WO2006132138A1 - Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器 - Google Patents

Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器 Download PDF

Info

Publication number
WO2006132138A1
WO2006132138A1 PCT/JP2006/311065 JP2006311065W WO2006132138A1 WO 2006132138 A1 WO2006132138 A1 WO 2006132138A1 JP 2006311065 W JP2006311065 W JP 2006311065W WO 2006132138 A1 WO2006132138 A1 WO 2006132138A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
circuit
short
voltage
mode
Prior art date
Application number
PCT/JP2006/311065
Other languages
English (en)
French (fr)
Inventor
Yoichi Tamegai
Isao Yamamoto
Kyoichiro Araki
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Publication of WO2006132138A1 publication Critical patent/WO2006132138A1/ja
Priority to US11/951,408 priority Critical patent/US7863833B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a switching power supply, and relates to a driving system for a DCZDC converter.
  • a step-up type switching power supply for generating a voltage higher than an input voltage is widely used in various electronic devices.
  • Such a step-up switching power supply includes a switching element and an inductor or a transformer. By turning the switching element on and off in a time-sharing manner, a back electromotive force is generated in the inductor or the transformer, and the input voltage is boosted. Output.
  • Patent Document 1 discloses a technique for detecting an overcurrent state by monitoring a current on a primary side of a transformer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-374671
  • the present invention has been made in view of the above problems, and a comprehensive object thereof is to provide a control circuit for a DCZDC converter that performs overcurrent protection.
  • An embodiment of the present invention relates to a control circuit that controls a switching operation of a switching transistor of a separately excited DCZDC converter.
  • This control circuit controls the switching operation of the switching transistor of the separately excited DCZDC converter, and includes a switching control unit that controls the switching operation of the switching transistor, an output voltage of the separately excited DCZDC converter, and a predetermined threshold.
  • a voltage comparator for comparing the value voltage and detecting a short-circuit state.
  • the switching controller stops switching operation of the switching transistor when the voltage comparator detects a short-circuit state after a predetermined start-up time has elapsed since the start of start-up of the separately excited DCZDC converter, while the voltage before the start-up time elapses. Disable detection of short circuit condition by comparator.
  • the output voltage is threshold! /, Lower than the value voltage !, Can be distinguished from each other, and the circuit can be protected by stopping the switching transistor only when the load is actually short-circuited.
  • the switching control unit may detect the short-circuit state and stop the switching operation of the switching transistor for a predetermined stop time, and then start the separately excited DCZDC converter again.
  • the switching transistor When the load is short-circuited, the switching transistor is stopped for a predetermined stop time, so that if the short-circuit of the load lasts for a long time, the current flows during the start-up time and the current is cut off during the stop time. Therefore, it is possible to prevent a large current from continuously flowing through the switching transistor and the transformer.
  • the start-up time may be set longer than the time required for the output voltage to become higher than the threshold voltage after starting the separately-excited DCZDC converter.
  • the switching control unit sets the output voltage to a predetermined threshold voltage.
  • the switching operation of the switching transistor may be stopped when continuously falling during the short circuit detection time. In this case, it is possible to suitably detect a long-term short-circuit state and perform circuit protection.
  • the switching control unit may include a state machine that holds a control state of the switching transistor.
  • the state machine performs a boost operation using a separately excited DCZDC converter and disables detection of a short-circuit state using a voltage comparator.
  • the state machine enters the normal mode after the start-up time has elapsed after entering the start mode.When the voltage comparator detects a short-circuit state in the normal mode, the state machine enters the stop mode. You can go into boot mode after a while.
  • the state machine may shift to the start-up mode. In this case, the output voltage can be raised again in start-up mode, during which the short-circuit condition detection can be disabled.
  • the switching control unit is set to a pulse width modulator that generates a pulse signal, a driver circuit that drives a switching transistor based on the pulse signal, an output voltage, and a threshold value that is set near a target value of the output voltage. And a hysteresis comparator for comparing the value voltage.
  • the pulse width modulator gradually changes the duty ratio of the pulse signal in the start mode, and fixes the duty ratio of the pulse signal to the predetermined value in the normal mode and the stop mode. In the normal mode, the switching transistor may be driven based on the pulse signal, and in the stop mode, the driving of the switching transistor may be stopped.
  • soft start can be executed in the startup mode.
  • the switching transistor In normal mode, the switching transistor has a fixed duty ratio regardless of the output voltage. In order to drive the output voltage, the output voltage gradually increases. After that, when the output voltage reaches the first threshold voltage of the hysteresis comparator, the switching transistor is stopped and the output voltage gradually decreases. When the output voltage drops to the second threshold voltage of the hysteresis comparator, the switching transistor is resumed. As a result, in the normal mode, the output voltage is stabilized between the first threshold voltage force and the second threshold voltage. Also, by setting the stop mode in the event of a short circuit, the boosting operation can be stopped to protect the circuit.
  • the switching control unit may further include a timer circuit, and the state machine may perform necessary time measurement using the timer circuit.
  • the switching control unit and the voltage comparator may be integrated on a single semiconductor substrate.
  • the integration here includes the case where all the circuit components are formed on a semiconductor substrate and the case where the main components of the circuit are integrated together.
  • some resistors, capacitors, and the like may be provided outside the semiconductor substrate.
  • Another embodiment of the present invention relates to a control circuit that controls a switching operation of a switching transistor of a self-excited DCZDC converter.
  • the control circuit includes a switching control unit that controls the switching operation of the switching transistor, a voltage comparator that detects a short-circuit state by comparing the output voltage of the self-excited DCZDC comparator with a predetermined threshold voltage, Is provided.
  • the switching control unit stops the switching operation of the switching transistor when the voltage comparator detects a short-circuit state after the start-up force of the self-excited DCZDC converter has elapsed for a predetermined start-up time. Disables detection of short-circuit conditions by the instrument.
  • This power supply apparatus includes a separately-excited DCZDC converter that includes a switching transistor and whose boosting operation is controlled by turning on and off the switching transistor, and a control circuit that controls on and off of the switching transistor.
  • Yet another embodiment of the present invention is a light emitting device.
  • This light-emitting device includes the above-described power supply device and a light-emitting element that is driven by the output voltage of the separately excited DCZDC converter of this power supply device.
  • the light emitting element can emit light stably during normal driving in which a short circuit or the like does not occur in the light emitting element as a load, and the circuit can be protected from overcurrent in the case of a short circuit. Monkey.
  • Yet another embodiment of the present invention is a battery-driven electronic device.
  • This battery-driven electronic device includes an imaging unit and the above-described light emitting device used as a flash when imaging by the imaging unit, and the light emitting device drives the light emitting element by boosting the battery voltage. .
