WO2010137648A1 - ラダー型フィルタ及び弾性波共振子 - Google Patents

ラダー型フィルタ及び弾性波共振子 Download PDF

Info

Publication number
WO2010137648A1
WO2010137648A1 PCT/JP2010/058991 JP2010058991W WO2010137648A1 WO 2010137648 A1 WO2010137648 A1 WO 2010137648A1 JP 2010058991 W JP2010058991 W JP 2010058991W WO 2010137648 A1 WO2010137648 A1 WO 2010137648A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
aspect ratio
series arm
acoustic wave
idt electrode
Prior art date
Application number
PCT/JP2010/058991
Other languages
English (en)
French (fr)
Inventor
永二 藤森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011516051A priority Critical patent/JP5273247B2/ja
Publication of WO2010137648A1 publication Critical patent/WO2010137648A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to a ladder type filter and an acoustic wave resonator using boundary acoustic waves and surface acoustic waves, and more particularly to a ladder type filter and an acoustic wave resonator having IDT electrodes subjected to cross width weighting.
  • Patent Document 1 discloses an example of a surface acoustic wave filter device having this type of ladder circuit configuration.
  • the surface acoustic wave filter device 1001 described in Patent Document 1 has a series arm that connects an input terminal 1002 and an output terminal 1003.
  • a plurality of series arm resonators 1004 are arranged on this series arm.
  • a plurality of parallel arms are formed so as to connect the series arm and the ground potential.
  • a parallel arm resonator 1005 is disposed on each parallel arm.
  • cross width weighting is applied to the IDT electrode. More specifically, the cross width is maximum at the center of the IDT electrode in the surface acoustic wave propagation direction, and the rhombus is formed so that the cross width gradually decreases from the portion where the cross width is maximum toward both sides of the IDT electrode. Weighting is applied. It is said that the ripple on the low frequency side of the pass band can be suppressed by this weighting.
  • the surface acoustic wave filter device and the acoustic wave resonator downsizing is strongly demanded as in other electronic components.
  • the aspect ratio of the IDT electrode is decreased, the acoustic wave resonator and the ladder filter using the elastic wave resonator can be reduced in size.
  • the object of the present invention is to reduce the size in view of the above-described state of the prior art, and to prevent the deterioration of characteristics in the vicinity of the anti-resonance frequency of the used acoustic wave resonator. It is an object of the present invention to provide a ladder filter capable of improving characteristics and an elastic wave resonator in which characteristics are hardly deteriorated in the vicinity of an antiresonance frequency even when downsizing is advanced.
  • the series arm resonator and the parallel arm resonator are each formed of an elastic wave resonator having an IDT electrode, and at least one IDT electrode of the series arm resonator has a maximum value of the crossing width in the elastic wave propagation direction.
  • a ladder-type filter that is weighted so that two appear and the IDT electrodes of at least one of the parallel arm resonators are weighted so that one maximum value of the crossing width appears in the elastic wave propagation direction Is provided.
  • the aspect ratio of all series arm resonators is 0.20 or more and 0.30 or less, and the aspect ratio of all parallel arm resonators is 0.30 or more. In this case, even when downsizing is further advanced, the insertion loss in the high frequency region within the passband can be further reduced.
  • the serial arm resonator disposed in the series arm connecting the input end and the output end, and the parallel disposed so as to connect the series arm and the ground potential.
  • the cross widths are weighted so that three maximum values of the cross width appear in the wave propagation direction, and at least one IDT electrode of the parallel arm resonator shows one maximum value of the cross width in the elastic wave propagation direction.
  • a ladder filter is provided that is cross-weighted.
  • the aspect ratio in the at least one series arm resonator in which three maximum values appear, is 0.10 or more and 0.20 or less. In at least one parallel arm resonator, the aspect ratio is 0.30 or more. In this case, it is possible to further reduce the size of the series arm resonator and to more effectively suppress the deterioration of the insertion loss on the high passband side.
  • the aspect ratio of all series arm resonators is 0.10 or more and 0.20 or less, and the aspect ratio of all parallel arm resonators is 0.30 or more. Thereby, the insertion loss in the high frequency region in the pass band can be further reduced.
  • the elastic wave resonator is a boundary acoustic wave resonator.
  • the size can be further reduced.
  • An elastic wave resonator includes a piezoelectric substrate and an IDT electrode formed on the piezoelectric substrate, and the IDT electrode has n (n is a natural number) cross width maximum values in the elastic wave propagation direction.
  • a boundary acoustic wave is used as the elastic wave, thereby forming the boundary acoustic wave resonator.
  • a package having a cavity is not required, it is possible to further downsize the acoustic wave resonator and further downsize the electronic component on which the acoustic wave resonator is mounted.
  • the series arm resonator has an IDT electrode having two cross width maximum values in the elastic wave propagation direction, and the parallel arm resonator has one aspect ratio cross width maximum value. Since the IDT electrode is provided, it is difficult for the characteristics of the series arm resonator and the parallel arm resonator to deteriorate in the vicinity of the antiresonance frequency. Accordingly, not only can the aspect ratio be reduced to reduce the size, but also the insertion loss in the high frequency region within the passband of the ladder filter can be reduced, and good filter characteristics can be obtained.
  • the aspect ratio is in the specific range according to the number of poles having the maximum cross width in the acoustic wave propagation direction, so that the resistance value at the anti-resonance frequency can be increased. And deterioration of characteristics at the anti-resonance frequency can be suppressed. Therefore, it is possible to provide an elastic wave resonator that is small in size and has excellent characteristics near the antiresonance frequency.
  • FIG. 1 is a schematic plan view for explaining an electrode structure of a ladder filter according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing attenuation frequency characteristics of a ladder filter according to an embodiment of the present invention and a ladder filter of a comparative example prepared for comparison.
  • 3A and 3B are a schematic plan view showing an electrode structure of an acoustic wave resonator used as a parallel arm resonator in the ladder filter according to the embodiment of the present invention, and the acoustic wave resonator. It is typical front sectional drawing of.
  • FIG. 4 is a schematic plan view for explaining the aspect ratio of the IDT electrode of the acoustic wave resonator according to the present invention.
  • FIG. 4 is a schematic plan view for explaining the aspect ratio of the IDT electrode of the acoustic wave resonator according to the present invention.
  • FIG. 8 is a schematic plan view showing an electrode structure of an acoustic wave resonator used as a series arm resonator in one embodiment of the present invention.
  • FIG. 13 is a schematic circuit diagram illustrating a circuit configuration of a ladder filter described in the related art.
  • FIG. 1 is a schematic plan view showing an electrode structure of a ladder filter according to an embodiment of the present invention.
  • the ladder filter 1 has an input terminal 2 and an output terminal 3.
  • a plurality of series arm resonators S 1 to S 9 are arranged on the series arm connecting the input terminal 2 and the output terminal 3.
  • the series arm resonators S1 to S9 are connected to each other in series.
  • Each of the series arm resonators S1 to S9 is a boundary acoustic wave resonator having the illustrated electrode structure.
  • the series arm resonator S1 will be described as a representative.
  • the series arm resonator S1 includes an IDT electrode 4 and reflectors 5 and 6 disposed on both sides of the IDT electrode 4 in the elastic wave propagation direction.
  • the other series arm resonators S2 to S9 also have the same electrode structure.
  • the IDT electrode 4 and the reflectors 5 and 6 are formed on a piezoelectric substrate (not shown).
  • a dielectric layer made of silicon oxide is formed so as to cover the piezoelectric substrate.
