の酸アルキル基が存在することになるため、親水性 の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。その結果 、実施形態 3に係るポリイミド榭脂によれば、疎水性のポリイミド榭脂の主鎖に存在す るイミド結合が親水性の酸性基力もの水分子による攻撃を受け難くなるため、同じ炭 素数の酸アルコキシ基を有するポリイミド榭脂と比較して、耐加水分解性が向上する
[0111] また、実施形態 3に係るポリイミド榭脂においては、上記したように、親水性の酸性 基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。すなわち、親水 性領域と疎水性領域とが良好に分離されるようになる。その結果、実施形態 3に係る ポリイミド榭脂によれば、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在 する親水性領域を伝って良好に移動するようになる。このため、実施形態 3に係るポ リイミド榭脂によれば、同じ炭素数の酸アルコキシ基を有するポリイミド榭脂と比較して 、プロトン伝導度が向上する。
[0112] 実施形態 3に係るポリイミド榭脂においては、酸アルキル基は、炭素数 6以下の酸ァ ルキル基であることももちろん好まし 、が、炭素数 7以上の酸アルキル基であることが より好まし 、。
[0113] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸アルキル基が存在することになるため、親水性 の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離されるようになる。そ の結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性基から の水分子による攻撃をさらに受け難くなるため、炭素数が 6以下の比較的短鎖の酸ァ ルキル基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0114] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになるため、炭素数が 6以 下の比較的短鎖の酸アルキル基を有するポリイミド榭脂と比較して、プロトン伝導度 力 Sさらに向上する。
[0115] 実施形態 3に係るポリイミド榭脂においては、酸アルキル基力 酸パーフルォロアル キル基であることも好ま U、。
[0116] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、高い疎水性を有する酸パーフルォロアルキル基が存在することになるため、 親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに良好に分離されるように なる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸 性基からの水分子による攻撃をさらに受け難くなるため、パーフルォロ化されていな い酸アルキル基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0117] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とがさらに 良好に分離されるようになる。すなわち、親水性領域と疎水性領域とがさらに良好に 分離されるようになる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中 に偏在する親水性領域を伝ってさらに良好に移動するようになる。また、パーフルォ 口アルキル基はアルキル基と比較して高い電子吸引性を有しているため、酸性基に おける酸性度がさらに高まり、酸性基力もプロトンがさらに放出され易くなる。このため 、パーフルォロ化されていない酸アルキル基を有するポリイミド榭脂と比較して、プロ トン伝導度がさらに向上する。
[0118] 上記した一般式(5)における Ar1としては、実施形態 1〜2の場合と同様に、上記し た一般式(1)における Ar1と同様の置換基を好ましく用いることができる。
[0119] 上記した一般式(5)における Ar4としては、例えば、以下に示す置換基を好ましく用 いることがでさる。
[0120] (Ar4)
[化 19]
Figure imgf000031_0001
[0121] なお、 Ar1及び Ar4で示されるそれぞれの化学構造はすべて同じである必要はなく 、複数の置換基が混在した共重合体または混合物であってもよ ヽ。
[0122] 酸アルキル基を含むジアミ化合物としては、例えば、以下に示す化合物を好ましく 用!/、ることができる。
[0123] (酸アルキル基を含むジァミノ化合物)
[化 20]
Figure imgf000032_0001
[0124] (電解質膜)
実施形態 3に係る電解質膜は、実施形態 3に係るポリイミド榭脂を公知の方法で製 膜すること〖こよって製造することができる。実施形態 1に係る電解質膜の場合と同様 である。
[0125] [実施形態 4]
(ポリイミド榭脂)
