WO2006126528A1 - 難燃性樹脂加工品 - Google Patents

難燃性樹脂加工品 Download PDF

Info

Publication number
WO2006126528A1
WO2006126528A1 PCT/JP2006/310228 JP2006310228W WO2006126528A1 WO 2006126528 A1 WO2006126528 A1 WO 2006126528A1 JP 2006310228 W JP2006310228 W JP 2006310228W WO 2006126528 A1 WO2006126528 A1 WO 2006126528A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
resin
flame retardant
retardant
processed product
Prior art date
Application number
PCT/JP2006/310228
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Kanno
Yoshinobu Sugata
Hironori Yanase
Kiyotaka Shigehara
Original Assignee
Fuji Electric Holdings Co., Ltd.
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd., National University Corporation Tokyo University Of Agriculture And Technology filed Critical Fuji Electric Holdings Co., Ltd.
Priority to CN2006800180934A priority Critical patent/CN101180369B/zh
Priority to US11/915,505 priority patent/US7851528B2/en
Priority to EP06756484A priority patent/EP1889879A4/en
Publication of WO2006126528A1 publication Critical patent/WO2006126528A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to a flame-retardant resin processed product used for electrical parts and electronic parts as, for example, a resin molded product, a coating film, and a sealant, and more specifically, a non-halogen-based product containing no halogen. It relates to a flame-retardant resin processed product.
  • Thermoplastic resins such as polyester and polyamide, and thermosetting resins such as epoxy have excellent moldability, mechanical strength, and electrical properties as general-purpose resins and engineering plastics. Therefore, it is widely used in the electric and electronic fields.
  • the resin materials processed and molded from these are required to have flame retardancy from the viewpoint of safety for the purpose of preventing fires due to high temperatures.
  • standards such as UL94 are provided as flame retardant grades. ing.
  • a halogen substance is effective for such a flame retardant material of a resin material, and a halogen-based flame retardant is added to the resin to make the resin material flame retardant. I'm ashamed.
  • the mechanism of flame retardants by this halogen flame retardant is mainly due to the generation of halogen radicals by thermal decomposition, and the generated halogen radicals capture organic radicals that are the combustion source. It is said that the reaction is stopped and high flame retardancy is exhibited.
  • non-halogen flame retardants include inorganic flame retardants such as metal hydrates and red phosphorus, triazine flame retardants derived from urea salts, and organic phosphorus flame retardants such as phosphate esters.
  • inorganic flame retardants such as metal hydrates and red phosphorus
  • triazine flame retardants derived from urea salts include organic phosphorus flame retardants such as phosphate esters.
  • organic phosphorus flame retardants such as phosphate esters.
  • the gloss of a molded product can be erased by adding, for example, an erasing agent such as talc or calcium carbonate.
  • an erasing agent such as talc or calcium carbonate.
  • red phosphorus has a high flame retardant effect, but it has a tendency to inhibit electrical characteristics due to poor dispersion, generate dangerous gas, deteriorate moldability and easily cause bleeding.
  • Patent Documents 1 and 2 listed below can be used in combination with silica gel having an oil absorption per lOOg of 70 to 250 ml in order to improve the flame retardant effect of red phosphorus and aluminum hydroxide. It is disclosed.
  • organic phosphorus flame retardant such as phosphate ester
  • phosphate ester for example, in Patent Document 3 below, piperazine salt of acid phosphate ester having phosphorinane structure or alkylenediamine salt of Cl-6 Is disclosed as a flame retardant.
  • Patent Document 4 listed below discloses a difficult oil for fats composed mainly of a salt composed of an aromatic phosphate such as monophosphate and monotolyl phosphate and an aliphatic amine such as piperazine. A flame retardant is disclosed.
  • Patent Document 5 described below exhibits an excellent flame retardant effect as a halogen-free flame retardant formulation, is excellent in heat resistance and water resistance of molded products, and is suitable for use in electrical laminates. It is disclosed that a phosphorus-containing phenolic compound is used as a flame retardant for obtaining a flame retardant epoxy resin having excellent adhesion.
  • Patent Document 6 discloses an organic cyclic phosphorus compound having a bifunctional hydroxyl group, which is particularly useful as a stabilizer for a polymer compound and a flame retardant.
  • Patent Document 1 JP 2002-256136 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-49036
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-20394
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-80633
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-138096
  • Patent Document 6 JP-A-5-331179
  • an object of the present invention is to provide a flame-retardant processed resin product that uses an organophosphorus flame retardant as a non-halogen flame retardant and has excellent flame retardancy and does not have a flame retardant bleeding outside. There is.
  • the flame-retardant resin processed product of the present invention comprises a flame retardant, which is a phosphinic acid metal salt represented by the following general formula (I), and a reactivity having an unsaturated group at the terminal.
  • a flame retardant which is a phosphinic acid metal salt represented by the following general formula (I)
  • a reactivity having an unsaturated group at the terminal Molding or forming a rosin composition containing an organophosphorous flame retardant and rosin and having a total content of 5-30% by mass of the phosphinic acid metal salt and the reactive organophosphorous flame retardant It is characterized by having a paint film.
  • a phosphorus compound is deposited on the surface layer of the cheek and a diffusion layer (a flame retardant layer) having a high flame retardant effect by the phosphorus compound is formed, so that a high flame retardancy is obtained.
  • a diffusion layer a flame retardant layer
  • a synergistic effect can be obtained, and high flame retardancy can be exhibited even with a small amount, and the reactive organophosphorus flame retardant.
  • the flame retardant binds to the resin by heating or radiation, and the resin is cross-linked into a three-dimensional network structure, resulting in chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and A resin processed product having excellent moldability can be obtained, and in particular, heat resistance and mechanical strength can be improved. Furthermore, thin-wall molding can be performed. And since the flame retardant component is stably present in the resin, it is difficult for the flame retardant component to bleed out. The total flame retardant content in the processed flame retardant resin product is as small as 5 to 30% by mass. Even if it exists, a flame retardance can be provided for a long time.
  • the resin composition contains two or more kinds of the reactive flame retardant, and at least one kind of the multifunctional flame-resistant resin. It is preferable to be a flame retardant.
  • the reaction rate required for crosslinking can be controlled by the combined use of flame retardants having different reactivity, it is possible to prevent shrinkage of the resin due to rapid progress of the crosslinking reaction.
  • the inclusion of a polyfunctional flame retardant forms a uniform three-dimensional network structure with the above-mentioned organic phosphorus compound, which improves heat resistance and flame retardancy and provides more stable grease. Physical properties can be obtained.
  • the resin composition may contain 5% by mass or more of the phosphinic acid metal salt and 0.5% of the reactive organophosphorous flame retardant. It is preferable to contain at least mass%.
  • the resin composition contains the reactive difficulty. It is preferable to further contain a flame retardant which is a cyclic nitrogen-containing compound having at least one unsaturated group at a terminal other than the flame retardant.
  • the resin can be cross-linked into a three-dimensional network structure by the combination of the flame retardant and the resin. While reducing costs, it is possible to obtain resin molded products that are excellent in all of chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability of the processed resin products. . In addition, since it contains nitrogen, compatibility with rosin is further improved, particularly when polyamide-based rosin is used as the rosin.
  • the resin composition further contains a hydrophilic silica powder having an average particle diameter of 15 m or less.
  • the hydrophilic silica powder is preferably a porous structure having a pore volume of 1.8 mlZg or less and a pH of 4 to 7, and moreover, the oil absorption by the JIS K5101 method is 50 mlZlOOg or more. Preferably there is. And it is preferable to contain 2-12 mass% of said hydrophilic silica powder.
  • the hydrophilic silica powder adsorbs the flame retardant and has good compatibility with the resin, it can prevent the flame retardant component from bleeding out.
  • the hydrophilic silica powder since it does not cause performance deterioration due to decomposition of the phosphinic acid metal salt of the above formula (I) used in combination or a reactive organic phosphorus flame retardant, excellent flame retardancy can be exhibited.
  • the resin composition further contains a crosslinking agent which is a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton. I prefer to be! /
  • the resin can be bridged to a three-dimensional network structure by the bond between the crosslinking agent and the resin, so that the resulting resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, and dimensional stability.
  • a resin molded product excellent in flame retardancy and moldability can be obtained.
  • the flame-retardant resin processed product preferably contains 1 to 45% by mass of an inorganic filler with respect to the entire flame-retardant resin processed product.
  • a nanostructured clay is dispersed in the resin to form a hybrid structure with the resin. This improves the heat resistance, mechanical strength, etc. of the obtained flame-retardant resin processed product.
  • the flame-retardant resin processed product preferably contains 5 to 50% by mass of reinforcing fibers with respect to the entire flame-retardant resin processed product.
  • the inclusion of the reinforced fiber can improve the mechanical strength of the resin processed product such as tension, compression, bending, and impact, and can further prevent deterioration of physical properties with respect to moisture and temperature. .
  • the above flame-retardant resin processed product is obtained by reacting the resin with the reactive flame retardant by irradiation with an electron beam or ⁇ -ray with a dose of lOkGy or more.
  • a resin processed product can be produced with high productivity.
  • the dose within the above range, it is possible to prevent uneven formation of a three-dimensional network structure due to insufficient dose and bleeding out due to residual unreacted crosslinking agent.
  • the irradiation dose is 10 to 45 kGy, it is possible to prevent deformation due to internal distortion of the resin processed product due to acid-salt decomposition products caused by excessive dose, and the like.
  • the resin and the reactive flame retardant are obtained by reacting at a temperature higher by 5 ° C or more than the temperature at which the resin composition is molded. Is also preferable. According to this aspect, a radiation irradiation device or the like is unnecessary, and can be suitably used particularly for a resin composition containing a thermosetting resin.
  • the flame-retardant resin processed product is preferably one selected from a molded product, a coating film, and a sealant.
  • the flame-retardant resin processed product of the present invention has excellent flame retardancy as described above and can prevent bleeding out, so that it can be used not only as a normal resin molded product but also as a coating agent. It is also suitable for use as a sealing agent for semiconductors and liquid crystal materials.
  • the flame-retardant resin processed product is preferably used as an electrical component or an electronic component.
  • FIG. 1 is a chart showing phosphorus concentration distribution before and after combustion of a resin processed product of the present invention.
  • FIG. 2 (I) is a cross-sectional view of a UL94 combustion test piece after combustion of the resin processed product of the present invention.
  • (II) is a cross-sectional view of the test piece after UL94V combustion test with the surface (S) of (I) enlarged.
  • the flame-retardant resin processed product of the present invention includes a flame retardant which is a phosphinic acid metal salt represented by the following general formula (I), and a reactive organophosphorus flame retardant having an unsaturated group at the terminal. And a resin composition containing 5 to 30% by mass of a total composition of the phosphinic acid metal salt and the reactive organophosphorous flame retardant, It is obtained.
  • a flame retardant which is a phosphinic acid metal salt represented by the following general formula (I)
  • a reactive organophosphorus flame retardant having an unsaturated group at the terminal a resin composition containing 5 to 30% by mass of a total composition of the phosphinic acid metal salt and the reactive organophosphorous flame retardant, It is obtained.
  • RR 2 is each an alkyl group having 1 to 6 carbon atoms or an aryl group having 12 or less carbon atoms
  • M is calcium, aluminum or zinc
  • the resin that can be used in the present invention is not particularly limited, and can be shifted between thermoplastic resin and thermosetting resin.
  • thermoplastic resins include polyamide-based resins, polybutylene terephthalate resins, polyester-based resins such as polyethylene terephthalate, polyacrylic resins, polyimide-based resins, polycarbonate resins, polyurethane-based resins. Fat, polystyrene, acrylonitrile Styrene copolymers, acrylonitrile butadiene Polystyrene resins such as styrene copolymers, polyacetal resins, polyolefin resins, polyphenylene oxide resins, polyphenylene sulfide resins, polybutadiene resins It is done.
