WO2006121090A1 - 白色プリプレグ、白色積層板、及び金属箔張り白色積層板 - Google Patents

白色プリプレグ、白色積層板、及び金属箔張り白色積層板 Download PDF

Info

Publication number
WO2006121090A1
WO2006121090A1 PCT/JP2006/309422 JP2006309422W WO2006121090A1 WO 2006121090 A1 WO2006121090 A1 WO 2006121090A1 JP 2006309422 W JP2006309422 W JP 2006309422W WO 2006121090 A1 WO2006121090 A1 WO 2006121090A1
Authority
WO
WIPO (PCT)
Prior art keywords
white
epoxy resin
weight
glycidyl
metal foil
Prior art date
Application number
PCT/JP2006/309422
Other languages
English (en)
French (fr)
Inventor
Hiroshi Okumura
Original Assignee
Risho Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risho Kogyo Co., Ltd. filed Critical Risho Kogyo Co., Ltd.
Priority to US11/920,399 priority Critical patent/US20090194320A1/en
Priority to DE602006011456T priority patent/DE602006011456D1/de
Priority to EP06746232A priority patent/EP1887031B1/en
Priority to CN200680024753XA priority patent/CN101218285B/zh
Priority to CA2608179A priority patent/CA2608179C/en
Publication of WO2006121090A1 publication Critical patent/WO2006121090A1/ja
Priority to HK09100274.8A priority patent/HK1120283A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2956Glass or silicic fiber or filament with metal coating

Definitions

  • the present invention relates to a white laminate used as a printed wiring board for mounting a light emitting diode, a metal foil-clad white laminate, and the white laminate and the metal foil-clad white laminate produced by stacking It is related with the white pre-preda.
  • LEDs light emitters
  • the light emitting method of the white LED is a type in which a blue light emitting element and a yellow phosphor are used in combination, a combination type of three primary colors of red, blue and green, or an ultraviolet light emitting element and a phosphor in combination. There are other types.
  • thermosetting resin for blue and white chip LEDs, reflection in the short wavelength region of visible light is important, and white ones in which a thermosetting resin contains a titanium dioxide or the like as a coloring pigment have been conventionally used. ing.
  • the conventional white laminates for printed wiring boards have a problem that the thermosetting resin portion is discolored due to long-term use or heat during processing, resulting in a decrease in reflectance.
  • the type of LED that uses ultraviolet light emitting elements has been unsuitable for mounting high-brightness LEDs in recent years because the substrate on which the LED chip is mounted deteriorates and changes color due to ultraviolet light. For this reason, there is a strong demand for substrates with very little discoloration due to ultraviolet rays and heat.
  • high thickness accuracy is required so as not to cause problems such as liquid leakage through the sealing process of the chip LED, and a substrate having both is required.
  • a white pre-printer for a printed wiring board with extremely little deterioration and discoloration caused by heat or ultraviolet rays and extremely low reflectance reduction and one white pre-predder
  • the inventors have invented a white laminated board in which a plurality of sheets are laminated and a metal foil-clad white laminated board in which metal foils are laminated.
  • the white laminate and the metal foil-clad white laminate have high heat resistance, and have excellent plate thickness accuracy and excellent workability.
  • the present invention has the following configurations (1) to (13).
  • the white pre-preda of the present invention comprises an epoxy resin (A) containing an alicyclic epoxy resin (A1), a glycidyl (meth) acrylate polymer (B), a white pigment (C), and a curing agent (A resinous composition (E) containing D) as an essential component is impregnated into a sheet-like glass fiber substrate and dried.
  • a resinous composition (E) containing D) as an essential component is impregnated into a sheet-like glass fiber substrate and dried.
  • the white pre-preda of the present invention preferably contains the alicyclic epoxy resin (A1).
  • Poxy rosin (A) It is characterized by containing 5 to 60% by weight in epoxy resin (A).
  • the white prepredder of the present invention is preferably the above-mentioned rosin composition (E) force (A); 20-85 weight. / 0 , (B); 5 to 40% by weight, (C); 10 to 75% by weight, (D); A blending amount of 0.5 to 2 per equivalent of epoxy group contained in (E) Further, the compositional specific power of is also characterized.
  • the white pre-preda of the present invention is preferably characterized in that the alicyclic epoxy resin (A1) has a structure represented by the following formula (1).
  • R represents hydrogen or an alkyl group having a straight chain or a side chain having 1 to 5 carbon atoms.
  • N represents an integer of 1 to 30.
  • the white pre-preda of the present invention is preferably characterized in that it is the glycidyl (meth) acrylate polymer-(B) force glycidyl (meth) acrylate copolymer.
  • the white prepredder of the present invention is preferably a copolymer of the glycidyl (meth) acrylate polymer (B) force glycidyl (meth) acrylate and a radical polymerizable monomer.
  • the white pre-preda of the present invention is preferably characterized in that the white pigment (C) is one type selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and synthetic smectite, or two or more types.
  • the white pigment (C) is one type selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and synthetic smectite, or two or more types.
  • the white pre-preda of the present invention is preferably characterized in that the white pigment (C) is titanium dioxide.
  • the white pre-preda of the present invention is preferably characterized in that the curing agent (D) is a latent curing agent.
  • the white laminate of the present invention preferably has one white pre-predder according to (1) to (9), Is characterized by being formed by heat-pressing a laminate of a plurality of sheets.
  • the metal foil-clad white laminate of the present invention is preferably heated by laminating one or more white prepregs according to (1) to (9) and further laminating metal foils. It is characterized by being formed by pressure molding.
  • the white laminate described in (10) is preferably used as a printed wiring board for mounting a chip type light emitting diode.
  • the metal foil-clad white laminate described in (11) is preferably used as a printed wiring board for mounting a chip type light emitting diode.
  • a white pre-preda for a printed wiring board which has a high reflectance in the visible light region and has extremely low discoloration due to heating and ultraviolet rays and excellent in thickness accuracy, a white laminate, and A metal foil-clad white laminate can be provided.
  • the epoxy resin (A) which is one of the components of the resin composition (E) impregnated into the sheet-like glass fiber substrate, is an alicyclic epoxy resin. (A1) must be included.
  • the alicyclic epoxy resin (A1) is one of thermosetting resins and is extremely effective as an anti-ultraviolet ray countermeasure. It is a white pre-preda that has extremely low deterioration of reflectivity with very little deterioration and discoloration due to ultraviolet rays. A white laminate and a metal foil-clad white laminate can be obtained.
  • the glass transition temperature of the cured resin resin is preferably in the range of 150 to 300 ° C, more preferably 180 to 250 ° C! /.
  • alicyclic epoxy resin (A1) in addition to the diglycidyl ether type and cyclohexenoxide type of hydrogenated bisphenol A, an epoxy group seems to be directly bonded to a condensation product of a cyclohexane derivative.
  • examples thereof include alicyclic epoxy resin (the above structural formula (1)) and the like.
  • the above-mentioned hydrogenated bisphenol A diglycidyl ether type epoxy resin has a low reactivity and varies depending on the curing agent, but the glass transition temperature of the cured product is generally about 120 ° C. Low.
  • One cyclohexene oxide type epoxy resin has a high glass transition temperature of the cured product (generally about 180 ° C to 200 ° C) but a low reactivity.
