JP2004208382A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2004208382A
JP2004208382A JP2002373325A JP2002373325A JP2004208382A JP 2004208382 A JP2004208382 A JP 2004208382A JP 2002373325 A JP2002373325 A JP 2002373325A JP 2002373325 A JP2002373325 A JP 2002373325A JP 2004208382 A JP2004208382 A JP 2004208382A
Authority
JP
Japan
Prior art keywords
signal
voltage
switching
load
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002373325A
Other languages
English (en)
Other versions
JP3657256B2 (ja
Inventor
Tomoko Kinoshita
知子 木下
Yoshihiro Mori
吉弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002373325A priority Critical patent/JP3657256B2/ja
Priority to US10/742,392 priority patent/US6914789B2/en
Publication of JP2004208382A publication Critical patent/JP2004208382A/ja
Application granted granted Critical
Publication of JP3657256B2 publication Critical patent/JP3657256B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】全負荷範囲において最適なブランキング期間が得られるスイッチング電源装置を提供する。
【解決手段】オン時ブランキングパルス発生回路31が、誤差電圧信号VEAOを基にブランキングパルス信号(e)を生成し、負荷状態に応じたブランキング期間とする。例えば、誤差電圧信号VEAOの電圧値と基準電圧を比較し、軽負荷時には、つまり誤差電圧信号VEAOの電圧値が基準電圧以下となったときには、ブランキング期間が短くなるブランキングパルス信号(e)を生成する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、スイッチング電源装置に関する。
【0002】
【従来の技術】
以下、従来のスイッチング電源装置について図面を参照しながら説明する。図8は、入力側と出力側とが電気的に絶縁された従来の絶縁型のスイッチング電源装置の概略を示す回路図である。
【0003】
図8に示すように、該スイッチング電源装置は、例えば商用電源等から主入力端子101に印加された交流電力を、ダイオードブリッジ等からなる整流器102により整流し且つ入力コンデンサ103により平滑化して直流電圧Vinとし、電力変換用のトランス104の第1の1次巻線104aに印加する。この1次巻線104aは、例えばN型パワーMOSFET等からなるスイッチング素子105に接続されており、該スイッチング電源装置は、該スイッチング素子105をスイッチング動作させることにより、トランス104の2次巻線104cに磁気誘導による起電力を発生させる。そして、2次巻線104cに発生した起電力による交流電力を、2次巻線104cに接続されたダイオード107及び出力コンデンサ108により整流し且つ平滑化し、出力電圧Voの直流電力として主出力端子109に接続された負荷110へ供給する。
【0004】
図8において、点線120は、半導体装置を表しており、スイッチング素子105と、該スイッチング素子105のスイッチング動作を制御する制御回路106とで構成され、スイッチング素子105のドレイン端子TDとソース端子TS、および制御回路106の制御端子TCの3端子を有している。
【0005】
トランス104には第2の1次巻線(以下、補助巻線と称す。)104bが設けられており、2次巻線104cと同様に、スイッチング素子105によるスイッチング動作によって磁気誘導による起電力が発生する。
【0006】
補助巻線104bに発生した起電力による交流電力は、ダイオード112及び出力コンデンサ113からなる補助電源回路111により整流され且つ平滑化されて、補助電源電圧Vccとして出力される。
【0007】
この補助電源電圧Vccは、制御端子TCに入力され、制御回路106を駆動する駆動信号として用いられるとともに、補助電源電圧Vccと出力電圧Voが補助巻線104bと2次巻線104cの巻数比に比例しているので、該出力電圧Voを安定させる帰還信号としても用いられる。つまり、制御回路106は、出力電圧Voが所定の電圧で安定するように、補助電源電圧Vccを基にスイッチング素子105のスイッチング動作を制御している。
【0008】
以下、制御回路106について説明する。
まず、発振器121は、スイッチング素子105をスイッチング動作(ON/OFFの繰り返し動作)させるためのスイッチング信号を生成する。すなわち、スイッチング素子105のスイッチング周波数を決定するための信号CLKと、スイッチング素子105の最大デューティーサイクルを決定するための最大デューティーサイクル信号MDCを生成して出力する。
【0009】
また、誤差増幅器122は、補助電源電圧Vccと基準の電圧との差に応じた電圧値となる誤差電圧信号VEAOを生成して出力する。具体的には、誤差増幅器122は、制御端子TCに入力され抵抗分圧された補助電源電圧Vccが予め設定された所定の基準電圧を下回ると、この差からなる誤差電圧信号VEAOを生成して素子電流検出用比較器124へ出力する。なお、誤差電圧信号VEAOの電圧は、補助電源電圧Vccが上昇すると低下する関係にある。
【0010】
素子電流検出回路123は、トランス104の1次巻線104aからスイッチング素子105へ流入する素子電流IDを検出しこの電流値に応じた電圧信号に変換して、素子電流検出信号VCLとして素子電流検出用比較器124へ出力する。
【0011】
素子電流検出用比較器124は、素子電流検出信号VCLと誤差電圧信号VEAOの電圧を比較し、この比較結果を基にスイッチング素子105をターンオフするための比較信号を生成して出力することで、スイッチング素子105へ流入する電流量を調整し、出力電圧Voが所定の電圧で安定するようにする。具体的には、素子電流検出用比較器124は、スイッチング素子105がターンオンし素子電流検出信号VCLの電圧が上昇して誤差電圧信号VEAOの電圧と等しくなったとき、AND回路130の一方の入力端子へハイ信号(電位がハイレベルの信号。以下、同じ。)を出力する。このハイ信号が後述するRSフリップフロップ回路126のリセット端子へ入力されることで、スイッチング素子105がターンオフする。
【0012】
スイッチング信号制御回路125は、セット端子に発振器121から出力されるクロック信号CLKを受け、リセット端子にAND回路130から出力される信号を受けるRSフリップフロップ回路126と、一方の入力端子に発振器121から出力される最大デューティサイクル信号MDCを受け、もう一方の入力端子にRSフリップフロップ回路126から出力される信号を受けるNAND回路127と、NAND回路127から出力される信号を受けこれを反転増幅してスイッチング素子105の制御信号を出力するゲートドライバ128とから構成され、素子電流検出用比較器124からの比較信号(AND回路130からの出力信号)を基にスイッチング信号を制御することで、スイッチング素子105のオン期間を制御する。すなわち、スイッチング信号制御回路125は、誤差電圧信号VEAOの電圧と素子電流検出信号VCLの電圧が等しくなり、素子電流検出用比較器124からの比較信号がハイ信号となったとき、スイッチング素子105がターンオフするようにスイッチング信号を制御する。
【0013】
このように、制御回路106は、負荷110へ供給される出力電圧Voと比例する補助電源電圧Vccを帰還信号として、スイッチング素子105のオン期間(オフ期間)を制御することで、トランス104の1次巻線104aからスイッチング素子105へ流入する素子電流IDを制御し、出力電圧Voが所定の電圧で安定するようにしている。
【0014】
また、過電流保護回路129は、誤差増幅器122から出力される誤差電圧信号VEAOの最大電圧値をクランプし、スイッチング素子105に過電流が流れるのを防止している。
【0015】
続いて、AND回路130のもう一方の入力端子に接続されるオン時ブランキングパルス発生回路131について説明する。
このオン時ブランキングパルス発生回路131は、スイッチング素子105がターンオンしてから一定期間(以下、この期間をブランキング期間と称す。)、素子電流検出用比較器124からの比較信号を無効にし、容量性スパイク電流によってスイッチング素子105がターンオフしないようにするブランキングパルス信号を出力する。具体的には、AND回路130に対し、ブランキング期間はロー信号(電位がローの信号。以下、同じ。)となり、ブランキング期間経過後ハイ信号となるブランキングパルス信号を出力する。
【0016】
このようにすることにより、オン時ブランキングパルス発生回路131は、容量性スパイク電流によってスイッチング素子105の発振が停止することを防止している。すなわち、スイッチング素子105のターンオン時には、容量性スパイク電流が発生し素子電流検出回路123から出力される素子電流検出信号VCLの電位が急峻に上昇するので、ターンオン直後に、誤差電圧信号VEAOと素子電流検出信号VCLの電位が等しくなり、素子電流検出用比較器124からハイ信号が出力される。そのため、仮に、素子電流検出用比較器124からの比較信号をRSフリップフロップ回路126のリセット端子へ直接入力するように構成すると、スイッチング素子105はターンオン直後にターンオフすることになり、スイッチング素子105の発振が停止してしまう。そこで、オン時ブランキングパルス発生回路131とAND回路130により、容量性スパイク電流が発生している間は、素子電流検出用比較器124からの比較信号がRSフリップフロップ回路126のリセット端子に入力されないようにしている。
【0017】
以下、オン時ブランキングパルス発生回路131の構成について詳説する。
図8において、140はブランキング期間生成用コンデンサ、141はブランキング期間生成用コンデンサ140の電位に応じた信号(ブランキングパルス信号)を出力する反転器である。ブランキング期間生成用コンデンサ140は反転器141の入力端子と制御回路106のグランド間に接続される。反転器141は、ブランキング期間生成用コンデンサ140の電位がしきい値電圧を上回る間はロー信号を出力し、しきい値電圧に達するとハイ信号を出力する。
【0018】
また、142はP型トランジスタ、143はN型トランジスタである。両トランジスタは、ドレイン端子間で接続されるとともに、それぞれのゲート端子にゲートドライバ128からの制御信号が入力され、この制御信号に応じてその開閉が反転する反転回路となっている。つまり、ゲートドライバ128からスイッチング素子105をターンオンするための制御信号(ハイ信号)を受けると、P型トランジスタ142がターンオフするとともにN型トランジスタ143がターンオンし、スイッチング素子105をターンオフするための制御信号(ロー信号)を受けると、P型トランジスタ142がターンオンするとともにN型トランジスタ143がターンオフする。
【0019】
また、P型トランジスタ142とN型トランジスタ143の接続部(ドレイン端子間)にはブランキング期間生成用コンデンサ140が接続されている。
145はスイッチングトランジスタ146、147からなるミラー回路、144はブランキング期間生成用コンデンサ140の電位低下用の定電流源であり、スイッチングトランジスタ146には定電流源144が接続され、スイッチングトランジスタ146にはN型トランジスタ143のソース端子が接続される。
【0020】
続いて、オン時ブランキングパルス発生回路131の動作を説明する。
スイッチング素子105のターンオン時には、ゲートドライバ128からハイ信号が出力され、P型トランジスタ142はターンオフしN型トランジスタ143はターンオンする。そのため、ミラー効果により、定電流源144に流れる電流に比例した電流がブランキング期間生成用コンデンサ140を介してスイッチングトランジスタ147へ流入し、ブランキング期間生成用コンデンサ140の電位が低下していく。そして、ブランキング期間生成用コンデンサ140の電位が反転器141のしきい値電圧に達すると、反転器141からハイ信号が出力される。
【0021】
このスイッチング素子105がターンオンしてから(ゲートドライバ128からハイ信号が出力されてから)、ブランキング期間生成用コンデンサ140の電位が反転器141のしきい値電圧に達するまでの期間がブランキング期間であり、反転器141はこの間ロー信号を出力している。なお、ブランキング期間は、ブランキング期間生成用コンデンサ140の容量、反転器141に設定されたしきい値、定電流源144の電流値により決定する一定期間である。
【0022】
その後、スイッチング素子105がターンオフすると(ゲートドライバ128からロー信号が出力されると)、P型トランジスタ142がターンオンするとともに、N型トランジスタ143がターンオフし、ブランキング期間生成用コンデンサ140に電流が流れ込みその電位が上昇する。そして、ブランキング期間生成用コンデンサ140の電位が反転器141のしきい値電圧に達すると、反転器141からロー信号が出力される。
【0023】
このように、従来のスイッチング電源装置は、オン時ブランキングパルス発生回路131が、ブランキング期間はロー信号となり、ブランキング期間経過後ハイ信号となるブランキングパルス信号を生成することで、スイッチング素子がターンオンしたときに発生する容量性スパイク電流により、スイッチング素子の発振が停止しないようにしている。
【0024】
続いて、当該スイッチング電源装置の負荷変動時における動作について、図9に示すタイミングチャート図を用いて説明する。図9は定常負荷の状態から無負荷あるいは軽負荷の状態(出力コンデンサ108から負荷110へ流れ出る電流量が定常負荷時に比べて低下している状態)へ負荷変動するときのタイミングチャート図である。
【0025】
図9に示すように、定常負荷の状態から無負荷あるいは軽負荷の状態へ負荷変動すると、つまり負荷供給電流Io(A)が低下すると、負荷110に対する電力供給が過剰となり出力電圧Vo(B)が若干上昇する。これを受けて、補助電源回路111の生成する補助電源電圧Vcc(C)も上昇し、誤差増幅器122からの誤差電圧信号VEAO(a)の電圧が低下する。
【0026】
誤差電圧信号VEAO(a)の電圧が低下すると、定常負荷時よりも早いタイミングで素子電流検出信号VCL(c)の電圧が誤差電圧信号VEAO(a)の電圧と等しくなり、スイッチング素子105をターンオフする制御信号が出力される。その結果、スイッチング素子105のオン期間が短くなるため、スイッチング素子105を流れる素子電流ID(b)が減少し素子電流検出信号VCL(c)も低下する。
【0027】
このように、従来のスイッチング電源装置は、負荷110に供給される負荷供給電流Ioの電流値に応じて、スイッチング素子105に流れる素子電流IDの電流値を制御する電流モード制御方式を採っている。
【0028】
続いて、無負荷時あるいは軽負荷時、および重負荷時における素子電流IDについて説明する。図10は無負荷時あるいは軽負荷時、および重負荷時における素子電流IDの波形を示す図である。無負荷時あるいは軽負荷時には、スイッチング素子がオンした期間にトランス104に蓄えられたエネルギが、オフ期間に全て放出され、次のオン期間で素子電流が流れ出すときにトランス104にエネルギが蓄えられていない状態(非連続モード)となるので、図10に示すようにその波形は非連続モード波形▲1▼となる。また重負荷時には、トランス104に蓄えられたエネルギが、オフ期間に全て放出されず、次のオン期間で素子電流が流れ出すときにトランス104にエネルギが残っている状態(連続モード)となるので、図10に示すようにその波形は連続モード波形▲2▼となる。
【0029】
このように無負荷時あるいは軽負荷時には素子電流IDが非連続モード波形▲1▼となり、重負荷時には連続モード波形▲2▼となるので、図10に示すように、重負荷時の方が容量性スパイク電流の発生期間が長くなる。そのため、ブランキング期間tBLKは、重負荷時においても容量性スパイク電流による誤動作を防ぐことが可能となる程度の期間とする必要がある。
【0030】
なお、素子電流検出信号VCLの電圧が誤差電圧信号VEAOの電圧と等しくなりスイッチング素子105にロー信号が入力されても、スイッチング素子105のゲート電圧がしきい値電圧に達するまでは、素子電流IDが流れつづける。
このスイッチング素子105にロー信号が入力されてから、スイッチング素子105のゲート電圧がしきい値電圧に達してターンオフするまでの時間を、素子電流検出遅れ時間と呼び、この間素子電流検出信号VCLの電圧は誤差電圧信号VEAOの電圧を上回っているので、素子電流検出用比較器124からはハイ信号が出力される。
【0031】
続いて、スイッチング素子がターンオンしてからターンオフするまでの動作について、図11に示すタイミングチャート図を用いて詳説する。
ゲートドライバ128からの制御信号がスイッチング素子105をターンオンするハイ信号となり、スイッチング素子105のゲート電圧(d)が上昇し、しきい値電圧VTに達するとスイッチング素子105はターンオンし素子電流ID(b)が流れ始める。この素子電流ID(b)が流れ始める瞬間には、容量性スパイク電流が発生する。
【0032】
また、オン時ブランキングパルス発生回路131は、スイッチング素子105がターンオンしてから、ブランキング期間生成用コンデンサ140の容量、反転器141に設定されたしきい値、定電流源144の電流値により決定する一定期間(ブランキング期間tBLK)ロー信号となり、ブランキング期間tBLK経過後ハイ信号となるブランキングパルス信号(e)を生成する。
【0033】
そのため、容量性スパイク電流により素子電流検出信号(c)の電圧が誤差電圧信号(a)の電圧と等しくなり素子電流検出比較器からの比較信号(f)がハイ信号となっても、オン時ブランキングパルス発生回路131からのブランキングパルス信号(e)がロー信号であるので、AND回路130の出力信号(g)はロー信号のままとなる。
【0034】
ブランキング期間tBLKが経過しオン時ブランキングパルス発生回路131からのブランキングパルス信号(e)がハイ信号となった後、素子電流検出信号VCL(c)の電圧が誤差電圧信号VEAO(a)の電圧と等しくなると、AND回路130の出力信号(g)がハイ信号となりゲートドライバ128からロー信号が出力される。上述したように、スイッチング素子105にロー信号が入力されても、スイッチング素子105のゲート電圧(d)がしきい値電圧VTに達するまではスイッチング素子105がターンオフせず、素子電流IDは流れ続けける。
【0035】
しかしながら、従来のスイッチング電源装置においては、ブランキング期間が一定であるため、以下のような問題が生じるおそれがある。
図12は、無負荷時あるいは軽負荷時におけるスイッチング素子がターンオンしてからターンオフするまでの動作を説明するためのタイミングチャート図である。
【0036】
上述したように、ブランキング期間tBLKは、重負荷時においても容量性スパイク電流による誤動作を防ぐことが可能となる程度の期間に設定してある。しかし、無負荷時あるいは軽負荷時においては、この重負荷時に合わせたブランキング期間tBLKが長すぎ、スイッチング素子へ流入すべき電流値以上の素子電流が流れるおそれがある。
【0037】
すなわち、図12に示すように無負荷時あるいは軽負荷時においては、スイッチング素子をターンオンする制御信号(ハイ信号)が出力されてから誤差電圧信号VEAO(a)と素子電流検出信号VCL(c)の電圧が互いに等しくなるまでの時間の方が、ブランキング期間tBLKよりも短くなる場合がある。
【0038】
このような場合、誤差電圧信号VEAO(a)と素子電流検出信号VCL(c)の電圧が互いに等しくなり素子電流検出用比較器からの比較信号(f)がハイ信号となっても、ブランキング期間tBLKが経過するまでは、オン時ブランキングパルス発生回路からのブランキングパルス信号(e)がロー信号であるので、AND回路の出力信号(g)はロー信号となり、素子電流ID(b)が流れ続ける。
【0039】
さらに、オン時ブランキングパルス発生回路からハイ信号が出力されても、上述したように素子電流検出遅れ時間分は素子電流ID(b)が流れ続ける。
つまり、無負荷時あるいは軽負荷時など素子電流IDの電流値が小さい範囲においては、ブランキング期間と素子電流検出遅れ時間からなる最小パルス期間によって素子電流値が決まり、またその値は出力に対するフィードバックにより制御されるべき値よりも大きくなるため、必要以上に過大なエネルギがトランスの2次側(出力側)へ伝達されることになり、出力電圧Voが所定の電圧以上になるという問題があった。
【0040】
一方、上記問題点を解決するために、無負荷時あるいは軽負荷時に合わせてブランキング期間を設定すると、図13に示すような問題が生じる。すなわち、重負荷時において、容量性スパイク電流によって誤差電圧信号VEAO(a)と素子電流検出信号VCL(c)の電圧が互いに等しくなったときに、ゲートドライバからスイッチング素子をターンオフする制御信号(ロー信号)が出力されることになり、ごく短い期間しか素子電流ID(b)が流れず、そのため負荷に対して必要なエネルギがトランスの2次側へ送られず、出力電力Voが所定の電圧以下になるという問題が生じる。
【0041】
以上のように、従来のスイッチング電源装置は、待機時等の無負荷時あるいは軽負荷時にはスイッチング素子に流れる素子電流が低減され、逆に重負荷時にはスイッチング素子に流れる素子電流が増加する電流モード制御方式を採っている。しかし、無負荷時あるいは軽負荷時、重負荷時にかかわらずブランキング期間が一定であるため、無負荷時あるいは軽負荷時においては、最小パルス期間により素子電流が制御され、過大なエネルギが2次側へ伝達され、出力電圧が上昇し過ぎることになる。そこで、例えばダミー抵抗を追加するなどの措置を取る必要があった(例えば、特許文献1参照。)。しかしながら、ダミー抵抗を追加すると、電源の効率が低下するなどの問題が発生した。
