WO2006126327A1 - 弾性境界波装置 - Google Patents

弾性境界波装置 Download PDF

Info

Publication number
WO2006126327A1
WO2006126327A1 PCT/JP2006/305503 JP2006305503W WO2006126327A1 WO 2006126327 A1 WO2006126327 A1 WO 2006126327A1 JP 2006305503 W JP2006305503 W JP 2006305503W WO 2006126327 A1 WO2006126327 A1 WO 2006126327A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
idt
acoustic wave
boundary
conductor layer
Prior art date
Application number
PCT/JP2006/305503
Other languages
English (en)
French (fr)
Inventor
Hajime Kando
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2006126327A1 publication Critical patent/WO2006126327A1/ja
Priority to US11/714,840 priority Critical patent/US7456544B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02944Means for compensation or elimination of undesirable effects of ohmic loss
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/14529Distributed tap
    • H03H9/14532Series weighting; Transverse weighting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode

Definitions

  • the present invention relates to a boundary acoustic wave device used for, for example, a resonator or a band filter, and more specifically, an elastic structure in which an IDT is disposed between first and second media made of different materials.
  • the present invention relates to a boundary wave device.
  • a boundary acoustic wave device has a structure in which an IDT (interdigital electrode) is arranged at an interface between different media.
  • IDT interdigital electrode
  • a boundary acoustic wave propagates in a laminate formed by stacking the different media. Therefore, in the boundary acoustic wave device, a complicated package structure can be omitted, and the structure can be simplified and reduced in height as compared with the surface acoustic wave device.
  • the boundary acoustic wave device the boundary acoustic wave is confined between the upper and lower media by making the acoustic velocity of the boundary acoustic wave lower than the acoustic velocity of the transverse wave propagating through the medium above and below the interface. Can be reduced.
  • Patent Document 1 JP-A-58-30217
  • Patent Document 2 DE4132309A1
  • the IDT cycle must be shortened. Therefore, the width of the electrode fingers constituting the IDT and the reflector is reduced, the conductor resistance is increased, and the loss is increased.
  • the propagation loss can be brought close to 0 under the condition that the electrode finger is thin, but the electrode resistance is further reduced because the electrode finger is thin. There was a problem.
  • An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to effectively confine boundary acoustic waves even when the operating frequency is increased, and to increase a large electromechanical coupling coefficient. Accordingly, it is an object of the present invention to provide a boundary acoustic wave device with low loss.
  • the first medium made of a piezoelectric material
  • the second medium made of a dielectric, stacked on the first medium, the first medium, and the first medium
  • the boundary acoustic wave device is disposed between two mediums and has an IDT formed by laminating a plurality of conductor layers, and the direction in which the first and second media are laminated is the IDT.
  • the boundary surface is a surface obtained by dividing the IDT into two in the thickness direction, and the energy of the elastic boundary wave existing on the first medium side from the boundary surface is El, and the second medium extends from the boundary surface.
  • E2 is the energy existing on the side, and the acoustic velocity of the boundary acoustic wave when the IDT is configured and the elasticity when the IDT is configured using only the conductor layer with the highest density among the conductors that configure the IDT.
  • the condition that the IDT is configured by the conductor layer having the highest density so that the sound velocity of the boundary wave is the same.
  • the IDT includes a first conductive layer made of a metal in the range of density of force S7000 ⁇ 20000kg / m 3, density of 1740kg / m 3 or more, 7000 kg / and a conductor layer disposed on the first medium side of the IDT is configured by the first conductor layer.
  • the second conductor layer is made of a metal smaller than m 3 . .
  • the thickness of the first conductor layer is H, and the electrode finger of IDT When the period is set, it is assumed that 0. 025 e ⁇ ⁇ 0. 1 ⁇ .
  • an adhesion layer is provided on a portion where the IDT is in contact with the first medium and / or a portion where the IDT is in contact with the second medium.
  • the first medium made of a piezoelectric body, the second medium made of a non-conductive substance and laminated on the first medium, the first medium and the second medium A boundary acoustic wave device including an IDT disposed between a first conductor layer made of a metal having a density in a range of 7000 to 21000 kg / m 3 , and a density of 1740 kg. / m 3 or more and a structure in which a second conductor layer made of a metal smaller than 7000 kg / m 3 is laminated, and the conductor layer disposed on the first medium side of the IDT is the first conductor layer.
  • the thickness of the first conductor layer arranged on the first medium side is H and the electrode finger period of the IDT is I; 0.025 ⁇ ⁇ ⁇ 0 1
  • a boundary acoustic wave device characterized in that it is defined as 1.
  • an adhesion layer is provided in a portion where the IDT is in contact with the first medium and / or a portion in contact with the second medium.
  • the metal force constituting the first conductor layer ⁇ t, Au, Cu, Ag, Ni, Fe, W, Ta, Cr, and these as a main component
  • the metal constituting the second conductor layer is selected from the group consisting of Mg, A1 and Ti, and an alloy mainly composed of these metals. It is a metal.
  • a reflector made of the same electrode material as that of the IDT and disposed between the second medium is further provided. Is provided.
  • an IDT is disposed between the first medium made of a piezoelectric material and the second substance made of a non-conductive substance, and the IDT has a plurality of IDTs. Since the conductor layers are stacked and El / E2> E / E2 r , the boundary acoustic wave propagates with more energy on the first medium side than on the second medium side. . Therefore, the electromechanical coupling coefficient of the boundary acoustic wave can be increased, and the applicable passband range can be expanded in a resonator or filter using a resonance structure. Also transversal In the case of a type filter, a low-loss boundary acoustic wave device can be provided.
  • the IDT has a laminated structure including the first and second conductor layers, and the first medium made of a metal having a relatively high density is disposed on the first medium side made of a piezoelectric material.
  • the conductor layer is arranged, the energy E1 of the boundary acoustic wave existing on the first medium side is easily made higher than the energy E2 of the boundary acoustic wave existing on the second medium side. Therefore, the boundary acoustic wave device in which ElZE2> El / E2 is satisfied can be easily realized by the electrode laminated structure.
  • the electromechanical coupling coefficient in the case of 0.025 ⁇ ⁇ ⁇ 0.1 ⁇ , the electromechanical coupling coefficient can be further increased.
  • the IDT When the IDT is provided with an adhesive layer in the portion in contact with the first medium and in the portion in contact with the ridge or the second medium, the IDT is connected to the IDT and the first and ⁇ or the second medium. Adhesion can be effectively increased.
  • the IDT is disposed between the first medium made of a piezoelectric material and the second medium made of a non-conductive substance, and the IDT has the above-mentioned first and second IDs having different densities. Since the first conductor layer is arranged on the first medium side, the energy of the boundary acoustic wave is large on the first medium side made of piezoelectric material. The boundary acoustic wave propagates. Therefore, the electromechanical coupling coefficient kappa 2 can be sufficiently large. Since the force is also set to 0.0 25 ⁇ ⁇ ⁇ 0.1 ⁇ , the electromechanical coupling coefficient ⁇ 2 can be effectively increased.
  • the IDT When the IDT is provided with an adhesive layer in a portion in contact with the first medium and / or in a portion in contact with the second medium, the IDT is formed between the IDT and the first and / or second medium. Adhesion can be effectively increased.
  • the metal constituting the first and second conductor layers is not particularly limited.
  • the first and second conductor layers can be easily formed using these commonly used metals.
  • the reflector when a reflector made of the same electrode material as that of the IDT and further disposed between the first and second media is further provided, according to the present invention, the reflector It is possible to easily form boundary acoustic wave resonators and boundary acoustic wave resonator filters with a force S.
  • FIG. 1 is a plan sectional view schematically showing a boundary acoustic wave device according to an embodiment of the present invention.
  • FIG. 2 is a front sectional view schematically showing a boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 3 is a schematic partially enlarged front sectional view showing an electrode structure of a boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 4 In the boundary acoustic wave device shown in FIG. 1, when the thickness of A1 constituting the second conductor layer when the first conductor layer with Au force is arranged on the first medium side is changed The figure which shows the change of the sound velocity Vm of the elastic boundary wave.
  • FIG. 5 In the boundary acoustic wave device shown in FIG. 1, when the thickness of A1 that constitutes the second conductor layer when the first conductor layer with Au force is arranged on the first medium side is changed. diagram showing changes in electromechanical coefficient K 2 of the elastic boundary Sakaiha.
  • FIG. 6 In the boundary acoustic wave device shown in FIG. 1, when the thickness of A1 constituting the second conductor layer when the first conductor layer with Au force is arranged on the first medium side is changed.
  • FIG. 7 In the boundary acoustic wave device shown in FIG. 1, the thickness of the second conductor layer is constant, and the first conductor layer made of the piezoelectric material is arranged on the first medium side.
  • FIG. 8 In the boundary acoustic wave device shown in FIG. 1, the thickness of the second conductor layer is constant, and the first conductor layer made of the piezoelectric material and arranged on the first medium side is configured. diagram showing changes in electromechanical coefficient K 2 of a boundary acoustic wave in the case of changing the thickness of the au.
  • FIG. 9 In the boundary acoustic wave device shown in FIG. 1, the thickness of the second conductor layer is constant, and the first conductor layer made of the piezoelectric material is arranged on the first medium side.
  • FIG.10 Elastic boundary in boundary acoustic wave device for comparison when IDT is composed of Au only The figure which shows the displacement distribution of a wave typically.
  • the first conductor layer made of Au is on the LiNbO side, which is the first medium, and the second conductor layer A1
  • FIG. 1 A first figure.
  • FIG. 12 is a diagram showing resonance characteristics of the boundary acoustic wave device according to one embodiment of the present invention.
  • the density of SiO is 2210 kg / m 3
  • the acoustic characteristic impedance of shear waves is 8.3 X 10 6 kg-s /
  • the density of A1 is 2699kg / m 3
  • the acoustic characteristic impedance of the transverse wave is 8.4 X 10 6 kg 's / m 2
  • the density of Cu is 8939kg / m 3
  • the acoustic characteristic impedance of the transverse wave is 21.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) representing the cut surface of the substrate and the direction of the iron plate of the boundary wave are referred to the document “Acoustic Wave Element Technology Handbook” Committee, 1st edition, 1st edition, published on November 30, 1991, p. 549) Ira corner was used. That is, with respect to X, Y and ⁇ as the crystal axes of LN, the X axis is turned ⁇ counterclockwise using the ⁇ axis as the axis to obtain the Xa axis. Next, rotate X around the Xa axis and rotate the Z axis counterclockwise to get the axis.
  • the surface including the Xa axis and having the normal as the normal line was defined as the cut surface of the substrate. Then, the axis X ′ direction, which is ⁇ rotated counterclockwise around the Z ′ axis, is the propagation direction of the boundary wave.
  • crystal axes X, Y, and ⁇ of LiNbO given as the initial values of Euler angles are such that the ⁇ axis is parallel to the c axis and the X axis is parallel to any one of the three equivalent a axes.
  • the Y axis is the normal direction of the surface including the X and Z axes.
  • F ( ⁇ , ⁇ , ⁇ ) F (60 ° — ⁇ , — ⁇ , ⁇ )
  • F is any boundary wave characteristic such as electromechanical coupling coefficient k propagation loss, TCF, PFA, natural unidirectionality, etc.
  • the natural unidirectionality of PFA is considered to be practically equivalent because, for example, when the propagation direction is reversed, the sign changes but the absolute amount is the same.
  • Reference 7 relates to surface waves, but the crystal symmetry can also be handled in the same way for boundary waves.
  • the boundary wave propagation characteristics of Euler angles (30 °, ⁇ , ⁇ ) are equivalent to the boundary wave propagation characteristics of Euler angles (90 °, 180. — ⁇ , 180 ° ⁇ ).
  • the boundary wave propagation characteristics of Euler angles (30 °, 90 °, 45 °) are equivalent to the boundary wave propagation characteristics of Euler angles shown in the table.