  • any alicyclic epoxy resin is known to have high UV resistance, it can be used as the epoxy resin (A) of the present invention by selecting an acid anhydride-based curing agent. Is possible. Since the alicyclic epoxy resin (A1) represented by the structural formula (1) has high heat resistance and ultraviolet resistance, it can be applied as the epoxy resin (A) of the present invention. Most preferred.
  • the alicyclic epoxy resin (A1) may cause a problem that the plate thickness accuracy is deteriorated when a pre-preda having a low melt viscosity is formed by heating and pressing.
  • the epoxy resin (A) in the resin composition (E) to be impregnated into the sheet-like glass fiber substrate is blended with other epoxy resin rather than using only the alicyclic epoxy resin (A1). It is preferable.
  • a general-purpose epoxy resin (A2) may be added to the epoxy resin (A) of the present invention in order to improve the above-mentioned problems and the manufacturing cost. That is, the proportion of the alicyclic epoxy resin (A1) in the epoxy resin (A) may be reduced, and the remainder may be replaced with the general-purpose epoxy resin (A2).
  • the added amount of the general-purpose epoxy resin (A2) is preferably 5 to 60% by weight, more preferably 30 to 50% by weight, in the epoxy resin (A). If the amount added to the epoxy resin (A) is 60% by weight or less, the effect of using the alicyclic epoxy resin (A1) will not be reduced, that is, deterioration or discoloration due to heat or ultraviolet rays will not occur. It is not likely to occur.
  • the general-purpose epoxy resin (A2) to be added to the epoxy resin (A) of the present invention includes diglycidyl ether type bisphenols (bisphenol A, F, S, etc.) and phenols (phenol).
  • diglycidyl ether type bisphenols bisphenol A, F, S, etc.
  • phenols phenol
  • novolak type, glycidylamine type, glycidyl ester type, etc. but not limited to, but not limited to, diglycidyl ether type epoxy resin of bisphenols (especially A and F)
  • diglycidyl ether type epoxy resin of bisphenols especially A and F
  • the balance between cost and performance is better.
  • An epoxy resin containing an alicyclic epoxy resin (A1), which is one of the components of the resin composition (E) impregnated in the sheet-like glass fiber base material in the white pre-preda of the present invention ( The content of A) is preferably 20 to 85% by weight of the resin composition (E) (non-volatile component). If it is 20% by weight or more, the above effect can be obtained. If it is 85% by weight or less, In addition, there is no possibility of causing the problem that the plate thickness accuracy deteriorates when the pre-preda is heat-pressed due to the low melt viscosity of alicyclic epoxy resin (Al). There is nothing.
  • an epoxy equivalent is preferably about 100 to 1000 gZeq, and a weight average molecular weight in the range of 200 to 250,000 is glycidyl (meth) attaly.
  • a rate homopolymer or a copolymer of glycidyl (meth) acrylate and a radical polymerizable monomer is preferred for improving heat resistance! /.
  • the copolymerization ratio is preferably in the range of 5 to 75% by weight of the radical polymerizable monomer with respect to glycidyl (meth) acrylate.
  • examples of the radically polymerizable monomer that can be suitably used include styrene, (meth) acrylate derivatives such as methyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • the addition amount of the glycidyl (meth) acrylate polymer (B) is preferably 5 to 40% by weight in the resin composition (E).
  • the above-mentioned general-purpose epoxy resin (A2) is added, the above-mentioned glycidyl (meth) acrylate polymer (B) is added in an amount of 5% by weight or more to the resin composition (E). It is possible to suppress the decrease and phase separation in the cured product of cycloaliphatic epoxy resin (A1) and general-purpose epoxy resin (A2). Especially, 10 to 20% by weight of additive is most effective. And preferred. Moreover, if it is 40% by weight or less, the impregnation property of the resin composition (E) to the sheet-like glass fiber substrate will not be deteriorated! /.
  • a white pigment (C) to the resin composition (E) of the present invention.
  • the white pigment (C) to be added include zinc oxide, calcium carbonate, titanium dioxide, alumina, and synthetic smectite.
  • the white pigment is not particularly limited as long as it is a white inorganic powder. However, it is most preferable to use titanium dioxide in view power such as visible light reflectance, whiteness, or electrical characteristics.
  • the white pigment (C) to be added to the rosin composition (E) of the present invention is not particularly limited. It is of course possible to use a mixture of both.
  • the content of the white pigment (C) contained in the resin composition (E) of the present invention is preferably 10 to 75% by weight in the resin composition (E). If it is 10% by weight or more, sufficient whiteness and reflectance can be obtained, and if it is 75% by weight or less, the impregnation property to the sheet-like glass fiber substrate is lowered or the adhesive strength to the metal foil is lowered. There will be no troubles such as.
  • the titanium dioxide when used as the white pigment (C), the titanium dioxide may be subjected to alumina, silica treatment or the like as a surface treatment. Silane coupling agents and titanate coupling agents can also be treated.
  • the resin composition (E) to be impregnated into the sheet-like glass fiber substrate may contain an inorganic filler such as silica, if necessary, in addition to the white pigment (C).
  • inorganic fillers such as silica, aluminum hydroxide, magnesium hydroxide, E glass powder, magnesium oxide, potassium titanate, calcium silicate, clay, and talc. You can also use two or more types together. By containing these inorganic fillers, the rigidity of the substrate is improved.
  • the blending amount is not particularly limited, but it is preferably 50% by weight or less based on the resin composition (E). If it is 50% by weight or less, the impregnation property to the sheet-like glass fiber substrate is lowered or the adhesive strength with the metal foil is lowered! /, And there is almost no possibility of occurrence of the trouble! /.
  • a fluorescent agent can be blended in the resin composition (E) to be impregnated into the sheet-like glass fiber substrate, if necessary.
  • the fluorescent agent is a compound having a characteristic of absorbing light energy such as light, radiation, ultraviolet light, etc., and radiating it by changing to light of other wavelengths.
  • diaminostilbene derivative is used. , Anthracene, sodium salicylate, diaminostilbene disulfonic acid derivative, imidazole derivative, coumarin derivative, pyrazoline derivative, decalylamine derivative.
  • Fluorescent agents are generally called fluorescent brighteners among the above-mentioned fluorescent agents that have a significant decrease in reflectivity and preferably have an emission wavelength in the visible light short wavelength region (380 to 470 nm).
  • Preferred are diaminostilbene disulfonic acid derivatives, imidazole derivatives, coumarin derivatives, pyrazoline derivatives, and the like.
  • the amount of the added cocoon is not limited, but in the case of the pyrazoline derivative, the effect is exhibited from the addition of about 0.1% by weight to the rosin composition (E), and the effect is increased as the added amount is increased. Becomes larger. Further, it is desirable that the optical brightener to be added is soluble in the solvent.
  • the epoxy resin system used in the present invention requires a curing agent (D).
  • D curing agent
  • primary amines diaminodiphenylsulfone (hereinafter referred to as DDS)
  • secondary amines secondary amines
  • tertiary amines acid anhydrides and their derivatives
  • aromatic diazodium salts and light hardeners such as aromatic sulfonium salts.
  • the curing agent (D) used in the present invention is not particularly limited as long as it is the curing agent described above, but is represented by the structural formula (1) as the alicyclic epoxy resin (A1). It is preferable to use a latent curing agent such as dicyandiamide (hereinafter referred to as DICY).
  • DICY dicyandiamide
  • the latent curing agent is a substance that exhibits a function as a curing agent when a certain temperature is exceeded and cures the thermosetting resin. Such temperatures are generally referred to as “active temperature”, and at temperatures below the activation temperature, curing of the thermosetting resin does not occur substantially.
  • the activation temperature is not particularly specified, but is preferably in the range of 80 to 170 ° C. for easy handling and practical use.
  • the latent curing agent besides the above DICY, urea curing agents, organic acid hydrazide curing agents, polyamine salt curing agents, amine adduct curing agents, and the like can be used.
  • the blending amount of the curing agent (D) varies depending on the type of the curing agent. In general, it is preferable that the epoxy equivalent and the amine (acid) equivalent force are obtained. That is, for the epoxy resin ((A1) + (A2) + (B)) in the resin composition (E) used for the white prepreader of the present invention.
  • the blending ratio of the curing agent (D) is preferably a blending amount such that an equivalent ratio of 0.5 to 2 per 1 equivalent of epoxy group.
  • a tertiary amine or imidazole may be added as a curing accelerator if necessary.
  • imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-ferro-4-methylimidazole, and the like.
  • the addition amount of the curing accelerator is preferably about 0.05 to 5% by weight with respect to the epoxy resin and the curing agent ((A1) + (A2) + (B) + (D)).
  • a glass cloth and a non-woven cloth may be used in combination.
  • a plain weave structure is basically used, but a woven structure such as Nanako weave, satin weave or twill weave is not particularly limited.
  • a woven structure such as Nanako weave, satin weave or twill weave is not particularly limited.
  • the thickness of the glass cloth is not particularly limited, but a range of 0.02-0.
  • a surface treatment with a silane coupling agent or the like may be performed on the sheet-like glass fiber substrate.
  • the sheet glass fiber base material itself may be colored white.
  • the resin composition described above is added with a solvent such as methylethylketone to prepare a resin varnish, impregnated into a sheet-like glass fiber base material such as a glass cloth, and dried to obtain the present invention.
  • a solvent such as methylethylketone
  • white prepreg There is no particular limitation on the method of impregnating and drying the sheet-like glass fiber substrate with the resin composition. For example, after impregnating the sheet-like glass fiber substrate by immersing it in the resin composition, A method of removing the solvent by heating at a temperature of about 100 ° C. to 180 ° C. and semi-curing the epoxy resin can be employed.
  • the amount of the white resin prepreg impregnated in the sheet-like glass fiber substrate produced by drying is not particularly limited, but is preferably 30 to 60% by weight.
  • One or more of the obtained white prepregs are laminated to form a white laminate of the present invention by heat and pressure molding.
  • one or more of the obtained white prepreaders are laminated, and then a metal foil is further laminated and heated and pressed to form the white foil-laminated white laminate of the present invention.
  • the number of sheets to be stacked is not particularly limited, but as a single-layer substrate, 1 or 2 to 10 white pre-layers are stacked, and in the case of a metal foil-clad white laminate, metal foils are stacked on top or bottom. It is common to do.
  • a multilayer substrate is manufactured by laminating a plurality of the above-mentioned single layer substrates, but there is no particular limitation on the number of layers to be superimposed.
  • the metal foil copper foil, aluminum foil or the like is used.
  • the thickness of the metal foil is generally 3 ⁇ m to 105 ⁇ m, and is particularly preferably 12 ⁇ to 35 / ⁇ ⁇ . Further, it is also possible to use only the surface layer on which the white pre-preda of the present invention is laminated, and use the pre-preda of the prior art for the intermediate layer.
  • the white laminate and the metal foil-clad white laminate of the present invention thus obtained are plates having high heat resistance with high reflectivity in the visible light region and very little discoloration due to heating or ultraviolet rays.
  • a conductor pattern is formed on the obtained white laminate by an additive method to obtain a printed wiring board.
  • a circuit pattern is printed on the metal foil of the obtained metal foil-clad white laminate and etched to obtain a printed wiring board.
  • To mount a chip LED on the printed circuit board first apply solder on the printed circuit board, place the chip LED on it, and then pass it through reflow to melt the solder. Is fixed to the printed circuit board.
  • chip LEDs By integrating chip LEDs with high density, it can be used as a surface light source, and such a surface light source is suitably used for a backlight for a liquid crystal display that is particularly required to be thin.
  • it is used as a surface-emitting illumination device for guidance display illumination lamps, evacuation exit lamps, advertising lights, and the like.
  • Thickness accuracy of the chip LED mounting substrate is extremely important when the elements mounted on the substrate are sealed with a transfer molding.
  • transfer molding refers to a technique in which a resin is press-fitted into a clamped mold.
  • the thickness of the substrate used for chip LEDs is generally from 0.06 mm to 1. Omm. If the accuracy of the plate thickness is poor, there will be a gap between the substrate and the mold during clamping during transfer molding. As a result, press-fitted grease leaks from the gap, resulting in molding defects.
  • the required accuracy of the substrate thickness in such transfer molding is, for example, a tolerance of + —0.05 mm or less (range is 0.1 mm) for a substrate with a thickness of 1.
  • Omm preferably a tolerance of + —0. .03mm or less (range is 0.06mm). Obedience On the other hand, if there is a substrate with high thickness accuracy, the defect rate can be greatly reduced in the chip LED manufacturing process, which is extremely significant in the industry.
  • Alicyclic epoxy resin EHPE-3150 (manufactured by Daicel Chemical Industries, Ltd.) 50 parts by weight, bisphenol A type epoxy resin: AER-6051EK75 (manufactured by Asahi Kasei Kogyo Co., Ltd.), 40 parts by weight, and glycidyl methacrylate copolymer : Marproof G-0150M (manufactured by NOF Corporation) 10 parts by weight was dissolved in 50 parts by weight of methyl ethyl ketone (hereinafter referred to as MEK). (Varnish A)
  • the white epoxy varnish was impregnated with 0.1 mm thick glass cloth WEA-116E (manufactured by Nittobo Co., Ltd.) and pre-dried at 150 ° C. for 5 minutes to obtain a pre-preda having a 50% rosin composition content.
  • WEA-116E manufactured by Nittobo Co., Ltd.
  • a stack of 18 mm thick copper foil is stacked on the top and bottom of one, four and ten layers of this pre-preda, and is heated and pressed at a pressure of 40 kgfZcm 2 and a temperature of 170 ° C. 0.4 mm thick and l mm thick metal foil-clad white laminates were obtained.
  • a white laminate was obtained in the same manner as in Example 1 except that the composition of the white epoxy varnish was changed as follows.
  • Bisphenol A-type epoxy resin AER— 6051EK75 (Asahi Kasei Kogyo Co., Ltd.) 50 parts by weight
  • Cresol novolak type epoxy resin YDCN-704 (Toto Kasei Co., Ltd.) 50 A part by weight was dissolved in 40 parts by weight of MEK.
  • Varnish C and Varnish D are mixed, and anatase-type titanium dioxide TA-500 (Fuji Titanium Industry Co., Ltd.) 73 parts by weight as a white pigment, HR-101 (Chuo Synthetic Chemical Co., Ltd.) as a fluorescent brightening agent 0.3 parts by weight were added to obtain a white epoxy varnish.
  • a pre-preda was prepared in the same manner as in Example 1, and the layers were laminated, and copper foils were stacked on top and bottom, and heat-pressed to form 0.1 mm thickness, 0.4 mm thickness, 1 mm thick metal foil-clad white laminates were obtained.
  • Example 1 After removing the copper foil of the 0.1 mm metal foil-clad white laminate obtained in Comparative Example 1 by etching, the visible light reflectance of the substrate surface was measured according to JIS-Z8722, Further, the visible light reflectance after heat treatment at 180 ° C. for 4 hours was measured in the same manner. The results are shown in Fig. 1. As is clear from FIG. 1, it can be seen that the substrate of Example 1 has improved heat resistance with less deterioration in the short wavelength region than the substrate of Comparative Example 1.
  • a high pressure mercury lamp ultraviolet light emission spectrum: 253.7 nm, 365 ⁇ m
  • Example 1 has improved UV resistance with less deterioration in the short wavelength region than the substrate of Comparative Example 1.
  • the glass transition temperature was determined according to ⁇ O IS-C6481. That is, the copper foil of the 0.4 mm-thick metal foil-clad white laminate obtained in Example 1 and Comparative Example 1 was removed by etching. After that, cut it out to a size of 7mm x 70mm, measure it with a free-damping type dynamic viscoelasticity measuring device (Less Power Company, model number: AD-1100AD) at a heating rate of 2 ° CZ, Loss tangent peak temperature force The glass transition temperature was determined.
  • a free-damping type dynamic viscoelasticity measuring device Less Power Company, model number: AD-1100AD
  • Example 1 The glass transition temperature of the white laminated sheet of Comparative Example 1 (after removing the metal foil) was 200 ° C and 190 ° C, respectively. As a result, both of the white laminates of Example 1 and Comparative Example 1 had practically sufficient heat resistance, but among them, the white laminate of Example 1 was superior in heat resistance. I understand that.
  • Example 1 The thickness of the lmm-thick metal foil-clad white laminate (1000mm x 100 Omm) obtained in Comparative Example 1 was measured using a lZlOOOmm micrometer at a total of 60 points at intervals of 250 mm in length and 7 Omm in width. The thickness range and the difference between the maximum and minimum values were determined.
  • Example Table 1 shows the thickness data of the metal foil-clad white laminate of Comparative Example 1. The difference between the maximum thickness value and the minimum thickness value in Example 1 and Comparative Example 1 was 0.055 mm and 0.115 mm, respectively.o
  • the metal foil-clad white laminate of Example 1 has an improved plate thickness accuracy compared to Comparative Example 1 and sufficiently satisfies the required accuracy.
  • the whiteness for printed wiring boards is excellent in the heat resistance and the thickness accuracy with high reflectivity in the visible light region and significantly less discoloration due to heating and ultraviolet rays.
  • FIG. 1 Comparison of visible light reflectance after heat treatment at 180 ° C for 4 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(課題)  これまでのプリント配線基板用白色積層板は、熱硬化性樹脂部分が熱によって変色し、反射率が低下する問題があった。紫外発光素子を用いる種類のLEDでは、LEDチップを実装する基板が紫外線により劣化、変色するため、紫外線や熱による変色の極めて少ない基板への要求が強くなっている。更に、チップLEDの封止工程において液漏れ等を起こさないよう高い板厚精度も要求されている。  (解決手段)  本発明の白色プリプレグは、脂環式エポキシ樹脂(A1)を含むエポキシ樹脂(A)、グリシジル(メタ)アクリレート系ポリマー(B)、白色顔料(C)、及び硬化剤(D)を必須成分とする樹脂組成物(E)を、シート状ガラス繊維基材に含浸、乾燥させてなることを特徴とする。又、本発明の白色積層板は、上記白色プリプレグ1枚、又は複数枚積層したものを加熱加圧成形してなることを特徴とする。

Description

明 細 書
白色プリプレダ、白色積層板、及び金属箔張り白色積層板
技術分野
[0001] 本発明は、発光ダイオードを実装するためのプリント配線基板として使用する白色 積層板、金属箔張り白色積層板、及び積層して該白色積層板、該金属箔張り白色積 層板を製造するための白色プリプレダに関する。
背景技術
[0002] 近年、電子機器は、携帯電話、カメラ一体型 VTR、携帯 CD、 MDプレーヤ一等に 見られるように、軽量化、薄型化が進んでいるだけでなぐ外観、操作性や視認性等 の付加価値が求められるようになって!/、る。そのために視覚的効果の高 、発光体が 多数使われるようになつてきており、この発光体には小型で消費電力の少ない発光 ダイオード (以後 LEDと表記)が用いられて 、る。
[0003] ところでこれらの LEDは、近年の技術の進歩により、従来の赤色、黄色、緑色のほ 力 青色や白色の LEDも実用化されるようになり、特に、青色、白色の発光ダイォー ドの需要が急増している。さらに、近年、 LEDは高輝度化が進んできており、超高輝 度 LEDも実用化され始めて 、る。
[0004] 従来は、発光体部を榭脂で封止した砲弾型タイプの LEDが主に用いられて 、たが 、近年、電子機器の小型、薄型化から、基板表面に素子を直接実装したチップ LED の使用が増加してきた。このチップ LEDは、当初、砲弾型タイプの LEDに比べて輝 度が低いという問題もあった力 その後の改良により、砲弾型タイプと比べても遜色な いレベルにまで至っている。チップ LEDの輝度が増加したことにより、チップ LEDを 高密度集積させることで面光源としての利用も可能になった。このような面光源は特 に薄型であることが要求される液晶ディスプレイ用バックライトに好適に利用され、そ の他、面発光型の照明装置として誘導表示照明灯、避難口照明灯、広告灯等へ応 用される。
[0005] ところで、白色 LEDの発光方法には、青色発光素子と黄色蛍光体を併用したタイ プ、赤色、青色、緑色の 3原色併用タイプ、若しくは紫外発光素子と蛍光体を併用し たタイプがある。
[0006] LED素子を載せるプリント配線基板としては、従来から、熱硬化性榭脂を含浸した シート状ガラス繊維基材の層(プリプレダ)を加熱加圧成形した積層板が使用されて いる。特に、青色、白色のチップ LEDでは、可視光短波長領域の反射が重要であり 、熱硬化性榭脂に着色顔料として二酸ィ匕チタン等を含有させた白色のものが従来か ら使用されている。
発明の開示
発明が解決しょうとする課題
[0007] ところが、これまでのプリント配線基板用白色積層板は、熱硬化性榭脂部分が長期 使用や加工時の熱によって変色し、反射率が低下する問題があった。なかでも、紫 外発光素子を用いる種類の LEDでは、 LEDチップを実装する基板が紫外線により 劣化、変色するために、近年の高輝度 LEDの実装には不適であった。そのため、紫 外線や熱による変色の極めて少ない基板への要求が強くなつている。さらに、チップ LEDを実装する際、チップ LEDの封止工程にぉ ヽて液漏れ等の不具合を起こさな いよう高い板厚精度も要求されており、両者を兼ね備えた基板が求められている。 課題を解決するための手段
[0008] そこで、上記課題を解決するために鋭意検討した結果、熱或いは紫外線によっても 劣化、変色が極めて少なぐ反射率低下の極めて少ないプリント配線基板用白色プリ プレダ、及び該白色プリプレダを 1枚乃至複数枚積層した白色積層板、更に金属箔 を積層配置した金属箔張り白色積層板を発明するに至った。また、係る白色積層板 、及び金属箔張り白色積層板は、高い耐熱性を有しており、板厚精度も良ぐ加工性 にも優れるものである。
[0009] 上記課題を解決するために、本発明は以下の(1)〜(13)の構成を有する。
(1)本発明の白色プリプレダは、脂環式エポキシ榭脂 (A1)を含むエポキシ榭脂 (A) 、グリシジル (メタ)アタリレート系ポリマー(B)、白色顔料 (C)、及び硬化剤 (D)を必 須成分とする榭脂組成物 (E)を、シート状ガラス繊維基材に含浸、乾燥させてなるこ とを特徴とする。
(2)本発明の白色プリプレダは、好ましくは前記脂環式エポキシ榭脂 (A1)を含むェ ポキシ榭脂 (A) 1 ビスフエノール類のジグリシジルエーテル型、フエノール類のノボ ラック型、グリシジルァミン型、及びグリシジルエステル型の中カゝら選ばれる汎用ェポ キシ榭脂 (A2)を、エポキシ榭脂 (A)中に 5〜60重量%含有することを特徴とする。
(3)本発明の白色プリプレダは、好ましくは前記榭脂組成物 (E)力 (A); 20〜85重 量。 /0、 (B) ; 5〜40重量%、(C) ; 10〜75重量%、(D); (E)に含まれるエポキシ基 1 当量当り 0. 5〜2の当量比となる配合量、の組成比力もなることを特徴とする。
(4)本発明の白色プリプレダは、好ましくは前記脂環式エポキシ榭脂 (A1)が下記式 (1)で表される構造を有することを特徴とする。
Figure imgf000005_0001
…式 (1)
式(1)中、 Rは、水素または炭素数 1〜5の直鎖若しくは側鎖を有するアルキル基を 表す。また、 nは 1から 30の整数を表す。
(5)本発明の白色プリプレダは、好ましくは前記グリシジル (メタ)アタリレート系ポリマ - (B)力 グリシジル (メタ)アタリレートホモポリマーであることを特徴とする。
(6)本発明の白色プリプレダは、好ましくは前記グリシジル (メタ)アタリレート系ポリマ 一 (B)力 グリシジル (メタ)アタリレートとラジカル重合性モノマーとの共重合体である ことを特徴とする。
(7)本発明の白色プリプレダは、好ましくは前記白色顔料 (C)が酸化亜鉛、炭酸カル シゥム、二酸化チタン、アルミナ、及び合成スメクタイトから選ばれる 1種類、又は 2種 類以上であることを特徴とする。
(8)本発明の白色プリプレダは、好ましくは前記白色顔料 (C)が二酸ィ匕チタンである ことを特徴とする。
(9)本発明の白色プリプレダは、好ましくは前記硬化剤 (D)が、潜在性硬化剤である ことを特徴とする。
(10)本発明の白色積層板は、好ましくは(1)〜(9)に記載の白色プリプレダ 1枚、又 は複数枚積層したものを加熱加圧成形してなることを特徴とする。
(11)本発明の金属箔張り白色積層板は、好ましくは(1)〜(9)に記載の白色プリプ レグ 1枚、又は複数枚積層したものに、更に金属箔を積層配置したものを加熱加圧 成形してなることを特徴とする。
(12) (10)項記載の白色積層板は、好ましくはチップ型発光ダイオードを実装するた めのプリント配線基板として使用する。
(13) (11)項記載の金属箔張り白色積層板は、好ましくはチップ型発光ダイオードを 実装するためのプリント配線基板として使用する。
発明の効果
[0010] 本発明によれば、可視光領域の反射率が高ぐしかも加熱や紫外線による変色が 著しく少なぐ高い耐熱性と板厚精度に優れるプリント配線基板用白色プリプレダ、白 色積層板、及び金属箔張り白色積層板を提供することができる。
発明を実施するための最良の形態
[0011] 本発明の白色プリプレダにおいては、シート状ガラス繊維基材に含浸させる榭脂組 成物 (E)の構成要素の一つであるエポキシ榭脂 (A)が、脂環式エポキシ榭脂 (A1) を含むことが必要である。該脂環式エポキシ榭脂 (A1)は熱硬化性榭脂の一つであ り、耐紫外線対策として極めて有効で、紫外線による劣化、変色が極めて少なぐ反 射率低下の極めて少ない白色プリプレダ、白色積層板、及び金属箔張り白色積層板 を得ることが可能となる。また、耐熱性を得るために、該脂環式エポキシ榭脂 (A1)の 中でも硬化物のガラス転移温度の高 、榭脂を使用することが好ま Uヽ。榭脂硬化物 のガラス転移温度は、 150〜300°Cの範囲であることが好ましぐ 180〜250°Cであ ることがより好まし!/、。
[0012] 一般に、脂環式エポキシ榭脂 (A1)としては、水添ビスフエノール Aのジグリシジル エーテル型、シクロへキセンォキシド型のほかに、シクロへキサン誘導体の縮合体に 直接エポキシ基が結合したような脂環式エポキシ榭脂 (前記構造式(1) )などを例示 することができる。