  • the electrode structure is formed at the interface between the piezoelectric substrate and the dielectric layer, thereby forming a boundary acoustic wave resonator.
  • boundary acoustic wave resonator The specific structure of the boundary acoustic wave resonator will be described in more detail when explaining the parallel arm resonator.
  • the parallel arm resonator P1 is disposed on the parallel arm extending between the connection point 7 between the series arm resonator S3 and the series arm resonator S4 and the ground potential.
  • the parallel arm resonator P2 is disposed on the parallel arm extending between the connection point 8 between the series arm resonator S5 and the series arm resonator S6 and the ground potential.
  • the parallel arm resonator P3 is connected between the connection point 9 between the series arm resonator S9 and the output terminal 3 and the ground potential, that is, to the output terminal 3.
  • the parallel arm resonator P1 will be described as a representative.
  • the parallel arm resonator P1 includes a 1-port elastic wave having an IDT electrode 10 and reflectors 11 and 12 arranged on both sides of the IDT electrode 10 in the elastic wave propagation direction. It is a resonator.
  • the parallel arm resonator P1 will be described in more detail with reference to FIGS. 3 (a) and 3 (b).
  • An IDT electrode 10 and reflectors 11 and 12 are formed on the piezoelectric substrate 13.
  • a dielectric layer 14 is formed so as to cover the IDT electrode 10 and the reflectors 11 and 12.
  • the piezoelectric substrate 13 is made of a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 .
  • the piezoelectric substrate 13 may be formed of piezoelectric ceramics such as PZT.
  • the IDT electrode 10 and the reflectors 11 and 12 are made of a metal such as Al, Ag, Cu, W, Ta, Au, Pt, or an alloy mainly composed of these metals.
  • the IDT electrode 10 and the reflectors 11 and 12 may be formed of a laminated metal film formed by laminating a plurality of metal films.
  • the dielectric layer 14 is formed of silicon oxide in this embodiment, but may be formed of other dielectric materials such as silicon nitride, silicon oxynitride, aluminum oxide, zirconium oxide, diamond-like carbon (DLC). Good.
  • the material and thickness of the dielectric layer 14 and the material constituting the piezoelectric substrate 13 are such that boundary acoustic waves are excited when the IDT electrode 10 is excited at the interface between the piezoelectric substrate 13 and the dielectric layer 14. Is selected. That is, the parallel arm resonator P1 is a boundary acoustic wave resonator having the above structure.
  • the parallel arm resonators P2 and P3 are configured similarly to the parallel arm resonator P1.
  • the series arm resonator S1 also has a structure in which the IDT electrode 4 and the reflectors 5 and 6 are similarly arranged at the interface between the piezoelectric substrate and the dielectric layer. Therefore, the description with reference to FIG. 3B is used for the description of the structure of the series arm resonator S1, and the detailed description of the series arm resonator S1 is omitted.
  • the ladder filter 1 has series arm resonators S1 to S9 made of 1-port boundary acoustic wave resonators and parallel arm resonators P1 to P3 made of 1-port boundary acoustic wave resonators.
  • a plurality of series arm resonators S1 to S9 and a plurality of parallel arm resonators P1 to P3 are provided, but only one series arm resonator and one parallel arm resonator are used. May be.
  • the ladder filter 1 is characterized in that, in the series arm resonators S1 to S9, the IDT electrode 4 is weighted so that two maximum values of the cross width appear in the elastic wave propagation direction, and the parallel arm resonator.
  • the IDT electrodes 10 of P1 to P3 are subjected to the cross width weighting so that one maximum value of the cross width appears in the elastic wave propagation direction.
  • FIG. 2 is a diagram showing the attenuation frequency characteristics of the ladder type filter 1 of the present embodiment and the attenuation frequency characteristics of the ladder type filter prepared for comparison.
  • a solid line shows the result of the embodiment, and a broken line shows the result of the comparative example.
  • This frequency characteristic is a characteristic when the piezoelectric substrate 13, the dielectric layer 14, the IDT electrode 4, the reflectors 5 and 6, the IDT electrode 10 and the reflectors 11 and 12 are formed with the following specifications.
  • Piezoelectric substrate 13 made of LiNbO 3 .
  • Wavelength ⁇ determined by the pitch of electrode fingers 2.0 ⁇ m.
  • each of the series arm resonators S1 to S9 has a so-called single rhombus having only one maximum cross width in the elastic wave propagation direction, like the parallel arm resonator P1. Except for the use of weighted IDT electrodes, this was the same as in the above embodiment.
  • the specification of the IDT electrode of this series arm resonator was as follows.
  • IDT electrode of series arm resonator of comparative example The number of electrode materials and electrode fingers is the same as that of the series arm resonator S1 of the embodiment.
  • Maximum crossover width 33.0 ⁇ .
  • the aspect ratio means the ratio of the “maximum cross width” to the “log number of electrode fingers” in the IDT electrode to which so-called rhombus weighting is applied as described above.
  • the IDT electrode 10 has a maximum crossover value in the elastic wave propagation direction so that one maximum appears. Weighting is performed so that the crossing width gradually decreases from the width portion toward one end side and the other end side of the IDT electrode 10. Therefore, the shape indicated by the envelopes A and B is a substantially rhombus shape. Such weighting is referred to as rhombus weighting in this specification.
  • the maximum cross width portion is located at the center of the IDT electrode. That is, the one side and the other side are symmetrical with respect to the maximum crossing width portion.
  • the envelope is a virtual line connecting the tips of a plurality of electrode fingers connected to the same potential of the IDT electrode 10.
  • a region surrounded by the envelope A and the envelope B is a crossing region, and a region where elastic waves are actively excited.
  • FIGS. 5 to 7 show the aspect ratios of an elastic wave resonator weighted with one rhombus, for example, an elastic wave resonator such as the parallel arm resonator P1 shown in FIGS. 3 (a) and 3 (b). It is a figure which shows the relationship between a certain crossing width / logarithm, resonance resistance, antiresonance resistance, and impedance ratio, respectively. 5 to 7 show the results when the weighting ratio is 10% and when the weighting ratio is 30%.
  • the weighting ratio is a value defined by the minimum crossing width value / maximum crossing width value.
  • the anti-resonance resistance is significantly smaller when the (crossover width / logarithm), that is, the aspect ratio is less than 0.30, compared with the case of 0.30 or more.
  • the aspect ratio is 0.30 or more
  • the antiresonance resistance is as high as 63 dB or more even if the cross width / logarithm is increased.
  • the anti-resonance resistance does not change greatly depending on the value of the cross width / logarithm.
  • the impedance ratio is less than 0.30 when the crossing width / logarithm of the IDT electrode is less than 0.30, especially compared with the case of 0.30 to 0.60. You can see that it ’s small.
  • the anti-resonance resistance can be sufficiently increased by setting the cross width / logarithm to 0.30 or more. It can be seen that the characteristics near the antiresonance frequency can be improved.
  • the elastic wave resonators weighted with one rhombus are used as the parallel arm resonators P1 to P3 described above. Therefore, when the antiresonance frequency is sufficiently high, the insertion loss near the center of the passband can be sufficiently reduced.
  • FIG. 8 is a schematic plan view showing an enlarged electrode structure of the series arm resonator S1.
  • the rhombus is weighted so that the IDT electrodes 4 are cross-width-weighted so that the two rhombuses are continuous along the elastic wave propagation direction. Therefore, in the elastic wave propagation direction, there are first and second portions X and Y in which the crossing width has a maximum value.
  • the first rhombus weighted portion X is located on the reflector 5 side, and the second rhombus weighted portion Y is located on the reflector 6 side.
  • the first rhombic weighted portion and the second rhombic weighted portion are connected at the center.
  • the portion where the cross width is the maximum value is located at the center.
  • the crossing width gradually decreases from the maximum portion toward the reflector 5 and toward the weighting portion of the second rhombus.