  • the material constant of the conductor used in the calculation in the present invention is a value of a polycrystalline body, but even in a crystalline body such as an epitaxial film, the crystal of the substrate is dependent on the crystal orientation dependence of the film itself. Since the azimuth dependence is dominant to the boundary wave characteristics, the boundary wave propagation characteristics equivalent to the practical level are obtained by [4].
  • FIG. 1 and FIG. 2 are a plane sectional view and a front sectional view schematically showing a boundary acoustic wave device according to one embodiment of the present invention.
  • the boundary acoustic wave device 10 is configured using a laminated body in which a first medium 11 and a second medium 12 are laminated.
  • the first medium 11 is composed of a 15 ° Y-cut X propagation (Euler angles (0 °, 105 °, 0 °)) LiNbO plate as a piezoelectric body.
  • the second medium 12 includes an IDT 13 and reflectors 14 and 15 at the interface between the first and second media 11 and 12 made of SiO as a nonconductive material.
  • IDT13 is designed so that a plurality of electrode fingers 13a and a plurality of electrode fingers 13b are inserted into each other. It has a structure that is arranged. A plurality of electrode fingers 13a are electrically connected to one bus bar, and a plurality of electrode fingers 13b are electrically connected to the other bus bar.
  • the IDT 13 and the reflectors 14 and 15 include a first conductor layer made of Au having a relatively high density and a second conductor layer made of A1 having a relatively low density. It has a laminated structure.
  • FIG. 3 (a) is a schematic enlarged cross-sectional view for explaining the cross-sectional structure of the electrode fingers 13a and 13b.
  • the electrode fingers 13a and 13b have a structure in which first and second conductor layers 16 and 17 are laminated.
  • the first conductor layer 16 is made of Au and arranged on the first medium 11 side as a piezoelectric body
  • the second conductor layer 17 is made of A1 and is made of a non-conductive substance on the second medium 12 side. It is arranged in.
  • the reflectors 14 and 15 also have the same electrode structure as the IDT 13. That is, the reflectors 14 and 15 also have a structure in which the first and second conductor layers 16 and 17 are laminated.
  • the first and second media 11 and 12 are formed as described above, and the IDT 13 and the reflectors 14 and 15 have the above electrode structure.
  • the electromechanical coupling coefficient of the elastic boundary wave is made sufficiently large. Also, when IDT13 is divided into two equal parts in the thickness direction as the boundary surface, the elastic boundary wave energy existing on the first medium 11 side from the boundary surface is El, and the boundary surface has the second medium side.
  • E2 is the boundary acoustic wave energy present in the IDT, and the acoustic velocity of the boundary acoustic wave when the IDT is configured using only the conductor layer with the highest density among the plurality of conductor layers that configure the IDT, Under the condition that the acoustic velocity of the boundary acoustic wave is the same when the IDT is composed of a conductor layer, the energy of the boundary acoustic wave existing on the first medium side from the boundary surface is converted to the boundary acoustic wave existing on the second medium side.
  • the boundary acoustic wave device 10 When the boundary acoustic wave device 10 is prototyped under the following conditions, the thickness of the second conductor layer made of A1, the acoustic velocity of the boundary acoustic wave, the electromechanical coupling coefficient K 2 , and the delay time temperature coefficient TCD of Sought a relationship.
  • the first conductor layer is made of Au, and the thickness is 0.05 ⁇ or variable.
  • the second conductor layer 17 is made of A1 and has a thickness of 0.1 ⁇ or variable.
  • the thickness of the first conductor layer 16 made of Au is 0.05 ⁇
  • the thickness of the first conductor layer 17 that constitutes the second conductor layer 17 As the other conditions, the relationship between the A1 thickness and the acoustic velocity of the boundary acoustic wave, the electromechanical coupling coefficient, and the delay time temperature coefficient TCD was obtained. The results are shown in Figs.
  • the thickness of A1 as the second conductor layer 17 is 0.1 ⁇ , and the thickness of the first conductor layer 16 that is Au force is variously changed.
  • the propagation loss is all 0, and when the film thickness of A1 is changed, it is almost 0 regardless of the film thickness of the A1, and when the film thickness of Au is changed, It was almost 0 regardless of the Au film thickness.
  • Equation (1) Vf is the speed of sound at the open boundary.
  • the delay time temperature coefficient TCD was determined by the following equation (2) based on the phase velocity V at 20 ° C, 25 ° C and 30 ° C.
  • TCD (V [20.C] -V [30 ° C]) / V [25 ° C] / 10 + a s
  • Equation (2) is the linear expansion coefficient of the first medium 11 in the boundary wave propagation direction.
  • the electromechanical coupling coefficient K 2 can be increased by laminating the second conductor layer 17 made of A1, that is, by making the thickness of A1 larger than 0. Wow.
  • the thickness of Au as the first conductor layer 16 is set to 0 ⁇ 025 to 0.1.
  • the electromechanical coupling coefficient K 2 can be increased as compared with a considerable boundary acoustic wave device using an electrode composed of only Au.
  • the thickness of the first conductor layer 16 made of Au is set to 0. 025 to 0.1 ⁇ Force to be ⁇ S Desirable.
  • Ul longitudinal wave component
  • U 2 SH wave component
  • U3 SV wave component
  • the boundary acoustic wave device 10 of the above embodiment using the IDT 13 in which the first and second conductor layers 16 and 17 are laminated is also used in the conventional Au
  • the vibration energy of the boundary acoustic wave is as high as that of the equivalent boundary acoustic wave device using IDT. It can be seen that it is concentrated near SIDT. Therefore, in the case of an electrode structure in which Au, which is a high-density conductor, and A1, which is a low-density conductor, are laminated, the energy of the boundary acoustic wave between the media due to the presence of the high-density conductor layer 16 It can be seen that effectively concentrates.
  • the density of the first medium is 4640 kgZm 3 and the density of the second medium is 2210 kg / m 3 .
  • the vibration energy of the boundary acoustic wave is proportional to p U 2 . Where p is the density of the medium and U is the amplitude. Therefore, when El r / E2 r is obtained from FIG. 10, / E2 r is approximately 1.1.
  • the center of the vibration energy distribution of the boundary acoustic wave is on the first medium 11 side where the first conductor layer 16 made of high-density Au is a piezoelectric body. It can be seen that the distribution center of vibration energy exists on the first medium 11 side. Therefore, the vibration energy is strongly distributed on the first medium 11 side, that is, on the piezoelectric body side, so that it can be seen that a large electromechanical coupling coefficient K 2 is obtained.
  • E1 / E2 when E1 / E2 is obtained from FIG. 11, E1 / E2 is about 3.6. Therefore, E1 / E2> E 1 ′ / E2 ′ is set.
  • FIG. 12 specific resonance characteristics of the boundary acoustic wave resonator as the boundary acoustic wave device 10 shown in FIGS. 1 and 2 are shown in FIG.
  • the resonance characteristics shown in FIG. 12 are obtained by producing the boundary acoustic wave device 10 under the following conditions.
  • First medium 11 15 ° ⁇ cut X-propagation LiNbO substrate, thickness 370 z m
  • Second medium 12 Made of Si ⁇ , thickness 6 x m
  • IDT13 A structure in which AlZCu / TiZAuZNiCr was laminated to a thickness of 50Z, 10Z70 / 3nm was used.
  • the A1 side is arranged on the second medium side
  • the NiCr side is arranged on the first medium 11 side.
  • Ti is arranged as a layer that increases the adhesion strength between the conductor layers
  • the NiCr layer is a medium of Au. It is placed as an adhesion layer that improves the adhesion to quality 11.
  • the number of electrode fingers of IDT13 was 60, the crossing width was 30 and the opening width was 30.4 ⁇ .
  • IDT13 was weighted so that the cross width at the center of the boundary acoustic wave propagation direction is 30 and the cross width at both ends of the elastic boundary wave propagation direction is 15 ⁇ .
  • the period of the IDT 13 and the reflectors 14 and 15 was 1.6 ⁇ m, and the electrode finger pitch was 0.8 zm.
  • the width dimension of the electrode fingers was 0.4 x m, and the width of the space between the electrode fingers was set to 0. Accordingly, the electrode finger pitch was set to 0 as described above.
  • FIG. 12 shows impedance-frequency characteristics of a boundary acoustic wave resonator as the boundary acoustic wave device 10 described above.
  • IDT made of Au and adhesion layer NiCr Compared to IDT made of Au and adhesion layer NiCr, the use of IDT made of Al / Cu / TiZAuZNiCr made it possible to reduce the resonance resistance from 1.80 to 1.4 ⁇ .
  • the series resistance of the electrode fingers can be reduced by 19.4%.
  • the present invention is not limited to the boundary acoustic wave device 10 as the boundary acoustic wave resonator described above, and can also be applied to resonators and filters having various structures.
  • filters and switches using various boundary acoustic waves such as ladder filters, longitudinally coupled resonator filters, laterally coupled resonator filters, transversal filters, boundary acoustic wave optical switches, or boundary acoustic wave optical filters. Can also be used widely.
  • the electrode material is not limited to Au or A1, but other conductive materials such as Pt, Ag, Cu, Ni, Ti, Fe, W, Ta may be used. An alloy mainly composed of materials may be used.
  • the density of the first conductor layer is 7000 to 20000 kg / m 3 like Au.
  • the second conductor layer has a density of 1 740 kg / m 3 or more and less than 7000 kg / m 3 , which is relatively low density. It is made of metal. As long as the requirements of the density of the metal constituting the first and second conductor layers are satisfied, the first The metal constituting each conductor layer in the laminated structure having the first and second conductor layers is not limited.
  • a thin layer of Ti, Cr, NiCr, Ni, ZnO or the like may be laminated on the first and second conductor layers.
  • the thin layer may be disposed between the first or second conductor layer and the first or second medium layer, or between the first and second conductor layers. Since the above thin layer only needs to have an adhesion improving effect and a diffusion preventing effect, the film thickness of the thin layer is set to about 30 nm to 30 nm.
  • one or more conductor layers including a third conductor layer may be further laminated in addition to the first and second conductor layers.
  • the third conductor layer may be the same material as the first or second conductor layer or a different material. Therefore, for example, in the case of using an electrode structure made of Al / Au / Al, the electromechanical coupling coefficient K 2 can be increased moderately by the presence of Au, and the delay time temperature coefficient TCD can be reduced to some extent. In addition, a boundary acoustic wave device having a small conductor resistance of the electrode finger can be obtained.
  • first and second media 11 and 12 are stacked, one or more other media may be stacked.
  • a third medium may be disposed between the first and second media. If the first conductor layer made of a heavy electrode material is placed on the negative medium side with a TCD made of SiO or the like, the TCD can be reduced. Conversely, when the first conductor layer having a high density is disposed on the first medium side made of a piezoelectric material, the electromechanical coupling coefficient K2 can be increased.
  • the frequency is adjusted by adjusting the IDT by various methods such as reverse sputtering, ion beam milling, reactive ion etching, and wet etching. Can do. Further, when using the laminated structure of the second medium / third medium ZIDT / first medium, the thickness of the third medium is adjusted by the above-mentioned ion beam milling or etching, or It is also possible to adjust the frequency by forming an additional film by a deposition method such as sputtering or evaporation.
  • the first and second media can be made of various materials.
  • materials include Si, glass, SiO, SiC, ZnO, TaO, PZT, A1N, AlO, LiTaO, LiNbO, and KN (potassium diborate).
  • a piezoelectric material is used as the first medium 11
  • a piezoelectric material can be used.
  • a dielectric is used as the second medium 12, such a substance is limited to SiO.
  • glass SiC, A1N, Al 2 O, etc.
  • SiC SiC
  • A1N Al 2 O, etc.
  • the piezoelectric body since the piezoelectric body usually exhibits a positive TCD, it is desirable to use a dielectric having a negative TCD as the material of the second medium 12 in order to reduce the TCD.
  • dielectrics having such a negative TCD include SiO, quartz, LB0 (lithium tetraborate), langasite,
  • Nganite, glass, etc. can be mentioned.
  • a protective layer may be formed.
  • the protective layer is not particularly limited, and it is possible to use a material made of various materials such as polyimide, epoxy resin, inorganic insulating material such as titanium oxide, aluminum nitride or aluminum oxide, metal such as Au, Al or W. it can. Further, the boundary acoustic wave device may be enclosed in a package after forming the protective layer or without forming the protective layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