[0013] し力し、上記水添ビスフエノール Aのジグリシジルエーテル型エポキシ榭脂は、反応 性が低ぐ硬化剤により異なるが硬化物のガラス転移温度も一般的に 120°C程度と 低い。また、一方のシクロへキセンォキシド型のエポキシ榭脂は、硬化物のガラス転 移温度は高い(一般に 180°Cから 200°C程度)が反応性が低い。ただ、いずれの脂 環式エポキシ榭脂においても、耐紫外線性が高いことは知られているので、酸無水 物系の硬化剤を選択することで本発明のエポキシ榭脂 (A)としての適用が可能であ る。上記構造式(1)で表されるような脂環式エポキシ榭脂 (A1)は、高い耐熱性と耐 紫外線性を有しているため、本発明のエポキシ榭脂 (A)として適用するのに最も好ま しい。
[0014] 脂環式エポキシ榭脂 (A1)は、溶融粘度が低ぐプリプレダを加熱加圧成形した際 の板厚精度が悪くなるという問題が生じる可能性があるため、本発明の白色プリプレ グにおいて、シート状ガラス繊維基材に含浸させる榭脂組成物 (E)中のエポキシ榭 脂 (A)として脂環式エポキシ榭脂 (A1)のみを用いるより、他のエポキシ榭脂をブレ ンドすることが好ましい。
[0015] 本発明のエポキシ榭脂 (A)に、上記不具合の改善と製造コストの改善のために汎 用エポキシ榭脂 (A2)を添加してもよ 、。即ちエポキシ榭脂 (A)中の脂環式エポキシ 榭脂 (A1)の割合を減じ、残部を汎用エポキシ榭脂 (A2)で置き換えてもよい。該汎 用エポキシ榭脂 (A2)の添加量は、エポキシ榭脂 (A)中に 5〜60重量%含有させる がよぐ好ましくは、 30〜50重量%がよい。エポキシ榭脂 (A)に対する添加量が 60 重量%以下であれば脂環式エポキシ榭脂 (A1)を使用することによる効果が低下す ることはなく、即ち、熱或いは紫外線による劣化、変色が発生し易くなることはない。
[0016] 本発明のエポキシ榭脂 (A)に添加する汎用エポキシ榭脂 (A2)としては、ビスフエノ ール類(ビスフエノール A、 F、又は S等)のジグリシジルエーテル型、フエノール類(フ ェノール、タレゾール等)のノボラック型、グリシジルァミン型、グリシジルエステル型な どがあり、特に限定されるものではないが、ビスフエノール類 (特に A、及び F)のジグ リシジルエーテル型エポキシ榭脂がコストと性能のバランスがよぐ好まし 、。
[0017] 本発明の白色プリプレダにおいて、シート状ガラス繊維基材に含浸させる榭脂組成 物 (E)の構成要素の一つである、脂環式エポキシ榭脂 (A1)を含むエポキシ榭脂 (A )の含有量は、榭脂組成物 (E) (非揮発成分)の 20〜85重量%であることが好ましい 。 20重量%以上であれば上記効果を得ることが可能であり、 85重量%以下であれば 、脂環式エポキシ榭脂 (Al)の溶融粘度が低いことに起因する、プリプレダを加熱加 圧成形した際の板厚精度が悪くなるという問題が生じる可能性はなぐさらにコスト的 に不利になることもない。
[0018] 本発明の白色プリプレダにぉ ヽて、シート状ガラス繊維基材に含浸させる榭脂組成 物 )には、グリシジル (メタ)アタリレート系ポリマー(B)を添加することが必要である 。これにより、榭脂組成物 (E)の顔料の分散性と、プリプレダ成形時の樹脂の流動性 が改善され、前述の、脂環式エポキシ榭脂 (A1)は溶融粘度が低ぐプリプレダを加 熱加圧成形した際の板厚精度が悪くなるという問題を回避することが可能となる。顔 料の分散性が改善されることにより外観が良くなり、成形時の樹脂の流動性が改善さ れることによって積層板の板厚精度が向上する。
[0019] 上記、グリシジル (メタ)アタリレート系ポリマー(B)としては、エポキシ当量が好ましく は 100〜1000gZeq程度であり、重量平均分子量が 200〜250, 000の範囲の、グ リシジル (メタ)アタリレートホモポリマー、又はグリシジル (メタ)アタリレートとラジカル 重合性モノマーとの共重合体であることが耐熱性を向上させるためには好まし!/、。共 重合の割合はグリシジル (メタ)アタリレートに対してラジカル重合性モノマー 5〜75重 量%の範囲が好ましい。又、好適に使用できるラジカル重合性モノマーとしては、ス チレン、メチル (メタ)アタリレート等の (メタ)アタリレート誘導体、シクロへキシル (メタ) アタリレート等を挙げることができる。
[0020] 上記、グリシジル (メタ)アタリレート系ポリマー(B)の添加量は、榭脂組成物 (E)中 に、 5〜40重量%が良い。前述した汎用エポキシ榭脂 (A2)を添加するときは、上記 グリシジル (メタ)アタリレート系ポリマー(B)を榭脂組成物 (E)に対して 5重量%以上 添加することで、耐熱性の低下や脂環式エポキシ榭脂 (A1)と汎用エポキシ榭脂 (A 2)の硬化物中での相分離を抑えることができ、特に 10〜20重量%の添カ卩が最も効 果が発揮され、好ましい。また、 40重量%以下であれば、シート状ガラス繊維基材へ の榭脂組成物 (E)の含浸性が悪くなることはな!/、。
[0021] 本発明の榭脂組成物 (E)には、白色顔料 (C)を添加することが必要である。添カロ する白色顔料 (C)としては、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、合 成スメクタイトなどが例示でき、白色の無機粉末であれば特に限定されるものではな いが、可視光反射率や白色度、或いは電気特性といった観点力も二酸ィ匕チタンを用 いるのが最も好ましい。
[0022] 二酸ィ匕チタンの結晶構造はアナターゼ型とルチル型がある。両者の特徴を挙げる と、アナターゼ型は可視光短波長領域の反射率が良好であり、ルチル型は長期の耐 久性ゃ耐変色性に優れる。本発明の榭脂組成物 (E)に添加する白色顔料 (C)として はどちらでも良ぐ特に限定されるものではない。両者を混合して使用することも勿論 可能である。
[0023] 本発明の榭脂組成物 (E)に含まれる白色顔料 (C)の含有量は、榭脂組成物 (E)中 に 10〜75重量%が良い。 10重量%以上であれば十分な白色度、反射率を得ること ができ、 75重量%以下であればシート状ガラス繊維基材への含浸性が低下したり金 属箔との接着強度が低下したりといった不具合が発生することはない。
[0024] 白色顔料 (C)として二酸化チタンを使用する場合、二酸ィ匕チタンには表面処理とし てアルミナ、シリカ処理等を行っても良い。又、シラン系カップリング剤やチタネート系 カップリング剤処理も可能である。
[0025] シート状ガラス繊維基材に含浸させる榭脂組成物 (E)には、上記白色顔料 (C)以 外に、必要に応じてシリカなどの無機充填材を含有することができる。含有することの できる無機充填材としては、シリカ、水酸ィ匕アルミニウム、水酸化マグネシウム、 Eガラ ス粉末、酸化マグネシウム、チタン酸カリウム、ケィ酸カルシウム、クレイ、タルク等が 挙げられ、単体で使用しても良ぐ又、 2種類以上を併用しても良い。これらの無機充 填材を含有することにより、基板の剛性率が向上する。配合量は特に限定しないが、 榭脂組成物 (E)に対して 50重量%以下であることが好ましい。 50重量%以下であれ ばシート状ガラス繊維基材への含浸性が低下したり金属箔との接着強度が低下した りと!/、つた不具合が発生する可能性はほとんど生じな!/、。