実施形態 4に係るポリイミド榭脂は、上記した一般式 (7)で示される構造単位を含む ポリイミド榭脂である。 [0126] 実施形態 4に係るポリイミド榭脂においては、親水性の酸性基と疎水性のポリイミド 榭脂の主鎖との間には、酸素原子よりも大きな硫黄原子を有する酸アルキルチオ基 が存在することになる。その結果、実施形態 4に係るポリイミド榭脂によれば、硫黄原 子の立体障害により、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性 の酸性基力 の水分子による攻撃を受け難くなるため、同じ炭素数の酸アルコキシ基 を有するポリイミド榭脂と比較して、耐加水分解性が向上する。
[0127] 実施形態 4に係るポリイミド榭脂においては、酸アルキルチオ基は、炭素数 6以下の 酸アルキルチオ基であることももちろん好ま 、が、炭素数 7以上の酸アルキルチオ 基であることがより好まし!/、。
[0128] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、炭素数が 7以上の長鎖の酸アルキルチオ基が存在することになるため、親 水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるようになる。その 結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸性基力 の 水分子による攻撃を受け難くなるため、炭素数が 6以下の比較的短鎖の酸アルキル チォ基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上する。
[0129] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に 分離されるようになる。すなわち、親水性領域と疎水性領域とが良好に分離されるよう になる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親 水性領域を伝って良好に移動するようになるため、炭素数が 6以下の比較的短鎖の 酸アルキルチオ基を有するポリイミド榭脂と比較して、プロトン伝導度が向上する。
[0130] 実施形態 4に係るポリイミド榭脂にぉ 、ては、酸アルキルチオ基力 酸パーフルォロ アルキルチオ基であることも好まし!/、。
[0131] このように構成することにより、親水性の酸性基と疎水性のポリイミド榭脂の主鎖との 間には、高い疎水性を有する酸パーフルォロアルキルチオ基が存在することになる ため、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に分離されるように なる。その結果、疎水性のポリイミド榭脂の主鎖に存在するイミド結合が親水性の酸 性基からの水分子による攻撃をより受け難くなるため、パーフルォロ化されていない 酸アルキルチオ基を有するポリイミド榭脂と比較して、耐加水分解性がさらに向上す る。
[0132] また、上記したように、親水性の酸性基と疎水性のポリイミド榭脂の主鎖とが良好に 分離されるようになる。すなわち、親水性領域と疎水性領域とが良好に分離されるよう になる。その結果、親水性領域で発生したプロトンは、ポリイミド榭脂中に偏在する親 水性領域を伝って良好に移動するようになる。また、パーフルォロアルキルチオ基は アルキルチオ基と比較して高い電子吸引性を有している、その結果、酸性基におけ る酸性度が高まり、酸性基力もプロトンが放出され易くなる。これらのため、パーフル ォロ化されて 、な 、酸アルキルチオ基を有するポリイミド榭脂と比較して、プロトン伝 導度が向上する。
[0133] 上記した一般式(7)における Ar1としては、実施形態 1〜3の場合と同様に、上記し た一般式(1)における Ar1と同様の置換基を好ましく用いることができる。
[0134] 上記した一般式(7)における Ar5としては、例えば、以下に示す置換基を好ましく用 いることがでさる。
[0135] (Ar5)
[化 21]
Figure imgf000035_0001
[0136] なお、 Ar1及び Ar5で示されるそれぞれの化学構造はすべて同じである必要はなく 、複数の置換基が混在した共重合体または混合物であってもよ ヽ。
[0137] 酸アルキルチオ基を含むジァミノ化合物としては、例えば、以下に示す化合物を好 ましく用いることができる。
[0138] (酸アルキルチオ基を含むジァミノ化合物)
[化 22]
Figure imgf000036_0001
(電解質膜)
実施形態 4に係る電解質膜は、実施形態 4に係るポリイミド榭脂を公知の方法で製 膜すること〖こよって製造することができる。実施形態 1に係る電解質膜の場合と同様 である。 実施例
[0140] (実施例 1)
〔モノマー合成 1 : 3, 3,—ビス (スルホデシルォキシ)ベンジジンの合成〕
300mLのナス型フラスコに無水ァセトニトリル 150mL、 1, 10 ジブロモデカン 50 g及び炭酸カリウム 10gを加え、加熱還流しながら攪拌した。そこに、 4, 4'—ビス (ァ セトアミド)— 3, 3,—ジヒドロキシビフエ-ルを 6時間おきに 0. 5gずつ合計 4. Og加え 、 12時間加熱還流しながら撹拌した。反応混合物をクロ口ホルムに注いだ後、純水 で 3回洗浄した。有機層を濃縮し、へキサン中に沈殿させ黄色粉末の 4, 4' ビス( ァセトアミド) 3, 3, ビス( 10 ブロモデシルォキシ)ビフエ-ルを得た。