  【課題】 高周波化を図った場合であっても、導体抵抗の増大を抑制でき、十分大きな電気機械結合係数K2を可能とする弾性境界波装置を提供する。   【解決手段】 第1の媒質11と、第2の媒質12との間にIDT13が配置されており、IDT13を厚み方向に2等分した面を境界面とし、該境界面から第1の媒質11側の弾性境界波のエネルギーをE1、該境界面から第2の媒質12側のエネルギーをE2とし、IDT13を構成したときの弾性境界波の音速と、IDT13を構成する最も密度の大きな導体層のみを用いてIDT13を構成したときの弾性境界波の音速とが同一となるように、密度が最も大きい導体層単独でIDT13を構成した条件において、前記境界面から第1の媒質11側の弾性境界波のエネルギーをE1′、前記境界面から第2の媒質12側のエネルギーをE2′としたときに、E1/E2>E1′/E2′とされている、弾性境界波装置10。

Description

明 細 書
弾性境界波装置
技術分野
[0001] 本発明は、例えば共振子や帯域フィルタなどに用レ、られる弾性境界波装置に関し 、より詳細には、異なる材料からなる第 1,第 2の媒質間に IDTが配置されている弾性 境界波装置に関する。
背景技術
[0002] 弾性境界波装置は、異なる媒質間の界面に IDT (インターデジタル電極)を配置し た構造を有する。弾性境界波装置では、上記異なる媒質を積層してなる積層体内を 弾性境界波が伝搬する。従って、弾性境界波装置では、複雑なパッケージ構造を省 略することができ、弾性表面波装置と比べて、構造の簡略化及び低背化を進めること ができる。
[0003] 弾性境界波装置において、動作周波数を高くした場合には、 IDTの周期が小さく なる。そのため、 IDTや反射器を構成する電極指の幅が小さくなり、電極指の導体抵 杭が増大し、損失が増すことになる。
[0004] 他方、弾性境界波装置では、上記界面の上下の媒質を伝搬する横波の音速よりも 、弾性境界波の音速を低くすることにより、弾性境界波を上下の媒質間に閉じ込め、 伝搬損失を低減することができる。
[0005] このような閉じ込め効果を高めるには、密度の高い金属により IDTを形成することが 有効である。従来、下記の特許文献 1に記載のように、弾性境界波装置の IDTは、 A 1により形成されていることが多かった。これに対して、下記の特許文献 2に記載の弾 性境界波装置では、 IDT材料として A1の他 Auや Agが示されてレ、る。
特許文献 1 :特開昭 58— 30217号公報
特許文献 2: DE4132309A1
発明の開示
[0006] 弾性境界波装置において弾性境界波を励振する IDTの動作周波数 Fiは弾性境界 波の音速を V、 IDTの周期を; とした場合、?1=¥/ぇ ' '(式〔&〕)で表ゎされる。式 (a)から明らかなように、弾性境界波装置の動作周波数 Fiが高くなると、 IDTの周期 を短くする必要がある。従って、 IDTや反射器を構成している電極指の幅が細くな り、導体抵抗が大きくなり、損失が増大するという問題があった。特に、密度が大きい 導体により電極指を構成した場合、電極指の厚みが薄い条件下では伝搬損失を 0に 近づけることはできるものの、電極指の厚みが薄くなるので、導体抵抗がさらに大きく なるという問題があった。
[0007] また、従来、弾性境界波装置の IDTを Auにより形成した場合には、十分大きな電 気機械結合係数 K2が得られなかった。
[0008] 本発明の目的は、上述した従来技術の欠点を解消し、動作周波数を高めた場合で あっても、弾性境界波を効果的に閉じ込めることができ、かつ大きな電気機械結合係 数を得ることができ、従って、低損失な弾性境界波装置を提供することにある。
[0009] 本願の第 1の発明によれば、圧電体からなる第 1の媒質と、第 1の媒質に積層され ており、誘電体からなる第 2の媒質と、前記第 1の媒質と第 2の媒質との間に配置され ており、複数の導体層を積層してなる IDTとを備える弾性境界波装置であって、前記 第 1 ,第 2の媒質が積層されている方向が前記 IDTの厚み方向であり、該 IDTを厚み 方向に 2等分した面を境界面とし、該境界面から第 1の媒質側に存在する弾性境界 波のエネルギーを El、前記境界面から第 2の媒質側に存在するエネルギーを E2と し、前記 IDTを構成したときの弾性境界波の音速と、前記 IDTを構成する導体のうち 、最も密度の大きな導体層のみを用いて IDTを構成したときの弾性境界波の音速と が同一となるように、密度が最も大きい前記導体層単独で IDTを構成した条件にお いて、前記境界面から第 1の媒質側に存在する弾性境界波のエネルギーを 、 前記境界面から第 2の媒質側に存在するエネルギーを としたときに、 E1/E2 >Elr /E2r とされていることを特徴とする、弾性境界波装置が提供される。
[0010] 第 1の発明のある特定の局面では、前記 IDTが、密度力 S7000〜20000kg/m3の 範囲にある金属からなる第 1の導体層と、密度が 1740kg/m3以上、 7000kg/m3よ り小さい金属からなる第 2の導体層とを含む積層構造を有し、前記 IDTの前記第 1の 媒質側に配置される導体層が、前記第 1の導体層により構成されている。
[0011] 第 1の発明の他の特定の局面では、前記第 1の導体層の厚みを H、 IDTの電極指 周期をえとしたときに、 0. 025え < Η< 0. 1 λとされてレヽる。
[0012] 第 1の発明のさらに他の特定の局面では、前記 IDTが前記第 1の媒質に接する部 分及び/または第 2の媒質に接する部分に密着層が設けられている。
[0013] 第 2の発明によれば、圧電体からなる第 1の媒質と、非導電物質からなり、第 1の媒 質に積層された第 2の媒質と、前記第 1の媒質と第 2の媒質との間に配置された IDT とを備える弾性境界波装置であって、前記 IDTが、密度が 7000〜21000kg/m3の 範囲にある金属からなる第 1の導体層と、密度が 1740kg/m3以上、 7000kg/m3よ り小さい金属からなる第 2の導体層とを積層した構造を有し、前記 IDTの前記第 1の 媒質側に配置されている導体層が前記第 1の導体層により構成されており、前記第 1 の媒質側に配置されている前記第 1の導体層の厚みを H、 IDTの電極指周期を; Iと したとき、 0. 025 λ < Η< 0. 1 1とされていることを特徴とする、弾性境界波装置が 提供される。
[0014] 第 2の発明のさらに他の特定の局面では、前記 IDTが前記第 1の媒質に接する部 分及び/または第 2の媒質に接する部分に密着層が設けられている。
[0015] 本発明のさらに他の特定の局面では、前記第 1の導体層を構成している金属力 Ρ t、 Au、 Cu、 Ag、 Ni、 Fe、 W、 Ta、 Cr並びにこれらを主体とする合金からなる群から 選択された 1種であり、前記第 2の導体層を構成している金属が、 Mg、 A1及び Ti並 びにこれらを主体とする合金からなる群から選択した 1種の金属である。
[0016] 本発明に係る弾性境界波装置のさらに別の特定の局面では、前記 IDTと同じ電極 材料で構成されており、かつ前記第 第 2の媒質間に配置されている反射器がさら に備えられている。
(発明の効果)
[0017] 第 1の発明に係る弾性境界波装置では、圧電体からなる第 1の媒質と、非導電物質 力 なる第 2の物質との間に IDTが配置されており、該 IDTが複数の導体層を積層し てなり、上記 El/E2 >E /E2r とされているため、エネルギーが第 2の媒質側 に比べて第 1の媒質側に多く存在した状態で弾性境界波が伝搬する。従って、弾性 境界波の電気機械結合係数を高めることができ、共振構造を用いた共振子やフィル タでは、適用可能な通過帯域幅の範囲を広げることができる。また、トランスバーサル 型フィルタの場合には、低損失の弾性境界波装置を提供することができる。
[0018] 第 1の発明において、 IDTが上記第 1 ,第 2の導体層を含む積層構造を有し、圧電 体からなる第 1の媒質側に、相対的に密度が大きな金属からなる第 1の導体層が配 置されている場合には、第 1の媒質側に存在する弾性境界波のエネルギー E1を、第 2の媒質側に存在する弾性境界波のエネルギー E2に比べて容易に高くすることがで き、従って、 ElZE2 >El/ E2 とされている弾性境界波装置を上記電極積層 構造により容易に実現することができる。
[0019] 第 1の発明において、 0. 025 λ < Η< 0. 1 λの場合には、電気機械結合係数をよ り一層大きくすることができる。