  • the cross width regions on both sides are formed symmetrically via the cross width maximum portion.
  • the second rhombic weighted portion Y is similarly configured.
  • FIG. 9 to 11 show the aspect ratio of the acoustic wave resonator having the first and second rhombic weighted portions X and Y shown in FIG. 8, that is, (cross width / logarithm), resonance resistance, anti-resonance resistance, and It is a figure which shows the relationship with an impedance ratio, respectively. Again, the results are shown for a weighting ratio of 10% and a weighting ratio of 30%.
  • the anti-resonance resistance is as low as 60 dB or less when the cross width / logarithm is less than 0.20, and the antiresonance resistance is significantly lower as the cross width / logarithm becomes smaller.
  • the anti-resonance resistance is higher than 60 dB when the crossing width / logarithm is 0.20 or more, and is particularly high as 62 dB or more when the crossing width / logarithm is 0.20 or more and 0.47 or less.
  • the impedance ratio is as high as 57.7 dB when the cross width / logarithm is 0.20 or more and 0.30 or less.
  • the elastic wave resonator is used as the series arm resonators S1 to S9 in the ladder filter 1. Therefore, the resonance frequency is located in the pass band, and the anti-resonance frequency forms an attenuation pole on the high side of the pass band. Therefore, the higher the anti-resonance resistance is, the more preferable, and the higher the impedance ratio is desirable. Therefore, it is understood that the cross width / logarithm, that is, the aspect ratio is preferably 0.20 or more and 0.30 or less in order to obtain good filter characteristics.
  • the reason why the insertion loss is reduced in the high frequency side frequency band within the pass band is that, as described above, the parallel arm resonators P1 to P3 weight one diamond.
  • the serial arm resonators S1 to S9 have IDT electrodes 4 having first and second rhombic weighted portions, and the aspect ratio is 0. 52.
  • the aspect ratio is 0.352. This is because the value is 282.
  • the characteristics of the parallel arm resonators P1 to P3 and the series arm resonators S1 to S9 in the vicinity of the antiresonance frequency are improved.
  • the series arm resonators S1 to S9 are connected in series with each other at the series arm connecting the input terminal 2 and the output terminal 3. Accordingly, in the series arm resonators S1 to S9, it is possible to further reduce the size by reducing the maximum crossing width, in other words, by reducing the aspect ratio.
  • the aspect ratio of the series arm resonators S1 to S9 is as small as 0.282, and thus the size reduction can be promoted. Moreover, as described above, it is possible to improve the insertion loss in the passband.
  • the aspect ratio of the IDT electrode 4 is 0.282, and in the parallel arm resonators P1 to P3, the aspect ratio of the IDT electrode 10 is 0.352.
  • the aspect ratio of the series arm resonators S1 to S9 is in the range of 0.20 or more and 0.30 or less, and for the parallel arm resonators P1 to P3, If the value is 0.30 or more, it is possible to improve the filter characteristics while simultaneously reducing the size.
  • the aspect ratio of all the series arm resonators S1 to S9 is 0.282.
  • the aspect ratio is 0.20 or more,. 30 or less, and in the parallel arm resonators P1 to P3, as long as the aspect ratio of the at least one parallel arm resonator is 0.30 or more, it is inferior to the above embodiment, but the filter is similarly reduced in size while being reduced in size.
  • the characteristics can be improved. According to the experiment by the present inventor, except that the aspect ratio of one series arm resonator among the plurality of series arm resonators S1 to S9 is changed from 0.40 to 0.28 from the configuration of the above embodiment.
  • the insertion loss at 1847 MHz was reduced to 0.02 dB at 1847 MHz, which is a high frequency side frequency band in the pass band, as compared with the comparative example described above. It has been confirmed that it can be improved. Moreover, when it is the same as that of the said embodiment except having changed only the aspect ratio of one parallel arm resonator P1 with respect to the said embodiment from 0.25 to 0.352, compared with the comparative example mentioned above. It has been confirmed that the insertion loss at 1847 MHz can be reduced by 0.04 dB.
  • the aspect ratio is 0.20 or more and 0.30 or less in all series arm resonators S1 to S9, and the aspect ratio is 0.30 or more in all parallel arm resonators P1 to P3. Most preferably.
  • the parallel arm resonators P1 to P3 have IDT electrodes that are weighted so as to have the one rhombus weighted portion.
  • the IDT electrode is weighted so as to have a child or two diamond-shaped weighted portions, miniaturization can be promoted as in the above embodiment. That is, as described above, since the downsizing of the series arm resonator greatly contributes to the downsizing of the ladder filter, the series arm resonator has the first and second rhombic weighted portions, regardless of the aspect ratio.
  • the anti-resonance characteristics are unlikely to deteriorate. Therefore, it is possible to reduce the insertion loss in the passband by reducing the size.
  • the acoustic wave resonator itself used as the above-described parallel arm resonator and series arm resonator can be downsized and the anti-resonance characteristics can be improved.
  • the aspect ratio is 0.20 or more and 0.30 or less
  • the number of the diamond-shaped weighted portions in the IDT electrode may be three.
  • the aspect ratio needs to be 0.10 or more and 0.20 or less. This will be described with reference to FIGS. 12 (a) to 12 (c).
  • FIG. 12A shows an electrode structure of an acoustic wave resonator having the IDT electrode 101 provided with the one diamond-shaped weighted portion
  • FIG. 12B shows the first and second diamond-shaped weighted portions.
  • It is a schematic diagram which shows the electrode structure of the elastic wave resonator which has the IDT electrode 102 provided.
  • the IDT electrode 102 is schematically shown by being divided into two IDT electrode portions 102a and 102b in the elastic wave propagation direction.
  • FIG. 12C schematically shows an electrode structure of an acoustic wave resonator having an IDT electrode 103 in which three maximum values of the crossing width exist in the acoustic wave propagation direction.
  • the structure of the IDT electrode 103 is schematically shown by being divided into three IDT electrode portions 103a to 103c each having one diamond-shaped weighted portion.
  • the anti-resonance resistance can be sufficiently increased if the aspect ratio is greater than 0.3.
  • the structure of FIG. 12C corresponds to a structure in which three IDT electrodes of FIG. 12A are connected in parallel. Therefore, if S / 3P ⁇ 0.10, the anti-resonance resistance is increased. I think it can be done.
  • the aspect ratio should be 0.10 or more.
  • the aspect ratio determined by S / (n ⁇ P) ⁇ 0.3 / n may be set.
  • the aspect ratio is set to 0.10 or more and 0.20 or less, and in at least one parallel arm resonator, the aspect ratio is set to 0.30 or more.
  • the insertion loss in the high frequency region in the pass band can be further reduced, as in the above-described embodiment.
  • the aspect ratio of all series arm resonators is set to 0.10 or more and 0.20 or less, and the aspect ratio of all parallel arm resonators is set.
  • the present invention may be a surface acoustic wave resonator instead of the boundary acoustic wave resonator. That is, in the present invention, the elastic wave is not limited to the boundary acoustic wave, and a surface acoustic wave may be used.
  • a surface acoustic wave resonator an IDT electrode may be formed on a piezoelectric substrate, and a dielectric layer is not necessarily required. Of course, a dielectric layer may be provided. In this case, the thickness and material of the dielectric layer are selected, and the surface acoustic wave is efficiently excited, so that the surface acoustic wave resonator can be provided.
  • the invention can be applied.
  • the surface acoustic wave resonator may be a surface acoustic wave resonator.
  • both the boundary acoustic wave resonator and the surface acoustic wave resonator may be used as the acoustic wave resonator.
  • the ladder filter of the present invention may be used as a single filter, or may be used on the DPX transmission side or reception side.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 小型化を進め、しかも通過帯域内の挿入損失を小さくすることができ、フィルタ特性を改善することが可能であるラダー型フィルタを提供する。 入力端子2と出力端子3とを結ぶ直列腕に、直列腕共振子S1~S9が配置されており、直列腕とグラウンド電位とを結ぶように配置された並列腕に並列腕共振子P1~P3が配置されており、直列腕共振子S1~S9及び並列腕共振子P1~P3がIDT電極を有する弾性波共振子からなり、直列腕共振子S1~S9のIDT電極4が、弾性波伝搬方向において交叉幅の極大値が2つ現れるように交叉幅重み付けされており、並列腕共振子P1~P3のIDT電極10が弾性波伝搬方向において交叉幅の極大値1つ現れるように交叉幅重み付けされている、ラダー型フィルタ1。