[0141] lOOmLのナス型フラスコに無水 1, 1, 2, 2—テトラクロロェタン 50mL、 4, 4,一ビ ス(ァセトアミド)— 3, 3,—ビス(10 ブロモデシルォキシ)ビフエ-ル 2. 0g、臭化テ トラブチルアンモ -ゥム 0. 2g及び飽和亜硫酸ナトリウム水溶液 40mLをカ卩えた。この 混合物を 4日間加熱還流しながら撹拌した。反応混合液に濃塩酸を加えて酸性にし た後、クロ口ホルムを用いて有機成分を抽出した。クロ口ホルム層を純水で 3回洗浄し 、蒸発乾固することにより 4, 4,一ビス(ァセトアミド) - 3, 3,一ビス(10 スルホデシ ルォキシ)ビフエ-ルを得た。
[0142] 20mLのナス型フラスコに 4, 4,一ビス(ァセトアミド) 3, 3,一ビス(10—スルホデ シルォキシ)ビフエ-ル 2g、濃塩酸 6mL、メタノール 50mL及び純水 20mLをカ卩え、 1 2時間加熱還流しながら攪拌した。反応終了後、混合物を加熱乾固した。得られた薄 黄色粉末を、メタノール/水及びメタノール/クロ口ホルムを用いて再結晶精製させるこ とにより、白色結晶の 3, 3 '—ビス (スルホデシルォキシ)ベンジジンを得た。
[0143] 〔ポリイミド榭脂の製造〕
シール付の水銀温度計、窒素導入口及び還流管を付した lOOmLの四口フラスコ に、 1. 314g (2. Ommol)の 3, 3, ビス (スノレホデシノレ才キシ)ベンジジンと、 0. 38 mL (3mmol)のトリエチルァミンと、 7. 5mLの m タレゾール(関東化学社製)とをカロ えて、窒素気流下 140°Cで 10分間加熱した。この混合物を激しく撹拌して、透明均 一溶液を得た (溶解工程)。
[0144] この混合液に 0. 536g (2. OOmmol)のナフタレン一 1, 8 :4, 5 四カルボン酸二 無水物と、 1. 000g (8. 18mmol)の安息香酸と、 15mLの m—タレゾールとをカ卩えた
。反応溶液は赤褐色となった。その後、窒素気流下 175°Cで撹拌しながら 15時間加 熱した。反応溶液は粘稠となった (重合工程)。
[0145] 次いで、窒素気流下 195°Cで 5時間加熱した。加熱を止めて 60°Cにまで冷却した
。赤褐色で、粘稠なポリイミド重合体の溶液が得られた (改質工程)。
[0146] 〔電解質膜の製造〕
得られたポリイミド重合体溶液を、キャスト法にて製膜した。キャスト法はガラス板上 に製造した共重合体溶液をそのまま流した後に、 60°Cで一日自然乾燥を行い製膜 した。その後、 80°Cで 12時間常圧乾燥を行った後に、さらに 80°Cで 12時間減圧乾 燥を行った。
[0147] そして、得られた膜を 1N硝酸エタノール溶液 400mL中に浸漬し 12時間撹拌した( 酸処理工程)。この酸処理工程をさらに 2回繰り返した。その後、エタノールで洗浄し た。その後、 60°Cで 12時間減圧乾燥を行い試験試料とした。
[0148] (実施例 2)
3, 3,—ビス (スルホデシルォキシ)ベンジジンに代えて、 3, 3,—ビス (スルホテトラフ ルォロェチルォキシ)ベンジジンを用いたこと以外は実施例 1の方法に従 、、試験試 料を得た。
[0149] (実施例 3)
3, 3,—ビス (スルホデシルォキシ)ベンジジンに代えて、 3, 3,—ビス (スルホメチル) ベンジジンを用いたこと以外は実施例 1の方法に従 、、試験試料を得た。
[0150] (実施例 4)
3, 3,—ビス (スルホデシルォキシ)ベンジジンに代えて、 3, 3,—ビス (スルホェチル チォ)ベンジジンを用いたこと以外は実施例 1の方法に従 、、試験試料を得た。
[0151] (比較例 1)
3, 3,—ビス (スルホデシルォキシ)ベンジジンに代えて、 3, 3,—ビス (スルホプロピ ルォキシ)ベンジジンを用いたこと以外は実施例 1の方法に従 、、試験試料を得た。
[0152] (耐酸化性)
実施例 1〜4及び比較例 1に係る各試験試料を、フェントン試薬(2ppmの硫酸鉄を 含有する 3%過酸化水素水溶液)中、 80°Cで加熱した。各試験試料の外観を経時的 に観察した。試料の膜が溶解を始めた時間と完全に溶解した時間とを記録した。
[0153] (耐加水分解性)
実施例 1〜4及び比較例 1に係る各試験試料を高温高湿度(140°C、湿度 100%) 雰囲気に 24時間さらした。試験後、各試験試料の外観を観察した。
[0154] (プロトン伝導度)
実施例 1〜4及び比較例 1に係る各試験試料を、 5 X 40mmの大きさに切り取り、 4 端子法により交流インピーダンスを測定した。測定は、 80°C又は 100°C、相対湿度 6 5%、電流値として 0. 005mAの定電流、掃引周波数として 10〜20000Hzの条件 で行った。得られたインピーダンス、膜端子間距離(10mm)及び膜厚 (50 /z m)から プロトン伝導度を算出した。
[0155] (結果)
実施例 1〜4及び比較例 1に係る各試験試料にっ ヽての評価結果を表 1に示す。
[0156] [表 1]
Figure imgf000039_0001
表 1からも明らかなように、実施例 1〜4に係る各試験試料は、比較例 1に係る試験 試料と比較して、高い耐酸ィ匕性、高い耐加水分解性及び高いプロトン伝導度を有す ることが明らかになった。