[0020] 上記 IDTは、第 1の媒質に接する部分及び Ζまたは第 2の媒質に接する部分に密 着層が設けられている場合には、 IDTと第 1及び Ζまたは第 2の媒質との密着性を効 果的に高めることができる。
[0021] 第 2の発明では、圧電体からなる第 1の媒質と、非導電物質からなる第 2の媒質との 間に IDTが配置されており、 IDTが、密度が異なる上記第 1,第 2の導体層を含む積 層構造を有し、第 1の導体層が第 1の媒質側に配置されているため、圧電体からなる 第 1の媒質側において弾性境界波のエネルギーが大きい状態で弾性境界波が伝搬 する。そのため、電気機械結合係数 Κ2を十分に大きくすることができる。し力も、 0. 0 25 λ < Η< 0. 1 λとされているので、電気機械結合係数 Κ2を効果的に高めることが できる。
[0022] 上記 IDTは、第 1の媒質に接する部分及び/または第 2の媒質に接する部分に密 着層が設けられている場合には、 IDTと第 1及び/または第 2の媒質との密着性を効 果的に高めることができる。
[0023] 本発明において、第 1,第 2の導体層を構成する金属は特に限定されないが、例え ば、第 1の導体層を構成している金属力 Pt、 Au、 Cu、 Ag、 Ni、 Fe、 W、 Ta、 Cr並 びにこれらを主体とする合金からなる群から選択された 1種であり、第 2の導体層を構 成している金属が、 Mg、 A1及び Ti並びにこれらを主体とする合金からなる群から選 択した 1種の金属である場合には、汎用されているこれらの金属を用いて第 1,第 2の 導体層を容易に形成することができる。 [0024] 本発明において、 IDTと同じ電極材料で構成されており、かつ第 1,第 2の媒質間 に配置されている反射器がさらに備えられている場合には、本発明に従って、反射 器を有する弾性境界波共振子や弾性境界波共振子フィルタなどを容易に形成する こと力 Sできる。
図面の簡単な説明
[0025] [図 1]本発明の一実施形態に係る弾性境界波装置を模式的に示す平面断面図。
[図 2]本発明の一実施形態に係る弾性境界波装置を模式的に示す正面断面図。
[図 3]本発明の一実施形態に係る弾性境界波装置の電極構造を示す模式的部分拡 大正面断面図。
[図 4]図 1に示した弾性境界波装置において、 Au力 なる第 1の導体層第 1の媒質側 に配置した場合の第 2の導体層を構成している A1厚みを変化させた場合の弾性境 界波の音速 Vmの変化を示す図。
[図 5]図 1に示した弾性境界波装置において、 Au力 なる第 1の導体層第 1の媒質側 に配置した場合の第 2の導体層を構成している A1厚みを変化させた場合の弾性境 界波の電気機械結合係数 K2の変化を示す図。
[図 6]図 1に示した弾性境界波装置において、 Au力 なる第 1の導体層第 1の媒質側 に配置した場合の第 2の導体層を構成している A1厚みを変化させた場合の弾性境 界波の遅延時間温度係数 TCDの変化を示す図。
[図 7]図 1に示した弾性境界波装置において、第 2の導体層の厚みを一定とし、圧電 体からなる第 1の媒質側に配置されている第 1の導体層を構成している Auの厚みを 変化させた場合の弾性境界波の音速 Vmの変化を示す図。
[図 8]図 1に示した弾性境界波装置において、第 2の導体層の厚みを一定とし、圧電 体からなる第 1の媒質側に配置されている第 1の導体層を構成している Auの厚みを 変化させた場合の弾性境界波の電気機械結合係数 K2の変化を示す図。
[図 9]図 1に示した弾性境界波装置において、第 2の導体層の厚みを一定とし、圧電 体からなる第 1の媒質側に配置されている第 1の導体層を構成している Auの厚みを 変化させた場合の弾性境界波の遅延時間温度係数 TCDの変化を示す図。
[図 10]IDTが Auのみからなる場合比較のための弾性境界波装置における弾性境界 波の変位分布を模式的に示す図。
[図 ll]Auからなる第 1の導体層が第 1の媒質である LiNbO側に、第 2の導体層 A1が
3
SiO側に配置された実施形態の弾性境界波装置における弾性境界波の変位分布
2
を示す図。
[図 12]本発明の一実施形態に係る弾性境界波装置の共振特性を示す図。
符号の説明
[0026] 10…弾性境界波装置
11…第 1の媒質
12…第 2の媒質
13- - -IDT
13a, 13b…電極指
14, 15…反射器
16…第 1の導体層
17…第 2の導体層
発明を実施するための最良の形態
[0027] 本明細書において媒質や電極材料として用いられる材料の密度、結晶のオイラー 角及び結晶軸の詳細は以下の通りである。
[0028] 密度
SiOの密度は 2210kg/m3、横波の音響特性インピーダンスは 8. 3 X 106kg- s/
2
m2であり、 A1の密度は 2699kg/m3、横波の音響特性インピーダンスは 8. 4 X 106k g' s/m2であり、 Cuの密度は 8939kg/m3、横波の音響特性インピーダンスは 21. 4 X 106kg' s/m2であり、 Agの密度は 10500kg/m3、横波の音響特性インピーダ ンスは 18. 6 X 106kg' s/m2であり、 Auの密度は 19300kg/m3、横波の音響特性 インピーダンスは 24· O X 106kg ' s/m2である。
[0029] オイラー角
本明細書において、基板の切断面と、境界波の鉄板方向を表現するオイラー角( φ , θ , φ )は、文献「弾性波素子技術ハンドブック」 (日本学術振興会弾性波素子技 術第 150委員会、第 1版第 1刷、平成 3年 11月 30日発行、 549頁)記載の右手系ォ イラ一角を用いた。すなわち、 LNの結晶軸として X、 Y、 Ζに対し、 Ζ軸を軸として X軸 を反時計廻りに φ回転し Xa軸を得る。次に、 Xa軸を軸として Z軸を反時計廻りに Θ 回転し 軸を得る。 Xa軸を含み、 由を法線とする面を基板の切断面とした。そし て、 Z'軸を軸として Xa軸を反時計廻りに φ回転した軸 X'方向を境界波の伝搬方向 とした。
[0030] 結晶軸
また、オイラー角の初期値として与える LiNb〇の結晶軸 X、 Y、 Ζは、 Ζ軸を c軸と平 行とし、 X軸を等価な 3方向の a軸のうち任意の一つと平行とし、 Y軸は X軸と Z軸を含 む面の法線方向とする。
[0031] 等価なオイラー角
なお、本発明における LiNbOのオイラー角( φ, θ , φ )は結晶学的に等価であれ ばよレ、。例えば、文献(日本音響学会誌 36卷 3号、 1980年、 140〜: 145頁)によれ ば、 LiNbOは三方晶系 3m点群に属する結晶であるので、〔4〕式が成り立つ。
[0032] F ( φ , θ , φ ) =F (60° — φ , — θ , φ )
= F (60。 + φ , - θ , 180° - φ )
= Ρ ( φ , 180。 + Θ , 180。 - φ )
= F , θ , 180。 + ) 〔4〕
ここで、 Fは、電気機械結合係数 k 伝搬損失、 TCF、 PFA、ナチュラル一方向性 などの任意の境界波特性である。 PFAのナチュラル一方向性は、例えば伝搬方向を 正負反転してみた場合、符号は変わるものの絶対量は等しいので実用上等価である と考える。なお、文献 7は表面波に関するものであるが、境界波に関しても結晶の対 称性は同様に扱える。
[0033] 例えば、オイラー角(30° , θ , φ )の境界波伝搬特性は、オイラー角(90° , 180 。 _ θ , 180° - φ )の境界波伝搬特性と等価である。また、例えば、オイラー角(3 0° , 90° , 45° )の境界波伝搬特性は、表に示すオイラー角の境界波伝搬特性と 等価である。
[0034] また、本発明において計算に用いた導体の材料定数は多結晶体の値であるが、ェ ピタキシャル膜などの結晶体においても、膜自体の結晶方位依存性より基板の結晶 方位依存性が境界波特性に対して支配的であるので、〔4〕式により、実用上問題な い程度に同等の境界波伝搬特性が得られる。
[0035] [表 1]
Figure imgf000010_0001
[0036] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。
[0037] 図 1及び図 2は、本発明の一実施形態に係る弾性境界波装置を模式的に示す平 面断面図及び正面断面図である。