Description

ラダー型フィルタ及び弾性波共振子
 本発明は、弾性境界波や弾性表面波を利用したラダー型フィルタ及び弾性波共振子に関し、より詳細には、交叉幅重み付けが施されたIDT電極を有するラダー型フィルタ及び弾性波共振子に関する。
 従来、例えば携帯電話機のRF段の帯域フィルタなどに、ラダー型回路構成を有する弾性表面波フィルタ装置が用いられている。下記の特許文献1には、この種のラダー型回路構成を有する弾性表面波フィルタ装置の一例が開示されている。図13に示すように、特許文献1に記載の弾性表面波フィルタ装置1001は、入力端子1002と出力端子1003とを結ぶ直列腕を有する。この直列腕に、複数の直列腕共振子1004が配置されている。また、直列腕とグラウンド電位とを結ぶように複数の並列腕が形成されている。各並列腕に並列腕共振子1005が配置されている。ここでは、並列腕共振子1005において、IDT電極に交叉幅重み付けが施されている。より具体的には、弾性表面波伝搬方向においてIDT電極中央において交叉幅が最大とされており、交叉幅が最大の部分からIDT電極の両側に向かって交叉幅が順次小さくなるように、菱形の重み付けが施されている。この重み付けにより、通過帯域低周波数側のリップルを抑制することができるとされている。
特開平9-246911号公報
 弾性表面波フィルタ装置や弾性波共振子においても、他の電子部品と同様に小型化が強く求められている。この場合、IDT電極の上記縦横比を小さくすれば、弾性波共振子及び弾性波共振子を用いたラダー型フィルタの小型化を進めることができる。
 しかしながら、特許文献1に記載の弾性表面波フィルタ装置において、縦横比を小さくすると、反共振周波数における抵抗値が低くなり、反共振周波数付近の周波数特性が劣化することがわかった。このため、ラダー型回路構成の弾性表面波フィルタ装置1001において小型化を進めた場合、通過帯域内における挿入損失が劣化することがわかった。
 本発明の目的は、上述した従来技術の現状に鑑み、小型化を進めることができ、しかも用いられている弾性波共振子の反共振周波数付近における特性の劣化が生じ難く、よって小型化及びフィルタ特性の改善を図ることができるラダー型フィルタ、並びに小型化を進めた場合であっても反共振周波数付近における特性の劣化が生じ難い弾性波共振子を提供することにある。
 本発明によれば、入力端と出力端とを結ぶ直列腕に配置された直列腕共振子と、直列腕とグラウンド電位とを結ぶように配置された並列腕に配置された並列腕共振子とを備え、前記直列腕共振子及び前記並列腕共振子がIDT電極を有する弾性波共振子からなり、少なくとも1つの前記直列腕共振子のIDT電極が、弾性波伝搬方向において交叉幅の極大値が2つ現れるように交叉幅重み付けされており、少なくとも1つの前記並列腕共振子のIDT電極が弾性波伝搬方向において交叉幅の極大値が1つ現れるように交叉幅重み付けされている、ラダー型フィルタが提供される。
 本発明に係るラダー型フィルタのある特定の局面では、前記直列腕共振子及び並列腕共振子がそれぞれ複数設けられており、前記IDT電極と励振される弾性波の波長をλとしたときに、IDT電極の最大交叉幅をSλ、電極指の対数をPとしたとき、S/P=Rで定義される縦横比が、少なくとも1つの直列腕共振子において、0.20以上、0.30以下とされており、少なくとも1つの並列腕共振子において、縦横比が0.30以上とされている。この場合には、直列腕共振子の小型化を進め、かつ通過帯域内高域側における挿入損失の劣化をより効果的に抑制することができる。
 より好ましくは、全ての直列腕共振子の前記縦横比が0.20以上、0.30以下であり、全ての並列腕共振子の前記縦横比が0.30以上とされる。この場合には、小型化をより一層進めた場合であっても、通過帯域内の高域側周波数域における挿入損失をより一層小さくすることができる。
 本発明に係るラダー型フィルタの別の広い局面によれば、入力端と出力端とを結ぶ直列腕に配置された直列腕共振子と、直列腕とグラウンド電位とを結ぶように配置された並列腕に配置された並列腕共振子とを備え、前記直列腕共振子及び前記並列腕共振子がIDT電極を有する弾性波共振子からなり、少なくとも1つの前記直列腕共振子のIDT電極が、弾性波伝搬方向において交叉幅の極大値が3つ現れるように交叉幅重み付けされており、少なくとも1つの前記並列腕共振子のIDT電極が弾性波伝搬方向において交叉幅の極大値が一つ現れるように交叉幅重み付けされている、ラダー型フィルタが提供される。
 また、本発明に係るラダー型フィルタのさらに他の特定の局面では、極大値が3つ現れる、少なくとも1つの前記直列腕共振子において、前記縦横比が、0.10以上、0.20以下とされており、少なくとも1つの並列腕共振子において、縦横比が0.30以上とされている。この場合には、直列腕共振子の小型化を進め、かつ通過帯域高域側における挿入損失の劣化をより効果的に抑制することができる。この場合、好ましくは、全ての直列腕共振子の前記縦横比が0.10以上、0.20以下であり、全ての並列腕共振子の前記縦横比が0.30以上とされる。それによって、通過帯域内の高周波数域における挿入損失をより一層小さくすることができる。
 本発明に係るラダー型フィルタの別の特定の局面では、上記弾性波共振子が弾性境界波共振子である。この場合には、空洞を有するパッケージを必要としないので、小型化をより一層進めることができる。
 本発明に係る弾性波共振子は、圧電基板と、前記圧電基板上に形成されたIDT電極とを備え、前記IDT電極が、弾性波伝搬方向においてn個(nは自然数)の交叉幅極大値が現れるように交叉幅重み付けされており、n=1の場合、縦横比が0.30以上でなり、n=2のとき、縦横比が0.20以上、0.30以下であり、n=3の場合には、上記縦横比が0.10以上、0.20以下とされている。
 本発明に係る弾性波共振子のある特定の局面では、弾性波として弾性境界波が用いられ、それによって弾性境界波共振子が構成される。この場合、空洞を有するパッケージを必要としないので、弾性波共振子の小型化及び弾性波共振子が実装される電子部品のより一層の小型化を進めることができる。
 本発明に係るラダー型フィルタでは、直列腕共振子が弾性波伝搬方向において交叉幅極大値が2個有するIDT電極を有し、並列腕共振子が上記縦横比交叉幅極大値が1個であるIDT電極を有するため、直列腕共振子及び並列腕共振子の反共振周波数付近の特性の劣化が生じ難い。従って、縦横比を小さくして小型化を進めることができるだけでなく、ラダー型フィルタの通過帯域内の高周波側領域における挿入損失を小さくすることができ、良好なフィルタ特性を得ることができる。
 本発明に係る弾性波共振子では、弾性波伝搬方向における交叉幅が最大となる極の数に応じ、縦横比が上記特定の範囲とされているため、反共振周波数における抵抗値を高めることができ、反共振周波数における特性の劣化を抑制することができる。従って、小型であり、反共振周波数付近の特性が良好な弾性波共振子を提供することが可能となる。