Claims

請求の範囲 [1] 一般式(1)で示される構造単位を含むことを特徴とするポリイミド榭脂。 [化 1]
(一般式(1)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar2は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は炭素数 7以上の酸アルコキシ基で置換されている。なお、この酸アルコキ シ基における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐ
2
また、一部または全部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂 肪族基で置換されていてもよい。 )
Ar2が一般式 (2)で示される構造を有する基であることを特徴とする請求項 1に記載 のポリイミド榭脂。
[化 2]
Figure imgf000040_0002
(一般式 (2)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 I1及び I2は、前記酸アルコキシ基の炭素数を表し、それぞれ 7以上の整 数である。また、 I1及び I2は、それぞれ同一であっても異なっていてもよい。 )
[3] 一般式 (3)で示される構造単位を含むことを特徴とするポリイミド榭脂。
[化 3]
Figure imgf000041_0001
(一般式 (3)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar3は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸パーフルォロアルコキシ基で置換されている。なお、この酸パーフル ォロアルコキシ基における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されて
2
いてもよぐまた、一部または全部のフッ素原子は、脂肪族基、他のハロゲン原子又 はパーフルォロ脂肪族基で置換されていてもよい。 )
[4] 前記酸パーフルォロアルコキシ基は、炭素数 7以上の酸パーフルォロアルコキシ基 であることを特徴とする請求項 3に記載のポリイミド榭脂。
[5] Ar3が一般式 (4)で示される構造を有する基であることを特徴とする請求項 3に記載 のポリイミド榭脂。
[化 4]
Figure imgf000042_0001
(一般式 (4)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 m1及び m2は、前記酸パーフルォロアルコキシ基の炭素数を表し、それ ぞれ 1以上の整数である。また、 m1及び m2は、それぞれ同一であっても異なってい てちよい。 )
[6] 一般式 (5)で示される構造単位を含むことを特徴とするポリイミド榭脂。
[化 5]
Figure imgf000042_0002
(一般式 (5)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar4は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸アルキル基で置換されている。なお、この酸アルキル基における一部 の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全
2
部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて いてもよい。 )
[7] 前記酸アルキル基は、炭素数 7以上の酸アルキル基であることを特徴とする請求項 6に記載のポリイミド榭脂。
[8] 前記酸アルキル基力 酸パーフルォロアルキル基であることを特徴とする請求項 6 に記載のポリイミド榭脂。
[9] Ar4が一般式 (6)で示される構造を有する基であることを特徴とする請求項 6に記載 のポリイミド榭脂。
[化 6]
Figure imgf000043_0001
(一般式 (6)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 n1及び n2は、前記酸アルキル基の炭素数を表し、それぞれ 1以上の整 数である。また、 n1及び n2は、それぞれ同一であっても異なっていてもよい。 )
[10] 一般式 (7)で示される構造単位を含むことを特徴とするポリイミド榭脂。
[化 7]
Figure imgf000043_0002
(一般式 (7)中、 Ar1は、炭素数 6〜20の芳香環であり、隣接するイミド基とともに原子 数 5又は 6のイミド環を形成する。なお、この芳香環における一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部又は全部の水素原子は、脂
2
肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置換されて 、てもよ 、。
また、 Ar5は、炭素数 6〜13の芳香環であり、この芳香環における水素原子の少な くとも一部は酸アルキルチオ基で置換されている。なお、この酸アルキルチオ基にお ける一部の炭素原子は、 S、 N、 0、 SO又は COで置換されていてもよぐまた、一部
2
又は全部の水素原子は、脂肪族基、ハロゲン原子又はパーフルォロ脂肪族基で置 換されていてもよい。 )
[11] 前記酸アルキルチオ基は、炭素数 7以上の酸アルキルチオ基であることを特徴とす る請求項 10に記載のポリイミド榭脂。
[12] 前記酸アルキルチオ基力 酸パーフルォロアルキルチオ基であることを特徴とする 請求項 10に記載のポリイミド榭脂。
[13] Ar5が一般式 (8)で示される構造を有する基であることを特徴とする請求項 6に記載 のポリイミド榭脂。
[化 8]
Figure imgf000044_0001
(一般式 (8)中、 X1及び X2は、酸性基を含む置換基であり、同一であっても異なって いてもよい。 o1及び o2は、前記酸アルキルチオ基の炭素数を表し、それぞれ 1以上の 整数である。また、 o1及び o2は、それぞれ同一であっても異なっていてもよい。 )
[14] X1及び X2が、スルホン酸基、ホスホン酸基、カルボン酸基又はフエノール性水酸基 を含む置換基であることを特徴とする請求項 2、 5、 9又は 13に記載のポリイミド榭脂。
[15] 前記構造単位が、炭素数 7以上の酸アルコキシ基、酸パーフルォロアルコキシ基、 酸アルキル基又は酸アルキルチオ基を含むジァミンィヒ合物と、四カルボン酸二無水 物との重縮合により得られる構造単位であることを特徴とする請求項 1〜14のいずれ かに記載のポリイミド榭脂。
請求項 1〜15のいずれかに記載のポリイミド榭脂を含むことを特徴とする電解質膜
PCT/JP2006/311080 2005-06-07 2006-06-02 ポリイミド樹脂及び電解質膜 WO2006132144A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520077A JP4934822B2 (ja) 2005-06-07 2006-06-02 ポリイミド樹脂及び電解質膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005167588 2005-06-07
JP2005-167588 2005-06-07