[0038] 弾性境界波装置 10は、第 1の媒質 11と、第 2の媒質 12とを積層した積層体を用い て構成されている。第 1の媒質 11は、本実施形態では、圧電体としての 15° Yカット X伝搬 (オイラー角で(0° , 105° , 0° ) )の LiNb〇板により構成されている。
[0039] 第 2の媒質 12は、本実施形態では、非導電物質としての Si〇により構成されている 第 1 ,第 2の媒質 11 , 12間の界面に、 IDT13及び反射器 14, 15が配置されている 。 IDT13は、複数本の電極指 13aと複数本の電極指 13bとが互いに間挿し合うように 配置されている構造を有する。複数本の電極指 13aが、一方のバスバーに、複数本 の電極指 13bが他方のバスバーに電気的に接続されている。
[0041] IDT13及び反射器 14, 15は、本実施形態では、密度が相対的に大きい Auからな る第 1の導体層と、密度が相対的に低い A1からなる第 2の導体層とを含む積層構造 を有する。
[0042] 図 3 (a)は、上記電極指 13a, 13bの横断面構造を説明するための模式的拡大断 面図である。電極指 13a, 13bは、第 1 ,第 2の導体層 16, 17を積層した構造を有す る。第 1の導体層 16が Auからなり、圧電体としての第 1の媒質 11側に配置されており 、第 2の導体層 17が、 A1からなり、非導電物質からなる第 2の媒質 12側に配置されて いる。
[0043] なお、反射器 14, 15も、 IDT13と同じ電極構造を有する。すなわち、反射器 14, 1 5もまた、第 1,第 2の導体層 16, 17を積層した構造を有する。
[0044] 本実施形態の弾性境界波装置 10では、第 1,第 2の媒質 11 , 12が上記のように形 成されており、 IDT13及び反射器 14, 15が上記電極構造を有するため、弾性境界 波の電気機械結合係数が十分に大きくされる。また、 IDT13を厚み方向に 2等分し た面を境界面としたとき、該境界面から第 1の媒質 11側に存在する弾性境界波のェ ネルギーを El、境界面から第 2の媒質側に存在する弾性境界波のエネルギーを E2 とし、 IDTを構成している複数の導体層のうち最も密度の大きな導体層のみを用いて IDTを構成したときの弾性境界波の音速と、上記複数の導体層からなる IDTを構成 したときの弾性境界波の音速とが等しい条件において、境界面から第 1の媒質側に 存在する弾性境界波のエネルギーを 、第 2の媒質側に存在する弾性境界波の エネルギーを E2^ としたときに、 E1ZE2 >E1 /E2r とされており、それによつて 、弾性境界波装置 10では、電気機械結合係数 K2が向上し、共振構造を用いた共振 子やフィルタでは、適用可能な通過帯域幅の範囲を広げることができる。また、トラン スバーサル型フィルタの場合には、低損失化が図られる。これを、具体的に説明する
[0045] 弾性境界波装置 10を以下の条件で試作した場合の A1からなる第 2の導体層の厚 みと、弾性境界波の音速、電気機械結合係数 K2、及び遅延時間温度係数 TCDとの 関係を求めた。
[0046] 前提とした条件
積層構造: SiO /iDT/LiNbO
IDT :第 1の導体層は Auからなり、厚みは 0. 05 λまたは可変とした。第 2の導 体層 17は、 A1からなり、厚みは 0. 1 λまたは可変とした。
[0047] 第 1 ,第 2の媒質 11 , 12の厚みは無限大とした。
[0048] 上記のような条件で、 SH成分主体の弾性境界波について、 Auからなる第 1の導体 層 16の厚みを 0. 05 λとし、第 2の導体層 17を構成している A1厚みを種々変化させ 、他は上記条件として、 A1厚みと弾性境界波の音速、電気機械結合係数、及び遅延 時間温度係数 TCDとの関係を求めた。結果を図 4〜図 6にそれぞれ示す。
[0049] また、上記条件において、第 2の導体層 17としての A1の厚みは 0. 1 λとし、 Au力 なる第 1の導体層 16の厚みを種々変化させ、同様にして、 Au厚(λ )と、 SH成分主 体の弾性境界波の音速、電気機械結合係数 Κ2及び遅延時間温度係数 TCDとの関 係を求め、図 7〜図 9に示した。図 4〜図 6において、 A1厚 = 0の場合が、 Auのみか らなる電極を用いた場合の結果に相当する。
[0050] なお、伝搬損失については、全て 0であり、 A1の膜厚を変化させた場合、該 A1の膜 厚に依存せずほぼ 0であり、 Auの膜厚を変化させた場合も、該 Auの膜厚に依存せ ずほぼ 0であった。
[0051] なお、これらを求めるにあたっては、文献「A method for
estimating optimal cuts and propagation directions ror excitation and
propagation directions for excitation of piezoelectric surface waves」 (J.J.Campbell and W.R.Jones, IEEE Trans. Sonics and Ultrason. , Vol.SU_15(1968)pp,209- 217)に基 づいて、求めた。この場合、開放境界の場合には、第 1の媒質 1 1と、第 2の媒質 12と の 界、第 1の 質 11と ID丁 13との 界、 ΠΤΓ13と第 2の 質 12との 界にまミける 変位、電位、電束、密度の法線成分及び上下方向応力が連続であるとし、第 1の媒 質 11と第 2の媒質 12の厚みを無限大とし、 IDTなどを構成している導体の比誘電率 を 1として、音速を求めた。また、短絡境界の場合には、第 2の媒質と IDTとの境界、 I DTと第 1の媒質との境界における電位が 0として、音速を求めた。また、電気機械結 合係数 κ2は、下記の式(1)により求めた。なお、式(1)において Vfは開放境界にお ける音速である。
K2= 2 X I vf-v I /Vf …式(1)
[0052] 遅延時間温度係数 TCDは、 20°C、 25°C及び 30°Cにおける位相速度 Vに基づき、 下記の式(2)により求めた。
TCD= (V〔20。C〕 -V [30°C] ) /V [25°C] /10+ a s
…式 (2)
[0053] 但し、式(2)において、 ひ sは境界波伝搬方向における第 1の媒質 11の線膨張係 数である。
[0054] 図 5から明らかなように、 A1からなる第 2の導体層 17を積層することにより、すなわち A1の厚みを 0よりも大きくするとことにより、電気機械結合係数 K2の高められることが わ力る。
[0055] 他方、図 8から明らかなように、第 1 ,第 2の導体層 16, 17を積層した構造において 、第 1の導体層 16である Auの厚みを 0· 025え〜 0. 1 λの範囲とすれば、 Auのみ 力 なる電極を用いた相当の弾性境界波装置に比べて、電気機械結合係数 K2を高 め得ることがわかる。
[0056] 従って、図 4〜図 9から、第 1 ,第 2の導体層 16, 17を、それぞれ、 Au及び A1で構 成した場合、 Auからなる第 1の導体層 16の厚みを 0. 025え〜 0. 1 λとすること力 S望 ましいことがわかる。
[0057] 図 10は、図 4〜図 6において、 A1厚 =0の場合の弾性境界波(Ul =縦波成分、 U 2 = SH波成分、 U3 = SV波成分、なお U1〜U3は弾性境界波を構成する部分波成 分である。)の変位分布を模式的に示す図であり、図 11は、図 4〜図 6において、 A1 厚 =0. 1 λとした場合の弾性境界波(Ul =縦波成分、 U2 = SH波成分、 U3 = SV 波成分、なお U1〜U3は弾性境界波を構成する部分波成分である。)の変位分布を 模式的に示す図である。
[0058] 図 10及び図 11から明らかなように、上記第 1 ,第 2の導体層 16, 17を積層してなる IDT13を用いた上記実施形態の弾性境界波装置 10においても、従来の Auのみか らなる IDTを用いた相当の弾性境界波装置と同程度に、弾性境界波の振動エネル ギ一力 SIDT付近に集中していることがわかる。従って、密度の大きい導体である Auと 、密度の小さい導体である A1とを積層した電極構造の場合において、密度の大きな 導体層 16の存在により、弾性境界波の媒質間の境界面へのエネルギーを効果的に 集中させることがわかる。
