WO2010116783A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2010116783A1
WO2010116783A1 PCT/JP2010/051570 JP2010051570W WO2010116783A1 WO 2010116783 A1 WO2010116783 A1 WO 2010116783A1 JP 2010051570 W JP2010051570 W JP 2010051570W WO 2010116783 A1 WO2010116783 A1 WO 2010116783A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave device
dielectric layer
electrode
film
acoustic wave
Prior art date
Application number
PCT/JP2010/051570
Other languages
English (en)
French (fr)
Inventor
中橋 憲彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011508267A priority Critical patent/JPWO2010116783A1/ja
Publication of WO2010116783A1 publication Critical patent/WO2010116783A1/ja
Priority to US13/248,137 priority patent/US8143762B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02984Protection measures against damaging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode

Definitions

  • the present invention relates to an acoustic wave device used for a resonator, a bandpass filter, and the like, and more specifically, a structure in which a LiNbO 3 substrate is used as a piezoelectric body and a dielectric layer such as a SiO 2 layer is laminated on the piezoelectric body. It is related with the elastic wave apparatus which has.
  • elastic wave devices such as boundary acoustic wave devices and surface acoustic wave devices have been used for band filters of communication equipment.
  • FIG. 23 and 24 are a plan view for explaining the boundary acoustic wave device described in Patent Document 1 and a schematic partial cutaway front sectional view showing an enlarged main part thereof.
  • the boundary acoustic wave device 1001 includes a LiNbO 3 substrate 1002.
  • An IDT electrode 1003 is formed on the LiNbO 3 substrate 1002.
  • a polycrystalline silicon oxide film 1004 is stacked so as to cover the IDT electrode 1003.
  • a polycrystalline silicon film 1005 is stacked on the polycrystalline silicon oxide film 1004.
  • the boundary acoustic wave excited by the IDT electrode 1003 propagates while concentrating energy in the polycrystalline silicon oxide film 1004 laminated between the LiNbO 3 substrate 1002 and the polycrystalline silicon film 1005. Therefore, a boundary acoustic wave device having a so-called three-medium structure in which a polycrystalline silicon film / polycrystalline silicon oxide film / LiNbO 3 substrate is laminated in this order is formed.
  • Patent Document 1 since the polycrystalline silicon film 1005 is laminated on the polycrystalline silicon oxide film 1004, the boundary acoustic wave excited by the IDT electrode 1003 can be reliably confined in the polycrystalline silicon oxide film 1004. Is described.
  • Patent Document 2 an electrode made of a laminated metal film obtained by laminating a first layer and a second layer in this order on a piezoelectric body, and a dielectric layer covering the electrode, A surface acoustic wave device is disclosed.
  • the acoustic impedance of the dielectric layer is Za
  • the acoustic impedance of the first layer of the electrode is smaller than 2Za
  • the acoustic impedance of the second layer of the electrode is higher than 2Za.
  • the relative ratio of the thickness of the second layer to the total thickness of the laminated structure including the first layer and the second layer is in the range of 15 to 85%.
  • SiO 2 is given as an example of the material of the dielectric layer
  • Al is given as an example of the material of the first layer
  • Pt is given as an example of the material of the second layer.
  • the reflection coefficient did not increase because the acoustic impedance ratio between Al and SiO 2 of the dielectric layer was approximately 1.
  • the reflection coefficient can be increased.
  • Al can be formed thick, the resistance can be lowered, and the insertion loss can be reduced.
  • the boundary acoustic wave device 1001 described in Patent Document 1 the boundary acoustic wave propagates by concentrating energy in the polycrystalline silicon oxide film 1004 laminated between the LiNbO 3 substrate 1002 and the polycrystalline silicon film 1005.
  • spurious due to higher order modes of boundary acoustic waves appeared. It has been found that the magnitude of the spurious due to this higher-order mode becomes smaller as the polycrystalline silicon oxide film 1004 is made thinner.
  • the boundary acoustic wave device 1001 has a problem that the absolute value of the frequency temperature coefficient (TCF) increases.
  • TCF frequency temperature coefficient
  • the transverse wave sound velocity of the polycrystalline silicon oxide film 1004 is slower than the transverse wave sound velocity of the polycrystalline silicon film 1005 and the LiNbO 3 substrate 1002. Since the polycrystalline silicon oxide film 1004 having a low shear wave velocity is sandwiched between the polycrystalline silicon film 1005 having a high transverse wave velocity and the LiNbO 3 substrate 1002, the boundary acoustic wave excited by the IDT electrode 1003 is reliably polycrystalline. It can be confined in the silicon oxide film 1004. For this reason, the fundamental mode and the higher order mode of the boundary acoustic wave propagate in the polycrystalline silicon oxide film 1004.
  • the basic mode is a mode in which an antinode exists in the polycrystalline silicon oxide film 1004, which is a so-called zero-order mode.
  • the high-order mode is a mode in which there is one node in the polycrystalline silicon oxide film 1004 and there are two antinodes having different displacement directions above and below the node, which is a so-called primary mode.
  • Patent Document 2 only the specific laminated structure is disclosed as an electrode structure capable of increasing the reflection coefficient and reducing the insertion loss in the surface acoustic wave device. There is no description of a configuration that suppresses spurious due to higher-order modes.
  • an elastic wave device SiO 2 film is formed to cover the IDT electrode, when the thickness of the SiO 2 film, spurious is increased by the high-order mode, and improvement of the frequency-temperature characteristic, with higher order modes There was a trade-off with the suppression of spurious.
  • An object of the present invention is an elastic wave device having a structure in which a dielectric layer composed of a SiO 2 layer is laminated on a piezoelectric material composed of a LiNbO 3 substrate, which eliminates the above-mentioned drawbacks of the prior art, and has a frequency temperature
  • An object of the present invention is to provide an elastic wave device having excellent characteristics and capable of sufficiently suppressing spurious due to higher-order modes.
  • the piezoelectric body made of the LiNbO 3 substrate, the first dielectric layer made of the SiO 2 layer laminated on the piezoelectric body, and the first dielectric layer are laminated.
  • is in the range of 5 ° ⁇ ⁇ ⁇ 30 °
  • the wavelength of the elastic wave is ⁇
  • the film thickness of the first electrode film is h
  • the normalized film thickness h / lambda and ⁇ is, which satisfies Expression (1) below, the elastic wave device is provided.
  • the Euler angle ⁇ of the LiNbO 3 substrate is in the range of 105 ° ⁇ ⁇ 120 °. In that case, it is possible to suppress the unwanted mode response that appears in the vicinity of the response of the elastic wave mainly composed of the SH wave. In other words, when the elastic wave device is a boundary acoustic wave device using a boundary acoustic wave mainly composed of SH waves, the electromechanical coupling coefficient of the Stoneley wave, which is an unnecessary mode, can be reduced, thereby suppressing the unwanted mode response. it can.
  • the normalized film thickness h / ⁇ is 0.0295 or more. In this case, leakage of the basic mode can be more effectively prevented.
  • the second dielectric layer is at least one selected from the group consisting of silicon nitride, aluminum oxide, aluminum nitride, silicon oxynitride, and diamond-like carbon. It is a kind of dielectric material, and is composed of a dielectric material having a slow shear wave velocity of 5000 m / sec or more.
  • the IDT electrode further includes a third electrode film, and the third electrode film includes Au, Ag, Cu, Ta, and W. , Ni, Fe, Cr, Mo, and Ti, and one kind of metal selected from the group consisting of alloys containing these metals as main components. In this case, the reflection coefficient of the IDT electrode can be increased.
  • the piezoelectric body made of the LiNbO 3 substrate has a negative frequency temperature coefficient (TCF), but the first dielectric layer made of the SiO 2 layer has a positive frequency temperature coefficient (TCF). Therefore, the absolute value of the frequency temperature coefficient (TCF) can be reduced, and the Euler angle ⁇ of the LiNbO 3 substrate is within the specific range, and the IDT electrode has the laminated structure, and Pt or The normalized film thickness h / ⁇ where h is the thickness of the first electrode film made of an alloy containing Pt as the main component and ⁇ is the wavelength of the elastic wave whose main component is the SH wave is the above formula (1). Therefore, spurious due to the higher order mode can be reliably suppressed.
  • TCF negative frequency temperature coefficient
  • TCF positive frequency temperature coefficient
  • FIG. 1A and FIG. 1B are a partially cutaway enlarged front sectional view showing an essential part of a boundary acoustic wave device according to an embodiment of the present invention and a schematic plan view showing an electrode structure.
  • FIG. 2 is a diagram illustrating transmission characteristics of the boundary acoustic wave device according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating transmission characteristics of the boundary acoustic wave device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the normalized film thickness h / ⁇ of the first electrode film of the IDT electrode, the Euler angle ⁇ of the LiNbO 3 substrate, and the higher-order mode response in an embodiment of the present invention. It is.
  • FIG. 1A and FIG. 1B are a partially cutaway enlarged front sectional view showing an essential part of a boundary acoustic wave device according to an embodiment of the present invention and a schematic plan view showing an electrode structure.
  • FIG. 2 is a diagram
  • FIG. 5 is a diagram showing the relationship between the fast transverse wave sound speed and the slow transverse wave sound speed ⁇ in a LiNbO 3 substrate with Euler angles of (0 °, 90 °, ⁇ ).
  • FIG. 6 is a diagram showing a relationship between a fast shear wave sound velocity and a slow shear wave sound velocity ⁇ in a LiNbO 3 substrate having an Euler angle of (0 °, 95 °, ⁇ ).
  • FIG. 7 is a diagram showing the relationship between the fast transverse wave sound velocity and the slow transverse wave sound velocity ⁇ in a LiNbO 3 substrate with Euler angles of (0 °, 100 °, ⁇ ).
  • FIG. 8 is a diagram showing the relationship between the fast transverse wave sound velocity and the slow transverse wave sound velocity ⁇ in a LiNbO 3 substrate with Euler angles of (0 °, 105 °, ⁇ ).
  • FIG. 9 is a diagram showing a relationship between a fast shear wave sound velocity and a slow shear wave sound velocity ⁇ in a LiNbO 3 substrate having an Euler angle of (0 °, 110 °, ⁇ ).