  • the circuit can be protected from a short circuit of the load.
  • FIG. 1 is a circuit diagram showing a configuration of a light emitting device according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of an electronic device in which the light emitting device of FIG. 1 is mounted.
  • FIG. 3 is a state transition diagram of the state machine.
  • FIG. 4 is a time chart showing an operating state of the light emitting device of FIG. 1.
  • FIG. 1 is a circuit diagram showing a configuration of light-emitting device 200 according to the present embodiment.
  • the light emitting device 200 is mounted on an electronic device including a camera, and functions as a light source used as a flash when imaging with the camera.
  • FIG. 2 is a block diagram showing a configuration of electronic device 300 on which the light emitting device of FIG. 1 is mounted.
  • electronic device 300 is a mobile phone terminal equipped with a camera, and includes battery 310, communication processing unit 312, DSP (Digital Signal Processor) 314, imaging unit 316, and light emitting device 200.
  • DSP Digital Signal Processor
  • the battery 310 is, for example, a lithium ion battery and outputs a voltage of about 3 to 4 V as the battery voltage Vbat.
  • the DSP 314 is a block that comprehensively controls the entire electronic device 300, and is connected to the communication processing unit 312, the imaging unit 316, and the light emitting device 200.
  • the communication processing unit 312 includes an antenna, a high frequency circuit, and the like, and is a block that performs communication with the base station.
  • the imaging unit 316 is an imaging device such as a CCD (Charge Coupled Device) or a CMOS sensor.
  • the light emitting device 200 includes a separately excited DCZDC converter 210, a light emitting element 212, and a trigger circuit 214.
  • a xenon tube or the like is preferably used as the light emitting element 212.
  • the separately excited DCZDC converter 210 boosts the battery voltage Vbat supplied from the battery 310 and supplies a driving voltage (hereinafter also referred to as an output voltage) Vout of about 300 V to the light emitting element 212. Drive The voltage Vout is stabilized at a predetermined level of the target voltage Vtgt.
  • the trigger circuit 214 is a circuit that controls the light emission timing of the light emitting device 200.
  • the light emitting element 212 emits light in synchronization with the imaging of the imaging unit 316.
  • the light emitting device 200 includes a control circuit 100, a switching transistor Trl, a transformer 50, a rectifying diode 52, an output capacitor Cl, a first resistor Rl, a second resistor R2, a light emitting element 212, and an IGBT (Insulated Gate Bipolar Transistor) 214a.
  • the control circuit 100 is an integrated circuit integrated on one semiconductor substrate. In this integrated circuit, the switching transistor Tr 1 can be further integrated!
  • the control circuit 100, the switching transistor Trl, the transformer 50, the rectifying diode 52, the output capacitor Cl, the first resistor Rl, and the second resistor R2 shown in FIG. 1 are added to the separately excited DCZDC converter 210 shown in FIG. Correspond. Further, the IGBT 214a and the light emission control unit 214b in FIG. 1 correspond to the trigger circuit 214 in FIG.
  • the IGBT 214a is provided on the current path of the light emitting element 212, and controls light emission of the light emitting element 212 by turning on and off.
  • the control circuit 100 controls the switching operation, ie, on / off, by controlling the gate voltage of the switching transistor Trl of the separately excited DCZDC converter 210.
  • the control circuit 100 controls the switching transistor Trl by switching between three modes: a start mode in which the boost operation is performed by the separately excited DCZDC converter 210, a normal mode, and a stop mode in which the boost operation by the separately excited DCZDC converter 210 is stopped.
  • this control circuit 100 has a function of detecting detection of a short-circuit state of the load, and performs short-circuit detection in the normal mode, while disabling short-circuit detection in the start-up mode. .
  • the control circuit 100 includes an output terminal 102, a feedback terminal 104, and a light emission control terminal 106.
  • the output terminal 102 is connected to the gate of the switching transistor Trl, and a switching signal Vsw that is an output signal of the control circuit 100 is output.
  • the output voltage Vout of the separately excited DCZDC converter 210 divided by the first resistor Rl and the second resistor R2 is fed back to the feedback terminal 104.
  • the light emission control terminal 106 is connected to the gate of the IGBT 214a.
  • the battery voltage Vbat is applied to one end of the primary side coil of the transformer 50, and the drain of the switching transistor Trl is connected to the other end.
  • Switching transistor Trl is N The channel's MOS transistor, whose source is grounded.
  • the output voltage Vout of the separately excited DCZDC converter 210 appears at the connection point between the output capacitor C1 and the rectifying diode 52. This output voltage Vout is supplied to the light emitting element 212.
  • the control circuit 100 includes a switching control unit 10, a voltage comparator 30, and a light emission control unit 214b.
  • the switching control unit 10 generates a switching voltage Vsw based on the voltage fed back to the feedback terminal 104, and controls the switching operation of the switching transistor Trl.
  • the voltage comparator 30 compares the output voltage Vout of the separately excited DCZDC converter 210 with a predetermined threshold voltage Vth to detect a short circuit state.
  • the light emission control unit 214b generates a light emission control signal SIG20 and controls the base voltage of the IGBT 214a.
  • This switching control unit 10 stops the switching operation of the switching transistor Trl when the voltage comparator 30 detects a short-circuit state after the start-up force of the separately excited DCZDC converter 210 has also passed the predetermined start-up time Tpl. On the other hand, the detection of the short-circuit state by the voltage comparator 30 is invalidated before the start time Tpl has elapsed.
  • the configuration and operation of the switching control unit 10 and the voltage comparator 30 will be described in detail.
  • the switching control unit 10 includes a hysteresis comparator 12, a state machine 14, a timer circuit 16, a driver circuit 18, and a pulse width modulator 20.
  • the pulse width modulator 20 generates a pulse width modulation signal V pwm whose frequency is constant and the pulse width changes, and outputs the pulse width modulation signal V pwm to the driver circuit 18.
  • the driver circuit 18 includes an inverter and generates a switching voltage Vsw based on the pulse width modulation signal Vpwm to drive the switching transistor Trl.
  • the driver circuit 18 includes two enable terminals 18a and 18b, and a mode signal MODEl and an overvoltage detection signal Vov output from the hysteresis comparator 12 and the state machine 14 described later are provided in each enable terminal 18a and 18b. Entered!
  • the hysteresis comparator 12 detects an overvoltage state in which the output voltage Vout of the separately excited DCZDC converter 210 is higher than a predetermined threshold voltage, and generates an overvoltage detection signal Vov.
  • the This overvoltage detection signal Vov becomes a low level in an overvoltage state, and a low level in other cases.
  • the driver circuit 18 stops the switching operation of the switching transistor Trl regardless of the pulse width modulation signal Vpwm output from the pulse width modulator 20, and the overvoltage detection signal Vov At low level, the switching transistor Trl is driven based on the pulse width modulation signal Vpwm.
  • the feedback voltage Vout ′ input to the feedback terminal 104 is input to the positive terminal of the hysteresis comparator 12, and the reference voltage Vref is input to the negative terminal.
  • the hysteresis comparator 12 compares the first threshold voltage Vref 1 and the feedback voltage Vout 'when the output is low level, and the second threshold voltage Vref2 and the feedback voltage when the output is high level. Compare Vou t '.
  • a relationship of Vref 1> Vref 2 is established between the first threshold voltage Vref 1 and the second threshold voltage Vref 2.
  • the pulse width modulator 20 includes a voltage comparator 22, an oscillator 24, and a soft start circuit 26.
  • the oscillator 24 generates a periodic voltage Vosc having a triangular wave shape or a sawtooth wave shape.
  • the soft start circuit 26 generates a soft start voltage Vss that gradually increases in the start mode.