[0059] また、図 10及び図 11において、第 1の媒質の密度が 4640kgZm3、第 2の媒質の 密度は 2210kg/m3である。そして、弾性境界波の振動エネルギーは、 p U2に比例 する。但し、ここで pは媒質の密度であり、 Uは振幅である。従って、図 10から、 Elr /E2r を求めると、 /E2r はほぼ 1. 1となる。
[0060] また、図 11から明らかなように、弾性境界波の振動エネルギーの分布の中心は、密 度の高い Auからなる第 1の導体層 16が圧電体である第 1の媒質 11側に配置されて いるので、振動エネルギーの分布中心が第 1の媒質 11側に存在することがわかる。 従って、振動エネルギーが、第 1の媒質 1 1側、すなわち圧電体側において強く分布 するため、これによつて大きな電気機械結合係数 K2の得られていることがわかる。
[0061] また、図 11より E1/E2を求めると、 E1/E2は約 3· 6となる。従って、 E1/E2 >E 1' /E2' とされてレヽる。
[0062] 上記のように、 IDT13を厚み方向に 2等分した面を境界面としたとき、該境界面か ら第 1の媒質 11側に存在する弾性境界波のエネルギー E1、境界面から第 2の媒質 1 2側に存在する弾性境界波のエネルギー E2としたとき、 Ε1/Ε2 >Ε1/ /Έ2' とさ れておれば、単層の IDT電極で弾性境界波を作製した場合に比較して、大きな電気 機械結合係数 Κ2を得ることができる。
[0063] 次に、図 1及び図 2に示した弾性境界波装置 10としての弾性境界波共振子の具体 的な共振特性を図 12に示す。図 12に示す共振特性は、以下の条件で弾性境界波 装置 10を作製し、求めたものである。
[0064] 第 1の媒質 11 : 15° Υカット X伝搬の LiNbO基板からなり、厚さ 370 z m
第 2の媒質 12 : Si〇からなり、厚さ 6 x m
IDT13: AlZCu/TiZAuZNiCrを、厚み 50Z 10Z70/3nmとなるように積層 した構造を用いた。なお、 A1側を第 2の媒質側に、 NiCr側を第 1の媒質 11側に配置 した。 Tiは導体層間の密着強度を高める層として配置されており、 NiCr層は Auの媒 質 11への密着性を高める密着層として配置されてレ、る。
[0065] IDT13の電極指の対数は 60対とし、交差幅は 30え、開口幅 30. 4 λとした。
[0066] また、反射器 14, 15の電極指の本数は、 51本とした。
[0067] さらに、 IDT13については、弾性境界波伝搬方向中央における交差幅が 30え、弾 性境界波伝搬方向両端における交差幅が 15 λとなるように交差幅重み付けを施し た。
[0068] IDT13及び反射器 14, 15の周期ぇは、 1. 6 μ mとして、電極指ピッチは 0. 8 z m とした。また、電極指の幅寸法は、 0. 4 x m、電極指間のスペースの幅は 0. と し、それによつて電極指ピッチを上記のように 0. とした。
[0069] 図 12に上記の弾性境界波装置 10としての弾性境界波共振子のインピーダンス— 周波数特性を示す。
[0070] Auと密着層 NiCrからなる IDTに比べ、 Al/Cu/TiZAuZNiCrからなる IDTを 用いることにより、共振抵抗を 1. 8 0カら1. 4 Ωに小さくすることが可能となった。
[0071] 上記電極構造の変更により、電極指の直列抵抗は、 19. 4%低めることが可能とな つに。
[0072] なお、本発明は、上述した弾性境界波共振子としての弾性境界波装置 10に限定さ れず、様々な構造の共振子やフィルタにも適用することができる。すなわち、例えばラ ダー型フィルタ、縦結合共振器型フィルタ、横結合共振器型フィルタ、トランスバーサ ル型フィルタ、弾性境界波光スィッチまたは弾性境界波光フィルタなどの様々な弾性 境界波を用いたフィルタやスィッチ等にも広く用いることができる。
[0073] また、電極材料については、 Auや A1に限らず、 Pt、 Ag、 Cu、 Ni、 Ti、 Fe、 W、 Ta などの他の導電性材料を用いてもよぐまたこれらの導電性材料を主体とする合金を 用いてもよい。
[0074] もっとも、 IDTを第 1の導体層と第 2の導体層とを含む積層構造を有するように構成 する場合、第 1の導体層の密度は、 Auのように 7000〜20000kg/m3の範囲にある 相対的に密度が高い金属を用いて構成され、第 2の導体層は、 A1のように、密度が 1 740kg/m3以上、 7000kg/m3より小さい、相対的に低密度の金属により構成され る。このような第 1 ,第 2の導体層を構成している金属の密度の要件を満たす限り、第 1 ,第 2の導体層を有する積層構造における各導体層を構成する金属は限定される ものではない。
[0075] さらに、密着性ゃ耐電力性を高めるために、 Ti、 Cr、 NiCr、 Ni、 ZnOなどの薄層を 第 1 ,第 2の導体層に積層してもよい。この場合、上記薄層は、第 1または第 2の導体 層と第 1または第 2の媒質層の間、あるいは第 1 ,第 2の導体層間のいずれに配置し てもよレ、。上記薄層は、密着性向上効果や拡散防止効果を有しておればよいので、 薄層の膜厚は:!〜 30nm程度とされる。
[0076] また、本発明において、第 1 ,第 2の導体層以外に第 3の導体層を含む 1以上の導 体層をさらに積層してもよい。この場合、第 3の導体層は、第 1,第 2の導体層のいず れかと同じ材料であってもよぐ異なる材料であってもよい。従って、例えば、 Al/Au /Alからなる電極構造を用いてもよぐその場合には、電気機械結合係数 K2を Auの 存在により中程度に大きくでき、遅延時間温度係数 TCDをある程度小さくでき、かつ 電極指の導体抵抗が小さい弾性境界波装置を得ることができる。
[0077] また、第 1 ,第 2の媒質 11, 12が積層されていたが、さらに 1以上の他の媒質が積 層されていてもよい。また、第 1,第 2の媒質 11 , 12に他の媒質を積層する場合、第 1 ,第 2の媒質間に第 3の媒質を配置してもよぐその場合には、相対的に密度も重い 電極材料からなる第 1の導体層を Si〇などからなる TCDが負の媒質側に配置すれ ば TCDを小さくすることができる。逆に、圧電体からなる第 1の媒質側に密度の大き な第 1の導体層を配置した場合には、電気機械結合係数 K2を高くすることができる。
[0078] また、本発明においては、上記第 2の媒質の形成に先立ち、逆スパッタ、イオンビー ムミリング、反応性イオンエッチング、ウエットエッチングなどの様々な方法で IDTを調 整して周波数調整を行うことができる。さらに、第 2の媒質/第 3の媒質 ZIDT/第 1 の媒質の積層構造を利用する場合には、第 3の媒質の厚みを、上記イオンビームミリ ングゃエッチングなどにより調整することにより、あるいはスパッタリングもしくは蒸着な どの堆積法により追加成膜することにより、周波数調整を行うことも可能である。
[0079] なお、第 1,第 2の媒質は様々な材料で構成され得る。このような材料としては、 Si、 ガラス、 Si〇、 SiC、 Zn〇、 Ta〇、 PZT、 A1N、 Al〇、 LiTaO、 LiNbO、 KN (二 ォブ酸カリウム)などが挙げられる。特に、第 1の媒質 11として、圧電体を用いる場合 には、上記 LiNb〇以外に、上記のような ZnO、 Ta O、 PZT、 LiTaOなどの様々
2 3 2 5 3
な圧電材料を用いることができる。
[0080] また、第 2の媒質 12として、誘電体を用いる場合そのような物質としては、 SiOに限
2 らず、ガラス、 SiC、 A1N、 Al Oなどを用いることができる。好ましくは、前述したよう
2 3
に、圧電体は通常、正の TCDを示すため、 TCDを小さくするには、負の TCDを有す る誘電体を第 2の媒質 12の材料として用いることが望ましい。このような負の TCDを 有する誘電体としては、 SiOの他、水晶、 LB〇(四ホウ酸リチウム)、ランガサイト、ラ
2
ンガナイト、ガラスなどを挙げることができる。
[0081] 本発明においては、第 1 ,第 2の媒質を積層した積層体あるいはさらに第 3の媒質 を含む積層体の外側に強度を高めるため、あるいは腐食性ガスの侵入を防止するた めに保護層を形成してもよい。保護層としては、特に限定されず、ポリイミド、エポキシ 樹脂、酸化チタン、窒化アルミもしくは酸化アルミなどの無機絶縁材料、 Au、 Alもしく は Wなどの金属など様々な材料からなるものを用いることができる。また、上記保護 層を形成した上で、あるいは保護層を形成せずに、弾性境界波装置をパッケージに 封入してもよい。