  • FIG. 10 is a diagram showing the relationship between the fast shear wave sound velocity and the slow shear wave sound velocity ⁇ in a LiNbO 3 substrate having an Euler angle of (0 °, 115 °, ⁇ ).
  • FIG. 11 is a diagram showing a relationship between a fast shear wave sound velocity and a slow shear wave sound velocity ⁇ in a LiNbO 3 substrate having an Euler angle of (0 °, 120 °, ⁇ ).
  • FIG. 12 is a diagram showing the relationship between the fast transverse wave sound velocity and the slow transverse wave sound velocity ⁇ in a LiNbO 3 substrate with Euler angles of (0 °, 125 °, ⁇ ).
  • FIG. 13 is a diagram showing a relationship between a fast shear wave sound velocity and a slow shear wave sound velocity ⁇ in a LiNbO 3 substrate having an Euler angle of (0 °, 130 °, ⁇ ).
  • FIG. 14 is a diagram showing the relationship between the Euler angle ⁇ and the frequency temperature coefficient (TCF) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 15 is a schematic plan sectional view showing the electrode structure of the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 16 is a diagram showing impedance characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 90 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 17 is a diagram showing the phase characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 90 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 18 is a diagram showing impedance characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 100 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 19 is a diagram showing phase characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 100 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 20 is a diagram showing impedance characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 127 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 19 is a diagram showing phase characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 100 °, 0 °) in the boundary acoustic wave device according to one embodiment of the present invention.
  • FIG. 20 is a diagram showing impedance characteristics when the Euler angles
  • FIG. 21 is a diagram illustrating phase characteristics when the Euler angles of the LiNbO 3 substrate are (0 °, 127 °, 0 °) in the boundary acoustic wave device according to the embodiment of the present invention.
  • FIG. 22 is a schematic front sectional view for explaining a surface acoustic wave device according to another embodiment of the present invention.
  • FIG. 23 is a schematic plan view of a conventional boundary acoustic wave device.
  • FIG. 24 is a schematic partial cutaway front sectional view showing an enlarged main part of a conventional boundary acoustic wave device.
  • FIG. 1 (a) is a partially cutaway enlarged front sectional view showing a main part of a boundary acoustic wave device according to an embodiment of the present invention
  • FIG. 1 (b) shows an electrode structure of the boundary acoustic wave device. It is a typical top view.
  • the boundary acoustic wave device 1 is a boundary acoustic wave device using a boundary acoustic wave mainly composed of SH waves.
  • a boundary acoustic wave device using a boundary acoustic wave mainly composed of SH waves.
  • the slowest bulk wave is the slow transverse wave.
  • the boundary acoustic wave device 1 includes a piezoelectric body 2 made of a LiNbO 3 substrate.
  • a first dielectric layer 6 made of a SiO 2 layer is laminated on the piezoelectric body 2.
  • IDT electrodes 3 A to 3 C are formed at the interface between the piezoelectric body 2 and the first dielectric layer 6.
  • FIG. 1A one electrode finger portion of the IDT electrode 3B is enlarged and shown in a sectional view.
  • IDT electrodes 3A to 3C are sequentially arranged on the piezoelectric body 2 along the boundary acoustic wave propagation direction.
  • Reflectors 4 and 5 are disposed on both sides of the IDT electrodes 3A to 3C in the boundary acoustic wave propagation direction. Therefore, in this embodiment, a 3IDT type longitudinally coupled resonator type boundary acoustic wave filter is configured.
  • the boundary acoustic wave device 1 of the present embodiment is a 3IDT type longitudinally coupled resonator type boundary acoustic wave filter having a balance-unbalance conversion function.
  • the IDT electrodes 3A to 3C have a plurality of electrode fingers that are inserted into each other.
  • one electrode finger 3a of the IDT electrode 3B is shown enlarged.
  • the IDT electrodes 3A to 3C and the reflectors 4 and 5 are made of an appropriate metal material.
  • the electrode fingers 3a of the IDT electrode 3B are arranged in order from the piezoelectric body 2 side: a Ti film 11a, a Pt film 11b, a Ti film 11c, and an Al film.
  • the film 11d, the Ti film 11e, the Pt film 11f, and the Ti film 11g are made of a laminated metal film obtained by laminating in this order.
  • the Pt film 11b, the Al film 11d, and the Pt film 11f are relatively thicker than the Ti films 11a, 11c, 11e, and 11g.
  • the Pt film 11b, the Al film 11d, and the Pt film 11f are main electrode films and constitute a laminated structure in the present invention.
  • the Pt films 11b and 11f correspond to the first electrode film in the present invention
  • the Al film 11d corresponds to the second electrode film.
  • the first electrode film constituting the laminated structure may be a film made of an alloy containing Pt as a main component.
  • the second electrode film may be a film made of an alloy containing Al as a main component.
  • the first electrode film may have a plurality of Pt films 11b and 11f.
  • the film thickness h of the first electrode film refers to the total thickness of all the Pt films. That is, the film thickness h of the first electrode film in the stacked structure refers to the total thickness of the plurality of first electrode films when there are a plurality of first electrode films in the stacked structure.
  • the stacked structure may have a plurality of second electrode films.
  • the Ti film 11a functions as an adhesion layer that improves the adhesion of the IDT electrode 3B to the piezoelectric body 2.
  • the Ti films 11c and 11e are formed as barrier layers that suppress diffusion between the upper and lower electrode films. That is, the Ti films 11c and 11e are formed to suppress the diffusion of atoms between the Pt films 11b and 11f and the Al film 11d. Further, the Ti film 11g is formed as an adhesion layer that adheres the first dielectric layer 6 and the Pt film 11f.
  • the IDT electrode 3B is entirely formed of such a laminated metal film, and the IDT electrodes 3A and 3C and the reflectors 4 and 5 are also formed of the same laminated metal film.
  • the first dielectric layer 6 is laminated on the upper surface of the piezoelectric body 2 so as to cover the IDT electrodes 3A to 3C.
  • a second dielectric layer 7 is laminated thereon.
  • the second dielectric layer 7 is made of a SiN layer.
  • the first dielectric layer 6 made of the SiO 2 layer and the second dielectric layer 7 made of the SiN layer can be formed by an appropriate thin film forming method such as vapor deposition or sputtering.
  • the second dielectric layer 7 may be formed by a substrate bonding method as disclosed in JP-A-10-84247.
  • the thickness of the first dielectric layer 6 is not particularly limited, but is preferably about 0.2 ⁇ to 0.7 ⁇ , where ⁇ is the wavelength of the boundary acoustic wave mainly composed of SH waves. . Since the SiO 2 layer as the first dielectric layer 6 has a slower transverse sound velocity than the SiN layer as the second dielectric layer 7 and the LiNbO 3 substrate as the piezoelectric body 2, it is excited by the IDT electrodes 3A to 3C. A boundary acoustic wave mainly composed of SH waves is generated between the SiN layer as the second dielectric layer 7 and the LiNbO 3 substrate as the piezoelectric body 2, that is, the first dielectric layer composed of the SiO 2 layer. 6 is concentrated in energy and propagates. In order to enable such propagation, the thickness of the first dielectric layer 6 is preferably about 0.2 ⁇ to 0.7 ⁇ .
  • the thickness of the second dielectric layer 7 is set so that the boundary acoustic wave is sufficiently confined. That is, the thickness is set such that the displacement of the boundary acoustic wave becomes smaller in the thickness direction of the second dielectric layer 7 and the displacement of the boundary acoustic wave on the surface of the second dielectric layer 7 becomes substantially zero.
  • the thickness at which the displacement can be regarded as substantially zero is, for example, 1 ⁇ or more, where ⁇ is the wavelength of the boundary acoustic wave mainly composed of SH waves.
  • the electrode structure including the IDT electrodes 3A to 3C described above can also be formed using a known photolithography method.
  • boundary acoustic wave device 1 of the present embodiment excitation was performed by the IDT electrodes 3A to 3C provided at the interface between the piezoelectric body 2 made of the LiNbO 3 substrate and the first dielectric layer 6 made of the SiO 2 layer.
  • a boundary acoustic wave mainly composed of SH waves propagates while concentrating energy in the first dielectric layer 6.
  • the second dielectric layer 7 is made of a SiN layer, and the speed of the transverse wave sound is made faster than that of the first dielectric layer 6 made of the SiO 2 layer. Therefore, the boundary acoustic wave hardly leaks to the second dielectric layer 7 made of the SiN layer, and the boundary acoustic wave reliably concentrates energy in the first dielectric layer 6 made of the SiO 2 layer. Propagate.
  • the frequency temperature coefficient (TCF) of the LiNbO 3 substrate that is the piezoelectric body 2 is a negative value, but the frequency temperature coefficient (TCF) of the SiO 2 layer that is the first dielectric layer 6.
  • TCF the absolute value of the frequency temperature coefficient (TCF) can be reduced as a whole. Therefore, it is possible to reduce frequency fluctuation due to temperature change.
  • 0 ⁇ 2 °, 80 ° ⁇ ⁇ ⁇ 130 °, 5 ° ⁇ ⁇ ⁇
  • the standardized film thickness h / ⁇ satisfies the following expression (1), whereby spurious due to higher-order modes can be effectively suppressed. It is most preferable that ⁇ is 0 °, but it may be 0 ⁇ 2 ° in consideration of manufacturing variations.
  • represents the wavelength of the boundary acoustic wave mainly composed of the SH wave.
  • the total film thickness h of the Pt film in the laminated structure of the IDT electrode means the thickness when the Pt layer is one layer, and the total thickness of the plurality of layers when there are a plurality of layers.
  • GSM1900 reception filters of Experimental Examples 1 and 2 below were produced.
  • the specification of the reception filter of GSM1900 of a mobile phone is as follows.
  • Passband 1930-1900MHz Insertion loss in the passband: 2.5 dB or less
  • Low stopband 1830-1910 MHz Attenuation amount in the low band stop band: 12 dB or more
  • High band stop band 2010-2070 MHz
  • Attenuation in the high side stop band 12 dB or more
  • the boundary acoustic wave device 1 of Experimental Example 1 having the following configuration was manufactured so as to satisfy the above specifications.