  • the periodic voltage Vosc and the soft start voltage Vss are input to the positive terminal of the voltage comparator 22, and the fixed voltage Vcl is applied to the negative terminal.
  • the maximum value of the soft start voltage Vss is set equal to the fixed voltage Vcl.
  • the voltage comparator 22 compares the fixed voltage Vcl and the soft start voltage Vss, whichever is lower, with the periodic voltage Vosc. Therefore, the pulse width modulation signal Vpwm output from the pulse width modulator 20 is in the start mode.
  • the duty ratio gradually increases, and the duty ratio is fixed to a predetermined value determined by the fixed voltage Vcl in the normal mode and stop mode.
  • the driver circuit 18 refers to the comparison result of the hysteresis comparator 12 in the start-up mode and the normal mode, and based on the pulse width modulation signal Vpwm when the output voltage Vout is lower than the threshold voltage. Then, the switching transistor Trl is driven, and when the output voltage Vout is higher than the threshold voltage, the driving of the switching transistor Trl is stopped. Also stop First, the driving of the switching transistor Trl is stopped.
  • the voltage comparator 30 is provided to detect a short circuit state of the load by monitoring the output voltage Vout of the separately excited DCZDC converter 210.
  • the voltage comparator 30 compares the feedback voltage Vout ′ input to the positive terminal with a predetermined threshold voltage Vth input to the negative terminal. When Vout ′> Vth ′, the voltage comparator 30 Outputs a low level when ⁇ Vth '.
  • the state machine 14 receives the short circuit detection signal Vsc output from the voltage comparator 30.
  • the state machine 14 holds four control states of the switching transistor Trl, that is, a start mode, a normal mode, a stop mode, and a standby mode.
  • FIG. 3 is a state transition diagram of the state machine 14.
  • the state machine 14 enters the standby mode S4. After that, when the enable signal EN input to the state machine 14 becomes high level, the state transits to the start mode S1.
  • the enable signal EN is given from outside the control circuit 100.
  • the state machine 14 invalidates the detection of the short-circuit state by the voltage comparator 30 in the start mode S1, and shifts to the normal mode S2 after the start time Tpl has elapsed.
  • the start-up time T pl is set longer than the time required for the output voltage Vout to become higher than the threshold voltage Vth after starting the separately excited DCZDC converter 210.
  • the state machine 14 causes the voltage comparator 30 to When it is detected, the mode changes to stop mode S3.
  • the state machine 14 transitions from the normal mode S2 to the stop mode S3 when the short-circuit detection signal Vsc output from the voltage comparator 30 is continuously high for the predetermined short-circuit detection time Tp2. Also good.
  • the state machine 14 transitions to the start mode S1 after a predetermined stop time ⁇ ⁇ 3, and starts the separately excited DCZDC converter 210.
  • the state machine 14 receives the light emission control signal SIG20 output from the light emission control unit 214b, and when the light emission operation of the light emitting element 212 is completed in the normal mode S2, the activation mode S1 is entered. Transition. That is, when the output voltage Vout of the separately excited DCZDC converter is reduced by driving the light emitting element 212 that is a load in the normal mode S2, the state machine 14 shifts to the start mode S1.
  • the state machine 14 outputs mode signals MODE 1 and MODE 2 representing the current state to the driver circuit 18 and the soft start circuit 26 in each state.
  • the state machine 14 uses the timer circuit 16 to measure the necessary time, that is, the start time Tpl, the short circuit detection time ⁇ 2, the stop time ⁇ 3, and the like.
  • FIG. 4 is a time chart showing the operating state of the light emitting device 200 of FIG.
  • the electronic device 300 is turned on, and the state machine 14 enters the standby mode S4.
  • the enable signal EN goes high, the mode changes to start mode S1.
  • the soft start circuit 26 is controlled by the mode signal MODE 2 output from the state machine 14, the duty ratio of the pulse width modulation signal Vpwm gradually increases, and the output voltage Vout of the separately excited DCZDC converter 210 Begins to rise gradually.
  • the output voltage Vout is lower than the threshold voltage Vth.
  • the state machine 14 disables the detection of the short-circuit state by the voltage comparator 30.
  • the state machine 14 transitions from the start mode S1 to the normal mode S2. In the normal mode S2, monitoring of the short-circuit state by the voltage comparator 30 is effective.
  • the output voltage Vout reaches its target value voltage Vtgt, and the operation of the driver circuit 18 is controlled by the hysteresis comparator 12 and stabilized to Vout Vtgt.
  • the output voltage Vout is a constant value. Actually, the output voltage Vout fluctuates between the voltages Vmax and Vmin determined by the hysteresis comparator 12.
  • the state machine 14 transitions to the start mode S1.
  • the output voltage Vout rises again by the soft start operation.
  • the load shall be released from the short-circuit state.
  • the short circuit detection signal Vsc becomes low level, and the normal mode S2 is set at time T10 after the activation time Tp 1 has elapsed since the start of activation.
  • the output voltage Vout reaches the target voltage Vtgt.
  • emission control signal SIG20 output from emission control unit 214b becomes high level
  • IGBT 214a is turned on
  • light emitting element 212 emits light.
  • the charge stored in the output capacitor C1 is discharged, and the output voltage Vout rapidly decreases.
  • the state machine 14 is in the standby mode S4. Thereafter, when the light emission control signal SIG20 becomes low level at time T13, the state machine 14 enters the start mode S1.
  • the state machine 14 transitions to normal mode S2 at time T14 after the start time Tpl has elapsed.
  • the load is short-circuited by switching between the start mode S1 and the normal mode S2 and switching between enabling and disabling detection of the short-circuit state by the voltage comparator 30.
  • the output voltage Vout drops and the output voltage Vout Before rising to the nominal value Vtgt, the output voltage Vout can be distinguished from the state that is lower than the value voltage Vth. Only when the load is actually short-circuited, the switching transistor Trl is stopped to protect the circuit. Can be planned.
  • the switching control unit 10 detects the short-circuit state, stops the switching operation of the switching transistor Trl for the stop time Tp3, and then starts the start of the separately excited DCZDC converter.
  • the current continues, the current flows during the start-up time Tpl and the current is interrupted during the stop time Tp3, thus preventing a large current from continuously flowing through the switching transistor Trl and the transformer 50. be able to
  • the switching control unit 10 determines that the output voltage Vout continuously falls below the threshold voltage Vth during the short-circuit detection time Tp2 in the voltage comparator 30. A case where the output voltage Vout is reduced for a long time is not judged as a short circuit, and a long-term short circuit state can be suitably detected to protect the circuit.
  • the state machine 14 shifts to the start-up mode S1 when the output voltage Vout of the separately excited DCZDC converter decreases by driving the light emitting element 212 as a load.
  • Vout can be raised again in start-up mode S1, during which the short circuit detection by voltage comparator 30 can be disabled.
  • the DCZDC converter has been described for driving the light emitting element 212.
  • the DCZDC converter is not limited to this, and can drive various other loads that require a high voltage.
  • the transition to start mode S1 synchronized with the driving of the load shown at time T13 in Fig. 4 should not be performed.
  • the self-excited force described for the separately excited DCZDC converter is used. May be.
  • the setting of logical values of high level and low level is merely an example, and can be freely changed by appropriately inverting it with an inverter or the like.
  • the present invention can be used for a switching power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 出力電圧を直接監視して短絡状態を検出し、過電流保護を行う他励式DC/DCコンバータの制御回路を提供する。  制御回路100のスイッチング制御部10は、他励式DC/DCコンバータ210のスイッチングトランジスタTr1のスイッチング動作を制御する。電圧比較器30は、出力電圧Voutとしきい値電圧Vthとを比較して短絡状態を検出する。スイッチング制御部10は、他励式DC/DCコンバータの起動開始から所定の起動時間の経過後に、電圧比較器30が短絡状態を検出すると、スイッチングトランジスタTr1のスイッチング動作を停止する一方、起動時間の経過前においては、電圧比較器30による短絡状態の検出を無効化する。スイッチング制御部10は、短絡状態を検出してスイッチングトランジスタTr1のスイッチング動作を所定の停止時間の間停止した後、再度他励式DC/DCコンバータの起動を開始する。