図1は、本発明の一実施形態に係るラダー型フィルタの電極構造を説明するための模式的平面図である。 図2は、本発明の一実施形態に係るラダー型フィルタ及び比較のために用意した比較例のラダー型フィルタの減衰量周波数特性を示す図である。 図3(a)及び(b)は、本発明の一実施形態のラダー型フィルタにおいて並列腕共振子として用いられている弾性波共振子の電極構造を示す模式的平面図及び該弾性波共振子の模式的正面断面図である。 図4は、本発明において弾性波共振子のIDT電極の縦横比を説明するための模式的平面図である。 図5は、交叉幅の極大値が1つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、共振抵抗との関係を示す図である。 図6は、交叉幅の極大値が1つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、反共振抵抗との関係を示す図である。 図7は、交叉幅の極大値が1つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、インピーダンス比との関係を示す図である。 図8は、本発明の一実施形態において直列腕共振子として用いられている弾性波共振子の電極構造を示す模式的平面図である。 図9は、交叉幅の極大値が2つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、共振抵抗との関係を示す図である。 図10は、交叉幅の極大値が2つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、反共振抵抗との関係を示す図である。 図11は、交叉幅の極大値が2つ現れるように重み付けされた弾性波共振子における縦横比=交叉幅/対数と、インピーダンス比との関係を示す図である。 図12(a)~(c)は、1つの菱形の重み付け部分を有するIDT電極、2つの菱形の重み付け部分を有するIDT電極及び3つの菱形の重み付け部分を有するIDT電極における最大交叉幅/対数の大きさと、反共振抵抗との関係を説明するための各模式的平面図である。 図13は、従来技術に記載のラダー型フィルタの回路構成を示す模式的回路図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の一実施形態に係るラダー型フィルタの電極構造を示す模式的平面図である。
 ラダー型フィルタ1は、入力端子2と出力端子3とを有する。入力端子2と出力端子3とを結ぶ直列腕に、複数の直列腕共振子S1~S9が配置されている。直列腕共振子S1~S9は互いに直列に接続されている。
 直列腕共振子S1~S9は、それぞれ、図示の電極構造を有する弾性境界波共振子からなる。直列腕共振子S1を代表して説明すると、IDT電極4と、IDT電極4の弾性波伝搬方向両側に配置された反射器5,6とを有する。他の直列腕共振子S2~S9もまた、同様の電極構造を有する。
 上記IDT電極4及び反射器5,6は、図示しない圧電基板上に形成されている。また、該圧電基板を覆うように酸化珪素からなる誘電体層が形成されている。本実施形態では、圧電基板と誘電体層との界面に上記電極構造が形成されており、それによって弾性境界波共振子が構成されている。
 なお、弾性境界波共振子の具体的構造は、並列腕共振子の説明の際により詳細に説明する。
 他方、直列腕共振子S3と直列腕共振子S4との間の接続点7とグラウンド電位との間に延びる並列腕に、並列腕共振子P1が配置されている。同様に、直列腕共振子S5と直列腕共振子S6との間の接続点8とグラウンド電位との間に延びる並列腕に、並列腕共振子P2が配置されている。
 また、直列腕共振子S9と出力端子3との間の接続点9とグラウンド電位との間に、すなわち出力端子3に、並列腕共振子P3が接続されている。
 並列腕共振子P1を代表して説明すると、並列腕共振子P1は、IDT電極10と、IDT電極10の弾性波伝搬方向両側に配置された反射器11,12とを有する1ポート型弾性波共振子である。
 図3(a)及び(b)を参照して、この並列腕共振子P1をより詳細に説明する。圧電基板13上に、IDT電極10及び反射器11,12が形成されている。IDT電極10及び反射器11,12を覆うように誘電体層14が形成されている。
 圧電基板13は、本実施形態では、LiTaOまたはLiNbOなどの圧電単結晶からなる。圧電基板13は、PZTなどの圧電セラミックスにより形成されてもよい。
 IDT電極10及び反射器11,12は、Al、Ag、Cu、W、Ta、Au、Ptなどの金属もしくはこれらの金属を主体とする合金からなる。IDT電極10及び反射器11,12は、複数の金属膜を積層してなる積層金属膜により形成されてもよい。
 誘電体層14は、本実施形態では酸化珪素により形成されているが、窒化珪素、酸窒化珪素、酸化アルミニウム、酸化ジルコニウム、ダイアモンドライクカーボン(DLC)などの他の誘電体材料により形成されてもよい。
 誘電体層14の材料及び厚みと、圧電基板13を構成する材料とは、圧電基板13と誘電体層14との界面において、IDT電極10を励振した際に弾性境界波が励振されるように選択されている。すなわち、並列腕共振子P1は、上記構造を有する弾性境界波共振子である。
 並列腕共振子P2及びP3も、並列腕共振子P1と同様に構成されている。
 なお、前述したように、直列腕共振子S1も、同様に、圧電基板と誘電体層との界面にIDT電極4及び反射器5,6を配置した構造を有する。従って、図3(b)を参照した説明を、直列腕共振子S1の構造の説明に援用することにより、直列腕共振子S1の詳細な説明を省略することとする。
 よって、ラダー型フィルタ1は、1ポート型弾性境界波共振子からなる直列腕共振子S1~S9と、1ポート型弾性境界波共振子からなる並列腕共振子P1~P3とを有する。
 なお、本実施形態では、複数の直列腕共振子S1~S9及び複数の並列腕共振子P1~P3が設けられているが、1つの直列腕共振子及び1つの並列腕共振子のみが用いられてもよい。
 ラダー型フィルタ1の特徴は、直列腕共振子S1~S9において、IDT電極4が、弾性波伝搬方向において交叉幅の極大値が2個現れるように交叉幅重み付けされており、かつ並列腕共振子P1~P3のIDT電極10が弾性波伝搬方向において交叉幅の極大値が1つ現れるように交叉幅重み付けが施されていることにある。それにより、小型化を進めることができ、しかも通過帯域内の高域側周波数領域における損失を小さくすることが可能とされている。これを、図2を参照して説明する。
 図2は、本実施形態のラダー型フィルタ1の減衰量周波数特性と、比較のために用意したラダー型フィルタの減衰量周波数特性を示す図である。実線が実施形態の結果を示し、破線が比較例の結果を示す。
 なお、この周波数特性は、圧電基板13、誘電体層14、IDT電極4、反射器5,6、IDT電極10及び反射器11,12を以下の仕様で形成した場合の特性である。
 〔直列腕共振子S1~S9の仕様〕
 IDT電極4のピッチで定まる波長λは、1.9μmとした。圧電基板材料:LiNbO、誘電体層14:酸化珪素膜、厚み=0.63λ。
 IDT電極10:電極材料はPt。厚みは0.025λ。電極指の対数=117、最大交叉幅=33.0λ、縦横比=最大交叉幅/電極指の対数=0.282。
 反射器:電極材料はIDT電極4と同一。反射器の電極指の本数=21本、電極指ピッチ=λ。
 〔並列腕共振子P1~P3の仕様〕
 圧電基板13:LiNbOからなる。
 誘電体層14:酸化珪素膜、厚み0.60λ
 IDT電極10:電極材料=Pt、厚み=0.024λ。電極指のピッチで定まる波長λ=2.0μm。電極指の対数=82、最大交叉幅=28.9λ。縦横比=最大交叉幅/対数=0.352。
 反射器11,12:電極材料はIDT電極10と同一。電極指ピッチ=λ、電極指の本数=21本。
 なお、比較例のラダー型フィルタでは、直列腕共振子S1~S9のそれぞれを、並列腕共振子P1と同様に、交叉幅の極大値が弾性波伝搬方向に1つのみ有するいわゆる1つの菱形の重み付けが施されたIDT電極を用いたことを除いては、上記実施形態と同様とした。この直列腕共振子のIDT電極の仕様は以下の通りとした。
 比較例の直列腕共振子のIDT電極の仕様:電極材料及び電極指の本数は実施形態の直列腕共振子S1と同じとした。最大交叉幅=33.0λ。縦横比=最大交叉幅/電極指の対数=0.282。