  • Electrode film thickness and electrode configuration of IDT electrodes 3A to 3C Film thickness of the upper Pt film 11f in the laminated structure: 31 nm Standardized film thickness: 0.0178 Lower Pt film 11b thickness: 31 nm Standardized film thickness: 0.0178 Film thickness of the Al film 11d: 260 nm Standardized film thickness: 0.0149 Film thickness of Ti films 11a, 11c, 11e, and 11g as adhesion layers and barrier layers: 40 nm Standardized film thickness: 0.023
  • the absolute value of the electrode film thickness and the electrode configuration of the IDT electrodes 3A to 3C were the same as in Experimental Example 1.
  • the normalized film thicknesses of the Pt films 11a, 11c, 11e, and 11g were 0.0206.
  • the film thickness of the first dielectric layer 6 made of the SiO 2 layer was 590 nm.
  • the normalized film thickness of the first dielectric layer 6 is 0.339 ⁇ in Experimental Example 1 and 0.304 ⁇ in Experimental Example 2.
  • the film thickness of the second dielectric layer 7 made of the SiN layer was 2200 nm.
  • the normalized film thickness of the second dielectric layer 7 is 1.264 ⁇ in Experimental Example 1 and 1.134 ⁇ in Experimental Example 2.
  • the electrode finger crossing width in the IDT electrodes 3A to 3C was set to 42 ⁇ .
  • the total number of electrode fingers in the IDT electrode 3B is 36.
  • the total number of electrode fingers was 19.
  • a narrow pitch electrode finger portion is provided at an end portion adjacent to the IDT electrode 3B, and three electrode fingers at the end portion adjacent to the IDT electrode 3B constitute a narrow pitch electrode finger portion. Electrode finger to be used.
  • the number of electrode fingers in the reflectors 4 and 5 was 61.
  • the duty ratio of the IDT electrodes 3A to 3C was 0.50.
  • FIG. 2 shows the transmission characteristics of Experimental Example 1
  • FIG. 3 shows the transmission characteristics of Experimental Example 2.
  • the arrow A indicates the response in the basic mode
  • the arrow B indicates the response in the higher-order mode.
  • the response in the higher order mode is 15 dB.
  • the response in the high-order mode is 25 dB.
  • the standard for blocking in the GSM system is an insertion loss in the pass band +23 dB. In general, since the insertion loss in the passband is about 2 dB, the response in the higher-order mode needs to be at least 25 dB. Therefore, it is preferable to suppress the response of the higher order mode to the level of the higher order mode shown in FIG.
  • FIG. 4 shows that in the structure of the above embodiment, in the IDT electrodes 3A to 3C, the total thickness of the Pt films 11b and 11f as the first electrode films in the stacked structure is h, and the SH wave is the main component.
  • the change in the response of the higher-order mode when the normalized film thickness h / ⁇ when the wavelength of the boundary acoustic wave is ⁇ and the Euler angle ⁇ of the LiNbO 3 substrate that is the piezoelectric body 2 is changed is shown.
  • symbols X1 to X15 in FIG. 4 indicate that the level of the response in the higher-order mode is an area in the range shown in Table 1 below.
  • the normalized film thickness h / ⁇ was changed in the range of 0.0295 to 0.0365, that is, 2.95% to 3.65%. Further, the propagation direction ⁇ was changed in the range of 0 ° to 15 °.
  • the region where the response level in the higher order mode is 25 dB or more is the above X1 to X9, which is the upper left region from the broken line C in FIG.
  • Such a region is represented by the following formula (1).
  • the Euler angle ⁇ is in the range of 0 ° to 30 °.
  • the thickness of the first electrode film is h and the wavelength of the boundary acoustic wave mainly composed of the SH wave is ⁇
  • the normalized film thickness h / ⁇ is within a range satisfying the above formula (1).
  • the first dielectric layer 6 composed of a relatively low sound velocity medium SiO 2 layer is formed on the piezoelectric body 2 composed of a LiNbO 3 substrate that is a relatively high sound velocity medium.
  • the elastic boundary wave is confined in the first dielectric layer 6 by the waveguide effect by being sandwiched between the second dielectric layer 7 made of the SiN layer. Therefore, when the sound velocity of the propagating elastic boundary wave becomes faster than the sound velocity of the relatively high sound velocity medium, the elastic boundary wave becomes a leakage mode and the attenuation is increased.
  • the response decreases because the sound speed of the higher-order mode exceeds the fast transverse wave sound speed of the LiNbO 3 substrate, and the higher-order mode leaks toward the LiNbO 3 substrate. This is probably because of this. Therefore, if the fast shear wave sound speed of the LiNbO 3 substrate can be slowed, the response of the higher order mode can be reduced.
  • FIGS. 5 to 13 show the dependence of Euler angles (0 °, ⁇ , ⁇ ) on various ⁇ of the sound velocity of the fast transverse wave and the slow transverse wave of the LiNbO 3 substrate.
  • the sound velocity of the fast transverse wave and the slow transverse wave of the LiNbO 3 substrate.
  • the film thickness of the IDT electrodes 3A to 3C becomes too thin, the mass of the IDT electrodes 3A to 3C becomes small and the waveguide effect is lost. As a result, the basic mode may be leaked. Accordingly, in the IDT electrodes 3A to 3C, it is desirable that the normalized film thickness h / ⁇ of the first electrode film in the laminated structure which is the main configuration is larger than a certain value.
  • the chemical film thickness h / ⁇ is preferably 0.0295 or more, that is, 2.95% or more. In that case, it has been confirmed that the leakage of the fundamental mode is remarkably reduced.
  • TCF frequency temperature coefficient
  • the frequency temperature characteristic is not deteriorated, in other words, while the improvement effect of the frequency temperature characteristic by the formation of the first dielectric layer 6 made of the SiO 2 layer is ensured, the higher order It can be seen that spurious due to the mode can be suppressed.
  • the boundary acoustic wave device As a boundary acoustic wave device according to an embodiment of the present invention, a 1-port boundary acoustic wave resonator having the electrode structure shown in FIG. 15 was prepared.
  • the boundary acoustic wave resonator 21 includes an IDT electrode 23 and reflectors 24 and 25 disposed on both sides of the IDT electrode 23 in the boundary acoustic wave propagation direction.
  • the IDT electrode 23 is subjected to cross width weighting as shown in the figure.
  • a first dielectric layer made of an SiO 2 layer and a second dielectric layer made of an SiN layer are laminated so as to cover the IDT electrode 23 as in the above embodiment.
  • the resonance characteristic was measured by changing the Euler angle ⁇ .
  • FIGS. 16 and 17 show impedance characteristics and phase characteristics when Euler angles are (0 °, 90 °, 0 °), and FIGS. 18 and 19 show Euler angles (0 °, 100 °, 0 °).
  • FIGS. 20 and 21 show the impedance characteristics and phase characteristics when the Euler angles are (0 °, 127 °, 0 °).
  • the impedance ratio is 60 dB or more in the response of the fundamental mode indicated by the arrow A, regardless of whether the Euler angle ⁇ is 90 °, 100 °, or 127 °. It can be seen that a large electromechanical coupling coefficient is secured. Accordingly, the Euler angle ⁇ only needs to be within a range of 90 ° to 127 °. Thereby, the insertion loss can be sufficiently reduced.
  • the second dielectric layer 7, namely as a dielectric material of a relatively high sound speed, which is laminated over the first dielectric layer 6, showed SiN, than SiO 2
  • An appropriate dielectric having a high shear wave velocity and a shear wave velocity of at least 5000 m / sec can be used.
  • Examples of such a dielectric include SiN, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon (Si), silicon oxynitride (SiON), and diamond-like carbon (DLC).
  • the IDT electrode has an essential configuration of a laminated structure including a first electrode film made of Pt or an alloy containing Pt as a main component and a second electrode film made of Al or an alloy containing Al as a main component.
  • a third electrode film made of another metal such as a Ti film may be further laminated.
  • a metal include Au, Ag, Cu, Ta, W, Ni, Fe, Cr, Mo, and Ti, or an alloy containing these metals as a main component.
  • an appropriate metal having a higher density than SiO 2 can be used. By using a metal denser than SiO 2, it is possible to enhance the reflection coefficient of the IDT electrode.
  • a metal layer other than the first and second metal films may be laminated as a barrier layer for preventing mutual diffusion between adjacent electrode films, and adjacent to each other.
  • the electrode structure that is, the electrode structure itself constituting the resonator and the filter is not particularly limited, and electrode structures of various elastic wave devices other than the illustrated electrode structure are used. Can do.
  • the present invention can be applied not only to a boundary acoustic wave device but also to a surface acoustic wave device using a surface acoustic wave mainly composed of an SH wave.
  • FIG. 22 is a front cross-sectional view schematically showing a surface acoustic wave device as a second embodiment of the present invention.
  • the IDT electrode 33 is formed on the piezoelectric body 32.
  • a first dielectric layer 36 made of a SiO 2 layer is formed so as to cover the IDT electrode 33.
  • the electrode structure of the IDT electrode 33 is the same as that of the IDT electrodes 3A to 3C shown in FIG.
  • reflectors 34 and 35 are disposed on both sides of the IDT electrode 33 in the surface acoustic wave propagation direction. Therefore, a 1-port surface acoustic wave resonator is formed.
  • a first dielectric layer and a second dielectric layer made of SiO 2 are laminated on a piezoelectric body made of a LiNbO 3 substrate according to the present invention, and the above formula (1
  • the spurious due to the higher-order mode can be suppressed while improving the frequency temperature characteristics.
  • the X axis is rotated ⁇ counterclockwise with the Z axis as an axis to obtain the Xa axis.
  • the Z axis is rotated counterclockwise by ⁇ to obtain the Z ′ axis.
  • the surface including the Xa axis and having the Z ′ axis as a normal line was defined as a cut surface of the substrate.
  • the axis X ′ direction obtained by rotating the Xa axis counterclockwise about the Z ′ axis is defined as the propagation direction of the elastic wave.
  • the crystal axes X, Y, and Z of the LiNbO 3 substrate given as the initial values of the Euler angles are such that the Z axis is parallel to the c axis, and the X axis is parallel to any one of three equivalent a axes,
  • the Y axis is the normal direction of the plane including the X axis and the Z axis.
  • Euler angles ( ⁇ , ⁇ , ⁇ ) in this specification include crystallographically equivalent Euler angles. Since LiNbO 3 is a crystal belonging to the 3m point group of the trigonal system, the following equation holds.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 周波数温度特性を改善することができ、かつ高次モードによるスプリアスを十分に抑圧することができる、弾性波装置を得る。 弾性波装置1は、LiNbO基板からなる圧電体2と、SiO層からなる第1の誘電体層6と、第2の誘電体層7と、圧電体2と第1の誘電体層6との界面に設けられたIDT電極3A~3Cとを備える。IDT電極3A~3Cは、PtまたはPtを主成分とする合金からなる少なくとも1層の第1の電極膜と、AlまたはAlを主成分とする合金からなる第2の電極膜とが積層された積層構造を主体としている。LiNbO基板のオイラー角(φ,θ,ψ)のφ及びθは、それぞれ、φ=0±2°及び80°≦θ≦130°の範囲内にある。ψは5°≦ψ≦30°の範囲内にある。規格化膜厚h/λとψとは、下記の式(1)を満たしている。 h/λ×100≦0.0019×ψ2+0.0115×ψ+3.0 ………式(1)