Description

明 細 書
DCZDCコンバータの制御回路およびそれを用いた電源装置、発光装 置、電子機器
技術分野
[0001] 本発明は、スイッチング電源に関し、 DCZDCコンバータの駆動方式に関する。
背景技術
[0002] 入力電圧よりも高 、電圧を生成するための昇圧型のスイッチング電源がさまざまな 電子機器において広く用いられている。こうした昇圧型のスイッチング電源は、スイツ チング素子と、インダクタあるいはトランスを備えており、スイッチング素子を時分割的 にオンオフさせることによりインダクタあるいはトランスに逆起電力を発生させ、入力電 圧を昇圧して出力する。
[0003] このようなスイッチング電源のうち、トランスを用いた絶縁型の DC/DCコンバータ では、自励式と他励式の 2つの方式が知られている。これらの方式は、出力電圧の範 囲など、スイッチング電源に求められる特性に応じて選択される。絶縁型の DCZDC コンバータでは、スイッチングトランジスタがオフすると、トランスの 1次側に電流が流 れ、トランスにエネルギが蓄えられる。スイッチングトランジスタがオフすると、トランス の 2次側にぉ 、てトランスに蓄えられたェネルギカ 整流用ダイオードを介して充電 電流として出力キャパシタに転送され、出力電圧が上昇する。
[0004] こうした他励式 DCZDCコンバータは、負荷の短絡などにより過電流が流れると、ト ランスが飽和し、あるいはスイッチングトランジスタの信頼性に影響を及ぼすことから、 過電流保護回路を設ける場合がある。たとえば、特許文献 1には、トランスの 1次側の 電流をモニタして過電流状態を検出する技術が開示されている。
特許文献 1 :特開 2002— 374671号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、トランスの 1次側の電流をモニタする上記文献に記載の技術では、負 荷が急激に短絡した場合、トランスの 1次側に流れる電流は、電圧比較器の応答速 度を超える速度で急激に立ち上がってしまうため、過電流保護の応答が遅れ、スイツ チングトランジスタに過電流が流れてしまう場合があった。
[0006] 本発明は係る課題に鑑みてなされたものであり、その包括的な目的は、過電流保 護を行う DCZDCコンバータの制御回路の提供にある。
課題を解決するための手段
[0007] 本発明のある態様は、他励式 DCZDCコンバータのスイッチングトランジスタのスィ ツチング動作を制御する制御回路に関する。この制御回路は、他励式 DCZDCコン バータのスイッチングトランジスタのスイッチング動作を制御する制御回路であって、 スイッチングトランジスタのスイッチング動作を制御するスイッチング制御部と、他励式 DCZDCコンバータの出力電圧と所定のしきい値電圧とを比較して短絡状態を検出 する電圧比較器と、を備える。スイッチング制御部は、他励式 DCZDCコンバータの 起動開始から所定の起動時間の経過後に、電圧比較器が短絡状態を検出すると、 スイッチングトランジスタのスイッチング動作を停止する一方、起動時間の経過前に おいて電圧比較器による短絡状態の検出を無効化する。
[0008] この態様によると、負荷が短絡して出力電圧が低下する状態と、起動時に出力電圧 がその目標値に立ち上がる以前にお 、て、出力電圧がしき!/、値電圧より低!、状態と を区別することができ、本当に負荷が短絡した場合のみスイッチングトランジスタを停 止して回路保護を図ることができる。
[0009] スイッチング制御部は、短絡状態を検出してスイッチングトランジスタのスイッチング 動作を所定の停止時間の間停止した後、再度他励式 DCZDCコンバータの起動を 開始してちょい。
負荷の短絡時に、スイッチングトランジスタを所定の停止時間、停止することにより、 長期的な負荷の短絡が持続した場合に、起動時間に電流が流れ、停止時間に電流 が遮断されるという間欠動作となるため、スイッチングトランジスタやトランスに大電流 が連続的に流れるのを防止することができる。
[0010] 起動時間は、他励式 DCZDCコンバータの起動開始後、出力電圧がしきい値電圧 より高くなるのに要する時間より長く設定されてもよい。
[0011] スイッチング制御部は、電圧比較器において、出力電圧がしきい値電圧を所定の 短絡検出時間の間、継続して下回るとき、スイッチングトランジスタのスイッチング動 作を停止してもよい。この場合、長期的な短絡状態を好適に検出し、回路保護を行う ことができる。
[0012] スイッチング制御部は、スイッチングトランジスタの制御状態を保持するステートマシ ンを含んでもよい。ステートマシンは、他励式 DCZDCコンバータによる昇圧動作を 実行しつつ、電圧比較器による短絡状態の検出を無効化する起動モードと、他励式 DCZDCコンバータによる昇圧動作を実行しつつ、電圧比較器により短絡状態の検 出を行う通常モードと、他励式 DCZDCコンバータによる昇圧動作を停止する停止 モードと、の 3つのモードを有してもよい。ステートマシンは、起動モードに移行してか ら起動時間経過後に通常モードに移行し、通常モードにおいて電圧比較器が短絡 状態を検出すると停止モードに移行し、停止モードに移行して力 所定の停止時間 経過後に起動モードに移行してもよ 、。
ステートマシンを用いて 3つの状態を規定し、駆動状態に応じて遷移させることによ り、上述の短絡保護を好適に実行することができる。
[0013] ステートマシンは、通常モードにおいて、負荷を駆動することにより他励式 DCZD Cコンバータの出力電圧が低下すると、起動モードに移行してもよい。この場合、出 力電圧を起動モードにより再度上昇させ、その間、短絡状態の検出を無効化すること ができる。
[0014] スイッチング制御部は、パルス信号を生成するパルス幅変調器と、パルス信号にも とづきスイッチングトランジスタを駆動するドライバ回路と、出力電圧と、出力電圧の目 標値付近に設定されるしき 、値電圧とを比較するヒステリシスコンパレータと、を含ん でもよい。ノ ルス幅変調器は、起動モードにおいてパルス信号のデューティ比を徐々 に変化させ、通常モードおよび停止モードにお!、てパルス信号のデューティ比を所 定値に固定し、ドライバ回路は、起動モードおよび通常モードにおいて、パルス信号 にもとづいてスイッチングトランジスタを駆動し、停止モードにおいて、スイッチングトラ ンジスタの駆動を停止してもよ 、。
[0015] この場合、起動モードにおいてソフトスタートを実行することができる。また通常モー ドにおいては、出力電圧によらずに、固定のデューティ比でスイッチングトランジスタ を駆動するため、出力電圧は徐々に上昇していく。その後、出力電圧がヒステリシス コンパレータの第 1のしきい値電圧に達するとスイッチングトランジスタを停止し、出力 電圧が徐々に低下する。出力電圧がヒステリシスコンパレータの第 2のしきい値電圧 まで低下すると、スイッチングトランジスタの駆動が再開される。その結果、通常モー ドでは、出力電圧は第 1しきい値電圧力ゝら第 2しきい値電圧の間に安定化される。ま た、短絡時に停止モードとすることにより、昇圧動作を停止して回路を保護することが できる。
[0016] スイッチング制御部は、タイマ回路をさらに含み、ステートマシンは、必要な時間計 測をタイマ回路を利用して行ってもょ ヽ。
[0017] スイッチング制御部と、電圧比較器は、ひとつの半導体基板上に一体集積化されて もよい。なお、ここでの集積化とは、回路の構成要素のすべてが半導体基板上に形 成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定 数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていても よい。
[0018] 本発明の別の態様は、自励式 DCZDCコンバータのスイッチングトランジスタのス イッチング動作を制御する制御回路に関する。この制御回路は、スイッチングトランジ スタのスイッチング動作を制御するスイッチング制御部と、自励式 DCZDCコンパ一 タの出力電圧と所定のしきい値電圧とを比較して短絡状態を検出する電圧比較器と 、を備える。スイッチング制御部は、自励式 DCZDCコンバータの起動開始力 所定 の起動時間の経過後に、電圧比較器が短絡状態を検出すると、スイッチングトランジ スタのスイッチング動作を停止する一方、起動時間の経過前において電圧比較器に よる短絡状態の検出を無効化する。
[0019] 本発明の別の態様は、電源装置である。この電源装置は、スイッチングトランジスタ を含み、当該スイッチングトランジスタのオンオフにより昇圧動作が制御される他励式 DCZDCコンバータと、スイッチングトランジスタのオンオフを制御する制御回路と、 を備える。
この態様によると、他励式 DCZDCコンバータのスイッチングトランジスタやトランス を過電流カゝら好適に保護することができる。 [0020] 本発明のさらに別の態様は、発光装置である。この発光装置は、上述の電源装置と 、この電源装置の他励式 DCZDCコンバータの出力電圧により駆動される発光素子 と、を備える。
[0021] この態様によると、負荷である発光素子に、短絡等が発生しない通常駆動時には、 発光素子を安定に発光できるとともに、短絡した場合には、回路を過電流から保護す ることがでさる。
[0022] 本発明のさらに別の態様は、電池駆動型の電子機器である。この電池駆動型の電 子機器は、撮像部と、撮像部による撮像の際、フラッシュとして用いられる上述の発 光装置と、を備え、発光装置は、電池電圧を昇圧して発光素子を駆動する。
この態様によると、負荷として電源装置に接続される発光素子が短絡した場合に、 電池から大電流が長時間、連続的に流れ出るのを防止し、電子機器の発熱を抑制 することができる。
[0023] なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を方法、装置 、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 発明の効果
[0024] 本発明に係る DCZDCコンバータの制御回路によれば、負荷の短絡から回路を保 護することができる。
図面の簡単な説明
[0025] [図 1]本実施の形態に係る発光装置の構成を示す回路図である。
[図 2]図 1の発光装置を搭載した電子機器の構成を示すブロック図である。
[図 3]ステートマシンの状態遷移図である。
[図 4]図 1の発光装置の動作状態を示すタイムチャートである。
符号の説明