  • polyamide resin polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate resin, polyacrylic resin, polyacetal resin, polyferene resin, etc. from the viewpoint of mechanical properties and heat resistance. It is preferable to use lenoxide resin.
  • thermosetting resin examples include epoxy resin, urethane resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, alkyd resin, and key resin resin. .
  • epoxy resin, phenol resin, unsaturated polyester resin, and urea resin are preferred from the standpoint of mechanical properties and heat resistance.
  • the flame retardant of phosphinic acid metal salt that can be used in the present invention is a compound represented by the above formula (I).
  • This compound is easily decomposed into a phosphine oxide ion and a metal ion by vaporizing at a temperature of about 300 to 400 ° C. Therefore, at the time of combustion, the phosphinic acid chloride ion and the metal ion are used. As soon as it is decomposed, the phosphinic acid ions tend to migrate to the surface.
  • Fig. 1 shows the results of quantitative analysis of phosphorus and magnesium elements using an energy dispersive X-ray analyzer (manufactured by EDAX) at an acceleration voltage of 10 kV and a multiplication factor of 50 times.
  • EDAX energy dispersive X-ray analyzer
  • Phosphorous element and magnesium element from the surface layer to the center before combustion and after the combustion test under the test conditions compliant with UL94V combustion test of resin processed products molded with a fat composition (phosphorus is a flame retardant component, magnesium is Indicates the ratio of talc constituents uniformly dispersed in the molded product.
  • FIG. 2 (1) shows a cross-sectional view of the surface of a resin molded product obtained by molding a resin composition using aluminum phosphinate as a metal salt of phosphinic acid after a combustion test under test conditions based on the UL94V combustion test.
  • Fig. 6 (b) the cross section near the surface (S) was observed using an electron beam three-dimensional roughness analyzer (manufactured by Elio-TAS: ERA-8800) at an acceleration voltage of 10 kV and a magnification of 500 times. The SEM image is shown.
  • R 1 and / or R 2 is preferably one selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, phenyl, and benzyl. More preferred are methyl and ethyl.
  • CH-P 0 Ca -P— o Ca C 3 H 7 ⁇ P— OC 4 H 9 —— P 2 O
  • the phosphinic acid metal salt of the formula (I) is preferably contained in an amount of 5% by mass or more in the resin composition, more preferably 5 to 12% by mass. Including phosphinic acid metal salt If the amount is less than 5% by mass, sufficient flame retardancy may not be obtained.
  • ⁇ -1230 (trade name, manufactured by Clariant) can be used.
  • the reactive organophosphorus flame retardant that can be used in the present invention is an organophosphorus compound having an unsaturated group at the terminal group in the molecular structure, and the terminal group in the molecular structure.
  • An organophosphorus compound having at least an aryl group is particularly preferred.
  • An organophosphorus compound having at least an aryl group as a terminal group in the molecular structure binds to the resin by heating or radiation and crosslinks the resin to a three-dimensional network structure. The physical property, thermal property, and electrical property can be improved. And since this flame retardant couple
  • Examples of the reactive organophosphorus flame retardant of an organophosphorus compound having an aryl group in the molecular structure include compounds represented by the following formulas (II 1) to (11-22). Among them, those having 3 or more aryl groups and 1 or more aromatic hydrocarbons having 20 or less carbon atoms in the molecular structure are preferable.
  • the compound (II-1) above is obtained by adding phosphorus oxychloride to dimethylacetamide (DMAc) and adding 2,2'-bis (4-hydroxyphenol) to this solution.
  • D) DMAc solution in which propane and triethylamine are dissolved is dropped and reacted, and then a mixed solution with diarylamine is reacted.
  • the compound of ( ⁇ -9) is [tris (3-aryl-4-hydroxyphenyl) phosphine Dimethylformamide (DMF) is added to [xide], and a DMF solution in which diphenyl phosphate chloride is dissolved is added dropwise to this solution and reacted.
  • DMF Dimethylformamide
  • the compound of (II-10) described above is obtained by diphlo-phosphonic acid in a distilled chloroform solution in which 1,1,1-tris (4-hydroxyphenol) ethane and triethylamine are dissolved. A DMF solution in which acid monochloride is dissolved is dropped, and then a DMF solution in which phenylphosphonic acid mono (N, N-diaryl) amide monochloride is dissolved is dropped and reacted.
  • the compound of (11-20) is obtained by adding 10- (2,5-dihydroxyphenyl) -9-oxo-10-phospho-9,10-dihydrophenanthrene to dichlorophenolphosphine.
  • -It can be obtained by dripping a tetrahydrofuran solution in which 10-one and triethylamine are dissolved.
  • the content of the reactive organophosphorous flame retardant in the flame retardant rosin composition is preferably 0.5% by mass or more, more preferably 0.5 to 3% by mass. is there. If the content of the reactive phosphorus flame retardant is less than 0.5% by mass, crosslinking in the resin becomes insufficient, and the mechanical properties, thermal properties, and electrical properties of the resulting processed resin products are insufficient. May be insufficient.
  • the total content of the phosphinic acid metal salt of the above formula (I) and the reactive organic phosphorus flame retardant in the flame retardant resin composition is 5 to 30% by mass, preferably Is 10 to 22% by mass, more preferably 14 to 18% by mass.
  • the content of the flame retardant is less than 5% by mass, the obtained resin processed product cannot provide sufficient flame retardant properties that are not satisfactory in mechanical properties, thermal properties, and electrical properties.
  • the flame retardant becomes excessive, the flame retardant component may bleed out, unreacted monomers and decomposition gas of the reactive organophosphorous flame retardant may be generated, and the resin This is not preferable because the mechanical properties of the processed product may deteriorate.
  • two or more types of flame retardants having different reactivity among the above-mentioned reactive organophosphorus flame retardants that is, two organophosphorus compounds having different numbers of the above functional groups in one molecule are used. It is preferable to use more than one type in combination. This makes it possible to control the reaction rate required for crosslinking. Therefore, the shrinkage
  • At least one multifunctional reactive flame retardant is contained.
  • the terminal has at least one unsaturated group as a flame retardant having reactivity other than the reactive flame retardant. It is more preferable to contain 0.5 to 10 parts by mass of a cyclic nitrogen-containing compound.
  • Specific examples of the group having an unsaturated group at the terminal include diatalylate, dimethacrylate, diarylate, triatalylate, trimethacrylate, triarylate, tetraacrylate, tetramethacrylate, tetraacrylate. From the viewpoint of reactivity, it is more preferable to use attalates such as diatalylate, triatalylate, and tetraatalylate.
  • the cyclic nitrogen-containing compound include an isocyanuric ring and a cyanuric ring.
  • cyclic nitrogen-containing compound having at least one unsaturated group at the terminal include the above-mentioned cyanuric acid or isocyanuric acid derivatives, for example, isocyanuric acid EO-modified diatalylate, isocyanuric acid.
  • examples thereof include polyfunctional monomers or oligomers such as acid EO-modified triatalylate and triarylisocyanurate.
  • the present invention may further contain a crosslinking agent that has no flame retardancy but has reactivity with the resin.
  • a crosslinking agent a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton can be used.
  • the flame retardant according to the present invention has a crosslinkability (reactivity) with no cross-linking agent having reactivity with the resin, but itself does not have flame retardancy. This means that a reactive flame retardant having both crosslinkability and flame retardancy, such as a cyclic nitrogen-containing compound having at least one unsaturated group at the terminal, is excluded.
  • Examples of such a cross-linking agent include di- to tetra-functional compounds represented by the following general formulas (a) to (c).
  • M is a main skeleton
  • R 1C) to R 13 are functional groups having an unsaturated group at the terminal
  • (a) is a bifunctional compound
  • (b) is a trifunctional group
  • (C) is a tetrafunctional compound.
  • the main skeleton M of the general formula shown below is an aliphatic alkyl such as glycerin or a pentaerythritol derivative, trimellit, pyromellitic, tetrahydrofuran, trimethyltrioxane, or the like.
  • examples include structures that are aromatic rings, bisphenols, and the like.
  • cross-linking agent examples include bifunctional monomers or oligomers such as bisphenol F-EO modified diatalylate, bisphenol A-EO modified diatalylate, Examples thereof include ditalarates such as propylene glycol ditalylate, polypropylene glycol ditalylate, polyethylene glycol ditalylate, pentaerythritol diacrylate monostearate, and their dimethatalylate and diarylate.
  • trifunctional monomers or oligomers include pentaerythritol triatalylate, trimethylolpropane tritalylate, trimethylolpropane PO-modified triatalylate, trimethylolpropane EO-modified triatalylate, etc. And their trimethacrylates and triarylates.
  • tetrafunctional monomer or oligomer examples include ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, and the like.
  • the above cross-linking agent is trimellitic acid, pyromellitic acid, tetrahydrofuran tetracarboxylic acid, 1, 3, 5-trihydroxybenzene, glycerin, pentaerythritol, 2, 4, 6 which is the main skeleton M -Tris (chloromethyl)-1,3,5-trioxane, etc., one of the functional groups having an unsaturated group at the terminal, allyl bromide, allylic alcohol, allylamin, odorous metalyl It can be obtained by reacting one selected from methallyl alcohol, methallylamine and the like.
  • the crosslinking agent is preferably contained in an amount of 0.5 to 10 parts by mass with respect to 1 part by mass of the reactive flame retardant.
  • the greave composition used in the present invention may contain inorganic fillers, reinforcing fibers, various additives and the like in addition to the greaves and flame retardant.
  • the mechanical strength of the resin processed product can be improved and the dimensional stability can be improved.
  • it acts as a base on which the flame retardant is adsorbed, and the dispersion of the flame retardant can be made uniform.
  • hydrophilic silica powder having an average particle size of 15 m or less is preferred. Hydrophilic silica powder is chemically stable and harmless, has a low environmental burden, and is difficult to degrade and degrade the flame retardant component, so the flame retardant effect is difficult to decrease. Further, when the average particle size is 15 m or less, the dispersion into the resin can be made uniform.
  • the flame retardant can be uniformly dispersed in the resin without decomposing and degrading the flame retardant, high flame retardancy can be achieved even when a small amount of the flame retardant is added in the case of a resin processed product. Can be demonstrated.
  • the flame retardant can be sufficiently adsorbed, it is possible to prevent the occurrence of a pre-out due to the flame retardant.
  • hydrophilic silica powder commercially available ones may be used. For example, “Silisia” (trade name, manufactured by Fuji Silysia Co., Ltd.), “Nippjiel” (trade name, Tosoh Silica Corporation) Can be used.
  • the content of the hydrophilic silica powder in the greave composition is preferably 2 to 12% by mass, more preferably 2 to 6% by mass.
  • the flame retardant is not sufficiently adsorbed, and it becomes difficult to uniformly disperse the flame retardant in the flame retardant resin composition. In such a case, the flame retardancy may not be exhibited sufficiently.
  • the total content of the phosphinic acid metal salt of the above formula (I), the reactive phosphorus-based flame retardant, and the hydrophilic silica powder in the resin composition is 50% by mass or less. More preferred is 16 to 35% by mass.
  • inorganic fillers in addition to the inorganic filler, inorganic fillers exemplified below may be used in combination.
  • Typical examples include copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, silver and other metal powders, fumed silica, aluminum silicate, calcium silicate, silicic acid, hydrous calcium silicate, hydrous Aluminum silicate, glass beads, quartz powder, mica, talc, my strength, clay, titanium oxide, iron oxide, zinc oxide, calcium carbonate, magnesium carbonate, magnesium oxide, calcium oxide, magnesium sulfate, potassium titanate, key Soil and the like can be mentioned, and the content thereof is preferably 1 to 45% by mass, more preferably 1 to 20% by mass with respect to the entire flame-retardant resin processed product.
  • the content is less than 1% by mass, the mechanical strength of the flame-retardant resin processed product is insufficient, the dimensional stability is insufficient, and further the adsorption of the reactive flame retardant is insufficient, which is not preferable. On the other hand, if it exceeds 45 mass%, the flame-retardant resin processed product becomes brittle, which is preferable.
  • the layered clay formed by laminating silicate layers is a clay having a structure in which silicate layers having a thickness of about 1 nm and a side length of about 10 nm are laminated. Therefore, this layered clay is dispersed in the resin on the nano order to form a hybrid structure with the resin, and as a result, the heat resistance, mechanical strength, etc. of the obtained flame-retardant resin processed product are obtained. Improves.
  • the average particle size of the layered clay is preferably lOOnm or less.
  • the layered clay montmorillonite, which has excellent power dispersibility, including montmorillonite, kaolinite, my strength and the like is preferable.
  • the layered clay may be surface-treated in order to improve the dispersibility of the resin.
  • “Nanomer” trade name, manufactured by Nissho Iwai Bentonite Co., Ltd.
  • Somasif trade name, manufactured by Corpo Chemical Co., Ltd.
  • Etc. can be used.
  • the content of the layered clay is preferably 1 to 8% by mass with respect to the entire flame-retardant resin processed product.