Description

弾性波装置
 本発明は、共振子や帯域フィルタなどに用いられる弾性波装置に関し、より詳細には、圧電体としてLiNbO基板を用い、圧電体上にSiO層などの誘電体層が積層されている構造を有する弾性波装置に関する。
 従来、弾性境界波装置や弾性表面波装置などの弾性波装置が、通信機器の帯域フィルタなどに用いられている。
 この種の弾性境界波装置の一例が、下記の特許文献1に開示されている。図23及び図24は、特許文献1に記載の弾性境界波装置を説明するための平面図及びその要部を拡大して示す模式的部分切欠正面断面図である。
 弾性境界波装置1001は、LiNbO基板1002を有する。LiNbO基板1002上に、IDT電極1003が形成されている。IDT電極1003を覆うように、多結晶酸化ケイ素膜1004が積層されている。多結晶酸化ケイ素膜1004上に、多結晶ケイ素膜1005が積層されている。
 IDT電極1003で励振された弾性境界波が、LiNbO基板1002と多結晶ケイ素膜1005との間に積層された多結晶酸化ケイ素膜1004中にエネルギーを集中させて伝搬する。従って、多結晶ケイ素膜/多結晶酸化ケイ素膜/LiNbO基板がこの順序で積層されている、いわゆる三媒質構造の弾性境界波装置が形成されている。
 特許文献1は、多結晶酸化ケイ素膜1004上に多結晶ケイ素膜1005が積層されているので、IDT電極1003で励振されている弾性境界波を確実に多結晶酸化ケイ素膜1004に閉じ込めることができることを記載している。
 他方、下記の特許文献2には、圧電体上に、第1の層と、第2の層とをこの順序で積層してなる積層金属膜からなる電極と、該電極を覆う誘電体層とを含む弾性表面波装置が開示されている。この弾性表面波装置では、誘電体層の音響インピーダンスがZaであり、電極の第1の層の音響インピーダンスが2Zaより小さく、電極の第2の層の音響インピーダンスは2Zaより高くされており、第1の層と第2の層とからなる積層構造の全体の厚みに対する第2の層の厚みの相対的な割合が15~85%の範囲とされている。ここでは、誘電体層の材料の例としてSiO、第1の層の材料の例としてAl、第2の層の材料の例としてPtが挙げられている。
 Alからなる単層の電極の場合、Alと誘電体層のSiOとの音響インピーダンス比がほぼ1であるため、反射係数は高くならなかった。これに対して、上記積層構造を有する電極では、反射係数を高めることができる。加えて、Alを厚く形成することができるので、抵抗を低くすることができ、ひいては挿入損失を小さくすることができる。
WO98/52279 WO2006/058579
 特許文献1に記載の弾性境界波装置1001では、LiNbO基板1002と多結晶ケイ素膜1005との間に積層された、多結晶酸化ケイ素膜1004中にエネルギーを集中させて弾性境界波が伝搬するが、弾性境界波の高次モードによるスプリアスが現れるという問題があった。この高次モードによるスプリアスの大きさは、多結晶酸化ケイ素膜1004の膜厚を薄くすると、小さくなることがわかってきている。しかしながら、多結晶酸化ケイ素膜1004の膜厚を薄くすると、弾性境界波装置1001では、周波数温度係数(TCF)の絶対値が大きくなるという問題があった。
 特許文献1に記載の弾性境界装置1001では、多結晶酸化ケイ素膜1004の横波音速は、多結晶ケイ素膜1005及びLiNbO基板1002の横波音速より遅い。横波音速が低速の多結晶酸化ケイ素膜1004が、横波音速が高速の多結晶ケイ素膜1005及びLiNbO基板1002により挟まれているため、IDT電極1003で励振される弾性境界波を確実に多結晶酸化ケイ素膜1004に閉じ込めることができる。このため、弾性境界波の基本モードと高次モードは、多結晶酸化ケイ素膜1004中を伝搬する。
 基本モードとは、多結晶酸化ケイ素膜1004中に腹が1箇所存在するモードであり、いわゆる0次モードである。高次モードとは、多結晶酸化ケイ素膜1004中に節が1箇所あり、節の上下それぞれ変位の向きが異なる2箇所の腹が存在するモードであり、いわゆる1次モードである。
 多結晶酸化ケイ素膜1004中に複数の節を有している高次モードも存在し得る。しかし、上記高次モード以外の高次モードの応答は小さいため問題とはならない。
 なお、上記特許文献2では、弾性表面波装置において、反射係数の増大及び挿入損失の低減を図ることができる電極構造として、上記特定の積層構造が開示されているだけであり、弾性波装置における高次モードによるスプリアスを抑圧する構成については何ら記載されていない。
 前述した通り、SiO膜がIDT電極を覆うように形成されている弾性波装置では、SiO膜を厚くすると、高次モードによるスプリアスが大きくなり、周波数温度特性の改善と、高次モードによるスプリアスの抑圧とはトレードオフの関係にあった。
 本発明の目的は、上述した従来技術の欠点を解消し、LiNbO基板からなる圧電体上にSiO層からなる誘電体層が積層されている構造を有する弾性波装置であって、周波数温度特性が優れており、かつ高次モードによるスプリアスを充分に抑圧し得る弾性波装置を提供することにある。
 本発明によれば、LiNbO基板からなる圧電体と、圧電体上に積層されたSiO層からなる第1の誘電体層と、第1の誘電体層に積層されており、第1の誘電体層よりも音速が速い第2の誘電体層と、圧電体と第1の誘電体層との界面に設けられたIDT電極とを備え、IDT電極が、PtまたはPtを主成分とする合金からなる少なくとも1層の第1の電極膜と、AlまたはAlを主成分とする合金からなる第2の電極膜とが積層された積層構造を主体としており、LiNbO基板のオイラー角(φ,θ,ψ)のφ及びθが、それぞれ、φ=0±2°及び80°≦θ≦130°の範囲内にあり、SH波を主成分とする弾性波を用いる弾性波装置であって、ψが5°≦ψ≦30°の範囲内にあり、弾性波の波長をλ、第1の電極膜の膜厚をhとすると、規格化膜厚h/λとψとが、下記の式(1)を満たしている、弾性波装置が提供される。
 h/λ×100≦0.0019×ψ2+0.0115×ψ+3.0  ………式(1)
 本発明に係る弾性波装置の特定の局面では、LiNbO基板のオイラー角のθは、105°≦θ≦120°の範囲内にある。その場合には、SH波を主成分とする弾性波の応答の近傍に現れる不要モード応答を抑制することができる。すなわち、弾性波装置が、SH波を主成分とする弾性境界波を用いる弾性境界波装置である場合には、不要モードであるストンリー波の電気機械結合係数を小さくできるため、不要モード応答を抑制できる。
 本発明に係る弾性波装置の他の特定の局面では、規格化膜厚h/λが0.0295以上である。この場合には、基本モードの漏洩をより効果的に防止することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、第2の誘電体層が、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化窒化ケイ素、及びダイヤモンドライクカーボンからなる群から選択された少なくとも1種の誘電体材料であって、遅い横波音速が、5000m/秒以上の誘電体材料からなる。
 また、本発明に係る弾性波装置のさらに別の他の特定の局面では、IDT電極が、第3の電極膜をさらに有し、第3の電極膜が、Au、Ag、Cu、Ta、W、Ni、Fe、Cr、Mo、及びTi並びにこれらの金属を主成分とする合金からなる群から選択された1種の金属からなる。この場合には、IDT電極の反射係数を大きくすることができる。
 本発明に係る弾性波装置では、LiNbO基板からなる圧電体が負の周波数温度係数(TCF)を有するが、SiO層からなる第1の誘電体層が正の周波数温度係数(TCF)を有するため、周波数温度係数(TCF)の絶対値を小さくすることができ、しかもLiNbO基板のオイラー角のψが上記特定の範囲内にあり、かつIDT電極が上記積層構造を有し、PtまたはPtを主成分とする合金からなる第1の電極膜の膜厚をh、SH波を主成分とする弾性波の波長をλとしたときの規格化膜厚h/λが上記式(1)を満たす範囲内とされているため、高次モードによるスプリアスを確実に抑圧することができる。
 従って、周波数温度特性の改善と、高次モードによるスプリアスの抑圧とを両立することが可能となる。
