WO2006126626A1 - グリコール酸の製造方法 - Google Patents

グリコール酸の製造方法 Download PDF

Info

Publication number
WO2006126626A1
WO2006126626A1 PCT/JP2006/310426 JP2006310426W WO2006126626A1 WO 2006126626 A1 WO2006126626 A1 WO 2006126626A1 JP 2006310426 W JP2006310426 W JP 2006310426W WO 2006126626 A1 WO2006126626 A1 WO 2006126626A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycolic acid
acid
tolyl
producing
glycolate
Prior art date
Application number
PCT/JP2006/310426
Other languages
English (en)
French (fr)
Inventor
Hidenori Hinago
Hajime Nagahara
Toshiya Aoki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN200680018308.2A priority Critical patent/CN101184717B/zh
Priority to US11/921,072 priority patent/US8106238B2/en
Priority to EP06766404.5A priority patent/EP1894910B1/en
Priority to JP2007517888A priority patent/JP5032309B2/ja
Publication of WO2006126626A1 publication Critical patent/WO2006126626A1/ja
Priority to US13/330,383 priority patent/US8956837B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/08Preparation of carboxylic acids or their salts, halides or anhydrides from nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part

Definitions

  • the present invention relates to glycolic acid useful as a raw material for polymerization, cosmetics, pharmaceuticals, cans, detergents, leather tanning agents, metal ion chelating agents, and the like, and a method for producing the same.
  • glycolic acid has been mainly used as a cleaning agent, a cleaning agent, a leather tanning agent, a chelating agent for metal ions, and the like.
  • it has come to be used for cosmetic and pharmaceutical skin external preparations. It is desirable that those used as external preparations for skin have few harmful substances as impurities.
  • it is expected to be used as a raw material for polydarlicolic acid having biodegradable and gasnolian functions.
  • glycolic acid is mainly produced by (1) a method in which carbon monoxide, formaldehyde, and water are reacted in the presence of a strong acidic catalyst under high temperature and high pressure conditions, and (2) a black mouth.
  • (4) A method in which darioxal obtained by ethylene glycol acid and water are subjected to a liquid phase reaction in the presence of an inorganic catalyst, (5) Ethylene glycol in the presence of a noble metal catalyst and oxygen.
  • a method of reacting carbon monoxide, formaldehyde, and water in the presence of a strongly acidic catalyst under high temperature and high pressure conditions is, for example, formaldehyde in the presence of a hydrogen fluoride catalyst in a water-containing organic solvent.
  • a method of producing by reacting with carbon monoxide for example, see Patent Document 1
  • a method of reacting with formaldehyde and carbon monoxide in the presence of a sulfuric acid catalyst in an aqueous medium for example, see Patent Documents 2 and 3) Etc.
  • This method has the problem that it is manufactured under special reaction equipment and reaction conditions under high temperature and high pressure.
  • This method also uses organic acids such as formic acid and methoxyacetic acid as a secondary agent of mutagenicity. Life is inevitable. Due to the conditions of high temperature and high pressure, it contains a large amount of impurities such as methanol from side reactions and sulfuric acid used as a catalyst. Removal and purification of these impurities requires a great deal of labor and energy and is inefficient.
  • This method also requires both an anion exchange resin and a cation exchange resin. That is, it is essential to use anion exchange resin to remove sulfuric acid, live steam stripping to remove low boiling impurities, and cation exchange resin to remove metal impurities. Is extremely complicated.
  • [0007] (3) is a method for forming glycolate by reacting darioxal obtained by ethylene glycol oxidation with a strong alkali to form glycolate, and then adding acid to release glycolic acid (for example, Non-patent Document 1).
  • the Cannizzaro reaction is a disproportionation reaction, a large amount of by-products are produced, resulting in low productivity and a large amount of impurities.
  • [0008] (4) is a method in which darioxal obtained from ethylene glycolate and water are subjected to a liquid phase reaction in the presence of an inorganic catalyst (see, for example, Patent Document 6).
  • the metal used as the catalyst is used. Since the salt component is mixed in the reaction product solution, it must be removed. The purification process for removing the metal salt component from the reaction product solution is complicated and difficult as an industrial production method, which is a major drawback of this method.
  • [0009] (5) is a method in which ethylene glycol is catalytically oxidized in the presence of a noble metal catalyst and oxygen (see, for example, Patent Document 7).
  • a resource-expensive and rare noble metal such as platinum must be used. The problem is that the reaction time is long and the productivity is poor. There is a problem that many types of by-products with low selectivity of dalicholic acid are generated due to the formation reaction.
  • [0010] (6) is a method for producing glycolic acid by oxidizing ethylene glycol with methanol and oxygen to methyl glycolate and then hydrolyzing it (see, for example, Patent Document 8).
  • the problem is that expensive and rare precious metals must be used, and there are many types of by-products with low selectivity of methyl glycolate in the acid-esterification reaction.
  • the conventional manufacturing method has the above-mentioned problems.
  • the glycolic acid obtained by these production methods is insufficient as a monomer for polymerizing polydaricholic acid.
  • a method for producing glycosyl-tolyl a method for producing glycosyl-tolyl such as formaldehyde and hydrocyanic acid (see, for example, Patent Documents 9 to 13), and a method using acidification of acetonitrile (for example, Patent Documents 14 and 15).
  • glycine and hydantoin are considered to be used as uses of formaldehyde and glycosidic-tolyl obtained as a hydrocyanic acid.
  • Patent Document 1 Japanese Patent Laid-Open No. 59-139341
  • Patent Document 2 U.S. Pat.No. 2,153,064
  • Patent Document 3 Japanese Patent Publication No. 6-501268
  • Patent Document 4 JP-A 62-77349
  • Patent Document 5 JP-A-9-67300
  • Non-Patent Document 2 Acta Chem. Scand. 10, 311 (1956).
  • Patent Document 6 Japanese Patent Publication No. 6-35420
  • Patent Document 7 Japanese Patent Publication No. 60-10016
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-43386
  • Patent Document 9 Japanese Patent Laid-Open No. 62-267257
  • Patent Document 10 JP-A-53-68725
  • Patent Document 11 JP-A-6-135923
  • Patent Document 12 Japanese Patent Publication No.53-18015
  • Patent Document 13 Japanese Patent Application Laid-Open No. 51-100027
  • Patent Document 14 U.S. Pat.No. 4,634,789
  • Patent Document 15 U.S. Pat.No. 4,515,732
  • Patent Document 16 Special Publication 2005-504506
  • Patent Document 17 Japanese Patent Laid-Open No. 9 28390
  • Patent Document 18 Japanese Patent Laid-Open No. 61 56086
  • An object of the present invention is to provide a process in which a production process and a purification process with low energy consumption are simple, and yield of glycolic acid, activity of glycolic acid production, accumulation of glycolic acid
  • Another object of the present invention is to provide a method for producing glycolic acid having a high concentration and suitable for use as a raw material for polymerization, cosmetics, pharmaceuticals, detergents, detergents, leather tanning agents and metal ion chelating agents.
  • Another object of the present invention is to provide glycolic acid obtained by such a production method.
  • the present inventors obtained formaldehyde and hydrocyanic acid glycoglycol-tolyl as the first step, and hydrolyzed the glycolipol-tolyl as the second step.
  • glycolic acid directly from glycolic acid or via glycolate, it is possible to provide a glycolic acid production process with less energy consumption and a simple purification process. I found it.
  • the first step to the second step are carried out as a continuous step, or the glyco-tolyl obtained in the first step is treated with pH 4
  • the present inventors have found that the yield of glycolic acid, the activity of producing glycolic acid, and the accumulated concentration of glycolic acid are improved, and the purity of the resulting glycolic acid and the quality as a raw material for polymerization are improved.
  • the first aspect of the present invention is a first aspect of the present invention.
  • a method for producing glycolic acid comprising:
  • Glycolate is produced by hydrolyzing the glycol-tolyl as a second step, and then
  • First process power This is a method for producing daricholic acid in which the process up to the second process is performed as a continuous process.
  • a method for producing glycolic acid comprising:
  • glycolic acid is produced by hydrolyzing the glycol-tolyl
  • the first step force is a method for producing daricholic acid which is performed as a continuous step up to the second step.
  • a method for producing glycolic acid comprising:
  • Glycolate is produced by hydrolyzing the glycol-tolyl as a second step, and then
  • the resulting glycoside port in the first step - tolyl were stored at P H4 below, and a method for producing a glycolic acid carrying out the hydrolysis reaction of the second step at pH 5 to 9.
  • the fourth aspect of the present invention provides:
  • a method for producing glycolic acid comprising:
  • the glycolate port as the second step - tolyl the manufacture of glycolic acid by hydrolysis, the resulting glycoside port in the first step - tolyl stored at P H4 less and the hydrolysis reaction of the second step
  • glycolic acid can be produced by a simple production process and purification process with less energy consumption.
  • the method of the present invention can produce glycolic acid with high purity and excellent quality in terms of glycolic acid production activity, yield of glycolic acid, and the accumulation concentration of glycolic acid.
  • FIG. 1 is a schematic diagram of an example of a production apparatus for producing glycolic acid using the method of the present invention.
  • the first step will be described.
  • a formaldehyde aqueous solution may absorb cyanuric acid in a stirred tank circulation type cyanic acid absorption tank, or after the cyanic acid is absorbed into pure water in the cyanic acid absorption tank to form a hydrocyanic acid aqueous solution, Mix with aqueous solution.
  • the supply molar ratio of hydrocyanic acid and formaldehyde is preferably in the range of 0.5 to 2 for formaldehyde with respect to hydrocyanic acid (hydrocyanic acid). More preferably, it is 0.8 to 1.2, more preferably 0.95 to L05, and particularly preferably 0.98 to L0.
  • a catalyst may be used in the reaction in the first step.
  • the catalyst include water-soluble salts of alkali metals.
  • the water-soluble salts include alkali metal hydroxides, halides, sulfites, acidic sulfites, sulfates, formates, and the like.
  • alkali metal hydroxides, sulfites, and formates are used. More preferably sodium hydroxide or lithium hydroxide.
  • the amount of catalyst-added metal is in the range of 50 to 5000 ppm as a weight ratio with respect to the supply amount of cyanide as metal.
  • the range is more preferably 100 to 600 ppm, more preferably 200 to 200 ppm.
  • Examples of the reactor type in the glyco mouth-tolyl synthesis reaction, which is the first step, include a stirring tank flow method, a flow method, a tubular reaction method, and a combination of these.
  • a stirring tank circulation system is provided as the first stage reactor, and a circulation system tubular reactor is provided as the second stage reactor.
  • the reaction time is a balance between the amount of catalyst to be added and the reaction temperature !, but in the stirring tank circulation method, it is preferably 10 to 300 minutes, more preferably 10 to 50 minutes, and still more preferably 15 to The range is 40 minutes.
  • a flow-through tubular reactor preferably 10 to 300 minutes, more preferably 1
  • the range is 0 to 50 minutes, more preferably 15 to 40 minutes.
  • the reaction temperature is preferably in the range of 30 to 80 ° C, which is a balance between the above catalyst addition amount and the reaction time, more preferably in the range of 40 to 70 ° C, and even more preferably 45. ⁇ 60
  • the operating pressure is preferably in the range of 0 to 1.
  • OMPaZG more preferably 0.1 to 0.8 MPaZG (ZG means gauge pressure).
  • Examples of the hydrolysis method as the second step include a method using a microbial enzyme having nitrile group hydrolysis activity, a method using an acidic aqueous solution, and a method using an alkali metal aqueous solution.
  • a method using a microbial enzyme having nitrile hydrolyzing activity is preferred.
  • a microorganism or a microorganism-treated product (a crushed microorganism, an enzyme separated from the crushed microorganism, an immobilized microorganism or a microbial force separation extraction) Of the aqueous solution of the glycated mouth-tolyl obtained in the first step, and the aqueous suspension of the microorganism or the treated product of the microorganism. And the like, or a method of immobilizing a microorganism or a processed microorganism product by a known method and circulating an aqueous solution of glycomouth-tolyl.
  • Daricholic acid can be obtained by hydrolysis.
  • the temperature of the microorganism or the microorganism-treated product is charged into the reaction apparatus so that the amount is 0.01 to 5% by weight in terms of dry microorganisms and glyco mouth-tolyl is about 1 to 40% by weight.
  • the reaction time is -60 ° C, preferably 10-50 ° C, for example, 1 to: LOO time, preferably 1 to 24 hours, more preferably 4 to 15 hours !, .
  • Glyco mouth-tolyl may be charged at a low concentration and added over time, or the reaction temperature may be changed over time.
  • a buffer solution can be added before the reaction, or an acid or an alkali can be added during the reaction.
  • microorganisms that produce microbial enzymes having nitrile hydrolyzing activity include, for example, the genus Acinetobacter, the genus Rhodococcus, the genus Corynebacterium, the genus Alcaligenes, Mycobacterium, ⁇ , Rhodopseudomonas genus, Candida genus microorganisms suitable force It is not limited to these, preferably Acinetobacter genus Yes, the microbial enzymes produced by the genus Acinetopacter have a remarkably high hydrolysis activity.
  • Examples of a method for producing a glycolate aqueous solution by removing polymer impurities such as microorganisms and microorganism-derived proteins from the obtained glycolate and microorganism mixture include centrifugal filtration and microfiltration membrane (MF). Separation and ultrafiltration membrane (UF) separation can be performed alone or in combination. In addition, the separated microorganisms can be reused.
  • a sulfuric acid aqueous solution a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a phosphoric acid aqueous solution, an organic acid aqueous solution, or the like
  • it is a sulfuric acid aqueous solution.
  • the molar ratio of acid to glycoguchi-tolyl is preferably in the range of 0.5-4, more preferably 1-2, more preferably 1.05- : L. 5 range.
  • the reaction time is a force that balances with the reaction temperature, preferably in the range of 0.1 to 200 hours, more preferably 1 to 50 hours, and even more preferably 3 to 30 hours.
  • the reaction temperature is preferably 35 to 100 ° C, more preferably 40 to 90 ° C, still more preferably 50 to 80 ° C.
  • the operating pressure is preferably in the range of 0 to 1. OMPa / G, more preferably 0.1 to 0.8 MPaZG.
  • a sodium hydroxide aqueous solution a sodium hydroxide aqueous solution, a hydroxide aqueous lithium solution, a lithium hydroxide aqueous solution, or the like can be used.
  • lithium hydroxide and sodium hydroxide aqueous solution are preferable.
  • the molar ratio of alkali to glycoguchi-tolyl is preferably in the range of 0.5 to 4, more preferably 1 to 1.3, and even more preferably to the glyco mouth-tolyl.
  • the range is from 1.05 to 1.5.
  • the reaction time is a force that balances the reaction temperature.
  • the reaction time ranges from 0.1 to 50 hours, more preferably from 0.3 to 10 hours, and even more preferably from 0.5 to 5 hours. It is.
  • the reaction temperature is preferably 35 to 100 ° C, more preferably 40 to 90 ° C, still more preferably 50 to 80 ° C.
  • the operating pressure is preferably in the range of 0 to 1. OMPaZG, more preferably 0.1 to 0.8 MPaZG.
  • Examples of the reactor type in the hydrolysis reaction may include a stirring tank flow method, a flow method, a tubular reaction method, and a combination of these.
  • a stirring tank circulation system is provided as the first stage reactor
  • a circulation system tubular reactor is provided as the second stage reactor.
  • the first process force and the second process are performed as a continuous process.
  • the first process force is performed as a continuous process until the second process means that the period from the completion of the glycomouth nitrile synthesis reaction until the synthesized glycomouth-tolyl is subjected to hydrolysis in the second process is It means within 10 days.
  • the first process force is a method in which the second process is a continuous process, and the glycomouth-tolyl obtained in the first process is temporarily stored in a tank or the like. Then, the method of using for a 2nd process, the method of using these together, etc. can be illustrated.
  • the first step force is preferably a method in which the second step is a continuous process.
  • the period from the completion of the glycomouth-tolyl synthesis reaction until the synthesized glycomouth-tolyl is subjected to hydrolysis in the second step is preferably within 5 days, more preferably within 1 day.
  • this period exceeds 10 days, the yield of glycolic acid in the second and third steps will decrease, and the quality of glycolic acid will be greatly affected. In particular, it leads to a reduction in quality related to the formation of coloring substances and a decrease in polymerization.
  • the storage temperature of the glycomouth-tolyl during the period until the synthesized glycomouth-tolyl is subjected to hydrolysis in the second step should be 30 ° C or lower. More preferably, it is 20 ° C or less, and further preferably 10 ° C or less.
  • glycoglycol-tolyl obtained in the first step is stored at pH 4 or lower, and the hydrolysis reaction in the second step is performed at pH 5-9.
  • the hydrolysis reaction in the second step is preferably performed at pH 6-8.
  • the glycotoxyl-tolyl obtained in the first step is stored at a pH of 4 or less and the hydrolysis reaction in the second step is carried out at a pH of 4 or less, the activity for producing glycolic acid is low.
  • the obtained glycoside port in the first step - tolyl were stored over 10 days P H4 above, the hydrolysis reaction of the second step at pH 5 to 9, the yield of glycolic acid decreases, further obtain The quality of the resulting glycolic acid is greatly reduced.
  • the third step is a step required when the product in the second step is obtained as a glycolate, and specifically, has a nitrile group hydrolysis activity as a hydrolysis method. This is often necessary when adopting a method using a microbial enzyme or a method using an aqueous alkali metal solution.
  • the third step, glycolate strength is to produce glycolic acid by contacting an aqueous solution of glycolate with a hydrogen ion-type cation exchange resin, or once converting glycolate to ester.
  • a method of obtaining glycolic acid by hydrolysis, an electrodialysis method, or the like can be used.
  • the electrodialysis method is preferable because the amount of waste such as salt is small.
  • a weak acid cation exchange resin or a strong acid cation exchange resin can be used as the cation exchange resin.
  • strong sulfuric acid which can use sulfuric acid, hydrochloric acid, nitric acid and the like.
  • the time for the cation exchange resin treatment is preferably 3 to 60 minutes, more preferably 6 to 30 minutes in the case of a batch method.
  • the liquid flow rate through the resin tower is preferably the liquid space speed ((LZHr) ZL- resin) in the range of 0.1 to: LOO, more preferably in the range of 1 to: LO. It is a circle.
  • the temperature is preferably in the range of 5 to 70 ° C, more preferably 20 to 50 ° C.
  • Regeneration of the cation exchange resin involves passing an acid such as sulfuric acid through the cation exchange resin and leaving it in the liquid. For example, by extruding the acid with pure water.
  • a known method can be used as a method of once converting glycolate to ester to separate the ester and then obtaining glycolic acid by hydrolysis.
  • the electrodialysis method includes a two-chamber electrodialysis method using a nopolar membrane and an anion exchange membrane or a cation exchange membrane, and a three-chamber electrodialysis method using a nopolar membrane, an anion exchange membrane and a cation exchange membrane. Law.
  • examples of the anode include platinum, titanium Z platinum, carbon, nickel, ruthenium Z titanium, and iridium Z titanium
  • examples of the cathode include iron, nickel, platinum, titanium / platinum, carbon, and stainless steel.
  • the nopolar membrane is not particularly limited, and a conventionally known bipolar membrane, that is, a known bipolar membrane having a structure in which a cation exchange membrane and an anion exchange membrane are bonded together can be used.
  • the cation exchange group of the cation exchange membrane constituting the nanopolar membrane is not particularly limited, and is a force capable of using a sulfonic acid group, a carboxylic acid group or the like, preferably a sulfonic acid group.
  • the anion exchange group of the anion exchange membrane is not particularly limited, and the ability to use an ion exchange group such as an ammonium base, a pyridinium base, a primary amino group, a secondary amino group, or a tertiary amino group, preferably an ammonium base. is there.
  • the cation exchange membrane is not particularly limited, and a known cation exchange membrane can be used.
  • a sulfonic acid group, a carboxylic acid group, and a cation exchange membrane in which a plurality of these ion exchange groups are mixed can be used.
  • the anion exchange membrane is not particularly limited, and a known anion exchange membrane can be used.
  • ion exchange groups such as ammonium base, pyridinium base, primary amino group, secondary amino group, and tertiary amino group, and a cation exchange membrane in which a plurality of these ion exchange groups are mixed.
  • the temperature during electrodialysis is preferably in the range of 5 to 70 ° C, more preferably 20 to 50 ° C.
  • the current density is not particularly limited, but is preferably 0.1 to: L00AZdm2, more preferably 2 to 20AZdm2.
  • the interval between the ion exchange membranes may be a commonly applied interval, and is preferably in the range of 0.01 to: LOmm, more preferably 0.05 to L: 50 mm. is there.
  • formaldehyde which is a reaction raw material in the present invention can be usually supplied as formalin.
  • Cyanic acid which is a reaction raw material in the present invention, can be supplied in any form such as a gas, a liquid, or an aqueous solution.
  • Industrially produced cyanuric acid is generally added with sulfur dioxide, acetic acid and the like as a stabilizer. Also contains acrylonitrile as an impurity! /
  • these additives and additives are used from the viewpoint of reducing by-products, preventing coloring of the glycolic acid to be produced, and improving the quality when the produced glycolic acid is used as a raw material for polymerization.
  • Preference is given to using hydrocyanic acid with an impurity content of 5000 ppm or less. More preferably, it is 2000 ppm or less.
  • Acrylonitrile is preferably 500 ppm or less, more preferably 200 ppm or less, and even more preferably 50 ppm or less.
  • Acetic acid is preferably 2000 ppm or less, more preferably 10 ppm or less, and even more preferably 500 ppm or less. Acetic acid is preferably 50 ppm or more.
  • the sulfur dioxide is preferably 2000 ppm or less, more preferably 10 ppm or less, and even more preferably 500 ppm or less. Sulfur dioxide is preferably 50ppm or more.
  • the total content of sulfur dioxide, acetic acid and acrylonitrile is preferably 5000 ppm or less, more preferably 2000 ppm or less, even more preferably lOOOppm or less, and particularly preferably 500 ppm or less.
  • glycolic acid obtained by the above raw materials and methods can be used as a product as it is, but it can be used as an adsorbent such as microfiltration membrane (MF) separation, ultrafiltration membrane (UF), activated carbon, or the like. Can purify anion exchange resin alone or in combination. Furthermore, glycolic acid can be produced by evaporating and concentrating water.
  • MF microfiltration membrane
  • UF ultrafiltration membrane
  • activated carbon or the like.
  • the glycolic acid (or aqueous glycolic acid solution) obtained in this way is used as a raw material for polymerization, cosmetics, pharmaceuticals, canning agents, cleaning agents, leather tanning agents, metal ion chelating agents and the like.
  • the raw material for polymerization is polymerized as it is. It means that the raw material for manufacturing, the raw material for manufacturing glycolide, the raw material for manufacturing glycolide via an oligomer, etc. are finally used as a polymer.
  • the polymerization may be homopolymerization or copolymerization with a compound containing a hydroxyl group and a carboxyl group in the molecule such as lactic acid.
  • glycocine-tolyl hydrolysis was carried out using Acinetobacter sp.
  • Strain AK226 (hereinafter abbreviated as AK226).
  • AK226 was deposited on January 7, 2004 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1-1-1, Tsukuba, Sakato, Ibaraki, Japan) and was assigned a deposit number of FERM BP—08590. Yes.
  • the culture conditions for the AK226 strain are as follows. Medium is 1.0% by weight of fumaric acid, 1.0% by weight of meat extract, 1.0% by weight of peptone, 0.1% by weight of salt, 0.3% by weight of epsilon prolactam, phosphorus 0.2% by weight of potassium ferrous acid, 0.02% by weight of magnesium sulfate ⁇ 7hydrate, 0.1% by weight of ammonium chloride, 0.003% by weight of ferric sulfate ⁇ 7hydrate %, Manganese chloride tetrahydrate was dissolved in distilled water to 0.002% by weight and cobalt chloride hexahydrate to 0.002% by weight. ⁇ was 7.5. Incubation was performed at 30 ° C for 1 day.
  • the first step is a step of synthesizing glycosyl-tolyl in reactors 1 and 2.
  • hydrocyanic acid is converted to an aqueous hydrocyanic acid solution
  • chlorohydrin-tolyl is produced by cyanohydrination reaction.
  • Reactor 1 is a jacketed stainless steel auto turve with an internal volume of 200 mL equipped with a stirrer.
  • Pump P-1 supplies pure water 3 at a supply rate of 56.2 (g / hr), and pump P-2 supplies cyanic acid 4 to the reactor 1 at a supply rate of 44.4 (gZhr). It was.
  • the purity of hydrocyanic acid used here was 99.5% by weight, and impurities contained 600 ppm acetic acid, 300 ppm sulfur dioxide, and 2000 ppm acrylonitrile.
  • the temperature of reactor 1 was set to 17 ° C.
  • Reactor 2 is a jacketed serpentine reactor with an internal volume of 120 mL. 47 ° C hot water was circulated in the tank. The aqueous hydrocyanic acid solution obtained in the reactor 1 was sent to the reactor 2 by the pump P-3. Pump P-3 operates to maintain a hold-up of 60 mL with the level gauge operating.
  • aqueous formaldehyde solution 5 (Wako Pure Chemical Reagent Special Grade) was supplied by pump P-4 at a feed rate of 132.4 (g / hr), and 0.05 wt% Sodium hydroxide aqueous solution 6 was supplied to reactor 2 at a supply rate of 44.4 (gZhr), and at the inlet of reactor 2, aqueous cyanide solution, aqueous formaldehyde solution 5, and aqueous sodium hydroxide solution 5 were mixed.
  • a back pressure valve 7 was installed at the outlet of the reactor 2 to maintain the system pressure at 0.5 MPaZG. The residence time in reactor 2 was 26 minutes.
  • the liquid was allowed to flow for 1 hour, and the liquid in the latter half of 30 minutes was sampled to obtain 138 g of an aqueous glycomouth-toluene solution 8.
  • the content of Glycositol-Torr in the aqueous solution was 33.5% by weight, and the yield of Glycosyl-Tolyl was 99.5%.
  • AK226 is collected in advance by centrifuging the culture fluid force, washed three times with distilled water, distilled water is added to the washed microorganism, and 18.0% by weight of microorganism suspension in terms of dry microorganism weight Prepared.
  • a glass autoclave 400ml was replaced with nitrogen gas, the suspension 6g of microorganisms Ka ⁇ E, 33.5 weight 0/0 glycolide opening obtained in the first step - distilled water lOOg and tolyl solution 100 g
  • the mixture was fed over 5 hours.
  • the reaction was carried out for 12 hours (feed time 5 hours, 7 hours after the end of the feed), and then subjected to cooling centrifugation at 10, OOOrpm for 15 minutes to separate microorganisms, and the supernatant was collected.
  • the collected supernatant was passed through an ultrafiltration filter under pressure to remove the remaining microorganisms and proteins and obtain a reaction solution.
  • Example 2 The same operation as in Example 1 was conducted except that the aqueous glycoglycol-tolyl solution obtained in the first step was charged into the second step one day after the production.
  • the yield of glycolic acid was 99% on the basis of glycosyl-tolyl, and the quality index was 0.008, which was uncolored.
  • Example 2 The same operation as in Example 1 was carried out except that the glycomouth-tolyl aqueous solution obtained in the first step was charged into the second step three days after the production.
  • the yield of glycolic acid was 98% on the basis of glycoglycol-tolyl, and the quality index was 0.013, indicating no coloration.
  • Example 2 The same procedure as in Example 1 was conducted, except that the aqueous glycomouth-tolyl solution obtained in the first step was cooled to ⁇ 10 ° C. and stored for 7 days and then charged in the second step.
  • the yield of glycolic acid was 99% based on Glycolate-Tolyl, and the quality index was 0.010, indicating no coloration.
  • Sulfuric acid was added to the glycomouth-tolyl aqueous solution obtained in the first step to adjust the pH to 3, and after storage for 3 months, sodium hydroxide was added to the stored glycomouth-tolyl aqueous solution to make PH7.
  • the yield of glycolic acid was 99% based on Glycolate-Tolyl, and the quality index was 0.007, which was uncolored.
  • Example 2 The same operation as in Example 1 was conducted, except that the glycoguchi-tolyl aqueous solution obtained in the first step was charged in the second step three months after its production.
  • Example 2 The procedure was the same as in Example 1 except that sulfuric acid was added to the glycomouth-tolyl aqueous solution obtained in the first step to adjust the pH to 3, stored for 3 months, and then the stored glycomouth-tolyl aqueous solution was used as it was. went.
  • the conversion rate of glycomouth-tolyl was 5%, and the hydrolysis of glycomouth-tolyl was almost ineffective.
  • the present invention is a method for producing glycolic acid with a low energy consumption and a simple production process and purification process. According to the production method of the present invention, the yield of glycolic acid, the production of glycolic acid Can produce glycolic acid with excellent activity and high accumulated concentration of glycolic acid.
  • the glycolic acid obtained by the production method of the present invention is useful as a raw material for polymerization, cosmetics, pharmaceuticals, cleansing agents, detergents, leather tanning agents, metal ion chelating agents, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 第一工程としてホルムアルデヒドと青酸からグリコロニトリルを得、第二工程として該グリコロニトリルを加水分解して直接グリコール酸を製造するか、又は、グリコール酸塩を経てグリコール酸を製造することにより、エネルギー消費量が少なく、製造工程や精製工程が簡易なグリコール酸製造方法を提供する。そして、この製造方法において、第一工程から第二工程までを連続した工程として行うか、又は、第一工程で得られたグリコロニトリルを、pH4以下で保管し、かつ、第二工程の加水分解反応をpH5~9で行うことにより、グリコール酸の収率、グリコール酸生成の活性、グリコール酸の蓄積濃度を向上させ、得られるグリコール酸の純度や品質を向上させる。                                                                                 

Description

明 細 書
グリコール酸の製造方法
技術分野
[0001] 本発明は、重合用の原料、化粧品、医薬品、清缶剤、洗浄剤、皮革なめし剤、金属 イオンのキレート剤等として有用なグリコール酸、及びその製造方法に関する。
背景技術
[0002] 従来、グリコール酸は、清缶剤、洗浄剤、皮革なめし剤、金属イオンのキレート剤等 として主に使用されている。近年は、化粧品、医薬品の皮膚外用剤にも使用されるよ うになつてきた。皮膚外用剤として使用されるものは不純物として有害なものが少な いことが望ましい。最近は、生分解性、ガスノリア性機能を有するポリダリコール酸の 原料としても期待されて ヽる。
[0003] 従来、グリコール酸の製法としては、主に、 (1)一酸ィ匕炭素とホルムアルデヒドと水と を強酸性触媒の存在下、高温高圧条件下において反応させる方法、(2)クロ口酢酸 と水酸化ナトリウムとを反応させる方法、 (3)エチレングリコールの酸ィ匕によって得ら れるグリオキザールを強アルカリとカニッツァ口反応させてグリコール酸塩を形成した 後、酸を加えてグリコール酸を遊離させる方法、(4)エチレングリコールの酸ィ匕によつ て得られるダリオキザールと水とを無機触媒の存在下で液相反応させる方法、 (5)ェ チレングリコールを貴金属触媒及び酸素の存在下で接触酸化する方法、 (6)ェチレ ングリコールをメタノールと酸素によって酸化エステル化してグリコール酸メチルにし たのち加水分解してグリコール酸を製造する方法、等が知られて 、る。
[0004] (1)の一酸化炭素とホルムアルデヒドと水とを強酸性触媒の存在下、高温高圧条件 下において反応させる方法は、例えば、含水有機溶媒中フッ化水素触媒存在下でホ ルムアルデヒドと一酸化炭素とを反応させて製造する方法 (例えば特許文献 1参照) や水媒体中硫酸触媒存在下でホルムアルデヒドと一酸化炭素とを反応させて製造す る方法 (例えば特許文献 2、 3参照)等がある。
この方法は高温、高圧下の特殊な反応装置と反応条件のもとで製造されるという問 題点がある。また、この方法はギ酸等の有機酸や変異原性を示すメトキシ酢酸の副 生も避けられない。高温、高圧下という条件ゆえ、副反応によるメタノールをはじめと して多種多量の不純物や、触媒として使用した硫酸が含まれている。これら不純物の 除去、精製に多大な労力とエネルギーを要し非効率的である。し力もこの方法では 陰イオン交換榭脂、陽イオン交換樹脂の両方を必要とする。即ち、硫酸を除去するた めに陰イオン交換榭脂を、低沸点不純物を除去するために生蒸気ストリツビングを、 さらに金属不純物を除去するために陽イオン交換榭脂を用いることを必須とし、工程 が極めて繁雑である。
[0005] (2)のモノクロル酢酸を水酸ィ匕ナトリウムとを反応させる方法 (例えば特許文献 4、 5 参照)は、化学量論量付近の水酸ィ匕ナトリウムを用いる必要がある。そのため有機物 で汚染された塩ィ匕ナトリウムが廃棄物として化学両論的に発生するという問題がある 。さらには、この化学量論的に副生する塩ィ匕ナトリウムのため濃縮後のスラリー濃度が 高くなり操作性が悪くロスも大き 、と 、う問題がある。また生成物中には塩が除去しき れず残存すると ヽぅ問題がある。
[0006] (3)〜(6)に共通の課題としては、エチレングリコールがエチレンオキサイドを原料 として製造されるため、製造工程が長いうえ、爆発性のエチレンオキサイドを製造プロ セス中に包含すると 、う問題がある。
[0007] (3)はエチレングリコール酸化によって得られるダリオキザールを強アルカリと力-ッ ッァロ反応させてグリコール酸塩を形成した後、酸をカ卩えてグリコール酸を遊離させる 方法 (例えば非特許文献 1、 2参照)であるが、カニッツァーロ反応が不均化反応であ るので、副生成物が多量に生成され、生産性が低く不純物が多い。
[0008] (4)はエチレングリコール酸ィ匕によって得られるダリオキザールと水とを無機触媒の 存在下で液相反応させる方法 (例えば特許文献 6参照)であるが、この方法では触媒 として用いた金属塩の成分が反応生成液中に混入してしまうので、これを除去する必 要がある。反応生成液から金属塩成分を除去する精製工程は、工業的製法としては 複雑でかつ困難であり、この方法の大きな欠点となっている。
[0009] (5)はエチレングリコールを貴金属触媒及び酸素の存在下で接触酸ィ匕する方法( 例えば特許文献 7参照)であるが、白金等の資源的に高価で希少な貴金属を用いな ければならないという問題点、反応時間が長く生産性が悪いという問題点、さらに酸 化反応であるためにダリコール酸の選択率が低ぐ多くの種類の副生物を生じるとい う問題点がある。
[0010] (6)はエチレングリコールをメタノールと酸素によって酸化エステル化してグリコール 酸メチルにしたのち加水分解してグリコール酸を製造する方法 (例えば特許文献 8参 照)であるが、金等の資源的に高価で希少な貴金属を用いなければならないという問 題点、酸ィ匕エステルイ匕反応でのグリコール酸メチルの選択率が低ぐ多くの種類の副 生物を生じるという問題点がある。
[0011] 従来の製法には上述したような問題点がある。また特に、これらの製法によって得ら れたグリコール酸は、ポリダリコール酸の重合用モノマーとしては不十分である。 一方、グリコ口-トリルの製造法としては、ホルムアルデヒドと青酸力らグリコ口-トリ ルを製造する方法 (例えば特許文献 9〜13参照)、ァセトニトリルの酸ィ匕による方法( 例えば特許文献 14、 15参照)等が知られている。これらの公知文献によれば、ホル ムアルデヒドと青酸力 得られたグリコ口-トリルの用途としては、グリシンゃヒダントイ ンの原料が考えられて 、る。
[0012] 一方、グリコ口-トリルを水溶媒の存在下に微生物による加水分解を行いダリコール 酸アンモ-ゥムを製造する方法も知られている(例えば特許文献 16〜18等参照)。し かし、グリコ口-トリルを 、かに製造するかにっ 、ては記載がな 、。
すなわち、グリコール酸の製造方法として、青酸を出発原料に用いる方法は知られ ていない。
[0013] 特許文献 1:特開昭 59— 139341号公報
特許文献 2 :米国特許第 2, 153, 064号明細書
特許文献 3:特表平 6— 501268号公報
特許文献 4:特開昭 62— 77349号公報
特許文献 5:特開平 9— 67300号公報
非特許文献 l : Chem. Ber. 54, 1395 (1921)
非特許文献 2 :Acta Chem. Scand. 10, 311 (1956) . )
特許文献 6:特公平 6— 35420号公報
特許文献 7:特公昭 60— 10016号公報 特許文献 8:特開 2004— 43386号公報
特許文献 9:特開昭 62— 267257号公報
特許文献 10:特開昭 53— 68725号公報
特許文献 11:特開平 6— 135923号公報
特許文献 12:特公昭 53 - 18015号公報
特許文献 13:特開昭 51— 100027号公報
特許文献 14:米国特許第 4, 634, 789号明細書
特許文献 15 :米国特許第 4, 515, 732号明細書
特許文献 16:特表 2005 - 504506号公報
特許文献 17:特開平 9 28390号公報
特許文献 18:特開昭 61 56086号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明の目的は、エネルギー消費量が少なぐ製造工程も精製工程も簡易である ようなプロセスを提供すること、及び、グリコール酸の収率、グリコール酸生成の活性 、グリコール酸の蓄積濃度が高ぐしかも重合用の原料、化粧品、医薬品、清缶剤、 洗浄剤、皮革なめし剤、金属イオンのキレート剤に適した優れた品質のグリコール酸 の製造方法を提供することにある。またこのような製造方法で得られたグリコール酸を 提供することにある。
課題を解決するための手段
[0015] 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、第一工程として ホルムアルデヒドと青酸力 グリコ口-トリルを得、第二工程として該グリコ口-トリルを 加水分解して、直接グリコール酸を製造するカゝ、又は、グリコール酸塩を経てグリコー ル酸を製造することにより、エネルギー消費量が少なぐ製造工程や精製工程が簡 易なグリコール酸製造プロセスを提供できることを見出した。
そして、このような第一工程、第二工程を含む製造方法において、第一工程から第 二工程までを連続した工程として行うか、又は、第一工程で得られたグリコ口-トリル を、 pH4以下で保管し、かつ、第二工程の加水分解反応を PH5〜9で行うことにより 、グリコール酸の収率、グリコール酸生成の活性、グリコール酸の蓄積濃度が向上し 、得られるグリコール酸の純度や重合用原料としての品質が向上することを見出し、 本発明をなすに至った。
[0016] すなわち、本発明の第一の態様は、
グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸塩を製造し 、次いで、
第三工程として該グリコール酸塩力 グリコール酸を製造し、
第一工程力 第二工程までを連続した工程として行うダリコール酸の製造方法であ る。
[0017] また、本発明の第二の態様は、
グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸を製造し、 第一工程力 第二工程までを連続した工程として行うダリコール酸の製造方法であ る。
[0018] また、本発明の第三の態様は、
グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸塩を製造し 、次いで、
第三工程として該グリコール酸塩力 グリコール酸を製造し、
第一工程で得られたグリコ口-トリルを PH4以下で保管し、かつ、第二工程の加水 分解反応を pH5〜9で行うグリコール酸の製造方法である。
[0019] さらに、本発明の第四の態様は、
グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、 第二工程として該グリコ口-トリルを加水分解することによりグリコール酸を製造し、 第一工程で得られたグリコ口-トリルを PH4以下で保管し、かつ、第二工程の加水 分解反応を pH5〜9で行うグリコール酸の製造方法である。
発明の効果
[0020] 本発明の方法によれば、エネルギー消費量が少なぐ簡易な製造工程、精製工程 によって、グリコール酸を製造方法することができる。
また、本発明の方法は、グリコール酸生成の活性、グリコール酸の収率、グリコール 酸の蓄積濃度が高ぐし力も、純度が高く優れた品質のグリコール酸を製造すること ができる。
図面の簡単な説明
[0021] [図 1]本発明の方法を用いてグリコール酸を製造するための製造装置の一例の概略 図
発明を実施するための最良の形態
[0022] 以下、本願発明について具体的に説明する。
第一工程を説明する。
第一工程においては、例えば、攪拌槽流通方式の青酸吸収槽にて、ホルムアルデ ヒド水溶液に青酸を吸収させてもよいし、青酸吸収槽で純水に青酸を吸収させ青酸 水溶液としたのち、ホルムアルデヒド水溶液と混合させてもょ 、。
[0023] 青酸とホルムアルデヒドの供給モル比は、青酸 (シアン化水素酸)に対してホルムァ ルデヒドが 0. 5〜2の範囲が好ましい。より好ましくは、 0. 8〜1. 2であり、さらに好ま しくは 0. 95〜: L 05、特に好ましくは 0. 98〜: L . 0である。
[0024] 第一工程の反応に触媒を用いてもよい。触媒として、アルカリ金属の水溶性塩を例 示できる。この水溶性塩としては、アルカリ金属の水酸化物、ハロゲン化物、亜硫酸 塩、酸性亜硫酸塩、硫酸塩、蟻酸塩等が挙げられるが、好ましくはアルカリ金属の水 酸化物、亜硫酸塩及び蟻酸塩であり、より好ましくは、水酸化ナトリウム又は水酸化力 リウムである。これらの触媒は予め水溶液としておき、青酸吸収槽内で青酸吸収水や ホルムアルデヒド水溶液に加えてもょ 、。
触媒添カ卩量は、金属として青酸供給量に対する重量比として 50〜5000ppmの範 囲が好ましぐより好ましくは 100〜600ppmの範囲であり、さら〖こ好ましくは、 200〜
300ppmの範囲である。
[0025] 第一工程であるグリコ口-トリル合成反応での反応器型式は、攪拌槽流通方式、流 通方式管型反応方式、及びこれらを組み合わせた方法を例示することができる。好ま しくは、第一段の反応器として攪拌槽流通方式、第二段の反応器として流通方式管 型反応器を設けた型式である。
[0026] 反応時間は、添加する触媒量と反応温度との兼ね合!、であるが、撹拌槽流通方式 では、好ましくは 10〜300分、より好ましくは 10〜50分、さらに好ましくは 15〜40分 の範囲である。流通方式管型反応器では、好ましくは 10〜300分、より好ましくは、 1
0〜50分、さらに好ましくは 15〜40分の範囲である。
[0027] 反応温度は、上記の触媒添加量及び反応時間との兼ね合いである力 30〜80°C の範囲が好ましぐより好ましくは、 40〜70°Cの範囲であり、さらに好ましくは 45〜60
°Cの範囲である。
操作圧力は、好ましくは 0〜1. OMPaZG、より好ましくは 0. 1〜0. 8MPaZGの 範囲である(ZGはゲージ圧を意味する)。
[0028] 次に、第二工程について説明する。
第二工程である加水分解の方法としては、二トリル基の加水分解活性を有する微生 物酵素を用いる方法、酸性水溶液を用いる方法、アルカリ金属水溶液を用いる方法 などを例示できる。好ましくは二トリル基の加水分解活性を有する微生物酵素を用い る方法である。
[0029] 二トリル基の加水分解活性を有する微生物酵素を用いる方法としては、微生物又は 微生物処理物 (微生物の破砕物、微生物破砕物より分離した酵素、固定化した微生 物又は微生物力 分離抽出された酵素を固定ィ匕した処理物)の懸濁水溶液に、第一 工程で得られたグリコ口-トリル水溶液を添加する方法、微生物又は微生物処理物 の懸濁水溶液を該グリコ口-トリル水溶液に添加する方法、又は、微生物又は微生 物処理物を公知の方法で固定ィ匕してこれにグリコ口-トリル水溶液を流通する方法等 が挙げられ、これにより、速やかにグリコ口-トリルの加水分解反応を行いダリコール 酸を得ることができる。 [0030] 前記微生物又は微生物処理物を、例えば、乾燥微生物換算で 0. 01〜5重量%、 グリコ口-トリルを 1〜40重量%程度になるように反応装置に仕込み、温度として例え ば 0〜60°C、好ましくは 10〜50°Cにて、反応時間を、例えば、 1〜: LOO時間、好まし くは 1〜 24時間、さらに好ましくは 4〜 15時間反応させればよ!、。
グリコ口-トリルを低濃度で仕込み、経時的に追加添加したり、反応温度を経時的 に変化させてもよい。 pHコントロールのために反応前に緩衝液を添カ卩したり、反応中 に酸又はアルカリを添加することもできる。
[0031] 二トリル基の加水分解活性を有する微生物酵素を産生する微生物としては、例えば 、ァシネトノクタ一 (Acinetobacter)属、ロドコッカス (Rhodococcus)属、コリネノ ク テリゥム(Corynebacterium)属、アルカリゲネ(Alcaligenes)属、マイコバクテリゥム (Mycobacterium) ,禺、ロドシユードモナス (Rhodopseudomonas 属、キャンティ ダ(Candida)属に属する微生物が適している力 これらに限定されるものではない。 好ましくは、ァシネトパクター(Acinetobacter)属であり、ァシネトパクター属によつ て産生された微生物酵素は著しく高い加水分解活性を有している。
具体的には、旭化成ケミカルズ株式会社(日本国東京都千代田区有楽町 1丁目 1 番 2号)により寄託された以下の菌株が挙げられる。
[0032] (1)日本国、独立行政法人産業技術総合研究所 特許生物寄託センター (日本国 茨城県つくば巿東 1丁目 1番地 1 中央第 6 (郵便番号 305— 8566) )に 2004年 1月 7日(原寄託日 )に寄託した受託番号 FERM BP— 08590のァシネトパクター sp. AK226株、
(2)日本国、独立行政法人産業技術総合研究所 特許生物寄託センター(日本国 茨城県つくば巿東 1丁目 1番地 1 中央第 6 (郵便番号 305— 8566) )に 2004年 1月 7日(原寄託日 )に寄託した受託番号 FERM BP— 08591のァシネトパクター sp. AK227株、
[0033] ァシネトパクター属の微生物から産生された微生物酵素は、グリコール酸生成の平 均活性 ( = (グリコール酸及びダリコール酸塩の生成重量) / (菌体の乾燥重量 X反 応時間))ゃグリコール酸の蓄積濃度(=反応器中のグリコール酸濃度)が高ぐこれ を用いて得られるグリコール酸の純度が高いため、優れた微生物酵素である。 [0034] 得られたグリコール酸塩と微生物の混合物から微生物や微生物由来のタンパク質 等の高分子不純物を除去しグリコール酸塩水溶液を製造する方法としては、例えば 、遠心濾過、精密濾過膜 (MF)分離や限外濾過膜 (UF)分離を単独、又は組み合 わせて実施することができる。また、分離した微生物を再利用することもできる。
[0035] 酸性水溶液を用いる方法としては、硫酸水溶液、塩酸水溶液、硝酸水溶液、リン酸 水溶液、有機酸水溶液などを用いることができる。好ましくは、硫酸水溶液である。 酸とグリコ口-トリルのモル比は、グリコ口-トリルに対して、酸は、好ましくは、 0. 5〜 4、より好ましくは 1〜2の範囲であり、さらに好ましくは、 1. 05〜: L. 5の範囲である。
[0036] 反応時間は、反応温度との兼ね合いである力 好ましくは、 0. 1〜200時間、より好 ましくは、 1〜50時間、さらに好ましくは、 3〜30時間の範囲である。反応温度は、好 ましくは 35〜100°C、より好ましくは、 40〜90°Cの範囲、さらに好ましくは、 50〜80 °Cの範囲である。操作圧力は、好ましくは 0〜1. OMPa/G、より好ましくは 0. 1〜0 . 8MPaZGの範囲である。
[0037] アルカリ金属水溶液を用いる方法としては、水酸化ナトリウム水溶液、水酸化力リウ ム水溶液、水酸化リチウム水溶液などを用いることができる。好ましくは、水酸化力リウ ム、水酸ィ匕ナトリウム水溶液である。
アルカリとグリコ口-トリルのモル比は、グリコ口-トリルに対して、アルカリ金属は、好 ましくは、 0. 5〜4、より好ましくは 1〜1. 3の範囲であり、さらに好ましくは、 1. 05〜1 . 5の範囲である。
[0038] 反応時間は、反応温度との兼ね合いである力 好ましくは、 0. 1〜50時間、より好 ましくは、 0. 3〜10時間、さらに好ましくは、 0. 5〜5時間の範囲である。反応温度は 、好ましくは 35〜100°C、より好ましくは、 40〜90°Cの範囲、さらに好ましくは、 50〜 80°Cの範囲である。操作圧力は、好ましくは 0〜1. OMPaZG、より好ましくは 0. 1 〜0. 8MPaZGの範囲である。
[0039] 加水分解反応での反応器型式は、攪拌槽流通方式、流通方式管型反応方式、及 びこれらを組み合わせた方法を例示することができる。好ましくは、第一段の反応器 として攪拌槽流通方式、第二段の反応器として流通方式管型反応器を設けた型式 である。 [0040] 次に、「第一工程力も第二工程までを連続した工程として行う」ことについて説明す る。
本発明のひとつの態様においては、第一工程力 第二工程までを連続した工程と して行う。ここで、第一工程力 第二工程までを連続した工程として行うとは、グリコ口 二トリル合成反応の終了後、合成したグリコ口-トリルを第二工程の加水分解に供す るまでの期間が 10日以内であることをいう。
[0041] 連続した工程で行うための具体的な方法としては、第一工程力 第二工程を連続 プロセスとする方法、第一工程で得られたグリコ口-トリルを一時的にタンク等に保管 したのち第二工程に供する方法、及びこれらを併用する方法等が例示できる。 好ましくは第一工程力 第二工程を連続プロセスとする方法である。
[0042] グリコ口-トリル合成反応の終了後、合成したグリコ口-トリルを第二工程の加水分 解に供するまでの期間は、好ましくは 5日以内、より好ましくは 1日以内である。
この期間が 10日を越えると、第二工程、第三工程でのグリコール酸の収率が低下 し、さらにグリコール酸の品質に大きく影響する。とりわけ着色性物質の生成や重合 成の低下に関連する品質の低下につながる。
[0043] グリコ口-トリル合成反応の終了後、合成したグリコ口-トリルを第二工程の加水分 解に供するまでの期間のグリコ口-トリルの保管温度は、 30°C以下であることが好ま しぐより好ましくは 20°C以下、さらに好ましくは 10°C以下である。
[0044] 次に、「第一工程で得られたグリコ口にトリルを pH4以下で保管し、かつ、第二工程 の加水分解反応を pH5〜9で行う」ことにつ 、て説明する。
本発明の別の態様においては、第一工程で得られたグリコ口-トリルを pH4以下で 保管し、かつ、第二工程の加水分解反応を pH5〜9で行う。第二工程の加水分解反 応は、 pH6〜8で行うことが好ましい。
[0045] 第一工程で得られたグリコ口-トリルを長期間保管した後、第二工程、第三工程を 行うと、グリコール酸の収率が低下し、さらに得られるグリコール酸の品質が低下する 力 第一工程で得られたグリコ口-トリルを pH4以下で保管し、かつ、第二工程の加 水分解反応を ρΗ5〜9で行うことによって、グリコール酸生成の活性、グリコール酸の 収率、グリコール酸の蓄積濃度が高ぐさらに品質の高いグリコール酸を得ることがで きる。
[0046] 第一工程で得られたグリコ口-トリルを pH4以下で保管し、第二工程の加水分解反 応を pH4以下のまま行うと、グリコール酸生成の活性が低い。
また、第一工程で得られたグリコ口-トリルを PH4以上で 10日間以上保管し、第二 工程の加水分解反応を pH5〜9で行うと、グリコール酸の収率が低下し、さらに得ら れるグリコール酸の品質が大きく低下する。
[0047] 次に、第三工程について説明する。
第三工程は、第二工程での生成物がグリコール酸塩として得られる場合に必要とな る工程であり、具体的には、加水分解の方法として、二トリル基の加水分解活性を有 する微生物酵素を用いる方法、アルカリ金属水溶液を用 ヽる方法を採用した場合等 に必要となることが多い。
第三工程であるグリコール酸塩力 グリコール酸を製造する方法としては、水素ィォ ン型の陽イオン交換榭脂にグリコール酸塩の水溶液を接触させる方法、グリコール酸 塩を一度エステルに変換させて力 エステルを分離後、加水分解によりグリコール酸 を得る方法、電気透析法等を用いることができる。電気透析法が塩等の廃棄物量が 少ないので好ましい。
[0048] 水素イオン型の陽イオン交換榭脂を用いる方法にぉ 、ては、陽イオン交換榭脂とし ては、弱酸性陽イオン交換榭脂ゃ強酸性陽イオン交換榭脂を用いることができる。陽 イオン交換樹脂の再生には硫酸、塩酸、硝酸等を用いることができる力 硫酸を用い るのが好ましい。なお、これらの榭脂を初めて使用する場合には、榭脂の前処理と水 洗を充分に行っておくことが好ましい。榭脂の前処理は酸と塩基で交互に洗浄するこ と等によって行われる。
[0049] 陽イオン交換榭脂処理の時間は、バッチ式の場合、好ましくは 3〜60分間、より好 ましくは 6〜30分である。連続式で処理する場合、榭脂塔への通液速度は液空間速 度((LZHr) ZL—榭脂)で好ましくは 0. 1〜: LOOの範囲、より好ましくは 1〜: LOの範 囲である。
温度は、好ましくは 5〜70°C、より好ましくは 20〜50°Cの範囲である。
陽イオン交換樹脂の再生は、硫酸等の酸を陽イオン交換樹脂に通液し、液中に残 る酸を純水で押し出すこと等によって行うことができる。
[0050] グリコール酸塩を一度エステルに変換させてカゝらエステルを分離後、加水分解によ りグリコール酸を得る方法は公知の方法を用いることができる。
電気透析法としては、ノ ィポーラ膜と陰イオン交換膜又は陽イオン交換膜を使用す る二室式電気透析法、ノ ィポーラ膜と陰イオン交換膜と陽イオン交換膜を使用する 三室式電気透析法等が挙げられる。
電気透析装置の電極は、公知のものが何ら制限なく使用できる。即ち、陽極として は、白金、チタン Z白金、カーボン、ニッケル、ルテニウム Zチタン、イリジウム Zチタ ン等、陰極としては、鉄、ニッケル、白金、チタン/白金、カーボン、ステンレス鋼等を 例示できる。
[0051] ノ ィポーラ膜も特に限定されず、従来より公知のバイポーラ膜、即ち、陽イオン交換 膜と陰イオン交換膜が貼合わさった構造をした公知のバイポーラ膜等を使用できる。 ノ ィポーラ膜を構成する陽イオン交換膜の陽イオン交換基は特に限定されず、スル ホン酸基、カルボン酸基等を使用できる力 好ましくはスルホン酸基である。陰イオン 交換膜の陰イオン交換基も特に限定されず、アンモニゥム塩基、ピリジニゥム塩基、 1 級ァミノ基、 2級ァミノ基、 3級ァミノ基等のイオン交換基が使用できる力 好ましくはァ ンモニゥム塩基である。
[0052] 陽イオン交換膜も特に限定されず、公知の陽イオン交換膜を用いることができる。
例えば、スルホン酸基、カルボン酸基、さらにこれらのイオン交換基が複数混在した 陽イオン交換膜等を使用できる。
陰イオン交換膜も特に限定されず、公知の陰イオン交換膜を用いることができる。 例えば、アンモニゥム塩基、ピリジニゥム塩基、 1級ァミノ基、 2級ァミノ基、 3級ァミノ基 等のイオン交換基、さらにこれらのイオン交換基が複数混在した陽イオン交換膜等を 使用できる。
[0053] 電気透析時の温度は、好ましくは 5〜70°C、より好ましくは 20〜50°Cの範囲である 。また、電流密度は、特に制限を受けないが、好ましくは 0. 1〜: L00AZdm2、より好 ましくは、 2〜20AZdm2である。イオン交換膜の膜間隔は、一般的に適用されてい る間隔でよく、好ましくは 0. 01〜: LOmm、より好ましくは 0. 05〜: L 50mmの範囲で ある。
[0054] 次に、本発明に用いる原料について説明する。
まず、本発明における反応原料であるホルムアルデヒドは、通常、ホルマリンとして 供給し得る。
[0055] 本発明における反応原料である青酸は、気体、液体、水溶液等任意な形態で供給 し得る。工業的に製造される青酸は、一般的に安定剤として、二酸化硫黄、酢酸等が 添加されて 、る。また不純物としてアクリロニトリルが含まれて!/、る。
本発明のグリコール酸の製造方法においては、副生成物の低減、製造するグリコー ル酸の着色の防止及び製造するグリコール酸を重合用原料とする場合の品質向上 の観点から、これらの添加物や不純物の含有量がそれぞれ 5000ppm以下である青 酸を用いることが好まし 、。より好ましくは 2000ppm以下である。
アクリロニトリルは、好ましくは 500ppm以下であり、より好ましくは 200ppm以下で あり、さらに好ましくは 50ppm以下である。
酢酸は好ましくは 2000ppm以下であり、もっと好ましくは lOOOppm以下であり、さ らに好ましくは 500ppm以下である。また酢酸は 50ppm以上が好ましい。
二酸化硫黄は、好ましくは 2000ppm以下であり、より好ましくは lOOOppm以下で あり、さらに好ましくは 500ppm以下である。また二酸化硫黄は 50ppm以上が好まし い。
二酸化硫黄、酢酸、アクリロニトリルの合計の含有量が 5000ppm以下であることが 好ましぐより好ましくは 2000ppm以下であり、さらに好ましくは lOOOppm以下であり 、特に好ましくは 500ppm以下である。
[0056] 以上の原料と方法によって得られたグリコール酸は、そのまま製品としても用いるこ とができるが、精密濾過膜 (MF)分離や限外濾過膜 (UF)、活性炭等の吸着剤、又 は陰イオン交換榭脂を単独又はこれらを組み合わせて精製することができる。さらに 水を蒸発させ濃縮しグリコール酸を製造することができる。
[0057] このようにして得られたグリコール酸 (又はグリコール酸水溶液)は、重合用の原料、 化粧品、医薬品、清缶剤、洗浄剤、皮革なめし剤、金属イオンのキレート剤等に、特 には重合用の原料として用いることができる。重合用の原料とは、そのまま重合させる ための原料、グリコリドを製造するための原料、オリゴマーを経由してグリコリドを製造 するための原料等、最終的に重合物として使用される、ということを意味する。重合は 単独重合であっても、乳酸等分子内に水酸基とカルボキシル基を含有する化合物と の共重合であってもよい。
実施例
[0058] 実施例、比較例の第二工程であるグリコ口-トリルの加水分解には、ァシネトバクタ 一 sp. AK226株を用いた(以下 AK226と略称する)。 AK226は平成 16年 1月 7日 に独立行政法人産業技術総合研究所特許生物寄託センター (日本国茨城県つくば 巿東 1丁目 1番 1号)に寄託され受託番号 FERM BP— 08590を付与されている。
AK226株の培養条件は下記のとおりである。培地は、フマル酸を 1. 0重量%、肉 エキスを 1. 0重量%、ペプトンを 1. 0重量%、食塩を 0. 1重量%、 ε一力プロラクタ ムを 0. 3重量%、リン酸第一カリウムを 0. 2重量%、硫酸マグネシウム · 7水塩を 0. 0 2重量%、塩化ァンモ二ゥムを 0. 1重量%、硫酸第二鉄 · 7水塩を 0. 003重量%、塩 化マンガン ·4水塩を 0. 002重量%、塩化コバルト · 6水塩を 0. 002重量%になるよう に蒸留水に溶解させた。 ρΗを 7. 5であった。培養は 30°Cで 1日行った。
[0059] [実施例 1]
<第一工程 >
図 1に示す反応装置を用いて、グリコール酸合成反応を行った。
第一工程は反応器 1〜2においてグリコ口-トリルを合成する工程である。反応器 1 において青酸を青酸水溶液とし、反応器 2においてシアンヒドリン化反応によって、グ リコ口-トリルが生成する。
反応器 1は、攪拌器を備えた内容積 200mLのジャケット式ステンレス製オートタレ ーブである。ポンプ P—1により純水 3を 56. 2 (g/hr)の供給速度で、ポンプ P— 2に より青酸 4を 44. 4 (gZhr)の供給速度で反応器 1に供給し、青酸水溶液とした。ここ で用いた青酸の純度は 99. 5重量%であり、不純物としては酢酸を 600ppm、二酸 化硫黄を 300ppm、アクリロニトリル 2000ppmを含んでいた。反応器 1の温度は 17 °Cに設定した。
反応器 2は内容積 120mLのジャケット式蛇管型反応器であり、反応器 2のジャケッ トには 47°Cの温水を循環させた。反応器 1で得られた青酸水溶液は、ポンプ P— 3に よって反応器 2へ送液された。ポンプ P— 3は液面計の作動によりホールドアップ 60 mLに保つように作動する。
[0060] 一方、ポンプ P— 4により 37. lwt%ホルムアルデヒド水溶液 5 (和光純薬試薬特級 )を 132. 4 (g/hr)の供給速度で、ポンプ P— 5により 0. 05wt%水酸ィ匕ナトリウム水 溶液 6を 44. 4 (gZhr)の供給速度で反応器 2に供給し、反応器 2の入り口で青酸水 溶液、ホルムアルデヒド水溶液 5、水酸ィ匕ナトリウム水溶液 5を混合した。反応器 2の 出口には背圧弁 7が設置され、系内圧を 0. 5MPaZGに保持した。反応器 2での滞 留時間は 26分であった。 1時間通液させ、後半の 30分の液をサンプリングし、 138g のグリコ口-トル水溶液 8を得た。ガスクロマトグラフィーで分析したところ水溶液中の グリコ口-トル含有量は 33. 5重量%であり、グリコ口-トリルの収率は 99. 5%であつ た。
[0061] <第二工程 >
予め AK226を培養液力も遠心分離により集菌し、蒸留水で 3回洗浄しておき、洗 浄した微生物に蒸留水を加え、乾燥微生物重量換算で 18. 0重量%の微生物の懸 濁液を準備しておいた。窒素ガスで置換した 400mlの硝子オートクレーブに、微生 物の懸濁液 6gをカ卩え、第一工程で得られた 33. 5重量0 /0グリコ口-トリル水溶液 100 gと蒸留水 lOOgの混合液を 5時間かけてフィードした。反応は pH = 7、反応温度 40 °Cにて行った。第一工程で得られたグリコ口-トル水溶液を得て力も第二工程用にフ イード開始するまでの時間は約 30分であった。反応を 12時間(フィード時間 5時間、 フィード終了後 7時間)行ったのち、 10, OOOrpmで 15分間冷却遠心分離に付して 微生物を分離し、上澄みを回収した。回収した上澄みを加圧下で限外濾過フィルタ 一に通し、残存する微生物やタンパク質を取り除!/、て反応液を得た。
[0062] <第三工程 >
弱酸性陽イオン交換榭脂アンバーライト IRC— 76 (H型)(オルガノ (株)) 1000ml を充填した榭脂塔に純水を通液し、続 、て第二工程で得られた反応液 100gを純水 100gで希釈した水溶液を通液し、続!、て 2000gの純水を通液してグリコール酸水 溶液を回収した。操作温度は 25°C、通液の体積速度は 2. 5 (LZHr)で行った。液 空間速度は 2. 5 ( (L/Hr) ZL—榭脂)と計算される。
[0063] 高速液体クロマトグラフィー(島津 LC— 10、カラム Shodex RSPak KC— 811、 UV検出器 (波長 210nm)、溶離液 0. 75%リン酸水溶液、溶離液供給速度 lmlZ min、分析時間 90分)による分析の結果、得られたグリコール酸の収率は、グリコロニ トリルを基準として 99%であり、また、品質指標(= (グリコール酸以外のピーク面積 合計) Z (グリコール酸ピーク面積))は 0. 007であり、無着色であった。
[0064] [実施例 2]
第一工程で得られたグリコ口-トリル水溶液を、その製造から 1日後に第二工程に 仕込んだ以外は、実施例 1と同様に操作を行った。グリコール酸の収率はグリコ口-ト リルを基準として 99%であり、また、品質指標は 0. 008であり、無着色であった。
[0065] [実施例 3]
第一工程で得られたグリコ口-トリル水溶液を、その製造から 3日後に第二工程に 仕込んだ以外は、実施例 1と同様に操作を行った。グリコール酸の収率はグリコ口-ト リルを基準として 98%であり、また、品質指標は 0. 013であり、無着色であった。
[0066] [実施例 4]
第一工程で得られたグリコ口-トリル水溶液を、 - 10°Cまで冷却して 7日間保存した 後、第二工程に仕込んだ以外は、実施例 1と同様に操作を行った。グリコール酸の収 率はグリコ口-トリルを基準として 99%であり、また、品質指標は 0. 010であり、無着 色であった。
[0067] [実施例 5]
第一工程で得られたグリコ口-トリル水溶液に硫酸を加えて pHを 3にし、 3ヶ月保存 した後、保存したグリコ口-トリル水溶液に水酸ィ匕ナトリウムを添加して PH7にした以 外は、実施例 1と同様に操作を行った。グリコール酸の収率はグリコ口-トリルを基準 として 99%であり、また、品質指標は 0. 007であり、無着色であった。
[0068] [比較例 1]
第一工程で得られたグリコ口-トリル水溶液、その製造から 3ヶ月後に第二工程に仕 込んだ以外は、実施例 1と同様に操作を行った。
グリコール酸の収率はグリコ口-トリルを基準として 10%であり著しく着色していた。 [0069] [比較例 2]
第一工程で得られたグリコ口-トリル水溶液に硫酸を加えて pHを 3にし、 3ヶ月保存 した後、保存したグリコ口-トリル水溶液をそのまま使用した以外は、実施例 1と同様 に操作を行った。グリコ口-トリルの転ィ匕率は 5%であり、グリコ口-トリルの加水分解 はほとんど進行しな力つた。
産業上の利用可能性
[0070] 本発明は、エネルギー消費量が少なぐ製造工程も精製工程も簡易であるグリコー ル酸の製造方法であり、本発明の製造方法によれば、グリコール酸の収率、グリコー ル酸生成の活性、グリコール酸の蓄積濃度が高ぐかつ優れた品質のグリコール酸 を製造できる。本発明の製造方法で得られたグリコール酸は、重合用の原料、化粧 品、医薬品、清缶剤、洗浄剤、皮革なめし剤、金属イオンのキレート剤等として有用 である。

Claims

請求の範囲
[1] グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸塩を製造し 、次いで、
第三工程として該グリコール酸塩力 グリコール酸を製造し、
第一工程カゝら第二工程までを連続した工程として行うダリコール酸の製造方法。
[2] グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸を製造し、 第一工程カゝら第二工程までを連続した工程として行うダリコール酸の製造方法。
[3] グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸塩を製造し 、次いで、
第三工程として該グリコール酸塩力 グリコール酸を製造し、
第一工程で得られたグリコ口-トリルを PH4以下で保管し、かつ、第二工程の加水 分解反応を ρΗ5〜 9で行うグリコール酸の製造方法。
[4] グリコール酸の製造方法であって、
第一工程としてホルムアルデヒドと青酸力 グリコ口-トリルを得、
第二工程として該グリコ口-トリルを加水分解することによりグリコール酸を製造し、 第一工程で得られたグリコ口-トリルを PH4以下で保管し、かつ、第二工程の加水 分解反応を ρΗ5〜 9で行うグリコール酸の製造方法。
[5] 前記グリコロニトリルの加水分解反応に、二トリル基の加水分解活性を有する微生 物酵素を用いる請求項 1〜4のいずれか 1項に記載のグリコール酸の製造方法。
[6] 前記微生物酵素が、ァシネトパクター (Acinetobacter)属によって産出された微 生物酵素である請求項 5に記載のグリコール酸の製造方法。
[7] アクリロニトリル、酢酸、二酸ィ匕硫黄の含有量がそれぞれ 5000ppm以下である青 酸を用いる請求項 1〜6のいずれか 1項に記載のグリコール酸の製造方法。 請求項 1〜7のいずれか 1項に記載のグリコール酸の製造方法で得られたグリコ ル酸。
重合用の原料として用いられる請求項 8に記載のグリコール酸。
請求項 9に記載のグリコール酸を用いて製造されたポリグリコール酸。
PCT/JP2006/310426 2005-05-27 2006-05-25 グリコール酸の製造方法 WO2006126626A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680018308.2A CN101184717B (zh) 2005-05-27 2006-05-25 乙醇酸的制造方法
US11/921,072 US8106238B2 (en) 2005-05-27 2006-05-25 Method for producing glycolic acid
EP06766404.5A EP1894910B1 (en) 2005-05-27 2006-05-25 Method for producing glycolic acid
JP2007517888A JP5032309B2 (ja) 2005-05-27 2006-05-25 グリコール酸の製造方法
US13/330,383 US8956837B2 (en) 2005-05-27 2011-12-19 Method for producing glycolic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-154939 2005-05-27
JP2005154939 2005-05-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/921,072 A-371-Of-International US8106238B2 (en) 2005-05-27 2006-05-25 Method for producing glycolic acid
US13/330,383 Division US8956837B2 (en) 2005-05-27 2011-12-19 Method for producing glycolic acid

Publications (1)

Publication Number Publication Date
WO2006126626A1 true WO2006126626A1 (ja) 2006-11-30

Family

ID=37452050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310426 WO2006126626A1 (ja) 2005-05-27 2006-05-25 グリコール酸の製造方法

Country Status (5)

Country Link
US (2) US8106238B2 (ja)
EP (2) EP2361900B1 (ja)
JP (1) JP5032309B2 (ja)
CN (1) CN101184717B (ja)
WO (1) WO2006126626A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295821A (ja) * 2006-04-28 2007-11-15 Asahi Kasei Chemicals Corp 生体触媒を用いたα−ヒドロキシ酸或いはα−ヒドロキシ酸アンモニウムの製造方法
JP2008150313A (ja) * 2006-12-15 2008-07-03 Mitsui Chemicals Inc 高純度テレフタル酸の製造方法
JP2008156300A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp グリコール酸の製造方法
JP2009165418A (ja) * 2008-01-17 2009-07-30 Asahi Kasei Chemicals Corp カルボン酸アンモニウムの製造方法
US8940934B2 (en) 2008-06-20 2015-01-27 Asahi Kasei Chemicals Corporation Production process of α-hydroxy acids
JP5748752B2 (ja) * 2010-06-17 2015-07-15 旭化成ケミカルズ株式会社 シアノヒドリンの製造方法
WO2021199589A1 (ja) 2020-03-31 2021-10-07 住友化学株式会社 グリコール酸塩およびグリコール酸の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541790C1 (ru) * 2013-09-30 2015-02-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения гликолевой кислоты
CN104557514B (zh) * 2013-10-12 2016-03-30 中国科学院宁波材料技术与工程研究所 一种由富含纤维素的生物质制备羟基乙酸的方法
CN104355982B (zh) * 2014-09-18 2016-03-30 中国科学院宁波材料技术与工程研究所 一种由甘油制备羟基乙酸的方法
CN106480113A (zh) * 2015-11-25 2017-03-08 衡阳屹顺化工有限公司 一种有机酸类的制备方法
CN107129441B (zh) * 2016-02-28 2021-08-13 华东理工大学 一种连续生产羟基乙腈的催化剂和管道式反应器
EP3953320A4 (en) * 2019-06-27 2022-12-14 Rhodia Operations GLYCOLIC ACID PREPARATION PROCESS
CN112521265B (zh) * 2020-12-09 2022-08-09 浙江联盛化学股份有限公司 一种连续化生产乙醇酸的方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100027A (ja) 1975-02-25 1976-09-03 Mitsubishi Chem Ind Gurikoronitorirunoseizoho
JPS5318015A (en) 1976-08-02 1978-02-18 Tokyo Tatsuno Kk Petrol flowmeters
JPS5368725A (en) 1976-11-29 1978-06-19 Showa Denko Kk Preparation of glycollonitrile
JPS59139341A (ja) * 1983-01-20 1984-08-10 Mitsubishi Gas Chem Co Inc ヒドロキシカルボン酸誘導体の製造方法
JPS6010016A (ja) 1983-06-29 1985-01-19 Nippon Kokan Kk <Nkk> 凍害防止杭
US4515732A (en) 1984-05-29 1985-05-07 The Standard Oil Company Conversion of acetonitrile to glycolonitrile and/or glycolamide
JPS6156086A (ja) 1984-08-27 1986-03-20 Asahi Chem Ind Co Ltd α−オキシ酸およびその塩の微生物学的製造法
US4634789A (en) 1984-08-22 1987-01-06 The Standard Oil Company Conversion of acetonitrile to glycolonitrile and/or glycolamide
JPS62267257A (ja) 1986-05-16 1987-11-19 Mitsui Toatsu Chem Inc グリコロニトリルの製造方法
JPH0635420A (ja) 1992-07-14 1994-02-10 Ricoh Co Ltd フラットパネルディスプレイ
JPH06135923A (ja) 1992-10-21 1994-05-17 Mitsubishi Kasei Corp グリコロニトリルの製造方法
JPH0928390A (ja) 1995-07-19 1997-02-04 Nitto Chem Ind Co Ltd グリコール酸の微生物学的製造法
JPH0967300A (ja) 1995-08-28 1997-03-11 Otsuka Chem Co Ltd グリコール酸水溶液の製造法
JP2004043386A (ja) 2002-07-12 2004-02-12 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸の製造方法
JP2005504506A (ja) 2001-02-23 2005-02-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ニトリラーゼを用いて対応するアルファーヒドロキシニトリルからアルファーヒドロキシ酸、グリコール酸、2−ヒドロキシイソ酪酸の製造法
WO2006069110A2 (en) 2004-12-22 2006-06-29 E.I. Dupont De Nemours And Company Enzymatic production of glycolic acid

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153064A (en) * 1937-11-03 1939-04-04 Du Pont Process for the preparation of glycolic acid
US2529546A (en) * 1945-01-09 1950-11-14 Celanese Corp Manufacture of hydrogen cyanide
US2890238A (en) * 1957-01-31 1959-06-09 Dow Chemical Co Preparation of glyconitrile
US3867440A (en) * 1972-08-28 1975-02-18 Ethyl Corp Process for the preparation; of glycolic acid
JPS6010016B2 (ja) 1976-10-13 1985-03-14 川研フアインケミカル株式会社 ヒドロキシ酢酸の製造方法
JPH0635420B2 (ja) 1985-05-31 1994-05-11 三井東圧化学株式会社 グリコ−ル酸の製造法
JPS6277349A (ja) 1985-10-01 1987-04-09 Denki Kagaku Kogyo Kk 高濃度グリコ−ル酸水溶液の製造法
US5187301A (en) * 1989-10-26 1993-02-16 W. R. Grace & Co.-Conn. Preparation of iminodiacetonitrile from glycolonitrile
JPH06501268A (ja) 1990-09-20 1994-02-10 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 高純度のヒドロキシ酢酸の製造
EP1243657B1 (en) * 1999-12-27 2007-08-29 Asahi Kasei Kabushiki Kaisha Process for producing glycine
US7198927B2 (en) * 2004-12-22 2007-04-03 E. I. Du Pont De Nemours And Company Enzymatic production of glycolic acid
EP1833784B1 (en) * 2004-12-22 2010-10-20 E.I. Dupont De Nemours And Company Process for the synthesis of glycolonitrile
JP4928467B2 (ja) * 2004-12-22 2012-05-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ホルムアルデヒドおよびシアン化水素からグリコール酸を製造するための方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100027A (ja) 1975-02-25 1976-09-03 Mitsubishi Chem Ind Gurikoronitorirunoseizoho
JPS5318015A (en) 1976-08-02 1978-02-18 Tokyo Tatsuno Kk Petrol flowmeters
JPS5368725A (en) 1976-11-29 1978-06-19 Showa Denko Kk Preparation of glycollonitrile
JPS59139341A (ja) * 1983-01-20 1984-08-10 Mitsubishi Gas Chem Co Inc ヒドロキシカルボン酸誘導体の製造方法
JPS6010016A (ja) 1983-06-29 1985-01-19 Nippon Kokan Kk <Nkk> 凍害防止杭
US4515732A (en) 1984-05-29 1985-05-07 The Standard Oil Company Conversion of acetonitrile to glycolonitrile and/or glycolamide
US4634789A (en) 1984-08-22 1987-01-06 The Standard Oil Company Conversion of acetonitrile to glycolonitrile and/or glycolamide
JPS6156086A (ja) 1984-08-27 1986-03-20 Asahi Chem Ind Co Ltd α−オキシ酸およびその塩の微生物学的製造法
JPS62267257A (ja) 1986-05-16 1987-11-19 Mitsui Toatsu Chem Inc グリコロニトリルの製造方法
JPH0635420A (ja) 1992-07-14 1994-02-10 Ricoh Co Ltd フラットパネルディスプレイ
JPH06135923A (ja) 1992-10-21 1994-05-17 Mitsubishi Kasei Corp グリコロニトリルの製造方法
JPH0928390A (ja) 1995-07-19 1997-02-04 Nitto Chem Ind Co Ltd グリコール酸の微生物学的製造法
JPH0967300A (ja) 1995-08-28 1997-03-11 Otsuka Chem Co Ltd グリコール酸水溶液の製造法
JP2005504506A (ja) 2001-02-23 2005-02-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ニトリラーゼを用いて対応するアルファーヒドロキシニトリルからアルファーヒドロキシ酸、グリコール酸、2−ヒドロキシイソ酪酸の製造法
JP2004043386A (ja) 2002-07-12 2004-02-12 Nippon Shokubai Co Ltd α−ヒドロキシカルボン酸の製造方法
WO2006069110A2 (en) 2004-12-22 2006-06-29 E.I. Dupont De Nemours And Company Enzymatic production of glycolic acid

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ACTA CHEM. SCAND., vol. 10, 1956, pages 311
CHEM. BER., vol. 54, 1921, pages 1395
LOUIS HENRY, BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1980, pages 402
See also references of EP1894910A4 *
YAMAMOTO K. ET AL., AGRICULTURAL AND BIOLOGICAL CHEMISTRY, vol. 55, no. 6, 1991, pages 1459 - 1466, XP000226135 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295821A (ja) * 2006-04-28 2007-11-15 Asahi Kasei Chemicals Corp 生体触媒を用いたα−ヒドロキシ酸或いはα−ヒドロキシ酸アンモニウムの製造方法
JP2008150313A (ja) * 2006-12-15 2008-07-03 Mitsui Chemicals Inc 高純度テレフタル酸の製造方法
JP2008156300A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp グリコール酸の製造方法
JP2009165418A (ja) * 2008-01-17 2009-07-30 Asahi Kasei Chemicals Corp カルボン酸アンモニウムの製造方法
US8940934B2 (en) 2008-06-20 2015-01-27 Asahi Kasei Chemicals Corporation Production process of α-hydroxy acids
JP5748752B2 (ja) * 2010-06-17 2015-07-15 旭化成ケミカルズ株式会社 シアノヒドリンの製造方法
WO2021199589A1 (ja) 2020-03-31 2021-10-07 住友化学株式会社 グリコール酸塩およびグリコール酸の製造方法
JP7390959B2 (ja) 2020-03-31 2023-12-04 住友化学株式会社 グリコール酸塩およびグリコール酸の製造方法

Also Published As

Publication number Publication date
EP2361900B1 (en) 2015-04-08
JPWO2006126626A1 (ja) 2008-12-25
EP1894910B1 (en) 2015-02-25
US8106238B2 (en) 2012-01-31
EP1894910A1 (en) 2008-03-05
JP5032309B2 (ja) 2012-09-26
EP2361900A2 (en) 2011-08-31
EP2361900A3 (en) 2011-09-14
CN101184717B (zh) 2013-01-16
US20120094344A1 (en) 2012-04-19
CN101184717A (zh) 2008-05-21
EP1894910A4 (en) 2010-06-02
US8956837B2 (en) 2015-02-17
US20090118541A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2006126626A1 (ja) グリコール酸の製造方法
KR100974693B1 (ko) 글리콜산의 제조방법
US8940934B2 (en) Production process of α-hydroxy acids
EP1669459A1 (en) Method of purifying succinic acid from fermentation liquid
EP3412650B1 (en) Method for extracting 1,5-pentanediamine from solution system containing 1,5-pentanediamine salt
CN106868030B (zh) 重组载体、含有其的工程菌及在产α-酮戊二酸的应用
JP4651258B2 (ja) グリシンの製造方法
US7267970B2 (en) Production of gluconate salts
JP5079320B2 (ja) グリコール酸の製造方法
US3956387A (en) Manufacture of concentrated aqueous (meth)acrylamide solutions by catalytic addition of water to (meth)acrylonitrile
JP7390959B2 (ja) グリコール酸塩およびグリコール酸の製造方法
Lee et al. Effect of operating variables on back-extraction characteristics of succinic acid from organic phase
JP2502990B2 (ja) ▲l▼−リンゴ酸の製造法
WO2003093489A1 (en) Production of gluconate salts
KR101376159B1 (ko) 발효 배양액으로부터 다이올의 회수 방법
CN114409529A (zh) 一种从乳酸聚合物中回收乳酸的方法
JP2009165418A (ja) カルボン酸アンモニウムの製造方法
JP2002020357A (ja) エチレンジアミン−n,n′−ジコハク酸又はその塩の製造方法
JP2012193141A (ja) カルニチンの製造方法
JP2001029094A (ja) L−アスパラギン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018308.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517888

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006766404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11921072

Country of ref document: US