[0026] 10 スイッチング制御部、 12 ヒステリシスコンパレータ、 14 ステートマシン、 16 タイマ回路、 18 ドライバ回路、 20 パルス幅変調器、 22 電圧比較器、 24 発振器、 26 ソフトスタート回路、 30 電圧比較器、 50 トランス、 52 整 流用ダイオード、 100 制御回路、 102 出力端子、 104 帰還端子、 106 発 光制御端子、 Trl スイッチングトランジスタ、 C1 出力キャパシタ、 R1 第 1抵 抗、 R2 第 2抵抗、 Vpwm パルス幅変調信号、 Vsc 短絡検出信号、 Vov 過電圧検出信号、 S1 起動モード、 S2 通常モード、 S3 停止モード、 S4 スタンバイモード、 200 発光装置、 210 他励式 DCZDCコンバータ、 212 発光素子、 214 トリガ回路、 214a IGBT、 214b 発光制御部、 300 電子 機器、 310 電池、 312 通信処理部、 314 DSP、 316 撮像部。
発明を実施するための最良の形態
[0027] 以下本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に 示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし 、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく 例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずし も発明の本質的なものであるとは限らない。
[0028] 図 1は、本実施の形態に係る発光装置 200の構成を示す回路図である。この発光 装置 200は、カメラを備える電子機器に搭載され、カメラによる撮像の際に、フラッシ ュとして用いられる光源として機能する。
[0029] 図 2は、図 1の発光装置を搭載した電子機器 300の構成を示すブロック図である。
本実施の形態において、電子機器 300は、カメラを搭載した携帯電話端末であり、電 池 310、通信処理部 312、 DSP (Digital Signal Processor) 314、撮像部 316、 発光装置 200を備える。
[0030] 電池 310はたとえば、リチウムイオン電池であり、電池電圧 Vbatとして 3〜4V程度 の電圧を出力する。 DSP314は、電子機器 300全体を統括的に制御するブロックで あり通信処理部 312、撮像部 316、発光装置 200と接続されている。通信処理部 31 2は、アンテナ、高周波回路などを含み、基地局との通信を行うブロックである。 撮像部 316は、 CCD (Charge Coupled Device)や CMOSセンサなどの撮像 装置である。
[0031] 発光装置 200は、他励式 DCZDCコンバータ 210、発光素子 212、トリガ回路 214 を備える。発光素子 212としてはキセノンチューブなどが好適に用いられる。他励式 DCZDCコンバータ 210は、電池 310から供給される電池電圧 Vbatを昇圧し、発光 素子 212に 300V程度の駆動電圧 (以下、出力電圧ともいう) Voutを供給する。駆動 電圧 Voutは、所定のレベルの目標電圧 Vtgtに安定ィ匕される。トリガ回路 214は、発 光装置 200の発光のタイミングを制御する回路である。発光素子 212は、撮像部 31 6の撮像と同期して発光する。
[0032] 図 1に戻る。発光装置 200は、制御回路 100、スイッチングトランジスタ Trl、トランス 50、整流用ダイオード 52、出力キャパシタ Cl、第 1抵抗 Rl、第 2抵抗 R2、発光素子 212、 IGBT (Insulated Gate Bipolar Transistor) 214aを含む。制御回路 100 は、ひとつの半導体基板上に集積化された集積回路である。この集積回路には、ス イッチングトランジスタ Tr 1をさらに集積ィ匕してもよ!、。
[0033] 図 1に示す制御回路 100、スイッチングトランジスタ Trl、トランス 50、整流用ダイォ ード 52、出力キャパシタ Cl、第 1抵抗 Rl、第 2抵抗 R2が、図 2の他励式 DCZDCコ ンバータ 210に対応する。また、図 1の IGBT214a、発光制御部 214bは図 2のトリガ 回路 214に対応する。 IGBT214aは、発光素子 212の電流経路上に設けられ、その オン、オフによって発光素子 212の発光を制御する。
[0034] 制御回路 100は、他励式 DCZDCコンバータ 210のスイッチングトランジスタ Trl のゲート電圧を制御してスイッチング動作、すなわちオンオフを制御する。制御回路 100は、他励式 DCZDCコンバータ 210による昇圧動作を実行する起動モード、通 常モードと、他励式 DCZDCコンバータ 210による昇圧動作を停止する停止モード の 3つのモードを切り替えてスイッチングトランジスタ Trlを制御する。詳細は後述す るが、この制御回路 100は、負荷の短絡状態の検出を検出する機能を備えており、 通常モードにおいて短絡検出を行う一方で、起動モードにおいては、短絡検出を無 効化する。
[0035] 制御回路 100は、出力端子 102、帰還端子 104、発光制御端子 106を備える。出 力端子 102は、スイッチングトランジスタ Trlのゲートに接続され、制御回路 100の出 力信号であるスイッチング信号 Vswが出力される。帰還端子 104には、第 1抵抗 Rl、 第 2抵抗 R2によって分圧された他励式 DCZDCコンバータ 210の出力電圧 Voutが 帰還される。発光制御端子 106は、 IGBT214aのゲートに接続される。
[0036] トランス 50の 1次側コイルの一端には、電池電圧 Vbatが印加され、他端には、スィ ツチングトランジスタ Trlのドレインが接続される。スイッチングトランジスタ Trlは、 N チャンネルの MOSトランジスタであり、そのソースは接地される。
トランス 50の 2次側コイルの一端は接地され、他端には整流用ダイオード 52のァノ ードが接続される。整流用ダイオード 52の力ソードは、出力キャパシタ C1を介して接 地される。出力キャパシタ C1と整流用ダイオード 52の接続点には、他励式 DCZDC コンバータ 210の出力電圧 Voutが現れる。この出力電圧 Voutは、発光素子 212に 供給される。
[0037] 制御回路 100は、スイッチング制御部 10、電圧比較器 30、発光制御部 214bを含 む。スイッチング制御部 10は、帰還端子 104に帰還される電圧にもとづいてスィッチ ング電圧 Vswを生成し、スイッチングトランジスタ Trlのスイッチング動作を制御する。 電圧比較器 30は、他励式 DCZDCコンバータ 210の出力電圧 Voutと所定のしきい 値電圧 Vthとを比較して短絡状態を検出する。発光制御部 214bは、発光制御信号 SIG20を生成し、 IGBT214aのベース電圧を制御する。
[0038] このスイッチング制御部 10は、他励式 DCZDCコンバータ 210の起動開始力も所 定の起動時間 Tplの経過後に、電圧比較器 30が短絡状態を検出すると、スィッチン グトランジスタ Trlのスイッチング動作を停止する一方、起動時間 Tplの経過前にお いて電圧比較器 30による短絡状態の検出を無効化する。以下、このスイッチング制 御部 10、電圧比較器 30の構成、動作について詳細に説明する。
[0039] スイッチング制御部 10は、ヒステリシスコンパレータ 12、ステートマシン 14、タイマ回 路 16、ドライバ回路 18、パルス幅変調器 20を含む。
パルス幅変調器 20は、周波数が一定で、パルス幅が変化するパルス幅変調信号 V pwmを生成し、ドライバ回路 18に出力する。ドライバ回路 18は、インバータなどを含 んで構成され、パルス幅変調信号 Vpwmにもとづきスイッチング電圧 Vswを生成して スイッチングトランジスタ Trlを駆動する。このドライバ回路 18は、 2つのィネーブル端 子 18a、 18bを備えており、各ィネーブル端子 18a、 18bには、後述するヒステリシス コンパレータ 12、ステートマシン 14から出力されるモード信号 MODEl、過電圧検出 信号 Vovが入力されて!、る。
[0040] ヒステリシスコンパレータ 12は、他励式 DCZDCコンバータ 210の出力電圧 Vout が所定のしきい値電圧より高い過電圧状態を検出し、過電圧検出信号 Vovを生成す る。この過電圧検出信号 Vovは、過電圧状態においてノ、ィレベル、それ以外におい てローレベルとなる。ドライバ回路 18は、過電圧検出信号 Vovがハイレベルのとき、 パルス幅変調器 20から出力されるノ ルス幅変調信号 Vpwmに関わらず、スィッチン グトランジスタ Trlのスイッチング動作を停止し、過電圧検出信号 Vovがローレベル のとき、パルス幅変調信号 Vpwmにもとづきスイッチングトランジスタ Trlを駆動する。
[0041] 帰還端子 104には、上述のように、他励式 DCZDCコンバータ 210の出カ電圧¥〇 utが分圧され、帰還電圧 Vout' =Vout X Rl/ (Rl +R2)が帰還される。ヒステリシ スコンパレータ 12のプラス端子には、帰還端子 104に入力される帰還電圧 Vout'が 入力され、マイナス端子には基準電圧 Vrefがそれぞれ入力される。ヒステリシスコン パレータ 12は、その出力がローレベルのとき、第 1しきい値電圧 Vref 1と帰還電圧 Vo ut'を比較し、その出力がハイレベルのとき、第 2しきい値電圧 Vref2と帰還電圧 Vou t'を比較する。ここで、第 1しきい値電圧 Vref 1と第 2しきい値電圧 Vref2との間には 、 Vref 1 > Vref 2の関係が成り立つている。
[0042] ヒステリシスコンパレータ 12から出力される過電圧検出信号 Vovは、昇圧動作によ つて出力電圧 Voutが上昇し、 Vmax=Vrefl X (Rl +R2) ZR1で与えられる第 1し きい値電圧に達するとローレベルとなり、昇圧動作の停止によって、出力電圧 Vout が下降し、 Vmin=Vref2 X (R1 +R2) ZR1で与えられる第 2しきい値電圧に達す るとハイレベルとなる。ヒステリシスコンパレータ 12の基準電圧 Vrefは、他励式 DC/ DCコンバータ 210の出力電圧 Voutの目標電圧 Vtgtを用いて、 Vref=Vtgt X Rl / (Rl +R2)が成り立つように設定する。
[0043] ノ ルス幅変調器 20は、電圧比較器 22、発振器 24、ソフトスタート回路 26を含む。
発振器 24は、三角波あるいはのこぎり波状の周期電圧 Voscを生成する。ソフトスタ ート回路 26は、起動モードにおいて徐々に上昇するソフトスタート電圧 Vssを生成す る。電圧比較器 22のプラス端子には、周期電圧 Vosc、ソフトスタート電圧 Vssが入力 され、マイナス端子には固定電圧 Vclが印加されている。ソフトスタート電圧 Vssの最 大値は、固定電圧 Vclに等しく設定される。電圧比較器 22は、固定電圧 Vclと、ソフ トスタート電圧 Vssのいずれか低い電圧と、周期電圧 Voscとを比較する。したがって 、パルス幅変調器 20から出力されるパルス幅変調信号 Vpwmは、起動モードにおい てデューティ比が徐々に大きくなり、通常モードおよび停止モードにおいてデューテ ィ比が固定電圧 Vclで定まる所定値に固定される。
[0044] ドライバ回路 18は、起動モードおよび通常モードにおいて、ヒステリシスコンパレー タ 12の比較結果を参照し、出力電圧 Voutがしきい値電圧より低いとき、パルス幅変 調信号 Vpwmにもとづ ヽてスイッチングトランジスタ Trlを駆動し、出力電圧 Voutが しきい値電圧より高いとき、スイッチングトランジスタ Trlの駆動を停止する。また、停
Figure imgf000012_0001
ヽては、スイッチングトランジスタ Trlの駆動を停止する。
[0045] 電圧比較器 30は、他励式 DCZDCコンバータ 210の出力電圧 Voutをモニタする ことにより、負荷の短絡状態を検出するために設けられる。電圧比較器 30は、プラス 端子に入力された帰還電圧 Vout'と、マイナス端子に入力された所定のしきい値電 圧 Vth,とを比較し、 Vout' >Vth'のときハイレベル、 Vout' <Vth'のときローレべ ルを出力する。以下、電圧比較器 30の出力を短絡検出信号 Vscという。すなわち、 電圧比較器 30は、他励式 DCZDCコンバータ 210の出力電圧 Voutをしきい値電 圧 Vth=Vth' X (R1 +R2) ZR1と比較することにより短絡状態を検出する。たとえ ば、出力電圧 Voutの目標電圧 Vtgtが 300Vの場合、しきい値電圧 Vthは 30V程度 に設定する。
[0046] ステートマシン 14には、電圧比較器 30から出力される短絡検出信号 Vscが入力さ れる。ステートマシン 14は、スイッチングトランジスタ Trlの制御状態、すなわち起動 モード、通常モード、停止モードおよびスタンバイモードの 4つの状態を保持する。図 3は、ステートマシン 14の状態遷移図である。電子機器 300の電源が投入されると、 ステートマシン 14はスタンバイモード S4となる。その後、ステートマシン 14に入力され るィネーブル信号 ENがハイレベルとなると、起動モード S1に遷移する。ィネーブル 信号 ENは、制御回路 100の外部から与えられる。
[0047] ステートマシン 14は、起動モード S1においては電圧比較器 30による短絡状態の 検出を無効化して起動時間 Tplの経過後に通常モード S2に移行する。起動時間 T plは、他励式 DCZDCコンバータ 210の起動開始後、出力電圧 Voutがしきぃ値電 圧 Vthより高くなるのに要する時間より長く設定しておく。
[0048] また、ステートマシン 14は、通常モード S2において、電圧比較器 30が短絡状態を 検出すると停止モード S3に移行する。ステートマシン 14は、電圧比較器 30から出力 される短絡検出信号 Vscが、所定の短絡検出時間 Tp2の間、継続してハイレベルと なったとき、通常モード S2から停止モード S3へと遷移してもよい。
[0049] さらに、ステートマシン 14は、停止モード S3に移行した後、所定の停止時間 Τρ3経 過後に起動モード S1に移行し、他励式 DCZDCコンバータ 210の起動を開始する
[0050] さらに、ステートマシン 14には、発光制御部 214bから出力される発光制御信号 SI G20が入力されており、通常モード S2において発光素子 212の発光動作が完了す ると、起動モード S1に遷移する。すなわち、ステートマシン 14は、通常モード S2にお いて、負荷である発光素子 212を駆動することにより他励式 DCZDCコンバータの 出力電圧 Voutが低下すると、起動モード S 1に移行する。
[0051] ステートマシン 14は、各状態において、ドライバ回路 18およびソフトスタート回路 26 に、現在の状態を表すモード信号 MODE 1、 MODE2を出力する。ステートマシン 1 4は、必要な時間計測、すなわち起動時間 Tpl、短絡検出時間 Τρ2、停止時間 Τρ3 などをタイマ回路 16を利用して行う。
[0052] 以上のように構成された発光装置 200の動作について説明する。図 4は、図 1の発 光装置 200の動作状態を示すタイムチャートである。
時刻 TOに電子機器 300の電源が投入され、ステートマシン 14はスタンバイモード S 4となる。時刻 T1に、ィネーブル信号 ENがハイレベルとなると、起動モード S1に遷 移する。起動モード S1となると、ステートマシン 14から出力されるモード信号 MODE 2によってソフトスタート回路 26が制御され、パルス幅変調信号 Vpwmのデューティ 比が徐々〖こ大きくなり、他励式 DCZDCコンバータ 210の出力電圧 Voutが徐々に 上昇を開始する。
[0053] 時刻 T1から時刻 T2の期間、出力電圧 Voutは、しきい値電圧 Vthより低い。この間 、起動モード S1において、ステートマシン 14は電圧比較器 30による短絡状態の検 出を無効化している。時刻 T1から起動時間 Tpl経過後の時刻 T3において、ステー トマシン 14は、起動モード S1から通常モード S2へと遷移する。通常モード S2におい ては、電圧比較器 30による短絡状態の監視は有効となる。 [0054] 時刻 T4に、出力電圧 Voutがその目標値の電圧 Vtgtに達し、ヒステリシスコンパレ ータ 12によってドライバ回路 18の動作が制御され、 Vout Vtgtとなるように安定ィ匕 される。図 4において、出力電圧 Voutは一定値で示している力 実際にはヒステリシ スコンパレータ 12により定まる電圧 Vmaxと Vminの間を変動している。
[0055] 時刻 T5に負荷が短絡して出力電圧 Voutが急激に降下し、その後間もない時刻 T 6に出力電圧 Voutがしきい値電圧 Vthより低くなると、電圧比較器 30の出力である 短絡検出信号 Vscはハイレベルとなる。負荷の短絡状態が継続し、短絡検出信号 Vs cがハイレベルとなって力 短絡検出時間 Tp2経過後の時刻 T7に、ステートマシン 1 4は通常モード S2から停止モード S3へと遷移する。このとき、ステートマシン 14はドラ ィバ回路 18に出力するモード信号 MODE2をハイレベルとし、ドライバ回路 18による スイッチングトランジスタ Trlの駆動を停止する。
[0056] 停止モード S3に遷移して力 停止時間 Tp3経過後の時刻 T8に、ステートマシン 1 4は起動モード S 1に遷移する。起動モード S1にお!/、て出力電圧 Voutは再びソフト スタート動作によって上昇する。このとき、負荷は、短絡状態から開放されているもの とする。時刻 T9に短絡検出信号 Vscはローレベルとなり、起動開始から起動時間 Tp 1経過後の時刻 T10に通常モード S2となる。時刻 T11に出力電圧 Voutは目標電圧 Vtgtに達する。
[0057] 時刻 T12に、電子機器 300のユーザが撮像部 316のシャッターを押すと、発光制 御部 214bから出力される発光制御信号 SIG20がハイレベルとなり、 IGBT214aが オンし、発光素子 212が発光する。このとき、出力キャパシタ C1に蓄えられた電荷が 放電し、出力電圧 Voutは急激に低下する。発光制御信号 SIG20がハイレベルの期 間、ステートマシン 14はスタンバイモード S4となる。その後、時刻 T13に発光制御信 号 SIG20がローレベルとなると、ステートマシン 14は起動モード S1となる。時刻 T13 力も起動時間 Tpl経過後の時刻 T14にステートマシン 14は通常モード S2に遷移す る。
[0058] 本実施の形態に係る制御回路 100によれば、起動モード S1と通常モード S2を切り 替え、電圧比較器 30による短絡状態の検出の有効、無効を切り替えることにより、負 荷が短絡して出力電圧 Voutが低下する状態と、起動時に出力電圧 Voutがその目 標値 Vtgtに立ち上がる以前にお 、て、出力電圧 Voutがしき 、値電圧 Vthより低 ヽ 状態とを区別することができ、本当に負荷が短絡した場合のみスイッチングトランジス タ Trlを停止して回路保護を図ることができる。
[0059] また、スイッチング制御部 10は、短絡状態を検出してスイッチングトランジスタ Trl のスイッチング動作を停止時間 Tp3の間停止した後、他励式 DCZDCコンバータの 起動を開始するため、長期的な負荷の短絡が持続した場合に、起動時間 Tplに電 流が流れ、停止時間 Tp3に電流が遮断されるという間欠動作となるため、スィッチン グトランジスタ Trlやトランス 50に大電流が連続的に流れるのを防止することができる
[0060] また、スイッチング制御部 10は、電圧比較器 30において、出力電圧 Voutがしきい 値電圧 Vthを短絡検出時間 Tp2の間、継続して下回ったときに短絡状態と判定する ため、ごく短時間、出力電圧 Voutが低下したような場合を短絡と判定することなぐ 長期的な短絡状態を好適に検出し、回路保護を行うことができる。
[0061] さらに、ステートマシン 14は、通常モード S2において、負荷である発光素子 212を 駆動することにより他励式 DCZDCコンバータの出力電圧 Voutが低下すると、起動 モード S1に移行するため、発光後に出力電圧 Voutを起動モード S1で再度上昇さ せ、その間、電圧比較器 30による短絡状態の検出を無効化することができる。
[0062] 上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せに いろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当 業者に理解されるところである。
[0063] 実施の形態において、 DCZDCコンバータは、発光素子 212を駆動する場合につ いて説明したが、これには限定されず、その他の高電圧を必要とするさまざまな負荷 を駆動することができる。本実施の形態では、負荷の駆動、すなわち発光素子 212の 発光により他励式 DCZDCコンバータ 210の出力電圧 Voutが低下する場合につい て説明したが、負荷の駆動により出力電圧 Voutがそれほど低下しない場合には、図 4の時刻 T13に示される負荷の駆動に同期した起動モード S 1への遷移は行わなくて ちょい。
[0064] 実施の形態では、他励式の DCZDCコンバータについて説明した力 自励式であ つてもよい。
[0065] また、本実施の形態にお!、て、ハイレベル、ローレベルの論理値の設定は一例で あって、インバータなどによって適宜反転させることにより自由に変更することが可能 である。
[0066] 実施の形態にもとづき、本発明を説明したが、実施の形態は、本発明の原理、応用 を示しているにすぎないことはいうまでもなぐ実施の形態には、請求の範囲に規定さ れた本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能 であることは 、うまでもな!/、。
産業上の利用可能性
[0067] 本発明は、スイッチング電源装置に利用することができる。

Claims

請求の範囲
[1] 他励式 DCZDCコンバータのスイッチングトランジスタのスイッチング動作を制御す る制御回路であって、
前記スイッチングトランジスタのスイッチング動作を制御するスイッチング制御部と、 前記他励式 DCZDCコンバータの出力電圧と所定のしきい値電圧とを比較して短 絡状態を検出する電圧比較器と、を備え、
前記スイッチング制御部は、前記他励式 DCZDCコンバータの起動開始から所定 の起動時間の経過後に、前記電圧比較器が短絡状態を検出すると、前記スィッチン グトランジスタのスイッチング動作を停止する一方、前記起動時間の経過前にお!/、て 前記電圧比較器による短絡状態の検出を無効化することを特徴とする制御回路。
[2] 前記スイッチング制御部は、短絡状態を検出して前記スイッチングトランジスタのス イッチング動作を所定の停止時間の間停止した後、再度前記他励式 DCZDCコン バータの起動を開始することを特徴とする請求項 1に記載の制御回路。
[3] 前記起動時間は、前記他励式 DCZDCコンバータの起動開始後、前記出力電圧 が前記しきい値電圧より高くなるのに要する時間より長く設定されることを特徴とする 請求項 1または 2に記載の制御回路。
[4] 前記スイッチング制御部は、前記電圧比較器にぉ 、て、前記出力電圧が前記しき い値電圧を所定の短絡検出時間の間、継続して下回るとき、前記スイッチングトラン ジスタのスイッチング動作を停止することを特徴とする請求項 1または 2に記載の制御 回路。
[5] 前記スイッチング制御部は、前記スイッチングトランジスタの制御状態を保持するス テートマシンを含み、
前記ステートマシンは、
前記他励式 DCZDCコンバータによる昇圧動作を実行しつつ、前記電圧比較器 による短絡状態の検出を無効化する起動モードと、
前記他励式 DCZDCコンバータによる昇圧動作を実行しつつ、前記電圧比較器 により短絡状態の検出を行う通常モードと、
前記他励式 DCZDCコンバータによる昇圧動作を停止する停止モードと、 の 3つのモードを有し、前記起動モードに移行してから前記起動時間経過後に前 記通常モードに移行し、前記通常モードにお!ヽて前記電圧比較器が短絡状態を検 出すると前記停止モードに移行し、前記停止モードに移行してから所定の停止時間 経過後に前記起動モードに移行することを特徴とする請求項 1または 2に記載の制 御回路。
[6] 前記ステートマシンは、前記通常モードにおいて、負荷を駆動することにより前記他 励式 DCZDCコンバータの出力電圧が低下すると、前記起動モードに移行すること を特徴とする請求項 5に記載の制御回路。
[7] 前記スイッチング制御部は、
パルス信号を生成するパルス幅変調器と、
前記ノルス信号にもとづき前記スイッチングトランジスタを駆動するドライバ回路と、 前記出力電圧と、前記出力電圧の目標値付近に設定されるしきい値電圧とを比較 するヒステリシスコンパレータと、をさらに含み、
前記パルス幅変調器は、前記起動モードにお!、て前記パルス信号のデューティ比 を徐々に変化させ、前記通常モードおよび前記停止モードにおいて前記パルス信号 のデューティ比を所定値に固定し、
前記ドライバ回路は、前記起動モードおよび前記通常モードにおいて、前記パノレス 信号にもとづ ヽて前記スイッチングトランジスタを駆動し、前記停止モードにぉ ヽて、 前記スイッチングトランジスタの駆動を停止することを特徴とする請求項 5に記載の制 御回路。
[8] 前記スイッチング制御部は、タイマ回路をさらに含み、前記ステートマシンは、必要 な時間計測を前記タイマ回路を利用して行うことを特徴とする請求項 5に記載の制御 回路。
[9] 自励式 DCZDCコンバータのスイッチングトランジスタのスイッチング動作を制御す る制御回路であって、
前記スイッチングトランジスタのスイッチング動作を制御するスイッチング制御部と、 前記自励式 DCZDCコンバータの出力電圧と所定のしき 、値電圧とを比較して短 絡状態を検出する電圧比較器と、を備え、 前記スイッチング制御部は、前記自励式 DCZDCコンバータの起動開始から所定 の起動時間の経過後に、前記電圧比較器が短絡状態を検出すると、前記スィッチン グトランジスタのスイッチング動作を停止する一方、前記起動時間の経過前にお!/、て 前記電圧比較器による短絡状態の検出を無効化することを特徴とする制御回路。
[10] 前記スイッチング制御部と、前記電圧比較器は、ひとつの半導体基板上に一体集 積化されることを特徴とする請求項 1に記載の制御回路。
[11] スイッチングトランジスタを含み、当該スイッチングトランジスタのオンオフにより昇圧 動作が制御される他励式 DCZDCコンバータと、
前記スイッチングトランジスタのオンオフを制御する請求項 1または 2のいずれかに 記載の制御回路と、
を備えることを特徴とする電源装置。
[12] 請求項 11に記載の電源装置と、
前記電源装置の他励式 DCZDCコンバータの出力電圧により駆動される発光素 子と、
を備えることを特徴とする発光装置。
[13] 撮像部と、
前記撮像部による撮像の際、フラッシュとして用いられる請求項 12に記載の発光装 置と、を備え、
前記発光装置は、電池電圧を昇圧して前記発光素子を駆動することを特徴とする 電池駆動型の電子機器。
PCT/JP2006/311065 2005-06-06 2006-06-02 Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器 WO2006132138A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/951,408 US7863833B2 (en) 2005-06-06 2007-12-06 DC/DC converter control circuit, and power supply apparatus, light emitting apparatus and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005166046A JP4751108B2 (ja) 2005-06-06 2005-06-06 他励式dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP2005-166046 2005-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/951,408 Continuation US7863833B2 (en) 2005-06-06 2007-12-06 DC/DC converter control circuit, and power supply apparatus, light emitting apparatus and electronic device using the same

Publications (1)

Publication Number Publication Date
WO2006132138A1 true WO2006132138A1 (ja) 2006-12-14

Family

ID=37498338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311065 WO2006132138A1 (ja) 2005-06-06 2006-06-02 Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器

Country Status (6)

Country Link
US (1) US7863833B2 (ja)
JP (1) JP4751108B2 (ja)
KR (1) KR20080019197A (ja)
CN (1) CN101099288A (ja)
TW (1) TW200703862A (ja)
WO (1) WO2006132138A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044603B2 (en) * 2007-06-11 2011-10-25 Upec Electronics Corp. Light emitting diode driving device and light system
TWI398963B (zh) * 2008-09-12 2013-06-11 Upec Electronics Corp 發光二極體驅動裝置及照明系統
US8415978B2 (en) * 2008-12-29 2013-04-09 Stmicroelectronics S.R.L. State machine for generating a pulse width modulation (PWM) waveform
CN102369654B (zh) * 2009-03-13 2014-04-02 富士电机株式会社 开关电源装置、集成电路和开关电源装置的动作状态设定方法
TWI382625B (zh) 2009-07-13 2013-01-11 Asus Technology Pte Ltd 具軟啟動功能直流-直流轉換器的啟動短路保護裝置與方法
EP2299572A1 (de) * 2009-09-21 2011-03-23 SMA Solar Technology AG Aufstarten eines DC/DC-Wandlers mit Hochfrequenztransformator
CN102231514B (zh) * 2009-09-29 2014-02-12 杭州士兰微电子股份有限公司 输出短路的软恢复控制电路
CN101673938B (zh) * 2009-09-29 2012-06-27 杭州士兰微电子股份有限公司 输出短路的软恢复控制电路及其在dc-dc转换器中的应用
US8278895B2 (en) * 2009-12-24 2012-10-02 Linear Technology Corporation Efficiency measuring circuit for DC-DC converter which calculates internal resistance of switching inductor based on duty cycle
US8553375B2 (en) * 2010-04-01 2013-10-08 Intel Corporation Intelligent soft start control to reduce electrostatic discharge clamp current spikes
CN102844974B (zh) * 2010-04-16 2015-09-16 株式会社村田制作所 开关控制电路以及开关电源装置
TWI407656B (zh) * 2010-04-30 2013-09-01 Himax Analogic Inc 過電流保護電路及過電流保護方法
KR101097352B1 (ko) 2010-05-06 2011-12-23 삼성모바일디스플레이주식회사 Dc-dc 컨버터, 그 구동 방법, dc-dc 컨버터를 포함하는 유기 전계 발광 표시 장치 및 그 구동 방법
KR101146989B1 (ko) 2010-05-06 2012-05-22 삼성모바일디스플레이주식회사 Dc-dc 컨버터, 이를 포함하는 유기 전계 발광 표시 장치 및 그 구동 방법
CN102906980B (zh) * 2010-05-21 2015-08-19 株式会社半导体能源研究所 半导体装置及显示装置
WO2011145707A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US8593830B2 (en) * 2010-06-29 2013-11-26 Maxim Integrated Products, Inc. Reverse current limit protection for active clamp converters
CN102347601B (zh) * 2010-08-04 2014-01-22 鸿富锦精密工业(深圳)有限公司 电源保护电路
KR20120013777A (ko) 2010-08-06 2012-02-15 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 전원 공급 방법
CN102387648B (zh) * 2010-08-27 2014-10-29 台达电子工业股份有限公司 气体放电灯管的镇流控制电路与镇流电路的控制方法
JP5608544B2 (ja) * 2010-12-22 2014-10-15 ルネサスエレクトロニクス株式会社 出力回路
KR101813262B1 (ko) * 2011-05-17 2018-01-02 삼성전자주식회사 히스테리시스를 사용하여 과전압, 과전류 및 과온도로부터 무선-커플된 전력 장치들을 보호하는 장치 및 방법
KR101860739B1 (ko) 2011-05-18 2018-05-25 삼성디스플레이 주식회사 전원 변환기, 이를 포함하는 디스플레이 장치 및 구동 전압 제어 방법
JP5841375B2 (ja) * 2011-08-10 2016-01-13 ローム株式会社 降圧dc/dcコンバータおよびその制御回路、それを用いた照明機器
US10621942B2 (en) * 2012-06-06 2020-04-14 Texas Instruments Incorporated Output short circuit protection for display bias
TWI502865B (zh) * 2013-07-05 2015-10-01 Richtek Technology Corp Soft start switching power converter means
KR102066035B1 (ko) * 2013-12-12 2020-01-14 온세미컨덕터코리아 주식회사 감지저항단락 판단 회로 및 이를 포함하는 스위치 제어 회로와 전력 공급 장치
US9899913B2 (en) * 2014-01-10 2018-02-20 Samsung Electronics Co., Ltd. Dual-mode switching D.C.-to-D.C. converter and method of controlling the same
KR102220316B1 (ko) * 2014-01-10 2021-02-25 삼성전자주식회사 듀얼 모드 스위칭 직류-직류 변환기 및 그 제어 방법
US9768697B2 (en) * 2014-02-26 2017-09-19 Infineon Technologies Austria Ag System and method for controlling a switched mode power supply using a feedback signal
US9502990B2 (en) * 2014-05-12 2016-11-22 Chicony Power Technology Co., Ltd. Electric power feedback apparatus with main power output-feedback and standby power output-feedback
JP2016001822A (ja) * 2014-06-12 2016-01-07 富士電機株式会社 負荷駆動回路
KR101987507B1 (ko) * 2014-09-23 2019-06-10 현대자동차주식회사 적외선 광원 제어장치
US10396571B2 (en) * 2015-02-17 2019-08-27 Fairchild Semiconductor Corporation Adaptive overvoltage protection for adaptive power adapters
US9966840B2 (en) 2015-05-01 2018-05-08 Champion Microelectronic Corporation Switching power supply and improvements thereof
JP6732513B2 (ja) * 2016-04-22 2020-07-29 ローム株式会社 Dc/dcコンバータおよび電源アダプタおよび電子機器
CN105788560B (zh) 2016-05-26 2019-01-22 深圳市华星光电技术有限公司 直流电压转换电路及液晶显示装置
KR101953179B1 (ko) * 2016-07-22 2019-03-04 엘지전자 주식회사 컨버터 및 이를 구비한 가전기기
CN106353953B (zh) * 2016-09-28 2019-08-16 深圳市品色科技有限公司 闪光灯模组与闪光灯电源模组
JP6686857B2 (ja) * 2016-11-30 2020-04-22 トヨタ自動車株式会社 短絡故障検出装置
US10069416B2 (en) * 2016-12-13 2018-09-04 Texas Instruments Incorporated Buck-boost converter controller
JP6911580B2 (ja) * 2017-06-29 2021-07-28 富士電機株式会社 スイッチング電源装置の制御回路
KR102350724B1 (ko) 2017-08-21 2022-01-13 삼성전자주식회사 디스플레이의 동작 모드를 전환하는 방법 및 이를 수행하는 전자 장치
JP7066538B2 (ja) * 2018-06-07 2022-05-13 キヤノン株式会社 電源装置及び画像形成装置
FR3083932B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu
CN109041374A (zh) * 2018-07-12 2018-12-18 青岛亿联客信息技术有限公司 闪断开关检测电路及智能灯具
US11018417B2 (en) * 2019-04-26 2021-05-25 Nxp B.V. Short circuit detection apparatus for resonant antenna networks and methods therefor
JP7186688B2 (ja) * 2019-10-10 2022-12-09 日本電産モビリティ株式会社 スイッチング電源装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318543A (ja) * 1988-06-17 1989-12-25 Sony Tektronix Corp 直流・直流変換型電源回路
JPH0249332U (ja) * 1988-09-29 1990-04-05
JPH05328711A (ja) * 1992-05-15 1993-12-10 Fuji Electric Co Ltd Dc−dcコンバ−タの短絡保護回路
JPH08234852A (ja) * 1995-02-27 1996-09-13 Fuji Electric Co Ltd 安定化電源の過負荷保護方式
JPH1189220A (ja) * 1997-09-04 1999-03-30 Fuji Electric Co Ltd タイマ・ラッチ回路
JPH11252907A (ja) * 1998-02-25 1999-09-17 Nec Tohoku Ltd スイッチング電源装置
JP2004071428A (ja) * 2002-08-08 2004-03-04 Canon Inc コンデンサ充電装置及びカメラのストロボ充電装置
JP2004104942A (ja) * 2002-09-11 2004-04-02 Murata Mfg Co Ltd Dc−dcコンバータ
JP2004208382A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd スイッチング電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405539B2 (ja) 2001-06-14 2003-05-12 株式会社タムラ製作所 他励式コンバータの過電流保護回路
US6853563B1 (en) * 2003-07-28 2005-02-08 System General Corp. Primary-side controlled flyback power converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318543A (ja) * 1988-06-17 1989-12-25 Sony Tektronix Corp 直流・直流変換型電源回路
JPH0249332U (ja) * 1988-09-29 1990-04-05
JPH05328711A (ja) * 1992-05-15 1993-12-10 Fuji Electric Co Ltd Dc−dcコンバ−タの短絡保護回路
JPH08234852A (ja) * 1995-02-27 1996-09-13 Fuji Electric Co Ltd 安定化電源の過負荷保護方式
JPH1189220A (ja) * 1997-09-04 1999-03-30 Fuji Electric Co Ltd タイマ・ラッチ回路
JPH11252907A (ja) * 1998-02-25 1999-09-17 Nec Tohoku Ltd スイッチング電源装置
JP2004071428A (ja) * 2002-08-08 2004-03-04 Canon Inc コンデンサ充電装置及びカメラのストロボ充電装置
JP2004104942A (ja) * 2002-09-11 2004-04-02 Murata Mfg Co Ltd Dc−dcコンバータ
JP2004208382A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd スイッチング電源装置

Also Published As

Publication number Publication date
JP2006340587A (ja) 2006-12-14
US20080136342A1 (en) 2008-06-12
CN101099288A (zh) 2008-01-02
TW200703862A (en) 2007-01-16
US20110006694A9 (en) 2011-01-13
JP4751108B2 (ja) 2011-08-17
KR20080019197A (ko) 2008-03-03
US7863833B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
JP4751108B2 (ja) 他励式dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
US6980444B2 (en) Switching power supply
JP5330962B2 (ja) Dc−dcコンバータ
JP4481879B2 (ja) スイッチング電源装置
US20070200540A1 (en) Power Source Device
JP2019004577A (ja) スイッチング電源装置
US20080136341A1 (en) Switching Power Supply and its Control Circuit, and Electronic Apparatus Employing Such Switching Power Supply
JP6421047B2 (ja) スイッチング電源装置
US7368884B2 (en) DC/DC converter
JPWO2005006527A1 (ja) 電源装置及び電源装置の制御方法
US7615971B2 (en) Capacitor charging circuit, flash unit, and camera
JP2006246685A (ja) スイッチング電源装置
JP5228567B2 (ja) 昇圧型dc−dcコンバータ
JP2010213559A (ja) 直流電源装置およびdc−dcコンバータ
JP5340639B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP4851816B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP2009272255A (ja) 放電灯点灯装置、照明装置
JP4877755B2 (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP2004015993A (ja) 無負荷時省電力電源装置
JP4877771B2 (ja) キャパシタ充電装置およびそれを用いた発光装置および電子機器
JP2009176515A (ja) 放電管点灯装置及び半導体集積回路
JP2006148988A (ja) スイッチング電源回路
JP2007244077A (ja) キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP5039372B2 (ja) スイッチング電源の制御回路およびそれを利用した電源装置ならびに電子機器
JP2007047677A (ja) ストロボ充電回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077011808

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001887.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06747109

Country of ref document: EP

Kind code of ref document: A1