Publications (1)

Publication Number Publication Date
WO2006132144A1 true WO2006132144A1 (ja) 2006-12-14

Family

ID=37498344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311080 WO2006132144A1 (ja) 2005-06-07 2006-06-02 ポリイミド樹脂及び電解質膜

Country Status (2)

Country Link
JP (4) JP4934822B2 (ja)
WO (1) WO2006132144A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277741A (ja) * 2009-05-27 2010-12-09 Nitto Denko Corp プロトン伝導性高分子電解質膜とそれを用いた膜−電極接合体および高分子電解質型燃料電池
KR20160067792A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
KR20160067793A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
CN107004880A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物电解质膜
CN107001254A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 卤代化合物、包含该卤代化合物的聚合物和包含该聚合物的聚合物电解质膜
CN107501551A (zh) * 2017-08-22 2017-12-22 宁波长阳科技股份有限公司 一种聚酰亚胺树脂和一种透明聚酰亚胺薄膜及其制备方法
JP2020109081A (ja) * 2019-01-04 2020-07-16 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
WO2023101005A1 (ja) * 2021-12-03 2023-06-08 住友化学株式会社 フィルム及びポリイミド系樹脂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132144A1 (ja) * 2005-06-07 2006-12-14 University Of Yamanashi ポリイミド樹脂及び電解質膜
WO2021033482A1 (ja) * 2019-08-19 2021-02-25 Jsr株式会社 分散組成物、分散剤、異方性膜及びその製造方法、並びに異方性膜形成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105200A (ja) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール型燃料電池用プロトン伝導性膜およびそれを使用した直接アルコール型燃料電池。
JP2003234014A (ja) * 2002-02-12 2003-08-22 Sumitomo Electric Ind Ltd 高分子電解質膜及び固体高分子型燃料電池
JP2004035891A (ja) * 2002-07-06 2004-02-05 Samsung Sdi Co Ltd 側鎖に酸基を有するプロトン伝導性高分子、その製造方法、前記プロトン伝導性高分子を用いた高分子膜及びこれを用いた燃料電池
JP2004155998A (ja) * 2002-11-08 2004-06-03 Yamaguchi Technology Licensing Organization Ltd アルコキシスルホン化芳香族ポリイミド及びアルコキシスルホン化芳香族ポリイミドを含有する電解質膜
JP2005232236A (ja) * 2004-02-17 2005-09-02 Univ Of Yamanashi ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、膜/電極接合体及びデバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177625B2 (ja) * 2002-09-18 2008-11-05 株式会社カネカ スルホン酸基含有ポリイミド樹脂およびそれからなるスルホン酸基含有ポリイミド膜
WO2006132144A1 (ja) * 2005-06-07 2006-12-14 University Of Yamanashi ポリイミド樹脂及び電解質膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105200A (ja) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd 直接アルコール型燃料電池用プロトン伝導性膜およびそれを使用した直接アルコール型燃料電池。
JP2003234014A (ja) * 2002-02-12 2003-08-22 Sumitomo Electric Ind Ltd 高分子電解質膜及び固体高分子型燃料電池
JP2004035891A (ja) * 2002-07-06 2004-02-05 Samsung Sdi Co Ltd 側鎖に酸基を有するプロトン伝導性高分子、その製造方法、前記プロトン伝導性高分子を用いた高分子膜及びこれを用いた燃料電池
JP2004155998A (ja) * 2002-11-08 2004-06-03 Yamaguchi Technology Licensing Organization Ltd アルコキシスルホン化芳香族ポリイミド及びアルコキシスルホン化芳香族ポリイミドを含有する電解質膜
JP2005232236A (ja) * 2004-02-17 2005-09-02 Univ Of Yamanashi ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、膜/電極接合体及びデバイス

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277741A (ja) * 2009-05-27 2010-12-09 Nitto Denko Corp プロトン伝導性高分子電解質膜とそれを用いた膜−電極接合体および高分子電解質型燃料電池
US8980499B2 (en) 2009-05-27 2015-03-17 Nitto Denko Corporation Proton-conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the same
EP3228646A4 (en) * 2014-12-04 2018-06-27 LG Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
EP3228644A4 (en) * 2014-12-04 2018-05-02 LG Chem, Ltd. Polymer electrolyte membrane
KR20160067749A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 강화막
KR20160067796A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
CN107001623A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
CN107001595A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
CN107004882A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物电解质膜
CN107004880A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物电解质膜
KR20160067792A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
CN107001672A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
KR20160067793A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
JP2018505234A (ja) * 2014-12-04 2018-02-22 エルジー・ケム・リミテッド 高分子電解質膜
JP2018505846A (ja) * 2014-12-04 2018-03-01 エルジー・ケム・リミテッド ハロゲン化化合物、これを含む重合体およびこれを含む高分子電解質膜
EP3229302A4 (en) * 2014-12-04 2018-04-25 LG Chem, Ltd. Polymer electrolyte membrane
EP3228645A4 (en) * 2014-12-04 2018-04-25 LG Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
EP3228613A4 (en) * 2014-12-04 2018-04-25 LG Chem, Ltd. Halogenated compound, polymer comprising same, and polymer electrolyte membrane comprising same
EP3228643A4 (en) * 2014-12-04 2018-04-25 LG Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
CN107001672B (zh) * 2014-12-04 2020-10-20 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
CN107001254A (zh) * 2014-12-04 2017-08-01 株式会社Lg化学 卤代化合物、包含该卤代化合物的聚合物和包含该聚合物的聚合物电解质膜
KR101934471B1 (ko) 2014-12-04 2019-01-02 주식회사 엘지화학 고분자 전해질막
US10411283B2 (en) 2014-12-04 2019-09-10 Lg Chem, Ltd. Polymer electrolyte membrane
KR101973693B1 (ko) * 2014-12-04 2019-04-29 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
KR101973694B1 (ko) * 2014-12-04 2019-04-29 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
US10312542B2 (en) 2014-12-04 2019-06-04 Lg Chem, Ltd. Halogenated compound, polymer comprising same, and polymer electrolyte membrane comprising same
US10361447B2 (en) 2014-12-04 2019-07-23 Lg Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
KR101973690B1 (ko) * 2014-12-04 2019-04-29 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
US10407521B2 (en) 2014-12-04 2019-09-10 Lg Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
KR101989500B1 (ko) * 2014-12-04 2019-09-30 주식회사 엘지화학 강화막
US10446864B2 (en) 2014-12-04 2019-10-15 Lg Chem, Ltd. Polymer and polymer electrolyte membrane comprising same
CN107001595B (zh) * 2014-12-04 2019-11-05 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
CN107001254B (zh) * 2014-12-04 2019-11-05 株式会社Lg化学 卤代化合物、包含该卤代化合物的聚合物和包含该聚合物的聚合物电解质膜
US10483576B2 (en) 2014-12-04 2019-11-19 Lg Chem, Ltd. Polymer electrolyte membrane
CN107004882B (zh) * 2014-12-04 2019-12-06 株式会社Lg化学 聚合物电解质膜
CN107501551A (zh) * 2017-08-22 2017-12-22 宁波长阳科技股份有限公司 一种聚酰亚胺树脂和一种透明聚酰亚胺薄膜及其制备方法
CN107501551B (zh) * 2017-08-22 2021-04-13 宁波长阳科技股份有限公司 一种聚酰亚胺树脂和一种透明聚酰亚胺薄膜及其制备方法
JP2020109081A (ja) * 2019-01-04 2020-07-16 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP7425593B2 (ja) 2019-01-04 2024-01-31 住友化学株式会社 酸発生剤、レジスト組成物及びレジストパターンの製造方法
WO2023101005A1 (ja) * 2021-12-03 2023-06-08 住友化学株式会社 フィルム及びポリイミド系樹脂