図1(a)及び(b)は、本発明の一実施形態に係る弾性境界波装置の要部を示す部分切欠拡大正面断面図及び電極構造を示す模式的平面図である。 図2は、本発明の一実施形態に係る弾性境界波装置の伝送特性を示す図である。 図3は、本発明の一実施形態に係る弾性境界波装置の伝送特性を示す図である。 図4は、本発明の一実施形態における、IDT電極の第1の電極膜の規格化膜厚h/λと、LiNbO基板のオイラー角のψと高次モードのレスポンスとの関係を示す図である。 図5は、オイラー角が(0°,90°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図6は、オイラー角が(0°,95°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図7は、オイラー角が(0°,100°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図8は、オイラー角が(0°,105°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図9は、オイラー角が(0°,110°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図10は、オイラー角が(0°,115°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図11は、オイラー角が(0°,120°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図12は、オイラー角が(0°,125°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図13は、オイラー角が(0°,130°,ψ)であるLiNbO基板における速い横波音速と遅い横波音速のψとの関係を示す図である。 図14は、本発明の一実施形態に係る弾性境界波装置におけるオイラー角ψと、周波数温度係数(TCF)との関係を示す図である。 図15は、本発明の一実施形態に係る弾性境界波装置の電極構造を示す模式的に平面断面図である。 図16は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,90°,0°)の場合のインピーダンス特性を示す図である。 図17は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,90°,0°)の場合の位相特性を示す図である。 図18は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,100°,0°)の場合のインピーダンス特性を示す図である。 図19は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,100°,0°)の場合の位相特性を示す図である。 図20は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,127°,0°)の場合のインピーダンス特性を示す図である。 図21は、本発明の一実施形態に係る弾性境界波装置の、LiNbO基板のオイラー角が(0°,127°,0°)の場合の位相特性を示す図である。 図22は、本発明の他の実施形態に係る弾性表面波装置を説明するための模式的正面断面図である。 図23は、従来の弾性境界波装置の模式的平面図である。 図24は、従来の弾性境界波装置の要部を拡大して示す模式的部分切欠正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1(a)は、本発明の一実施形態に係る弾性境界波装置の要部を示す部分切欠拡大正面断面図であり、図1(b)は、該弾性境界波装置の電極構造を示す模式的平面図である。
 弾性境界波装置1は、SH波を主成分とする弾性境界波を用いる弾性境界波装置である。なお、固体内を伝搬するバルク波には、縦波と、速い横波と、遅い横波の3種類があることが知られており、それぞれ、P波、SH波、SV波と呼ばれている。これら3種類のバルク波のうち、もっとも低音速のバルク波が、遅い横波である。
 図1(a)に示すように、弾性境界波装置1は、LiNbO基板からなる圧電体2を有する。圧電体2上に、SiO層からなる第1の誘電体層6が積層されている。
 圧電体2と第1の誘電体層6との界面に、IDT電極3A~3Cが形成されている。図1(a)では、IDT電極3Bの1本の電極指部分が拡大して断面図で示されている。実際には、図1(b)に示されているように、圧電体2上に、弾性境界波伝搬方向に沿って順に配置されたIDT電極3A~3Cが配置されている。IDT電極3A~3Cの弾性境界波伝搬方向両側に、反射器4,5が配置されている。従って、本実施形態では、3IDT型の縦結合共振子型弾性境界波フィルタが構成されている。ここで、IDT電極3A,3Cの各一端が不平衡端子12に接続されており、各他端はグラウンド電位に接続されている。また、IDT電極3Bの一端が第1の平衡端子13に、他端が第2の平衡端子14に接続されている。従って、本実施形態の弾性境界波装置1は、平衡-不平衡変換機能を有する3IDT型の縦結合共振子型弾性境界波フィルタである。
 IDT電極3A~3Cは、互いに間挿し合う複数本の電極指を有する。図1(a)では、IDT電極3Bの1本の電極指3aが拡大して示されている。
 IDT電極3A~3C及び反射器4,5は適宜の金属材料からなる。本実施形態では、図1(a)に拡大して示されているように、IDT電極3Bの電極指3aは、圧電体2側から順に、Ti膜11a、Pt膜11b、Ti膜11c、Al膜11d、Ti膜11e,Pt膜11f及びTi膜11gをこの順序で積層することにより得られた積層金属膜からなる。上記積層金属膜において、Pt膜11b、Al膜11d及びPt膜11fが、Ti膜11a,11c,11e,11gに比べて相対的に厚くされている。これらのPt膜11b、Al膜11d及びPt膜11fが、主たる電極膜であり、本発明における積層構造を構成している。
 すなわち、Pt膜11b,11fが、本発明における第1の電極膜に相当し、Al膜11dが第2の電極膜に相当する。本発明において、上記積層構造を構成する第1の電極膜は、Ptを主成分とする合金からなる膜であってもよい。同様に、第2の電極膜は、Alを主成分とする合金からなる膜であってもよい。
 また、本実施形態のように、第1の電極膜は、複数のPt膜11b,11fを有していてもよい。この場合、第1の電極膜の膜厚hとは、全Pt膜の厚みの合計をいうものとする。すなわち、積層構造における第1の電極膜の膜厚hは、積層構造中の第1の電極膜が複数の場合、複数の第1の電極膜の合計の厚みをいうものとする。また、上記積層構造は、複数の第2の電極膜を有していてもよい。
 Ti膜11aは、IDT電極3Bの圧電体2への密着性を高める密着層として機能する。Ti膜11c,11eは、上下両側の電極膜間における拡散を抑制するバリア層として形成されている。すなわち、Pt膜11b,11fと、Al膜11dとの間の原子の拡散を抑制するために、Ti膜11c,11eが形成されている。さらに、Ti膜11gは、第1の誘電体層6とPt膜11fとを密着させる密着層として形成されている。IDT電極3Bは、全体がこのような積層金属膜により形成されており、IDT電極3A,3Cと反射器4,5も同じ積層金属膜により形成される。
 本実施形態の弾性境界波装置1では、上記IDT電極3A~3Cを覆うように、圧電体2の上面に第1の誘電体層6が積層されており、さらに第1の誘電体層6の上に第2の誘電体層7が積層されている。本実施形態では、第2の誘電体層7はSiN層からなる。
 上記SiO層からなる第1の誘電体層6及びSiN層からなる第2の誘電体層7は、蒸着、スパッタリング等の適宜の薄膜形成方法により形成することができる。第2の誘電体層7は、特開平10-84247号公報に示されているように、基板貼り合わせ工法により形成してもよい。
 第1の誘電体層6の厚みについては、特に限定されるものではないが、SH波を主成分とする弾性境界波の波長をλとすると0.2λ~0.7λ程度であることが好ましい。第1の誘電体層6であるSiO層は、第2の誘電体層7であるSiN層や圧電体2であるLiNbO基板よりも横波音速が遅いため、IDT電極3A~3Cで励振されたSH波を主成分とする弾性境界波が、第2の誘電体層7であるSiN層と圧電体2であるLiNbO基板との間、すなわち上記SiO層からなる第1の誘電体層6中にエネルギーに集中させて伝搬する。このような伝搬を可能とするために、第1の誘電体層6の厚みは、0.2λ~0.7λ程度であることが好ましい。
 第2の誘電体層7の厚みは、弾性境界波が十分に閉じ込められる厚みに設定する。すなわち、第2の誘電体層7の厚み方向に向かって、弾性境界波の変位が小さくなり、第2の誘電体層7の表面における弾性境界波の変位が略ゼロとなる厚みに設定する。変位が略ゼロとみなせる厚みは、例えば、SH波を主成分とする弾性境界波の波長をλとすると1λ以上である。
 また、前述したIDT電極3A~3Cを含む電極構造についても、公知のフォトリソグラフィー法を用いて形成することができる。
 本実施形態の弾性境界波装置1では、上記LiNbO基板からなる圧電体2と、SiO層からなる第1の誘電体層6との界面に設けられたIDT電極3A~3Cにより励振されたSH波を主成分とする弾性境界波が、第1の誘電体層6中にエネルギーを集中させて伝搬する。ここで、第2の誘電体層7は、SiN層からなり、その横波音速がSiO層からなる第1の誘電体層6の横波音速よりも速くされている。従って、弾性境界波が、SiN層からなる第2の誘電体層7側には漏洩し難く、弾性境界波は、SiO層からなる第1の誘電体層6中にエネルギーを確実に集中させて伝搬する。
 さらに、弾性境界波装置1では、圧電体2であるLiNbO基板の周波数温度係数(TCF)は負の値であるが、第1の誘電体層6であるSiO層の周波数温度係数(TCF)は正の値であるため、全体として周波数温度係数(TCF)の絶対値を小さくすることができる。よって、温度変化による周波数変動を小さくすることが可能とされている。
 加えて、本実施形態の特徴は、圧電体2であるLiNbO基板のオイラー角(φ,θ,ψ)が、φ=0±2°、80°≦θ≦130°、5°≦ψ≦30°の範囲内とされており、かつIDT電極3A~3Cが、Pt膜11b,11fとAl膜11dとの積層構造を有し、Pt膜11b,11fの合計の膜厚をhとしたときの規格化膜厚h/λが、下記の式(1)を満たすことにあり、それによって、高次モードによるスプリアスを効果的に抑圧することができる。なお、φは0°であることが最も好ましいが、製造ばらつきを考慮すると、0±2°であればよい。
 h/λ×100≦0.0019×ψ2+0.0115×ψ+3.0  ………式(1)
 式(1)において、λはSH波を主成分とする弾性境界波の波長を示す。
 なお、IDT電極の積層構造における上記Pt膜の全体の膜厚hとは、Pt層が1層の場合にはその厚み、複数層の場合には複数層の厚みの合計をいうものとする。
 図2~図31を参照して、周波数温度特性を改善しつつ、高次モードによるスプリアスを効果的に抑圧し得ることを明らかにする。
 上記実施形態に従って、以下の実験例1,2のGSM1900の受信フィルタを作製した。なお、携帯電話機のGSM1900の受信フィルタの仕様は、以下の通りである。
 通過帯域:1930~1900MHz
 通過帯域内挿入損失:2.5dB以下
 低域側阻止帯域:1830~1910MHz
 低域側阻止帯域における減衰量:12dB以上
 高域側阻止帯域:2010~2070MHz
 高域側阻止帯域における減衰量:12dB以上
 上記仕様を満たすように、以下の構成の実験例1の弾性境界波装置1を作製した。
 IDT電極3A~3Cの電極膜厚及び電極構成:
 積層構造における上方のPt膜11fの膜厚:31nm
 規格化膜厚:0.0178
 下方のPt膜11bの膜厚:31nm
 規格化膜厚:0.0178
 Al膜11dの膜厚:260nm
 規格化膜厚:0.0149
 密着層及びバリア層としてのTi膜11a,11c,11e,11gの膜厚:40nm
 規格化膜厚:0.023
 また、以下に示す実験例2の弾性境界波装置も同様にして作製した。
 実験例2の弾性境界波装置では、IDT電極3A~3Cの電極の膜厚の絶対値及び電極構成は上記実験例1と同様とした。もっとも、IDT電極3A~3Cにおける電極指ピッチで定まる弾性境界波の波長λは、実験例1では、λ=1.7μmとし、実験例2では、λ=1.49μmとした。従って、実験例2では、Pt膜11f,11bの規格化膜厚は、それぞれ、0.016となり、Al膜11dの規格化膜厚は0.0134とした。また、Pt膜11a,11c,11e,11gの各規格化膜厚は、0.0206とした。
 SiO層からなる第1の誘電体層6の膜厚は590nmとした。第1の誘電体層6の規格化膜厚は、実験例1では0.339λ、実験例2では0.304λとなる。
 SiN層からなる第2の誘電体層7の膜厚は2200nmとした。第2の誘電体層7の規格化膜厚は、実験例1では1.264λ、実験例2では1.134λとなる。
 なお、上記実験例2は、電極指ピッチで定まる弾性境界波の波長が1.74μmから1.94μmとしたこと、それに従って各層の膜厚の規格化膜厚が上記のように実験例1と若干異なることを除いては、実験例1と同様に構成した。
 IDT電極3A~3Cにおける電極指交叉幅は42λとした。また、IDT電極3Bにおける電極指の総本数は36本とした。IDT電極3Bでは、両側の端部に狭ピッチ電極指部を設け、各狭ピッチ電極指部における電極指の本数は、各3本とし、従って、残りの電極指の本数は36-6=30本とした。
 IDT電極3A,3Cにおいては、電極指の総本数は19本とした。IDT電極3A,3Cでは、IDT電極3Bと隣り合う側の端部に狭ピッチ電極指部を設け、IDT電極3Bと隣り合う側の端部の3本の電極指を狭ピッチ電極指部を構成する電極指とした。
 反射器4,5における電極指の本数は61本とした。
 IDT電極3A~3Cにおけるデューティ比は0.50とした。
 図2は上記実験例1の伝送特性を、図3は上記実験例2の伝送特性を示す。図2及び図3において、矢印Aが基本モードによる応答であり、矢印Bが高次モードによる応答を示す。図2に示すように、実験例1では高次モードのレスポンスは15dBである。図3に示すように、実験例2では、高次モードのレスポンスは25dBである。GSM系のブロッキングの規格は、通過帯域内の挿入損失+23dBである。一般に、通過帯域内の挿入損失は約2dBであるため、高次モードのレスポンスは少なくとも25dBが必要である。従って、図3に示す高次モードのレベルに、高次モードのレスポンスを抑制することが好ましい。
 図4は、上記実施形態の構造において、IDT電極3A~3Cにおいて、上記積層構造中の第1の電極膜であるPt膜11b,11fの厚みの合計の膜厚をh、SH波を主成分とする弾性境界波の波長をλとしたときの規格化膜厚h/λと、圧電体2であるLiNbO基板のオイラー角のψを変化させたときの高次モードのレスポンスの変化を示す。なお、図4における記号X1~X15は、それぞれ、高次モードのレスポンスのレベルが下記の表1に示す範囲の領域であることを示す。
Figure JPOXMLDOC01-appb-T000001
 なお、図4においては、規格化膜厚h/λは0.0295~0.0365、すなわち2.95%~3.65%の範囲で変化させた。また、伝搬方位ψは0°~15°の範囲で変化させた。
 高次モードのレスポンスのレベルが25dB以上となる領域は、上記X1~X9であり、図4の破線Cよりも左上の領域となる。このような領域は、以下の式(1)で表わされる。
 h/λ×100≦0.0019×ψ2+0.0115×ψ+3.0  ………式(1)
 すなわち、上記式(1)の右辺は、図4の破線Cを近似することにより得られたものである。
 従って、式(1)を満たす範囲では、すなわちオイラー角(0°,115°,ψ)のLiNbO基板を圧電体として用いた上記構造においては、オイラー角のψを0°~30°の範囲とした場合、第1の電極膜の膜厚をh、SH波を主成分とする弾性境界波の波長をλとしたときの規格化膜厚h/λを上記式(1)を満たす範囲とすることにより、高次モードのレスポンスを効果的に抑制し得ることがわかる。
 本実施形態の弾性境界波装置1では、相対的に低音速の媒質SiO層からなる第1の誘電体層6を、相対的に高音速の媒質であるLiNbO基板からなる圧電体2と、SiN層からなる第2の誘電体層7とで挟むことにより、導波路効果により弾性境界波を第1の誘電体層6に閉じ込めている。従って、伝搬する弾性境界波の音速が相対的に高音速の媒質の音速よりも速くなった場合には、弾性境界波が漏洩モードとなって減衰が大きくなる。高次モードの音速がある一定以上となると、レスポンスが小さくなるのは、高次モードの音速がLiNbO基板の速い横波音速を超えることにより、高次モードがLiNbO基板方向へ漏洩しているためと考えられる。従って、LiNbO基板の速い横波音速を遅くすることができれば、高次モードのレスポンスを小さくすることができる。