  • the layered clay may be used alone or in combination with other inorganic fillers.
  • the mechanical strength can be improved and the dimensional stability can be improved.
  • the reinforcing fiber include glass fiber, carbon fiber, and metal fiber, and it is preferable to use glass fiber from the viewpoints of strength and adhesiveness with an inorganic filler. These reinforcing fibers may be used alone or in combination of two or more, and may be treated with a known surface treating agent such as a silane coupling agent.
  • the glass fiber is preferably surface-treated and further coated with a resin. Thereby, adhesiveness with a thermoplastic polymer can further be improved.
  • a known silane coupling agent can be used as the surface treatment agent. Specifically, at least one alkoxy group selected from the group consisting of a methoxy group and an ethoxy group, an amino group, and a bur group are selected. Examples thereof include a silane coupling agent having at least one reactive functional group selected from the group consisting of a group, an acrylic group, a methacryl group, an epoxy group, a mercapto group, a halogen atom, and an isocyanate group.
  • the coated resin is not particularly limited, and examples thereof include urethane resin and epoxy resin.
  • the compounding amount of the reinforcing fiber is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the entire processed flame retardant resin product.
  • the content is less than 5% by mass, the mechanical strength of the flame-retardant resin processed product is lowered and the dimensional stability is insufficient. Is not preferable because it becomes difficult.
  • the resin composition used in the present invention includes various commonly used additive components other than those described above, as long as the physical properties such as heat resistance, weather resistance, and impact resistance, which are the objects of the present invention, are not significantly impaired.
  • additives such as a crystal nucleating agent, a coloring agent, an antioxidant, a mold release agent, a plasticizer, a heat stabilizer, a lubricant, and an ultraviolet ray inhibitor can be added.
  • an ultraviolet initiator or the like can be used.
  • the colorant is not particularly limited, but those that do not fade by irradiation with radiation described below are preferred.
  • inorganic pigments such as Bengala, iron black, carbon, chrome lead, and metal complexes such as phthalocyanine.
  • metal complexes such as phthalocyanine.
  • the processed flame retardant resin product of the present invention is obtained by forming or coating the above resin composition and then reacting the resin with the reactive flame retardant by heating or irradiation with radiation.
  • thermoplastic rosin containing thermoplastic rosin
  • the thermoplastic rosin and a reactive flame retardant are melt-kneaded.
  • After forming the pellets it can be formed by conventionally known injection molding, extrusion molding, vacuum molding, inflation molding or the like.
  • the melt-kneading can be performed using a normal melt-kneading force machine such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, or a mixing roll.
  • the kneading temperature can be appropriately selected depending on the type of thermoplastic resin.
  • the molding conditions can be appropriately set according to the resin and are not particularly limited. At this stage, since the crosslinking has not progressed at all, the extra spool portion at the time of molding can be recycled as a thermoplastic resin.
  • thermosetting resin in the same manner as described above, after thermosetting resin and a reactive flame retardant are melt-kneaded and pelletized, for example, conventionally known injection molding or compression Molding can be performed using molding, transfer molding, or the like.
  • the resin composition may be applied as it is, or after appropriately diluted with a solvent or the like to obtain a solution or suspension that can be applied, and then dried by a conventionally known method.
  • a film may be formed.
  • the coating method is not particularly limited, and a coating method such as roller coating, spraying, dipping or spin coating can be used.
  • the above-mentioned rosin composition can be heated or irradiated with radiation to terminate the reactive flame retardant. Unsaturated bonds react with rosin to crosslink and exist stably in the rosin.
  • the reaction temperature is preferably 5 ° C or more higher than the molding temperature of the resin, preferably 10 ° C or more. More preferably.
  • radiation when radiation is used as a means for crosslinking, electron beams, ⁇ rays, ⁇ rays, X rays, ultraviolet rays, and the like can be used.
  • radiation in the present invention means radiation in a broad sense, and specifically means that it includes not only particle beams such as electron beams and ⁇ rays but also electromagnetic waves such as X rays and ultraviolet rays.
  • irradiation with an electron beam or ⁇ -ray is preferable.
  • a known electron accelerator or the like can be used, and the acceleration energy is preferably 2.5 MeV or more.
  • the ⁇ -ray irradiation can be performed using an irradiation apparatus such as a known cobalt 60 ray source.
  • Irradiation apparatus using a known cobalt 60 radiation source or the like can be used for ⁇ -ray irradiation.
  • ⁇ -rays are preferred because they are more transmissive than electron beams and are therefore more uniform in irradiation.
  • the irradiation intensity is strong V, dose control is necessary to prevent excessive irradiation.
  • the irradiation dose is preferably lOkGy or more, more preferably 10 to 45 kGy. If it is this range, the resin processed product which is excellent in said physical property by bridge
  • the flame-retardant resin processed article of the present invention thus obtained is excellent in mechanical properties, electrical properties, dimensional stability, and moldability in addition to heat resistance and flame retardancy. Therefore, electrical or electronic parts that require high heat resistance and flame resistance, as well as automotive parts and optical parts, for example, members for supporting contacts such as electromagnetic switches and breakers, boards such as printed boards It can be suitably used as a package for integrated circuits, a housing for electrical components, and the like.
  • electrical components or electronic components include a receiving board, a distribution board, an electromagnetic switch, a circuit breaker, a transformer, an electromagnetic contactor, a circuit protector, a relay, a transformer, various sensors, and various types.
  • Examples include semiconductor devices such as motors, diodes, transistors, and integrated circuits. Also suitable for interior parts such as cooling fans, bumpers, brake covers, and panels, sliding parts, sensors, and automobile parts such as motors. be able to.
  • Glass fiber made by Asahi Fiber Glass Co., Ltd .: 03JAFT2Ak25
  • 55.5 parts by weight of 66 nylon made by Ube Industries: 2020B
  • a fiber length of about 3 mm treated with a silane coupling agent as the reinforcing fiber 25 parts by weight
  • 0.2 parts by weight of carbon black as a colorant
  • 0.3 parts by weight of an antioxidant (Ciba 'Specialty' Chemicals Inc .: Irganox 10 10), and a particle size of 2 m as an inorganic filler.
  • Example 1 66 nylon (made by Ube Industries, Ltd .: 2020B) as a thermoplastic resin was used at a blending amount of 51.5 parts by mass, and a clay having a new particle size (Volclay Japan, Inc .: Nanoma I30T) was newly added.
  • a resin processed product of Example 2 was obtained in the same manner as Example 1 except that 4 parts by mass of was added.
  • Example 1 the amount of 66 nylon (made by Ube Industries: 2020B) as thermoplastic resin is 51.5 parts by mass, and the above compound (I 2) is used instead of the above compound (I 2) as the phosphinic acid metal salt. 10 parts by mass of 1-5), 4 parts by mass of the above compound (II-1) instead of the above compound (II-3) as a reactive organophosphorus flame retardant, and the following structural formula (A In the same manner as in Example 1 except that 4 parts by mass of the organophosphorus flame retardant represented by formula (1) was blended, a processed resin product of Example 3 was obtained.
  • Example 1 the amount of 66 nylon (manufactured by Ube Industries: 2020B) as thermoplastic resin is 53.5 parts by mass, and the above compound (I 2) is used instead of the above compound (I 2) as the phosphinic acid metal salt. 10 parts by mass of 1-10), 4 parts by mass of the above compound ( ⁇ -4) instead of the above compound (II-3) as a reactive organophosphorus flame retardant, and at least one new terminal A resin processed product of Example 4 was obtained in the same manner as in Example 1 except that 2 parts by mass of a cyclic nitrogen-containing compound having an unsaturated group (TAIC) was blended.
  • TAIC cyclic nitrogen-containing compound having an unsaturated group
  • Example 4 10 parts by mass of the above compound (1-12) instead of the above compound (I 10) as a phosphinic acid metal salt was blended, and the above compound ( ⁇ -4) was used as a reactive organophosphorous flame retardant.
  • the resin processed product of Example 5 was obtained in the same manner as in Example 4 except that 4 parts by mass of the above compound (11-20) was blended instead of.
  • Example 2 the blending amount of 66 nylon (made by Ube Industries, Ltd .: 2020B) as thermoplastic resin is 41.5 parts by mass, and a new finely powdered synthetic silica (Fuji Silysia) with an oil absorption of 170 mlZl00g and pH 7.0 is newly added.
  • a resin processed product of Example 6 was obtained in the same manner as in Example 2, except that 10 parts by mass of Cicilia 530) was added.
  • Glass fiber made by Asahi Fiber Glass Co., Ltd .: 03JAFT2Ak25
  • 55.5 parts by weight of 66 nylon made by Ube Industries: 2020B
  • a fiber length of about 3 mm treated with a silane coupling agent as a reinforcing fiber 25 parts by weight
  • 0.2 parts by weight of carbon black as a colorant
  • 0.3 parts by weight of an antioxidant manufactured by Chinoku 'Specialty' Chemicals: Irganox 1010
  • a particle size of 2 m as an inorganic filler.
  • Example 1 49.5 parts by mass of 6T nylon (Toyobo Co., Ltd .: TY-502NZ) instead of 66 nylon (Ube Industries Co., Ltd .: 2020B) as thermoplastic resin is blended, and the above compound is used as the phosphinic acid metal salt.
  • 6T nylon Toyobo Co., Ltd .: TY-502NZ
  • 66 nylon Ube Industries Co., Ltd .: 2020B
  • Example 8 10 parts by mass of the above compound (1-22) instead of (I 2), and 4 parts by mass of the above compound ( ⁇ -4) instead of the above compound ( ⁇ -3) as a reactive organophosphorus flame retardant 4 parts by mass of a new nano-sized clay (Volclay Japan Inc .: Nanomer I30T) and a cyclic nitrogen-containing compound having at least one unsaturated group at the end (manufactured by Nippon Keisei Co., Ltd .: TAIC
  • the resin processed product of Example 8 was obtained in the same manner as Example 1 except that 2 parts by mass of) was added.
  • Example 1 a resin processed product of Comparative Example 1 was obtained in the same manner as in Example 1 except that no reactive organophosphorus flame retardant was added.
  • Example 1 a resin processed product of Comparative Example 2 was obtained in the same manner as in Example 1 except that magnesium hydroxide was used instead of the phosphinic acid metal salt.
  • Example 1 was the same as Example 1 except that a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: HCA-HQ) was used instead of the reactive organophosphorus flame retardant.
  • the resin processed product of Comparative Example 3 was obtained by the method.
  • Example 3 a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: HCA-HQ) was used instead of the reactive organophosphorus flame retardant, and the organophosphorus compound represented by the structural formula (A) A resin processed product of Comparative Example 4 was obtained in the same manner as in Example 3, except that magnesium hydroxide was used in place of the flame retardant.
  • HCA-HQ non-reactive organophosphorus flame retardant
  • Example 6 a non-reactive organophosphorus flame retardant (Shikoku Kasei Co., Ltd .: SP-703) was used in place of the reactive organophosphorus flame retardant, and the oil absorption was 15 ml ZlOOg, pH 8.5-
  • a resin-processed product of Comparative Example 5 was obtained in the same manner as in Example 6 except that 9.5 calcium carbonate (manufactured by Nitto Flour Industries Co., Ltd .: NS # 400) was used.
  • Example 6 a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: BCA) was used in place of the reactive organophosphorus flame retardant, and an oil absorption amount of 300 ml ZlOOg, pH 2.5 fine powder as an inorganic filler
  • a resin processed product of Comparative Example 6 was obtained in the same manner as in Example 6 except that the synthetic silica (Fuji Silysia Co., Ltd .: Cycilia 250) was used.
  • test pieces (length 5 inches, width 1Z2 inches, thickness 3.2 mm) compliant with UL-94
  • a flame retardant test and IEC60695 — Glow wire test piece (60mm square, thickness 1.6mm) compliant with 2 method (GWFI) is manufactured to UL94 Tests and glow wire tests (IEC compliant) were conducted.
  • a bleed-out test was conducted on all processed resin products. The results are summarized in Table 1.
  • the test piece was mounted vertically and the burning time after 10 seconds of indirect flame was recorded with a Bunsen burner.
  • nichrome wire having a diameter of 4m m tip is bent so as not avoided as Glo one wire (component: 80% nickel, 20% chromium), the type of a diameter of 0. 5 mm as a thermocouple for temperature measurement K (Chromel alumel) was used, and the thermocouple pressure was applied at 1.0 ⁇ 0.2 N and the temperature 850 ° C. Note that the combustion time after 30 seconds contact was within 30 seconds, and that the tissue paper under the sample did not ignite was used as a criterion for flammability (GWFI).
  • GWFI criterion for flammability
  • the specimen was stored under conditions of a temperature of 60 ° C and a humidity of 95%, and the surface of the specimen after 96 hours was visually observed to evaluate the presence or absence of bleeding.
  • the present invention can be suitably used for a resin molded product such as an electric component or an electronic component as a flame-retardant resin processed product containing no halogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

 難燃性に優れ、ブリードアウトのない難燃性樹脂加工品を提供する。 下記一般式(I)で表されるホスフィン酸金属塩である難燃剤と、末端に不飽和基を有する反応性有機リン系難燃剤と、樹脂とを含有し、前記ホスフィン酸金属塩と、前記反応性有機リン系難燃剤との合計含有量が5~30質量%である樹脂組成物を成形又は塗膜化する。(式(I)中、R1、R2は、それぞれ、炭素数1~6のアルキル基又は炭素数12以下のアリール基であり、Mは、カルシウム、アルミニウム又は亜鉛であり、M=アルミニウムのときm=3であり、それ以外はm=2である。)

Description

明 細 書
難燃性樹脂加工品
技術分野
[0001] 本発明は、例えば、榭脂成形品、塗膜、封止剤として、電気部品や電子部品に用 いられる難燃性樹脂加工品に関し、更に詳しくは、ハロゲンを含有しない非ハロゲン 系の難燃性樹脂加工品に関する。
背景技術
[0002] ポリエステルやポリアミド等の熱可塑性榭脂や、エポキシ等の熱硬化性榭脂は、汎 用榭脂、エンジニアリングプラスチックとして優れた成形加工性、機械的強度、電気 特性を有していることから、電気、電子分野等を始めとして広く用いられている。そし て、これらを加工'成形した榭脂材料は、高温による火災防止を目的とした安全上の 観点から難燃性が要求されており、例えば、難燃グレードとして UL94のような規格が 設けられている。
[0003] 一般に、このような榭脂材料の難燃ィ匕には、ハロゲン物質が有効であることが知ら れており、ハロゲン系難燃剤を榭脂に添加して榭脂材料を難燃ィ匕している。このハロ ゲン系難燃剤による難燃ィ匕のメカニズムは、主に熱分解によりハロゲンィ匕ラジカルが 生成し、この生成したハロゲンィ匕ラジカルが燃焼源である有機ラジカルを捕捉するこ とで、燃焼の連鎖反応を停止させ、高難燃性を発現させると言われている。
[0004] しかし、ハロゲンィ匕合物を大量に含む難燃剤は、燃焼条件によってはダイォキシン 類が発生する可能性があり、環境への負荷を低減する観点から、近年ハロゲン量を 低減させる要求が高まっている。したがって、ハロゲン物質を含有しない非ハロゲン 系難燃剤が各種検討されて 、る。
[0005] このような非ハロゲン系難燃剤としては、金属水和物や赤リン等の無機難燃剤、尿 素カゝら誘導されるトリアジン系難燃剤、リン酸エステル等の有機リン系難燃剤等が検 討されて 、るが、水酸ィ匕アルミニウムや水酸ィ匕マグネシウムと!/、つた金属水和物の場 合、難燃性付与効果があまり高くないので、榭脂に多量に配合する必要がある。した がって、榭脂の成形性が悪くなつたり、得られる成形品等の機械的強度が低下しや すぐ使用可能な成形品等の用途が限定されるという問題がある。また、トリアジン系 難燃剤は、成形品に光沢が生じやすぐ意匠性が制限されてしまう。成形品の光沢 は、例えばタルクや炭酸カルシウムなどの艷消し剤を配合することで消すことができる 力 成形品の靱性ゃ難燃性が低下するといつた問題がある。さらに、赤リンは、難燃 効果は高いが、分散不良により電気特性を阻害したり、危険ガスが発生したり、成形 性を低下するとともにブリード現象を起こしやすいものであった。
[0006] 例えば、下記特許文献 1、 2には、赤リン、及び水酸ィ匕アルミニウムによる難燃効果 を向上させるために、 lOOg当たりの吸油量が 70〜250mlのシリカゲルと併用するこ とが開示されている。
[0007] 一方、リン酸エステル等の有機リン系難燃剤としては、例えば、下記特許文献 3に は、ホスホリナン構造を有する酸性リン酸エステルのピぺラジン塩もしくは Cl〜6のァ ルキレンジアミン塩を難燃剤として使用することが開示されている。
[0008] また、下記特許文献 4には、リン酸モノフエ-ル、リン酸モノトリル等の芳香族リン酸 エステルとピぺラジン等の脂肪族ァミンとからなる塩を主成分とする榭脂用難燃剤が 開示されている。
[0009] 更に、下記特許文献 5には、ハロゲンフリーの難燃処方として優れた難燃効果を発 現させると共に、成形品の耐熱性、耐水性の物性に優れ、また電気積層板用途にお ける密着性に優れる難燃エポキシ榭脂を得るための難燃剤として、リン含有フエノー ルイ匕合物を用いることが開示されて 、る。
[0010] 更にまた、下記特許文献 6には、特に高分子化合物の安定剤、難燃剤として有用 である、 2官能ヒドロキシル基を有する有機環状リン化合物が開示されて ヽる。
特許文献 1 :特開 2002— 256136号公報
特許文献 2 :特開 2003— 49036号公報
特許文献 3:特開 2002— 20394号公報
特許文献 4:特開 2002— 80633号公報
特許文献 5 :特開 2002— 138096号公報
特許文献 6:特開平 5— 331179号公報
発明の開示 発明が解決しょうとする課題
[0011] 上記特許文献 1、 2に開示されているように、赤リンとシリカゲルとを併用することで、 赤リンの難燃性を向上させることができるが、赤リンなどの無機リン系難燃剤は取り扱 いにくいものであり、それを含む榭脂組成物は成形性が悪ぐまたブリード現象の生 じゃすいものであった。
[0012] 一方、上記特許文献 3〜6に開示されているように、有機リン系難燃剤については 種々の検討がなされ様々なものがあるが、これらのリン系難燃剤は有機系化合物で あるため、榭脂組成物中に共存する各種成分の作用によって分解されやすぐ難燃 性を充分発揮することができないことがあった。また、難燃剤は榭脂中に均一に分散 されなくてはその効果は充分発揮することはできず、用いる榭脂等によっては添加量 が多くなる。
[0013] したがって、本発明の目的は、非ハロゲン系難燃剤として有機リン系難燃剤を用い 、難燃性に優れ、かつ、難燃剤のブリードア外等のない難燃性樹脂加工品を提供 することにある。
課題を解決するための手段
[0014] 上記目的を達成するため、本発明の難燃性樹脂加工品は、下記一般式 (I)で表さ れるホスフィン酸金属塩である難燃剤と、末端に不飽和基を有する反応性有機リン系 難燃剤と、榭脂とを含有し、前記ホスフィン酸金属塩と、前記反応性有機リン系難燃 剤との合計含有量が 5〜30質量%である榭脂組成物を成形又は塗膜化したことを特 徴とする。
[0015] [化 1]
[0016]
Figure imgf000004_0001
R2は、それぞれ、炭素数 1〜6のアルキル基又は炭素数 12以下のァ リール基であり、 Mは、カルシウム、アルミニウム又は亜鉛であり、 M =アルミニウムの とき m= 3であり、それ以外は m= 2である。 )
[0017] 上記式 (I)の化合物を榭脂中に均一に包含させることで、熱的、化学的に安定な状 態となる。また、この化合物は、約 300〜400°Cの温度で気化してホスフィン酸化物ィ オンと、金属イオンとに分解されやすいことから、燃焼時において、ホスフィン酸ィ匕物 イオンと、金属イオンとに分解され、樹脂加工品等の表面にホスフィン酸ィヒ物イオン が移行していく。そして、樹脂加工品の表面には、燃焼時の榭脂分解などに伴ない、 スス成分が生成 '堆積し、金属イオンを取り込んで強化された、熱'酸素の遮断効果 の高いチヤ一 (熱分解残渣)が形成される。また、そのチヤ一の表面層には、リン化合 物が析出し、リン化合物による難燃効果の高い拡散層 (難燃層)が形成されるので、 高い難燃性が得られる。そして、末端に不飽和基を有する反応性有機リン系難燃剤 と併用することで、相乗効果が得られ、少量であっても高い難燃性が発揮できると共 に、該反応性有機リン系難燃剤は加熱又は放射線の照射によって、榭脂と結合し、 榭脂が 3次元網目構造に架橋化し、化学的安定性、耐熱性、機械特性、電気特性、 寸法安定性、難燃性、及び成形性の全てに優れる樹脂加工品を得ることができ、特 に耐熱性と機械強度を向上させることができる。更には薄肉成形加工も可能になる。 そして、難燃剤成分は榭脂中に安定して存在するため、難燃剤成分のブリードア外 が生じにくぐ難燃性樹脂加工品全体に対する難燃剤の合計含有量が 5〜30質量 %と少量であっても、難燃性を長期間付与できる。
[0018] 上記の難燃性樹脂加工品にお!/ヽては、前記榭脂組成物が、前記反応性難燃剤を 2種類以上含有し、少なくとも 1種類が多官能性の前記反応性難燃剤であることが好 ましい。
この態様によれば、反応性の異なる難燃剤の併用によって架橋に要する反応速度 を制御できるので、急激な架橋反応の進行による樹脂の収縮等を防止することがで きる。また、多官能性の難燃剤の含有することによって、上記の有機リンィ匕合物による 均一な 3次元網目構造が形成されるので、耐熱性、難燃性が向上するとともに、より 安定した榭脂物性が得られる。
[0019] また、上記の難燃性樹脂加工品にお 、ては、前記榭脂組成物が、前記ホスフィン 酸金属塩を 5質量%以上、及び前記反応性有機リン系難燃剤を 0. 5質量%以上含 有することが好ましい。
[0020] また、上記の難燃性樹脂加工品にお ヽては、前記榭脂組成物が、前記反応性難 燃剤以外の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物である難 燃剤を更に含有するものであることが好ましい。
この態様によれば、末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物 によっても、難燃剤と樹脂との結合によって榭脂が 3次元網目構造に架橋できるので 、併用によって難燃剤全体のコストダウンを図りつつ、得られる樹脂加工品の化学的 安定性、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性の全てに 優れる榭脂成形品を得ることができる。また、窒素を含有するので、特に榭脂としてポ リアミド系榭脂を用いた場合に榭脂との相溶性がより向上する。
[0021] また、上記の難燃性樹脂加工品においては、前記榭脂組成物が、平均粒子径 15 m以下の親水性シリカパウダーを更に含有することが好ましい。なかでも、前記親 水性シリカパウダーは、細孔容積が 1. 8mlZg以下、かつ pHが 4〜7の多孔質構造 体であることが好ましぐ更にまた、 JIS K5101法による吸油量が 50mlZlOOg以上 であることが好ましい。そして、前記親水性シリカパウダーを 2〜 12質量%含有するこ とが好ましい。
この態様によれば、前記親水性シリカパウダーは、難燃剤を吸着すると共に樹脂と の相溶性がよいため、難燃剤成分のブリードアウトを防止できる。また、併用する上記 式 (I)のホスフィン酸金属塩や、反応性有機リン系難燃剤の分解等による性能劣化を 引き起こすことがないため、優れた難燃性を発揮することができる。
[0022] 更に、上記の難燃性樹脂加工品においては、前記榭脂組成物が、主骨格の末端 に不飽和基を有する多官能性のモノマー又はオリゴマーである架橋剤を更に含有す るものであることが好まし!/、。
この態様によっても、架橋剤と樹脂との結合によって、榭脂が 3次元網目構造に架 橋できるので、得られる樹脂加工品の化学的安定性、耐熱性、機械特性、電気特性 、寸法安定性、難燃性、及び成形性の全てに優れる榭脂成形品を得ることができる。
[0023] また、上記の難燃性樹脂加工品にお ヽては、前記難燃性樹脂加工品全体に対し て 1〜45質量%の無機充填剤を含有することが好ましい。なかでも、前記無機充填 剤としてシリケート層が積層してなる層状のクレーを含有し、前記層状のクレーを前記 難燃性樹脂加工品全体に対して 1〜8質量%含有することが好ましい。この態様によ れば、架橋に伴う収縮や分解を抑え、寸法安定性に優れる樹脂加工品を得ることが できる。また、無機充填剤としてシリケート層が積層してなる層状のクレーを含有した 場合には、ナノオーダーで層状のクレーが榭脂中に分散することにより榭脂とのハイ ブリット構造を形成する。これによつて、得られる難燃性樹脂加工品の耐熱性、機械 強度等が向上する。
[0024] 更に、上記の難燃性樹脂加工品においては、前記難燃性樹脂加工品全体に対し て 5〜50質量%の強化繊維を含有することが好ましい。この態様によれば、強化繊 維の含有により、樹脂加工品の引張り、圧縮、曲げ、衝撃等の機械的強度を向上さ せることができ、更に水分や温度に対する物性低下を防止することができる。
[0025] また、上記の難燃性樹脂加工品にお!/ヽては、前記樹脂と前記反応性難燃剤とが、 線量 lOkGy以上の電子線又は γ線の照射によって反応して得られることが好ましい 。この態様によれば、榭脂を成形等によって固化した後に、放射線によって架橋でき るので、樹脂加工品を生産性よく製造できる。また、上記範囲の線量とすることにより 、線量不足による 3次元網目構造の不均一な形成や、未反応の架橋剤残留によるブ リードアウトを防止できる。また、特に、照射線量を 10〜45kGyとすれば、線量過剰 によって生じる酸ィ匕分解生成物に起因する、樹脂加工品の内部歪みによる変形ゃ収 縮等も防止できる。
[0026] 更に、上記の難燃性樹脂加工品においては、前記樹脂と前記反応性難燃剤とが、 前記榭脂組成物を成形する温度より 5°C以上高い温度で反応して得られることも好ま しい。この態様によれば、放射線照射装置等が不要であり、特に熱硬化性榭脂を含 有する榭脂組成物にぉ 、て好適に用いることができる。
[0027] また、上記の難燃性樹脂加工品においては、前記難燃性樹脂加工品が、成形品、 塗膜、封止剤より選択される 1つであることが好ましい。本発明の難燃性樹脂加工品 は、上記のように優れた難燃性を有し、し力もブリードアウトを防止できるので、通常 の榭脂成形品のみならず、コーティング剤等として塗膜ィ匕したり、半導体や液晶材料 等の封止剤としても好適に用いられる。
[0028] 更に、上記の難燃性樹脂加工品においては、前記難燃性樹脂加工品が、電気部 品又は電子部品として用いられるものであることが好ましい。本発明の難燃性榭脂加 ェ品は、上記のように、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成 形性の全てに優れるので、特に上記の物性が厳密に要求される、電気部品、電子部 oR= I
2
品として o特に好適に用いられる。
発明の効果
[0029] 本発明によれば、ブリードアウト等がなぐ難燃性に優れた難燃性樹脂加工品を提 供することができる。
図面の簡単な説明
[0030] [図 1]本発明の樹脂加工品の燃焼前、燃焼後におけるリン濃度分布を示す図表であ る。
[図 2] (I)は本発明の樹脂加工品の燃焼後の UL94燃焼試験片の断面図、 (II)は (I) の表面(S)近傍を拡大した UL94V燃焼試験後の試験片断面の SEM像である。 発明を実施するための最良の形態
[0031] 本発明の難燃性樹脂加工品とは、下記一般式 (I)で表されるホスフィン酸金属塩で ある難燃剤と、末端に不飽和基を有する反応性有機リン系難燃剤と、榭脂とを含有し 、前記ホスフィン酸金属塩と、前記反応性有機リン系難燃剤との合計含有量が 5〜3 0質量%である榭脂組成物を成形又は塗膜ィ匕して得られたものである。
[0032] [化 2]
M - ( ! )
m
[0033] (式 (I)中、 R R2は、それぞれ、炭素数 1〜6のアルキル基又は炭素数 12以下のァ リール基であり、 Mは、カルシウム、アルミニウム又は亜鉛であり、 M =アルミニウムの とき m= 3であり、それ以外は m= 2である。 )
[0034] 本発明で用いることのできる榭脂としては、熱可塑性榭脂、熱硬化性榭脂の 、ずれ も使用可能であり特に限定されない。
[0035] 熱可塑性榭脂としては、例えば、ポリアミド系榭脂、ポリブチレンテレフタレート榭脂 、ポリエチレンテレフタレート等のポリエステル系榭脂、ポリアクリル系榭脂、ポリイミド 系榭脂、ポリカーボネート榭脂、ポリウレタン系榭脂、ポリスチレン、アクリロニトリル一 スチレン共重合体、アクリロニトリル ブタジエン スチレン共重合体等のポリスチレ ン系榭脂、ポリアセタール系榭脂、ポリオレフイン系榭脂、ポリフエ-レン才キシド榭脂 、ポリフエ-レンサルファイド榭脂、ポリブタジエン榭脂等が挙げられる。なかでも、機 械特性や耐熱性等の点から、ポリアミド系榭脂、ポリブチレンテレフタレート榭脂、ポリ エチレンテレフタレート榭脂、ポリカーボネート榭脂、ポリアクリル系榭脂、ポリアセタ 一ル系榭脂、ポリフエ-レンォキシド榭脂を用いることが好まし 、。
[0036] 熱硬化性榭脂としては、エポキシ榭脂、ウレタン榭脂、不飽和ポリエステル榭脂、フ ヱノール榭脂、ユリア榭脂、メラミン榭脂、アルキド榭脂、ケィ素榭脂等が挙げられる。 なかでも、機械特性や耐熱性等の点から、エポキシ榭脂、フエノール榭脂、不飽和ポ リエステル榭脂、ユリア榭脂を用いることが好まし 、。
[0037] 本発明で用いることのできる、ホスフィン酸金属塩の難燃剤は、上記式 (I)で表され る化合物である。
[0038] この化合物は、約 300〜400°Cの温度で気化してホスフィン酸化物イオンと、金属 イオンとに分解されやすいことから、燃焼時において、ホスフィン酸ィ匕物イオンと、金 属イオンとに分解されやすぐホスフィン酸ィ匕物イオンは表面に移行しやすい。
[0039] 図 1にエネルギー分散型 X線分析装置 (EDAX社製)を用いて加速電圧 10kV、倍 率 50倍にてリンとマグネシウム元素の定量分析を行った、このホスフィン酸金属塩を 含む榭脂組成物を成形した樹脂加工品の、燃焼前、及び UL94V燃焼試験に準拠 した試験条件での燃焼試験後の表層から中心部までのリン元素とマグネシウム元素( リンは難燃剤構成成分、マグネシウムは成形品内に均一に分散しているタルクの構 成成分)の比率を示す。また、図 2 (1)にホスフィン酸金属塩として、ホスフィン酸アル ミを用いた榭脂組成物を成形した榭脂成形品を、 UL94V燃焼試験に準拠した試験 条件で燃焼試験後の表面断面図を、同図 (Π)に表面 (S)近傍の断面を電子線三次 元粗さ解析装置 (エリオ-タス社製: ERA- 8800)を用 、て加速電圧 10kV、倍率 5 00倍にて観察したときの SEM像を示す。
[0040] 図 1、図 2の試験結果から明らかなように、このホスフィン酸金属塩を含む樹脂加工 品は、燃焼時に、ホスフィン酸ィ匕物イオンが選択的に表層部に析出し、リン化合物に よる拡散層 (難燃層)を有した熱 ·酸素の遮断作用の極めて大き!/ヽチヤー (熱分解残 渣)を形成する。また、燃焼時の分解により生じた金属イオンは、このチヤ一をより強 固なものとすることができるため、高い難燃性が発揮される。
[0041] また、上記式 (I)のホスフィン酸金属塩は、分子量が大きすぎると、榭脂中にスタツ キングされにくくなる虞れがあり、ブリードアウトが発生しやすくなるので、上記式 (I)中 の R1及び/又は R2は、メチル、ェチル、 n-プロピル、イソプロピル、 n-ブチル、 tert- ブチル、 n-ペンチル、フエニル、ベンジルから選ばれた一種であることが好ましぐよ り好ましくは、メチル及びェチルである。
[0042] そして、上記式 (I)のホスフィン酸金属塩の具体例としては、下記に示す (I 1)〜(I
30)等の化合物が例示できる。
[0043] [化 3]
Figure imgf000010_0002
Figure imgf000010_0001
: 1 - 8) ( 1 - 9) ( 1 - 1 0)
[0044] [化 4] ο O O 〇
I I I
CH-P=0 Ca -P— o Ca C3H7 ^ P— O C4H9—— P二 O
3 I Ca
I
c C3H7 Hn
(1 - 1 1 ) CI - 1 2) (1 - 1 3) CI - 1 4)
Figure imgf000011_0001
(1 - 1 8) CI - 1 9) C I - 20)
[0045] [化 5]
Figure imgf000011_0002
(1 - 21 ) (1 - 22) (1 - 23) (1 - 24)
Figure imgf000011_0003
CI - 25) C I - 26) (1 - 27)
Figure imgf000011_0004
(I - 29) ( I - 30)
[0046] そして、上記式 (I)のホスフィン酸金属塩は、榭脂組成物中に 5質量%以上含 することが好ましぐより好ましくは、 5〜12質量%でぁる。ホスフィン酸金属塩の含 量が 5質量%未満であると、難燃性が十分に得られないことがある。
[0047] なお、このようなホスフィン酸金属塩は、巿販されているものを用いてもよぐ例えば
ΓΟΡ- 1230] (商品名、クラリアント製)などが使用できる。
[0048] また、本発明で用いることのできる反応性有機リン系難燃剤とは、分子構造内の末 端基に不飽和基を有する有機リン系化合物であって、分子構造内の末端基にァリル 基を少なくとも有する有機リン系化合物が特に好ましい。分子構造内の末端基にァリ ル基を少なくとも有する有機リン系化合物は、加熱又は放射線によって榭脂と結合し 、榭脂を 3次元網目構造に架橋するので、樹脂加工品とした際、機械的物性、熱的 物性、電気的物性を向上させることができる。そして、この難燃剤は榭脂と結合し、榭 脂中に安定して存在するため、難燃剤のブリードアウトが生じにくい。そして、上記式 (I)のホスフィン酸金属塩と併用することで、相乗効果により、難燃剤の添加量が少量 であっても、高い難燃性を付与できる。
[0049] 分子構造内にァリル基を有する有機リン系化合物の反応性有機リン系難燃剤とし ては、下記式 (II 1)〜(11-22)に示す化合物等が例示できる。なかでも、分子構造 内にァリル基を 3以上、及び、炭素数 20以下の芳香族炭化水素を 1以上有するもの が好適である。
[0050] [化 6]
(Π— 1 )
Figure imgf000013_0001
Figure imgf000013_0002
(Π-3)
Figure imgf000013_0003
Figure imgf000013_0004
Figure imgf000013_0005
Figure imgf000013_0006
[化 7]
Figure imgf000014_0001
[0052] [化 8] N(CH2CH=CH2)2
=Ρ— N(CH2CH=CH2)2 (Π- 1 1 ) N(CH2CH=CH,),
NH(CH2CH=CH2)
Ο Ρ— NH(CH2CH=CH.,) (Π- 1 2) NH(CH2CH=CH2)
Figure imgf000015_0001
Figure imgf000016_0001
[0054] 上記の化合物は、例えば、(II- 1)の化合物は、ジメチルァセトアミド (DMAc)にォ キシ塩化リンを加え、この溶液に、 2, 2'-ビス (4-ヒドロキシフエ-ル)プロパンとトリェチ ルァミンを溶解した DMAc溶液を滴下して反応させ、次いで、ジァリルァミンとの混合 液を反応させることで得ることができる。
[0055] また、上記(Π-9)の化合物は、〔トリス(3-ァリル- 4-ヒドロキシフエ-ル)ホスフィンォ キシド〕にジメチルホルムアミド(DMF)を加え、この溶液に、ジフエ-ルリン酸クロリド を溶解した DMF溶液を滴下して反応させることで得ることができる。
[0056] また、上記(II- 10)の化合物は、 1, 1, 1 -トリス(4-ヒドロキシフエ-ル)ェタンと、トリ ェチルァミンとを溶解させた蒸留クロ口ホルム溶液に、ジフヱ-ルホスホン酸モノクロリ ドを溶解させた DMF溶液を滴下し、次いで、フエ-ルホスホン酸モノ (N, N-ジァリル )アミドモノクロリドを溶解させた DMF溶液を滴下して反応させることで得ることができ る。
[0057] また、上記(11-20)の化合物は、ジクロロフエ-ルホスフィンに、 10- (2,5-ジヒドロキ シフエ-ル) -9-ォキソ - 10-ホスホ -9, 10-ジヒドロフエナンスレン- 10-オンとトリェチ ルァミンとを溶解したテトラヒドロフラン溶液を滴下して反応させることで得ることができ る。
[0058] なお、他の化合物も上記と同様な方法や、特開 2004-315672号公報に記載され た方法などに基づ 、て合成することができる。
[0059] そして、難燃性榭脂組成物中における反応性有機リン系難燃剤の含有量は、 0. 5 質量%以上であることが好ましぐより好ましくは 0. 5〜3質量%である。反応性リン系 難燃剤の含有量が 0. 5質量%未満であると、榭脂中での架橋が不充分となり、得ら れる榭脂加工品の機械的物性、熱的物性、電気的物性が不充分となることがある。
[0060] また、難燃性榭脂組成物中における上記式 (I)のホスフィン酸金属塩と、反応性有 機リン系難燃剤との合計含有量は、 5〜30質量%であり、好ましくは 10〜22質量% であり、より好ましくは 14〜18質量%である。難燃剤の含有量が 5質量%未満の場 合、得られる樹脂加工品の機械的物性、熱的物性、電気的物性が好ましくなぐ難燃 性が充分得られない。また、 30質量%を超えると、難燃剤が過剰となり、難燃剤成分 がブリードアウトしたり、反応性有機リン系難燃剤の未反応のモノマーや分解ガスが 発生したりする虞れがあり、樹脂加工品の機械的特性が低下することがあるので好ま しくない。
[0061] 本発明においては、上記の反応性有機リン系難燃剤のうち、反応性の異なる 2種類 以上の難燃剤、すなわち、 1分子中の上記官能基の数が異なる有機リン系化合物を 2種類以上併用することが好ましい。これによつて、架橋に要する反応速度を制御で きるので、急激な架橋反応の進行による榭脂組成物の収縮を防止することができる。
[0062] そして、多官能性の反応性難燃剤を少なくとも 1種類以上含有することが好ましい。
これによつて、上記の有機リンィ匕合物による均一な 3次元網目構造が形成される。
[0063] また、本発明においては、上記反応性有機リン系難燃剤 1質量部に対して、該反応 性難燃剤以外の反応性を有する難燃剤として、末端に少なくとも 1つの不飽和基を 有する環状の含窒素化合物を 0. 5〜 10質量部含有することがより好ましい。