Also Published As

Publication number Publication date
JP5499276B2 (ja) 2014-05-21
JP5493138B2 (ja) 2014-05-14
JP5499275B2 (ja) 2014-05-21
JP2012087305A (ja) 2012-05-10
JPWO2006132144A1 (ja) 2009-01-08
JP2012102332A (ja) 2012-05-31
JP2012097263A (ja) 2012-05-24
JP4934822B2 (ja) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5493138B2 (ja) ポリイミド樹脂及び電解質膜
Yang et al. Synthesis and properties of poly (aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells
Chen et al. Crosslinked sulfonated poly (arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications
Li et al. Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes
JP4210659B2 (ja) 側鎖末端にスルホン酸基を有するポリイミド及びこれを採用した高分子電解質と燃料電池
Wei et al. Enhanced hydrolytic stability of sulfonated polyimide ionomers using bis (naphthalic anhydrides) with low electron affinity
Chen et al. Polybenzimidazole membranes derived from novel tetraamines containing 2, 2′-disubstituted biphenyl structures for high temperature proton exchange membrane fuel cell application
JP5050194B2 (ja) ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、膜/電極接合体及びデバイス
JP2010006940A (ja) 固体高分子電解質組成物
Shimura et al. Poly (arylene ether) ionomers containing sulfofluorenyl groups: Effect of electron-withdrawing groups on the properties
JP3910026B2 (ja) 新規燃料電池用高分子電解質膜
TWI744389B (zh) 聚合物組成物
JP2006152009A (ja) スルホン化芳香族ポリイミド及び該ポリイミドよりなる電解質膜
JP2007302717A (ja) スルホン化芳香族ポリイミド、電解質膜及び燃料電池用固体電解質、並びに燃料電池
Zhang et al. Synthesis of sulfonated poly (arylene-co-naphthalimide) s as novel polymers for proton exchange membranes
JP2006265497A (ja) スルホン化芳香族カルボニルポリイミド及び該ポリイミドよりなる電解質膜
WO2006048942A1 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
Li et al. Novel proton exchange membranes based on water resistant sulfonated poly [bis (benzimidazobenzisoquinolinones)]
JP4608363B2 (ja) フェノキシスルホン化芳香族ポリイミド及び高分子電解質膜
JP2010009758A (ja) 固体高分子電解質
JP2006265496A (ja) スルホン化芳香族ポリイミド及び該ポリイミドよりなる電解質膜
Hsu et al. Synthesis and properties of fluorine‐and siloxane‐containing polybenzimidazoles for high temperature proton exchange membrane fuel cells
Satheesh Kumar et al. Polybenzimidazole as proton conducting filler in polydimethylsiloxane: enhanced oxidative stability and membrane properties
JP2006070116A (ja) スルホン化芳香族ポリイミドおよび該ポリイミドよりなる電解質膜
KR101234209B1 (ko) 곁가지에 아마이드 구조를 포함하는 주쇄 술폰화 그룹을 지닌 가교 폴리(아릴렌 에테르 케톤), 이를 이용한 연료전지용 고분자 전해질 막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007520077

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756915

Country of ref document: EP

Kind code of ref document: A1