 なお、本願発明において、縦横比とは、上記のように、いわゆる菱形の重み付けが施されているIDT電極において、「最大交叉幅」の「電極指の対数」に対する割合をいうものとする。図4に示すように、並列腕共振子P1を例に取ると、並列腕共振子P1では、IDT電極10において、弾性波伝搬方向において交叉幅の極大値が1つ現れるように、また最大交叉幅部分からIDT電極10の一端側及び他端側に向かって交叉幅が順次小さくなるように重み付けが施されている。従って、包絡線A及びBで示される形状が略菱形の形状となっている。このような重み付けを、本明細書においては、菱形の重み付けということとする。
 ここでは、最大交叉幅部分は、IDT電極の中心に位置している。すなわち、最大交叉幅部分を介して、一方側と他方側は対称な形状とされている。
 包絡線とは、IDT電極10の同電位に接続される複数本の電極指の先端を結ぶ仮想線である。この包絡線Aと包絡線Bとで囲まれた領域が交叉領域となり、弾性波が積極的に励振される領域となる。
 図2から明らかなように、実施形態によれば、比較例に比べて、通過帯域内の高域側周波数域、より具体的には、約1875~1920MHz付近において挿入損失を小さくすることが可能とされていることがわかる。すなわち、比較例に比べて、実施形態によれば、良好なフィルタ特性を得られることがわかる。
 しかも、直列腕共振子S1~S9が、上記のように、交叉幅の極大値が弾性波伝搬方向において2つ現れる。言い換えれば菱形の重み付けが弾性波伝搬方向において2つ連なるように重み付けされている。このため、同じ本数の電極指を有する比較例の直列腕共振子のIDT電極を用いた場合に比べて、小型化及び低抵抗化を図ることも可能である。この理由を、図5~図11を参照してより具体的に説明する。
 図5~図7は、1つの菱形の重み付けが施された弾性波共振子、例えば図3(a)及び(b)に示した並列腕共振子P1のような弾性波共振子における縦横比である交叉幅/対数と、共振抵抗、反共振抵抗及びインピーダンス比との関係をそれぞれ示す図である。図5~図7では、重み付け比が10%の場合と重み付け比30%の場合の結果が示されている。ここで、重み付け比とは、交叉幅最小値/交叉幅最大値、で定義される値である。
 図5から明らかなように、重み付け比が10%及び30%のいずれにおいても、共振抵抗は、縦横比=(交叉幅/対数)が大きくなるにつれ、直線的に高くなっていくことがわかる。
 これに対して、図6から明らかなように、反共振抵抗は、(交叉幅/対数)すなわち縦横比が0.30未満の場合には、0.30以上の場合に比べて著しく小さくなることがわかる。より具体的には、重み付け比が30%の場合及び10%の場合のいずれにおいても、縦横比が0.30未満では、反共振抵抗は59dB以下となり、縦横比が小さくなるにつれ、反共振抵抗は著しく小さくなっていくことがわかる。これに対して、縦横比が0.30以上すなわち交叉幅/対数が0.30以上では、交叉幅/対数が増大しても、反共振抵抗は、63dB以上と高くなっている。しかも、交叉幅/対数の値により、反共振抵抗は大きく変化しないことがわかる。
 また、図7に示されているように、インピーダンス比についてもIDT電極の交叉幅/対数が0.30未満では、0.30以上の場合比べ、特に0.30~0.60の場合に比べ、小さいことがわかる。
 従って、図5~図7から明らかなように、特に図6に明瞭に示されているように、交叉幅/対数を0.30以上とすることにより、反共振抵抗を十分に高くすることができ、反共振周波数付近の特性を高め得ることがわかる。
 また、交叉幅/対数は、あまり大きくなりすぎると電極抵抗が増加して無視できなくなってくるため、0.6以下とするのがよい。
 この1つの菱形の重み付けが施された弾性波共振子は、前述した並列腕共振子P1~P3として用いられている。従って、反共振周波数が十分高いことにより、通過帯域中央付近における挿入損失を十分に小さくすることができる。
 他方、図8は、上記直列腕共振子S1の電極構造を拡大して示す模式的平面図である。ここでは、菱形の重み付けは、包絡線C,Dで示すように、2つの菱形が弾性波伝搬方向に沿って連なるように、IDT電極4が交叉幅重み付けされている。従って、弾性波伝搬方向において、交叉幅が極大値を示す第1,第2の部分X,Yが存在する。
 第1の菱形の重み付け部分Xは、反射器5側に位置しており、第2の菱形の重み付け部分Yは反射器6側に位置している。
 IDT電極4の弾性波伝搬方向において中央において第1の菱形の重み付け部分と第2の菱形の重み付け部分とが連なっている。そして、第1,第2の菱形の重み付け部分では、それぞれの重み付け部分X、Yにおいて、中央に上記交叉幅が極大値である部分が位置している。第1の菱形の重み付け部分では、交叉幅が極大部分から反射器5側に行くにつれて、また第2の菱形の重み付け部分に向かうにつれて、交叉幅が順次小さくなっている。そして、菱形形状において交叉幅極大部分を介して、両側の交叉幅領域は対称に形成されている。第2の菱形の重み付け部分Yも同様に構成されている。
 図9~図11は、図8に示した第1,第2の菱形の重み付け部分X,Yを有する弾性波共振子の縦横比すなわち(交叉幅/対数)と、共振抵抗、反共振抵抗及びインピーダンス比との関係をそれぞれ示す図である。ここでも、重み付け比が10%の場合と、重み付け比が30%の場合との結果を示した。
 図9から明らかなように、図8に示した弾性波共振子においても、交叉幅/対数が増加するにつれ共振抵抗が直線的に高められていることがわかる。
 これに対して、図10から明らかなように、反共振抵抗については、交叉幅/対数が0.20未満では60dB以下と低く、また交叉幅/対数が小さくなるにつれ、反共振抵抗は著しく低くなっていることがわかる。また、交叉幅/対数が0.20以上では、反共振抵抗は60dBより高く、特に、交叉幅/対数が0.20以上、0.47以下では、62dB以上と高いことがわかる。
 他方、図11から明らかなように、インピーダンス比については、交叉幅/対数が0.20以上、0.30以下の場合、57.7dB以上と高いことがわかる。
 上記弾性波共振子は、ラダー型フィルタ1において直列腕共振子S1~S9として用いられているものである。従って、共振周波数が通過帯域内に位置され、反共振周波数は通過帯域高域側の減衰極を形成することとなる。従って、反共振抵抗は高ければ高いほど好ましく、またインピーダンス比についても大きい方が望ましい。よって、良好なフィルタ特性を得る上では、交叉幅/対数すなわち縦横比は、0.20以上、0.30以下とすることが望ましいことがわかる。
 本実施形態のラダー型フィルタ1において、通過帯域内の高周波側周波数域において、挿入損失が小さくされている理由は、上記のように、並列腕共振子P1~P3が、1つの菱形の重み付けを有する弾性波共振子からなり、縦横比が0.352であり、直列腕共振子S1~S9が第1,第2の菱形の重み付け部分を有するIDT電極4を有し、上記縦横比が0.282の値であることによる。それによって、図5~図11を参照して説明したように、並列腕共振子P1~P3及び直列腕共振子S1~S9の反共振周波数付近の特性が改善されている。特に、通過帯域内の高周波側の周波数域において挿入損失を十分に小さくすることが可能とされている。
 前述したように、特許文献1に記載の1つの菱形の重み付けが施された弾性波共振子を用いたラダー型回路構成の弾性表面波フィルタでは、小型化を進めた場合、通過帯域内における挿入損失が劣化することが分かっている。これに対して、本実施形態では、上記のように、通過帯域内における挿入損失を改善し得ることがわかる。
 また、ラダー型フィルタ1の小型化を進めるには、上記IDT電極4やIDT電極10の縦横比を小さくすればよい。すなわち、縦横比=最大交叉幅/対数であるため、縦横比を小さくすることにより、最大交叉幅を相対的に小さくすることができる。特に、直列腕共振子S1~S9は、入力端子2と出力端子3とを結ぶ直列腕において互いに直列に接続されているものである。従って、直列腕共振子S1~S9において、最大交叉幅を小さくすること、言い換えれば縦横比を小さくすることにより、小型化をより一層進めることができる。
 本実施形態では、直列腕共振子S1~S9の縦横比が0.282と小さくされており、従って、小型化を進めることができる。しかも、前述したとおり、通過帯域内の挿入損失を改善することが可能とされている。
 上記のとおり、本実施形態では、直列腕共振子S1~S9において、IDT電極4の縦横比が0.282、並列腕共振子P1~P3においてIDT電極10の縦横比が0.352とされていたが、前述した図5~図11の結果から明らかなように、直列腕共振子S1~S9の縦横比は0.20以上、0.30以下の範囲、並列腕共振子P1~P3については、0.30以上とすれば、同様に小型化を進めつつ、フィルタ特性の改善を図ることができる。
 また、上記実施形態では、複数の直列腕共振子S1~S9において、上記縦横比が全て0.282とされていたが、少なくとも1つの直列腕共振子において縦横比が0.20以上、0.30以下、並列腕共振子P1~P3においても、少なくとも1つの並列腕共振子において、縦横比が0.30以上であれば、上記実施形態よりは劣るものの、同様に小型化を進めつつ、フィルタ特性の改善を図ることができる。本願発明者の実験によれば、上記実施形態の構成から、複数の直列腕共振子S1~S9のうち1つの直列腕共振子の縦横比を0.40から0.28に変更したことを除いては、上記実施形態の直列腕共振子と同様としてラダー型フィルタを作成したところ、前述した比較例に比べて、通過帯域内の高域側周波数域である1847MHzにおいて、挿入損失を0.02dB改善し得ることが確かめられている。また、上記実施形態に対し、1つの並列腕共振子P1の縦横比のみを0.25から0.352に変更したことを除いては上記実施形態と同様とした場合、前述した比較例に比べ、1847MHzにおける挿入損失を0.04dB小さくし得ることが確かめられている。
 もっとも、上記実施形態のように、全ての直列腕共振子S1~S9において縦横比が0.20以上、0.30以下、全ての並列腕共振子P1~P3において、縦横比が0.30以上であることが最も好ましい。
 また、本発明においては、縦横比が上記特定の範囲とされずとも、並列腕共振子P1~P3が上記1つの菱形の重み付け部分を有するように重み付けされたIDT電極を有し、直列腕共振子か2つの菱形の重み付け部分を有するように重み付けされたIDT電極を有する限り、上記実施形態と同様に小型化を進めることができる。すなわち、前述したとおり、直列腕共振子の小型化が、ラダー型フィルタの小型化に大きく寄与するため、縦横比はともかく、直列腕共振子が上記第1,第2の菱形の重み付け部分を有するIDT電極を用いて形成されている場合、縦横比を小さくしても反共振特性の劣化が生じ難いため、小型化を進めて、通過帯域内の挿入損失の低減を図ることが可能である。
 なお、本発明においては、上記ラダー型フィルタに加えて、前述した並列腕共振子及び直列腕共振子として用いられている弾性波共振子自体の小型化及び反共振特性の改善も図られる。
 すなわち、図5~図7に示したように、図3に示した1つの菱形の重み付け部分を有するIDT電極10を有する弾性波共振子では、縦横比を0.30以上とすることにより、反共振特性を高めることができる。
 第1,第2の菱形の重み付け部分を有する図8に示した弾性波共振子では、図9~図11に示したように、縦横比を0.20以上、0.30以下とすれば、反共振周波数付近の特性を改善することができる。加えて、本発明においては、上記IDT電極において菱形の重み付けが分施されている部分の数は3つであってもよい。この場合、縦横比は0.10以上、0.20以下であることが必要である。これを図12(a)~(c)を参照して説明する。
 図12(a)は、上記1つの菱形の重み付け部分が設けられたIDT電極101を有する弾性波共振子の電極構造を示し、図12(b)は第1,第2の菱形の重み付け部分が設けられているIDT電極102を有する弾性波共振子の電極構造を示す模式図である。なお、図12(b)では、IDT電極102を弾性波伝搬方向に2つのIDT電極部102a,102bに分割して模式的に示している。
 これに対して、図12(c)は、弾性波伝搬方向において交叉幅の極大値が3つ存在するIDT電極103を有する弾性波共振子の電極構造を模式的に示す。ここでも、各々が1つの菱形の重み付け部分を有する3つのIDT電極部103a~103cに分割して模式的にIDT電極103の構造を示すこととする。
 図12(a)の構造においては、前述したように、縦横比を0.3より大とすれば、反共振抵抗を十分大きくすることができる。
 これに対して、図12(b)の構造は、図12(a)の構造を並列接続した構造に相当することとなる。従って、縦横比=S/P≧0.3を基準にすると、S/2P≧0.15とすれば、反共振抵抗を十分大きくすることができると考えられる。なお、S/2P≧0.2としたのは、前述の通り、図9から図11の結果による。同様に検討すると、図12(c)の構造では、図12(a)のIDT電極を3つ並列接続した構造に相当するため、S/3P≧0.10とすれば、反共振抵抗を大きくすることができると考えられる。よって、極大値の数をn(nは自然数)とした場合、S/(n×P)≧0.3/nとすれば反共振抵抗を十分大きくすることができ、反共振周波数付近の特性を改善することができると考えられる。よって、交叉幅の極大値の数をnとしたとき、nが3の場合には、縦横比を0.10以上とすればよいことがわかる。また、nが3以上の場合は、S/(n×P)≧0.3/n、で定められる縦横比に設定すればよい。
 従って、少なくとも1つの直列腕共振子において、n=3とした場合、縦横比を0.10以上、0.20以下とし、少なくとも1つの並列腕共振子において、縦横比が0.30以上とすることにより、ラダー型フィルタにおいて、前述した実施形態と同様に、通過帯域内の高周波数域における挿入損失をより一層小さくすることができる。より好ましくは、n=3あるいはn=3の複数の直列腕共振子において、全ての直列腕共振子の縦横比を0.10以上、0.20以下とし、全ての並列腕共振子の縦横比を0.30以上とすることにより、通過帯域内における高周波数側の挿入損失をより一層小さくすることができる。
 なお、上述した実施形態では、弾性境界波共振子を用いた構造につき説明したが、本発明は、弾性境界波共振子ではなく、弾性表面波共振子であってもよい。すなわち、本発明においては、弾性波として弾性境界波に限らず、弾性表面波を利用してもよい。弾性表面波共振子の場合、圧電基板上にIDT電極が形成されておればよく、誘電体層は必ずしも必要ではない。もっとも、誘電体層を設けてもよく、その場合にも、誘電体層の厚み及び材料を選択し、弾性表面波が効率よく励振されるように構成することにより、弾性表面波共振子に本発明を適用することができる。
 従って、本発明のラダー型フィルタにおいても、弾性波共振子は弾性表面波共振子であってもよい。また、本発明のラダー型フィルタにおいて、弾性波共振子としては弾性境界波共振子及び弾性表面波共振子の双方を用いてもよい。
 また、本発明のラダー型フィルタは、フィルタ単体に用いられてもよく、DPXの送信側または受信側に用いられてもよい。
 1…ラダー型フィルタ
 2…入力端子
 3…出力端子
 4…IDT電極
 5,6…反射器
 7~9…接続点
 10…IDT電極
 11,12…反射器
 13…圧電基板
 14…誘電体層
 101~103…IDT電極
 102a,102b…IDT電極部
 103a~103c…IDT電極部
 

Claims (9)

  1.  入力端と出力端とを結ぶ直列腕に配置された直列腕共振子と、直列腕とグラウンド電位とを結ぶように配置された並列腕に配置された並列腕共振子とを備え、
     前記直列腕共振子及び前記並列腕共振子がIDT電極を有する弾性波共振子からなり、
     少なくとも1つの前記直列腕共振子のIDT電極が、弾性波伝搬方向において交叉幅の極大値が2つ現れるように交叉幅重み付けされており、
     少なくとも1つの前記並列腕共振子のIDT電極が弾性波伝搬方向において交叉幅の極大値が一つ現れるように交叉幅重み付けされている、ラダー型フィルタ。
  2.  前記直列腕共振子及び並列腕共振子がそれぞれ複数設けられており、
     前記IDT電極と励振される弾性波の波長をλとしたときに、IDT電極の最大交叉幅をSλ、電極指の対数をPとしたとき、S/P=Rで定義される縦横比が、少なくとも1つの直列腕共振子において、0.20以上、0.30以下とされており、
     少なくとも1つの並列腕共振子において、縦横比が0.30以上とされている、請求項1に記載のラダー型フィルタ。
  3.  全ての直列腕共振子の前記縦横比が0.20以上、0.30以下であり、全ての並列腕共振子の前記縦横比が0.30以上である、請求項2に記載のラダー型フィルタ。
  4.  入力端と出力端とを結ぶ直列腕に配置された直列腕共振子と、直列腕とグラウンド電位とを結ぶように配置された並列腕に配置された並列腕共振子とを備え、
     前記直列腕共振子及び前記並列腕共振子がIDT電極を有する弾性波共振子からなり、
     少なくとも1つの前記直列腕共振子のIDT電極が、弾性波伝搬方向において交叉幅の極大値が3つ現れるように交叉幅重み付けされており、
     少なくとも1つの前記並列腕共振子のIDT電極が弾性波伝搬方向において交叉幅の極大値が一つ現れるように交叉幅重み付けされている、ラダー型フィルタ。
  5.  極大値が3つ現れる、少なくとも1つの前記直列腕共振子において、前記縦横比が、0.10以上、0.20以下とされており、少なくとも1つの並列腕共振子において、縦横比が0.30以上とされている請求項4に記載のラダー型フィルタ。
  6.  全ての直列腕共振子の前記縦横比が0.10以上、0.20以下であり、全ての並列腕共振子の前記縦横比が0.30以上である、請求項5に記載のラダー型フィルタ。
  7.  前記弾性波共振子が弾性境界波共振子である、請求項1~6のいずれか1項に記載のラダー型フィルタ。
  8.  圧電基板と、
     前記圧電基板上に形成されたIDT電極とを備え、
     前記IDT電極が、弾性波伝搬方向においてn個(nは自然数)の交叉幅極大値が現れるように交叉幅重み付けされており、n=1の場合、縦横比が0.30以上であり、n=2のとき、縦横比が0.20以上、0.30以下であり、n=3の場合、縦横比が0.10以上、0.20以下である、弾性波共振子。
  9.  前記弾性波が弾性境界波であり、それによって弾性境界波共振子が構成されている、請求項8に記載の弾性波共振子。
PCT/JP2010/058991 2009-05-29 2010-05-27 ラダー型フィルタ及び弾性波共振子 WO2010137648A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011516051A JP5273247B2 (ja) 2009-05-29 2010-05-27 ラダー型フィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009130010 2009-05-29
JP2009-130010 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137648A1 true WO2010137648A1 (ja) 2010-12-02

Family

ID=43222753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058991 WO2010137648A1 (ja) 2009-05-29 2010-05-27 ラダー型フィルタ及び弾性波共振子

Country Status (2)

Country Link
JP (1) JP5273247B2 (ja)
WO (1) WO2010137648A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108255A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
JPWO2012127793A1 (ja) * 2011-03-22 2014-07-24 パナソニック株式会社 弾性波素子
JP2014225909A (ja) * 2014-07-28 2014-12-04 太陽誘電株式会社 分波器
US9093979B2 (en) 2012-06-05 2015-07-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Laterally-coupled acoustic resonators
US9641155B2 (en) 2011-01-19 2017-05-02 Taiyo Yuden Co., Ltd. Duplexer
JPWO2021200469A1 (ja) * 2020-03-31 2021-10-07

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298348A (ja) * 2000-02-07 2001-10-26 Murata Mfg Co Ltd 弾性表面波フィルタ
WO2007108269A1 (ja) * 2006-03-17 2007-09-27 Murata Manufacturing Co., Ltd. 弾性波共振子
WO2008056697A1 (fr) * 2006-11-08 2008-05-15 Panasonic Corporation Résonateur d'onde acoustique de surface
JP2008235950A (ja) * 2005-05-26 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298348A (ja) * 2000-02-07 2001-10-26 Murata Mfg Co Ltd 弾性表面波フィルタ
JP2008235950A (ja) * 2005-05-26 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置
WO2007108269A1 (ja) * 2006-03-17 2007-09-27 Murata Manufacturing Co., Ltd. 弾性波共振子
WO2008056697A1 (fr) * 2006-11-08 2008-05-15 Panasonic Corporation Résonateur d'onde acoustique de surface

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641155B2 (en) 2011-01-19 2017-05-02 Taiyo Yuden Co., Ltd. Duplexer
WO2012108255A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
CN103348591A (zh) * 2011-02-08 2013-10-09 株式会社村田制作所 梯型滤波器装置及弹性波谐振器
JP5614461B2 (ja) * 2011-02-08 2014-10-29 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
US9148123B2 (en) 2011-02-08 2015-09-29 Murata Manufacturing Co., Ltd. Ladder filter device and elastic wave resonator
CN103348591B (zh) * 2011-02-08 2016-04-20 株式会社村田制作所 梯型滤波器装置及弹性波谐振器
JPWO2012127793A1 (ja) * 2011-03-22 2014-07-24 パナソニック株式会社 弾性波素子
US9093979B2 (en) 2012-06-05 2015-07-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Laterally-coupled acoustic resonators
JP2014225909A (ja) * 2014-07-28 2014-12-04 太陽誘電株式会社 分波器
JPWO2021200469A1 (ja) * 2020-03-31 2021-10-07

Also Published As

Publication number Publication date
JP5273247B2 (ja) 2013-08-28
JPWO2010137648A1 (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5182459B2 (ja) ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
JP6133216B2 (ja) ラダー型弾性波フィルタと、これを用いたアンテナ共用器
JP5942740B2 (ja) ラダー型フィルタ及び分波器
JP4465625B2 (ja) 弾性表面波フィルタおよび弾性表面波共振器
JP5120461B2 (ja) チューナブルフィルタ
JP3243976B2 (ja) 弾性表面波フィルタ
WO2009119007A1 (ja) 弾性波フィルタ装置
US20050264136A1 (en) Surface acoustic wave device
US8710940B2 (en) Elastic wave device having a capacitive electrode on the piezoelectric substrate
JP4407696B2 (ja) 弾性表面波装置
JP6284800B2 (ja) 弾性表面波デバイス及びフィルタ
JP5273247B2 (ja) ラダー型フィルタ
KR102345524B1 (ko) 탄성파 장치
JP3228223B2 (ja) 弾性表面波フィルタ
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
WO2019131530A1 (ja) 弾性波フィルタ
JP2011087282A (ja) 弾性境界波フィルタ及びそれを備える分波器
JP7334786B2 (ja) 弾性波フィルタ
JPWO2005011117A1 (ja) 1ポート型弾性表面波共振子及び弾性表面波フィルタ
US8339221B2 (en) Elastic wave filter device having narrow-pitch electrode finger portions
US8222973B2 (en) Elastic wave resonator, ladder filter and duplexer
JP4525862B2 (ja) 弾性波フィルタ装置
JPWO2010125934A1 (ja) 弾性波装置
WO2021015187A1 (ja) 弾性波フィルタ
WO2020261978A1 (ja) 弾性表面波装置及びフィルタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516051

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780602

Country of ref document: EP

Kind code of ref document: A1