【0042】
また、重負荷時においては、容量性スパイク電流によってスイッチング素子がターンオフする誤動作を起こし、素子電流の流れる期間が短いものとなり、負荷に対して必要なエネルギが2次側へ送られず、所定の出力電力が得られなくなるおそれがあった。
【0043】
【特許文献1】
特開2002−112538号公報
【0044】
【発明が解決しようとする課題】
本発明は、上記問題を解決するために、ブランキング期間を負荷状態に応じて可変とし、全負荷範囲において、正常な素子電流の制御を行えるようにすることができるスイッチング電源装置を提供することを目的とする。
【0045】
【課題を解決するための手段】
本発明の請求項1記載のスイッチング電源装置は、スイッチング素子と、前記スイッチング素子のスイッチング動作を制御する制御回路と、入力される第1の直流電圧を前記スイッチング素子のスイッチング動作により交流電力に変換して出力する変圧器と、前記交流電力から第2の直流電圧を生成して出力する出力電圧生成回路と、前記第2の直流電圧に応じた直流電圧を生成し前記制御回路の電源電圧とする電源回路とからなり、前記制御回路が前記電源電圧を帰還信号として前記スイッチング素子のスイッチング動作を制御するスイッチング電源装置であって、前記制御回路は、前記スイッチング素子にスイッチング動作をさせるためのスイッチング信号を生成する発振器と、前記スイッチング素子を流れる素子電流を検出し素子電流検出信号として出力する素子電流検出回路と、基準の電圧と前記電源電圧の差に応じた電圧値となる誤差電圧信号を生成して出力する誤差増幅器と、前記素子電流検出信号と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する素子電流検出用比較器と、前記素子電流検出用比較器からの比較信号を基に前記第2の直流電圧が所定の電圧となるように前記スイッチング信号を制御し、これを制御信号として前記スイッチング素子へ出力するスイッチング信号制御回路と、前記スイッチング素子がオンした瞬間から負荷状態に応じた期間、前記素子電流検出用比較器からの比較信号を無効にし、この期間においては前記スイッチング素子がターンオフしないようにするブランキングパルス信号を生成するオン時ブランキングパルス発生回路とを有し、前記オン時ブランキングパルス発生回路は、前記誤差電圧信号の電圧値を基に前記ブランキングパルス信号を生成し、前記素子電流検出用比較器からの比較信号を無効にする期間を負荷状態に応じて調整することを特徴とする。
【0046】
本発明の請求項2記載のスイッチング電源装置は、請求項1記載のスイッチング電源装置であって、前記オン時ブランキングパルス発生回路が、ブランキング期間生成用コンデンサと、定電流源が接続されたミラー回路と、前記スイッチング信号制御回路から前記スイッチング素子をターンオンさせる制御信号を受けると、前記ブランキング期間生成用コンデンサと前記ミラー回路を接続し前記ブランキング期間生成用コンデンサから電流を流出させる第1のスイッチ素子と、前記ブランキング期間生成用コンデンサの電位がしきい値に達するまで前記素子電流検出用比較器からの比較信号を無効にする前記ブランキングパルス信号を生成するブランキングパルス信号生成回路とからなり、前記誤差電圧信号の電圧値を基に前記ブランキング期間生成用コンデンサの電位低下速度を調整することで、前記素子電流検出用比較器からの比較信号を無効にする期間を負荷状態に応じて調整することを特徴とする。
【0047】
本発明の請求項3記載のスイッチング電源装置は、請求項2記載のスイッチング電源装置であって、前記オン時ブランキングパルス発生回路が、基準電圧と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する負荷検出回路と、前記負荷検出回路からの比較信号に応じて前記ミラー回路に流れる電流値を切り替える第2のスイッチ素子とを有し、前記誤差電圧信号の電圧値を基に前記第2のスイッチ素子を制御して前記ミラー回路に流れる電流値を2段階に調整することで、前記ブランキング期間生成用コンデンサの電位低下速度を2段階に調整することを特徴とする。
【0048】
本発明の請求項4記載のスイッチング電源装置は、請求項2記載のスイッチング電源装置であって、前記オン時ブランキングパルス発生回路が、基準電圧と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する負荷検出回路と、前記負荷検出回路からの比較信号に応じて前記ブランキング期間生成用コンデンサの容量値を切り替える第3のスイッチ素子とを有し、前記誤差電圧信号の電圧値を基に前記第3のスイッチ素子を制御して前記ブランキング期間生成用コンデンサの容量値を2段階に調整することで、前記ブランキング期間生成用コンデンサの電位低下速度を2段階に調整することを特徴とする。
【0049】
本発明の請求項5記載のスイッチング電源装置は、請求項3もしくは4のいずれかに記載のスイッチング電源装置であって、前記負荷検出回路の基準電圧が、最小パルス期間により素子電流値が制御されたときの誤差電圧信号の電圧値に設定されることを特徴とする。
【0050】
本発明の請求項6記載のスイッチング電源装置は、請求項2記載のスイッチング電源装置であって、前記オン時ブランキングパルス発生回路が、前記定電流源から前記ミラー回路へ流れる電流値を前記誤差電圧信号の電圧値に応じて線形的に変化させることで、前記ブランキング期間生成用コンデンサの電位低下速度を線形的に調整することを特徴とする。
【0051】
本発明の請求項7記載のスイッチング電源装置は、請求項1乃至6のいずれかに記載のスイッチング電源装置であって、前記スイッチング素子および前記制御回路が、前記スイッチング素子の入力端子および出力端子、並びに前記帰還信号が入力される前記制御回路の入力端子を外部接続端子として、一つの半導体基板上に集積化され形成されることを特徴とする。
【0052】
以上のように、本発明によれば、ブランキング期間が負荷状態に応じて可変となるので、全負荷範囲において最適なブランキング期間が得られる。
よって、待機時等の軽負荷時あるいは無負荷時にブランキング期間を短くすることが可能となるので、軽負荷時あるいは無負荷時においても、従来のスイッチング電源装置のように最小パルス期間によって素子電流量が制御されることがなくなり、帰還信号(補助電源電圧VCC)に基づいて制御できるようになり、出力電圧を所定の電圧に安定させることが可能となる。また、ダミー抵抗を用いずに済むので、電源の効率が低下することもない。
【0053】
また、重負荷時においても、スイッチング素子のターンオン時に発生する容量性スパイク電流による誤動作を防止できるので、出力電圧を所定の電圧に安定させることが可能となる。
【0054】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。なお、ここで示す実施の形態はあくまでも一例であって、必ずしもこの実施の形態に限定されるものではない。
【0055】
図1は、本発明の実施の形態による入力側と出力側が絶縁された絶縁型のスイッチング電源装置の概略を示す回路図である。図1に示すように、該スイッチング電源装置は、例えば商用電源等から主入力端子10に印加された交流電力を整流し且つ平滑化して第1の直流電圧である直流電圧Vinとし、この直流電圧Vinを電力変換用のトランス(変圧器)13の1次側の巻線(第1の1次巻線13a。以下、単に1次巻線13aと称す。)に印加しながらスイッチング素子14によるスイッチング動作を行うことにより、2次側の巻線(2次巻線13c)に磁気誘導による起電力を発生させ、この起電力による交流電力をトランス13の2次側に設けられた出力電圧生成回路16により整流し且つ平滑化して第2の直流電圧である出力電圧Voにまで降下して主出力端子17に出力する。
【0056】
以下、該スイッチング電源装置を詳細に説明する。
主入力端子10には、交流電力を整流するダイオードブリッジ等からなる整流器11と、この整流された信号を平滑化し直流電圧Vinを生成する入力コンデンサ12とがそれぞれ並列に接続されている。
【0057】
生成された直流電圧Vinは、トランス13の1次巻線13aに入力された後、例えばN型パワーMOSFET等からなるスイッチング素子14のドレイン端子TDに入力される。ここで、スイッチング素子14のソース端子TSは主入力端子10のローレベル側の端子と接続され、そのゲート端子には、該スイッチング素子14のスイッチング動作を制御する制御回路15から出力される制御信号が入力される。
【0058】
トランス13の2次巻線13cには、出力電圧生成回路16が接続されている。出力電圧生成回路16は、スイッチング素子14のスイッチング動作により2次巻線13cに発生した起電力による交流電力を整流する第1のダイオード161と、この整流された信号を平滑化する第1の出力コンデンサ162とから構成される。なお、出力電圧生成回路16は、整流し且つ平滑化する構成であればよく、これに限るものではない。
【0059】
出力電圧生成回路16に接続されている主出力端子17には、そのハイレベル側の端子とローレベル側の端子との間に負荷18が接続され、該負荷18には出力電圧生成回路16により生成された出力電圧Voによる負荷供給電流Ioが流れる。
【0060】
トランス13の1次側には第2の1次巻線(以下、補助巻線と称す。)13bが設けられており、2次巻線13cと同様に、スイッチング素子14によるスイッチング動作によって磁気誘導による起電力が発生する。補助巻線13bには制御回路15の補助電源電圧(電源電圧)Vccを生成する補助電源回路(電源回路)19が接続されている。補助電源回路19は、補助巻線13bに発生した起電力による交流電力を整流する第2のダイオード191と、この整流された信号を平滑化する第2の出力コンデンサ192とから構成されており、補助電源電圧Vccを生成する。補助巻線13bは、補助電源電圧Vccと出力電圧Voとが比例するように設けられている。また、補助電源回路19により生成される補助電源電圧Vccは、制御回路15の制御端子TCに入力される。なお、補助電源回路19は、整流し且つ平滑化する構成であればよく、これに限るものではない。
【0061】
補助電源電圧Vccは、制御端子TCに入力され、制御回路15を駆動する駆動信号として用いられるとともに、補助電源電圧Vccと出力電圧Voが補助巻線13bと2次巻線13cの巻数比に比例しているので、該出力電圧Voを安定させる帰還信号としても用いられる。つまり、制御回路15は、出力電圧Voが所定の電圧で安定するように、補助電源電圧Vccを基にスイッチング素子14のスイッチング動作を制御している。
【0062】
なお、本実施の形態においては、点線20で囲まれる領域、すなわちスイッチング素子14と制御回路15を含み、スイッチング素子14のドレイン端子TD(入力端子)とソース端子TS(出力端子)並びに制御回路15の制御端子TC(帰還信号の入力端子)の少なくとも3端子で外部と接続可能な領域を、基板上形成領域と呼ぶ。基板上形成領域20は、この領域内の各素子が1つの半導体基板上に集積化されて半導体チップ(半導体装置)に形成可能であることを表している。
【0063】
また、基板上形成領域20を1つの半導体チップで形成する代わりに、複数の半導体チップに分割して形成してもよい。但し、複数の半導体チップに分割する場合であっても、ドレイン端子TD、ソース端子TS、および制御端子TCの少なくとも3端子で外部と接続可能な1つのパッケージに収容されていることが好ましい。
【0064】
以下、制御回路15について説明する。
まず、発振器21は、スイッチング素子14をスイッチング動作(ON/OFFの繰り返し動作)させるためのスイッチング信号を生成する。すなわち、スイッチング素子14のスイッチング周波数を決定するためのクロック信号CLK(発振周波数100kHz程度)と、スイッチング素子14の最大デューティーサイクルを決定するための最大デューティーサイクル信号MDCを生成して出力する。
【0065】
また、誤差増幅器22は、補助電源電圧Vccと基準の電圧との差に応じた電圧値となる誤差電圧信号VEAOを生成して出力する。具体的には、誤差増幅器22は、制御端子TCに入力され抵抗分圧された補助電源電圧Vccを逆相入力端子に受け、正相入力端子に受ける予め設定された所定の基準電圧との差からなる誤差電圧信号VEAOを生成して素子電流検出用比較器24へ出力する。ここで、誤差増幅器22の逆相入力端子は、スイッチング素子14のソース端子TSとも抵抗を介して接続されている。なお、誤差電圧信号VEAOの電圧は、補助電源電圧Vccが上昇すると低下する関係にある。
【0066】
素子電流検出回路23は、トランス13の1次巻線13aからスイッチング素子14へ流入する素子電流IDを検出しこの電流値に応じた電圧信号に変換して、素子電流検出信号VCLとして素子電流検出用比較器24へ出力する。
【0067】
素子電流検出用比較器24は、素子電流検出信号VCLと誤差電圧信号VEAOの電圧を比較し、この比較結果を基にスイッチング素子14をターンオフするための比較信号を生成して出力することで、スイッチング素子14へ流入する電流量を調整し、出力電圧Voが所定の電圧で安定するようにする。具体的には、素子電流検出用比較器24は、スイッチング素子14がターンオンし素子電流検出信号VCLの電圧が上昇して誤差電圧信号VEAOの電圧と等しくなったとき、AND回路30の一方の入力端子へハイ信号(電位がハイレベルの信号。以下、同じ。)を出力する。このハイ信号が後述するRSフリップフロップ回路26のリセット端子へ入力されることで、スイッチング素子14がターンオフする。
【0068】
スイッチング信号制御回路25は、セット端子に発振器21から出力されるクロック信号CLKを受け、リセット端子にAND回路30から出力される信号を受けるRSフリップフロップ回路26と、一方の入力端子に発振器21から出力される最大デューティサイクル信号MDCを受け、もう一方の入力端子にRSフリップフロップ回路26から出力される信号を受けるNAND回路27と、NAND回路27から出力される信号を受けこれを反転増幅してスイッチング素子14の制御信号を出力するゲートドライバ28とから構成され、素子電流検出用比較器24からの比較信号(AND回路130からの出力信号)を基にスイッチング信号を制御することで、スイッチング素子14のオン期間を制御する。すなわち、スイッチング信号制御回路25は、誤差電圧信号VEAOの電圧と素子電流検出信号VCLの電圧が等しくなり、素子電流検出用比較器24からの比較信号がハイ信号となったとき、スイッチング素子14がターンオフするようにスイッチング信号を制御する。
【0069】
このように、制御回路15は、負荷18へ供給される出力電圧Voと比例する補助電源電圧Vccを帰還信号として、スイッチング素子14のオン期間(オフ期間)を制御することで、トランス13の1次巻線13aからスイッチング素子14へ流入する素子電流IDを制御し、出力電圧Voが所定の電圧で安定するようにしている。
【0070】
また、誤差増幅器22の出力側には誤差電圧信号VEAOの最大電圧値をクランプするPNP型バイポーラトランジスタからなる過電流保護回路29が設けられている。このように誤差電圧信号VEAOの最大電圧値をクランプすることにより、スイッチング素子14に流れる素子電流IDの最大値をクランプし、スイッチング素子14へ過電流が流れるのを防止している。
【0071】
なお、制御回路15は、スイッチング素子14のドレイン端子TDと制御回路15の制御端子TCとの間に接続されている。
また、該スイッチング電源装置においては、直流電圧Vin及び出力電圧Voの電圧値に制限はない。
【0072】
また、スイッチング素子14にN型パワーMOSFETを用いたが、代わりにNPN型バイポーラトランジスタを用いてもよい。
続いて、AND回路30のもう一方の入力端子に接続されるオン時ブランキングパルス発生回路31について説明する。
【0073】
このオン時ブランキングパルス発生回路31は、スイッチング素子14がターンオンしてから負荷状態に応じた期間(以下、この期間をブランキング期間と称す。)、素子電流検出用比較器24からの比較信号を無効にし、容量性スパイク電流によってスイッチング素子14がターンオフしないようにするブランキングパルス信号を出力する。具体的には、AND回路30に対し、ブランキング期間はロー信号(電位がローの信号。以下、同じ。)となり、ブランキング期間経過後ハイ信号となるブランキングパルス信号を出力する。
【0074】
本実施の形態によるオン時ブランキングパルス発生回路は、誤差電圧信号VEAOを基にブランキングパルス信号を生成し、負荷状態に応じたブランキング期間となるようにする点が従来のものと異なる。つまり、該スイッチング電源装置においては、従来のスイッチング電源装置において一定の期間であったブランキング期間が、負荷状態に応じて可変となる。
【0075】
以下、本実施の形態によるオン時ブランキングパルス発生回路の第1の構成例について、図2を用いて詳説する。
図2において、40はブランキング期間生成用コンデンサ、41はブランキング期間生成用コンデンサ40の電位に応じた信号(ブランキングパルス信号)を出力する反転器(ブランキングパルス信号生成回路)である。ブランキング期間生成用コンデンサ40は反転器41の入力端子と制御回路15のグランド間に接続される。反転器41は、ブランキング期間生成用コンデンサ40の電位がしきい値電圧を上回る間はロー信号を出力し、しきい値電圧に達するとハイ信号を出力する。つまり、スイッチング素子14をターンオフする制御信号がゲートドライバ28から出力されてから、ブランキング期間生成用コンデンサ40の電位が反転器41のしきい値電圧に達するまでの期間、素子電流検出量比較器24からの比較信号を無効とする。この期間がブランキング期間となる。
【0076】
また、42はP型トランジスタ、43はN型トランジスタである。両トランジスタは、ドレイン端子間で接続されるとともに、それぞれのゲート端子にゲートドライバ28からの制御信号が入力され、この制御信号に応じてその開閉が反転する反転回路となっている。つまり、ゲートドライバ28からスイッチング素子14をターンオンするための制御信号(ハイ信号)を受けると、P型トランジスタ42がターンオフするとともにN型トランジスタ(第1のスイッチ素子)43がターンオンし、スイッチング素子14をターンオフするための制御信号(ロー信号)を受けると、P型トランジスタ42がターンオンするとともにN型トランジスタ43がターンオフする。
【0077】
また、P型トランジスタ42とN型トランジスタ43の接続部(ドレイン端子間)にはブランキング期間生成用コンデンサ40が接続されている。
45はN型トランジスタ46、47、52からなるミラー回路、44はブランキング期間生成用コンデンサ40の電位低下用の定電流源である。N型トランジスタ46には定電流源44が接続される。N型トランジスタ47にはN型トランジスタ43のソース端子が接続される。N型トランジスタ52にはスイッチングトランジスタ(第2のスイッチ素子)51を介してN型トランジスタ43のソース端子が接続される。
【0078】
また、50は正相入力端子に誤差増幅器22からの誤差電圧信号VEAOを受け、逆相入力端子にヒステリシスを有する基準電圧VCO(VCO1、2)を受ける負荷検出用比較器48と、これを反転して出力する反転器49とからなる負荷検出回路である。スイッチングトランジスタ51はこの負荷検出回路50(反転器49)の出力信号に応じて開閉する。つまり、負荷検出回路50は、誤差電圧信号VEAOの電圧値を基にスイッチングトランジスタ51を制御することにより、N型トランジスタ43のソース端子とN型トランジスタ52の接続を制御する。
【0079】
以上のような構成とすることにより、該オン時ブランキングパルス発生回路においては、N型トランジスタ43がオンしており、かつスイッチングトランジスタ51がオンしているとき、定電流源44から流れる電流に比例した電流が、N型トランジスタ47とN型トランジスタ52それぞれへ流れるように、ブランキング期間生成用コンデンサ40から電流が流出する。また、N型トランジスタ43がオンしており、かつスイッチングトランジスタ51がオフしているときには、従来と同様に、定電流源44から流れる電流に比例した電流が、N型トランジスタ47へ流れるように、ブランキング期間生成用コンデンサ40から電流が流出する。
【0080】
このように、該オン時ブランキングパルス発生回路においては、誤差電圧信号VEAOを基にスイッチングトランジスタ51の開閉を制御することによりブランキング期間生成用コンデンサ40の電流流出量、つまりブランキング期間生成用コンデンサ40の電位低下速度が2段階に可変となり、結果、ブランキング期間が2段階に可変となる。
【0081】
続いて、該オン時ブランキングパルス発生回路の動作を説明する。
負荷検出用比較器48は、入力される誤差電圧信号VEAOの電圧とヒステリシスを有する基準電圧VCOとを比較して、誤差電圧信号VEAOの電圧が基準電圧VCOよりも低い場合にはロー信号を出力し、高い場合にはハイ信号を出力する。つまり、負荷検出回路50は、誤差電圧信号VEAOの電圧と基準電圧VCOを比較し、誤差電圧信号VEAOの電圧が基準電圧VCOよりも低い場合には、ハイ信号を出力してスイッチングトランジスタ51をオンする。逆に、誤差電圧信号VEAOが基準電圧VCOよりも高い場合には、スイッチングトランジスタ51をオフする。
【0082】
そこで、無負荷時や軽負荷時にはスイッチングトランジスタ51がオンし、定常負荷時や重負荷時にはオフするように基準電圧VCOを設定する。つまり、無負荷時や軽負荷時には、ブランキング期間生成用コンデンサ40から流出する電流量を増加させてブランキング期間が短くなるようにし、定常負荷時や重負荷時には、流出する電流量を減少させてブランキング期間が長くなるようにする。
【0083】
スイッチング素子14のターンオン時には、ゲートドライバ28からハイ信号が出力され、P型トランジスタ42はターンオフしN型トランジスタ43はターンオンする。
【0084】
このとき定常負荷や重負荷の状態であれば(スイッチングトランジスタ51がオフ状態)、従来と同様、ミラー効果により、定電流源44に流れる電流に比例した電流がブランキング期間生成用コンデンサ40からN型トランジスタ47へ流れ、ブランキング期間生成用コンデンサ40の電位が低下していく。
【0085】
また、無負荷や軽負荷の状態であれば(スイッチングトランジスタ51がオン状態)、定電流源44に流れる電流に比例した電流が、N型トランジスタ47とN型トランジスタ52それぞれへ流れるように、ブランキング期間生成用コンデンサ40から電流が流出する。
【0086】
そのため無負荷時や軽負荷時には、ブランキング期間生成用コンデンサ40から流れる電流量が定常負荷時や重負荷時よりも増加するので、ブランキング期間生成用コンデンサ40の電位低下速度も速くなる。従って、反転器41のしきい値電圧に達するまでの時間が定常負荷時や重負荷時よりも短くなり、結果、ブランキング期間が短くなる。
【0087】
このように、ブランキング期間生成用コンデンサ40の電位を低下させるための電流量が、負荷状態に応じて2段階に可変となるので、ブランキング期間も2段階に可変となる。
【0088】
ブランキング期間生成用コンデンサ40の電位が反転器41のしきい値電圧に達すると、反転器41からハイ信号が出力される。
スイッチング素子14がターンオフすると(ゲートドライバ28からロー信号が出力されると)、P型トランジスタ42がターンオンするとともに、N型トランジスタ43がターンオフし、ブランキング期間生成用コンデンサ40に電流が流れ込みその電位が上昇する。そして、ブランキング期間生成用コンデンサ40の電位が反転器41のしきい値電圧に達すると、反転器41からロー信号が出力される。
【0089】
続いて、該スイッチング電源装置の負荷変動時における動作について、図3に示すタイミングチャート図を用いて説明する。図3は定常負荷の状態から無負荷あるいは軽負荷の状態(出力電圧生成回路16から負荷18へ流れ出る電流量が定常負荷時に比べて低下している状態)へ負荷変動するときのタイミングチャート図である。
【0090】
図3に示すように、定常負荷の状態から無負荷あるいは軽負荷の状態へ負荷変動すると、つまり負荷供給電流Io(A)が低下すると、負荷18に対する電力供給が過剰となって出力電圧Vo(B)が若干上昇する。これを受けて、補助電源回路19の生成する補助電源電圧Vcc(C)も上昇し、制御回路15において、誤差増幅器22の逆相入力端子へ印加される電圧が上昇するため、誤差増幅器22から出力される誤差電圧信号VEAO(a)の電圧が低下する。
【0091】
誤差電圧信号VEAO(a)の電圧が低下すると、定常負荷時よりも早いタイミングで素子電流検出信号VCL(c)の電圧が誤差電圧信号VEAO(a)の電圧と等しくなり、スイッチング素子14をターンオフする制御信号が出力される。その結果、スイッチング素子14のオン期間が短くなるため、スイッチング素子14を流れる素子電流ID(b)が減少し素子電流検出信号VCL(c)も低下する。
【0092】
誤差電圧信号VEAO(a)の電圧が低下し、負荷検出用比較器48に与えられる基準電圧VCO1よりも小さくなると、負荷検出回路50の出力信号(h)がハイ信号となり、スイッチングトランジスタ51がオンし、定常負荷時や重負荷時と比べてブランキング期間生成用コンデンサ40の電位を低下させる電流量が増加するので、ブランキング期間が定常負荷時や重負荷時と比べて短くなる。
そのため、無負荷時あるいは軽負荷時においても、従来のように最小パルス期間により素子電流IDが制御されず(図12参照。)、帰還信号(補助電源電圧VCC)に基づいて制御できるようになるので、出力電圧Voを所定の電圧で安定させることができる。
【0093】
なお、基準電圧VCOには、誤差電圧信号VEAOの電圧が変化しても直ちにブランキング期間が変化することがないようにヒステリシス特性が与えられており、誤差電圧信号VEAO(a)の電圧が基準電圧VCO1よりも小さくなると、VCO2となる。逆に、誤差電圧信号VEAO(a)の電圧が基準電圧VCO2よりも大きくなると、VCO1となる。
【0094】
一方、無負荷あるいは軽負荷の状態から定常負荷の状態へ負荷変動する場合には、誤差電圧信号VEAO(a)の電圧が上昇し、負荷検出用比較器48に与えられる基準電圧VCO2よりも大きくなると、スイッチングトランジスタ51がオフし、無負荷時や軽負荷時と比べてブランキング期間生成用コンデンサ40の電位を低下させる電流量が減少するので、ブランキング期間が無負荷時や軽負荷時と比べて長くなる。
【0095】
なお、ブランキング期間を、定常負荷時において容量性スパイク電流による誤動作を防ぐことが可能となる期間の1.5倍程度に広げると、重負荷時においても容量性スパイク電流による誤動作を防ぐことができるので、スイッチングトランジスタ51がオフしている場合のブランキング期間をこれに合わせることが好ましい。
【0096】
また、スイッチングトランジスタ51がオフしている状態で軽負荷の状態としたときの素子電流値は、つまり、従来のスイッチング電源装置において最小パルス期間により素子電流が制御されたときの素子電流値は、誤差電圧信号VEAOの電圧値が過電流保護回路29によりクランプされたときの素子電流値の30%程度である。そこで、負荷検出用比較器の基準電圧VCO1を、誤差電圧信号VEAOの最大電圧値、つまり過電流保護回路29によりクランプされる値の30%程度の値(最小パルス期間により素子電流値が制御されたときの誤差電圧信号の電圧値程度の値)に設定することが好ましい。このようにすれば、無負荷時あるいは軽負荷時において、最小パルス期間により素子電流が制御されないようにすることができる。
【0097】
以上のように、この第1の構成例においては、無負荷時あるいは軽負荷時には、ミラー回路に流れる電流値を増加させて急速にブランキング期間生成用コンデンサの電位を下げることでブランキング期間を短くし、重負荷時には、電流値を減少させ、ブランキング時間を長くするので、スイッチング素子に流れる素子電流を正常に制御することができる。
【0098】
なお、この第1の構成例においては、無負荷時あるいは軽負荷時にミラー回路に流れる電流を増加させるために、ブランキング期間生成用コンデンサから電流を流出させるためのN型トランジスタを1つ増設したが、無論、複数個増設するようにしてもよい。
【0099】
また、基板上形成領域20は、1次側、すなわち入力側の制御回路15及びスイッチング素子14のみからなるので、半導体集積回路として1パッケージ化又は1チップ化することが容易に行える。また、1パッケージ化又は1チップ化すれば、部品数を削減できるので、電源装置本体を小型化することができ、コストの低減もできる。
【0100】
続いて、本実施の形態によるオン時ブランキングパルス発生回路の第2の構成例について図4を用いて詳説する。但し、図2に基づいて説明した部材に対応する部材には同一符号を付して説明を省略する。
【0101】
該オン時ブランキングパルス発生回路においては、負荷状態に応じてブランキング期間生成用コンデンサの容量値が2段階に可変となる点が第1の構成例と異なる。つまり、該オン時ブランキングパルス発生回路は、誤差電圧信号VEAOを基に、ブランキング期間生成用コンデンサの容量を2段階に調整することにより、ブランキング期間生成用コンデンサの電位低下速度を2段階に調整し、ブランキング期間を2段階に調整する。
【0102】
図4に示すように、該オン時ブランキングパルス発生回路におけるブランキング期間生成用コンデンサ40は、第1のコンデンサ40aと第2のコンデンサ40bが、スイッチングトランジスタ(第3のスイッチ素子)51を介して並列に接続された構成となっている。スイッチングトランジスタ51は、負荷検出回路50(負荷検出用比較器48)の出力信号に応じて開閉する。つまり、負荷検出回路50は、誤差電圧信号VEAOの電圧値を基にスイッチングトランジスタ51を制御することにより、ブランキング期間生成用コンデンサ40の容量値を2段階に調整する。
【0103】
また、該オン時ブランキングパルス発生回路の負荷検出回路50は負荷検出用比較器48のみからなる。
以上のような構成とすることにより、該オン時ブランキングパルス発生回路においては、N型トランジスタ43がオンしており、かつスイッチングトランジスタ51がオンしているとき、定電流源44から流れる電流に比例した電流が、N型トランジスタ47へ流れるように、第1のコンデンサ40aと第2のコンデンサ40bが並列接続されたブランキング期間生成用コンデンサ40から電流が流出する。また、N型トランジスタ43がオンしており、かつスイッチングトランジスタ51がオフしているときには、定電流源44から流れる電流に比例した電流が、N型トランジスタ47へ流れるように、第1のコンデンサ40aのみからなるブランキング期間生成用コンデンサ40から電流が流出する。
【0104】
このように、該オン時ブランキングパルス発生回路においては、誤差電圧信号VEAOを基にスイッチングトランジスタ51の開閉を制御することによりブランキング期間生成用コンデンサ40の容量値、つまりブランキング期間生成用コンデンサ40の電位低下速度が2段階に可変となり、結果、ブランキング期間が2段階に可変となる。
【0105】
続いて、該オン時ブランキングパルス発生回路の動作を説明する。負荷検出回路50(負荷検出用比較器48)は、負荷検出用比較器48に入力される誤差電圧信号VEAOの電圧とヒステリシスを有する基準電圧VCOとを比較して、誤差電圧信号VEAOの電圧が基準電圧VCOよりも低い場合にはロー信号を出力し、スイッチングトランジスタ51をオフする。逆に誤差電圧信号VEAOが基準電圧VCOよりも高い場合には、スイッチングトランジスタ51をオンする。
【0106】
そこで、無負荷時や軽負荷時にはスイッチングトランジスタ51をオフし、定常負荷時や重負荷時にはオンするように基準電圧VCOを設定する。つまり、無負荷時や軽負荷時には、ブランキング期間生成用コンデンサ40の容量値を減少させてブランキング期間が短くなるようにし、定常負荷時や重負荷時には容量値を増加させてブランキング期間が長くなるようにする。
【0107】
スイッチング素子14のターンオン時には、ゲートドライバ28からハイ信号が出力され、P型トランジスタ42はターンオフしN型トランジスタ43はターンオンする。
【0108】
このとき定常負荷や重負荷の状態であれば(スイッチングトランジスタ51がオン状態)、ミラー効果により、定電流源44に流れる電流に比例した電流が、第1のコンデンサ40aと第2のコンデンサ40bが並列に接続されたブランキング期間生成用コンデンサ40からN型トランジスタ47へ流れる。また、無負荷や軽負荷の状態であれば(スイッチングトランジスタ51がオフ状態)、ミラー効果により、定電流源44に流れる電流に比例した電流が、第1のコンデンサ40aのみからなるブランキング期間生成用コンデンサ40からN型トランジスタ47へ流れる。
【0109】
そのため無負荷時や軽負荷時には、ブランキング期間生成用コンデンサ40の容量値が減少するので、ブランキング期間生成用コンデンサ40の電位低下速度が常負荷時や重負荷時よりも速くなる。従って、反転器41のしきい値電圧に達するまでの時間が定常負荷時や重負荷時よりも短くなり、結果、ブランキング期間も短くなる。
【0110】
このように、ブランキング期間生成用コンデンサ40の容量値が、負荷状態に応じて2段階に可変となるので、ブランキング期間も2段階に可変となる。
続いて、該スイッチング電源装置の負荷変動時における動作について、図5に示すタイミングチャート図を用いて説明する。図5は定常負荷の状態から無負荷あるいは軽負荷の状態(出力電圧生成回路16から負荷18へ流れ出る電流量が定常負荷時に比べて低下している状態)へ負荷変動するときのタイミングチャート図である。
【0111】
図5に示すように、定常負荷の状態から無負荷あるいは軽負荷の状態へ負荷変動すると、つまり負荷供給電流Io(A)が低下すると、出力電圧Vo(B)が若干上昇する。これを受けて、補助電源回路19の生成する補助電源電圧Vcc(C)も上昇し誤差増幅器22から出力される誤差電圧信号VEAO(a)の電圧が低下する。
【0112】
誤差電圧信号VEAO(a)の電圧が低下すると、スイッチング素子14を流れる素子電流ID(b)が減少し素子電流検出信号VCL(c)も低下する。
誤差電圧信号VEAO(a)の電圧が低下し、負荷検出用比較器48に与えられる基準電圧VCO1よりも小さくなると、負荷検出回路50の出力信号(k)がロー信号となり、スイッチングトランジスタ51がオフし、定常負荷時や重負荷時と比べてブランキング期間生成用コンデンサ40の容量値が減少するので、ブランキング期間が定常負荷時や重負荷時と比べて短くなる。
【0113】
一方、無負荷あるいは軽負荷の状態から定常負荷の状態へ負荷変動する場合には、誤差電圧信号VEAO(a)の電圧が上昇し、負荷検出用比較器48に与えられる基準電圧VCO2よりも大きくなると、スイッチングトランジスタ51がオンし、無負荷時や軽負荷時と比べてブランキング期間生成用コンデンサ40の容量値が増加するので、ブランキング期間が無負荷時や軽負荷時と比べて長くなる。
【0114】
以上のように、この第2の構成例においては、無負荷時あるいは軽負荷時には、ブランキング期間生成用コンデンサの容量値を小さくしてその電位が下がるスピードを上げることでブランキング期間を短くし、重負荷時には、容量値を大きくし、ブランキング時間を長くするので、スイッチング素子に流れる素子電流を正常に制御することができる。
【0115】
なお、この第2の構成例においては、無負荷時あるいは軽負荷時にブランキング期間生成用コンデンサの容量値を小さくするために、ブランキング期間生成用コンデンサを、2つのコンデンサを並列接続して構成したが、無論2つに限るものではない。
【0116】
続いて、本実施の形態によるオン時ブランキングパルス発生回路の第3の構成例について、図6を用いて説明する。但し、図2に基づいて説明した部材に対応する部材には同一符号を付して説明を省略する。
【0117】
該オン時ブランキングパルス発生回路においては、ブランキング期間生成用コンデンサからの電流流出量が負荷状態に応じて線形的に可変となる点が第1の構成例と異なる。つまり、該オン時ブランキングパルス発生回路は、誤差電圧信号VEAOの電圧値に応じて定電流源44からミラー回路45(N型トランジスタ46)へ流れ込む電流量を線形的に変化させることで、ブランキング期間生成用コンデンサからの電流流出量を線形的に調整することにより、ブランキング期間生成用コンデンサの電位低下速度を線形的に調整し、ブランキング期間を線形的に調整する。
【0118】
図6に示すように、該オン時ブランキングパルス発生回路は、定電流源44からN型トランジスタ46へ流れ込む電流を誤差電圧信号VEAOの電圧値に応じて線形的に変動させることで、ブランキング期間生成用コンデンサからの電流流出量を線形的に調整する。つまり、出力電圧から帰還されて生成される制御回路用の電源電圧VCCと基準電圧との差からなる誤差電圧信号VEAOの電圧値に応じてP型トランジスタ60のゲート電圧が変動するので、NPN型バイポーラトランジスタ64のベース電流、すなわち抵抗63に流れる電流量もこれに応じて変動する。従って、ミラー回路65、68のミラー効果により、N型トランジスタ70に流れる電流量も誤差電圧信号VEAOの電圧値に応じて変動し、その結果、定電流源44からN型トランジスタ46へ流れ込む電流量が変動する。
【0119】
例えば、無負荷時や軽負荷時には、誤差電圧信号VEAOの電圧が低下する。誤差電圧信号VEAOの電圧が低下すると、その分P型トランジスタ60のゲート電圧が低下し、P型トランジスタ60へ流れ込む電流量が増加する。定電流源62からは一定の電流が供給されるので、NPN型バイポーラトランジスタ64のベース電流は減少する。そのため、抵抗63に流れる電流量も減少する。ここで、ミラー回路65、68のミラー効果により、N型トランジスタ70に流れる電流量も減少するが、定電流源44は一定の電流を供給するため、N型トランジスタ46に流れる電流量は増加する。N型トランジスタ46に流れる電流量が増加すると、ミラー回路45のミラー効果により、ブランキング期間生成用コンデンサ40からの電流流出量が増加し、ブランキング期間生成用コンデンサ40の電位低下速度が速くなってブランキング期間は短くなる。
【0120】
逆に重負荷時には、誤差電圧信号VEAOの電圧が高くなるので、ブランキング期間生成用コンデンサ40から流出する電流量が減少することになるため、ブランキング期間生成用コンデンサ40の電位低下速度は遅くなり、ブランキング期間は長くなる。
【0121】
このような構成とすることにより、該オン時ブランキングパルス発生回路においては、誤差電圧信号VEAOの電圧値に応じて、つまり負荷状態に応じてブランキング期間生成用コンデンサからの電流流出量が線形的に可変となり、結果、ブランキング期間が負荷状態に応じて線形的に可変となる。
【0122】
続いて、該スイッチング電源装置の負荷変動時における動作について、図7に示すタイミングチャート図を用いて説明する。図7は定常負荷の状態から無負荷あるいは軽負荷の状態(出力電圧生成回路16から負荷18へ流れ出る電流量が定常負荷時に比べて低下している状態)へ負荷変動するときのタイミングチャート図である。
【0123】
図7に示すように、定常負荷の状態から無負荷あるいは軽負荷の状態へ負荷変動するとき、その負荷状態に応じて誤差電圧信号VEAOの電圧値が低下していき、この誤差電圧信号VEAOの電圧値に応じて抵抗63に流れる電流(i)も同様に低下していく。そのため、誤差電圧信号VEAOの電圧値に応じてブランキング期間も短くなっていく。
【0124】
以上のように、この第3の構成例においては、無負荷時あるいは軽負荷時から重負荷時までのすべての負荷状態においてブランキング期間を線形的に変化させるため、素子電流を正常に制御することができる。
【0125】
以上のように、本実施の形態によるスイッチング電源装置によれば、ブランキング期間が負荷状態に応じて可変となるので、全負荷範囲において最適なブランキング期間が得られる。
【0126】
よって、待機時等の軽負荷時あるいは無負荷時にブランキング期間を短くすることが可能となるので、軽負荷時あるいは無負荷時においても、従来のスイッチング電源装置のように最小パルス期間によって素子電流量が制御されることがなくなり、帰還信号(補助電源電圧VCC)に基づいて制御できるようになり、出力電圧を所定の電圧に安定させることが可能となる。また、ダミー抵抗を用いずに済むので、電源の効率が低下することもない。
【0127】
また、重負荷時においても、スイッチング素子のターンオン時に発生する容量性スパイク電流による誤動作を防止できるので、出力電圧を所定の電圧に安定させることが可能となる。
【0128】
【発明の効果】
以上のように、本発明によれば、ブランキング期間が負荷状態に応じて可変となるので、全負荷範囲において最適なブランキング期間が得られる。
【0129】
よって、待機時等の軽負荷時あるいは無負荷時にブランキング期間を短くすることが可能となるので、軽負荷時あるいは無負荷時においても、従来のスイッチング電源装置のように最小パルス期間によって素子電流量が制御されることがなくなり、帰還信号(補助電源電圧VCC)に基づいて制御できるようになり、出力電圧を所定の電圧に安定させることが可能となる。また、ダミー抵抗を用いずに済むので、電源の効率が低下することもない。
【0130】
また、重負荷時においても、スイッチング素子のターンオン時に発生する容量性スパイク電流による誤動作を防止できるので、出力電圧を所定の電圧に安定させることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるスイッチング電源装置の概略を示す回路図
【図2】本発明の実施の形態によるスイッチング電源装置に係るオン時ブランキングパルス発生回路の第1の構成例の概略を示す回路図
【図3】本発明の実施の形態によるスイッチング電源装置の負荷変動時における動作を説明するための第1のタイミングチャート図
【図4】本発明の実施の形態によるスイッチング電源装置に係るオン時ブランキングパルス発生回路の第2の構成例の概略を示す回路図
【図5】本発明の実施の形態によるスイッチング電源装置の負荷変動時における動作を説明するための第2のタイミングチャート図
【図6】本発明の実施の形態によるスイッチング電源装置に係るオン時ブランキングパルス発生回路の第3の構成例の概略を示す回路図
【図7】本発明の実施の形態によるスイッチング電源装置の負荷変動時における動作を説明するための第3のタイミングチャート図
【図8】従来のスイッチング電源装置の概略を示す回路図
【図9】従来のスイッチング電源装置の負荷変動時における動作を説明するためのタイミングチャート図
【図10】スイッチング素子に流れる素子電流の波形を示す図
【図11】従来のスイッチング電源装置におけるスイッチング素子がターンオンしてからターンオフするまでの動作を説明するためのタイミングチャート図(定常負荷時)
【図12】従来のスイッチング電源装置におけるスイッチング素子がターンオンしてからターンオフするまでの動作を説明するためのタイミングチャート図(無負荷時あるいは軽負荷時)
【図13】従来のスイッチング電源装置におけるスイッチング素子がターンオンしてからターンオフするまでの動作を説明するためのタイミングチャート図(重負荷時)
【符号の説明】
10、101 主入力端子
11、102 整流器
12、103 入力コンデンサ
13、104 トランス(変圧器)
13a、104a 1次巻線(第1の1次巻線)
13b、104b 補助巻線(第2の1次巻線)
13c、104c 2次巻線
14、105 スイッチング素子
15、106 制御回路
16 出力電圧生成回路
161、107 第1のダイオード
162、108 第1の出力コンデンサ
17、109 主出力端子
18、110 負荷
19、111 補助電源回路(電源回路)
191、112 第2のダイオード
192、113 第2の出力コンデンサ
20、120 基板上形成領域(半導体装置)
21、121 発振器
22、122 誤差増幅器
23、123 素子電流検出回路
24、124 素子電流検出用比較器
25、125 スイッチング信号制御回路
26、126 RSフリップフロップ回路
27、127 NAND回路
28、128 ゲートドライバ
29、129 過電流保護回路
30、130 AND回路
31、131 オン時ブランキングパルス発生回路
40、140 ブランキング期間生成用コンデンサ
40a 第1のコンデンサ
40b 第2のコンデンサ
41、141 反転器(ブランキングパルス信号生成回路)
42、142 P型トランジスタ
43、143 N型トランジスタ(第1のスイッチ素子)
44、144 定電流源
45、65、68、145 ミラー回路
46、47、66、67、69、70、146、147 N型トランジスタ
48 負荷検出用比較器
49 反転器
50 負荷検出回路
51 スイッチングトランジスタ(第2、第3のスイッチ素子)
52 N型トランジスタ
60 N型トランジスタ
61、64 NPN型バイポーラトランジスタ
62 定電流源
63 抵抗

Claims (7)

  1. スイッチング素子と、前記スイッチング素子のスイッチング動作を制御する制御回路と、入力される第1の直流電圧を前記スイッチング素子のスイッチング動作により交流電力に変換して出力する変圧器と、前記交流電力から第2の直流電圧を生成して出力する出力電圧生成回路と、前記第2の直流電圧に応じた直流電圧を生成し前記制御回路の電源電圧とする電源回路とからなり、前記制御回路が前記電源電圧を帰還信号として前記スイッチング素子のスイッチング動作を制御するスイッチング電源装置であって、
    前記制御回路は、
    前記スイッチング素子にスイッチング動作をさせるためのスイッチング信号を生成する発振器と、
    前記スイッチング素子を流れる素子電流を検出し素子電流検出信号として出力する素子電流検出回路と、
    基準の電圧と前記電源電圧の差に応じた電圧値となる誤差電圧信号を生成して出力する誤差増幅器と、
    前記素子電流検出信号と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する素子電流検出用比較器と、
    前記素子電流検出用比較器からの比較信号を基に前記第2の直流電圧が所定の電圧となるように前記スイッチング信号を制御し、これを制御信号として前記スイッチング素子へ出力するスイッチング信号制御回路と、
    前記スイッチング素子がオンした瞬間から負荷状態に応じた期間、前記素子電流検出用比較器からの比較信号を無効にし、この期間においては前記スイッチング素子がターンオフしないようにするブランキングパルス信号を生成するオン時ブランキングパルス発生回路と
    を有し、前記オン時ブランキングパルス発生回路は、前記誤差電圧信号の電圧値を基に前記ブランキングパルス信号を生成し、前記素子電流検出用比較器からの比較信号を無効にする期間を負荷状態に応じて調整することを特徴とするスイッチング電源装置。
  2. 前記オン時ブランキングパルス発生回路は、
    ブランキング期間生成用コンデンサと、
    定電流源が接続されたミラー回路と、
    前記スイッチング信号制御回路から前記スイッチング素子をターンオンさせる制御信号を受けると、前記ブランキング期間生成用コンデンサと前記ミラー回路を接続し前記ブランキング期間生成用コンデンサから電流を流出させる第1のスイッチ素子と、
    前記ブランキング期間生成用コンデンサの電位がしきい値に達するまで前記素子電流検出用比較器からの比較信号を無効にする前記ブランキングパルス信号を生成するブランキングパルス信号生成回路と
    からなり、前記誤差電圧信号の電圧値を基に前記ブランキング期間生成用コンデンサの電位低下速度を調整することで、前記素子電流検出用比較器からの比較信号を無効にする期間を負荷状態に応じて調整することを特徴とする請求項1記載のスイッチング電源装置。
  3. 請求項2記載のスイッチング電源装置であって、
    前記オン時ブランキングパルス発生回路は、
    基準電圧と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する負荷検出回路と、
    前記負荷検出回路からの比較信号に応じて前記ミラー回路に流れる電流値を切り替える第2のスイッチ素子と
    を有し、前記誤差電圧信号の電圧値を基に前記第2のスイッチ素子を制御して前記ミラー回路に流れる電流値を2段階に調整することで、前記ブランキング期間生成用コンデンサの電位低下速度を2段階に調整することを特徴とするスイッチング電源装置。
  4. 請求項2記載のスイッチング電源装置であって、
    前記オン時ブランキングパルス発生回路は、
    基準電圧と前記誤差電圧信号の電圧値を比較しその比較結果に応じた比較信号を出力する負荷検出回路と、
    前記負荷検出回路からの比較信号に応じて前記ブランキング期間生成用コンデンサの容量値を切り替える第3のスイッチ素子と
    を有し、前記誤差電圧信号の電圧値を基に前記第3のスイッチ素子を制御して前記ブランキング期間生成用コンデンサの容量値を2段階に調整することで、前記ブランキング期間生成用コンデンサの電位低下速度を2段階に調整することを特徴とするスイッチング電源装置。
  5. 請求項3もしくは4のいずれかに記載のスイッチング電源装置であって、前記負荷検出回路の基準電圧が、最小パルス期間により素子電流値が制御されたときの誤差電圧信号の電圧値に設定されることを特徴とするスイッチング電源装置。
  6. 請求項2記載のスイッチング電源装置であって、前記オン時ブランキングパルス発生回路は、前記定電流源から前記ミラー回路へ流れる電流値を前記誤差電圧信号の電圧値に応じて線形的に変化させることで、前記ブランキング期間生成用コンデンサの電位低下速度を線形的に調整することを特徴とするスイッチング電源装置。
  7. 前記スイッチング素子および前記制御回路は、前記スイッチング素子の入力端子および出力端子、並びに前記帰還信号が入力される前記制御回路の入力端子を外部接続端子として、一つの半導体基板上に集積化され形成されることを特徴とする請求項1乃至6のいずれかに記載のスイッチング電源装置。
JP2002373325A 2002-12-25 2002-12-25 スイッチング電源装置 Expired - Lifetime JP3657256B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002373325A JP3657256B2 (ja) 2002-12-25 2002-12-25 スイッチング電源装置
US10/742,392 US6914789B2 (en) 2002-12-25 2003-12-22 Switching power supply apparatus with blanking pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373325A JP3657256B2 (ja) 2002-12-25 2002-12-25 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2004208382A true JP2004208382A (ja) 2004-07-22
JP3657256B2 JP3657256B2 (ja) 2005-06-08

Family

ID=32708227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373325A Expired - Lifetime JP3657256B2 (ja) 2002-12-25 2002-12-25 スイッチング電源装置

Country Status (2)

Country Link
US (1) US6914789B2 (ja)
JP (1) JP3657256B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132138A1 (ja) * 2005-06-06 2006-12-14 Rohm Co., Ltd. Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP2007202313A (ja) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd スイッチング制御回路
JP2009189197A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 非接触電力伝送装置
CN104914812A (zh) * 2015-04-13 2015-09-16 安徽师范大学 一种用于llc电路的采集控制方法
US10277106B2 (en) 2016-07-14 2019-04-30 Fuji Electric Co., Ltd. Control circuit for switching power supply apparatus
JP7509649B2 (ja) 2020-10-12 2024-07-02 日清紡マイクロデバイス株式会社 Dc-dcコンバータ

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948448B2 (ja) * 2003-10-09 2007-07-25 松下電器産業株式会社 スイッチング電源装置
TWI232302B (en) * 2004-03-17 2005-05-11 Delta Electronics Inc Current detecting circuit
US7289340B2 (en) * 2004-10-13 2007-10-30 Shindengen Electric Manufacturing Co., Ltd. Switching power supply device
CN100442620C (zh) * 2005-02-03 2008-12-10 昂宝电子(上海)有限公司 用于开关电源变换器的多阈值过流保护的系统和方法
US7593245B2 (en) * 2005-07-08 2009-09-22 Power Integrations, Inc. Method and apparatus to limit maximum switch current in a switching power supply
US7613019B2 (en) * 2005-07-08 2009-11-03 Power Integrations, Inc. Method and apparatus to limit maximum switch current in a switch of a switching power supply
US7457138B2 (en) * 2005-07-14 2008-11-25 Semiconductor Components Industries L.L.C. Single pin multi-function signal detection method and structure therefor
CN101295872B (zh) 2007-04-28 2010-04-14 昂宝电子(上海)有限公司 为功率转换器提供过电流和过功率保护的系统和方法
JP4682784B2 (ja) 2005-09-30 2011-05-11 サンケン電気株式会社 スイッチング電源装置
JP2008187813A (ja) * 2007-01-30 2008-08-14 Fuji Electric Device Technology Co Ltd スイッチング電源
US7969124B2 (en) * 2007-06-01 2011-06-28 Advantest Corporation Power supply apparatus, test apparatus, and electronic device
US7969134B2 (en) * 2008-03-27 2011-06-28 Semiconductor Components Industries, Llc Method of forming a power supply controller and structure therefor
JP5340639B2 (ja) * 2008-05-22 2013-11-13 ローム株式会社 キャパシタ充電装置およびその制御回路、制御方法、ならびにそれらを用いた発光装置および電子機器
JP2010022097A (ja) * 2008-07-09 2010-01-28 Panasonic Corp スイッチング制御回路、半導体装置、およびスイッチング電源装置
JP2010166019A (ja) * 2008-12-18 2010-07-29 Panasonic Corp 半導体レーザ装置
US8228027B2 (en) * 2009-10-13 2012-07-24 Multi-Fineline Electronix, Inc. Wireless power transmitter with multilayer printed circuit
US8059429B2 (en) * 2009-12-31 2011-11-15 Active-Semi, Inc. Using output drop detection pulses to achieve fast transient response from a low-power mode
CN102948060B (zh) 2010-05-04 2016-01-20 意法半导体股份有限公司 用于利用电流信号的前沿消隐设备控制电流路径的开关的集成电路
CN102545567B (zh) 2010-12-08 2014-07-30 昂宝电子(上海)有限公司 为电源变换器提供过电流保护的系统和方法
US9553501B2 (en) 2010-12-08 2017-01-24 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
WO2013008537A1 (ja) * 2011-07-12 2013-01-17 富士電機株式会社 スイッチング電源装置の制御回路およびスイッチング電源
US8908396B2 (en) * 2011-09-13 2014-12-09 System General Corp. Control circuit for controlling the maximum output current of power converter and method thereof
US8917076B2 (en) * 2012-08-10 2014-12-23 Monolithic Power Systems, Inc. Off-line regulator with pass device and associated method
CN103401424B (zh) 2013-07-19 2014-12-17 昂宝电子(上海)有限公司 用于调整电源变换系统的输出电流的系统和方法
CN103532102B (zh) 2013-09-26 2017-10-17 昂宝电子(上海)有限公司 用于电源变换系统的过温保护和过压保护的系统和方法
CN103956905B (zh) 2014-04-18 2018-09-18 昂宝电子(上海)有限公司 用于调节电源变换系统的输出电流的系统和方法
US9584005B2 (en) 2014-04-18 2017-02-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
CN104660022B (zh) * 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
CN104853493B (zh) 2015-05-15 2017-12-08 昂宝电子(上海)有限公司 用于电源转换系统中的输出电流调节的系统和方法
US10270334B2 (en) 2015-05-15 2019-04-23 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
CN105406691B (zh) * 2015-11-05 2018-06-29 矽力杰半导体技术(杭州)有限公司 用于隔离式开关电源的电压采样控制方法及控制电路
US10707766B2 (en) * 2018-02-02 2020-07-07 Silanna Asia Pte Ltd Integrated self-driven active clamp

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69536081D1 (de) * 1994-07-01 2010-07-22 Sharp Kk Klimaanlage
US5856917A (en) * 1994-09-05 1999-01-05 Tdk Corporation Electric power device with improved power factor
JPH10112975A (ja) 1996-10-04 1998-04-28 Nec Corp スイッチング電源回路
JP2000184698A (ja) * 1998-12-09 2000-06-30 Murata Mfg Co Ltd スイッチング電源
JP3490049B2 (ja) 2000-06-01 2004-01-26 松下電器産業株式会社 スイッチング電源装置
JP2002078333A (ja) 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP3559516B2 (ja) 2000-09-29 2004-09-02 松下電器産業株式会社 スイッチング電源装置
JP2003047150A (ja) * 2001-07-27 2003-02-14 Denso Corp 電源回路
JP3741035B2 (ja) * 2001-11-29 2006-02-01 サンケン電気株式会社 スイッチング電源装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132138A1 (ja) * 2005-06-06 2006-12-14 Rohm Co., Ltd. Dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP2006340587A (ja) * 2005-06-06 2006-12-14 Rohm Co Ltd 他励式dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
US7863833B2 (en) 2005-06-06 2011-01-04 Rohm Co., Ltd. DC/DC converter control circuit, and power supply apparatus, light emitting apparatus and electronic device using the same
JP2007202313A (ja) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd スイッチング制御回路
US7439719B2 (en) 2006-01-27 2008-10-21 Matsushita Electric Industrial Co., Ltd. Switching control circuit with off period adjustment
JP2009189197A (ja) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp 非接触電力伝送装置
CN104914812A (zh) * 2015-04-13 2015-09-16 安徽师范大学 一种用于llc电路的采集控制方法
US10277106B2 (en) 2016-07-14 2019-04-30 Fuji Electric Co., Ltd. Control circuit for switching power supply apparatus
JP7509649B2 (ja) 2020-10-12 2024-07-02 日清紡マイクロデバイス株式会社 Dc-dcコンバータ

Also Published As

Publication number Publication date
US20040136206A1 (en) 2004-07-15
US6914789B2 (en) 2005-07-05
JP3657256B2 (ja) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3657256B2 (ja) スイッチング電源装置
JP6915115B2 (ja) 同期フライバック変換器における使用のための二次コントローラ、電力変換器、および同期フライバック変換器を制御する方法
US7492615B2 (en) Switching power supply
JP3973652B2 (ja) スイッチング電源装置
US7773392B2 (en) Isolated switching power supply apparatus
KR100889528B1 (ko) 소프트 스타트 회로와 이를 포함하는 전원공급장치
JP4481879B2 (ja) スイッチング電源装置
US20160190942A1 (en) Insulated synchronous rectification dc/dc converter
JP2009011073A (ja) スイッチング電源装置
JP5221268B2 (ja) パワースイッチング素子の駆動回路、その駆動方法及びスイッチング電源装置
US20170288551A1 (en) Power converter for a switching power supply and manner of operation thereof
US8149598B2 (en) Switching power supply apparatus
JPH11136935A (ja) ダイオードレス多重出力コンバータ用の方法および装置
JP2010183722A (ja) Dc−dcコンバータおよびスイッチング制御回路
JP2009153364A (ja) スイッチング電源装置
US7561450B2 (en) Protection device for a converter and related method
WO2010125751A1 (ja) スイッチング電源装置
US20230009994A1 (en) Integrated circuit and power supply circuit
JP3425403B2 (ja) 半導体装置、および、この半導体装置を用いたスイッチング電源装置
US11703550B2 (en) Resonance voltage attenuation detection circuit, semiconductor device for switching power, and switching power supply
JP2006352976A (ja) スイッチング電源用半導体装置
JP2007043767A (ja) スイッチング電源装置、および半導体装置
JP2001224169A (ja) スイッチング電源用半導体装置
US20230010211A1 (en) Integrated circuit and power supply circuit
JP2002119053A (ja) スイッチングレギュレータ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8