Claims

請求の範囲
[1] 圧電体からなる第 1の媒質と、第 1の媒質に積層されており、誘電体からなる第 2の 媒質と、前記第 1の媒質と第 2の媒質との間に配置されており、複数の導体層を積層 してなる IDTとを備える弾性境界波装置であって、
前記第 1 ,第 2の媒質が積層されている方向が前記 IDTの厚み方向であり、該 IDT を厚み方向に 2等分した面を境界面とし、該境界面から第 1の媒質側に存在する弾 性境界波のエネルギーを El、前記境界面から第 2の媒質側に存在するエネルギー を E2とし、
前記 IDTを構成したときの弾性境界波の音速と、前記 IDTを構成する導体のうち、 最も密度の大きな導体層のみを用いて IDTを構成したときの弾性境界波の音速とが 同一となるように、密度が最も大きい前記導体層単独で IDTを構成した条件におい て、前記境界面から第 1の媒質側に存在する弾性境界波のエネルギーを 、前 記境界面から第 2の媒質側に存在するエネルギーを としたときに、 E1/E2 >E /E2 とされていることを特徴とする、弾性境界波装置。
[2] 前記 IDTが、密度が 7000〜20000kg/m3の範囲にある金属からなる第 1の導体 層と、密度が 1740kgZm3以上、 7000kgZm3より小さい金属からなる第 2の導体層 とを含む積層構造を有し、
前記 IDTの前記第 1の媒質側に配置される導体層が、前記第 1の導体層により構 成されている、請求項 1に記載の弾性境界波装置。
[3] 前記第 1の導体層の厚みを H、 IDTの電極指周期を; Iとしたときに、 0. 025 λ < Η < 0. 1 である、請求項 2に記載の弾性境界波装置。
[4] 前記 IDTが前記第 1の媒質に接する部分及び Ζまたは第 2の媒質に接する部分に 密着層が設けられていることを特徴とする、請求項 2または 3に記載の弾性境界波装 置。
[5] 圧電体からなる第 1の媒質と、非導電物質からなり、第 1の媒質に積層された第 2の 媒質と、前記第 1の媒質と第 2の媒質との間に配置された IDTとを備える弾性境界波 装置であって、
前記 IDT力 密度が 7000〜21000kg/m3の範囲にある金属からなる第 1の導体 層と、
密度が 1740kg/m3以上、 7000kg/m3より小さい金属からなる第 2の導体層とを 含む積層構造を有し、
前記 IDTの前記第 1の媒質側に配置される導体層が前記第 1の導体層により構成 されており、
前記第 1の媒質側に配置される前記第 1の導体層の厚みを H、 IDTの電極指周期 を Iとしたとき、 0. 025 λ < Η< 0. 1 λとされてレ、ることを特徴とする、弾性境界波装 置。
[6] 前記 IDTが前記第 1の媒質に接する部分及び Ζまたは第 2の媒質に接する部分に 密着層が設けられていることを特徴とする、請求項 5に記載の弾性境界波装置。
[7] 前記第 1の導体層を構成している金属力 Pt、 Au、 Cu、 Ag、 Ni、 Fe、 W、 Ta、 Cr 並びにこれらを主体とする合金からなる群から選択された 1種であり、
前記第 2の導体層を構成している金属が、 Mg、 A1及び Ti並びにこれらを主体とす る合金からなる群から選択した 1種の金属である、請求項 2〜6のいずれか 1項に記 載の弾性境界波装置。
[8] 前記 IDTと同じ電極材料で構成されており、かつ前記第 1 ,第 2の媒質間に配置さ れている反射器をさらに備える、請求項 1〜7のいずれ力 1項に記載の弾性境界波装 置。
PCT/JP2006/305503 2005-05-26 2006-03-20 弾性境界波装置 WO2006126327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/714,840 US7456544B2 (en) 2005-05-26 2007-03-07 Boundary acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005154250A JP2008235950A (ja) 2005-05-26 2005-05-26 弾性境界波装置
JP2005-154250 2005-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/714,840 Continuation US7456544B2 (en) 2005-05-26 2007-03-07 Boundary acoustic wave device