[0064] 上記の末端に不飽和基を有する基としては、具体的にはジアタリレート、ジメタクリレ ート、ジァリレート、トリアタリレート、トリメタタリレート、トリァリレート、テトラアタリレート、 テトラメタタリレート、テトラァリレート等が挙げられる力 反応性の点からはジアタリレ ート、トリアタリレート、テトラアタリレート等のアタリレートであることがより好ましい。また 、環状の含窒素化合物としては、イソシァヌル環、シァヌル環等が挙げられる。
[0065] そして、上記の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物の具 体例としては、上記のシァヌル酸又はイソシァヌル酸の誘導体が挙げられ、例えば、 イソシァヌル酸 EO変性ジアタリレート、イソシァヌル酸 EO変性トリアタリレート、トリァリ ルイソシァヌレート等の多官能性モノマー又はオリゴマーが例示できる。
[0066] また、本発明にお 、ては、難燃性を有しな 、が前記樹脂との反応性を有する架橋 剤を更に含有してもよい。このような架橋剤としては、主骨格の末端に不飽和基を有 する多官能性のモノマー又はオリゴマーを用いることができる。なお、本発明におけ る難燃性を有しな!/ヽが前記樹脂との反応性を有する架橋剤とは、架橋性 (反応性)を 有するが、それ自身は難燃性を有しないものを意味し、上記の末端に少なくとも 1つ の不飽和基を有する環状の含窒素化合物のように、架橋性と難燃性とを同時に有す る反応性難燃剤を除くものである。
[0067] このような架橋剤としては、以下の一般式 (a)〜(c)で表される 2〜4官能性の化合 物が挙げられる。ここで、 Mは主骨格であり、 R1C)〜R13は末端に不飽和基を有する官 能性基であって、(a)は 2官能性ィ匕合物、(b)は 3官能性ィ匕合物、(c)は 4官能性ィ匕 合物である。
[0068] [化 10] (a)
R^M— R12 …(b)
Figure imgf000019_0001
[0069] 具体的には、以下に示すような一般式の、主骨格 Mが、グリセリン、ペンタエリスト一 ル誘導体等の脂肪族アルキルや、トリメリット、ピロメリット、テトラヒドロフラン、トリメチレ ントリオキサン等の芳香族環、ビスフエノール等である構造が挙げられる。
[0070] [化 11]
Figure imgf000019_0002
( b - 1 ) (b - 2) (b - 3) (b -4)
[0072] [化 13]
Figure imgf000019_0003
(c - 1 ) (c - 2)
[0073] 上記の架橋剤の具体例としては、 2官能性のモノマー又はオリゴマーとしては、ビス フエノール F—EO変性ジアタリレート、ビスフエノール A—EO変性ジアタリレート、トリ プロピレングリコールジアタリレート、ポリプロピレングリコールジアタリレート、ポリェチ レングリコールジアタリレート、ペンタエリスリトールジァクリレートモノステアレート等の ジアタリレートや、それらのジメタタリレート、ジァリレートが挙げられる。
[0074] 3官能性のモノマー又はオリゴマーとしては、ペンタエリスリトールトリアタリレート、ト リメチロールプロパントリアタリレート、トリメチロールプロパン PO変性トリアタリレート、ト リメチロールプロパン EO変性トリアタリレート等のトリアタリレートや、それらのトリメタク リレート、トリァリレートが挙げられる。
[0075] 4官能性のモノマー又はオリゴマーとしては、ジトリメチロールプロパンテトラアタリレ ート、ペンタエリスリトールテトラアタリレート等が挙げられる。
[0076] 上記の架橋剤は、主骨格 Mとなる、トリメリット酸、ピロメリット酸、テトラヒドロフランテ トラカルボン酸、 1, 3, 5-トリヒドロキシベンゼン、グリセリン、ペンタエリストール、 2, 4 , 6-トリス (クロロメチル) - 1, 3, 5-トリオキサン等より選ばれる 1種に、末端に不飽和 基を有する官能性基となる、臭化ァリル、ァリルアルコール、ァリルァミン、臭ィ匕メタリ ル、メタリルアルコール、メタリルアミン等より選ばれる 1種を反応させて得られる。
[0077] そして、上記の架橋剤は、前記反応性難燃剤 1質量部に対して、 0. 5〜10質量部 含有することが好ましい。
[0078] また、本発明に用いる榭脂組成物には、上記の榭脂と難燃剤の他、無機充填剤、 強化繊維、各種添加剤等を含有していてもよい。
[0079] 無機充填剤を含有することによって、樹脂加工品の機械的強度が向上するとともに 、寸法安定性を向上させることができる。また、難燃剤を吸着させる基体となって作用 し、該難燃剤の分散を均一化にできる。なかでも、平均粒子径 15 m以下の親水性 シリカパウダーが好ましい。親水性シリカパウダーは化学的にも安定で無害であり環 境負荷が小さぐまた、難燃剤成分を分解劣化させにくいため、難燃効果が低下しに くい。また、平均粒径が 15 m以下であれば、榭脂への分散を均一化にできる。これ によれば、難燃剤を分解劣化することなぐ難燃剤の樹脂への分散を均一化にできる ので、樹脂加工品とした際において、難燃剤の添加量が少量であっても高い難燃性 を発揮できる。また、難燃剤を十分に吸着させることができるので、難燃剤によるプリ ードアウトの発生を防止できる。 [0080] このような親水性シリカパウダーは、市販されているものを用いてもよぐ例えば「サ イリシァ」(商品名、富士シリシァ株式会社製)、「二ップジエル」(商品名、東ソーシリカ 株式会社製)などが使用できる。
[0081] そして、榭脂組成物中における親水性シリカパウダーの含有量は、 2〜12質量% であることが好ましぐより好ましくは 2〜6質量%である。親水性シリカパウダーの含 有量が 2質量%未満であると、難燃剤の吸着が不充分となり、難燃性樹脂組成物中 に難燃剤を均一に分散することが困難となり、樹脂製加工品とした際、難燃性を充分 発揮することができな 、可能性がある。
[0082] また、榭脂組成物中における上記式 (I)のホスフィン酸金属塩と、反応性リン系難燃 剤と、親水性シリカパウダーの合計含有量は、 50質量%以下であることが好ましぐ より好ましくは 16〜35質量%である。
[0083] また本発明では、前記無機充填剤の他に、以下に例示する無機充填剤を併用して もよい。代表的なものとしては、銅、鉄、ニッケル、亜鉛、錫、ステンレス鋼、アルミ-ゥ ム、金、銀等の金属粉末、ヒュームドシリカ、珪酸アルミニウム、珪酸カルシウム、珪酸 、含水珪酸カルシウム、含水珪酸アルミニウム、ガラスビーズ、石英粉末、雲母、タル ク、マイ力、クレー、酸化チタン、酸化鉄、酸化亜鉛、炭酸カルシウム、炭酸マグネシ ゥム、酸化マグネシウム、酸化カルシウム、硫酸マグネシウム、チタン酸カリウム、ケィ ソゥ土等が挙げられ、これらの含有量は、難燃性樹脂加工品全体に対して 1〜45質 量%であることが好ましぐ 1〜20質量%がより好ましい。含有量が 1質量%より少な いと、難燃性樹脂加工品の機械的強度が不足し、寸法安定性が不充分であり、更に 反応性難燃剤の吸着が不充分となるので好ましくない。また、 45質量%を超えると、 難燃性樹脂加工品が脆くなるので好ましくな 、。
[0084] 上記の無機充填剤のうち、シリケート層が積層してなる層状のクレーを用いることが 特に好ましい。シリケート層が積層してなる層状のクレーとは、厚さが約 lnm、一辺の 長さが約 lOOnmのシリケート層が積層された構造を有しているクレーである。したが つて、この層状のクレーはナノオーダーで榭脂中に分散されて榭脂とのハイブリット構 造を形成し、これによつて、得られる難燃性樹脂加工品の耐熱性、機械強度等が向 上する。層状のクレーの平均粒径は lOOnm以下であることが好ましい。 [0085] 層状のクレーとしては、モンモリロナイト、カオリナイト、マイ力等が挙げられる力 分 散性に優れる点力 モンモリロナイトが好ましい。また、層状のクレーは、榭脂への分 散性を向上させるために表面処理されて 、てもよ 、。このような層状のクレーは巿販 されているものを用いてもよぐ例えば「ナノマー」(商品名、 日商岩井ベントナイト株 式会社製)や、「ソマシフ」(商品名、コーポケミカル社製)などが使用できる。
[0086] 層状のクレーの含有量は、難燃性樹脂加工品全体に対して 1〜8質量%が好まし い。なお、層状のクレーは単独で使用してもよぐ他の無機充填剤と併用してもよい。
[0087] また、強化繊維を含有することによって、例えば成形品の場合には機械的強度が 向上するとともに、寸法安定性を向上させることができる。強化繊維としては、ガラス 繊維、炭素繊維、金属繊維が挙げられ、強度、及び榭脂ゃ無機充填剤との密着性の 点からガラス繊維を用いることが好ましい。これらの強化繊維は、単独でも、 2種以上 を併用して用いてもよぐまた、シランカップリング剤等の公知の表面処理剤で処理さ れたものでもよい。
[0088] また、ガラス繊維は、表面処理されており、更に樹脂で被覆されて ヽることが好まし い。これにより、熱可塑性ポリマーとの密着性を更に向上することができる。
[0089] 表面処理剤としては、公知のシランカップリング剤を用いることができ、具体的には 、メトキシ基及びエトキシ基よりなる群力 選択される少なくとも 1種のアルコキシ基と、 アミノ基、ビュル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、ハロゲン原 子、イソシァネート基よりなる群から選択される少なくとも一種の反応性官能基を有す るシランカップリング剤が例示できる。
[0090] また、被覆榭脂としても特に限定されず、ウレタン榭脂ゃエポキシ榭脂等が挙げら れる。
[0091] 強化繊維の配合量は、難燃性樹脂加工品全体に対して 5〜50質量%含有するこ と力 子ましく、 10〜40質量%がより好ましい。含有量が 5質量%より少ないと、難燃性 樹脂加工品の機械的強度が低下するとともに、寸法安定性が不充分であるので好ま しくなぐまた、 50質量%を超えると、榭脂の加工が困難になるので好ましくない。
[0092] なお、本発明に用いる榭脂組成物には、本発明の目的である耐熱性、耐候性、耐 衝撃性等の物性を著しく損わない範囲で、上記以外の常用の各種添加成分、例え ば結晶核剤、着色剤、酸化防止剤、離型剤、可塑剤、熱安定剤、滑剤、紫外線防止 剤などの添加剤を添加することができる。また、後述するように、例えば紫外線によつ て樹脂と反応性難燃剤とを反応させる場合には、紫外線開始剤等を用いることがで きる。
[0093] 着色剤としては特に限定されないが、後述する放射線照射によって褪色しないもの が好ましぐ例えば、無機顔料である、ベンガラ、鉄黒、カーボン、黄鉛等や、フタロシ ァニン等の金属錯体が好ましく用いられる。
[0094] 本発明の難燃性樹脂加工品は、上記の榭脂組成物を成形又は塗膜化した後、加 熱又は放射線の照射によって前記樹脂と前記反応性難燃剤とを反応させて得られる
[0095] 榭脂組成物の成形は従来公知の方法が用いられ、例えば、熱可塑性榭脂を含む 榭脂組成物の場合には、熱可塑性榭脂と反応性難燃剤とを溶融混練してペレツトイ匕 した後、従来公知の射出成形、押出成形、真空成形、インフレーション成形等によつ て成形することができる。溶融混練は、単軸或いは二軸押出機、バンバリ一ミキサー 、ニーダー、ミキシングロールなどの通常の溶融混練力卩ェ機を使用して行うことがで きる。混練温度は熱可塑性榭脂の種類によって適宜選択可能であり、例えばポリアミ ド系榭脂の場合には 240〜280°Cで行うことが好ましい。また、成形条件も榭脂によ り適宜設定可能であり特に限定されない。なお、この段階では全く架橋は進行してい ないので、成形時の余分のスプール部は、熱可塑性榭脂としてのリサイクルが可能 である。
[0096] 一方、熱硬化性榭脂の場合には、上記と同様に、熱硬化性榭脂と反応性難燃剤と を溶融混練してペレット化した後、例えば、従来公知の射出成形、圧縮成形、トランス ファー成形等を用いて成形することができる。
[0097] また、塗膜化する場合には、榭脂組成物をそのまま塗布してもよぐ適宜溶剤等で 希釈して塗布可能な溶液又は懸濁液とした後、従来公知の方法によって乾燥、塗膜 化してもよい。塗膜ィ匕の方法としては、ローラー塗り、吹き付け、浸漬、スピンコート等 のコーティング方法等を用いることができ特に限定されない。
[0098] 上記の榭脂組成物は、加熱又は放射線の照射によって、反応性難燃剤の末端の 不飽和結合が、榭脂と反応して架橋反応し、榭脂中に安定に存在する。
[0099] 反応性難燃剤と樹脂とを反応させる手段として加熱を用いる場合、反応させる温度 は、榭脂の成形温度より 5°C以上高い温度とすることが好ましぐ 10°C以上高い温度 とすることがより好ましい。
[0100] また、架橋の手段として放射線を用いる場合には、電子線、 α線、 γ線、 X線、紫外 線等が利用できる。なお、本発明における放射線とは広義の放射線を意味し、具体 的には、電子線や α線等の粒子線の他、 X線や紫外線等の電磁波までを含む意味 である。
[0101] 上記のうち、電子線又は γ線の照射が好ましい。電子線照射は公知の電子加速器 等が使用でき、加速エネルギーとしては、 2. 5MeV以上であることが好ましい。 γ線 照射は、公知のコバルト 60線源等による照射装置を用いることができる。
[0102] γ線照射は、公知のコバルト 60線源等による照射装置を用いることができる。 γ線 は電子線に比べて透過性が強 、ために照射が均一となり好ま 、が、照射強度が強 V、ため、過剰の照射を防止するために線量の制御が必要である。
[0103] 放射線の照射線量は lOkGy以上であることが好ましぐ 10〜45kGyがより好まし い。この範囲であれば、架橋によって上記の物性に優れる榭脂加工品が得られる。 照射線量が lOkGy未満では、架橋による 3次元網目構造の形成が不均一となり、未 反応の架橋剤がブリードアウトする可能性があるので好ましくない。また、 45kGyを超 えると、酸ィ匕分解生成物による樹脂加工品の内部歪みが残留し、これによつて変形 や収縮等が発生するので好ましくな ヽ。
[0104] このようにして得られた本発明の難燃性樹脂加工品は、耐熱性、難燃性に加えて、 機械特性、電気特性、寸法安定性、及び成形性に優れる。したがって、高度な耐熱 性、難燃性が要求される電気部品又は電子部品、更には自動車部品や光学部品、 例えば、電磁開閉器やブレーカーなどの接点支持等のための部材、プリント基板等 の基板、集積回路のノ ッケージ、電気部品のハウジング等として好適に用いることが できる。
[0105] 電気部品又は電子部品の具体例としては、受電盤、配電盤、電磁開閉器、遮断器 、変圧器、電磁接触器、サーキットプロテクタ、リレー、トランス、各種センサ類、各種 モーター類、ダイオード、トランジスタ、集積回路等の半導体デバイス等が挙げられる また、冷却ファン、バンパー、ブレーキカバー、パネル等の内装品、摺動部品、セン サ、モーター等の自動車部品としても好適に用いることができる。
更に、成形品のみならず、上記の成形品や繊維等への難燃性コーティング塗膜と してち用いることちでさる。
[0106] また、上記の半導体デバイス等の電子部品又は電気部品の封止、被覆、絶縁等と して用いれば、優れた耐熱性、難燃性を付与させることができる。すなわち、例えば、 上記の榭脂組成物を封止して榭脂を硬化させ、更に上記の加熱又は放射線照射に よる反応を行うことにより、半導体チップやセラミックコンデンサ等の電子部品や電気 素子を封止する難燃性封止剤として用いることができる。封止の方法としては、注入 成形、ポッティング、トランスファー成形、射出成形、圧縮成形等による封止が可能で ある。また、封止対象となる電子部品、電気部品としては特に限定されないが、例え ば、液晶、集積回路、トランジスタ、サイリスタ、ダイオード、コンデンサ等が挙げられる 実施例
[0107] 以下、実施例を用いて本発明を更に詳細に説明するが、本発明は実施例に限定さ れるものではない。
[0108] 〔実施例 1〕
熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)を 55. 5質量部、強化繊 維としてシランカップリング剤で表面処理した繊維長約 3mmのガラス繊維 (旭フアイ バーグラス社製: 03JAFT2Ak25)を 25質量部、着色剤としてカーボンブラックを 0. 2質量部、酸化防止剤(チバ 'スペシャルティ'ケミカルズ株式会社:ィルガノックス 10 10)を 0. 3質量部、無機充填剤として粒径 2 mのタルク 5質量部、ホスフィン酸金属 塩として上記化合物 (1-2)を 10質量部、反応性有機リン系難燃剤として上記化合物 (Π-3)を 4質量部配合し、サイドフロー型 2軸押出機(日本製鋼社製)にて 280°Cで混 練して榭脂ペレットを得て 115°C、 4時間乾燥した後、上記榭脂ペレットを射出成形 機 (FUNUC社製:ひ 50C)を用いて榭脂温度 280°C、金型温度 80°Cの条件で成形 し、コバルト 60を線源とした γ線を 25kGy照射して実施例 1の樹脂加工品を得た。
[0109] 〔実施例 2〕
実施例 1において、熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)の配 合量を 51. 5質量部とし、新たにナノ粒径のクレー(ボルクレイ'ジャパン社製:ナノマ 一 I30T)を 4質量部配合した以外は実施例 1と同様にして実施例 2の樹脂加工品を 得た。
[0110] 〔実施例 3〕
実施例 1において、熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)の配 合量を 51. 5質量部とし、ホスフィン酸金属塩として上記化合物 (I 2)の代わりに上 記化合物 (1-5)を 10質量部配合し、反応性有機リン系難燃剤として上記化合物 (II- 3)の代わりに上記化合物 (II- 1)を 4質量部配合し、新たに下記構造式 (A)で表され る有機リン系難燃剤を 4質量部配合した以外は実施例 1と同様にして実施例 3の榭脂 加工品を得た。
[0111] [化 14]
Figure imgf000026_0001
[0112] 〔実施例 4〕
実施例 1において、熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)の配 合量を 53. 5質量部とし、ホスフィン酸金属塩として上記化合物 (I 2)の代わりに上 記化合物 (1- 10)を 10質量部配合し、反応性有機リン系難燃剤として上記化合物 (II -3)の代わりに上記化合物(Π-4)を 4質量部配合し、新たに末端に少なくとも 1つの 不飽和基を有する環状の含窒素化合物(日本化成社製: TAIC)を 2質量部配合した 以外は実施例 1と同様にして実施例 4の樹脂加工品を得た。
[0113] 〔実施例 5〕
実施例 4において、ホスフィン酸金属塩として上記化合物(I 10)の代わりに上記 化合物 (1- 12)を 10質量部配合し、反応性有機リン系難燃剤として上記化合物 (Π-4 )の代わりに上記化合物(11-20)を 4質量部配合した以外は実施例 4と同様にして実 施例 5の樹脂加工品を得た。
[0114] 〔実施例 6〕
実施例 2において、熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)の配 合量を 41. 5質量部とし、新たに吸油量 170mlZl00g、 pH7. 0の微粉状合成シリ 力(富士シリシァ社製:サイシリア 530)を 10質量部配合した以外は実施例 2と同様に して実施例 6の樹脂加工品を得た。
[0115] 〔実施例 7〕
熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)を 55. 5質量部、強化繊 維としてシランカップリング剤で表面処理した繊維長約 3mmのガラス繊維 (旭フアイ バーグラス社製: 03JAFT2Ak25)を 25質量部、着色剤としてカーボンブラックを 0. 2質量部、酸化防止剤(チノく'スペシャルティ'ケミカルズ社製:ィルガノックス 1010) を 0. 3質量部、無機充填剤として粒径 2 mのタルク 5質量部、ホスフィン酸金属塩と して上記の化合物 (1- 10)を 10質量部、反応性有機リン系難燃剤として上記の化合 物 (Π- 1)を 4質量部配合し、サイドフロー型 2軸押出機(日本製鋼社製)にて 280°Cで 混練して榭脂ペレットを得て 115°C、 4時間乾燥した後、上記榭脂ペレットを射出成 形機 (FUNUC社製:ひ 50C)を用いて榭脂温度 280°C、金型温度 80°Cの条件で成 形して、実施例 7の樹脂加工品を得た。
[0116] 〔実施例 8〕
実施例 1において、熱可塑性榭脂として 66ナイロン (宇部興産社製: 2020B)の代 わりに 6Tナイロン(東洋紡社製: TY-502NZ)を 49. 5質量部配合し、ホスフィン酸 金属塩として上記化合物 (I 2)の代わりに上記化合物 (1-22)を 10質量部配合し、 反応性有機リン系難燃剤として上記化合物 (Π-3)の代わりに上記化合物 (Π-4)を 4 質量部配合し、新たにナノ粒径のクレー(ボルクレイ ·ジャパン社製:ナノマー I30T) を 4質量部及び末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物(日 本ィ匕成社製: TAIC)を 2質量部配合した以外は実施例 1と同様にして実施例 8の榭 脂加工品を得た。
[0117] 〔比較例 1〕 実施例 1において、反応性有機リン系難燃剤を添加しない以外は、実施例 1と同様 な方法で比較例 1の樹脂加工品を得た。
[0118] 〔比較例 2〕
実施例 1にお 、て、ホスフィン酸金属塩の代わりに水酸化マグネシウムを使用した 以外は、実施例 1と同様な方法で比較例 2の樹脂加工品を得た。
[0119] 〔比較例 3〕
実施例 1にお!、て、反応性有機リン系難燃剤の代わりに非反応性の有機リン系難 燃剤 (三光化学社製: HCA-HQ)を使用した以外は、実施例 1と同様な方法で比較 例 3の樹脂加工品を得た。
[0120] 〔比較例 4〕
実施例 3において、反応性有機リン系難燃剤の代わりに非反応性の有機リン系難 燃剤 (三光化学社製: HCA- HQ)を使用し、構造式 (A)で表される有機リン系難燃 剤の代わりに水酸ィ匕マグネシウムを使用した以外は、実施例 3と同様な方法で比較 例 4の樹脂加工品を得た。
[0121] 〔比較例 5〕
実施例 6において、反応性有機リン系難燃剤の代わりに非反応性の有機リン系難 燃剤(四国化成社製: SP-703)を使用し、無機充填剤として吸油量 15mlZlOOg、 pH8. 5〜9. 5の炭酸カルシウム(日東粉ィ匕工業社製: NS # 400)を使用した以外 は、実施例 6と同様な方法で比較例 5の樹脂加工品を得た。
[0122] 〔比較例 6〕
実施例 6において、反応性有機リン系難燃剤の代わりに非反応性の有機リン系難 燃剤(三光化学社製: BCA)を使用し、無機充填剤として吸油量 300mlZlOOg、 p H2. 5の微粉状合成シリカ(富士シリシァ社製:サイシリア 250)を使用した以外は、 実施例 6と同様な方法で比較例 6の樹脂加工品を得た。
[0123] <試験例 >
実施例 1〜8、比較例 1〜6の樹脂加工品について、難燃性試験である UL— 94に 準拠した試験片(長さ 5インチ、幅 1Z2インチ、厚さ 3. 2mm)と、 IEC60695— 2法( GWFI)に準拠したグロ一ワイヤ試験片(60mm角、厚さ 1. 6mm)を作製し、 UL94 試験、グロ一ワイヤ試験 (IEC準拠)を行った。また、すべての樹脂加工品についてブ リードアウト試験を行った。その結果をまとめて表 1に示す。
なお、 UL94試験は、試験片を垂直に取りつけ、ブンゼンバーナーで 10秒間接炎 後の燃焼時間を記録した。更に、消火後 2回目の 10秒間接炎し再び接炎後の燃焼 時間を記録し、燃焼時間の合計と 2回目消火後の赤熱燃焼 (グロ一イング)時間と綿 を発火させる滴下物の有無で判定した。
また、グロ一ワイヤ試験は、グロ一ワイヤとして先端が割けないように曲げた直径 4m mのニクロム線 (成分:ニッケル 80%、クロム 20%)、温度測定用熱電対として直径 0. 5mmのタイプ K (クロメル アルメル)を用い、熱電対圧着荷重 1. 0±0. 2N、温度 8 50°Cで行った。なお、 30秒接触後の燃焼時間が 30秒以内のこと、サンプルの下の ティッシュペーパーが発火しな 、ことをもって燃焼性 (GWFI)の判定基準とした。 また、ブリードアウト試験は、温度 60°C、湿度 95%の条件下に試験体を貯蔵し、 96 時間経過後の試験体の表面を目視で観察し、ブリードの有無を評価した。
[表 1]
難燃性 クランプに達落下物による グロ一ワイヤ ブリードアゥト
(UL-94) する火種 脱脂綿着火 試験 試験
実施例 1 V-0 無 無 合格 無
実施例 2 V- 0 無 無 合格 無
実施例 3 V- 0 無 無 合格 無
実施例 4 V- 0 無 無 合格 無
実施例 5 v-o 無 無 合格 無
実施例 6 v-o 無 無 合格 無
実施例 7 v-o 無 無 合格 無
実施例 8 V- 0 無 無 合格 無
比較例 1 HB 有 無 不合格 有
比較例 2 HB 有 有 不合格 無
比較例 3 V- 2 無 有 合格 有
比較例 4 V- 2 無 有 合格 有
比較例 5 HB 有 有 不合格 有
比較例 6 HB 有 有 不合格 無
[0125] 表 1の結果より、実施例 1〜8の樹脂加工品においては、難燃性はいずれも V—0と 優れ、グロ一ワイヤ試験においてもすべて合格した。また、ブリードアウトも生じなかつ た。一方、反応性有機リン系難燃剤とホスフィン酸金属塩とを含む難燃剤を使用して いない比較例 1〜6の樹脂加工品は、難燃性が不充分なものであった。また、比較例 1、 3、 4、 5においては、ブリードアウトも生じた。
産業上の利用可能性
[0126] 本発明は、ハロゲンを含有しない難燃性樹脂加工品として、電気部品や電子部品 等の榭脂成形品に好適に利用できる。

Claims

請求の範囲 R 下記一般式 (I)で表されるホスフィン酸金属塩である難燃剤と、末端に不飽和基を 2 有する反 o応性有機リン系難燃剤と、榭脂とを含有し、前記ホスフィン酸金属塩と、前 記反応性有機リン系難燃剤との合計含有量が 5〜30質量%である榭脂組成物を成 形又は塗膜ィ匕したことを特徴とする難燃性樹脂加工品。
[化 1]
M - ( ! )
m
(式 (I)中、
Figure imgf000031_0001
R2は、それぞれ、炭素数 1〜6のアルキル基又は炭素数 12以下のァ リール基であり、 Mは、カルシウム、アルミニウム又は亜鉛であり、 M =アルミニウムの とき m= 3であり、それ以外は m= 2である。 )
[2] 前記榭脂組成物が、前記反応性有機リン系難燃剤を 2種類以上含有し、そのうち の少なくとも 1種類が多官能性の反応性難燃剤である請求項 1に記載の難燃性榭脂 加工品。
[3] 前記榭脂組成物が、前記ホスフィン酸金属塩を 5質量%以上、及び前記反応性有 機リン系難燃剤を 0. 5質量%以上含有する請求項 1又は 2記載の難燃性樹脂加工
P
PPo
[4] 前記榭脂組成物が、前記反応性有機リン系難燃剤以外の、末端に少なくとも 1つの 不飽和基を有する環状の含窒素化合物である難燃剤を更に含有する請求項 1〜3 のいずれか一つに記載の難燃性樹脂加工品。
[5] 前記榭脂組成物が、平均粒子径 15 m以下の親水性シリカパウダーを更に含有 する請求項 1〜4のいずれか一つに記載の難燃性樹脂加工品。
[6] 前記親水性シリカパウダーは、細孔容積が 1. 8mlZg以下、かつ pHが 4〜7の多 孔質構造体である請求項 5に記載の難燃性樹脂加工品。
[7] 前記親水性シリカパウダーは、 JIS K5101法による吸油量が 50mlZl00g以上で ある請求項 5又は 6記載の難燃性樹脂加工品。
[8] 前記榭脂組成物が、前記親水性シリカパウダーを 2〜12質量%含有する請求項 5 〜7のいずれか一つに記載の難燃性樹脂加工品。
[9] 前記榭脂組成物が、主骨格の末端に不飽和基を有する多官能性のモノマー又は オリゴマーである架橋剤を更に含有する請求項 1〜8のいずれか一つに記載の難燃 性樹脂加工品。
[10] 前記難燃性樹脂加工品全体に対して、 1〜45質量%の無機充填剤を含有する請 求項 1〜9のいずれか一つに記載の難燃性樹脂加工品。
[11] 前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、前記層 状のクレーを前記難燃性樹脂加工品全体に対して 1〜8質量%含有する請求項 10 記載の難燃性樹脂加工品。
[12] 前記難燃性樹脂加工品全体に対して、 5〜50質量%の強化繊維を含有する請求 項 1〜11のいずれか一つに記載の難燃性樹脂加工品。
[13] 前記樹脂と前記反応性有機リン系難燃剤とを、線量 lOkGy以上の電子線又は γ 線の照射によって反応させて得られる請求項 1〜 12の 、ずれか 1つに記載の難燃性 樹脂加工品。
[14] 前記樹脂と前記反応性有機リン系難燃剤とを、前記榭脂組成物を成形する温度よ り 5°C以上高!、温度で反応させて得られる請求項 1〜 12の 、ずれか 1つに記載の難 燃性樹脂加工品。
[15] 前記難燃性樹脂加工品が、成形品、塗膜、封止剤より選択される 1つである請求項
1〜14のいずれか 1つに記載の難燃性樹脂加工品。
[16] 前記難燃性榭脂加工品が、電気部品又は電子部品として用いられるものである請 求項 1〜15のいずれか 1つに記載の難燃性樹脂加工品。
PCT/JP2006/310228 2005-05-24 2006-05-23 難燃性樹脂加工品 WO2006126528A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800180934A CN101180369B (zh) 2005-05-24 2006-05-23 用阻燃性树脂处理过的制品
US11/915,505 US7851528B2 (en) 2005-05-24 2006-05-23 Flame-retardant resin processed article
EP06756484A EP1889879A4 (en) 2005-05-24 2006-05-23 FLAME-RESISTANT RESIN-TREATED OBJECT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-150469 2005-05-24
JP2005150469A JP4757538B2 (ja) 2005-05-24 2005-05-24 難燃性樹脂加工品

Publications (1)

Publication Number Publication Date
WO2006126528A1 true WO2006126528A1 (ja) 2006-11-30

Family

ID=37451953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310228 WO2006126528A1 (ja) 2005-05-24 2006-05-23 難燃性樹脂加工品

Country Status (5)

Country Link
US (1) US7851528B2 (ja)
EP (1) EP1889879A4 (ja)
JP (1) JP4757538B2 (ja)
CN (1) CN101180369B (ja)
WO (1) WO2006126528A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975217A2 (de) * 2007-03-29 2008-10-01 Clariant International Ltd. Flammgeschützte Klebe- und Dichtmassen
WO2017159161A1 (ja) * 2016-03-14 2017-09-21 株式会社Adeka 難燃性熱可塑性ポリウレタン樹脂組成物
CN111235953A (zh) * 2020-02-13 2020-06-05 山东仁丰特种材料股份有限公司 一种使用新型阻燃剂提高汽车用空气滤纸阻燃性的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119693A1 (en) * 2007-04-03 2008-10-09 Basf Se Dopo flame retardant compositions
WO2009115512A1 (en) * 2008-03-20 2009-09-24 Dsm Ip Assets Bv Heatsinks of thermally conductive plastic materials
JP2010077333A (ja) * 2008-09-29 2010-04-08 Fuji Electric Fa Components & Systems Co Ltd 難燃性樹脂組成物
KR101346970B1 (ko) * 2009-07-24 2014-01-02 바스프 에스이 방향족 및/또는 헤테로방향족 에폭시 수지에서 난연제로서 디포스핀 유도체
US8604105B2 (en) 2010-09-03 2013-12-10 Eastman Chemical Company Flame retardant copolyester compositions
US20130081850A1 (en) 2011-09-30 2013-04-04 Ticona Llc Fire-Resisting Thermoplastic Composition for Plenum Raceways and Other Conduits
JP6267509B2 (ja) * 2013-12-27 2018-01-24 新日鉄住金化学株式会社 ポリアミド酸組成物、ポリイミド、樹脂フィルム及び金属張積層体
CN103980662B (zh) * 2014-04-01 2016-08-31 江汉大学 一种环氧树脂阻燃组合物及其制备方法
JP7288371B2 (ja) * 2018-08-31 2023-06-07 株式会社エフコンサルタント 硬化性組成物
CN110938234B (zh) * 2018-09-25 2021-06-08 中山台光电子材料有限公司 阻燃性化合物、其制造方法、树脂组合物及其制品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221572A (ja) * 1996-02-14 1997-08-26 Asahi Chem Ind Co Ltd スチレン系樹脂組成物の火種の滴下抑制剤
WO2003087230A1 (fr) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Composition de resine thermodurcissable, preimpregne et feuille stratifiee utilisant cette composition.
JP2004018857A (ja) * 2002-06-14 2004-01-22 Clariant Gmbh ホスホニットと他の成分との混合物
JP2004250539A (ja) * 2003-02-19 2004-09-09 Junko Shigehara 架橋型プラスチック難燃剤
JP2004315672A (ja) 2003-04-16 2004-11-11 Fuji Electric Holdings Co Ltd 電気部品用樹脂成形品
WO2004111121A1 (ja) * 2003-06-12 2004-12-23 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2005012415A1 (ja) * 2003-08-01 2005-02-10 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2005026251A1 (ja) * 2003-09-10 2005-03-24 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2006089534A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品
JP2006137843A (ja) * 2004-11-12 2006-06-01 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631276B2 (ja) 1992-09-11 1994-04-27 三光化学株式会社 有機環状りん化合物及びその製造法
MY117653A (en) * 1997-06-13 2004-07-31 Polyplastics Co Flame-retardant thermoplastic polyester resin composition
JP4530384B2 (ja) 2000-07-04 2010-08-25 大八化学工業株式会社 新規なリン化合物及びその用途
JP2002080633A (ja) 2000-09-08 2002-03-19 Tokuyama Corp 難燃剤
JP2002138096A (ja) 2000-10-27 2002-05-14 Dainippon Ink & Chem Inc リン含有フェノール化合物とその製造方法、及び、それを用いたエポキシ樹脂組成物
JP2002256136A (ja) 2001-03-05 2002-09-11 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2003049036A (ja) 2001-08-07 2003-02-21 Sumitomo Bakelite Co Ltd ジアリルフタレート樹脂成形材料
KR101022541B1 (ko) * 2002-06-24 2011-03-16 가부시키가이샤 아데카 난연제 조성물 및 이 조성물을 함유한 난연성 수지 조성물
CN1176995C (zh) * 2002-08-12 2004-11-24 四川大学 含磷阻燃聚对苯二甲酸乙二醇酯/层状硅酸盐纳米复合材料及其制备方法和用途
DE10244578A1 (de) * 2002-09-25 2004-04-08 Clariant Gmbh Flammwidrige duroplastische Massen
US7294661B2 (en) * 2003-10-03 2007-11-13 E.I. Du Pont De Nemours And Company Flame resistant aromatic polyamide resin composition and articles therefrom
EP1852489A1 (en) 2005-02-21 2007-11-07 Fuji Electric Holdings Co., Ltd.; Reactive flame retardant and flame-retardant resin processed article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221572A (ja) * 1996-02-14 1997-08-26 Asahi Chem Ind Co Ltd スチレン系樹脂組成物の火種の滴下抑制剤
WO2003087230A1 (fr) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Composition de resine thermodurcissable, preimpregne et feuille stratifiee utilisant cette composition.
JP2004018857A (ja) * 2002-06-14 2004-01-22 Clariant Gmbh ホスホニットと他の成分との混合物
JP2004250539A (ja) * 2003-02-19 2004-09-09 Junko Shigehara 架橋型プラスチック難燃剤
JP2004315672A (ja) 2003-04-16 2004-11-11 Fuji Electric Holdings Co Ltd 電気部品用樹脂成形品
WO2004111121A1 (ja) * 2003-06-12 2004-12-23 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2005012415A1 (ja) * 2003-08-01 2005-02-10 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2005026251A1 (ja) * 2003-09-10 2005-03-24 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2006089534A (ja) * 2004-09-21 2006-04-06 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品
JP2006137843A (ja) * 2004-11-12 2006-06-01 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1889879A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975217A2 (de) * 2007-03-29 2008-10-01 Clariant International Ltd. Flammgeschützte Klebe- und Dichtmassen
EP1975217A3 (de) * 2007-03-29 2010-04-21 Clariant Finance (BVI) Limited Flammgeschützte Klebe- und Dichtmassen
WO2017159161A1 (ja) * 2016-03-14 2017-09-21 株式会社Adeka 難燃性熱可塑性ポリウレタン樹脂組成物
CN108473760A (zh) * 2016-03-14 2018-08-31 株式会社艾迪科 阻燃性热塑性聚氨酯树脂组合物
JPWO2017159161A1 (ja) * 2016-03-14 2019-01-17 株式会社Adeka 難燃性熱可塑性ポリウレタン樹脂組成物
US10738159B2 (en) 2016-03-14 2020-08-11 Adeka Corporation Flame retardant thermoplastic polyurethane resin composition
CN108473760B (zh) * 2016-03-14 2021-02-26 株式会社艾迪科 阻燃性热塑性聚氨酯树脂组合物
CN111235953A (zh) * 2020-02-13 2020-06-05 山东仁丰特种材料股份有限公司 一种使用新型阻燃剂提高汽车用空气滤纸阻燃性的方法

Also Published As

Publication number Publication date
JP2006328124A (ja) 2006-12-07
EP1889879A4 (en) 2010-01-13
CN101180369B (zh) 2010-10-13
CN101180369A (zh) 2008-05-14
EP1889879A1 (en) 2008-02-20
US7851528B2 (en) 2010-12-14
US20090105382A1 (en) 2009-04-23
JP4757538B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2006126528A1 (ja) 難燃性樹脂加工品
JP4753624B2 (ja) 難燃性樹脂加工品
JP4297453B2 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
US8444884B2 (en) Flame-proofed polymer material
WO2004085537A1 (ja) 難燃性合成樹脂組成物
JP4762034B2 (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP4295764B2 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2010077333A (ja) 難燃性樹脂組成物
JP2007246637A (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JPWO2005026251A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JPWO2004111121A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP4331722B2 (ja) 難燃性樹脂加工品
JP4210143B2 (ja) 電気部品用樹脂成形品
JP2006089534A (ja) 難燃性樹脂加工品
JPWO2005087852A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2006225587A (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
RU2487902C2 (ru) Безгалогеновый антипирен

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018093.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11915505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756484

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756484

Country of ref document: EP