 図5~図13は、LiNbO基板の速い横波の音速及び遅い横波の音速のオイラー角(0°,θ,ψ)の様々なψに対する依存性を示す。図5~図13から明らかなように、θが90°~130°の範囲内においては、θの値にかかわらず、ψが大きくなるほど速い横波音速が低くなり、ψを大きくするほど、高次モードのレスポンスを小さくすることができる。
 なお、LiNbO基板の速い横波音速のψに対する依存性は、ψが5°より小さい範囲では、ψ=0°の場合とほとんど変わらない。もっとも、ψが5°を超えると、速い横波音速が大きく低下する。従って、ψは5°以上であることが必要である。
 もっとも、ψがあまり大きくなると、基本モードの電気機械結合係数が低下する。本発明者の検討によれば、ψが30°よりも大きくなると、必要な電気機械結合係数を満たし得ないことがわかった。従って、用途によっても異なるが、例えば、携帯電話機のRF段の帯域フィルタとして用いる場合には、必要となる電気機械結合係数を確保するには、ψは30°以下であることが必要である。
 また、IDT電極3A~3Cの膜厚が薄くなりすぎると、IDT電極3A~3Cの質量が小さくなり、導波路効果が失われる。その結果、基本モードが漏洩するおそれがある。従って、IDT電極3A~3Cにおいて、主たる構成である上記積層構造における第1の電極膜の規格化膜厚h/λはある程度の値以上大きいことが望ましく、本願発明者の実験によれば、規格化膜厚h/λは、0.0295以上、すなわち2.95%以上とすることが望ましく、その場合には、基本モードの漏洩を著しく小さくすることが確かめられている。
 なお、図14は、LiNbO基板を圧電体2として用いて構成された上記弾性境界波装置1における周波数温度係数(TCF)と、LiNbO基板のオイラー角(0°,115°,ψ)のψとの関係を示す図である。図14から明らかなように、ψ=0°の場合に比べ、ψが5°、10°、15°、20°及び30°とされた場合においても、周波数温度係数(TCF)はほとんど変化していないことがわかる。従って、上記実施形態によれば、周波数温度特性の劣化を招くことなく、言い換えれば、SiO層からなる第1の誘電体層6の形成による周波数温度特性の改善効果を確保しつつ、高次モードによるスプリアスを抑圧し得ることがわかる。
 次に、圧電体2であるLiNbO基板のオイラー角のθの範囲が90°~127°の範囲であることが好ましい理由について説明する。本発明の一実施形態に係る弾性境界波装置として、図15に示す電極構造を有する1ポート型弾性境界波共振子を用意した。図15において、弾性境界波共振子21は、IDT電極23と、IDT電極23の弾性境界波伝搬方向両側に配置された反射器24,25とを有する。IDT電極23は図示のように交叉幅重み付けが施されている。このような構造を有し、IDT電極23を覆うように上記実施形態と同様にSiO層からなる第1の誘電体層及びSiN層からなる第2の誘電体層が積層されている構造において、オイラー角のθを変化させ、共振特性を測定した。
 図16及び図17は、オイラー角が(0°,90°,0°)の場合のインピーダンス特性及び位相特性を示し、図18及び図19は、オイラー角が(0°,100°,0°)の場合のインピーダンス特性及び位相特性を示し、図20及び図21は、オイラー角が(0°,127°,0°)の場合のインピーダンス特性及び位相特性を示す。
 図18~図21から明らかなように、オイラー角のθが90°,100°及び127°のいずれの場合においても、矢印Aで示す基本モードのレスポンスにおいてインピーダンス比が60dB以上であり、十分な大きさの電気機械結合係数が確保されていることがわかる。従って、オイラー角θは、90°~127°の範囲内にあればよい。それによって、挿入損失を十分に小さくすることができる。
 また、上記実施形態では、第2の誘電体層7、すなわち第1の誘電体層6の上方に積層される相対的に高音速の誘電体材料として、SiNを示したが、SiOよりも横波音速が早く、少なくとも5000m/秒以上の横波音速である適宜の誘電体を用いることができる。このような誘電体としては、SiN、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、ケイ素(Si)、酸化窒化ケイ素(SiON)またはダイヤモンドライクカーボン(DLC)などを挙げることができる。
 また、IDT電極は、PtもしくはPtを主成分とする合金からなる第1の電極膜と、AlもしくはAlを主成分とする合金からなる第2の電極膜とを有する積層構造を必須の構成とするが、上記実施形態のように、Ti膜などの他の金属からなる第3の電極膜がさらに積層されていてもよい。このような金属としては、Au、Ag、Cu、Ta、W、Ni、Fe、Cr、MoまたはTiまたはこれらの金属を主成分とする合金が挙げられる。いずれにもしても、SiOに比べて密度が高い適宜の金属を用いることができる。SiOよりも密度の高い金属を用いることにより、IDT電極における反射係数を高めることができる。
 また、上記実施形態のTi層のように、隣り合う電極膜間における相互拡散を防止するためのバリア層として、第1,第2の金属膜以外の金属層を積層してもよく、隣り合う電極膜同士の密着性を高める密着層としてTi層などの他の金属もしくは合金からなる金属層を設けてもよい。
 また、本発明における弾性境界波装置では、電極構造すなわち共振子やフィルタを構成する電極構造自体は特に限定されるものではなく、図示の電極構造以外の様々な弾性波装置の電極構造を用いることができる。
 さらに、本発明は、弾性境界波装置に限らず、SH波を主成分とする弾性表面波を利用した弾性表面波装置にも適用することができる。
 図22は、本発明の第2の実施形態としての弾性表面波装置を模式的に示す正面断面図である。なお、本実施形態の弾性表面波装置31では、圧電体32上に、IDT電極33が形成されている。IDT電極33を覆うように、SiO層からなる第1の誘電体層36が形成されている。ここで、IDT電極33の電極構造は、図1(b)に示したIDT電極3A~3Cと同様とされている。また、IDT電極33の弾性表面波伝搬方向両側に、反射器34,35が配置されている。従って、1ポート型の弾性表面波共振子が構成されている。このような弾性表面波装置31においても、本発明に従ってLiNbO基板からなる圧電体上に、SiO層からなる第1の誘電体層及び第2の誘電体層を積層し、上記式(1)を満たすように構成することにより、周波数温度特性を改善しつつ、高次モードによるスプリアスを抑圧することができる。
 なお、本明細書において、基板の切断面と弾性境界波の伝搬方向を表現するオイラー角(φ,θ,ψ)は、文献「弾性波素子技術ハンドブック」(日本学術振興会弾性波素子技術第150委員会、第1版第1刷、平成13年11月30日発行、549頁)記載の右手系オイラー角を用いた。
 すなわち、LiNbO基板の結晶軸X、Y,Zに対し、Z軸を軸としてX軸を反時計廻りにφ回転しXa軸を得る。
 次に、Xa軸を軸としてZ軸を反時計廻りにθ回転しZ´軸を得る。
 Xa軸を含み、Z´軸を法線とする面を基板の切断面とした。
 そして、Z´軸を軸としてXa軸を反時計廻りにψ回転した軸X´方向を弾性波の伝搬方向とした。
 また、オイラー角の初期値として与えるLiNbO基板の結晶軸X,Y,Zは、Z軸をc軸と平行とし、X軸を等価な3方向のa軸のうち任意の1つと平行とし、Y軸はX軸とZ軸を含む面の法線方向とする。
 なお、本明細書におけるオイラー角(θ,φ,ψ)は、結晶学的に等価なオイラー角を含むものとする。LiNbOは三方晶系の3m点群に属する結晶であるため、以下の式が成り立つ。
  F(φ、θ,ψ)=F(60°+φ,-θ,ψ)
          =F(60°-φ,-θ,180°-ψ)
          =F(φ,180°+θ,180°-ψ)
          =F(φ,θ,180°+ψ)
 1…弾性境界波装置
 2…圧電体
 3A~3C…IDT電極
 3a…電極指
 4,5…反射器
 6…第1の誘電体層
 7…第2の誘電体層
 11a…Ti膜
 11b…Pt膜
 11c…Ti膜
 11d…Al膜
 11e…Ti膜
 11f…Pt膜
 11g…Ti膜
 12…不平衡端子
 13,14…第1,第2の平衡端子
 21…弾性境界波共振子
 23…IDT電極
 24,25…反射器
 31…弾性表面波装置
 32…圧電体
 33…IDT電極
 34,35…反射器
 36…第1の誘電体層

Claims (5)

  1.  LiNbO基板からなる圧電体と、
     前記圧電体上に積層されたSiO層からなる第1の誘電体層と、
     前記第1の誘電体層に積層されており、第1の誘電体層よりも音速が速い第2の誘電体層と、
     前記圧電体と前記第1の誘電体層との界面に設けられたIDT電極とを備え、
     前記IDT電極が、PtまたはPtを主成分とする合金からなる少なくとも1層の第1の電極膜と、AlまたはAlを主成分とする合金からなる第2の電極膜とが積層された積層構造を主体としており、
     前記LiNbO基板のオイラー角(φ,θ,ψ)のφ及びθが、それぞれ、φ=0±2°及び80°≦θ≦130°の範囲内にあり、SH波を主成分とする弾性波を用いる弾性波装置であって、
     ψが5°≦ψ≦30°の範囲内にあり、弾性波の波長をλ、第1の電極膜の膜厚をhとすると、規格化膜厚h/λとψとが、下記の式(1)を満たしている、弾性波装置。
     h/λ×100≦0.0019×ψ2+0.0115×ψ+3.0  ………式(1)
  2.  前記LiNbO基板のオイラー角のθが105°≦θ≦120°の範囲内にある、請求項1に記載の弾性波装置。
  3.  前記規格化膜厚h/λが0.0295以上である、請求項1または2に記載の弾性波装置。
  4.  前記第2の誘電体層が、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化窒化ケイ素、及びダイヤモンドライクカーボンからなる群から選択された少なくとも1種の誘電体材料であって、遅い横波音速が、5000m/秒以上の誘電体材料からなる、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記IDT電極が、第3の電極膜をさらに有し、第3の電極膜が、Au、Ag、Cu、Ta、W、Ni、Fe、Cr、Mo、及びTi並びにこれらの金属を主成分とする合金からなる群から選択された1種の金属からなる、請求項1~4のいずれか1項に記載の弾性波装置。
PCT/JP2010/051570 2009-03-30 2010-02-04 弾性波装置 WO2010116783A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011508267A JPWO2010116783A1 (ja) 2009-03-30 2010-02-04 弾性波装置
US13/248,137 US8143762B2 (en) 2009-03-30 2011-09-29 Elastic wave device using SH waves as the principal component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-082452 2009-03-30
JP2009082452 2009-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/248,137 Continuation US8143762B2 (en) 2009-03-30 2011-09-29 Elastic wave device using SH waves as the principal component

Publications (1)

Publication Number Publication Date
WO2010116783A1 true WO2010116783A1 (ja) 2010-10-14

Family

ID=42936072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051570 WO2010116783A1 (ja) 2009-03-30 2010-02-04 弾性波装置

Country Status (3)

Country Link
US (1) US8143762B2 (ja)
JP (1) JPWO2010116783A1 (ja)
WO (1) WO2010116783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610916A (zh) * 2012-03-01 2012-07-25 西安电子科技大学 具有陷波特性的小型超宽带天线

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490333B1 (en) * 2009-10-13 2019-09-04 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP5637068B2 (ja) * 2010-08-27 2014-12-10 株式会社村田製作所 弾性境界波装置の製造方法および弾性境界波装置
CN103119847B (zh) * 2010-12-28 2016-01-20 京瓷株式会社 弹性波元件及使用该弹性波元件的弹性波装置
JP5751278B2 (ja) * 2013-05-15 2015-07-22 株式会社村田製作所 圧電バルク波共振子
DE112015001209B4 (de) * 2014-03-13 2021-06-24 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen
JP6589983B2 (ja) * 2015-07-02 2019-10-16 株式会社村田製作所 弾性波装置
JP2019057835A (ja) * 2017-09-21 2019-04-11 株式会社村田製作所 弾性波装置
JP6913619B2 (ja) * 2017-12-12 2021-08-04 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114930A1 (ja) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2008108215A1 (ja) * 2007-03-06 2008-09-12 Murata Manufacturing Co., Ltd. 弾性境界波装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702050B2 (ja) 1996-09-09 2005-10-05 株式会社東芝 弾性境界波デバイス
US6014053A (en) 1997-05-12 2000-01-11 Philips Electronics North America Corporation Amplifier MOS biasing circuit for a avoiding latch-up
JP4182157B2 (ja) * 2002-08-12 2008-11-19 株式会社村田製作所 表面波装置
JP4180985B2 (ja) * 2003-07-07 2008-11-12 富士通メディアデバイス株式会社 弾性表面波デバイス及びその製造方法
KR100850861B1 (ko) * 2004-01-19 2008-08-06 가부시키가이샤 무라타 세이사쿠쇼 탄성 경계파 장치
DE102004058016B4 (de) 2004-12-01 2014-10-09 Epcos Ag Mit akustischen Oberflächenwellen arbeitendes Bauelement mit hoher Bandbreite
DE112007001259B4 (de) * 2006-05-30 2015-07-23 Murata Manufacturing Co., Ltd. Schallwellenvorrichtung
JP5154285B2 (ja) * 2007-05-28 2013-02-27 和彦 山之内 弾性境界波機能素子
JP4973732B2 (ja) * 2007-07-30 2012-07-11 株式会社村田製作所 弾性波装置
CN101939911A (zh) * 2008-02-05 2011-01-05 株式会社村田制作所 弹性边界波装置
WO2009139108A1 (ja) * 2008-05-12 2009-11-19 株式会社村田製作所 弾性境界波装置
JP2010193429A (ja) * 2009-01-26 2010-09-02 Murata Mfg Co Ltd 弾性波装置
JP5581739B2 (ja) * 2009-04-14 2014-09-03 株式会社村田製作所 弾性境界波装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114930A1 (ja) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. 弾性境界波装置
WO2008108215A1 (ja) * 2007-03-06 2008-09-12 Murata Manufacturing Co., Ltd. 弾性境界波装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610916A (zh) * 2012-03-01 2012-07-25 西安电子科技大学 具有陷波特性的小型超宽带天线
CN102610916B (zh) * 2012-03-01 2014-08-20 西安电子科技大学 具有陷波特性的小型超宽带天线

Also Published As

Publication number Publication date
US8143762B2 (en) 2012-03-27
JPWO2010116783A1 (ja) 2012-10-18
US20120019101A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2010116783A1 (ja) 弾性波装置
US9276558B2 (en) Surface acoustic wave device including a confinement layer
US8264122B2 (en) Acoustic wave device
JP5035421B2 (ja) 弾性波装置
JP4483785B2 (ja) 弾性境界波装置
WO2012086441A1 (ja) 弾性波装置及びその製造方法
JP5187444B2 (ja) 弾性表面波装置
KR100839788B1 (ko) 탄성 경계파 장치
US8629598B2 (en) Boundary acoustic wave device
JP5141763B2 (ja) 弾性境界波装置
JP4811516B2 (ja) 弾性境界波装置
JP2013240105A (ja) 弾性表面波装置
JPWO2006114930A1 (ja) 弾性境界波装置
JPWO2005099091A1 (ja) 弾性境界波フィルタ
WO2006126327A1 (ja) 弾性境界波装置
WO2020204045A1 (ja) 高次モード弾性表面波デバイス
JP7497750B2 (ja) 弾性波装置
JP4947055B2 (ja) 弾性境界波装置
JP5273247B2 (ja) ラダー型フィルタ
WO2009090715A1 (ja) 弾性表面波装置
KR20220044321A (ko) 탄성파 필터
JP2009194895A (ja) 弾性表面波装置
JP5299521B2 (ja) 弾性境界波装置
JP2012169760A (ja) 弾性表面波装置
WO2021172032A1 (ja) 弾性波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508267

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761485

Country of ref document: EP

Kind code of ref document: A1