Publications (1)

Publication Number Publication Date
WO2006126327A1 true WO2006126327A1 (ja) 2006-11-30

Family

ID=37451759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305503 WO2006126327A1 (ja) 2005-05-26 2006-03-20 弾性境界波装置

Country Status (3)

Country Link
US (1) US7456544B2 (ja)
JP (1) JP2008235950A (ja)
WO (1) WO2006126327A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088730A (ja) * 2007-09-28 2009-04-23 Samsung Electronics Co Ltd 弾性境界波装置
WO2009133655A1 (ja) * 2008-04-30 2009-11-05 株式会社村田製作所 弾性境界波装置
US7876020B2 (en) 2007-03-06 2011-01-25 Murata Manufacturing Co., Ltd. Boundary acoustic wave device including idt electrodes including a plurality of conductive layers with different densities
WO2011049060A1 (ja) * 2009-10-19 2011-04-28 株式会社村田製作所 弾性表面波装置
JP2011087282A (ja) * 2009-09-15 2011-04-28 Murata Mfg Co Ltd 弾性境界波フィルタ及びそれを備える分波器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466655B2 (ja) * 2005-05-20 2010-05-26 株式会社村田製作所 弾性境界波装置
TWI325687B (en) * 2006-02-23 2010-06-01 Murata Manufacturing Co Boundary acoustic wave device and method for producing the same
JP4760911B2 (ja) * 2006-09-21 2011-08-31 株式会社村田製作所 弾性境界波装置
JP5156448B2 (ja) * 2008-03-24 2013-03-06 太陽誘電株式会社 弾性波素子、フィルタ、通信モジュール、および通信装置
WO2010137648A1 (ja) * 2009-05-29 2010-12-02 株式会社村田製作所 ラダー型フィルタ及び弾性波共振子
DE102009056663B4 (de) 2009-12-02 2022-08-11 Tdk Electronics Ag Metallisierung mit hoher Leistungsverträglichkeit und hoher elektrischer Leitfähigkeit und Verfahren zur Herstellung
JP2011135244A (ja) * 2009-12-24 2011-07-07 Panasonic Corp 弾性波デバイス及びこれを用いたフィルタ、デュプレクサ
JP2011135469A (ja) * 2009-12-25 2011-07-07 Murata Mfg Co Ltd 弾性波装置
JP5815329B2 (ja) * 2011-08-22 2015-11-17 太陽誘電株式会社 弾性波デバイス
KR101909013B1 (ko) * 2014-12-01 2018-10-17 가부시키가이샤 무라타 세이사쿠쇼 탄성파 공진자, 탄성파 필터, 듀플렉서 및 탄성파 장치
WO2017115870A1 (ja) * 2015-12-28 2017-07-06 株式会社村田製作所 弾性波フィルタ装置およびデュプレクサ
CN108566176B (zh) * 2018-04-12 2021-04-06 无锡市好达电子股份有限公司 一种声表面波谐振器的杂波抑制方法
CN113812089A (zh) 2019-05-06 2021-12-17 Qorvo生物技术有限公司 声谐振器装置
WO2020261978A1 (ja) * 2019-06-24 2020-12-30 株式会社村田製作所 弾性表面波装置及びフィルタ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051011A1 (fr) * 1997-05-08 1998-11-12 Kabushiki Kaisha Toshiba Dispositif a ondes limites elastiques et son procede de fabrication
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JP2002026685A (ja) * 2000-07-07 2002-01-25 Murata Mfg Co Ltd 弾性表面波素子
WO2004070946A1 (ja) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP2005150915A (ja) * 2003-11-12 2005-06-09 Fujitsu Media Device Kk 弾性境界波デバイス及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830217A (ja) 1981-08-17 1983-02-22 Hitachi Ltd 弾性波装置
DE4132309A1 (de) 1991-09-27 1993-04-01 Siemens Ag Stoneleywellen-bauteil mit nicht-reflektierenden interdigitalwandlern
US5923231A (en) * 1994-08-05 1999-07-13 Kinseki Limited Surface acoustic wave device with an electrode insulating film and method for fabricating the same
US5838089A (en) * 1997-02-18 1998-11-17 Kobe Steel Usa Inc. Acoustic wave devices on diamond with an interlayer
US6566983B2 (en) * 2000-09-02 2003-05-20 Lg Electronics Inc. Saw filter using a carbon nanotube and method for manufacturing the same
CN100576738C (zh) * 2002-04-15 2009-12-30 松下电器产业株式会社 表面声波器件及利用其的移动通信设备和传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051011A1 (fr) * 1997-05-08 1998-11-12 Kabushiki Kaisha Toshiba Dispositif a ondes limites elastiques et son procede de fabrication
WO1998052279A1 (fr) * 1997-05-12 1998-11-19 Hitachi, Ltd. Dispositif a onde elastique
JP2002026685A (ja) * 2000-07-07 2002-01-25 Murata Mfg Co Ltd 弾性表面波素子
WO2004070946A1 (ja) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. 弾性境界波装置
JP2005150915A (ja) * 2003-11-12 2005-06-09 Fujitsu Media Device Kk 弾性境界波デバイス及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876020B2 (en) 2007-03-06 2011-01-25 Murata Manufacturing Co., Ltd. Boundary acoustic wave device including idt electrodes including a plurality of conductive layers with different densities
JP2009088730A (ja) * 2007-09-28 2009-04-23 Samsung Electronics Co Ltd 弾性境界波装置
WO2009133655A1 (ja) * 2008-04-30 2009-11-05 株式会社村田製作所 弾性境界波装置
JP5141763B2 (ja) * 2008-04-30 2013-02-13 株式会社村田製作所 弾性境界波装置
US8436510B2 (en) 2008-04-30 2013-05-07 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2011087282A (ja) * 2009-09-15 2011-04-28 Murata Mfg Co Ltd 弾性境界波フィルタ及びそれを備える分波器
WO2011049060A1 (ja) * 2009-10-19 2011-04-28 株式会社村田製作所 弾性表面波装置
US8373329B2 (en) 2009-10-19 2013-02-12 Murata Manufacturing Co., Ltd. Surface acoustic wave device

Also Published As

Publication number Publication date
US7456544B2 (en) 2008-11-25
US20070159026A1 (en) 2007-07-12
JP2008235950A (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
WO2006126327A1 (ja) 弾性境界波装置
JP4178328B2 (ja) 弾性境界波装置
JP4466655B2 (ja) 弾性境界波装置
JP4483785B2 (ja) 弾性境界波装置
JP4715922B2 (ja) 弾性境界波装置
JP5187444B2 (ja) 弾性表面波装置
JP4811516B2 (ja) 弾性境界波装置
WO2010016192A1 (ja) 弾性波装置
JP4968334B2 (ja) 弾性表面波装置
WO2009139108A1 (ja) 弾性境界波装置
JPWO2005086345A1 (ja) 弾性境界波装置
WO2010116783A1 (ja) 弾性波装置
JP5218566B2 (ja) 弾性境界波装置
JP2012169760A (ja) 弾性表面波装置
JP2012129735A (ja) 弾性表面波装置及び磁気センサ
TW202310459A (zh) 彈性波裝置
JP2008187512A (ja) 弾性境界波装置
JP2008187513A (ja) 弾性境界波装置
JPWO2008093532A1 (ja) 弾性境界波装置
JPWO2008093484A1 (ja) 弾性境界波装置
JPWO2008093509A1 (ja) 弾性境界波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11714840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11714840

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP