WO2005012415A1 - 反応性難燃剤及びそれを用いた難燃性樹脂加工品 - Google Patents

反応性難燃剤及びそれを用いた難燃性樹脂加工品 Download PDF

Info

Publication number
WO2005012415A1
WO2005012415A1 PCT/JP2004/003160 JP2004003160W WO2005012415A1 WO 2005012415 A1 WO2005012415 A1 WO 2005012415A1 JP 2004003160 W JP2004003160 W JP 2004003160W WO 2005012415 A1 WO2005012415 A1 WO 2005012415A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
flame
retardant
flame retardant
mass
Prior art date
Application number
PCT/JP2004/003160
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Kanno
Asuka Onitsuka
Hironori Yanase
Kiyotaka Shigehara
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to EP04719605.0A priority Critical patent/EP1659148B1/en
Priority to JP2005512445A priority patent/JP4295764B2/ja
Publication of WO2005012415A1 publication Critical patent/WO2005012415A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds

Definitions

  • the present invention relates to, for example, a flame retardant used for a resin molded product and the like, and a flame-retardant resin processed product using the same, and more particularly, to a halogen-free non-halogen flame retardant.
  • Thermoplastic resins such as polyester and polyamide, and thermosetting resins such as epoxy have excellent moldability, mechanical strength, and electrical properties as general-purpose resins and engineering plastics. Is widely used. Products such as resin molded products are required to be flame-retardant from the viewpoint of safety for the purpose of preventing fires due to high temperatures.For example, standards such as UL 94 have been established as flame-retardant grades. Has been.
  • halogen-based flame retardant In general, it is known that the addition of a halogen substance is effective in making such a resin material flame-retardant, and is used by adding it to a resin.
  • the mechanism of the halogen-based flame retardant is that the halogenated radicals are mainly generated by thermal decomposition, and the halogenated radicals capture the organic radicals as the combustion source, thereby stopping the chain reaction of combustion. It is said to exhibit flammability.
  • a flame retardant containing a large amount of a halogen compound may generate dioxins depending on the combustion conditions. From the viewpoint of reducing the burden on the environment, there is an increasing demand for a reduction in the amount of halogen in recent years. Therefore, various non-halogen flame retardants containing no halogen compound have been studied.
  • Inorganic flame retardants such as metal hydrates and red phosphorus
  • organic phosphorus flame retardants such as phosphate esters have been studied as such non-octagonal flame retardants.
  • metal hydrates such as magnesium
  • the effect of imparting flame retardancy is not so high, so it is necessary to incorporate a large amount of the resin into the resin. Therefore, the moldability of the resin deteriorates, and the mechanical strength of the obtained molded product tends to decrease. Is limited.
  • Red phosphorus has a high flame-retardant effect, but impairs electrical properties due to poor dispersion, generates dangerous gases, reduces formability, and easily causes bleeding.
  • examples of a phosphorus-based flame retardant such as a phosphoric acid ester include, for example, Japanese Patent Application Laid-Open No. 2002-203394 discloses a piperazine salt of an acidic phosphoric acid ester having a phosphorinane structure or C 1 to It is disclosed that an alkylenediamine salt of No. 6 is used as a flame retardant.
  • JP-A-2002-80633 discloses a salt comprising an aromatic phosphate such as monophenyl phosphate and monotolyl phosphate and an aliphatic amine such as piperazine as a main component. Is disclosed.
  • Japanese Patent Application Laid-Open No. 2002-138896 discloses that a halogen-free flame-retardant formulation exhibits an excellent flame-retardant effect and has excellent heat resistance and water-resistant physical properties of a molded article. Further, it discloses that a phosphorus-containing phenol compound is used as a flame retardant for obtaining a flame-retardant epoxy resin having excellent adhesion in electric laminates.
  • JP-A-5-331179 discloses an organic cyclic phosphorus compound having a bifunctional hydroxyl group, which is particularly useful as a stabilizer for a polymer compound and a flame retardant.
  • JP-A-2002-203394 JP-A-2002-80633, JP-A-2002-38096, Phosphate ester compounds such as those used had to be blended at a high concentration due to insufficient flame retardancy.
  • the flame retardant component since there is no reactive group in the molecule to react with the resin component, the flame retardant component easily migrates in the resin, volatilizes during molding and contaminates the mold, and the resin surface has difficulty. There was a problem that the fuel bleeds out. For this reason, the thermal, mechanical, and electrical properties of the resin processed product were reduced.
  • the organic cyclic phosphorus compound disclosed in JP-A-5-331179 functions as a reactive flame retardant in a resin having a reactive group capable of binding to a hydroxyl group, such as an epoxy resin.
  • a resin that does not have a reactive group capable of bonding to a hydroxyl group such as a normal olefin resin, cannot form a crosslink, so that the flame retardant component easily migrates through the resin and volatilizes during molding. Dirty mold There were problems such as dyeing and bleeding out of the flame retardant on the resin surface.
  • an object of the present invention is to provide excellent flame retardancy and heat resistance even when a small amount is added to a resin, and to prevent bleed-out of a flame retardant, etc.
  • mechanical properties, electrical properties, dimensional stability An object of the present invention is to provide a reactive flame retardant excellent in moldability and a flame-retardant resin processed product using the same. Disclosure of the invention
  • one of the reactive flame retardants of the present invention is a reactive flame retardant that has reactivity with a resin and imparts flame retardancy by binding to the resin by the reaction. Characterized by containing an organic phosphorus compound represented by the general formula (la) or (lb).
  • CHs CY 1 — Y 2 represents N— RR 4 or at least one of X 1 to ⁇ 6 contains CHs ⁇ CY 1 — ⁇ 2 — Y 1 represents hydrogen or a methyl group, and Y 2 represents carbon Represents an alkylene group having a number of 1 to 5, or one C ⁇ _Y 3 —, wherein Y 3 represents an alkylene group having 2 to 5 carbon atoms.
  • Another one of the reactive flame retardants of the present invention has reactivity with a resin, A reactive flame retardant that imparts flame retardancy by binding to the resin, characterized by containing an organic phosphorus compound represented by the following general formula (Ha) or (lib).
  • Still another one of the reactive flame retardants of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction. It is characterized by containing an organic phosphorus compound represented by the following general formula (Ha) or (lib).
  • another one of the reactive flame retardants of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction, It is characterized by containing an organic phosphorus compound represented by the following general formula (IVa) or (IVb).
  • R 16 to R 19 are each — Represents a monofunctional aromatic hydrocarbon group which may contain a hetero atom, or at least one of R 16 to R 19 contains CH 2 CY 1 () —Y 11 —.
  • R 2 ° represents a bifunctional aromatic hydrocarbon group which may contain a hetero atom.
  • ⁇ ′ ⁇ represents hydrogen or a methyl group
  • ⁇ ′′ represents an alkylene group having 1 to 5 carbon atoms, or —C ⁇ —Y 12 —, wherein Y 12 is an alkylene group having 2 to 5 carbon atoms. Represents.
  • the flame-retardant resin processed product of the present invention comprises, after solidifying a resin composition containing the above-described reactive flame retardant and a resin, heating and irradiating the resin with the resin and the reactive flame retardant.
  • the terminal unsaturated bond of the organic phosphorus compound is reacted with the resin by heating or irradiation with radiation, so that the flame retardant component is stably present in the resin. .
  • the resulting resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, and flame retardancy. It is possible to obtain a resin molded product excellent in all of the properties and moldability, and it is possible to particularly improve heat resistance and mechanical strength. Further, thin-wall molding can be performed.
  • the resin composition contains two or more types of the reactive flame retardants, and at least one type is the polyfunctional reactive flame retardant.
  • the reaction rate required for crosslinking by the combined use of flame retardants having different reactivities Therefore, it is possible to prevent the resin from shrinking due to a rapid progress of a crosslinking reaction.
  • the inclusion of the polyfunctional flame retardant forms a uniform three-dimensional network structure of the above-mentioned organic cyclic phosphorus compound, so that heat resistance and flame retardancy are improved, and more stable resin properties are obtained. can get.
  • the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant has at least one unsaturated group at a terminal. It is preferably a cyclic nitrogen-containing compound.
  • the resin can be cross-linked to the three-dimensional network structure by the bond between the flame retardant and the resin even with the cyclic nitrogen-containing compound having at least one unsaturated group at the terminal. It is possible to obtain resin molded products with excellent chemical stability, heat resistance, mechanical properties, electrical characteristics, dimensional stability, flame retardancy, and moldability, while reducing the overall cost. it can. Further, since it contains nitrogen, the compatibility with the resin is further improved particularly when a polyamide resin is used as the resin.
  • the resin composition further contains a flame retardant other than the reactive flame retardant, and the flame retardant is an addition-type flame retardant having no reactivity. It is preferred that there be.
  • a non-reactive additive flame retardant such as phosphate ester, melamine, metal hydroxide, silicon, etc.
  • the reactive flame retardant alone due to a synergistic effect
  • the flame retardancy can be further improved as compared with the case (1), and the cost of the flame retardant can be reduced.
  • the resin composition further contains a cross-linking agent that does not have flame retardancy but has reactivity with the resin, and the cross-linking agent is mainly It is preferably a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the skeleton.
  • the resin can be cross-linked in a three-dimensional network structure by bonding the cross-linking agent and the resin, so that the obtained resin processed product has chemical stability, heat resistance, mechanical properties, electrical properties, dimensional stability, and difficulty. A resin molded product excellent in all of flammability and moldability can be obtained.
  • the inorganic filler contains 1 to 3.5% by mass of the inorganic filler based on the whole of the flame-retardant resin processed product.
  • the inorganic filler contains a layered clay formed by laminating a silicide layer, and the layered clay is contained in an amount of 1 to 10% by mass based on the entire flame-retardant resin processed product.
  • the layered clay formed by laminating a silicide layer is contained as an inorganic filler, the layered clay is dispersed in the resin in a nano-order to form a hybrid structure with the resin. . This improves the heat resistance, mechanical strength, and the like of the obtained flame-retardant resin processed product.
  • the flame-retardant resin processed product contains 5 to 40% by mass of a reinforcing fiber.
  • the reinforcing fiber it is possible to improve the mechanical strength of the resin processed product such as tension, compression, bending, impact, and the like, and it is possible to prevent a decrease in physical properties with respect to moisture and temperature.
  • the resin and the reactive flame retardant are obtained by reacting by irradiation with an electron beam or a beam of a dose of 10 kGy or more.
  • the resin after the resin is solidified by molding or the like, it can be bridged by radiation, so that a resin processed product can be manufactured with high productivity.
  • the dose within the above range, it is possible to prevent uneven formation of a three-dimensional network structure due to insufficient dose and bleed-out due to residual unreacted crosslinking agent.
  • the irradiation dose is set to 10 to 45 kGy, deformation and shrinkage due to internal distortion of a resin processed product due to oxidative decomposition products generated by excessive dose can be prevented.
  • the resin and the reactive flame retardant are obtained by reacting at a temperature 5 ° C. or more higher than the temperature at which the resin composition is molded.
  • a radiation irradiating device or the like is not required, and it can be suitably used particularly in a resin composition containing a thermosetting resin.
  • the flame-retardant resin processed product is one selected from a molded product, a coating film, and a sealant.
  • the flame-retardant resin processed product of the present invention has excellent flame retardancy as described above and can prevent pre-out, so that it can be applied not only to ordinary resin molded products but also to coatings as coating agents and the like. It is also suitably used as a sealant for semiconductors and liquid crystal materials.
  • the flame-retardant resin processed product is used as an electric component or an electronic component. Since the flame-retardant resin product of the present invention has excellent heat resistance, mechanical properties, electrical properties, dimensional stability, flame retardancy, and moldability as described above, the above-mentioned physical properties are particularly strict. Required, electrical components, electronic It is particularly preferably used as a part. BEST MODE FOR CARRYING OUT THE INVENTION
  • the reactive flame retardant of the present invention is a reactive flame retardant having reactivity with a resin, and imparting flame retardancy by binding to the resin by the reaction.
  • R 5 represents Represents a bifunctional aromatic hydrocarbon group which may contain a hetero atom
  • X 1 to X 4 are each selected from 110, 1 NH-
  • X 6 are each - NH- , Or — ((! ⁇ Ni ⁇ ⁇ — ⁇ ⁇ 2 ) N—.
  • R 1Q represents a bifunctional aromatic hydrocarbon group which may contain a hetero atom
  • At least one of R 6 to R 9 or X 7 , X 8 includes CH 2 4CY 4 —Y 5 — Y 4 represents hydrogen or a methyl group
  • Y 5 has 1 to 5 carbon atoms
  • R 16 to R 19 each represent CH 2 CY 1 () —Y 11 — or a monofunctional aromatic hydrocarbon group which may contain a hetero atom.
  • at least one of R lfi to R 19 includes CH 2 CY 1Q —Y 11 —
  • R 2 ° represents a bifunctional aromatic hydrocarbon group which may contain a hetero atom
  • Y 111 Represents hydrogen or a methyl group, Y 11 represents an alkylene group having 1 to 5 carbon atoms, or —COO—Y 12 —, wherein Y 12 represents an alkylene group having 2 to 5 carbon atoms.
  • the general formulas (Ia), (Ha), (Ha), and (IVa) are compounds in which phosphorus is pentavalent
  • the general formulas (lb), ( ⁇ b), (IHb ) And (IVb) are compounds in which phosphorus is trivalent.
  • the terminal unsaturated bond is a functional group for bonding to a resin by heating or irradiation with radiation or the like described below.
  • R 6 to R 9 , R "to R 14 which may contain a hetero atom of R 16 to R 19
  • a monofunctional aromatic hydrocarbon group an aromatic group having 6 to 14 carbon atoms
  • Specific examples of such a monofunctional aromatic hydrocarbon group which may contain a hetero atom include, for example, 1 C 6 H S (phenyl group) and 1 C 6 H 5 OH.
  • the aromatic hydrocarbon group means not only the aromatic hydrocarbon group such as the above-mentioned phenyl group p-C 6 H 4 —p_C 6 H 4 —, but also the above-mentioned aromatic hydrocarbon group. of or hydro Kishifueniru group - p_C 6 H 4 - S 0 2 _p- C 6 H 4 - , such as, in the sense that also includes groups containing heteroatoms of further such as oxygen and sulfur in addition to an aromatic hydrocarbon radical is there.
  • organophosphorus compound represented by the above general formula (Ia) include compounds represented by the following structural formulas (la-1) to (Ia-21).
  • the structural formulas (Ia-l) to (la — 2 The same structure as in 1) can be mentioned.
  • organophosphorus compound represented by the general formula (Ha) include compounds represented by the following structural formulas (IIa_l) to (Ha-12) .
  • organophosphorus compound represented by the general formula (Ha) include compounds represented by the following structural formulas (ma-l) to (ma-17). Note that, with respect to the compound example of the general formula (b), except that the phosphorus atom is trivalent except for the oxygen atom bonded to the phosphorus atom through a double bond, the structural formulas (Ma-l) to (Ha-l A structure similar to 17) can be mentioned.
  • organophosphorus compound represented by the general formula (IVa) specifically, for example, compounds represented by the following structural formulas (IVa-1) to (! Va-11) are exemplified.
  • the phosphorus atom is trivalent except for the oxygen atom bonded to the phosphorus atom through a double bond
  • the structural formulas (IVa-1) to (IVa- The same structure as in 11) can be mentioned.
  • R 5 , R 10 , R 15 , and R 20 at the center and phosphorus atoms on both sides thereof are bonded via an oxygen atom or a nitrogen atom. It has a ridge-type structure. Further, the phosphorus' atoms at both ends are bonded to the terminal group which is a side chain via another oxygen atom or nitrogen atom. And at least one terminal unsaturated bond in the terminal group.
  • R 5 and the phosphorus atoms on both sides are bonded via a nitrogen atom, and the phosphorus atoms on both ends and the terminal group of the side chain are bonded via at least one other nitrogen atom.
  • the bonded structure is general formula (I).
  • a structure in which R 1Q and phosphorus atoms on both sides are bonded via a nitrogen atom, and the phosphorus atoms on both ends and the terminal group of the side chain are all bonded via an oxygen atom is general. Equation ( ⁇ ).
  • the compound of the general formula (Ibl) can be obtained by using phosphorus trichloride instead of phosphorus oxychloride.
  • benzidine for example, 4,4'-diaminodiphenyl ether, bis (4-aminophenyl) methane, 2,2-bis [4- (N-arylamino) phenyl] propane, 4,4'-diaminobenzene Nzofuenon, bis (p - Aminofueniru) sulfone, 2, 6 - by using Jiaminona Futaren etc., in the above general formula ([pi); 1D, the X 7, X 8 can be changed.
  • benzidine for example, 4,4'-diaminodiphenyl ether, bis (4-aminophenyl) methane, 2,2-bis [4- (N-arylamino) phenyl] propane, 4,4'-diaminobenzene Nzofuenon, bis (p - Aminofueniru) sulfone, 2, 6 - by using Jiaminona Futaren etc., in the
  • R 6 to R 9 in the above general formula ( ⁇ ) can be changed.
  • arylamine for example, diarylamine, P-hydroxy-N-arylaniline, 4_ (4′-aryloxyphenoxy) aniline, N-aryl- ⁇ -naphthylamine, etc.
  • R "to R” and X 9 to X 12 in the equation ( ⁇ ) can be changed.
  • phosphorus oxychloride for example, phenoxyphosphoryl dichloride, arylphosphoryl dichloride or the like is used, and X 9 to X 12 are respectively — ⁇ _, one NH—, one (CH ⁇ CY ⁇ Y 2 ) N—A group selected from can be introduced.
  • the compound of the above (JV a-1) is obtained by adding phosphorus oxychloride to dimethylacetamide (DMAC) and adding the solution to the solution.
  • a solution of DMAc in which 1,4,4'-biphenylalcohol and triethylamine are dissolved is added dropwise to cause a reaction, and then a reaction mixture of allylic alcohol and triethylamine is obtained.
  • the compound of the general formula (IVb-1) can be obtained by using phosphorus trichloride instead of phosphorus oxychloride.
  • 4,4′-biphenyl alcohol for example, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane , 4, 4 '- dihydroxy benzophenone, bis (P- hydroxy phenyl) sulfone, naphthalene - 2, by using 6-diol, can change the R 2 in the general formula (IV).
  • R 16 to R 19 in the above general formula (IV) can be changed by using, for example, P-aryloxyphenol, 0-arylphenol, or the like instead of aryl alcohol.
  • organic phosphorus compounds represented by the above general formulas (I) to (! V) in the present invention, two or more kinds of compounds having different reactivities, that is, different numbers of the above functional groups in one molecule are used. It is preferable to use two or more compounds in combination. This makes it possible to control the reaction rate required for crosslinking, thereby preventing the resin composition from shrinking due to rapid progress of the crosslinking reaction.
  • organic phosphorus compounds represented by the general formulas (I) to (! V) it is preferable to contain at least a polyfunctional reactive flame retardant. As a result, a uniform three-dimensional network structure is formed by the organic phosphorus compound.
  • the flame-retardant resin processed product of the present invention is obtained by solidifying a resin composition containing a resin and the organic phosphorus compound represented by any of the above general formulas (I) to (IV), and then heating or irradiating the resin with radiation. Then, the reactive flame retardant is obtained by reacting the resin with the reactive flame retardant, and contains the reactive flame retardant in an amount of 1 to 20% by mass based on the whole resin composition.
  • thermoplastic resin and a thermosetting resin can be used and is not particularly limited.
  • thermoplastic resin for example, polyamide resin, polybutylene terephthalate Resin, polyester resin such as polyethylene terephthalate, polyacrylic resin, polyimide resin, polycarbonate resin, polyurethane resin, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene styrene copolymer, etc.
  • polyamide-based resin polybutylene terephthalate resin, polyethylene terephthalate resin, polycarbonate resin, polyacrylic resin, polyacetal resin, and polyphenylene oxide resin are used from the viewpoint of mechanical properties and heat resistance. Preferably, it is used.
  • thermosetting resin examples include epoxy resin, urethane resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, alkyd resin, and silicone resin.
  • epoxy resin a phenol resin, an unsaturated polyester resin, and a urea resin from the viewpoint of mechanical properties and heat resistance.
  • the content of the reactive flame retardant is preferably 1 to 20% by mass, more preferably 1 to 15% by mass, based on the whole resin composition. Good. If the content of the reactive flame retardant is less than 1% by mass, the crosslinking by the reaction is insufficient, and the mechanical, thermal, and electrical properties of the obtained resin processed product are not favorable. %, The reactive flame retardant becomes excessive, unreacted monomers and decomposed gas of the reactive flame retardant are generated, and the oligomerized product bleeds out, and the mechanical properties of the resin processed product are deteriorated. It is not preferable because it decreases.
  • an addition-type flame retardant having no reactivity other than the reactive flame retardant may be further contained.
  • a flame retardant a non-halogen flame retardant is preferable, and metal hydrates such as aluminum hydroxide and magnesium hydroxide, monophosphate esters such as triphenyl phosphate and tricresyl phosphate, and the like.
  • metal hydrates such as aluminum hydroxide and magnesium hydroxide, monophosphate esters such as triphenyl phosphate and tricresyl phosphate, and the like.
  • Examples thereof include condensed phosphoric acid esters such as (diphenyl) phosphate, ammonium polyphosphate, polyphosphoramide, red phosphorus, guanidine phosphate, etc., derivatives of cyanuric acid or isocyanuric acid, melamine derivatives, and silicon-based flame retardants.
  • condensed phosphoric acid esters such as (diphenyl) phosphate, ammonium polyphosphate, polyphosphoramide, red phosphorus, guanidine phosphate, etc., derivatives of cyanuric acid or isocyanuric acid, melamine derivatives, and silicon-based flame retardants.
  • flame retardants may be used alone or in combination of two or more. Flame retardant content other than this reactive flame retardant prevents bleeding and deterioration of mechanical properties In order to do so, the flame retardant other than the reactive flame retardant is preferably contained in an amount of 1 to 20% by mass, more preferably 3 to 15% by mass, based on the entire resin composition. Further, as a flame retardant having a reactivity other than the reactive flame retardant per 1 part by mass of the reactive flame retardant, a cyclic nitrogen-containing compound having at least one unsaturated group at a terminal is 0.5 to 10%. It is more preferable to contain the parts by mass.
  • group having an unsaturated group at the terminal include diacrylate, dimethacrylate, diarylate, triacrylate, trimethacrylate, triarylate, tetraacrylate, tetramethacrylate, and tetraarylate.
  • acrylates such as diacrylate, triacrylate, and tetraacrylate are more preferable.
  • examples of the cyclic nitrogen-containing compound include an isocyanuric ring and a cyanuric ring.
  • cyclic nitrogen-containing compound having at least one unsaturated group at the terminal include the above-mentioned derivatives of sialic acid or isocyanuric acid.
  • ⁇ Modified triacrylate, triisocyanuryl triacrylate and the like can be exemplified.
  • a crosslinking agent which does not have flame retardancy but has reactivity with the resin may be further contained.
  • a crosslinking agent a polyfunctional monomer or oligomer having an unsaturated group at the terminal of the main skeleton can be used.
  • the cross-linking agent having no flame retardancy but having reactivity with the resin means a cross-linking agent (reactivity) having no cross-linking property (reactivity).
  • reactivity a cross-linking agent having no cross-linking property (reactivity).
  • reactive flame retardants that have both crosslinking and flame retardance, such as cyclic nitrogen-containing compounds having at least one unsaturated group at the terminal.
  • Examples of such a cross-linking agent include di- to tetra-functional compounds represented by the following general formulas (a) to (c).
  • X is the main skeleton
  • R 2 1 to R 2 4 is a functional group having an unsaturated group at the terminal
  • (a) represents a bifunctional compound
  • (c) is a tetrafunctional compound.
  • the main skeleton X is an aliphatic alkyl such as glycerin or a pentaerythritol derivative, or an aromatic alkyl such as trimellit, pyromellit, tetrahydrofuran, or trimethylenetrioxane. And a structure such as a ring or bisphenol.
  • cross-linking agent examples include difunctional monomers or oligomers such as bisphenol F-EO-modified diacrylate, bisphenol A-EO-modified diacrylate, and tripropylene.
  • Diacrylates such as glycol diacrylate, polypropylene glycol diacrylate, polyethylene dalicol diacrylate, pentaerythritol diacrylate monostearate, and dimethacrylates and diarylates thereof.
  • trifunctional monomer or oligomer examples include phenol triacrylate, trimethylolpropane triacrylate, trimethylolpropane PO-modified triacrylate, and trimethylolpropane EO-modified triacrylate. And their trimethacrylates and triarylates.
  • tetrafunctional monomer or oligomer examples include ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, and the like.
  • the above crosslinking agent is used as the main skeleton X: trimellitic acid, pyromellitic acid, tetrahydrofurantetracarboxylic acid, 1,3,5-trihydroxybenzene, glycerin, pentaeristol, 2,4,6-tris (Chloromethyl)
  • aryl bromide aryl alcohol, arylamine, methallyl bromide, which is a functional group having an unsaturated group at a terminal. It is obtained by reacting 1. species selected from methallyl alcohol,
  • the crosslinking agent is preferably contained in an amount of 0.5 to 10 parts by mass based on 1 part by mass of the reactive flame retardant.
  • the resin composition used in the present invention may contain an inorganic filler, a reinforcing fiber, various additives, and the like, in addition to the resin and the flame retardant.
  • an inorganic filler By containing an inorganic filler, the mechanical strength of the resin processed product can be improved and the dimensional stability can be improved.
  • it serves as a substrate on which the reactive flame retardant is adsorbed, so that the reactive flame retardant is uniformly dispersed.
  • the inorganic filler conventionally known ones can be used, and typical ones are metal powders such as copper, iron, nickel, zinc, tin, stainless steel, aluminum, gold, and silver, fumed silica, Aluminum silicate, calcium silicate, silicic acid, hydrated calcium silicate, hydrated aluminum silicate, glass beads, power pump rack, quartz powder, mica, talc, mai, clay, titanium oxide, iron oxide, zinc oxide, calcium carbonate, carbonate Examples include magnesium, magnesium oxide, calcium oxide, magnesium sulfate, potassium titanate, and diatomaceous earth. These fillers may be used alone or in combination of two or more, or may be those treated with a known surface treatment agent.
  • the content of the inorganic filler is preferably from 1 to 35% by mass, more preferably from 1 to 20% by mass, based on the whole flame-retardant resin processed product. If the content is less than 1% by mass, the mechanical strength of the flame-retardant resin processed product is insufficient, the dimensional stability is insufficient, and the adsorption of the reactive flame retardant is insufficient. On the other hand, if it exceeds 35% by mass, the flame-retardant resin processed product becomes brittle, which is not preferable.
  • a layered clay obtained by laminating a silicate layer is a clay having a structure in which a silicate layer having a thickness of about In nm and a side length of about 100 nm is stacked. Therefore, this layered clay is dispersed in the resin on the nano order to form a hybrid structure with the resin, thereby improving the heat resistance, mechanical strength, etc. of the obtained flame-retardant resin processed product. I do.
  • the average particle size of the layered clay is preferably 100 nm or less.
  • the layered clay examples include montmorillonite, kaolinite, and my strength, but montmorillonite is preferred from the viewpoint of excellent dispersibility.
  • the layered clay may be surface-treated in order to improve dispersibility in resin.
  • commercially available ones may be used, such as “Nanomer” (trade name, manufactured by Nissho Iwai Bentonite Co., Ltd.) and “Somasif” (trade name, manufactured by Corpo Chemical Co., Ltd.). Can be used.
  • the content of the layered clay is preferably 1 to 10% by mass based on the entire flame-retardant resin processed product. That's right.
  • the layered clay may be used alone or in combination with another inorganic filler.
  • the reinforcing fibers for example, in the case of a molded product, the mechanical strength is improved and the dimensional stability can be improved.
  • the reinforcing fiber include glass fiber, carbon fiber, and metal fiber, and it is preferable to use glass fiber from the viewpoint of strength and adhesion to a resin or an inorganic filler.
  • These reinforcing fibers may be used alone or in combination of two or more kinds, or may be treated with a known surface treatment agent such as a silane coupling agent.
  • the glass fiber is surface-treated and further coated with a resin.
  • a resin e.g., ethylene glycol dimethacrylate
  • the adhesiveness with the thermoplastic polymer can be further improved.
  • a known silane coupling agent can be used. Specifically, at least one alkoxy group selected from the group consisting of a methoxy group and an ethoxy group, an amino group, a vinyl group, Examples thereof include a silane coupling agent having at least one reactive functional group selected from the group consisting of an acryl group, a methacryl group, an epoxy group, a mercapto group, a genogen atom and an isocyanate group.
  • the coating resin is not particularly limited, and examples thereof include a urethane resin and an epoxy resin.
  • the compounding amount of the reinforcing fiber is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, based on the whole flame-retardant resin product. If the content is less than 5% by mass, the mechanical strength of the flame-retardant resin processed product is reduced, and the dimensional stability is insufficient. It is not desirable because processing becomes difficult.
  • It contains the above-mentioned inorganic filler and reinforced fiber, and preferably contains 65% by mass or less of the inorganic filler and reinforced fiber with respect to the entire flame-retardant resin product, and 55% by mass or less. More preferably, it is contained.
  • the content of the inorganic filler and the reinforcing fiber exceeds 65% by mass, the ratio of the resin component is reduced, and the moldability is lowered, and the obtained resin processed product becomes brittle and the physical properties are deteriorated. Absent.
  • the resin composition used in the present invention includes various commonly used components other than those described above, for example, crystal nuclei as long as the physical properties such as heat resistance, weather resistance, and impact resistance of the present invention are not significantly impaired.
  • Agents, colorants, antioxidants, release agents, plasticizers, heat stabilizers, lubricants, UV protection An additive such as an agent can be added. As will be described later, for example, when the resin is reacted with the reactive flame retardant by ultraviolet rays, an ultraviolet initiator or the like can be used.
  • the colorant is not particularly limited, but it is preferable that the colorant does not fade by irradiation as described below. .
  • the flame-retardant resin processed product of the present invention is obtained by solidifying the above-mentioned resin composition, and then reacting the resin with the reactive flame retardant by heating or irradiation with radiation.
  • thermoplastic resin and the reactive flame retardant are melt-kneaded and pelletized, and then the conventional method is used. It can be formed by known injection molding, extrusion molding, vacuum molding, inflation molding or the like. Melt kneading can be carried out using a conventional melt kneading machine such as a single-screw or twin-screw extruder, a Banbury mixer, a maker, and a mixing roll.
  • the kneading temperature can be appropriately selected depending on the type of the thermoplastic resin.
  • the kneading is preferably performed at 240 to 280 ° C., and the molding conditions can also be appropriately set, and Not limited.
  • the extra spool during molding can be recycled as a thermoplastic resin.
  • thermosetting resin similarly to the above, after the thermosetting resin and the reactive flame retardant are melt-kneaded and pelletized, for example, conventionally known injection molding, compression molding, transfer molding, It can be molded using molding or the like.
  • the resin composition When forming a coating film, the resin composition may be applied as it is, or may be appropriately diluted with a solvent or the like to form a solution or suspension that can be applied, and then dried and formed into a film by a conventionally known method. May be.
  • a coating method such as mouth coating, spraying, dipping, and spin coating can be used, and is not particularly limited.
  • the unsaturated bond at the terminal of the reactive flame retardant reacts with the resin and undergoes a crosslinking reaction by heating or irradiation with radiation, and is stably present in the resin.
  • the reaction temperature is preferably 5 ° C or more higher than the resin molding temperature, and 10 ° C or more. Is more preferable.
  • radiation is used as a means for cross-linking, an electron beam, a ray, a ray, X-ray, ultraviolet ray, or the like can be used.
  • the radiation in the present invention means radiation in a broad sense, and specifically includes not only particle beams such as electron beams and ⁇ -rays but also electromagnetic waves such as X-rays and ultraviolet rays.
  • irradiation with an electron beam or a beam is preferred.
  • a known electron accelerator or the like can be used, and the acceleration energy is preferably 2.5 MeV or more.
  • Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays.
  • Irradiation using a known cobalt 60 radiation source or the like can be used for the irradiation with the alpha rays.
  • r-rays are preferable because they have a higher transmittance than electron beams, so that irradiation is uniform and preferable. However, since the irradiation intensity is high, dose control is necessary to prevent excessive irradiation.
  • the irradiation dose of radiation is preferably 10 kGy or more, more preferably 10 to 45 kGy. Within this range, a crosslinked resin article having excellent physical properties can be obtained. If the irradiation dose is less than 10 kGy, the formation of a three-dimensional network structure due to cross-linking becomes uneven, and unreacted cross-linking agent may bleed out, which is not preferable. On the other hand, if it exceeds 45 kGy, internal distortion of the resin-processed product due to the oxidative decomposition product remains, which is not preferable because deformation or shrinkage occurs.
  • the flame-retardant resin processed product of the present invention obtained as described above has, as a molded product, excellent mechanical properties, electrical properties, dimensional stability, and moldability in addition to heat resistance and flame retardancy. Therefore, electrical or electronic components that require high heat resistance and flame retardancy, as well as automotive and optical components, such as members for supporting contacts such as electromagnetic switches and breakers, printed circuit boards, etc. It can be suitably used as a substrate, a package for an integrated circuit, a housing for electric components, and the like.
  • Such electrical or electronic components include power receiving boards, switchboards, electromagnetic switches, circuit breakers, transformers, electromagnetic contactors, circuit protectors, relays, transformers, various sensors, various motors, Examples include semiconductor devices such as diodes, transistors, and integrated circuits.
  • an interior component such as a cooling fan, a pump, a brake cover, a panel, a sliding component, a sensor, and a motor component.
  • the above-described resin composition is sealed to cure the resin, and the above-described reaction by heating or irradiation is performed to seal electronic components and electric elements such as semiconductor chips and ceramic capacitors. It can be used as a flame retardant sealant.
  • sealing method sealing by injection molding, potting, transfer molding, injection molding, compression molding, or the like is possible.
  • the electronic component and the electrical component to be sealed are not particularly limited, but examples include a liquid crystal, an integrated circuit, a transistor, a thyristor, a diode, and a capacitor.
  • a non-halogen-based reactive flame retardant which is excellent in flame retardancy even when added in a small amount to a resin and can prevent bleed-out and the like, and flame retardancy using the same
  • a resin processed product can be provided. Therefore, this flame-retardant resin processed product can be suitably used for resin molded products such as electric parts and electronic parts, sealing agents for semiconductors and the like, and coating films.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.
  • Synthesis Examples 1 to 11 are represented by the general formula (I)
  • Synthesis Examples 12 to 18 are represented by the general formula ( ⁇ )
  • Synthesis Examples 19 to 28 are represented by the general formula (IE)
  • Synthesis Examples 29 to 35 are represented by the general formula (IV) ) Is a synthesis example.
  • DMAc dimethylacetamide
  • benzidine and triethyla were added to this solution.
  • a solution of DMAc 1 (50 ml) in which 20.2 g (0.2 Omo 1) of min was dissolved was added dropwise at 0 to 5 ° C over 1 hour, and reacted at the same temperature for 3 hours and at room temperature for 3 hours. . While adjusting the degree of vacuum, remove the solvent and excess phosphorus oxychloride below 40 ° C. The residue was distilled off, and 50 ml of DMAc 150 was added to dissolve solids other than triethylamine hydrochloride.
  • the solvent and volatile components were distilled off at 50 ° C or lower while adjusting the degree of vacuum, and dissolved in 1,000 ml of ethyl acetate.
  • the mixture was shaken with 0.05 mol aqueous hydrochloric acid and mixed with excess P- Extract hydroxyaniline into the aqueous phase, dry the ethyl acetate phase over anhydrous sodium sulfate, filter, dry under reduced pressure, and dry under reduced pressure. Drying afforded 72.4 g (yield approximately 94%) of the title product.
  • DMAc dimethylacetamide
  • phosphorus oxychloride phosphorus oxychloride
  • a solution of DMAc 1 (50 ml) in which 20.2 g (0.2 Omo 1) of min was dissolved was added dropwise at 0 to 5 ° C over 1 hour, and reacted at the same temperature for 3 hours and at room temperature for 3 hours. .
  • the solvent and excess phosphorus oxychloride were distilled off at 40 ° C. or lower while adjusting the degree of reduced pressure, and DMAc 15 Om1 was added to dissolve solids other than triethylamine hydrochloride.
  • DMAc 150 m1 To 100 ml of distilled and purified dimethylacetamide (DMAc) was added 61.3 g of phosphorus oxychloride (0.4 Omo 1), and 18.6 g of 4,4'-biphenyl alcohol (0. l Omo.l) and triethylamine 20.2 g (0.2 Omo 1) in DMA c 150 m1 were added dropwise at 0-5 ° C over 1 hour. For 3 hours and at room temperature for 3 hours. The solvent and excess oxychloride were distilled off at 40 ° C. or lower while adjusting the degree of vacuum, and solids other than triethylamine hydrochloride were dissolved by adding 50 ml of DMAc150.
  • DMAc150 dimethylacetamide
  • Examples 1 to 10 are production examples of a resin processed product using the reactive flame retardant of the general formula (I), and Comparative Examples 1 to 11 are corresponding comparative examples.
  • Examples 11 to 20 are production examples of a resin processed article using the reactive flame retardant of the general formula (H), and Comparative Examples 12 to 22 are corresponding comparative examples.
  • Examples 21 to 30 are production examples of a resin processed product using the reactive flame retardant represented by the general formula (II), and Comparative Examples 23 to 33 are corresponding comparative examples.
  • Examples 31 to 40 are production examples of a resin processed product using the reactive flame retardant represented by the general formula (IV), and Comparative Examples 34 to 44 are corresponding comparative examples.
  • JAFT2Ak 25 22 parts by mass, 1 part by mass of car pump rack as a coloring agent, 0.2 parts by mass of an antioxidant (manufactured by Ciba Geigy Co., Ltd .: Yilganylganox 10010), and 5 parts by mass of calcium carbonate as an inorganic filler Then, 10 parts by mass of the above compound (Ia-l) as a reactive flame retardant was blended and kneaded at 280 ° C with a side-flow type twin-screw extruder (manufactured by Nippon Steel Corporation) to obtain resin pellets. After drying for 4 hours at C, the above pellets were molded using an injection molding machine (FUNUC: 500, resin temperature 280t :, mold temperature 80 ° C).
  • FUNUC 500, resin temperature 280t :, mold temperature 80 ° C.
  • Example 5 Thereafter, the molded article was irradiated with 30 kGy of r-ray using cobalt 60 as a radiation source to obtain a resin processed article of Example 4.
  • Example 5
  • the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 5.
  • Example 6 As the flame retardant of Example 1, 8 parts by mass of the above-mentioned tetrafunctional compound (Ia-15), trifunctional isocyanuric acid E-modified triacrylate (Toa Gosei Co., Ltd .: M-315) 2 A resin processed product of Example 6 was obtained with the same composition and conditions as in Example 1 except that the parts by mass were used in combination.
  • a molded article was molded under the same conditions as in Example 2 except that 2 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) was further added to the system of Example 2.
  • NOFMER BC manufactured by NOF CORPORATION
  • a molded article was molded under the same conditions as in Example 2 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Ilganox 369 manufactured by Ciba Geigy) were added to the system of Example 2. did.
  • the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWZcm 2 for 2 minutes to obtain a resin processed article of Example 8.
  • Thermoset epoxy mold resin (Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1)
  • a reactive flame retardant a system in which 47 parts by mass of silica is dispersed in 45 parts by mass
  • the resin processed article of Example 9 was reacted at 100 ° (:, 1 hour) to obtain a molded article. Obtained.
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 6 parts by mass of the above compound (la-4) as a reactive flame retardant was added to 94 parts by mass to obtain a molded product. The mixture was reacted at 50 ° C. for 4 hours to obtain a resin processed product (sealing agent) of Example 10.
  • Comparative Examples 1 to 10
  • Injection molding machine manufactured by FUNUC: Hi 500, under the general conditions of cylinder temperature 280T, mold temperature 80 ° C, injection pressure 78.4 MPa, injection speed 120 mmZ s, cooling time 15 seconds, We molded electric and electronic parts and molded products for automobiles.
  • Example 1 56.8 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 10 parts by mass of polyfunctional compound (Ila-7) as flame retardant, and non-reactive organophosphorus
  • An inorganic filler, a glass fiber, a colorant, and an antioxidant were added in the same amounts as in Example 12 except that 6 parts by mass of a flame retardant (manufactured by Sanko Chemical: HCA-HQ) was used. 3 processed resin products were obtained.
  • Injection molding machine FUNUC: 500, cylinder temperature 280 ° (:, gold Mold temperature: 80t: Injection pressure: 78.4MPa, Injection speed: 120mmZs, Cooling time: 15 seconds Under general conditions, electric and electronic parts and molded products for automobiles were molded.
  • the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 15.
  • Example 11 As the flame retardant of Example 1, 8 parts by mass of the above-mentioned tetrafunctional compound ( ⁇ a-6), 4 parts by mass of trifunctional isocyanuric acid EO-modified triacrylate (manufactured by Toagosei Co., Ltd .: M-315) A resin-processed product of Example 16 was obtained with the same composition and conditions as in Example 11 except that parts were used in combination.
  • a molded article was molded under the same conditions as in Example 12 except that 2 parts by mass of a thermal catalyst (NOFMA-1 BC, manufactured by NOF CORPORATION) was further added to the system of Example 12.
  • a thermal catalyst NOFMA-1 BC, manufactured by NOF CORPORATION
  • Molding was carried out under the same conditions as in Example 12 except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Cipagaigi Co., Ltd.) were added to the system of Example 12. The product was molded.
  • an ultraviolet initiator 2: 1 mixture of Irganox 651 and Irganox 369 manufactured by Cipagaigi Co., Ltd.
  • the molded product was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmW / cm 2 for 2 minutes to obtain a resin processed product of Example 18.
  • Example 19 Thermosetting epoxy-based mold resin (manufactured by Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) 47 parts by mass dispersed with 45 parts by mass of silica After adding 8 parts by mass of the above compound (Ha-9) as a fuel, a molded article was obtained and then reacted for 100 hours and 1 hour to obtain a resin processed article (sealing agent) of Example 19. .
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 6 parts by mass of the above compound (lla-12) as a reactive flame retardant was added to 94 parts by mass to obtain a molded product The mixture was reacted at 150 ° C. for 4 hours to obtain a resin processed product (sealing agent) of Example 20.
  • Comparative Examples 1 to 20 were prepared in the same manner as in Examples 11 to 20, except that only the reactive flame retardant represented by the general formula (Ha) of the present invention was not used. 2 to 21 resin processed products were obtained. '
  • Example 13 The resin processing of Comparative Example 22 was carried out under the same conditions as in Example 13 except that only 16 parts by mass of a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN) was added as the flame retardant of Example 13. I got the goods.
  • a non-reactive organophosphorus flame retardant manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN
  • JAFT2Ak25 20 parts by weight, 1 part by weight of a car pump rack as a coloring agent, 0.2 part by weight of an antioxidant (Cirva Geigy Co., Ltd .: Yilganylganox 11010), 5 parts by weight of calcium carbonate as an inorganic filler, 12 parts by weight of the above compound (Ha-I) as a flame retardant were mixed and kneaded at 280 ° C with a side-flow type twin-screw extruder (manufactured by Nippon Steel Corporation) to obtain resin pellets. After drying for 4 hours, the pellets were molded using an injection molding machine (FUNUC: a50C) at a resin temperature of 280 ° C and a mold temperature of 80.
  • FUNUC injection molding machine
  • JAFT2A k25 20 parts by mass were mixed into a mixed resin system melted from the side using extrusion kneading to obtain a compound pellet having the resin composition of the present composition.
  • the molded article was irradiated with 30 kGy of ⁇ -ray using cobalt 60 as a radiation source to obtain a resin processed article of Example 22.
  • Example 23 a resin processed product of Example 23 was obtained.
  • the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 25.
  • Example 26 As the flame retardant of Example 21, 8 parts by mass of the above-mentioned tetrafunctional compound (ma-6) and 3 parts by mass of trifunctional isocyanuric acid EO-modified triacrylate (manufactured by Toagosei Co., Ltd .: M-315) A resin processed product of Example 26 was obtained with the same composition and conditions as in Example 21 except for using it.
  • a molded article was molded under the same conditions as in Example 22 except that 2 parts by mass of a thermal catalyst (manufactured by NOF CORPORATION: Sufuma-1 BC) was further added to the system of Example 22.
  • a thermal catalyst manufactured by NOF CORPORATION: Sufuma-1 BC
  • Example 22 In the system of Example 22, an ultraviolet initiator (Ilganox 651 manufactured by Chipagagi Co., Ltd. A molded product was molded under the same conditions as in Example 22 except that 7 parts by mass was added.
  • Ilganox 651 manufactured by Chipagagi Co., Ltd.
  • a molded product was molded under the same conditions as in Example 22 except that 7 parts by mass was added.
  • the molded article was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmW / cm 2 for 2 minutes to obtain a resin processed article of Example 28.
  • Thermosetting epoxy-based mold resin manufactured by Nagase Chemical Co., Ltd., main agent XNR4012: 100, hardener XNH4012: 50, hardening accelerator FD400: 1) After adding 8 parts by mass of the above compound (ma-9) as a fuel, a molded article was obtained and reacted at 100 ° C. for 1 hour to obtain a resin processed article (sealing agent) of Example 29.
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 6 parts by mass of the above compound (Ha-12) as a reactive flame retardant was added to 94 parts by mass to obtain a molded product. The mixture was reacted at 150 ° C. for 4 hours to obtain a resin processed product (sealing agent) of Example 30.
  • Comparative Examples 23 to 32 were prepared in the same manner as in Examples 21 to 30, except that only the reactive flame retardant represented by the general formula (Ma) of the present invention was not used in Examples 21 to 30. A resin processed product was obtained.
  • Example 23 The resin processing of Comparative Example 33 'was performed under the same conditions as in Example 23 except that only 16 parts by mass of a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN) was added as the flame retardant of Example 3. I got the goods.
  • a non-reactive organophosphorus flame retardant manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN
  • JAFT2Ak25 25 parts by weight, 1 part by weight of a car pump rack as a coloring agent, 0.2 parts by weight of an antioxidant (manufactured by Ciba Geigy Co., Ltd .: Yirganylganox 100), and 5 parts by weight of calcium carbonate as an inorganic filler , Reactivity 12 parts by mass of the above compound (IVa_7) as a flame retardant was compounded and kneaded at 280 ° C with a side-flow twin-screw extruder (manufactured by Nippon Steel Corporation) to obtain resin pellets, which were then heated at 105 ° C for 4 hours. After drying, the pellets were molded using an injection molding machine (manufactured by FUNUC: Hi 50C) under the conditions of a resin temperature of 280 ° C and a mold temperature of 80 ° C.
  • an antioxidant manufactured by Ciba Geigy Co., Ltd .: Yirganylganox 100
  • the molded article was irradiated with 25 kGy of a-rays using cobalt 60 as a radiation source to obtain a resin processed article of Example 31.
  • Injection molding machine FUNUC: 500 temperature, cylinder temperature 280 ° C, mold temperature 80 ° C, injection pressure 78.4MPa, injection speed 120mm, s, cooling time 15 seconds under general conditions Molded electric and electronic parts and molded products for automobiles.
  • Example 32 Thereafter, the molded product was irradiated with 30 kGy of a-rays using cobalt 60 as a radiation source to obtain a resin processed product of Example 32.
  • Example 32 56.8 parts by mass of 66 nylon as thermoplastic resin (manufactured by Ube Industries, Ltd .: 2020 B), 12 parts by mass of the above-mentioned compound (IVa-2) which is a polyfunctional compound as a flame retardant, and non-reactive organic phosphorus-based compounds Except for using 6 parts by mass of a flame retardant (manufactured by Sanko Chemical Co., Ltd .: HCA-HQ), the same amount of an inorganic filler, a glass fiber, a colorant, and an antioxidant were added as in Example 32. A resin processed product was obtained.
  • Nylon Ube Industries: 2020 B
  • a clay having a diameter of about 0.05 zm as an inorganic filler 1 part by mass of carbon black as a coloring agent
  • 8 parts by mass of a polyfunctional compound (IVa-7) as a reactive flame retardant 4 parts by mass of a clay having a diameter of about 0.05 zm as an inorganic filler, 1 part by mass of carbon black as a coloring agent, and 8 parts by mass of a polyfunctional compound (IVa-7) as a reactive flame retardant, , Polyfunctional cyclic compound (manufactured by Nippon Kasei Co., Ltd .: TAIC), 2 parts by mass, antioxidant (manufactured by Ciba-Geigy Co., Ltd .: Irganox 1010) 0.2 parts by mass, mixed and set to 280 ° C side flow type Using a twin-screw extruder, 25 parts by mass of glass fiber (Asahi Fiberglass Co., Ltd .: 03.
  • JAFT2Ak25 surface-treated with a silane coupling agent as a reinforcing fiber was melted from the side using extrusion kneading. After mixing with the mixed resin system thus obtained to obtain a compound pellet having the resin composition of the present composition, the pellet was dried at 105 ° C for 4 hours.
  • Injection molding machine (made by FUNUC Co., Ltd .: general conditions of 280 per cylinder, mold temperature 80 ° C, injection pressure 78.4 MPa, injection speed 120 mm / s, cooling time 15 seconds using Hi 500
  • the company formed molded products for electric and electronic parts and automobiles.
  • Example 34 Thereafter, the molded product was irradiated with 3 kGy of ⁇ -rays using cobalt 60 as a radiation source to obtain a resin processed product of Example 34.
  • the molded article was irradiated with an electron beam having an irradiation voltage of 40 kGy at an acceleration voltage of 4.8 MeV using an accelerator manufactured by Sumitomo Heavy Industries, Ltd. to obtain a resin processed article of Example 35.
  • Example 31 As the flame retardant of Example 31, 8 parts by mass of the above-mentioned tetrafunctional compound (IVa-1), 3 parts by mass of trifunctional isocyanuric acid EO-modified triacrylate (manufactured by Toagosei Co., Ltd .: M—315) A resin processed product of Example 36 was obtained with the same composition and conditions as in Example 31 except that the resin was used in combination. '
  • Example 32 To the system of Example 32, 2 parts by mass of a thermal catalyst (NOFMER BC, manufactured by NOF CORPORATION) and further added A molded article was molded under the same conditions as in Example 32 except that the above procedure was repeated.
  • NOFMER BC a thermal catalyst
  • a molded article was molded under the same conditions as in Example 32, except that 7 parts by mass of an ultraviolet initiator (2: 1 mixture of Irganox 651 and Ilganox 369 manufactured by Ciba-Geigy) were added to the system of Example 32. did.
  • the molded product was irradiated with an ultra-high pressure mercury lamp at a wavelength of 365 nm at an illuminance of 15 OmWZcm 2 for 2 minutes to obtain a resin processed product of Example 38.
  • Thermosetting epoxy-based mold resin manufactured by Nagase Chemical Co., Ltd., main agent XNR4012: 100, curing agent XNH4012: 50, curing accelerator FD400: 1) After adding 8 parts by mass of the above compound (Wa-5) as a fuel, a molded article was obtained and reacted at 100 ° C. for 1 hour to obtain a resin processed article of Example 39 (sealing agent).
  • Epoxy resin for semiconductor encapsulation (Shin-Etsu Chemical Co., Ltd .: Semicoat 1 15) 6 parts by mass of the above compound (IVa-4) as a reactive flame retardant was added to 94 parts by mass to obtain a molded product , 150 ° (: 4 hours) to obtain a resin processed product (sealing agent) of Example 40.
  • Comparative Examples 34 to 43
  • Comparative Examples 3 to 4 were performed in the same manner as in Examples 31 to 40 except that only the reactive flame retardant represented by the general formula (IVa) of the present invention was not used in Examples 31 to 40. ⁇ 43 resin products were obtained.
  • Example 3 The resin processed product of Comparative Example 44 under the same conditions as in Example 33 except that only 16 parts by mass of a non-reactive organophosphorus flame retardant (manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN) was added as the flame retardant of 3. Got.
  • a non-reactive organophosphorus flame retardant manufactured by Sanko Chemical Co., Ltd .: EP0CLEAN
  • Test pieces (length 5 inch, width 1/2 inch, thickness 3.2 mm) of the resin processed products of Examples 1 to 40 and Comparative Examples 1 to 44 in accordance with UL-94, which is a flame retardancy test
  • UL-94 is a flame retardancy test
  • Glow wire test specimens 60 mm square, 1.6 mm thick
  • glow wire test IEC compliant
  • solder A heat resistance test was performed.
  • a bleed-out test was conducted at 300 ° C for 3 hours for all resin processed products.
  • the test pieces were mounted vertically, and the burning time after flame contact for 10 seconds with a Bunsen burner was recorded.
  • the second 10-second indirect flame after the fire extinguishing and the burning time after the flame contact was recorded again, the total burning time, the glowing time (glowing) time after the second fire extinguishing, and the dripping material that ignite the cotton It was determined by the presence or absence.
  • nichrome wire component: 80% nickel, 20% chromium
  • a 0.5 mm diameter was used as a thermocouple for temperature measurement.
  • the test was performed using a type K (chromel-alumel) with a thermocouple crimping load of 1.0 ⁇ 0.2 N and a temperature of 850 ° C.
  • the flammability (GWF I) was determined based on the fact that the burning time after contact for 30 seconds was within 30 seconds and that the tissue paper under the sample did not ignite.
  • the solder heat resistance test showed the dimensional deformation rate after immersion in a solder bath at 350 ° C for 10 seconds.
  • Table 1 is a test example of a resin processed article using the reactive flame retardant of the general formula (I) (Examples 1 to 10, Comparative Examples 1 to 11).
  • Table 2 shows test examples of processed resin products using the reactive flame retardant represented by the general formula (II) (Examples 11 to 20, Comparative Examples 12 to 22).
  • Table 3 is a test example of a resin processed product using the reactive flame retardant of the general formula (m).
  • Table 4 shows test examples of processed resin products using the reactive flame retardant represented by the general formula (IV) (Examples 31 to 40, Comparative Examples 34 to 44). Clamp 300 ° CX for falling objects
  • Example 1 V- 0 'Passed 5
  • Example 2 V- 0 Passed 4
  • Example 3 V- 0' Passed 8
  • Example 4 V- 0 Passed 3.
  • Example 5 V- 0 'Passed 10
  • Example 6 V- 0 Passed 7
  • Example 7 V- 0 Passed 13
  • Example 8 V- 0 te Passed 8
  • Example 9 V- 0 Passed 5
  • Example 10 V- 0 'Passed 19 Comparative Example 1 HB Yes Yes Failure Deformed immediately after immersion Comparative Example 2 HB Yes Yes Reject Deformation immediately after immersion Comparative Example 3 HB Yes Yes Reject Deformation immediately after immersion Comparative Example 4 HB ⁇ ] ⁇
  • Example 11 V- 0 ⁇ Pass 6
  • Example 12 V- 0 iH: Pass 4
  • Example 13 V- 0 Pass 9
  • Example 14 V- 0 Pass 3
  • Example 15 V- 0 Pass 1 1
  • Example 16 V- 0 Passed 12
  • Example 18 V- 0 Passed 18
  • Example 19 V- 0 Passed 4
  • Comparative Example 12 HB Yes Yes Failed i Deformation immediately after immersion Comparative Example 13 HB Yes Yes Reject Deformation immediately after immersion Comparative Example 14 HB Yes Yes Reject Deformation immediately after immersion Comparative Example 15 HB Yes Yes Reject Deformation immediately after immersion Comparative Example 16 HB Yes Yes Reject 35 Comparative Example ⁇ HB Yes Yes Rejection Immediately after immersion Deformation Comparative Example 18 HB Yes Yes Failure te Deformation immediately after immersion Comparative Example 19 HB Yes Yes Failure Deformation immediately after immersion Comparative Example 20 HB Yes Yes Failure M Deformation immediately after immersion
  • Example 21 V-0 Passed 6
  • Example V-0 Passed 4 Example 23
  • Example 24 V-0 Passed 3
  • Example 25 V-0 Passed 1 1
  • Example 26 V-0 Passed 1 2
  • Example 27 V- 0 Passed 1 6
  • Example 28 V- 0 Passed 1 8
  • Example 29 V- 0 Passed 4
  • Example 30 V- 0 Passed 1 9 Comparative Example 23 HB Yes Yes Failed Deformed immediately after immersion Comparative Example 24 HB Yes Yes Fail Deformation immediately after immersion Comparative Example 25 HB Yes Yes Fail Deformation immediately after immersion Comparative Example 26 HB Yes Yes Rejection Deformation immediately after immersion Comparative Example 27 HB Yes Yes Fail 3 5 Comparative Example 28 HB Yes Yes.
  • Comparative Examples 1 and 10 containing no reactive flame retardant of the present invention and Comparative Examples 12 and 21 In Comparative Examples 23 to 32 and Comparative Examples 34 to 43, the flame retardancy was insufficient with HB, all failed in the glow-wire test, and the dimensional deformation rate after the soldering heat test was also low. It turns out that it is inferior to an Example.
  • the present invention is suitable as a halogen-free, non-halogen-based flame retardant and a flame-retardant resin processed product, such as a resin molded product such as an electric component or an electronic component, a sealing agent such as a semiconductor, and a coating film.
  • a flame-retardant resin processed product such as a resin molded product such as an electric component or an electronic component, a sealing agent such as a semiconductor, and a coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)

Description

明 細 書
' 反応性難燃剤及びそれを用いた難燃性樹脂加工品 技術分野
本発明は、 例えば、 樹脂成形品等に利用される難燃剤及びそれを用いた難燃性樹 脂加工品に関し、 更に詳しくは、 ハロゲンを含有しない非ハロゲン系の難燃剤に関 する。 背景技術
ポリエステルやポリアミド等の熱可塑性樹脂や、 エポキシ等の熱硬化性樹脂は、 汎用樹脂、 エンジニアリングプラスチックとして優れた成形加工性、 機械的強度、 電気特性を有していることから、 電気、 電子分野等を始めとして広く用いられてい る。 そして、 これらの樹脂成形品等の製品は、 高温による火災防止を目的とした安 全上の観点から難燃性が要求されており、 例えば、 難燃グレードとして U L 9 4の ような規格が設けられている。
一般に、 このような樹脂材料の難燃化としては、 特にハロゲン物質の添加が有効 であることが知られており、 樹脂に添加させて使用されている。 このハロゲン系難 燃剤のメカニズムは、 主に熱分解によりハロゲン化ラジカルが生成し、 このハロゲ ン化ラジカルが燃焼源である有機ラジカルを捕捉することで、 燃焼の連鎖反応を停 止させ、 高難燃性を発現させると言われている。
しかし、 ハロゲン化合物を大量に含む難燃剤は、 燃焼条件によってはダイォキシ ン類が発生する可能性があり、 環境への負荷を低減する観点から、 近年ハロゲン量 を低減させる要求が高まっている。 したがって、 ハロゲン系化合物を含有しない非 ハ口ゲン系難燃剤が各種検討されている。
このような非八口ゲン系難燃剤としては、 金属水和物や赤リン等の無機難燃剤、 リン酸エステル等の有機リン系難燃剤等が検討されているが、 水酸化アルミニウム や水酸化マグネシウムといった金属水和物の場合、 難燃性付与効果があまり高くな いので、 樹脂に多量に配合する必要がある。 したがって、 樹脂の成形性が悪くなつ たり、 得られる成形品等の機械的強度が低下しやすく、 使用可能な成形品等の用途 が限定されるという問題がある。 また、 赤りんは、 難燃効果は高いが、 分散不良に より電気特性を阻害したり、 危険ガスが発生したり、 成形性を低下するとともにブ リード現象を起こしやすい。
一方、 リン酸エステル等のリン系難燃剤としては、 例えば、 特開 2 0 0 2— 2 0 3 9 4号公報には、 ホスホリナン構造を有する酸性リン酸エステルのピぺラジン塩 もしくは C 1〜 6のアルキレンジアミン塩を難燃剤として使用することが開示され ている。
また、 特開 2 0 0 2— 8 0 6 3 3号公報には、 リン酸モノフエニル、 リン酸モノ トリル等の芳香族リン酸エステルとピぺラジン等の脂肪族ァミンとからなる塩を主 成分とする樹脂用難燃剤が開示されている。
更に、 特開 2 0 0 2— 1 3 8 0 9 6号公報には、 ハロゲンフリーの難燃処方とし て優れた難燃効果を発現させると共に、 成形品の耐熱性、 耐水性の物性に優れ、 ま た電気積層板用途における密着性に優れる難燃エポキシ樹脂を得るための難燃剤と してリン含有フエノール化合物を用いることが開示されている。
更にまた、 特開平 5— 3 3 1 1 7 9号公報には、 特に高分子化合物の安定剤、 難 燃剤として有用である、 2官能ヒドロキシル基を有する有機環状リン化合物が開示 されている。
しかしながら、 上記の特開 2 0 0 2 - 2 0 3 9 4号公報、 特開 2 0 0 2— 8 0 6 3 3号公報、 特開 2 0 0 2— 1 3 8 0 9 6号公報に用いられているようなリン酸ェ ステル化合物においては、 その難燃性が不充分であるため高濃度で配合する必要が あった。
また、 分子内に樹脂成分と反応するための反応基を有していないために、 難燃剤 成分が樹脂中を移行しやすく、 成型時に揮発して金型を汚染したり、 樹脂の表面に 難燃剤がブリードアウトするという問題があった。 このため、 樹脂加工品の熱的、 機械的、 電気的特性等を低下する原因となっていた。
更に、 特開平 5— 3 3 1 1 7 9号公報の有機環状リン化合物においては、 ェポキ シ樹脂のようなヒドロキシル基と結合できるような反応基を有する樹脂においては 反応性難燃剤として機能する。 しかし、 例えば、 通常のォレフィン樹脂のようにヒ ドロキシル基と結合できるような反応基を有しない樹脂においては架橋を形成でき ないので、 やはり難燃剤成分が樹脂中を移行しやすく、 成型時に揮発して金型を汚 染したり、 樹脂の表面に難燃剤がブリードアウトするという問題があつた。
したがって、 本発明の目的は、 樹脂への少量の添加でも難燃性、 耐熱性に優れる とともに難燃剤のブリードアウト等を防止でき、 加えて、 成形品の機械特性、 電気 特性、 寸法安定性、 成形性にも優れる、 反応性難燃剤及びそれを用いた難燃性樹脂 加工品を提供することにある。 発明の開示
すなわち、 本発明の反応性難燃剤の 1つは、 樹脂との反応性を有し、 該反応によ り前記樹脂と結合することによって難燃性を付与する反応性難燃剤であって、 下記 の一般式 (l a) 又は (l b) で示される有機リン化合物を含有することを特徴と する。
O^P-X^R^-X-P^O (I a)
X-R2 X^R4
P-X-R-X-P … (I b)
X-R2 X^R4
(式 (l a) 又は (l b) 中、 Ri〜R4はそれぞれ (:!^ニじ丫1一 Y2—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R 5はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表す。 ェ〜 4はそれぞれ一〇一、 τΝΗ―、 一 (CH2 = C Υ^Υ2) Ν—より選択される基を表し、 ェ〜 4の少 なくとも 1つは— ΝΗ—、 又は一 (CHg^CYi—Y2) N—を含む。 X5、 X6は それぞれ— NH—、 又は— (CHs CY1— Y2) N—を表す。 R R4又は X1 〜χ 6の少なくとも 1つは CHs^CY1— Υ2—を含む。 Y1は水素又はメチル基を 表し、 Y2は炭素数 1〜5のアルキレン基、 又は一 C〇〇_Y3—を表す。 ここで、 Y3は炭素数 2〜5のアルキレン基を表す。 )
また、 本発明の反応性難燃剤の他の 1つは、 樹脂との反応性を有し、 該反応によ り前記樹脂と結合することによって難燃性を付与する反応性難燃剤であって、 下記 の一般式 (H a) 又は (lib) で示される有機リン化合物を含有することを特徴と する。
0-R6 0— R!
0=P-X-R-X~P=0
(Π a)
0-R7 0-R£
0-R6 0-R8
P-X-R-X-P … ヽ
-r - (n b)
(式 a) 又は (li b) 中、 R6〜R9はそれぞれ CH2 = C Y4— Y5—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R1(1はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表し、 X7、 X8はそれぞれ一 NH 一、 又は— (CH2 = CY4— Y5) N—を表す。 R6〜R9又は X7、 X8の少なくと も 1つは CH2 = CY4— Y5—を含む。 Y4は水素又はメチル基を表し、 Y5は炭素 数 1〜5のアルキレン基、 又は— COO— Y6—を表す。 ここで、 Y6は炭素数 2〜 5のアルキレン基を表す。 )
また、 本発明の反応性難燃剤の更に他の 1つは、 樹脂との反応性を有し、 該反応 により前記樹脂と結合することによつて難燃性を付与する反応性難燃剤であつて、 下記の一般式 (H a) 又は (lib) で示される有機リン化合物を含有することを特 徴とする。
X^R" X-R'3
O=P-O-R-O-P=O … (ma)
X-R12 X R"
Figure imgf000006_0001
(式 (Ha) 又は (lib) 中、 R"〜R14はそれぞれ CH2 = CY7— Y8—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R15はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表す。 912はそれぞれー0 一、 — ΝΗ—、 一 (CH2 = C Υ78) Ν—より選択される基を表し、 Xs X1 2の少なくとも 1つは一 NH—、 又は一 (CH2 = CY7— Y8) N—を含む。 Rn〜 R"又は X9〜X12の少なくとも 1つは CH2 = CY7— Y8—を含む。 Y 7は水素又 はメチル基を表し、 Y8は炭素数 1〜5のアルキレン基、 又は一 COO— Y9—を表 す。 ここで、 Y9は炭素数 2〜5のアルキレン基を表す。 )
また、 本発明の反応性難燃剤の更に他の 1つは、 樹脂との反応性を有し、 該反応 により前記樹脂と結合することによって難燃性を付与する反応性難燃剤であって、 下記の一般式 (IVa) 又は (IVb) で示される有機リン化合物を含有することを特 徴とする。
Figure imgf000007_0001
… (IVb)
Figure imgf000007_0002
(式 (IVa) 又は (IVb) 中、 R16〜R19はそれぞれ
Figure imgf000007_0003
—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R16〜R19の少なく とも 1つは CH2 = CY1()— Y11—を含む。 R2°はへテロ原子を含んでもよい二官能性 の芳香族炭化水素系基を表す。 Υ'βは水素又はメチル基を表し、 Υ"は炭素数 1〜5 のアルキレン基、 又は— C〇〇— Y12—を表す。 ここで、 Y12は炭素数 2〜5のアル キレン基を表す。 )
なお、 以下、 上記の一般式 ( I a) と ( I b) を併せて一般式 ( I ) 、 一般式 (Π a) と.(Hb) を併せて 般式 (Π) 、 一般式 (IEa) と (IEb) を併せて一般式 (ΠΙ) 、 一般式 (IVa) と (IVb) を併せて一般式 (IV) ともいう。 上記の一般式 (I ) 〜 (IV) の反応性難燃剤によれば、 1分子内に少なくとも 1 つの末端不飽和結合を有している有機リン化合物を用いたので、 この末端不飽和結 合を、 加熱又は放射線によって樹脂と結合して反応させることができる。 これによ り、 難燃剤成分が樹脂中に安定して存在するので、 難燃剤のブリードアウトを防止 して、 少量の添加でも難燃性を長期間付与できる。
また、 1分子内に 2個のリン原子を含んでいるのでリンの含有量が高く、 難燃性 を向上できる。
また、 ヘテロ原子を含んでもよい芳香族炭化水素系基を含んでいるので分子量が 増大し、 エネルギー的にも安定化する。 これにより熱分解温度が向上するので、 樹 脂への混練、 成形時における難燃剤の気化や、 成形時の熱や剪断による難燃剤の分 解を防止でき、 成形性が向上する。 また、 炭素を多く含有することで、 樹脂分解時 にススが生成、 堆積することによって難燃 が向上する、 いわゆるチヤ一効果も得 られる。
一方、 本発明の難燃性樹脂加工品は、 上記の反応性難燃剤と、 樹脂とを含有する 樹脂組成物を固化した後、 加熱又は放射線の照射によって前記樹脂と前記反応性難 燃剤とを反応させて得られる難燃性樹脂加工品であって、 前記難燃性樹脂加工品全 体に対して、 前記反応性難燃剤を 1〜 2 0質量%含有することを特徴とする。
本発明の難燃性樹脂加工品によれば、上記の有機リン化合物の末端不飽和結合を、 加熱又は放射線の照射によって樹脂と反応させたので、 難燃剤成分が樹脂中に安定 して存在する。 これにより難燃剤のブリードアゥ卜を防止して難燃性効果が向上す るので、 難燃性樹脂加工品全体に対する反応性難燃剤の添加量が 1〜2 0質量%と 少量であっても、 難燃性を長期間付与できる。
また、難燃剤と樹脂との結合によって、樹脂が 3次元網目構造に架橋化するので、 得られる樹脂加工品の化学的安定性、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性の全てに優れる樹脂成形品を得ることができ、 特に耐熱性と機 械強度を向上させることができる。 更に薄肉成形加工も可能になる。
上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃剤を 2 種類以上含有し、 少なくとも 1種類が多官能性の前記反応性難燃剤であることが好 ましい。
この態様によれば、 反応性の異なる難燃剤の併用によって架橋に要する反応速度 を制御できるので、 急激な架橋反応の進行による樹脂の収縮等を防止することがで きる。 また、 多官能性の難燃剤の含有によって、 上記の有機環状リン化合物による 均一な 3次元網目構造が形成されるので、 耐熱性、.難燃性が向上するとともに、 よ り安定した樹脂物性が得られる。
また、 上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃 剤以外の難燃剤を更に含有し、 該難燃剤が、 末端に少なくとも 1つの不飽和基を有 する環状の含窒素化合物であることが好ましい。
この態様によれば、 末端に少なくとも 1つの不飽和基を有する環状の含窒素化合 物によっても、 難燃剤と樹脂との結合によつて樹脂が 3次元網目構造に架橋できる ので、 併用によって難燃剤全体のコストダウンを図りつつ、 得られる樹脂加工品の 化学的安定性、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び成形性の 全てに優れる樹脂成形品を得ることができる。 また、 窒素を含有するので、 特に榭 脂としてポリアミド系樹脂を用いた場合に樹脂との相溶性がより向上する。
また、 上記の難燃性樹脂加工品においては、 前記樹脂組成物が、 前記反応性難燃 剤以外の難燃剤を更に含有し、 該難燃剤が、 反応性を有しない添加型の難燃剤であ ることが好ましい。 上記の反応性難燃剤に、 例えば、 リン酸エステル系、 メラミン 系、 水酸化金属、 シリコン系等の反応性を有しない添加型の難燃剤を併用すること によって、相乗効果により反応性難燃剤単独の場合に比べて難燃性を更に向上でき、 また、 難燃剤のコストダウンを図ることができる。
更に、 φ記の難燃性樹脂加工品においては、 前記樹脂組成物が、 難燃性を有しな いが前記樹脂との反応性を有する架橋剤を更に含有し、 該架橋剤が、 主骨格の末端 に不飽和基を有する多官能性のモノマ一又はオリゴマーであることが好ましい。 この態様によっても、 架橋剤と樹脂との結合によって、 樹脂が 3次元網目構造 架橋できるので、 得られる樹脂加工品の化学的安定性、 耐熱性、 機械特性、 電気特 性、 寸法安定性、 難燃性、 及び成形性の全てに優れる樹脂成形品を得ることができ る。
また、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品全体に対して 1〜 3 .5質量%の無機充填剤を含有することが好ましい。 なかでも、 前記無機充填 剤としてシリゲート層が積層してなる層状のクレーを含有し、 前記層状のクレーを 前記難燃性樹脂加工品全体に対して 1〜 1 0質量%含有することが好ましい。 この 態様によれば、 架橋に伴う収縮や分解を抑え、 寸法安定性に優れる樹脂加工品を得 ることができる。 また、 無機充填剤としてシリゲート層が積層してなる層状のクレ —を含有した場合には、 ナノォ一ダ一で層状のクレーが樹脂中に分散することによ り樹脂とのハイブリット構造を形成する。 これによつて、 得られる難燃性樹脂加工 品の耐熱性、 機械強度等が向上する。
更に、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品全体に対して 5〜4 0質量%の強化繊維を含有することが好ましい。 この態様によれば、 強化繊 維の含有により、 樹脂加工品の引張り、 圧縮、 曲げ、 衝撃等の機械的強度を向上さ せることができ、 更に水分や温度に対する物性低下を防止することができる。 また、 上記の難燃性樹脂加工品においては、 前記樹脂と前記反応性難燃剤とが、 線量 1 0 k G y以上の電子線又はァ線の照射によって反応して得られることが好ま しい。 この態様によれば、 樹脂を成形等によって固化した後に、 放射線によって架 橋できるので、 樹脂加工品を生産性よく製造できる。 また、 上記範囲の線量とする ことにより、 線量不足による 3次元網目構造の不均一な形成や、 未反応の架橋剤残 留によるブリードアウトを防止できる。 また、 特に、 照射線量を 1 0〜4 5 k G y とすれば、 線量過剰によって生じる酸化分解生成物に起因する、 樹脂加工品の内部 歪みによる変形や収縮等も防止できる。
更に、 上記の難燃性樹脂加工品においては、 前記樹脂と前記反応性難燃剤とが、 前記樹脂組成物を成形する温度より 5 °C以上高い温度で反応して得られることも好 ましい。 この態様によれば、 放射線照射装置等が不要であり、 特に熱硬化性樹脂を 含有する樹脂組成物において好適に用いることができる。
また、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品が、 成形品、 塗膜、 封止剤より選択される 1つであることが好ましい。 本発明の難燃性樹脂加工 品は、上記のように優れた難燃性を有し、しかもプリ一ドアウトを防止できるので、 通常の樹脂成形品のみならず、 コーティング剤等として塗膜化したり、 半導体や液 晶材料等の封止剤としても好適に用いられる。
更に、 上記の難燃性樹脂加工品においては、 前記難燃性樹脂加工品が、 電気部品 又は電子部品として用いられるものであることが好ましい。 本発明の難燃性樹脂加 ェ品は、 上記のように、 耐熱性、 機械特性、 電気特性、 寸法安定性、 難燃性、 及び 成形性の全てに優れるので、 特に上記の物性が厳密に要求される、 電気部品、 電子 部品として特に好適に用いられる。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。 まず、 本発明の反応性難燃剤について説 明する。
本発明の反応性難燃剤は、 樹脂との反応性を有し、 該反応により前記樹脂と結合 することによって難燃性を付与する反応性難燃剤であり、 具体的には、 下記の一般 式 (I a) 〜 (IVb) で示される有機リン化合物であることを特徴としている。
Figure imgf000011_0001
X4' X^R3
P-X^R-X-P … (I b)
X-R2 X-R4
(式 ( l a) 又は (l b) 中、 Ri R4はそれぞれ CH2 = C Y1— Y2—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R 5はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表す。 X 1〜 X 4はそれぞれ一〇一、 一 NH―、 - (CH2 = C Y1- Y2) N—より選択される基を表し、 Xi〜X4の少 なくとも 1つは— NH―、 又は— ((: ^^ニじ 丄—丫2) N—を含む。 X5、 X6は それぞれ— NH—、 又は— (( !^ニ 丫丄 —丫 2) N—を表す。 尺1〜!^4又は X1 〜X6の少なくとも 1つは CH2 = C Y1— Y2—を含む。 Y1は水素又はメチル基を 表し、 Y2は炭素数 1〜5のアルキレン基、 又は—COO— Y3—を表す。 ここで、 Y3は炭素数 2〜5のアルキレン基を表す。 )
Figure imgf000011_0002
0-R6 0-R8
P-X^R-X^-P
(Π b)
0-R7 0-R9
(式 (H a) 又は (li b) 中、 R6〜R9はそれぞれ CH2 = CY4— Y5—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R1Qはヘテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表し、 X7、 X8はそれぞれ一 NH 一、 又は— (CH2=CY4— Y5) N—を表す。 R6〜R9又は X7、 X8の少なくと も 1つは CH2 = CY4— Y5—を含む。 Y4は水素又はメチル基を表し、 Y5は炭素 数 1〜5のアルキレン基、 又は— COO— Y6—を表す。 ここで、 Y6は炭素数 2〜 5のアルキレン基を表す。 )
X^R" X-R'3
O=P-O-R-O-P=O … (ma)
Figure imgf000012_0001
(式 (Ha) 又.は (Mb) 中、 R"〜R14はそれぞれ CH2 = CY7_Y8—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R15はへテロ原子 -を含んでもよい二官能性の芳香族炭化水素系基を表す。 X9〜X12はそれぞれ—〇 一、 一 NH―、 一 (CH2 = CY7— Y8) N—より選択される基を表し、 X9〜; X1 2の少なくとも 1つは—NH—、 又は— (CH2 = CY7— Y8) N—を含む。 R"〜 1^14又は 912の少なくとも 1つは CH2 = C Y7— Y8—を含む。 Y 7は水素又 はメチル基を表し、 Y8は炭素数 1〜5のアルキレン基、 又は一 COO— Y9—を表 す。 こ.こで、 Y9は炭素数 2〜5のアルキレン基を表す。 )
Figure imgf000013_0001
… (IVb)
Figure imgf000013_0002
(式 (IVa) 又は (IVb) 中、 R16〜R19はそれぞれ CH2 = CY1()— Y11—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 Rlfi〜R19の少なく とも 1つは CH2 = CY1Q— Y11—を含む。 R2°はへテロ原子を含んでもよい二官能性 の芳香族炭化水素系基を表す。 Y111は水素又はメチル基を表し、 Y11は炭素数 1〜5 のアルキレン基、 又は— COO— Y12—を表す。 ここで、 Y12は炭素数 2〜 5のアル キレン基を表す。 )
上記の有機リン化合物のうち、 一般式 (I a) 、 (H a) 、 (Ha) 、 (IVa) はリンが 5価の化合物であり、 一般式 (l b) 、 (Π b) 、 (IHb) 、 (IVb) は リンが 3価の化合物である。
上記の有機リン化合物は、 CH2=CY1— Y2—、 CH2 = CY4_Y5—、 CH2 = CY7— Y8—、 (:!^ニじ — 11一などの、 少なくとも 1つの末端不飽和結合 を有している。 ここで、 この末端不飽和結合は、 後述する加熱、 又は放射線等の照 射によって樹脂と結合するための官能基である。 なお、 この末端不飽和結合は 1分 子中に 2つ以上有していることが好ましい。
- 上記の CH2 = C Y1— Y2—基のような末端不飽和結合の具体例としては、 例え ば、 CH2 = CH - CH2 -、 CH2 = CH—CH2CH2CH2 -、 CH2 = C (CH 3) _CH2—、 CH2 = CHC〇〇一 CH2CH2—、 CH2 = C (CH3) COO— CH2CH2—等が挙げられる。
上記の 1〜!^4、 R6〜R9、 R"〜R14、 R16〜R19のへテロ原子を含んでもよい 一官能性の芳香族炭化水素系基としては、 炭素数が 6〜14の芳香族炭化水素系基 が好ましい。 このようなヘテロ原子を含んでもよい一官能性の芳香族炭化水素系基 の具体例としては、 例えば、 一 C6HS (フエニル基) 、 一 C6H5OH (ヒドロキシ フエニル基) 、 一 C 6H5— C6H5OH (ヒドロキシビフエニル基) 、 _ CH2C6 H5 (ベンジル基) 、 一 a- C10H7 (α-ナフチル基) 、 — 3- C 10H7 (β -ナフチ ル基) 等が挙げられる。
また、 R5、 Rl R15、 R2Qのへテロ原子を含んでもよい二官能性の芳香族炭化 水素系基としては、 炭素数が 1 0〜1 4の芳香族炭化水素系基であることが好まし い。 このような炭素数が 1 0〜 1 4の芳香族炭化水素系基の具体例としては、 例え ば、 _p- C6H4— p- C6H4—、 —p-C6H4— CH2— p- C6H4 -、 -p-C6H4- C (CH3) 2— p- C6H4—、 -p-C6H4- C (=0) — p - C6H4—、 — p - C6H4 — S 02— p- C6H4—、 2, 6 -C 10H6< (2, 6—ナフチレン基) 等が挙げら れる。
なお、 本発明において、 芳香族炭化水素系基とは、 例えば上記のフエ二ル基ゃ一 p - C6H4— p_C6H4—のような芳香族炭化水素基のみならず、例えば上記のヒドロ キシフエニル基や— p_C6H4— S 02_p- C6H4—のような、 芳香族炭化水素基に 加えて更に酸素や硫黄等のへテロ原子を含んだ基も含む意味である。
上記の一般式 ( I a) の有機リン化合物としては、 具体的には、 例えば、 下記の 構造式 (l a— l) 〜 ( I a— 2 1) で示される化合物が挙げられる。 なお、 一般 式 (l b) の化合物例については、 リン原子に二重結合を介して結合する酸素原子 を除き、 リン原子が 3価である点以外は構造式 ( I a— l ) 〜 ( l a— 2 1) と同 様の構造が挙げられる。
Figure imgf000014_0001
( I a - 1)
Figure imgf000015_0001
( I a - 2)
Figure imgf000015_0002
( I a - 3)
Figure imgf000015_0003
Figure imgf000015_0004
( I a - 5)
Figure imgf000016_0001
OoSMn
( I a - 6)
Figure imgf000016_0002
(I a— 7)
Figure imgf000016_0003
( I a- 8)
Figure imgf000016_0004
(I a— 9)
Figure imgf000017_0001
( I a - 10)
Figure imgf000017_0002
CH2=CHCH2CH2CH2- HN— CH2CH2CH2CH= CH2
0=P— N ~~ Π Γ)—— ~ N— O
H H
CH2= CHCH2CH2CH2— NH HN- CH2CH2CH2CH= CH2
( I a- 12)
Figure imgf000017_0003
( I a - 1 3)
Figure imgf000017_0004
( I a- 14)
Figure imgf000018_0001
( I a- 1 5)
Figure imgf000018_0002
( I a - 16)
Figure imgf000018_0003
Figure imgf000018_0004
( I a— 18)
Figure imgf000019_0001
( I a - 19)
Figure imgf000019_0002
( I a - 20)
Figure imgf000019_0003
( I a— 21 ) 上記の一般式 (H a) の有機リン化合物としては、 具体的には、 例えば、 下記の 構造式 (II a_l) 〜 (H a— 12) で示される化合物が挙げられる。 なお、 一般 式 (lib) の化合物例については、 リン原子に二重結合を介して結合する酸素原子 を除き、 リン原子が 3価である点以外は構造式 (H a— 1) 〜 (H a— 12) と同 様の構造が挙げられる。
Figure imgf000019_0004
(I a- 1) CH2
Figure imgf000020_0001
2)
Figure imgf000020_0002
(Π a - 3)
Figure imgf000020_0003
(Π a— 4)
Figure imgf000020_0004
(I a- 5) oosnn
(H a— 6)
Figure imgf000021_0001
(Π a - 7)
Figure imgf000021_0002
(Π a- 8)
Figure imgf000021_0003
(H a- 9)
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
(Π a - 12) 上記の一般式 (Ha) の有機リン化合物としては、 具体的には、 例えば、 下記の 構造式 (ma— l) 〜 (ma— 17) で示される化合物が挙げられる。 なお、 一般 式 ( b) の化合物例については、 リン原子に二重結合を介して結合する酸素原子 を除き、 リン原子が 3価である点以外は構造式 (Ma—l) 〜 (Ha— 17) と同 様の構造が挙げられる。
Figure imgf000022_0004
(Ha- 1)
Figure imgf000023_0001
(Π a - 2)
Figure imgf000023_0002
(ΙΠ a - 3)
Figure imgf000023_0003
(ffl a - 4)
Figure imgf000023_0004
(ffl a— 5)
Figure imgf000024_0001
(Π a- 6)
Figure imgf000024_0002
(Π a- 7)
Figure imgf000024_0003
(ΙΠ a - 8)
Figure imgf000024_0004
(ma— 9)
Figure imgf000025_0001
(ΠΙ a- 10)
Figure imgf000025_0002
(ma— 11)
Figure imgf000025_0003
(IH a- 12)
Figure imgf000025_0004
(Ha—I 3) CH2)2 CH2)2
Figure imgf000025_0005
Figure imgf000025_0006
(Π a - 15)
Figure imgf000026_0001
(IE a— 16)
Figure imgf000026_0002
(m a— 17) 上記の一般式 (IVa) の有機リン化合物としては、 具体的には、 例えば、 下記の 構造式 (IVa— 1) 〜 (! Va— 11) で示される化合物が挙げられる。 なお、 一般 式 (IVb) の化合物例については、 リン原子に二重結合を介して結合する酸素原子 を除き、 リン原子が 3価である点以外は構造式 (IVa— 1) 〜 (IVa— 11) と同 様の構造が挙げられる。
Figure imgf000026_0003
(IVa— 1)
Figure imgf000026_0004
(IVa- 2)
Figure imgf000027_0001
(IVa- 3)
Figure imgf000027_0002
(IVa-4)
Figure imgf000027_0003
5)
Figure imgf000027_0004
(IVa - 6)
Figure imgf000027_0005
(IVa - 7)
Figure imgf000028_0001
(IVa - 8)
CH2= CHCOOCH2CH2 - O 0— CH2CH2OOCCH=CH2 CH2= CHCOOCH2CH2- 0 0- CH2CH20 OCCH= CH2
(Na - 9)
Figure imgf000028_0002
(IVa - 10)
Figure imgf000028_0003
上記のように、 一般式 (I) 〜 (IV) の化合物は、 中央の R5、 R10, R15、 R20 と、 その両側のリン原子とが、 酸素原子又は窒素原子を介して結合されているプリ ッジ型の構造をなしている。 更に、 両端のリン'原子は、 別の酸素原子又は窒素原子 を介して、 側鎖である末端基に結合されている。 そして、 末端基の少なくとも 1つ の末端不飽和結合を含んでいる。
具体的には、 R5と、 その両側のリン原子とが、 窒素原子を介して結合し、 更に、 両端のリン原子と側鎖の末端基とが、 少なくとも 1つの別の窒素原子を介して結合 している構造が一般式 (I) である。 また、 R1Qと、 その両側のリン原子とが、 窒素原子を介して結合し、 更に、 両端 のリン原子と側鎖の末端基とが、 すべて酸素原子を介して結合している構造が一般 式 (Π) である。
また、 R15と、 その両側のリン原子とが、 酸素原子を介して結合し、 更に、 両端 のリン原子と側鎖の末端基とが、 少なくとも 1つの窒素原子を介して結合している 構造が一般式 (ΠΙ) である。
また、 R2°と、 その両側のリン原子とが、 酸素原子を介して結合し、 更に、 両端 のリン原子と側鎖の末端基とが、 すべて酸素原子を介して結合している構造が一般 式 (IV) である。
上記の一般式 (I) の化合物の合成は、 例えば、 ( I a— 1) の化合物は、 ジメ チルァセトアミド (DMAc) にォキシ塩化リンを加え、 この溶液に、 ベンジジン
(4, 4' -ジァミノビフエニル)とトリエチルァミンを溶解した DM Acの溶液を滴下 して反応させ、 次いで、 ァリルァミンとトリェチルァミンとの混合液を反応させる ことにより得ることができる。 なお、 ォキシ塩化リンの代わりに三塩化リンを用い ることにより、 一般式 (I b— l) の化合物を得ることができる。
また、 ベンジジンの代わりに、 例えば、 4,4'-ジアミノジフエ二ルエーテル、 ビス
(4—ァミノフエニル)メタン、 2, 2—ビス [4 - (N-ァリルァミノ)フエニル]プロパン、 4, 4'-ジァミノべンゾフエノン、 ビス(P-ァミノフエニル)スルホン、 2, 6-ジアミノナ フタレン等を用いることにより、 上記の一般式 ( I) における R5、 X5、 X6を変 更できる。
また、 ァリルァミンの代わりに、 例えば、 ジァリルァミン、 P-ヒドロキシァニリ ン、 N -ァリル- 4- (4' -ヒドロキシフエニル)ァニリン等を用いることにより、 上記の 一般式 ( I) における Ri R4及び Xi X4を変更できる。
また、 ォキシ塩化リンの代わりに、 例えば、 フエノキシホスホリルジクロリド、 ジフエノキシホスホリルクロリド、 ジァリロキシホスホリルクロリド、 ァリロキシ ホスホリルジクロリド等を用いることにより、 ェ〜 4にそれぞれ— O—、 — NH ―、 一 (CHs^CY1— Y2) N—より選択される基を導入することができる。 上記の一般式 (Π) の化合物の合成は、 例えば、 (n a— l) の化合物は、 ジメ チルァセトアミド (DMAc) にォキシ塩化リンを加え、 この溶液に、 ベンジジン (4, 4'-ジァミノビフエ二ル)とトリエチルァミンを溶解した DMAcの溶液を滴下 して反応させ、 次いで、 ァリルアルコールとトリエチルァミンとの混合液を反応さ せることにより得ることができる。 なお、 ォキシ塩化リンの代わりに三塩化リンを 用いることにより、 一般式 (II b_ l) の化合物を得ることができる。
また、 ベンジジンの代わりに、 例えば、 4, 4' -ジアミノジフエ二ルエーテル、 ビス ( 4 -ァミノフエニル)メタン、 2, 2—ビス [4- (N-ァリルアミノ)フエニル]プロパン、 4,4'-ジァミノべンゾフエノン、 ビス(p -ァミノフエニル)スルホン、 2, 6 -ジアミノナ フタレン等を用いることにより、 上記の一般式 (Π) における; 1D、 X7、 X8を変 更できる。
また、 ァリルアルコールの代わりに、 例えば、 0 -ァリルフエノール、 p-ァリロキ シフエノール、 α -ナフトール等を用いることにより、 上記の一般式 (Π) における R6〜R9を変更できる。
上記の一般式 (m)の化合物の合成は、 例えば、 (nia— i) の化合物は、 ジメ チルァセトアミド (DMAc) にォキシ塩化リンを加え、 この溶液に、 4, 4 '-ビフエ ニルアルコールとトリエチルァミンを溶解した DMAcの溶液を滴下して反応させ、 次いで、 ァリルァミンとトリェチルァミンとの混合液を反応させることにより得る ことができる。 なお、 ォキシ塩化リンの代わりに三塩化リンを用いることにより、 一般式 (Mb— 1) の化合物を得ることができる。
また、 4, 4'-ビフエニルアルコールの代わりに、 例えば、 ビス (4-ヒドロキシフ ェニル) エーテル、 ビス (4-ヒドロキシフエニル) メタン、 2,2—ビス (4-ヒドロ キシフエニル) プロパン、 4, 4'-ジヒドロキシベンゾフエノン、 ビス(p-ヒドロキシ フエニル)スルホン、 ナフタレン- 2,6-ジオール等を用いることにより、 上記の一般 式 (ΠΙ) における R15を変更できる。
- また、 ァリルァミンの代わりに、 例えば、 ジァリルァミン、 P-ヒドロキシ- N -ァリ ルァニリン、 4_(4'-ァリ口キシフエノキシ)ァニリン、 N -ァリル- α-ナフチルァミン 等を用いることにより、 上記の一般式 (ΠΙ) における R"〜R "及び X9〜X12を変更 できる。
また、 ォキシ塩化リンの代わりに、 例えば、 フエノキシホスホリルジクロリド、 ァリルホスホリルジクロリド等を用いることにより、 X9〜X12にそれぞれ—〇_、 一 NH—、 一 (CH^CY^Y2) N—より選択される基を導入することができ る。 上記の一般式 (IV) の化合物の合成は、 上記の化合物は、 例えば、 (JV a— 1 ) の化合物は、 ジメチルァセトアミド (D MA c ) にォキシ塩化リンを加え、 この溶 液に、 4, 4' -ビフエ二ルアルコールとトリエチルァミンを溶解した D MA cの溶液を 滴下して反応させ、 次いで、 ァリルアルコールとトリエチルァミンとの混合液を反 応させることにより得ることができる。 なお、 ォキシ塩化リンの代わりに三塩化リ ンを用いることにより、 一般式 (IV b— 1 ) の化合物を得ることができる。
また、 4, 4 ' -ビフエニルアルコールの代わりに、 例えば、 ビス (4 -ヒドロキシフ ェニル) ェ一テル、 ビス (4 -ヒドロキシフエニル) メタン、 2 , 2—ビス (4-ヒドロ キシフエニル) プロパン、 4, 4' -ジヒドロキシベンゾフエノン、 ビス(P-ヒドロキシ フエニル)スルホン、 ナフタレン- 2, 6-ジオール等を用いることにより、 上記の一般 式 (IV) における R2を変更できる。
また、 ァリルアルコールの代わりに、 例えば、 P-ァリロキシフエノール、 0-ァリ ルフエノ一ル等を用いることにより、 上記の一般式 (IV) における R 16〜R 19を変更 できる。
上記の一般式 ( I ) 〜 (! V) で示される有機リン化合物のうち、 本発明において は、 反応性の異なる 2種類以上の化合物、 すなわち、 1分子中の上記官能基の数が 異なる 2種類以上の化合物を併用することが好ましい。 これによつて、 架橋に要す る反応速度を制御できるので、 急激な架橋反応の進行による樹脂組成物の収縮を防 止することができる。
また、 上記の一般式 ( I ) 〜 (! V) で示される有機リン化合物のうち、 少なくと も多官能性の反応性難燃剤を含有することが好ましい。 これによつて、 上記の有機 リン化合物による均一な 3次元網目構造が形成される。
- 次に、 上記の反応性難燃剤を用いた難燃性樹脂加工品について説明する。
本発明の難燃性樹脂加工品は、 樹脂と、 上記の一般式 ( I ) 〜 (IV) で示される 有機リン化合物とを含有する樹脂組成物を固化した後、 加熱又は放射線の照射によ つて前記樹脂と前記反応性難燃剤とを反応させて得られ、樹脂組成物全体に対して、 上記の反応性難燃剤を 1〜 2 0質量%含有することを特徴としている。
まず、 本発明に用いる樹脂としては、 熱可塑性樹脂、 熱硬化性樹脂のいずれも使 用可能であり特に限定されない。
熱可塑性樹脂としては、 例えば、 ポリアミド系樹脂、 ポリブチレンテレフタレー ト樹脂、 ポリエチレンテレフ夕レート等のポリエステル系樹脂、 ポリアクリル系樹 脂、 ポリイミド系樹脂、 ポリカーボネ一ト樹脂、 ポリウレタン系樹脂、 ポリスチレ ン、 ァクリロニトリル一スチレン共重合体、 アクリロニトリル一ブタジエンースチ レン共重合体等のポリスチレン系樹脂、 ポリアセタ一ル系樹脂、 ポリオレフイン系 樹脂、 ポリフエ二レンォキシド樹脂、 ポリフエ二レンサルファイド樹脂、 ポリブタ ジェン樹脂等が挙げられる。 なかでも、 機械特性や耐熱性等の点から、 ポリアミド 系樹脂、 ポリブチレンテレフタレ一卜樹脂、 ポリエチレンテレフ夕レート樹脂、 ポ リカーポネ一ト樹脂、 ポリアクリル系樹脂、 ポリアセタール系樹脂、 ポリフエニレ ンォキシド樹脂を用いることが好ましい。
熱硬化性樹脂としては、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 アルキド樹脂、 ケィ素樹脂等が挙げ られる。なかでも、機械特性や耐熱性等の点から、エポキシ樹脂、 フエノール樹脂、 不飽和ポリエステル樹脂、 ユリア樹脂を用いることが好ましい。
上記反応性難燃剤の含有量は、 前記榭脂組成物全体に対して、 前記反応性難燃剤 を 1〜2 0質量%含有することが好ましく、 1〜1 5質量%含有することがより好 ましい。 反応性難燃剤の含有量が 1質量%未満の場合、 反応による架橋が不充分で あり、 得られる樹脂加工品の機械的物性、 熱的物性、 電気的物性が好ましくなく、 また、 2 0質量%を超えると、 反応性難燃剤が過剰となり、 反応性難燃剤の未反応 のモノマ一や分解ガスが発生したり、 オリゴマー化したものがブリードアウトし、 また、 樹脂加工品の機械的特性が低下するので好ましくない。
また、 本発明においては、 更に上記反応性難燃剤以外の、 反応性を有しない添加 型の難燃剤を含有していてもよい。 このような難燃剤としては、 非ハロゲン系難燃 剤が好ましく、 水酸化アルミニウムや水酸化マグネシウム等に代表される金属水和 物や、 トリフエニルホスフェート、 トリクレジルホスフェートなどのモノリン酸ェ ステル、 ビスフエノール Aビス (ジフエニル) ホスフエ一ト、 レゾルシノールビス
(ジフエニル)ホスフェートなどの縮合リン酸エステル、ポリリン酸アンモニゥム、 ポリリン酸アミド、 赤リン、 リン酸グァニジン等、 シァヌル酸又はイソシァヌル酸 の誘導体、 メラミン誘導体、 シリコン系難燃剤等が挙げられる。
これらの難燃剤は単独で用いてもよく、 また 2種類以上併用することも可能であ る。 この反応性難燃剤以外の難燃剤の含有量は、 ブリードや機械特性の低下を防止 するために、 前記樹脂組成物全体に対して、 前記反応性難燃剤以外の難燃剤を 1〜 2 0質量%含有することが好ましく、 3〜1 5質量%含有することがより好ましレ^ また、 反応性難燃剤 1質量部に対して、 前記反応性難燃剤以外の反応性を有する 難燃剤として、末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物を 0 . 5〜 1 0質量部含有することがより好ましい。
上記の末端に不飽和基を有する基としては、 具体的にはジァクリレート、.ジメタ クリレート、 ジァリレート、 トリァクリレート、 トリメタクリレート、 トリァリレ ート、 テトラァクリレート、 テトラメタクリレート、 テトラァリレート等が挙げら れるが、 反応性の点からはジァクリレート、 トリァクリレート、 テトラァクリレ一 ト等のァクリレートであることがより好ましい。
また、 環状の含窒素化合物としては、 イソシァヌル環、 シァヌル環等が挙げられ る。
上記の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物の具体例と しては、 上記のシァヌル酸又はイソシァヌル酸の誘導体が挙げられ、 例えば、 イソ シァヌル酸 E O変性ジァクリレート、 イソシァヌル酸 E〇変性トリァクリレート、 トリイソシァヌ一ルトリァクリレート等が例示できる。
また、 本発明においては、 難燃性を有しないが前記樹脂との反応性を有する架橋 剤を更に含有してもよい。 このような架橋剤としては、 主骨格の末端に不飽和基を 有する多官能性のモノマー又はオリゴマーを用いることができる。
なお、 本発明における難燃性を有しないが前記樹脂との反応性を有する架橋剤と は、 架橋性 (反応性) を有するが、 それ自身は難燃性は有しないものを意味し、 上 記の末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物のように、 架橋 ' ·性と難燃性とを同時に有する反応性難燃剤を除くものである。
このような架橋剤としては、 以下の一般式 (a ) 〜 (c ) で表される 2〜4官能 性の化合物が挙げられる。 ここで、 Xは主骨格であり、 R 2 1〜R 2 4は末端に不飽和 基を有する官能性基であって、 (a )は 2官能性化合物、 (b )は 3官能性化合物、 ( c ) は 4官能性化合物である。
Figure imgf000034_0001
Figure imgf000034_0002
具体的には、 以下に示すような一般式の、 主骨格 Xが、 グリセリン、 ペン夕エリ ストール誘導体等の脂肪族アルキルや、 トリメリット、 ピロメリット、 テトラヒド 口フラン、 トリメチレントリオキサン等の芳香族環、 ビスフエノ一ル等である構造 が挙げられる。
Figure imgf000034_0003
(a-1)
23
Figure imgf000034_0004
(b-1) (b-2)
R21
Figure imgf000034_0005
R"
(b-4)
Figure imgf000035_0001
(c- 1 ) (c- 2) 上記の架橋剤の具体例としては、 2官能性のモノマー又はオリゴマ一としては、 ビスフエノール F— E O変性ジァクリレート、 ビスフエノール A— E O変性ジァク リレート、 トリプロピレングリコールジァクリレート、 ポリプロピレングリコール ジァクリレート、 ポリエチレンダリコールジァクリレート、 ペンタエリスリトール ジァクリレ一トモノステアレート等のジァクリレートゃ、 それらのジメタクリレー ト、 ジァリレートが挙げられる。
また、 3官能性のモノマー又はオリゴマーとしては、 ペン夕エリスリ ] ^一ルトリ ァクリレー卜、 トリメチロールプロパントリァクリレート、 トリメチロールプロパ ン P O変性卜リアクリレート、 トリメチロールプロパン E O変性トリァクリレート 等のトリァクリレ一トや、 それらのトリメタクリレート、 トリァリレートが挙げら れる。
また、 4官能性のモノマー又はオリゴマーとしては、 ジトリメチロールプロパン テトラァクリレート、 ペンタエリスリトールテトラァクリレート等が挙げられる。 上記の架橋剤は、 主骨格 Xとなる、 トリメリット酸、 ピロメリット酸、 テトラヒ ドロフランテトラカルボン酸、 1, 3 , 5—トリヒドロキシベンゼン、 グリセリン、 ペンタエリストール、 2 , 4 , 6—トリス (クロロメチル) 一 1, 3, 5—トリオ キサン等より選ばれる 1種に、 末端に不飽和基を有する官能性基となる、 臭化ァリ ル、 ァリルアルコール、 ァリルァミン、 臭化メタリル、 メタリルアルコール、 メタ リルアミン等より選ばれる 1 .種を反応させて得られる。
上記の架橋剤は、 前記反応性難燃剤 1質量部に対して、 0 . 5〜1 0質量部含有 することが好ましい。
本発明に用いる樹脂組成物には、 上記の樹脂と難燃剤の他、 無機充填剤、 強化繊 維、 各種添加剤等を含有していてもよい。 無機充填剤を含有することによって、 樹脂加工品の機械的強度が向上するととも に、 寸法安定性を向上させることができる。 また、 反応性難燃剤を吸着させる基体 となって、 反応性難燃剤の分散を均一化する。
無機充填剤としては、従来公知のものが使用可能であり、代表的なものとしては、 銅、 鉄、 ニッケル、 亜鉛、 錫、 ステンレス鋼、 アルミニウム、 金、 銀等の金属粉末、 ヒュームドシリカ、 珪酸アルミニウム、 珪酸カルシウム、 珪酸、 含水珪酸カルシゥ ム、 含水珪酸アルミニウム、 ガラスビーズ、 力一ポンプラック、 石英粉末、 雲母、 タルク、 マイ力、 クレー、 酸化チタン、 酸化鉄、 酸化亜鉛、 炭酸カルシウム、 炭酸 マグネシウム、 酸化マグネシウム、 酸化カルシウム、 硫酸マグネシウム、 チタン酸 カリウム、 ケイソゥ土等が挙げられる。 これらの充填剤は、 単独でも、 2種以上を 併用して用いてもよく、 また、 公知の表面処理剤で処理されたものでもよい。 無機充填剤の含有量は、 難燃性樹脂加工品全体に対して 1〜3 5質量%含有する ことが好ましく、 1〜 2 0質量%がより好ましい。含有量が 1質量%より少ないと、 難燃性樹脂加工品の機械的強度が不足し、 寸法安定性が不充分であり、 更に反応性 難燃剤の吸着が不充分となるので好ましくない。 また、 3 5質量%を超えると、 難 燃性樹脂加工品が脆くなるので好ましくない。
上記の無機充填剤のうち、 シリケ一ト層が積層してなる層状のクレーを用いるこ とが特に好ましい。 シリゲート層が積層してなる層状のクレーとは、 厚さが約 I n m、 一辺の長さが約 1 0 0 n mのシリケ一ト層が積層された構造を有しているクレ —である。 したがって、 この層状のクレ一はナノオーダーで榭脂中に分散されて樹 脂とのハイブリット構造を形成し、 これによつて、 得られる難燃性樹脂加工品の耐 熱性、 機械強度等が向上する。 層状のクレーの平均粒径は 1 0 0 n m以下であるこ とが好ましい。
層状のクレーとしては、 モンモリロナイト、 カオリナイト、 マイ力等が挙げられ るが、分散性に優れる点からモンモリ口ナイトが好ましい。また、層状のクレーは、 榭脂への分散性を向上させるために表面処理されていてもよい。 このような層状の クレーは市販されているものを用いてもよく、 例えば 「ナノマー」 (商品名、 日商 岩井ベントナイト株式会社製) や、 「ソマシフ」 (商品名、 コーポケミカル社製) などが使用できる。
層状のクレーの含有量は、 難燃性樹脂加工品全体に対して 1〜1 0質量%が好ま しい。 なお、 層状のクレーは単独で使用してもよく、 他の無機充填剤と併用しても よい。
また、 強化繊維を含有することによって、 例えば成形品の場合には機械的強度が 向上するとともに、 寸法安定性を向上させることができる。 強化繊維としては、 ガ ラス繊維、 炭素繊維、 金属繊維が挙げられ、 強度、 及び樹脂や無機充填剤との密着 性の点からガラス繊維を用いることが好ましい。 これらの強化繊維は、 単独でも、 2種以上を併用して用いてもよく、 また、 シランカップリング剤等の公知の表面処 理剤で処理されたものでもよい。
また、 ガラス繊維は、 表面処理されており、 更に樹脂で被覆されていることが好 ましい。 これにより、 熱可塑性ポリマ一との密着性を更に向上することができる。 表面処理剤としては、 公知のシランカップリング剤を用いることができ、 具体的 には、 メトキシ基及びエトキシ基よりなる群から選択される少なくとも 1種のアル コキシ基と、 アミノ基、 ビニル基、 アクリル基、 メタクリル基、 エポキシ基、 メル カプト基、 Λロゲン原子、 イソシァネート基よりなる群から選択される少なくとも 一種の反応性官能基を有するシランカツプリング剤が例示できる。
また、 被覆榭脂としても特に限定されず、 ウレタン樹脂やエポキシ樹脂等が挙げ られる。
強化繊維の配合量は、 難燃性樹脂加工品全体に対して 5〜4 0質量%含有するこ とが好ましく、 1 0〜3 5質量%がより好ましい。含有量が 5質量%より少ないと、 難燃性樹脂加工品の機械的強度が低下するとともに、 寸法安定性が不充分であるの で好ましくなく、 また、 4 0質量%を超えると、 樹脂の加工が困難になるので好ま しくない。
• また、上記の無機充填剤及び強化繊維を含有し、難燃性樹脂加工品全体に対して、 無機充填剤及び強化繊維を 6 5質量%以下含有することが好ましく、 5 5質量%以 下含有することがより好ましい。 無機充填剤及び強化繊維の含有量が 6 5質量%を 超えると、 樹脂成分の割合が減少して成形性が低下したり、 得られる樹脂加工品が 脆くなつたりして物性が低下するので好ましくない。
なお、 本発明に用いる樹脂組成物には、 本発明の目的である耐熱性、 耐候性、 耐 衝撃性等の物性を著しく損なわない範囲で、 上記以外の常用の各種添加成分、 例え ば結晶核剤、 着色剤、 酸化防止剤、 離型剤、 可塑剤、 熱安定剤、 滑剤、 紫外線防止 剤などの添加剤を添加することができる。 また、 後述するように、 例えば紫外線に よって樹脂と反応性難燃剤とを反応させる場合には、 紫外線開始剤等を用いること ができる。
着色剤としては特に限定されないが、 後述する放射線照射によって褪色しないも のが好ましく、 例えば、 無機顔料である、 ベンガラ、 .鉄黒、 カーボン、 黄鉛等や、 フタロシアニン等の金属錯体が好ましく用いられる。
本発明の難燃性樹脂加工品は、 上記の樹脂組成物を固化した後、 加熱又は放射線 の照射によって前記樹脂と前記反応性難燃剤とを反応させて得られる。
樹脂組成物の固化は従来公知の方法が用いられ、 例えば、 熱可塑性樹脂を含む樹 脂組成物の場合には、 熱可塑性樹脂と反応性難燃剤とを溶融混練してペレツト化し た後、 従来公知の射出成形、 押出成形、 真空成形、 インフレーション成形等によつ て成形することができる。 溶融混練は、 単軸或いは二軸押出機、 バンバリ一ミキサ ―、 二一ダー、 ミキシングロールなどの通常の溶融混練加工機を使用して行うこと ができる。 混練温度は熱可塑性樹脂の種類によって適宜選択可能であり、 例えばポ リアミド系樹脂の場合には 2 4 0〜2 8 0 °Cで行なうことが好ましい、 また、 成形 条件も適宜設定可能であり特に限定されない。 なお、 この段階では全く架橋は進行 していないので、 成形時の余分のスプール部は、 熱可塑性樹脂としてのリサイクル が可能である。
一方、 熱硬化性樹脂の場合には、 上記と同様に、 熱硬化性樹脂と反応性難燃剤と を溶融混練してペレット化した後、 例えば、 従来公知の射出成形、 圧縮成形、 トラ ンスファ一成形等を用いて成形することができる。
また、 塗膜化する場合には、 樹脂組成物をそのまま塗布してもよく、 適宜溶剤等 で希釈して塗布可能な溶液又は懸濁液とした後、 従来公知の方法によって乾燥、 塗 膜化してもよい。 塗膜化の方法としては、 口一ラー塗り、 吹き付け、 浸漬、 スピン コート等のコーティング方法等を用いることができ特に限定されない。
上記の樹脂組成物は、 加熱又は放射線の照射によって、 反応性難燃剤の末端の不 飽和結合が、 樹脂と反応して架橋反応し、 樹脂中に安定に存在する。
反応性難燃剤と榭脂とを反応させる手段として加熱を用いる場合、 反応させる温 度は、 樹脂の成形温度より 5 °C以上高い温度とすることが好ましく、 1 0 °C以上高 い温度とすることがより好ましい。 また、 架橋の手段として放射線を用いる場合には、 電子線、 ひ線、 ァ線、 X線、 紫外線等が利用できる。 なお、 本発明における放射線とは広義の放射線を意味し、 具体的には、 電子線や α線等の粒子線の他、 X線や紫外線等の電磁波までを含む意 味である。
上記のうち、 電子線又はァ線の照射が好ましい。 電子線照射は公知の電子加速器 等が使用でき、加速エネルギーとしては、 2 . 5 M e V以上であることが好ましい。 ァ線照射は、 公知のコバルト 6 0線源等による照射装置を用いることができる。 ァ線照射は、 公知のコバルト 6 0線源等による照射装置を用いることができる。 r線は電子線に比べて透過性が強いために照射が均一となり好ましいが、 照射強度 が強いため、 過剰の照射を防止するために線量の制御が必要である。
放射線の照射線量は 1 0 k G y以上であることが好ましく、 1 0〜4 5 k G yが より好ましい。 この範囲であれば、 架橋によって上記の物性に優れる樹脂加工品が 得られる。 照射線量が 1 0 k G y未満では、 架橋による 3次元網目構造の形成が不 均一となり、未反応の架橋剤がブリードアウトする可能性があるので好ましくない。 また、 4 5 k G yを超えると、 酸化分解生成物による樹脂加工品の内部歪みが残留 し、 これによつて変形や収縮等が発生するので好ましくない。
このようにして得られた本発明の難燃性樹脂加工品は、 まず、 成形品として、 耐 熱性、 難燃性に加えて、 機械特性、 電気特性、 寸法安定性、 及び成形性に優れる。 したがって、 高度な耐熱性、 難燃性が要求される電気部品又は電子部品、 更には自 動車部品や光学部品、 例えば、 電磁開閉器やブレーカーなどの接点支持等のための 部材、 プリント基板等の基板、 集積回路のパッケ一ジ、 電気部品のハウジング等と して好適に用いることができる。
このような電気部品又は電子部品の具体例としては、 受電盤、 配電盤、 電磁開閉 器、 遮断器、 変圧器、 電磁接触器、 サーキットプロテク夕、 リレー、 トランス、 各 種センサ類、 各種モーター類、 ダイオード、 トランジスタ、 集積回路等の半導体デ バイス等が挙げられる。
また、 冷却ファン、 パンパ一、 ブレーキカバー、 パネル等の内装品、 摺動部品、 センサ.、 モータ一等の自動車部品としても好適に用いることができる。
更に、 成形品のみならず、 上記の成形品や繊維等への難燃性コーティング塗膜と しても用いることもできる。 また、 上記の半導体デバイス等の電子部品又は電気部品の封止、 被覆、 絶縁等と して用いれば、 優れた耐熱性、 難燃性を付与させることができる。 すなわち、 例え ば、 上記の樹脂組成物を封止して樹脂を硬化させ、 更に上記の加熱又は放射線照射 による反応を行なうことにより、 半導体チップやセラミックコンデンサ等の電子部 品や電気素子を封止する難燃性封止剤として用いることができる。 封止の方法とし ては、 注入成形、 ポッティング、 卜ランスファー成形、 射出成形、 圧縮成形等によ る封止が可能である。 また、 封止対象となる電子部品、 電気部品としては特に限定 されないが、 例えば、 液晶、 集積回路、 トランジスタ、 サイリス夕、 ダイオード、 コンデンサ等が挙げられる。
以上説明したように、 本発明によれば、 樹脂への少量の添加でも難燃性に優れ、 更に、 ブリードアウト等を防止できる、 非ハロゲン系の反応性難燃剤及びそれを用 いた難燃性樹脂加工品を提供することができる。 したがって、 この難燃性樹脂加工 品は、 電気部品や電子部品等の樹脂成形品や、 半導体等の封止剤、 コ一ティング塗 膜等に好適に利用できる。 以下、 実施例を用いて本発明を更に詳細に説明するが、 本発明は実施例に限定さ れるものではない。
A:反応性難燃剤の合成
以下、 合成例 1〜 1 1が一般式 (I) 、 合成例 12〜 18が一般式 (Π) 、 合成 例 1 9〜28が一般式 (IE) 、 合成例 29〜 35が一般式 (IV) の合成例である。
[一般式 (I) の反応性難燃剤の合成]
合成例 1
一般式 ( I a) において、 丄〜 6 : — NH―、 Ri R4 : CH2 = CHCH2 一、 R5 : -p-C6H4-p-C6H4- (4,4'-ビフエ二レン) の化合物 ( I a— 1) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 100m 1にォキシ塩化リン 6 1. 3 g (0. 4 Omo 1) を加え、 この溶液に、 ベンジジン 18. 4 g (0. 10 mo 1) とトリエチルァミン 20. 2 g (0. 2 Omo 1 ) を溶解した DMAc 1 50m 1の溶液を 0〜5°Cにて 1時間かけて滴下し、 同温度で 3時間、 室温で 3時 間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰のォキシ塩化リンを 留去し、 DMAc 1 50m 1を加えて、 トリェチルァミン塩酸塩以外の固体を溶解 させた。
0〜5°Cにてァリルアミン 34.2 g(0. 6 Omo 1 )とトリエチルァミン 6 0. 6 g (0. 6 Omo 1) の混合液を 1時間かけて滴下し、 同温度で 3時間、 室温で 6時間反応させた。減圧度を調節しながら 40°C以下で溶媒と過剰の試薬を留去し、 残渣を水洗してトリェチルァミン塩酸塩を取り除き、表記の目的物を 48. 6 g (収 率約 9 7 ) 得た。
' この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、, NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 1) の構造が確認できた。
赤外吸収スペクトル (cmr1) : v H 3240, 3235, δ NH 1650, 1645, v C=C 1635, v ring 1604,1496、 v P=0 1260
TOF-Ma s sスぺクトル(MZZ) : 502, 50 3 (分子量計算値 = 500. 522)
一 NMRスぺクトル(δ、 p pm) : CH2= 5. 2 (8H) 、 =CH— 6. 1 (4H) 、 - C H 2 - 3. 7 (8H) 、 H— Nく 3. 3〜3. 5 ( 6 H) 、 芳 香族 C一 H 7. 2〜7. 4 (8 H)
合成例 2
一般式 ( I a) において、 Xi X4: ― (CH2 = CHCH2) N—、 X5, X6 : — NH—、 Ri R4: CH2 = CHCH2—、 R 5:— p- C 6 H 4— O—p- C 6 H4—の 化合物 ( I a— 2) の合成。
合成例 1において、 ベンジジンの代わりに 4,4'-ジアミノジフエ二ルエーテル 2 0. 0 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりにジァリルアミン 58. 2 g (0. 6 Omo 1 ) を用いた他は、 合成例 1と同様にして表記の目的物を 5 6. 8 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 2) の構造が確認できた。
赤外吸収スペクトル(cmr1) : リ NH 3240、 (5NH 1650, v C=C 1635, v ringl604, 1496, .vP=0 1260
TOF— Ma s sスペクトル (M/Z) : 6 0 6, 60 7 (分子量計算値 = 60 4. 7 7 0) 丄ト1一 NMRスぺクトル(δ、 p pm) : CH2= 5. 1 5〜 5. 20 (1 6H) 、 = CH- 6. 1 (8 H) 、 一 CH2 - 3. 6 5〜 3. 7 0 ( 1 6 H) 、 H - Nく
3. 3〜3. 5 (2H) 、 芳香族 C— H 7. 1 0〜7. 45 ( 8 H)
合成例 3
一般式 ( I a) において、 X1〜X4 : 一 (CH2 = CHCH2) N—、 X5, X6 : — NH -、 R^R4: CH2 = CHCH2—、 R 5 : i_C 6 H 4 - C H 2— p - C 6 H4 -の化合物 ( I a— 3 ) の合成。
ベンジジンの代わりにビス(4-ァミノフエ二ル)メタン 1 9. 8 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりにジァリルアミン 58. 2 g (0. 60mo l ) を用 いた他は、合成例 1と同様にして表記の目的物を 5 7. 3 g (収率約 9 5 %)得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 3) の構造が確認できた。
赤外吸収スぺクトル(cm— : VNH 3235, <5 NH 1645, v C=C 1630,リ ringl604, 1496、 vP=0 1265
T〇F_Ma s sスペクトル (M/Z) : 6 0 6, 607 (分子量計算値 = 6 0
4. 7 7 0)
ェ!!一 NMRスぺクト レ(δ、 p pm) : CH2= 5. 1 5〜 5. 20 (1 6H)、 = CH- 6. 0 5 (8H) 、 ァリルー CH2 - 3. 6 5〜 3. 7 0 ( 1 6 H) 、 - C H 2 - 3. 0 5 (2H) 、 H-N< 3. 3〜3. 5 ( 2 H) 、 芳香族 C— H 7. 1 5〜7. 40 (8 H)
合成例 4
一般式 ( I a) において、 Xi〜X4 : —NH―、 X5, X6 : - (CH2 = CHC Ή2) Ν -、 R^R4: HO— C6H4—、 R5 : — p - C6H4— C (CH3) 2l - C 6H4—の化合物 (I a— 4) の合成。
ベンジジンの代わりに 2, 2 -ビス [4 -(N-ァリルアミノ)フエニル]プロパン 3 0 · 6 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりに p-ヒドロキシァ二リン 6 5. 4 g (0. 6 Omo 1 ) を用いた他は、 合成例 1と同様に反応させた。 減圧度を調節し ながら 5 0°C以下にて溶媒と揮発成分を留去し、 1 000m lの酢酸ェチルに溶解 して 0. 0 5 mo 1ノレの塩酸水溶液と振り混ぜ、 過剰の P-ヒドロキシァ二リンを 水相に抽出し、 酢酸ェチル相を無水硫酸ナトリウムで乾燥、 ろ過、 減圧乾固、 '減圧 乾燥して表記の目的物を 7 2. 4 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 4) の構造が確認できた。
赤外吸収スぺクトル(cm-1): V H 3240, δΝΗ 1650、 v C=C 1635, v ringl604, 1496, vP=0 1260
TOF— Ma s sスぺクトル(M/Z) : 77 2, 7 7 3 (分子量計算値 = 77 0. 3 92)
丄!!一 NMRスペクトル (δ、 p pm) : CH2= 5. 1 5 (4H) 、 =CH— 6. 1 0 (2 H) 、 HO - 4. 8 (4H) 、 — CH2 - 3. 7 0 (4H) 、 CH3 一 1. 45 (6H) 、 H— N< 3. 3〜3. 5 (4H) 、 芳香族 C— H 7. 1 5 〜 7. 5 5 (24H)
合成例 5
一般式 (I a) において、 ェ〜 4: - (CH2 = CHCH2) N―、 X5, X6: 一 NH—、 Ri R4: H〇一 C6H4— C6H4—、 R5 : — p— C6H4— C ( =〇) 一 p- C6H4—の化合物 (I a— 5) の合成。
ベンジジンの代わりに 4,4'-ジァミノべンゾフエノン 2 1. 2 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりに N-ァリル- 4- (4 '-ヒドロキシフエニル)ァニリン 1 3 5 g (0. 6 Omo 1 ) を用いた他は、 合成例 4と同様にして反応させた。 減圧度 を調節しながら 50°C以下にて溶媒と揮発成分を留去し 1 0 00m lの酢酸ェチ ルに溶解して乾燥塩酸ガスを吹き込み、 生成する塩酸塩をろ去、 発生する二酸化炭 素に注意しながら無水炭酸カリウムを加えて乾燥し、 ろ過、 減圧乾固、 減圧乾燥し て表記の目的物を 7 2. 4 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 T〇F—Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 5) の構造が確認できた。
赤外吸収ズぺクトル(cm— :レ ΝΗ 3240、 δΝΗ 1650、 v C=C 1635、 v ringl604, 1496, vP=0 1260
TOF— Ma s sスペクトル (M/Z) : 1 2 03, 1 204 (分子量計算値 = 1 20 . 3 14)
iH— NMRスペクトル (δ、 p pm) : CH2= 5. 1 5〜5. 20 (8H) 、 = CH- 6. 0 5 (4H) 、 HO— 4. 8 (4H) 、 一 CH2— 3. 6 5〜3. 70 (8H)、 H— N< 3. 45 (2H)、芳香族 C— H 7. 1 5〜 7. 40 (40 H)
合成例 6
一般式 (I a) において、 Xi〜X4 : 一 (CH2 = CHCH2) N—、 X5,X6 : —NH—、 Ri〜R4 : Q!-C10H7- (α-ナフチル基) 、 R5 : -p-C6H4-S02 一 p- C6H4—の化合物 ( I a_6) の合成。
ベンジジンの代わりにビス(P-ァミノフエ二ル)スルホン 24. 8 g (0. 10m o l) 、 ァリルァミンの代わりに N-ァリル -α_ナフチルァミン 1 09. 8 g (0. 6 Omo 1 ) を用いた他は、 合成例 1と同様にして反応させた。 減圧度を調節しな がら 50nC以下にて溶媒と揮発成分を留去し、 1000m lの酢酸ェチルに溶解し て乾燥塩酸ガスを吹き込み、 生成する塩酸塩をろ去、 発生する二酸化炭素に注意し ながら無水炭酸カリウムを加えて乾燥し、 ろ過、 減圧乾固、 減圧乾燥して表記の目 的物を 98. 4 g (収率約 92%) 得た。
この化合物の赤外吸収スぺグトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (I a— 6) の構造が確認できた。
赤外吸収スぺクトル(c m—1) : NH 3240, <5NH1650、リ C=C 1635、リ ringl604, 1496、 vP=0 1260
TOF— Ma s sスペクトル (M/Z) : 107 1, 1072 (分子量計算値 = 1069. 226)
i.H— NMRスペクトル (δ、 p pm) : CH2= 5. 20 (8H) 、 =CH— 6. 05 (4H) 、 - CH2- 3. 65〜3. 70 ( 8 H) 、 H— N< 3. 45 (2H) 、 芳香族 C一 H 7. 10〜7. 45 ( 36 H)
' 合成例 7
一般式 (I a) において、 Xi〜X4 : - (CH2 = CHCH2) N—、 X5, X6 : — NH -、 、 R^R CH^CHCHr、 R5 : 2, 6 -C10H6< (2, 6— ナフチレン基) の化合物 ( I a_ 7) の合成。
ベンジジンのかわりに 2,6-ジァミノナフタレン 1 5. 8 g (0. 10mo l ) 、 ァリルァミンのかわりにジァリルアミン 58. 2 g (0. 6 Omo 1 ) を用いた他 は、 合成例 1と同様にして表記の目的物を 60. 9 g (収率約 96%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (l a— 7) の構造が確認できた。
赤外吸収スぺクトル(cm— : vNH 3240, δ NH 1650,リ C=C 1635、リ ringl604, 1496、 vP=0 1260
TOF— Ma s sスペクトル (M/Z) : 636, 637 (分子量計算値 = 63 4. 743)
iH— NMRスペクトル(δ、 ρ pm) : CH2= 5. 1 5〜 5. 20 ( 16 H)、 = CH- 6. 05 ( 8 H) 、 一 CH2— 3. 65〜3. 70 ( 16 H) 、 H— N く 3. 45 (2 H) 、 芳香族 C— H 7. 1 5〜7. 40 (6H)
合成例 8
一般式 (I a) において、 X1, X3: _NH—、 X2, X4:一〇—、 X5, X6 : — NH―、 R1, R3 : CH2 = CHCH2—、 R2, R4 : — C6H5、 R5 : _p- C6 H4-p-C6H4- (4,4'-ビフエ二レン) の化合物 (l a— 8) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 100m 1にフエノキシホスホ リルジクロリド [C6H5OP (=0) C 12] 42. 2 g (0. 2 Omo 1 ) を加 え、 この溶液に、 4,4'-ジアミノビフエニル 18. 4 g (0. 1 Omo 1 ) とトリエ チルァミン 20. 2 g (0. 2 Omo 1 )を溶解した DMAc 1 50m lの溶液を 0 〜5°Cにて 1時間かけて滴下し、 同温度で 6時間、 室温で 1 2時間反応させた。 次 に、ァリルアミン 17. 1 (0. 3 Omo 1 )とトリェチルァミン 20. 2 g (0. 2 Omo 1) の混合物を室温で 1時間かけて滴下し、 さらに 12時間反応させた。 減圧度を調節しながら 40で以下で溶媒と過剰の試薬を留去し、 残渣を水洗して卜 リエチルァミン塩酸塩を取り除き、 表記の目的物を 52. 3 g (収率約 96%) 得 た。
' この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 8) の構造が確認できた。
赤外吸収スペクトル (cm— : νΝΗ 3255, 3240, <3 NH 1650, 1645、 リ OC1630、 y ring 1603, 1495、 vP=0 1260
TOF— Ma s sスぺクトル (MZZ) : 546, 547 (分子量計算値 = 54 4. 5.69 )
1H— NMRスぺクトル(<5、 p pm) : CH2= 5. 0 (4H)、 =CH— 6. 0 (2 H) 、 — CH2— 3 · 5 (4H) 、 H— Nく 3. 3, 3. 2 (4H) 、 芳香 族 C— H 7. 1〜7. 6 (1 8H)
合成例 9
一般式 ( I a) において、 X1, X2:一 0—、 X3〜X6 : — NH―、 R1, R2 : 一 C6H5、 R3, R4 : CH2 = CHCH2—、 R 5 :— p-C 6 H4— C H 2— p— C 6 H 4 一の化合物 (I a— 9) の合成。
蒸留精製したジメチルァセトアミド(DMAc) 100m lにビス(4-ァミノフエ ニル)メタン 19. 8 g (0. l Omo l) とトリェチルァミン 20. 2 g (0. 20 mo 1 ) を加え、 ジフエノキシホスホリルクロリド [ (C6H50) 2P (=0) C 1 ] 26. 9 g (0. l Omo l ) を溶解した DMA c 50 m 1の溶液を 0〜 5 °C にて 1時間かけて滴下し、 同温度で 6時間、 室温で 12時間反応させた。 次に、 0 〜 5 °Cにて塩化ホスホリル [P (=0) C 13] 6. 0 g (0. 1 Orno 1 ) を一 挙に加え、 同温度で時間反応させた。 ァリルアミン 17. 1 g (0. 3 Orno 1 ) と卜リエチルァミン 20. 2 g (0. 2 Orno 1 ) の混合物を室温で 1時間かけて 滴下し、 さらに 12時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過 剰の試薬を留去し、 残渣を水洗してトリェチルァミン塩酸塩を取り除き、 表記の目 的物を 5 1. 4 g (収率約 92%) 得た。
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 9) の構造が確認できた。
赤外吸収スペクトル (cm— : vNH 3255, 3240, 5 NH 1650, 1645, リ C=C 1630、 v ring 1603, 1495、 リ P=0 1260
T〇F— Ma s sスペクトル (M/Z) : 560, 56 1 (分子量計算値 = 55 8. 596)
— NMRスぺクトリレ(δ、 p pm) : CH2= 5. 0 (4H)、 =CH— 6. 0 (2 H) 、 ァリル _CH2 - 3. 4 (4H) 、 H - Nく 3. 3〜3. 2 (4H) 、 一 CH2 - 3. 0 (2 H) 、 芳香族 C— H 7. 1〜7. 5 ( 1 8 H)
合成例 10
一般式 ( l a) において、 X1, X2 : —〇—、 X3, X4 : - (CH2 = CHCH 2) N―、 X5, X6 : - (CH2=CHCH2) N -、 R^I^ CH CHCHs ―、 R5 : — P- C6H4— 0— p- C6H4—の化合物 ( I a— 10) の合成。
蒸留精製したジメチルァセトアミド(DMAc) 100m 1にビス [4- (N -ァリル) ァミノフエニル]エーテル 28. 0 g (0. 10mo l) とトリェチルァミン 20. 2 g (0. 2 Omo 1 ) を加え、 ジァリロキシホスホリルクロリド [ (CH2 = C HCH20) 2P (=0) C I ] 18. 1 g (0. l Omo l ) を溶解した DM Ac 50m lの溶液を 0〜 5 °Cにて 1時間かけて滴下し、 同温度で 6時間、 室温で 12 時間反応させた。 次に、 0〜5°Cにて塩化ホスホリル [P ( = 0) C 13] 6. 0 g (0. 1 Omo 1 ) を一挙に加え、 同温度で時間反応させた。 ジァリルアミン 2 9. 1 g (0. 3 Omo 1 ) とトリェチルアミン 20. 2 g (0. 2 Omo 1 ) の 混合物を室温で 1時間かけて滴下し、 さらに 12時間反応させた。 減圧度を調節し ながら 40 以下で溶媒と過剰の試薬を留去し、 残渣を水洗してトリェチルァミン 塩酸塩を取り除き、 表記の目的物を 62. 4 g (収率約 92%) 得た。
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I a— 10) の構造が確認できた。
赤外吸収スペクトル (cm— : V C=C 1630, v ring 1603, 1495, リ P=O 1260、 v C-O-C 1180
TOF— Ma s sスペクトル (MZZ) : 680, 681 (分子量計算値 = 67 8. 75 1)
iH— NMRスペクトル (δ、 p pm) : CH2= 5. 0〜5. 2 (1 6H) 、 = CH- 6. 0〜6. 1 (8H) 、 -GH2- 3. 3〜3. 4 ( 1 6 H) 、 芳香 族 C—H 7. 1〜7. 3 (8H)
合成例 1 1
. 一般式 ( l a) において、 X1, X3 : —0—、 X2,X4〜X6 : — NH―、 R1, R3 : CH2 = CHCH2—、 R2, R4: C10H7— (i3—ナフチル) 、 R5 : -p-C •6H4— C (=〇) —p- C6H4_の化合物 ( I a— 1 1) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 100m 1に 4,4'-ジァミノべ ンゾフエノン 2 1. 2 g (0. 1 Omo 1 ) とトリエヂルァミン 20. 2 g (0. 2 Omo 1 ) を加え、 ァリロキシホスホリルジクロリド [ (CH2 = CHCH20) P (=0) C 12] 17. 5 g (0. 2 Omo 1 ) を溶解した DM A c 100 m 1 の溶液を 0〜5 にて 1時間かけて滴下し、 同温度で 6時間、 室温で 12時間反応 させた。 次に、 0〜5°Cにて j3-ナフチルァミン 43. 0 g (0. 3 Omo 1 ) と トリェチルァミン 20. 2 g (0. 2 Omo 1 ) の混合物を室温で 1時間かけて滴 下し、 さらに 1 2時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰 の試薬を留去し、 酢酸ェチル 50 Om 1を加えて不溶分をろ去した。 かき混ぜなが ら乾燥塩酸ガスを通じ、 生じる )3-ナフフチルァミン塩酸塩をろ去、 溶液を減圧乾 固して表記の目的物を 5 1. 4 g (収率約 95%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 ( I一 1 1) の構造が確認できた。
赤外吸収スペクトル(cm— : レ NH 3240、 リ 001730、 δ NH 1640, v C=C 1630, y ring 1603, 1495、 vP=0 1260
TOF— Ma s sスぺクトル(MZZ) : 702, 703 (分子量計算値 = 700. 673)
1H— NMRスペクトル (δ、 p pm) : CH2= 5. 0〜5. 1 (4H) 、 =C H— 6. 0〜6. 1 (2H) 、 -CH2- 3. 3 (4H) 、 H_Nく 3. 3〜3· 5 (4H) 、 芳香族 C— H 7. 1〜7. 3 (22 H)
[一般式 (Π) の反応性難燃剤の合成]
合成例 12
一般式 (H a) において、 X7, X8 : —NH—、 R6〜R9 : CH2 = CHCH2 一、 R10: -p-C6H4-p-C6H4- (4,4'-ビフエ二レン) の化合物 (Π a— 1) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 100m 1にォキシ塩化リン 6 1. 3 g (0. 4 Omo 1 ) を加え、 この溶液に、 ベンジジン 18. 4 g (0. 10 mo 1 ) とトリエチルァミン 20. 2 g (0. 2 Omo 1 ) を溶解した DMAc 1 50m 1の溶液を 0〜5°Cにて 1時間かけて滴下し、 同温度で 3時間、 室温で 3時 間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰のォキシ塩化リンを 留去し、 DMAc 1 5 Om 1を加えて、 トリェチルァミン塩酸塩以外の固体を溶解 させた。
0〜5°Cにてァリルアルコール 34. 8 g (0.■ 6 Omo 1 ) とトリェチルアミ ン 60. 6 g (0. 6 Omo 1 ) の混合液を 1時間かけて滴下し、 同温度で 3時間、 室温で.12時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰の試薬 を留去し、 残渣を水洗してトリェチルァミン塩酸塩を取り除き、 表記の目的物を 4 7. 9 g (収率約 95 ) 得た。 この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H a— I) の構造が確認できた。
赤外吸収スぺクトル(cm— : VNH 3240, ά NH 1650, リ OC 1630、 v ring 1603, ί495、 vP=0 1260
TOF— Ma s sスペクトル (M/Z) : 50 6, 5 0 7 (分子量計算値 = 50 4. 462)
iH— NMRスぺクト レ (0、 p pm) : CH2= 5. 1 (8H) 、 =CH— 6. 1 (4H) 、 一 CH2— 3. 6 (8H) 、 H— N< 3. 3 (2H) 、 芳香族 C一 H 7. 2〜7. 4 (8 H)
合成例 1 3
一般式 (Π a) において、 X7, X8: - (CH2 = CHCH2) N—、 R6〜R9 : CH2 = CHCH2—、 R10: — p- C6H4— O— p- C6H4—の化合物 (H a— 2) の 合成。
ベンジジンの代わりにビス [4 - (N-ァリル)ァミノフエ二ル]エーテル 28.0 g(0. 1 Omo 1 ) を用いた他は、合成例 1 2と同様にして表記の目的物を 5 5. 9 g (収 率約 93 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、. 上記の化合物 (Il a— 2) の構造が確認できた。
赤外吸収スペクトル (cirr1) : V C=C 1630, v ring 1603, 1495、 v P=01260, v C-0-C 1180
TOF -M a s sスぺクトル(M/Z) : 6 02, 6 0 3 (分子量計算値 = 600. 5 92)
• — NMRスペクトル (δ、 p pm) : CH2= 5. 1〜5. 2 (1 2H) 、 = CH- 6. 1〜6. 2 (6 H) 、 — CH2— 3. 5〜3. 6 ( 1 2 H) 、 芳香 族 C— H 7. 2〜7. 5 (8 H)
合成例 14
一般式 (Π a) において、 X7, X8: 一 (CH2 = CHCH2) N―、 R6〜R9 : CH2 CHCH2—、 R10: — p- C6H4— CH2— p- C6H4—の化合物 (Π a— 3) の合成。
ベンジジンの代わりにビス [4- (N-ァリル)ァミノフエニル]メタン 27.8 g(0. 1 Omo 1 )を用いた他は、合成例 12と同様にして表記の目的物を 5 8. 1 g (収 率約 97 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H a— 3) の構造が確認できた。
赤外吸収スペクトル (c m-1) : V C=C 1635, 1630. v ring 1603, 1495、 vP=0 1260、 v C-O-C 1180
TOF-Ma s sスぺクトル (M/Z) : 600, 60 1 (分子量計算値 = 5 9 8. "62 1)
— NMRスぺクトリレ (<5、 p pm) : CH2= 5. 1〜5. 2 (1 2H) 、 = CH- 6. 1〜 6. 2 (6H) 、 ァリルー CH2 - 3. 5〜 3. 6 ( 1 2 H) 、 — CH2— 3. 0 5 (2H) 、 芳香族 C一 H 7. 2〜7. 4 ( 8 H)
合成例 1 5
一般式 (Π a) において、 X7, X8 : — NH―、 R6〜R9 : o-CH2=CHCH 2— C6H5— (0 -ァリルフエニル) 、 R'。: 一 p-C6H4 - C (CH3) 2— P- C6H4 一の化合物 (Π a— 4) の合成。
ベンジジンの代わりに 2, 2-ビス(4-ァミノフエ二ル)プロパン 22. 6 g (0. 1 0 mo 1 ) 、 ァリルアルコールの代わりに 0-ァリルフエノール 8 0. 5 g (0. 60 mo 1 ) を用いた他は、 合成例 1 2と同様に反応させた。 減圧度を調節しながら溶 媒'と揮発成分を留去して、 表記の目的物を 8 0. 8 g (収率約 9 5 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H a— 4) の構造が確認できた。
赤外吸収スペクトル(c m-1) : レ NH 3235、 (5 NH 1645, レ OC 1630、 v ring 1604, 1496、 リ P=0 1260
TOF-Ma s sスぺクトル(M/Z) : 8 5 3, 8 54 (分子量計算値二 8 50. 8 24,)
ェ!"!一 NMRスペクトル (δ、 pm) : CH2= 5. 0 (8H) 、 =CH_ 5. 8 (4H) 、 一 CH2— 3. 3 (8H) 、 CH3 - 1. 45 ( 6 H) 、 H— Nく 3. 3-3. 5 (2H) 、 芳香族 C一 H 7. 1 5〜7. 5 5 ( 8 H)
合成例 1 6
一般式 (H a) において、 X7, X8 : 一 NH―、 R6〜R9 : CH2 = CHCH2 O— p- C6H4_、 R10:一 p- C6H4— C (=0) 一!)- C6H4—の化合物 (Π a— 5) の合成。
ベンジジンの代わりに 4,4'-ジァミノべンゾフエノン 2 1. 2 g (0. 1 0 mo 1 ) 、 ァリルアルコールの代わりに P-ァリロキシフエノール 9 0. 1 g (0. 60 mo 1 ) を用いた他は、 合成例 1 2と同様に反応させた。 減圧度を調節しながら溶 媒と揮発成分を留去して、 表記の目的物を 86. 5 g (収率約 9 6 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H a— 5) の構造が確認^?きた。
赤外吸収スペクトル(cm—1) : リ NH 3235、 δ NH 1645, レ C=C 1630、 v ring 1604, 1496、 vP=0 1260
TOF— Ma s sスぺクトル(MZZ) : 9 0 3, 904 (分子量計算値 = 9 00.
864)
iH— NMRスぺクトル(<5、 p pm) : CH2= 5. 1 (8H) 、 =CH— 5.
9 (4H) 、 — CH2— 3. 7 (8H) 、 H— Nく 3. 3〜3. 5 (2 H) 、 芳 香族 C_H 7. 1 5〜7. 7 5 (8H)
合成例 17
一般式 (Π a) において、 X7, Xs : - (CH2 = CHCH2) N—、 R6〜R9 : o;-C10H7- (α-ナフチル)、 R1():— ρ - C6H4— S02— ρ - C6H4—の化合物(Π a - 6) の合成。
ベンジジンの代わりにビス [p -(N-ァリル)ァミノフエ二ル]スルホン 3 2. 8 g (0. 1 0mo 1 ) 、 ァリルアルコールの代わりに a-ナフトール 86. 5 g (0. 6 Orno 1 ) を用いた他は、 合成例 1 2と同様に反応させた。 減圧度を調節しなが ら溶媒と揮発成分を留去して、 表記の目的物を 8 6. 5 g (収率約 96%) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (H a— 6) の構造が確認できた。
赤外吸収スペクトル (cm— : リ C=C 1635、 リ ring 1603, 1495、 vP=01260, y S=0 1320
T〇.F— Ma s sスペクトル (MZZ) : 7 28、 7 2 9 (分子量計算値 = 7 2 6. 3 5 1)
— NMRスペクトル (δ、 ρ pm) : CH2= 5. 0 (4H) 、 =CH— 5. 9 (2H) 、 一 CH2— 3. 5 (4H) 、 芳香族 C—H 7. 1 0〜7. 7 5 (3 6H)
合成例 1 8
一般式 (Π a) において、 X7, Xs : 一 (CH2 = CHCH2) N—、 R6〜R9 : CH2 = CHCH2_、 R10: 2, 6 -C10H6< (2, 6—ナフチレン) の化合物 (I a- 7) の合成。
ベンジジンの代わりに Ν,Ν'-ジァリル- 2, 6-ジァミノナフタレン 23. 8 g (0. 1 Omo 1 ) を用いた他は、 合成例 1 2と同様に反応させた。 減圧度を調節しなが ら溶媒と揮発成分を留去して、 表記の目的物を 5 3. 1 g (収率約 9 5 %) 得た。 この化合物の赤外吸収スペクトル、 TO F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (n a— 7) の構造が確認できた。
赤外吸収スペクトル (c m— : V C=C 1640, 1635, v ring 1603, 1495、 vP=0 1260
TOF— Ma s sスペクトル (MZZ) : 560、 5 6 1 (分子量計算値 = 5 5 8. 5 54)
— NMRスペクトル ( δ、 p pm) : CH2= 5. 0〜 5 · 2 ( 1 2 H) 、 = CH- 5. 7〜5. 9 (6H) 、 — CH2— 3. 2〜 3. 5 ( 1 2 H) 、 芳香 族 C— H 7. 1 0〜7. 7 5 (6H) .
[一般式 (IE) の反応性難燃剤の合成]
合成例 1 9
一般式 (Et a) において、 X9〜X12 : —NH—、 R"〜R14 : CH2 = CHCH2 一、 R15: — p- C6H4— p - C6H4— (4,4'—ビフエ二レン) の化合物 (IE a— 1 ) -の合成。
蒸留精製したジメチルァセトアミド (DMAc) 1 0 0m 1にォキシ塩化リン 6 1. 3 g (0. 4 Omo 1 ) を加え、 4, 4' -ビフエニルアルコール 1 8. 6 g (0. 1 Omo 1 ) とトリエチルァミン 20. 2 g (0. 20 mo 1 ) を溶解した DMA c 1 5 0m 1の溶液を 0〜5°Cにて 1時間かけて滴下し、 同温度で 3時間、 室温で 3時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰のォキシ塩化リ ンを留去し、 DMAc 1 50m 1を加えて、 トリェチルァミン塩酸塩以外の固体を 溶解させた。 0〜5°Cにてァリルアミン 34. 3 g (0. 6 Omo 1 ) とトリエチルァミン 6 0. 6 g (0. 6 Omo 1 ) の混合液を 1時間かけて滴下し、 同温度で 3時間、 室 温で 1 2時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰の試薬を 留去し、 残渣を水洗してトリェチルァミン塩酸塩を取り除き、 表記の目的物を 47 . 7 g (収率約 95 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NM.Rの測定 結果は以下の通りであり、 上記の化合物 (nia—l) の構造が確認できた。
赤外吸収スペクトル(cm一1) : VNH 3240, 5NH 1650, v C=C 1630, v ring 1603, 1495、 レ P=0 1260
TOF— Ma s sスペクトル (M/Z) 504, 505 (分子量計算値= 50 2. 492)
. 1H— NMRスぺクトル (δ P pm) CH?= 5. 1 (8H) 、 =CH 6 . 1 (4H) 、 — CH2 - 3 6 (8 H) H - N< 3. 3 (2H) 、 芳香族 C — H 7. ;!〜 7. 3 (8H)
合成例 20
一般式 (Eta) において、 X9〜X12 (CH2 = CHCH2) N― 14
、 R"〜R : CH2 = CHCH2―、 R15: -p-C6 0—0- 6114—の化合物 (Dla— 2) の合成。
4, 4'-ビフエニルアルコールの代わりにビス (4 -ヒドロキシフエニル)エーテル 2 0. 2 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりにジァリルアミン 58. 3 g (0. 6 Omo 1 ) を用いた他は、 合成例 19と同様にして表記の目的物を 63. 8 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Eta— 2) の構造が確認できた。
赤外吸収スペクトル (cm—1) : リ OC 1630、 ソ ring 1603, 1495、 vP=0 1260 、 C-0-C 1200
TOF— Ma s sスペクトル (MZZ) : 680, 68 1 (分子量計算値 =67 8. 7.5 1 )
— NMRスペクトル (d、 p pm) : CH2= 5. 1〜5. 2 (16H) 、
= CH- 6. ;!〜 6. 2 (8 H) 、 CH 3. 4〜 3. 6 ( 16 H) , 芳香 族 C一 H 7. 1〜7. 5 (8H)
合成例 2 1
一般式 (H a) において、 X9〜X12 : — (CH2 = CHCH2) N―、 RU〜R14 : CH2 = CHCH2—、 R15: 一 p- C6H4— CH2— p- C6H4—の化合物 (HI a— 3) の合成。
4, 4' -ビフエニルアルコールの代わりにビス(4-ヒドロキシフェニル)メタン 2 0. 0 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりにジァリルアミン 58. 3 g (0 . 6 Omo 1 ) を用いた他は、 合成例 1 9と同様にして表記の目的物を 63. 6 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IEa— 3) の構造が確認できた。
赤外吸収スペクトル (cm— : リ C=C 1635、 v ring 1605, 1495、 vP=0 1260
TO F_Ma s sスペクトル (M/Z) : 6 7 8, 67 9 (分子量計算値 = 67
6. 7 7 8)
— NMRスぺクトル ( δ、 p pm) : CH2= 5. 1〜 5. 2 ( 1 6 H) 、 = CH- 6. 1〜 6. 2 (8H) 、 ァリル一 CH2— 3. 4〜3. 6 (1 6 H) 、 —CH2— 3. 1 (2H) 、 芳香族 C一 H 7. 1 5〜7. 45 ( 8 H)
合成例 22
一般式 (m a) において、 X9〜X12 : — (CH2 = CHCH2) N—、 RU〜R14 : HO— C6H4—、 R15: -p-C6H4- C (CH3) 2— p-C 6H4—の化合物 (IE a -4) の合成。
4, 4' -ビフエニルアルコールの代わりに 2, 2'-ビス(4-ヒドロキシフエニル)プロパ ン 22. 8 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりに p-ヒドロキシ _N-ァリル ァニリン 7 9. 9 g (0. 6 Omo 1 ) を用い、 水洗操作の際に 0. 0 5mo l / 1の塩酸水溶液を用いて処理した他は、 合成例 1 9と同様にして、 表記の目的物を
7 9. 8 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、'上記の化合物 (Ha— 4) の構造が確認できた。
赤外吸収スペクトル (cm一1) : リ OC 1635、 v ring 1605, 1495、 vP=0 1260 TOF— Ma s sスペクトル (MZZ) : 8 5 1, 8 52 (分子量計算値 = 84 8. 967)
1H— NMRスペクトル (δ、 p pm) : CH2= 5. 1 5 (8H) 、 =CH— 6. :!〜 6. 2 (4H) 、 —CH2 - 3. 4〜3. 6 (8 H) 、 CH3— 1. 4 ( 6H) 、 芳香族 C— H 7. 1 5〜7. 45 (24H)
合成例 23
一般式 (ma) において、 X9 X12 : — NH -、 Rll〜R14 : CH2 = CHCH2 — O— C6H4 C6H4—、 R〖5: P-C6H4-C (=〇) — p- C6H4—の化合物 ( Π a - 5) の合成。
4, 4' -ビフエニルアルコールの代わりに 4, 4' -ジヒドロキシベンゾフエノン 2 1. 4 g (0. 1 0mo l ) 、 ァリルァミンの代わりに 4 -(4' -ァリロキシフエノキシ) ァニリン 1 17. 2 g (0. 6 Omo 1 ) を用いた他は、 合成例 19と同様に反応 させた。 減圧度を調節しながら減圧乾固して酢酸ェチルを加えて溶液とし、 乾燥塩 酸ガスを吹き込んで生じる沈殿をろ去し、 発生する二酸化炭素ガスに注意しながら 無水炭酸カリウムを加え、 ろ過、 減圧乾固して表記の目的物を 101. 8 g (収率 約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (ma— 5) の構造が確認できた。
赤外吸収スペクトル (cm-1) : リ M 3240、 <5NH 1650、 レ C=01750、 v C=C 1635 、 v ring 1605, 1495、 vP=0 1260
TOF-Ma s sスペクトル (M/Z) : 1085, 1 086 (分子量計算値 = 1083. 256)
1H_NMRスペクトル (δ、 p pm) CH2= 5. 0 (8H) 、 =CH- 6 . 1 (4H) 、 -CH2- 3. 3 (8 H) 、 H— Nく 3. 4 (4H) 、 芳香族 C -H 7. 1 5〜7. 50 (4 OH)
合成例 24
一般式 (Ha) において、 X9〜X12 : — (CH2 = CHCH2) N—、 R"〜R14 : «-C10H7— (α-ナフチル) 、 R15:— p - C6H4— S02—p- C6H4—の化合物 (ma— 6) の合成。
4,4'-ビフエニルアルコールの代わりにビス(P-ヒドロキシフエニル)スルホン 2 5. 0 g (0. 1 Omo 1 ) 、 ァリルァミンの代わりに N -ァリル-ひ-ナフチルアミ ン 1 10. O g (0. 60 mo 1 ) を用いた他は、 合成例 19と同様に反応させた 。 減圧度を調節しながら減圧乾固して酢酸ェチルを加えて溶液とし、 乾燥塩酸ガス を吹き込んで生じる沈殿をろ去し、 発生する二酸化炭素ガスに注意しながら無水炭 酸カリウムを加え、 ろ過、 減圧乾固して表記の目的物を 100. 7 g (収率約 94 ) 得た。
この化合物の赤外吸収スペクトル、 TOF_Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Ha— 6) の構造が確認できた。
赤外吸収スペクトル (c m— : V C=C 1635、 v ring 1605, 1495、 v P=0 1260 、 vS=0 1320
TOF-Ma s sスペクトル (M/Z) 073, 1074 (分子量計算値 = 107 1. 188)
— NMRスペクトル (δ、 p pm) CH9= 5. (8H) 、 =CH— 6 . 2 (4H) 、 — CH2 - 3. 5 (8 H) 芳香族 C— H 7. 1 5 7. 55 ( 36H)
合成例 25
一般式 (H a) :おいて、 X9 X12 (CH2 = CHCH2 Rn〜R 14
: し H2
Figure imgf000056_0001
0H6< (2, 6 - の化合 物 (Ha— 7) の合成。
4,4'-ビフエ二ルアルコールの代わりにナフタレン- 2,6-ジオール 16. O g (0 . 10 m o 1 ) 、 ァリルァミンの代わりにジァリルアミン 58. 3 g (0. 60m o 1 ) を用いた他は、 合成例 1 9と同様にして表記の目的物を 65. 5 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (m a— 7) の構造が確認できた。
赤外吸収スペクトル (cm_1) : V C=C 1635、 v ring 1605, 1495、 vP=0 1260 、 リ S=0 1320
TOF— Ma s sスペクトル (M/Z) : 698, 699 (分子量計算値 = 69 6. 7-13)
H— NMRスペクトル ( δ、 m) : CH2= 5 2 ( 16 H) 、
= CH- 6. 6. 2 (8H) 、 -CH - 3. 4 (1 6H) 、 芳香 族 C— H 7. 0 5〜7. 50 (6 H)
合成例 26
一般式 (ni a) において、 X9, X" : —NH―、 X1。, X12 : —0—、 R11, R13 : CH2 = CHCH2 -、 R12, R14 : - C6H5、 R 15: 卞 C 6 H 4—p- C 6 H 4 _ ( 4, 4'-ビフエ二レン) の化合物 (H a— 8) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 1 00m 1にフエノキシホスホ リルジクロリド [C6H5OP (=〇) C 12] 42. 2 g (0. 20 m o 1 ) を加 え、 この溶液に、 4, 4'-ビフエ二ルアルコール 1 8. 6 g (0. l Omo l ) とトリ ェチルァミン 20. 2 g (0. 2 Omo 1 ) を溶解した DMA c 1 50 m 1の溶液 を 0〜5tにて 1時間かけて滴下し、 同温度で 6時間、 室温で 1 2時間反応させた 。 次に、 ァリルアミン 1 7. 1 g (0. 3 Omo 1 ) とトリェチルァミン 20 · 2 g (0. 2 Omo 1 ) の混合物を室温で 1時間かけて滴下し、 さらに 1 2時間反応 させた。 減圧度を調節しながら 40°C以下で溶媒と過剰の試薬を留去し、 残渣を水 洗してトリェチルァミン塩酸塩を取り除き、 表記の目的物を 54. 8 g (収率約 9 5 %) 得た。
この化合物の赤外吸収スぺクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Ma— 8) の構造が確認できた。
赤外吸収スペクトル(c m— : VNH 3240, 6 NH 1650, v C=C 1630, リ ringl603, 1495、 y P=0 1260
TOF.— Ma s sスペクトル (M/Z) : 578, 5 7 9 (分子量計算値 = 5 7 6. 52 9)
iH— NMRスぺクトル (δ、 p pm) : CH2= 5. 1 (4H) 、 =CH— 6 '.' 1 (2H) 、 一 CH2— 3 · 6 (4H) 、 H_N< 3. 2 ( 2 H) 、 芳香族 C -H 7. 1〜7. 6 ( 1 8 H)
合成例 2 7
一般式 (m a) において、 X9, X": - (CH2 = CHCH2) N―、 X1。, X12 : ー〇一、 R"〜R14: CH2 = CHCH2—、 R15:—p— C6H4—〇_p— C6H4—の 化合物.(Ha— 9) の合成。
フエノキシホスホリルジクロリドの代わりにァリルホスホリルジク口リド [CH 2 = CHCH2〇一 P (=〇)C 12] 27. 0 g (0. 2 0mo l ) 、 4,4'—ビフエ二 ルアルコールの代わりにビス(4-ヒドロキシフエニル)エーテル 20. 2 g (0. 1 0 mo 1 ) 、 ァリルァミンの代わりにジァリルアミン 5 8. 3 g (0. 6 Omo 1 ) を用いた他は、 合成例 1 9と同様にして表記の目的物を 56. 5 g (収率約 94
%) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (Et a— 9) の構造が確認できた。
赤外吸収スペクトル (cm-1) : レ C=C 1630、 v ring 1603, 1495、 v P=0 1260 、 v C-O-C 1200
TOF— Ma s sスペクトル (M/Z) : 60 2, 603 (分子量計算値 = 60 0. 5 92)
— NMRスぺクト レ (<5、 p pm) : CH2= 5. 1〜5. 2 (1 2H) 、 = CH— 6. 1〜6. 2 (6 H) 、 — CH2 - 3. 4〜3. 6 ( 1 2 H) 、 芳香 族 C— H 7. 1〜7. 5 (8H)
合成例 28
一般式 (IE a) において、 X9, X10 : _O—、 X11, X12: - (CH2 = CHCH 2) N -、 R"〜R14: CH2 = CHCH2—、 R15: — p-C 6 H4— C H 2 _p- C 6 H 4 一の化合物 (Ha— 1 0) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 1 00m lにジァリルフエノキ シホスホリルジクロリド [ (CH2 = CHCH20) 2P (=0) C 1 ] 1 6. 5 g ( 0. 1 Omo 1 ) を加え、 この溶液に、 ビス(4-ヒドロキシフエニル)メタン 20. 0 g (0. 1 Omo 1 ) とトリエチルァミン 20. 2 g (0. 2 Omo 1 ) を溶解 した DMAc 1 5 0m lの溶液を 0〜 5 °Cにて 1時間かけて滴下し、 同温度で 6時 間、 室温で 1 2時間反応させた。 次に、 塩化ホスホリル [P (=0) C 1 3] 46. 0 g (0. 3 Omo 1 ) とトリエチルァミン 20. 2 g (0. 2 Omo 1 ) の混合 物を室温で 1時間かけて滴下し、 さらに 1 2時間反応させた。 減圧度を調節しなが ら 40°C以下で溶媒と過剰の試薬を留去し、 残渣をふたたび 1 00m lの DMAc で溶解し、 ジァリルアミン 5 8. 3 g (0. 6 Omo 1 ) とトリエチルァミン 20 . 2 g. (0. 2 Omo 1 )' の混合液を室温で 1時間かけて滴下し、 1 2時間反応さ せた。 この後は合成例 1 9と同様に処理して、 表記の目的物を 6 3. 6 g (収率約 94%) 得た。 この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (m a— 1 0) の構造が確認できた。
赤外吸収スペクトル (cm-1) : リ C=C 1635、 v ring 1605, 1495、 v P=0 1260 TOF— Ma s sスペクトル (MZZ) : 60 0, 60 1 (分子量計算値 = 5 9 8. 6 1 2)
ェ?!一 NMRスペクトル (δ、 p pm) : CH2= 5. 1〜5. 2 (1 2H) 、 =CH - 6. 1〜 6. 2 (6H) 、 ァリルー CH2— 3. 4〜 3. 6 (1 2 H) 、 一 CH2— 3. 1 (2H) 、 芳香族 C一 H 7. 1 5〜7. 45 ( 8 H)
[一般式 (IV) の反応性難燃剤の合成]
合成例 2 9
一般式 (IV a) において、 Rl6〜R19: CH2 = CHCH2—、 R20 : — p_C6H4— p- C6H4— (4,4'-ピフエ二レン) の化合物 (IVa— 1) の合成。
蒸留精製したジメチルァセトアミド (DMAc) 1 0 0m 1にォキシ塩化リン 6 1. 3 g (0. 4 Omo 1 ) を加え、 4, 4' -ビフエ二ルアルコール 1 8. 6 g (0. l Omo.l ) とトリエチルァミン 2 0. 2 g (0. 2 Omo 1 ) を溶解した DMA c 1 5 0 m 1の溶液を 0〜 5 °Cにて 1時間かけて滴下し、 同温度で 3時間、 室温で 3時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰のォキシ塩化リ ンを留去し、 DMAc 1 50m 1を加えて、 トリェチルァミン塩酸塩以外の固体を 溶解させた。
0〜 5°Cにてァリルアルコール 34. 8 g (0. 6 Omo 1 ) と卜リエチルアミ ン 6 0. 6 g (0. 6 Omo 1 ) の混合液を 1時間かけて滴下し、 同温度で 3時間、 室温で 1 2時間反応させた。 減圧度を調節しながら 40°C以下で溶媒と過剰の試薬 を留去し、 残渣を水洗してトリェチルァミン塩酸塩を取り除き、 表記の目的物を 3 9. 3 g (収率約 9 5 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 1) の構造が確認できた。
赤外吸収スペクトル (cm一1) : レ C=C 1630、 v ring 1603, 1495、 vP=0 1260
TOF— Ma s sスペクトル (MZZ) : 4 1 5, 41 6 (分子量計算値 =41 3. 504)
— NMRスペクトル(<5、 p pm) : CH2= 5. 0 (8H)、 =CH— 6. 0 (4H) 、 — CH2 - 3. 5 (8 H) 、 芳香族 C— H 7. 1〜7. 4 (8 H) 合成例 30
一般式 (IVa) において、 R16〜R19 : CH2 = CHCH2—、 R 0: — p- C6H4— 0— p- C6H4—の化合物 (IVa— 2) の合成。
4,4'-ビフエ二ルアルコールの代わりにビス(4-ヒドロキシフエニル)エーテル 20. 2 g (0. 1 Omo 1 ). を用いた他は、 合成例 29と同様にして表記の目的 物を 40. 4 g (収率約 94%) 得た。
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 2) の構造が確認できた。
赤外吸収スペクトル (cm— : V C=C 1630, レ ring 1603, 1495、 レ P=O 1260、 V C-0-C 1200
TOF— Ma s sスペクトル (M/Z) : 43 1, 432 (分子量計算値 =42 9. 504)
1H— NMRスペクトル (<5、 p pm) : CH2= 5. 1〜 5. 2 (8 H) 、 = CH- 6. 1〜6. 2 (4H) 、 — CH2 - 3. 4〜3. 6 ( 8 H) 、 芳香族 C — H 7. 1〜7. 5 (8H)
合成例 3 1
一般式 (IVa) において、 R16〜R19: CH2 = CHCH2—、 R20:— p_C6H4— CH2— p- C6H4—の化合物 (IVa— 3) の合成。
4, 4'-ビフエ二ルアルコールの代わりにビス(4-ヒドロキシフエニル)メタン 20. 0 g (0. 1 Omo 1 ) を用いた他は、 合成例 29と同様にして表記の目的 物を 40. 2 g (収率約 94%) 得た。
- この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 3) の構造が確認できた。
赤外吸収スペクトル (cm-1) : vC=C 1635, リ ring 1605, 1495、 vP=0 1260 T〇F— Ma s sスぺクトル (MZZ) : 429, 430 (分子量計算値 =42 7. 53 1)
ェ!!ー NMRスペクトル■ ( δ、 pm) : CH2= 5. 0〜5. 1 ( 8 H) 、 = CH— 6. 0〜 6 · 1 (4H) 、 ァリルー CH2— 3. 2〜3. 4 (8 H) 、 - CH9- 3. 0 (2H) 、 芳香族 C一 H 7. 1 5〜7. 45 ( 8 H) 合成例 32
一般式 (IVa) において、 R16〜R19: p-CH2 = CHCH20— C6H4—、 R20: 一 P- C6H4— C (CH3) 2— p- C6H4—の化合物 (IVa— 4) の合成。
4, 4'-ビフエ二ルアルコールの代わりに 2, 2'-ビス(4-ヒドロキシフエニル)プロ パン 22. 8 g (0. 1 Omo 1 ) 、 ァリルアルコールの代わりに P-ァリロキシフ エノ一ル 90. 1 g (0. 6 Omo 1 ) を用いた他は、 合成例 29と同様にして表 記の目的物を 88. 0 g (収率約 96%) 得た。
この化合物の赤外吸収スペクトル、 TOF— M a s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 4) の構造が確認できた。
赤外吸収スペクトル (cm-1) : リ OC 1635、 レ ring 1605, 1495、 リ P=O 1260
TOF— Ma s sスぺクトル (M/Z) : 9 18, 91 9 (分子量計算値 = 9 1 6. 904)
1H— NMRスペクトル (δ、 p pm) : CH2= 5. 1 0 (8H) 、 =CH— 6. 2〜6. 4 (4H) 、 — CH2 - 3. 4〜3. 6 ( 8 H) 、 CH3_ 1. 4 (6 H) 、 芳香族 C— H 7. 1 5〜7. 45 (24H)
合成例 33
一般式 (IVa) において、 R16〜R19: o-CH2 = CHCH2_C6H4—、 R20: - p-C6H4-C (=0) — p- C6H4—の化合物 (IVa— 5) の合成。
4,4'-ビフエ二ルアルコールの代わりに 4,4'-ジヒドロキシベンゾフエノン 2 1.
4 g (0. 1 Omo 1 ) 、 ァリルアルコールの代わりに 0-ァリルフエノール 80.
5 g (0. 6 Omo 1 ) を用いた他は、合成例 29と同様にして表記の目的物を 10 1. 8 g (収率約 94%) 得た。
' この化合物の赤外吸収スペクトル、 T〇F— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 5) の構造が確認できた。
赤外吸収スペクトル (cm-1) : レ 001750、 レ OC 1635、 リ ring 1605, 1495、 yP=0 1260
TOF— Ma s sスペクトル (MZZ) : 840, 841 (分子量計算値 = 83 8. 834)
— NMRスペクトル(δ、 ρ pm) : CH2= 5. 2 (8H) 、 =CH— 6. 3 (4H) 、 — CH。― 3. 5 (8H) 、 芳香族 C一 H 7. 1 5〜7. 50 (2 4H)
合成例 34
一般式 (IVa) において、 R16〜R19: CH2=CHCH2—、 R20: -p-C6H4- S02_p- C6H4—の化合物 (IVa— 6) の合成。
4, 4 '-ビフエニルアルコールの代わりにビス(P -ヒドロキシフエニル)スルホン 2 5. 0 g (0. 1 Omo 1 ) を用いた他は、 合成例 29と同様にして表記の目的物 を 52. 5 g (収率約 92 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 6) の構造が確認できた。
赤外吸収スペクトル (cm— : リ C=C 1635、 レ ring 1605, 1495、 ソ P=O 1260、 V S=0 1320
TOF-Ma s sスぺクトル(M/Z) : 572, 573 (分子量計算値 = 570. 498)
1H— NMRスぺクトリレ(δ、 p pm) : CH2= 5. 1 (8H) 、 二 CH— 6.
2 (4H) 、 — CH2— 3. 5 (8H) 、 芳香族 C— H 7. 1 5〜7. 65 (8 H)
合成例 35
一般式 (IVa) において、 R16〜R19: CH2 = CHCH2—、 R20: 2, 6— C10 H6< (2, 6一ナフチレン) の化合物 (IVa - 7) の合成。
4,4'-ビフエ二ルアルコールの代わりにナフタレン- 2, 6-ジオール 16.0 g(0. 1 Omo 1 ) を用いた他は、合成例 29と同様にして表記の目的物を 44. 7 g (収 率約 93 %) 得た。
この化合物の赤外吸収スペクトル、 TOF— Ma s sスペクトル、 NMRの測定 結果は以下の通りであり、 上記の化合物 (IVa— 7) の構造が確認できた。
赤外吸収スペクトル (cm-1) : y C=C 1635、 v ring 1605, 1495、 ν P=0 1260 TOF-Ma s sスぺクトル(MZZ) : 482, 483 (分子量計算値 =480.
395)
— NMRスぺクトル(δ、 pm) : CH2= 5. 1 (8H) 、 =CH— 6. 2 (4H) 、 一 CH2— 3. 5 (8H) 、 芳香族 C一 H 7. 1 5〜7. 25 (6 H) B :難燃正樹脂加工品の製造
以下、 実施例 1〜 1 0が一般式 (I) の反応性難燃剤を用いた樹脂加工品の製造 例であり、 比較例 1〜1 1がそれに対応する比較例である。
また、 実施例 1 1〜20が一般式 (H) の反応性難燃剤を用いた樹脂加工品の製 造例であり、 比較例 1 2〜22がそれに対応する比較例である。
また、 実施例 21〜30が一般式 (ΠΙ) の反応性難燃剤を用いた樹脂加工品の製 造例であり、 比較例 23〜33がそれに対応する比較例である。
また、 実施例 31〜40が一般式 (IV) の反応性難燃剤を用いた樹脂加工品の製 造例であり、 比較例 34〜44がそれに対応する比較例である。
[一般式 (I) の反応性難燃剤を用いた樹脂加工品の製造] '
実施例 1
熱可塑性樹脂として 66ナイロン (宇部興産社製: 2020 B) 61.8質量部、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak 25) 22質量部、 着色剤としてカーポンプ ラック 1質量部、 酸化防止剤 (チバガイギ一社製:ィルガノィルガノックス 1 0 10) 0. 2質量部を加えて、 無機充填剤として炭酸カルシウム 5質量部、 反応性 難燃剤として上記の化合物 ( I a— l) 10質量部を配合し、 サイドフロ一型 2軸 押出機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105°Cで 4時 間乾燥した後、 上記ペレットを射出成形機 (FUNUC社製: 500 を用いて 樹脂温度 280t:、 金型温度 80°Cの条件で成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 1の樹脂加工品を得た。
実施例 2 .
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 62. 8質量 部に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤として力一ポ ンブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (l a— 7) 8 質量部、 2官能性の上記の化合物 (I a— 8) 4質量部、 酸化防止剤 (チバガイギ 一社製:ィルガノックス 10 10) 0. 2質量部を加えて混合し、 280°Cに設定 したサイドフ口一型 2軸押出し機を用いて、 強化繊維としてシランカツプリング剤 で表面処理した繊維長約 3 mmのガラス繊維(旭ファイバーグラス社製: 03. JAFT2A k25) 20質量部を、 押出し混練を用いてサイドから溶融した混合樹脂系に混ぜ込 み、本組成の樹脂組成からなるコンパウンドペレツトを得た後、上記ペレツトを 10 5 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: α 50 C) を用いてシリンダー温度 280°C, 金 型温度 80° (:、 射出圧力 78. 4MP a、 射出速度 120mmZs、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 30 k G y照射して実 施例 2の樹脂加工品を得た。
実施例 3
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 58. 8質量部、 難燃剤として多官能性の上記の化合物 ( I a— 16) 1 0質量部、 及び、 非反応型 の有機りん系難燃剤 (=光化学社製: HCA-HQ) 6質量部を用いた以外は、 実施例 2 と同様に体質顔料、 ガラスファイバー、 着色剤、 酸化防止剤を同量添加し、 実施例 3の樹脂加工品を得た。
実施例 4
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 62. 8質量部 に、 無機充填剤として約 0. 05 / m径のクレー 4質量部、 着色剤として力一ボン ブラック 1質量部、反応性難燃剤として多官能性の上記の化合物( I a— 14) 10 質量部、 更に、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 酸化防止剤 (チ バガイギ一社製:ィルガノックス 1010) 0. 2質量部を加えて混合し、 280°C に設定したサイドフロー型 2軸押出し機を用いて、 強化繊維としてシランカツプリ ング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak 25) 20質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の樹脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 105 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: α 50 C) を用いてシリンダー温度 280t:、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mm/ s、 冷却時間 15 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源とした r線を 30 kGy照射して実 施例 4の樹脂加工品を得た。 実施例 5
熱可塑性樹脂としてポリブチレンテレフ夕レート樹脂 (東レ株式会社製: トレコ ン 140 1 X 06) 78質量部、 難燃剤として、 上記の化合物 (I a— 3) 12質 量部、 及び非反応型の有機りん系難燃剤 (三光化学社製: HCA- HQ) 5質量部、 酸化 アンチモン 5質量部を用い、 混練温度を 245°Cで混練りして樹脂コンパウンドべ レットを得て、 130°Cで 3時間乾燥させ、 成形時のシリンダー温度を 250 の 条件に変更した以外は実施例 2と同様の条件で成形品を成形した。
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 kGyの電子線を照射して実施例 5の樹脂加工品を得た。
実施例 6
実施例 1の難燃剤として、 4官能性の上記の化合物 ( I a— 1 5) 8質量部、 3 官能性のイソシァヌル酸 E〇変性トリァクリレート (東亜合成社製: M— 3 15) 2質量部を併用して用いた以外は、 実施例 1と同様の配合と条件で実施例 6の樹脂 加工品を得た。
実施例 7
実施例 2の系に熱触媒 (日本油脂社製: ノフマー BC) を 2質量部、 更に添加し た以外は実施例 2と同様の条件で成形品を成形した。
その後、 上記成形品を、 245°C、 8時間加熱によって反応して実施例 7の樹脂 加工品を得た。
実施例 8
実施例 2の系に、 紫外線開始剤 (チバガイギ一社製ィルガノックス 651とィル ガノックス 369とを 2 : 1で併用) 7質量部を添加した以外は実施例 2と同様の 条件で成形品を成形した。
その後、 上記成形品を、 超高圧水銀灯で 365 nmの波長で 1 5 OmWZcm2 の照度で 2分間照射して実施例 8の樹脂加工品を得た。
実施例 9
熱硬化性エポキシ系モールド樹脂 (長瀬ケミカル社製、 主剤 XNR4012: 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 45質量部にシリカ 47質量部を分散した 系に、 反応性難燃剤として上記の化合物 (I a— 4) 8質量部を添加してモールド 成形品を得た後、 100° (:、 1時間反応させて実施例 9の樹脂加工品 (封止剤) を 得た。
実施例 10
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 94質量部に、 反応性難燃剤として上記の化合物 ( l a— 4) 6質量部添加してモールド成形品を 得た後、 1 50°C、 4時間反応させて実施例 10の樹脂加工品 (封止剤) を得た。 比較例 1〜 10
実施例 1〜10において、 上記の一般式 (l a) で示される反応性難燃剤のみを 配合しなかった以外は、 実施例 1〜10と同様な方法で、 それぞれ比較例 1〜 10 の樹脂加工品を得た。
比較例 1 1
実施例 3の難燃剤として、非反応性の有機りん系難燃剤(三光化学社製: EP0CLEAN) 16質量部のみ添加した以外は、 実施例 3と同様の条件で比較例 1 1の樹脂加工品 を得た。
[一般式 (Π) の反応性難燃剤'を用いた樹脂加工品の製造]
実施例 1 1
熱可塑性樹脂として 66ナイロン (宇部興産社製: 2020 B) 61.8質量部、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03.JAFT2Ak25) 20質量部、 着色剤として力一ポンプ ラック 1質量部、 酸化防止剤 (チバガイギ一社製:ィルガノィルガノックス 1 0 10) 0. 2質量部を加えて、 無機充填剤として炭酸カルシウム 5質量部、 反応性 難燃剤として上記の化合物 (n a— l) 12質量部を配合し、 サイドフロ一型 2軸 押出機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105°Cで 4時 '間乾燥した後、 上記ペレットを射出成形機 (FUNUC社製: Qi 50 C) を用いて 樹脂温度 280°C、 金型温度 80°Cの条件で成形した。
その後、 上記成形品に、 コバルト 60を線源とした τ線を 25 kGy照射して実 施例 1 1の樹脂加工品を得た。
実施例 12
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 60. 8質量 部に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤としてカーボ ンブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (Il a— 4) 8 質量部、 2官能性の上記の化合物 (H a— 1 1) 6質量部、 酸化防止剤 (チバガイ ギ一社製:ィルガノックス 10 10) 0. 2質量部を加えて混合し、 280°Cに設 定したサイドフロー型 2軸 ¾1出し機を用いて、 強化繊維としてシランカツプリング 剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak25) 20質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の樹脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 105 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: ひ 500 を用いてシリンダー温度 280T、 金 型温度 80 °C、 射出圧力 78. 4 M P a、 射出速度 120 mmZ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 30 kGy照射して実 施例 1 2の樹脂加工品を得た。
実施例 13
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 58. 8質量部、 難燃剤として多官能性の上記の化合物 (Il a— 7) 10質量部、 及び、 非反応型の 有機りん系難燃剤 (三光化学社製: HCA-HQ) 6質量部を用いた以外は、 実施例 12 と同様に無機充填剤、 ガラスファイバ一、 着色剤、 酸化防止剤を同量添加し、 実施 例 1 3の樹脂加工品を得た。
実施例 14
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 59. 8質量部 に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤としてカーボン ブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (Il a— 4) 8質 量部、 更に、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 酸化防止剤 (チ パガィギ一社製:ィルガノックス 10 10) 0. 2質量部を加えて混合し、 280°C に設定したサイドフロー型 2軸押出し機を用いて、 強化繊維としてシランカツプリ ング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak 25) 25質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の樹脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 1 05 で 4時間乾燥させた。
射出成形機 (FUNUC社製: 500 を用いてシリンダー温度 280° (:、 金 型温度 80t:、 射出圧力 78. 4MP a、 射出速度 120 mmZ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源とした r線を 30 kGy照射して実 施例 14の樹脂加工品を得た。
実施例 1 5
熱可塑性樹脂としてポリブチレンテレフ夕レート樹脂 (東レ株式会社製: トレコ ン 140 1 X 06) 78質量部、 難燃剤として、 上記の化合物 (Il a— 9) 12質 量部、 及び非反応型の有機りん系難燃剤 (三光化学社製: HCA- HQ) 5質量部、 酸化 アンチモン 5質量部を用い、 混練温度を 245Tで混練りして樹脂コンパウンドべ レットを得て、 130°Cで 3時間乾燥させ、 成形時のシリンダ一温度を 250°Cの 条件に変更した以外は実施例 12と同様の条件で成形品を成形した。
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 k Gyの電子線を照射して実施例 1 5の樹脂加工品を得た。
実施例 16
実施例 1 1の難燃剤として、 4官能性の上記の化合物 (Π a— 6) 8質量部、 3 官能性のイソシァヌル酸 EO変性トリァクリレート (東亜合成社製: M— 31 5) 4質量部を併用して用いた以外は、 実施例 1 1と同様の配合と条件で実施例 16の 樹脂加工品を得た。
実施例 1 7
実施例 12の系に熱触媒 (日本油脂社製: ノフマ一 BC) を 2質量部、 更に添加 した以外は実施例 12と同様の条件で成形品を成形した。
その後、 上記成形品を、 245°C、 8時間加熱によって反応して実施例 17の樹 脂加工品を得た.。
実施例 1 8
実施例 1 2の系に、 紫外線開始剤 (チパガィギ一社製ィルガノックス 65 1とィ ルガノックス 369とを 2 : 1で併用) 7質量部を添加した以外は実施例 1 2と同 様の条件で成形品を成形した。
その後、 上記成形品を、' 超高圧水銀灯で 365 nmの波長で 1 5 OmW/cm2 の照度で 2分間照射して実施例 18の樹脂加工品を得た。
実施例 1 9 熱硬化性エポキシ系モ一ルド樹脂 (長瀬ケミカル社製、 主剤 XNR4012: 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 47質量部にシリカ 45質量部を分散した 系に、 反応性難燃剤として上記の化合物 (H a— 9) 8質量部を添加してモールド 成形品を得た後、 1 00 、 1時間反応させて実施例 1 9の樹脂加工品 (封止剤) を得た。
実施例 20
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 94質量部に、 反応性難燃剤として上記の化合物 (ll a— 12) 6質量部を添加してモールド成形 品を得た後、 1 50°C、 4時間反応させて実施例 20の樹脂加工品 (封止剤) を得 た。
比較例 12〜 2 1
実施例 1 1〜20において、 本発明の一般式 (H a) で示される反応性難燃剤の みを配合しなかった以外は、 実施例 1 1〜20と同様な方法で、 それぞれ比較例 1 2〜21の樹脂加工品を得た。 '
比較例 22
実施例 1 3の難燃剤として、 非反応性の有機りん系難燃剤 (三光化学社製: EP0CLEAN) 1 6質量部のみ添加した以外は、 実施例 13と同様の条件で比較例 22 の樹脂加工品を得た。
[一般式 (ΠΙ) の反応性難燃剤を用いた樹脂加工品の製造]
実施例 21
熱可塑性樹脂として 66ナイロン (宇部興産社製: 2020 B) 61.8質量部、 強化繊維としてシランカツプリング剤で表面処理した繊維長約 3 mmのガラス繊維 ' (旭ファイバーグラス社製: 03. JAFT2Ak25) 20質量部、 着色剤としてカーポンプ ラック 1質量部、 酸化防止剤 (チバガイギ一社製:ィルガノィルガノックス 1 0 10) 0. 2質量部を加えて、 無機充填剤として炭酸カルシウム 5質量部、 反応性 難燃剤として上記の化合物 (Ha— I) 12質量部を配合し、 サイドフロー型 2軸 押出機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105°Cで 4時 間乾燥した後、 上記ペレヅトを射出成形機 (FUNUC社製: a 50 C) を用いて 樹脂温度 280°C、 金型温度 80 の条件で成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 21の樹脂加工品を得た。
実施例 22
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 60. 8質量 部に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤として力一ポ ンブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (Ha— 4) 8 質量部、 2官能性の上記の化合物 (ma— 8) 6質量部、 酸化防止剤 (チバガイギ 一社製:ィルガノックス 10 10) 0. 2質量部を加えて混合し、 280°Cに設定 したサイドフロー型 2軸押出し機を用いて、 強化繊維としてシランカツプリング剤 で表面処理した繊維長約 3 mmのガラス繊維(旭ファイバ一グラス社製: 03. JAFT2A k25) 20質量部を、 押出し混練を用いてサイドから溶融した混合樹脂系に混ぜ込 み、本組成の樹脂組成からなるコンパウンドペレツトを得た後、上記ペレツトを 1 0 5 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: α 50 C) を用いてシリンダー温度 280°C、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mmZs、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 30 kGy照射して実 施例 22の樹脂加工品を得た。
実施例 23
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 58. 8質量部、 難燃剤として多官能性の上記の化合物 (ma— 7) 10質量部、 及び、 非反応型の 有機りん系難燃剤 (三光化学社製: HCA- HQ) 6質量部を用いた以外は、 実施例 22 と同様に体質顔料、 ガラスファイバー、 着色剤、 酸化防止剤を同量添加し、 実施例 22と同様の条件で実施例 23の樹脂加工品を得た。
実施例 24
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 59. 8質量部 に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤としてカーボン ブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (ma— 4) 8質 量部、 更に、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 酸化防止剤 (チ パガィギ一社製:ィルガノックス 101 0) 0. 2質量部を加えて混合し、 280°C に設定したサイドフロー型 2軸押出し機を用いて、 強化繊維としてシランカツプリ ング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak 25) 25質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の樹脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 105 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: o; 50 C) を用いてシリンダー温度 280°C、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120mm/ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。 ' その後、 上記成形品に、 コバルト 60を線源としたァ線を 3 O kGy照射して実 施例 24の樹脂加工品を得た。
実施例 25
熱可塑性樹脂としてポリブチレンテレフタレ一ト榭脂. (東レ株式会社製: トレコ ン 1401 X 06) 78質量部、 難燃剤として、 上記の化合物 (Ha— 9) 12質 量部、 及び非反応型の有機りん系難燃剤 (三光化学社製: HCA- HQ) 5質量部、 酸化 アンチモン 5質量部を用い、 混練温度を 245°Cで混練りして樹脂コンパウンドべ レツトを得て、 130°Cで 3時間乾燥させ、 成形時のシリンダー温度を 250°Cの 条件に変更した以外は実施例 22と同様の条件で成形品を成形した。
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 kGyの電子線を照射して実施例 25の樹脂加工品を得た。
実施例 26
実施例 21の難燃剤として、 4官能性の上記の化合物 (ma— 6) 8質量部、 3 官能性のイソシァヌル酸 EO変性トリァクリレート (東亜合成社製: M— 315) 3質量部を併用して用いた以外は、 実施例 21と同様の配合と条件で実施例 26の 樹脂加工品を得た。
実施例 27
実施例 22の系に熱触媒 (日本油脂社製: スフマ一 BC) を 2質量部、 更に添加 した以外は実施例 22と同様の条件で成形品を成形した。
その後、 上記成形品を、 _245°C、 8時間加熱によって反応して実施例 27の樹 脂加工品を得た。
実施例 28
実施例 22の系に、 紫外線開始剤 (チパガィギ一社製ィルガノックス 651とィ ルガノックス 369とを 2 : 1で併用) 7質量部を添加した以外は実施例 22と同 様の条件で成形品を成形した。
その後、 上記成形品を、 超高圧水銀灯で 365 nmの波長で 1 5 OmW/c m2 の照度で 2分間照射して実施例 28の樹脂加工品を得た。
実施例 29
熱硬化性エポキシ系モ一ルド樹脂 (長瀬ケミカル社製、 主剤 XNR4012 : 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 45質量部にシリカ 47質量部を分散した 系に、 反応性難燃剤として上記の化合物 (ma— 9) 8質量部を添加してモールド 成形品を得た後、 100°C、 1時間反応させて実施例 29の樹脂加工品 (封止剤) を得た。
実施例 30
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 94質量部に、 反応性難燃剤として上記の化合物 (Ha— 12) 6質量部を添加してモールド成形 品を得た後、 1 50°C、 4時間反応させて実施例 30の樹脂加工品 (封止剤) を得 た。
比較例 23〜 32
実施例 21〜30において、 本発明の一般式 (Ma) で示される反応性難燃剤の みを配合しなかった以外は、 実施例 21〜30と同様な方法で、 それぞれ比較例 2 3〜 32の樹脂加工品を得た。
比較例 33
実施例 2 3の難燃剤として、 非反応性の有機りん系難燃剤 (三光化学社製: EP0CLEAN) 16質量部のみ添加した以外は、 実施例 23と同様の条件で比較例 33 'の樹脂加工品を得た。
' [一般式 (IV) の反応性難燃剤を用いた樹脂加:!;品の製造]
実施例 31
熱可塑性樹脂として 66ナイロン (宇部興産社製: 2 123 B) 56.8質量部、 強化繊維としてシランカップリング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak25) 25質量部、 着色剤としてカーポンプ ラック 1質量部、 酸化防止剤 (チバガイギ一社製:ィルガノィルガノックス 1 0 1 0) 0. 2質量部を加えて、 無機充填剤として炭酸カルシウム 5質量部、 反応性 難燃剤として上記の化合物 (IVa_ 7) 12質量部を配合し、 サイドフロー型 2軸 押出機 (日本製鋼社製) で 280°Cで混練して樹脂ペレットを得て 105°Cで 4時 間乾燥した後、 上記ペレットを射出成形機 (FUNUC社製: ひ 50 C) を用いて 樹脂温度 280°C, 金型温度 80°Cの条件で成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 25 kGy照射して実 施例 31の樹脂加工品を得た。
実施例 32
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B) 60. 8質量 部に、 無機充填剤として約 0. 05 m径のクレー 4質量部、 着色剤として力一ポ ンブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (IVa— 1) 8 質量部、 2官能性の上記の化合物 (IVa— 10) 6質量部、 酸化防止剤 (チバガイ ギ一社製:ィルガノックス 10 10) 0. 2質量部を加えて混合し、 280°Cに設 定したサイドフ口一型 2軸押出し機を用いて、 強化繊維としてシランカツプリング 剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバ一グラス社製: 03. JAFT2Ak25) 20質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の樹脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 105 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: 500 を用いてシリンダー温度 280°C、 金 型温度 80°C、 射出圧力 78. 4MP a、 射出速度 120 mm, s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 30 kGy照射して実 施例 32の樹脂加工品を得た。
' 実施例 33
熱可塑性樹脂として 66ナイロン(宇部興産社製: 2020 B) 57. 8質量部、 難燃剤として多官能性の上記の化合物 (IVa— 2) 12質量部、 及び、 非反応型の 有機りん系難燃剤 (三光化学社製: HCA- HQ) 6質量部を用いた以外は、 実施例 32 と同様に無機充填剤、 ガラスファイバ一、 着色剤、 酸化防止剤を同量添加し、 実施 例 33の樹脂加工品を得た。
実施例 34
熱可塑性樹脂として、 66ナイロン (宇部興産社製: 2020 B)' 59. 8質量部 に、 無機充填剤として約 0. 05 zm径のクレー 4質量部、 着色剤としてカーボン ブラック 1質量部、 反応性難燃剤として多官能性の上記の化合物 (IVa— 7) 8質 量部、 更に、 多官能環状化合物 (日本化成社製: TAIC) 2質量部、 酸化防止剤 (チ バガイギ一社製:ィルガノックス 1010) 0. 2質量部を加えて混合し、 280°C に設定したサイドフロー型 2軸押出し機を用いて、 強化繊維としてシランカツプリ ング剤で表面処理した繊維長約 3 mmのガラス繊維 (旭ファイバーグラス社製: 03. JAFT2Ak25) 25質量部を、押出し混練を用いてサイドから溶融した混合樹脂系 に混ぜ込み、 本組成の榭脂組成からなるコンパウンドペレットを得た後、 上記ペレ ットを 105 °Cで 4時間乾燥させた。
射出成形機 (FUNUC社製: ひ 500 を用いてシリンダ一温度 280 、 金 型温度 80 °C、 射出圧力 78. 4 MP a、 射出速度 120 mm/ s、 冷却時間 1 5 秒の一般的な条件で、 電気 ·電子部品並びに自動車用の成形品を成形した。
その後、 上記成形品に、 コバルト 60を線源としたァ線を 3 O kGy照射して実 施例 34の樹脂加工品を得た。
実施例 35
熱可塑性樹脂としてポリブチレンテレフ夕レート樹脂 (東レ株式会社製: トレコ ン 1401 X 06) 78質量部、 難燃剤として、 上記の化合物 (IVa— 6) 12質 量部、 及び非反応型の有機りん系難燃剤 (三光化学社製: HCA-HQ) 5質量部、 酸化 アンチモン 5質量部を用い、 混練温度を 245°Cで混練りして樹脂コンパウンドべ レットを得て、 130°Cで 3時間乾燥させ、 成形時のシリンダ一温度を 250°Cの 条件に変更した以外は実施例 32と同様の条件で成形品を成形した。
その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4. 8Me Vで、 照射線量 40 kGyの電子線を照射して実施例 35の樹脂加工品を得た。
実施例 36
実施例 31の難燃剤として、 4官能性の上記の化合物 (IVa— 1) 8質量部、 3 官能性のイソシァヌル酸 EO変性トリァクリレート (東亜合成社製: M— 3 1 5) 3質量部を併用して用いた以外は、 実施例 3 1と同様の配合と条件で実施例 36の 樹脂加工品を得た。 '
実施例 37
実施例 32の系に熱触媒 (日本油脂社製: ノフマー BC) を 2質量部、 更に添加 した以外は実施例 32と同様の条件で成形品を成形した。
その後、 上記成形品を、 245。C、 8時間加熱によって反応して実施例 37の樹 脂加工品を得た。
実施例 38
実施例 32の系に、 紫外線開始剤 (チバガイギ一社製ィルガノックス 651とィ ルガノックス 369とを 2 : 1で併用) 7質量部を添加した以外は実施例 32と同 様の条件で成形品を成形した。
その後、 上記成形品を、 超高圧水銀灯で 365 nmの波長で 1 5 OmWZcm2 の照度で 2分間照射して実施例 38の樹脂加工品を得た。
実施例 39
熱硬化性エポキシ系モ一ルド樹脂 (長瀬ケミカル社製、 主剤 XNR4012 : 100、 硬化 剤 XNH4012 : 50、 硬化促進剤 FD400: 1) 47質量部にシリカ 45質量部を分散した 系に、 反応性難燃剤として上記の化合物 (Wa— 5) 8質量部を添加してモールド 成形品を得た後、 100°C、 1時間反応させて実施例 39の樹脂加工品 (封止剤) を得た。
実施例 40
半導体封止用エポキシ樹脂 (信越化学社製:セミコート 1 1 5) 94質量部に、 反応性難燃剤として上記の化合物 (IV a— 4) 6質量部を添加してモールド成形品 を得た後、 150° (:、 4時間反応させて実施例 40の樹脂加工品(封止剤) を得た。 比較例 34〜 43
実施例 31〜40において、 本発明の一般式 (IVa) で示される反応性難燃剤の みを配合しなかった以外は、 実施例 3 1〜40と同様な方法で、 それぞれ比較例 3 — 4〜 43の樹脂加工品を得た。
比較例 44
実施例 3 3の難燃剤として、 非反応性の有機りん系難燃剤 (三光化学社製: EP0CLEAN) 16質量部のみ添加した以外は、 実施例 33と同様の条件で比較例 44 の樹脂加工品を得た。
C :難燃正樹脂加工品の試験例
実施例 1〜40、 比較例 1〜44の樹脂加工品について、 難燃性試験である UL 一 94に準拠した試験片 (長さ 5インチ、 幅 1/2インチ、 厚さ 3. 2 mm) と、 I EC 60695— 2法(GWF I )に準拠したグロ一ワイヤ試験片( 60 mm角、 厚さ 1. 6mm) を作製し、 UL 94試験、 グロ一ワイヤ試験 ( I EC準拠) 、 は んだ耐熱試験を行なった。 また、 すべての樹脂加工品について 300°CX 3時間の ブリードアウト試験を行った。
なお、 UL 94試験は、 試験片を垂直に取りつけ, ブンゼンバーナーで 1 0秒間 接炎後の燃焼時間を記録した。 更に、 消火後 2回目の 10秒間接炎し再び接炎後の 燃焼時間を記録し、 燃焼時間の合計と 2回目消火後の赤熱燃焼 (グロ一イング) 時 間と綿を発火させる滴下物の有無で判定した。
また、 グロ一ワイヤ試験は、 グロ一ワイヤとして先端が割けないように曲げた直 径 4mmのニクロム線 (成分:ニッケル 80%、 クロム 20%) 、 温度測定用熱電対 として直径 0. 5 mmのタイプ K (クロメル一アルメル) を用い、 熱電対圧着荷重 1. 0 ± 0. 2 N、 温度 850 °Cで行つた。 なお、 30秒接触後の燃焼時間が 30 秒以内のこと、 サンプルの下のティッシュペーパーが発火しないことをもつて燃焼 性 (GWF I) の判定基準とした。
また、 はんだ耐熱試験は、 350°Cのはんだ浴に 10秒浸漬後の寸法変形率を示 した。
その結果をまとめて表 1〜4に示す。
なお、 表 1は、 一般式 (I) の反応性難燃剤を用いた樹脂加工品の試験例である (実施例 1〜 10、 比較例 1〜 1 1 ) 。
また、 表 2は、 一般式 (Π) の反応性難燃剤を用いた樹脂加工品の試験例である (実施例 1 1〜 20、 比較例 12〜 22 ) 。
また、 表 3は、 一般式 (m) の反応性難燃剤を用いた樹脂加工品の試験例である
(実施例 21〜 30、 比較例 23〜 33 ) 。
また、 表 4は、 一般式 (IV) の反応性難燃剤を用いた樹脂加工品の試験例である (実施例 31〜 40、 比較例 34〜 44 ) 。 クランプ 落下物に 300°CX
難燃性 グロ一ヮ はんだ耐熱試験 に達する よる脱脂 3時間後の (UL-94) ィャ試験 寸法変化率 (¾) 綿着火 フ'リ-ドアウト
実施例 1 V- 0 ' 合格 5 実施例 2 V- 0 合格 4 実施例 3 V- 0 ' 挺 合格 8 実施例 4 V- 0 合格 3. 実施例 5 V- 0 ' 合格 10 実施例 6 V- 0 合格 7 実施例 7 V- 0 合格 13 実施例 8 V- 0 te 合格 8 実施例 9 V- 0 合格 5 実施例 10 V- 0 ' 合格 19 比較例 1 HB 有 有 不合格 浸漬直後変形 比較例 2 HB 有 有 不合格 浸漬直後変形 比較例 3 HB 有 有 不合格 浸漬直後変形 比較例 4 HB ^]†|^
有 有 不合格 浸漬直後変形 比較例 5 HB 有 有 不合格 35 比較例 6 HB 有 有 不合格 浸漬直後変形 比較例 7 HB 有 有 不合格 浸潰直後変形 比較例 8 HB 有 有 不合格 浸漬直後変形 比較例 9 HB 有 有 不合格 浸漬直後変形 比較例 10 HB 有 有 不合格 浸漬直後変形 比較例 11 V- 2 ' 有 合格 有 浸漬直後変形 表 2
クランプ 落下物に 300°CX 難燃性 グローヮ はんだ耐熱試験 に達する よる脱脂 3時間後の
(UL-94) ィャ試験 寸法変化率 (¾) 綿着火 フ'リ-ドアウト
実施例 11 V- 0 赃 合格 6 実施例 12 V- 0 iH: 合格 4 実施例 13 V- 0 合格 9 実施例 14 V- 0 合格 3 実施例 15 V- 0 合格 1 1 実施例 16 V- 0 合格 12 実施例 Π V- 0 合格 挺 16 実施例 18 V- 0 合格 18 実施例 19 V- 0 合格 4 実施例 20 V- 0 合格 挺 19 比較例 12 HB 有 有 不合格 i 浸漬直後変形 比較例 13 HB 有 有 不合格 浸漬直後変形 比較例 14 HB 有 有 不合格 浸漬直後変形 比較例 15 HB 有 有 不合格 浸漬直後変形 比較例 16 HB 有 有 不合格 35 比較例 Π HB 有 有 不合格 浸漬直後変形 比較例 18 HB 有 有 不合格 te 浸漬直後変形 比較例 19 HB 有 有 不合格 浸漬直後変形 比較例 20 HB 有 有 不合格 M 浸漬直後変形
•比較例 21 HB 有 有 不合格 浸漬直後変形 比較例 22 V- 2 有 合格 有 浸漬直後変形 表 3
クランプ 落下物に 300°C X 難燃性 グローヮ はんだ耐熱試験 に達する 3時間後の
(UL-94) よる脱脂
ィャ試験 寸法変化率 (%) 綿着火 プ 'リ-ト"アウト
実施例 21 V- 0 合格 6 実施例 V- 0 挺 合格 4 実施例 23 V- 0 合格 9 実施例 24 V- 0 挺 合格 3 実施例 25 V- 0 合格 1 1 実施例 26 V- 0 合格 1 2 実施例 27 V- 0 合格 1 6 実施例 28 V- 0 合格 1 8 実施例 29 V- 0 合格 4 実施例 30 V- 0 合格 1 9 比較例 23 HB 有 有 不合格 浸漬直後変形 比較例 24 HB 有 有 不合格 浸漬直後変形 比較例 25 HB 有 有 不合格 浸漬直後変形 比較例 26 HB 有 有 不合格 浸漬直後変形 比較例 27 HB 有 有 不合格 3 5 比較例 28 HB 有 有 . 不合格 浸漬直後変形 比較例 29 HB 有 有 不合格 浸漬直後変形 比較例 30 HB 有 有 不合格 浸漬直後変形 比較例 31 HB 有 有 不合格 浸漬直後変形 比較例 32 HB 有 有 不合格 浸漬直後変形 比較例 33 V- 2 有 合格 有 浸漬直後変形 表 4
Figure imgf000080_0001
表 1から 4の結果より、実施例の樹脂加工品においては、難燃性はいずれも V— 0 と優れ、 グロ一ワイヤ試験においてもすべて合格しており、 更に、 はんだ耐熱試験 後の寸法変形率も 19% 下と優れることがわかる。 また、 300 Χ 3時間後に おいても難燃剤のブ,リードアウトは認められなかった。
一方、 本発明の反応性難燃剤を含有しない比較例 1 10、 比較例 12 21 比較例 2 3〜 3 2、 比較例 3 4〜 4 3においては、 難燃性は H Bと不充分であり、 グロ一ワイヤ試験においてもすべて不合格、 更に、 はんだ耐熱試験後の寸法変形率 も実施例に比べて劣ることがわかる。
また、難燃剤として非反応型の有機りん系難燃剤のみを用いた比較例 1 1、 2 2、 3 3、 4 4においては、 難燃性は V— 2で不充分であり、 3 0 0 °C X 3時間後にお いて難燃剤のプリ一ドアウトが認められた。 産業上の利用可能性
本発明は、 ハロゲンを含有しない、 非ハロゲン系の難燃剤及び難燃性樹脂加工品 として、 電気部品や電子部品等の樹脂成形品や、 半導体等の封止剤、 コーティング 塗膜等に好適に利用できる。

Claims

請 求 の 範 囲
1. 樹脂との反応性を有し、 該反応により前記樹脂と結合することによって難燃 性を付与する反応性難燃剤であって、 下記の一般式 ( I a) 又は ( I b) で示され る有機リン化合物を含有することを特徴とする反応性難燃剤。
Figure imgf000082_0001
X-R' X^R3
P-X^R ^P … ( I b)
X-R2 X^R4
(式 (l a) 又は ( l b) 中、 Ri〜R4はそれぞれ C ^^CY1— Y2—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R 5はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表す。 X 1〜 X 4はそれぞれ一〇一、 — ΝΗ—、 - (CH2 = C Υ^Υ2) Ν—より選択される基を表し、 Xi〜X4の少 なくとも 1つは—NH―、 又は一 (CHs^CY1— Y2) N—を含む。 X5、 X6は それぞれ— NH―、 又は一 (Ci^ CY1— Y2) N—を表す。 1〜!^4又は X1 〜X6の少なくとも 1つは CH2 CY1— Y2—を含む。 Y1は水素又はメチル基を 表し、 Y2は炭素数 1〜5のアルキレン基、 又は― COO— Y3—を表す。 ここで、 Y 3は炭素数 2〜 5のアルキレン基を表す。 )
2. 樹脂との反応性を有し、 該反応により前記樹脂と結合することによって難燃 性を付与する反応性難燃剤であって、 下記の一般式 (H a) 又は (n b) で示され る有機リン化合物を含有することを特徴とする反応性難燃剤。
0— R6 0-R8
0二 P— Χ^
I χ 二 0 , ヽ
ί „, -" (H a)
0-R7 0-R9
Figure imgf000083_0001
(式 (H a) 又は (Hb) 中、 R6〜R9はそれぞれ CH2 = CY4— Y5—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R1Qはへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表し、 X7、 X8はそれぞれ一 NH ―、 又は— (CH2 = CY4— Y5) N—を表す。 R6〜R9又は X7、 X8の少なくと も 1つは CH2 = C Y4— Y5—を含む。 Y4は水素又はメチル基を表し、 Y5は炭素 数 1〜5のアルキレン基、 又は一 COO— Y6—を表す。 ここで、 Y6は炭素数 2〜 5のアルキレン基を表す。 )
3. 樹脂との反応性を有し、 該反応により前記樹脂と結合することによって難燃 性を付与する反応性難燃剤であって、 下記の一般式 (ma) 又は (mb) で示され る有機リン化合物を含有することを特徴とする反応性難燃剤。
Figure imgf000083_0002
… (mb)
Figure imgf000083_0003
(式 (Ha) 又は (mb) 中、 R"〜R14はそれぞれ CH2 = CY7— Y8—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R15はへテロ原子 を含んでもよい二官能性の芳香族炭化水素系基を表す。 912はそれぞれー〇 一、 — NH—、 ― (CH2 = CY7_Y8) N—より選択される基を表し、 Xs X1 2の少なくとも 1つは— Ν'Η―、 又は— (CH2 = CY7— Υ8) N—を含む。 R"〜 R14又は X9〜X12の少なくとも 1っは( 112 =〇¥7—¥8—を含む。 Y 7は水素又 はメチル基を表し、 Y8は炭素数 1〜5のアルキレン基、 又は— COO— Y9—を表 す。 ここで、 Y9は炭素数 2〜5のアルキレン基を表す。 )
4. 樹脂との反応性を有し、 該反応により前記樹脂と結合することによって難燃 性を付与する反応性難燃剤であって、 下記の一般式 (IVa) 又は (IVb) で示され る有機リン化合物を含有することを特徴とする反応性難燃剤。
0— R'6 0-R'8
0=P-0-R-0-P=0 … (IVa)
0-R'7 0-R'9
… (]Vb)
Figure imgf000084_0001
(式 (IVa) 又は (IVb) 中、 R16〜R19はそれぞれ CH2 = C Y1()— Y11—、 又はへ テロ原子を含んでもよい一官能性の芳香族炭化水素系基を表し、 R16〜Rigの少なく とも 1つは CH2 = CY1()— Y11—を含む。 R2Qはヘテロ原子を含んでもよい二官能性 の芳香族炭化水素系基を表す。 Y1()は水素又はメチル基を表し、 Υ11は炭素数 1〜5 のアルキレン基、 又は一 COO— Υ12—を表す。 ここで、 Υ12は炭素数 2〜 5のアル キレン基を表す。 ) .
5. 請求項 1〜4のいずれか 1つに記載の反応性難燃剤と、 樹脂とを含有する樹 脂組成物を固化した後、 加熱又は放射線の照射によって前記樹脂と前記反応性難燃 剤とを反応させて得られる難燃性樹脂加工品であって、 前記難燃性樹脂加工品全体 に対して、 前記反応性難燃剤を 1〜20質量%含有することを特徴とする難燃性樹 '脂加工品。
6. 前記樹脂組成物が、 前記反応性難燃剤を 2種類以上含有し、 少なくとも 1種 類が多官能性の前記反応性難燃剤である請求項 5に記載の難燃性樹脂加工品。
7. 前記樹脂組成物が、 前記反応性難燃剤以外の難燃剤を更に含有し、 該難燃剤 が、 末端に少なくとも 1つの不飽和基を有する環状の含窒素化合物である請求項 5 又は 6に記載の難燃性樹脂加工品。
8. 前記樹脂組成物が、 前記反応性難燃剤以外の難燃剤を更に含有し、 該難燃剤 が、 反応性を有しない添加型の難燃剤である請求項 5〜7のいずれか 1つに記載の 難燃性樹脂加工品。
9 . 前記樹脂組成物が、 難燃性を有しないが前記樹脂との反応性を有する架橋剤 を更に含有し、 該架橋剤が、 主骨格の末端に不飽和基を有する多官能性のモノマー 又はオリゴマーである請求項 5〜 8のいずれか 1つに記載の難燃性樹脂加工品。
1 0 . 前記難燃性樹脂加工品全体に対して 1〜3 5質量%の無機充填剤を含有す る請求項 5〜 9のいずれか 1つに記載の難燃性樹脂加工品。
1 1 .前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、 前記層状のクレーを前記難燃性樹脂加工品全体に対して 1〜 1 0質量%含有する請 求項 1 0に記載の難燃性樹脂加工品。
1 2 . 前記難燃性樹脂加工品全体に対して 5〜4 0質量%の強化繊維を含有する 請求項 5〜 1 1のいずれか 1つに記載の難燃性樹脂加工品。
1 3 . 前記樹脂と前記反応性難燃剤とが、 線量 1 0 k G y以上の電子線又はァ線 の照射によって反応して得られる請求項 5〜 1 2のいずれか 1つに記載の難燃性樹 脂加工品。
1 4 .前記樹脂と前記反応性難燃剤とが、前記樹脂組成物を成形する温度より 5 °C 以上高い温度で反応して得られる請求項 5〜 1 2のいずれか 1つに記載の難燃性樹 脂加工品。
1 5 . 前記難燃性樹脂加工品が、 成形品、 塗膜、 封止剤より選択される 1つであ る請求項 5〜 1 4のいずれか 1つに記載の難燃性樹脂加工品。
1 6 . 前記難燃性樹脂加工品が、 電気部品又は電子部品として用いられるもので ある請求項 5〜 1 5のいずれか 1つに記載の難燃性樹脂加工品。
PCT/JP2004/003160 2003-08-01 2004-03-11 反応性難燃剤及びそれを用いた難燃性樹脂加工品 WO2005012415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04719605.0A EP1659148B1 (en) 2003-08-01 2004-03-11 Reactive flame retardant and flame-retardant processed resin obtained with the same
JP2005512445A JP4295764B2 (ja) 2003-08-01 2004-03-11 反応性難燃剤及びそれを用いた難燃性樹脂加工品

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-285156 2003-08-01
JP2003285167 2003-08-01
JP2003285156 2003-08-01
JP2003285173 2003-08-01
JP2003285152 2003-08-01
JP2003-285167 2003-08-01
JP2003-285173 2003-08-01
JP2003-285152 2003-08-01

Publications (1)

Publication Number Publication Date
WO2005012415A1 true WO2005012415A1 (ja) 2005-02-10

Family

ID=34119951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003160 WO2005012415A1 (ja) 2003-08-01 2004-03-11 反応性難燃剤及びそれを用いた難燃性樹脂加工品

Country Status (3)

Country Link
EP (1) EP1659148B1 (ja)
JP (1) JP4295764B2 (ja)
WO (1) WO2005012415A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088086A1 (ja) * 2005-02-21 2006-08-24 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2006126528A1 (ja) * 2005-05-24 2006-11-30 Fuji Electric Holdings Co., Ltd. 難燃性樹脂加工品
JP2007246637A (ja) * 2006-03-15 2007-09-27 Fuji Electric Holdings Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP2008130375A (ja) * 2006-11-21 2008-06-05 Fuji Electric Holdings Co Ltd 消弧用樹脂加工品、及びそれを用いた回路遮断器
US7834071B2 (en) 2005-05-24 2010-11-16 Fuji Electric Holdings Co., Ltd. Flame-retardant resin processed article
WO2016152839A1 (ja) * 2015-03-23 2016-09-29 株式会社Adeka エポキシ樹脂組成物
JP2019104910A (ja) * 2017-12-11 2019-06-27 ▲広▼▲東▼▲広▼山新材料股▲ふん▼有限公司 反応性難燃剤及びその調製方法並びに使用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172906A (zh) * 2011-12-20 2013-06-26 威海市泓淋电子有限公司 一种磷酸酯阻燃剂
CN102926202B (zh) * 2012-09-25 2014-12-03 台州学院 一种阻燃涂层及其制备方法和应用
CN108219153A (zh) * 2017-11-30 2018-06-29 中南民族大学 含硅超支化聚磷酰胺膨胀型阻燃剂及其制备方法和应用
CN109233046B (zh) * 2018-08-06 2020-12-08 兰州理工大学 一种含磷阻燃聚乙烯电缆料的制备方法
CN110938234B (zh) * 2018-09-25 2021-06-08 中山台光电子材料有限公司 阻燃性化合物、其制造方法、树脂组合物及其制品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860026A (ja) * 1994-08-26 1996-03-05 Dainippon Ink & Chem Inc 活性エネルギー線硬化型樹脂組成物
JPH0859887A (ja) * 1994-08-24 1996-03-05 Ajinomoto Co Inc 繊維強化樹脂組成物
JP2002146073A (ja) * 2000-11-06 2002-05-22 Kanegafuchi Chem Ind Co Ltd スチレン系樹脂発泡体およびその製造方法
JP2003535182A (ja) * 2000-06-02 2003-11-25 バイエル アクチェンゲゼルシャフト 難燃性の帯電防止性ポリカーボネート成形用組成物
JP2004123823A (ja) * 2002-09-30 2004-04-22 Techno Polymer Co Ltd 熱可塑性樹脂組成物及びそれを用いた成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859887A (ja) * 1994-08-24 1996-03-05 Ajinomoto Co Inc 繊維強化樹脂組成物
JPH0860026A (ja) * 1994-08-26 1996-03-05 Dainippon Ink & Chem Inc 活性エネルギー線硬化型樹脂組成物
JP2003535182A (ja) * 2000-06-02 2003-11-25 バイエル アクチェンゲゼルシャフト 難燃性の帯電防止性ポリカーボネート成形用組成物
JP2002146073A (ja) * 2000-11-06 2002-05-22 Kanegafuchi Chem Ind Co Ltd スチレン系樹脂発泡体およびその製造方法
JP2004123823A (ja) * 2002-09-30 2004-04-22 Techno Polymer Co Ltd 熱可塑性樹脂組成物及びそれを用いた成形品

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831083B (zh) * 2005-02-21 2012-07-18 富士电机株式会社 反应性阻燃剂和阻燃树脂加工的制品
JPWO2006088086A1 (ja) * 2005-02-21 2008-07-03 富士電機ホールディングス株式会社 反応性難燃剤及びそれを用いた難燃性樹脂加工品
WO2006088086A1 (ja) * 2005-02-21 2006-08-24 Fuji Electric Holdings Co., Ltd. 反応性難燃剤及びそれを用いた難燃性樹脂加工品
US7557152B2 (en) 2005-02-21 2009-07-07 Fuji Electric Holdings Co., Ltd. Reactive flame retardant and flame-retardant resin processed article
US7851528B2 (en) 2005-05-24 2010-12-14 Fuji Electric Holdings Co., Ltd. Flame-retardant resin processed article
WO2006126528A1 (ja) * 2005-05-24 2006-11-30 Fuji Electric Holdings Co., Ltd. 難燃性樹脂加工品
JP2006328124A (ja) * 2005-05-24 2006-12-07 Fuji Electric Holdings Co Ltd 難燃性樹脂加工品
US7834071B2 (en) 2005-05-24 2010-11-16 Fuji Electric Holdings Co., Ltd. Flame-retardant resin processed article
JP2007246637A (ja) * 2006-03-15 2007-09-27 Fuji Electric Holdings Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP2008130375A (ja) * 2006-11-21 2008-06-05 Fuji Electric Holdings Co Ltd 消弧用樹脂加工品、及びそれを用いた回路遮断器
WO2016152839A1 (ja) * 2015-03-23 2016-09-29 株式会社Adeka エポキシ樹脂組成物
JPWO2016152839A1 (ja) * 2015-03-23 2018-01-18 株式会社Adeka エポキシ樹脂組成物
US10655005B2 (en) 2015-03-23 2020-05-19 Adeka Corporation Epoxy resin composition
JP2019104910A (ja) * 2017-12-11 2019-06-27 ▲広▼▲東▼▲広▼山新材料股▲ふん▼有限公司 反応性難燃剤及びその調製方法並びに使用

Also Published As

Publication number Publication date
EP1659148A4 (en) 2009-08-05
JPWO2005012415A1 (ja) 2006-10-05
EP1659148A1 (en) 2006-05-24
JP4295764B2 (ja) 2009-07-15
EP1659148B1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4297453B2 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP4753624B2 (ja) 難燃性樹脂加工品
US7851528B2 (en) Flame-retardant resin processed article
JP2004115797A (ja) 難燃性熱硬化性組成物
WO2005012415A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP4762034B2 (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
EP1669398B1 (en) Flame-retardant processed resin obtained with a reactive flame retardant
EP1640411B1 (en) Reactive flame retardants and flame-retarded resin products
JP2007246637A (ja) 難燃剤、難燃性樹脂組成物及び難燃性樹脂加工品
JP3508360B2 (ja) 難燃剤および難燃性樹脂組成物
JP4331722B2 (ja) 難燃性樹脂加工品
JP4210143B2 (ja) 電気部品用樹脂成形品
JP2006089534A (ja) 難燃性樹脂加工品
CN101124298A (zh) 反应性阻燃剂和阻燃树脂加工的制品
WO2005087852A1 (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JP2006225587A (ja) 反応性難燃剤及びそれを用いた難燃性樹脂加工品
JPH0741680A (ja) 難燃化硬化性樹脂組成物およびその成形品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512445

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004719605

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004719605

Country of ref document: EP