[0026] シート状ガラス繊維基材に含浸させる榭脂組成物 (E)には、上記白色顔料 (C)や 無機充填材以外に、必要に応じて蛍光剤を配合することができる。蛍光剤を配合す ることにより、可視光短波長領域での見かけの反射率を高くすることができる。ここで 、蛍光剤とは、光、放射線、紫外線等の光エネルギーを吸収し、他の波長の光に変 えて放射する特性を持つ化合物であり、例えば有機物では、ジアミノスチルベン誘導 体、アントラセン、サリチル酸ナトリウム、ジアミノスチルベンジスルホン酸誘導体、イミ ダゾール誘導体、クマリン誘導体、ピラゾリン誘導体、デカリルアミン誘導体等がある。 また無機物では、 ZnCdS :Ag、 ZnS : Pb、 ZnS : Cu等がある。蛍光剤は、反射率の 低下が著 、可視光短波長領域 (380〜470nm)に放射波長が存在することが好ま しぐ上記の蛍光剤のうち、一般的には蛍光増白剤と呼ばれているジアミノスチルべ ンジスルホン酸誘導体、イミダゾール誘導体、クマリン誘導体、ピラゾリン誘導体等が 好適である。その添カ卩量については、限定するものではないが、ピラゾリン誘導体の 場合、榭脂組成物 (E)に対して 0. 1重量%程度の添加から効果を発揮し、添加量が 多いほど効果が大きくなる。また、添加する蛍光増白剤は、溶剤に可溶であることが 望ましい。
[0027] 本発明に使用するエポキシ榭脂系には硬化剤 (D)が必要である。エポキシ榭脂の 硬化剤には、一級アミン (ジアミノジフエ-ルスルホン (以下 DDSと表記)等)、二級ァ ミン、三級ァミンの他に、酸無水物やその誘導体および芳香族ジァゾ二ゥム塩や芳香 族スルホニゥム塩などの光硬ィ匕剤がある。
[0028] 本発明に使用する硬化剤 (D)は、上記の硬化剤であれば特に限定されるものでは ないが、脂環式エポキシ榭脂 (A1)として前記構造式(1)で表されるものを使用する 場合は、ジシアンジアミド (以下 DICYと表記)等の潜在性硬化剤を用いるのが好まし い。
[0029] ここで潜在性硬化剤とは、ある温度を越えると硬化剤としての機能を発揮して熱硬 化性榭脂を硬化させるものである。そのような温度は一般に「活性ィ匕温度」と呼ばれ、 活性化温度より低い温度では、熱硬化性榭脂の硬化は実質的に起こらない。該活性 化温度は、特に規定しないが、 80〜170°Cの範囲であれば取り扱いやすく実用上好 ましい。
[0030] 潜在性硬化剤としては、上記 DICY以外に、尿素系硬化剤、有機酸ヒドラジド系硬 ィ匕剤、ポリアミン塩系硬化剤、アミンァダクト系硬化剤等が使用できる。
[0031] 硬化剤 (D)の配合量は、硬化剤の種類により異なる力 一般的にはエポキシ当量と ァミン (酸)当量力も求めた割合とするのが好ましい。即ち、本発明の白色プリプレダ に使用する榭脂組成物 (E)中の、エポキシ榭脂類((A1) + (A2) + (B) )に対する 硬化剤(D)の配合比率が、エポキシ基 1当量当り 0. 5〜2の当量比となる配合量とす ることが好ましい。
[0032] また、硬化剤 (D)として前記 DICYを使用する際は、該硬化剤の他に、三級アミン やイミダゾール類などを硬化促進剤として必要に応じて添加しても良 ヽ。イミダゾール 類としては、例えば 2—メチルイミダゾール、 2 ェチルー 4メチルイミダゾール、 2 フ ェ-ルイミダゾール、 1—シァノエチル— 2—ゥンデシルイミダゾール、 2—フエ-ルー 4 メチルイミダゾール等を挙げることができる。該硬化促進剤の添加量は、エポキシ 榭脂類と硬化剤 ( (A1) + (A2) + (B) + (D) )に対して、 0. 05〜5重量%程度が良 い。
[0033] 本発明の白色プリプレダに使用するシート状ガラス繊維基材としては、ガラスクロス 、不織布のいずれでもよぐガラスクロスと不織布とを併用してもよい。ガラスクロスの 場合、平織り構造を基本とするが、ななこ織り、糯子織り、綾織り等の織物構造でもよ ぐ特に限定するものではない。外観や力卩ェ性を損なわないために経糸と緯糸の交 差部の隙間が小さい織り構造を使用することが好ましい。ガラスクロスの厚みについ ては、特に制限はないが 0. 02-0. 3mmの範囲のものが取り扱いやすく好ましい。
[0034] また、シート状ガラス繊維基材に、シランカップリング剤等による表面処理を行って もよい。さら〖こ、シート状ガラス繊維基材自身が白色に着色されたものでもよい。
[0035] 以上説明した榭脂組成物にメチルェチルケトン等の溶剤を加え、榭脂ワニスを調製 し、ガラスクロス等カゝらなるシート状ガラス繊維基材に含浸させ、乾燥して本発明の白 色プリプレダを製造する。榭脂組成物をシート状ガラス繊維基材に含浸 ·乾燥させる 方法としては特に限定するものではなぐ例えば榭脂組成物中に、シート状ガラス繊 維基材を浸漬するなどして含浸させた後、 100°C〜180°C程度の温度で加熱して溶 剤の除去およびエポキシ榭脂を半硬化させる方法等が採用できる。シート状ガラス繊 維基材に含浸'乾燥して製造する白色プリプレダの榭脂組成物含浸量は、特に限定 しないが 30〜60重量%とするのが好ましい。
[0036] 得られた白色プリプレダ 1枚、又は複数枚積層したものを加熱加圧成形して本発明 の白色積層板を製造する。又、得られた白色プリプレダ 1枚、又は複数枚積層したも のに、更に金属箔を積層配置し、加熱加圧成形して本発明の金属箔張り白色積層 板を製造する。重ね合わせる枚数は特に制限はないが、単層基板としては白色プリ プレダ 1枚、又は 2〜10枚を重ね、金属箔張り白色積層板の場合はその上に、又は 上下に金属箔を積層配置するのが一般的である。多層基板は、上記単層基板を複 数枚積層して製造されるが、重ね合わせる枚数については特に制限はない。金属箔 としては、銅箔、アルミニウム箔等が用いられる。又、金属箔の厚みは 3 μ m〜105 μ mが一般的であり、特に 12 πι〜35 /ζ πιとするのが好ましい。また、本発明の白色 プリプレダを積層する表面層のみに使用し、中間層には従来技術によるプリプレダを 使用することも可能である。このようにして得られた本発明の白色積層板、金属箔張り 白色積層板は、可視光領域の反射率が高ぐしかも加熱や紫外線による変色が著し く少なぐ高い耐熱性を持った板厚精度に優れるプリント配線基板用白色積層板、及 び金属箔張り白色積層板となる。
[0037] 得られた白色積層板に、アディティブ法にて導体パターンを形成し、プリント配線基 板とする。又、得られた金属箔張り白色積層板の金属箔上に回路パターンを印刷し、 エッチングを施してプリント配線基板とする。チップ LEDを該プリント配線基板に実装 するには、先ずプリント配線基板上に半田を塗布し、その上にチップ LEDを載置した のち、これをリフロー等に通して半田を溶融することでチップ LEDをプリント基板に固 定する。チップ LEDを高密度集積させることで面光源としての利用も可能になり、こ のような面光源は特に薄型であることが要求される液晶ディスプレイ用バックライトに 好適に利用される。その他、面発光型の照明装置として誘導表示照明灯、避難口照 明灯、広告灯等へ応用される。
[0038] チップ LED実装用基板の板厚精度は、基板上に実装した素子をトランスファ一成 形で封止する際にきわめて重要である。ここでトランスファー成形とは、型締めした金 型内に榭脂を圧入する手法のことをいう。チップ LEDに用いられる基板の厚みは、 0 . 06mmから 1. Ommが一般的である力 板厚の精度が悪ければ、トランスファ一成 形の際、型締め時に基板と金型との間に隙間が発生し、圧入した榭脂がその隙間か ら漏れて成形不良が発生する。このようなトランスファー成形における基板の板厚の 要求精度は、例えば厚みが 1. Ommの基板であれば許容差 +—0. 05mm以下 (範 囲は 0. 1mm)、好ましくは許容差 +—0. 03mm以下(範囲は 0. 06mm)である。従 つて、板厚精度の高い基板があればチップ LEDの製造工程において不良率を大幅 に低減でき、産業上極めて有意となる。
実施例
[0039] 次に本発明の内容および効果を実施例によって説明するが、本発明は、その要旨 を逸脱しな 、かぎり以下の実施例に限定されるものではな 、。
[0040] [実施例 1]
脂環式エポキシ榭脂: EHPE - 3150 (ダイセル化学工業 (株)製) 50重量部、ビス フエノール A型エポキシ榭脂: AER— 6051EK75 (旭化成工業 (株)製) 40重量部、 並びにグリシジルメタクリレートコポリマー:マープルーフ G— 0150M (日本油脂(株) 製) 10重量部をメチルェチルケトン(以下 MEKと表記) 50重量部に溶解させた。 · · · (ワニス A)
硬化剤として DICY3重量部、硬化促進剤として C11Z— CN (四国化成工業 (株) 製、 1ーシァノエチルー 2—ゥンデシルイミダゾール) 0. 1重量部をジメチルホルムァ ミド (以下 DMFと表記) 25重量部に溶解させた。 · · ·(ワニス B)
ワニス Aとワニス Bを混合し、白色顔料としてルチル型二酸ィ匕チタン R— 21 (堺化学 工業 (株)製) 73重量部、蛍光増白剤として HR— 101 (中央合成化学 (株)製、ピラゾ リン誘導体、放射波長 :450nm) 0. 3重量部を添加し、室温で 1時間攪拌して白色ェ ポキシワニスを得た。
この白色エポキシワニスを 0. 1mm厚ガラスクロス WEA— 116E (日東紡 (株)製)に 含浸させ、 150°Cで 5分間予備乾燥し、榭脂組成物含有量 50%のプリプレダを得た 。このプリプレダ 1枚、 4枚、及び 10枚積層したものに対し、その上下に 18 m厚さの 銅箔を重ね、圧力 40kgfZcm2、温度 170°Cで加熱加圧成形して、 0. 1mm厚、 0. 4mm厚、及び lmm厚の金属箔張り白色積層板をそれぞれ得た。
[0041] [比較例 1]
白色エポキシワニスの組成を次のように変え、他は実施例 1と同様にして白色積層 板を得た。
ビスフエノール A型エポキシ榭脂: AER— 6051EK75 (旭化成工業 (株)製) 50重 量部、クレゾ一ルノボラック型エポキシ榭脂: YDCN - 704 (東都化成 (株)製) 50重 量部を MEK40重量部に溶解させた。 · · ·(ワニス C)
硬化剤として DDS19重量部、硬化促進剤として 2P4MZ (四国化成工業 (株)製、 2—フエ-ルー 4ーメチルイミダゾール) 0. 4重量部を DMF30重量部に溶解させた。 . . . (ワニス D)
ワニス Cとワニス Dを混合し、白色顔料としてアナターゼ型ニ酸化チタン TA— 500 ( 富士チタン工業 (株)製) 73重量部、蛍光増白剤として HR— 101 (中央合成化学 (株 )製) 0. 3重量部を添加して白色エポキシワニスを得た。
得られた白色エポキシワニスを用い、実施例 1と同様にしてプリプレダを作成し、そ れを積層し、上下に銅箔を重ねて加熱加圧成形して 0. 1mm厚、 0. 4mm厚、及び 1 mm厚の金属箔張り白色積層板をそれぞれ得た。
[効果確認試験]
1)耐熱変色性
実施例 比較例 1で得られた 0. 1mmの金属箔張り白色積層板の銅箔をエツチン グ処理によって除去した後、該基板表面の可視光反射率を JIS—Z8722に準拠して 測定し、さらに 180°Cで 4時間加熱処理した後の可視光反射率を同様に測定した。 結果は図 1に示した。図 1から明らかなように、実施例 1の基板は、比較例 1の基板 と比べて短波長領域での劣化が少なぐ耐熱性が向上しているのが分かる。
2)耐紫外線性
実施例 比較例 1で得られた 0. 1mm厚の金属箔張り白色積層板の銅箔をエッチ ング処理によって除去した後、該基板表面の可視光反射率を JIS—Z8722に準拠し て測定し、さらに 400Wの高圧水銀灯光(紫外部発光スペクトル: 253. 7nm, 365η m)を基板に対して照射距離 45cm (照射強度 =約 6WZm2)で 500時間照射処理し た後の可視光反射率を同様に測定した。
結果は図 2に示した。図 2から明らかなように、実施例 1の基板は、比較例 1の基板 と比べて短波長領域での劣化が少なぐ耐紫外線性が向上しているのが分かる。
3)ガラス転移温度
ガラス転移温度 ίお IS— C6481に準拠して求めた。すなわち実施例 1、比較例 1で 得られた 0. 4mm厚の金属箔張り白色積層板の銅箔をエッチング処理によって除去 した後、 7mm X 70mmの大きさに切り出し、自由減衰型動的粘弾性測定装置(レス 力社製、型番: AD— 1100AD)を用いて昇温速度 2°CZ分で測定し、測定データの 損失正接のピーク温度力 ガラス転移温度を求めた。
実施例 比較例 1の白色積層板 (金属箔除去後)のガラス転移温度は、それぞれ 200°C、 190°Cであった。この結果力も実施例 1、比較例 1の白色積層板は、いずれ も実用上十分な耐熱性を有していたが、その中でも実施例 1の白色積層板の方が耐 熱性が優れて 、ることが分かる。
4)板厚精度
実施例 比較例 1で得られた lmm厚の金属箔張り白色積層板(1000mm X 100 Omm)の板厚を、 lZlOOOmmのマイクロメータを用いて縦 250mm間隔および横 7 Omm間隔で計 60箇所測定し、板厚範囲、及び最大値と最小値の差を求めた。 実施例 比較例 1の金属箔張り白色積層板の板厚データを表 1に示した。実施例 1及び比較例 1の板厚の最大値と最小値の差は、夫々 0. 055mm, 0. 115mmであ つた o
この結果力も明らかなように実施例 1の金属箔張り白色積層板は比較例 1に比べて 板厚の精度が向上し、要求精度を十分満たしていることが分力る。
[表 1]
実施例 1と比較例 1の板厚データ
実施例 1 比較例 1
0, 998 1.022 1.005 0.989 1.009 1.009 0.997 1.011
0.980
0, 992 1.025 1.012 1.024 1.001 0.992 0.999
1.010
0,976 1.003 1.031 1.004 1.007 0.985 0.993
1.000
1,015 1.007 0.988 1.011 0.979 0.992 0.992
1.010
0, 994 1.006 1.018 0.997 0.978 0.982 0.987
0,978 1.03 1.002 0.996 0.998 1.001 0.996 1.015
0, 989 1.004 0.992 0.987 0.992 1.006 0.994 1.002 実測値
1,029 0.998 0.999 0.998 0.979 0.978 0.994 0.9S5
(mm)
1,026 1.029 1.022 0.979 0.989 0.988 0.989 1.012
0, 992 0.999 1.012 0.999 0.998 1.007 1.006 0.939
0.980
0, 992 1.011 0.985 1.022 0.994 1.022 0.926
0.910
0, 992 0.992 0.993 0.995 1.007 1.025 0.953
1.020
1,003 1.011 0.991 1.012 0.975 0.996 0.991
1,000
0.994 0.982 1.031 1.003 0.949 0.98? 0.992
0, 996 1.002 0.987 0.987 1.001 0.992 0.952 0.913 板厚範囲
0.謂へ -1.025
(最大値 最小値)
(0. 15)
(mnu 産業上の利用可能性
[0044] 以上、説明したように、本発明によれば、可視光領域の反射率が高ぐし力も加熱 や紫外線による変色が著しく少なぐ高い耐熱性と板厚精度に優れるプリント配線基 板用白色プリプレダ、白色積層板、及び金属箔張り白色積層板を提供することがで き、産業界に寄与すること大である。
図面の簡単な説明
[0045] [図 1]180°C、 4時間加熱処理後の可視光反射率の比較。
[図 2]高圧水銀灯 (400W)光 (紫外部主発光波長: 253.7nm及び 365nm、照射強 度:約 6WZm2) 500時間照射処理後の可視光反射率の比較。

Claims

請求の範囲
[1] 脂環式エポキシ榭脂 (A1)を含むエポキシ榭脂 (A)、グリシジル (メタ)アタリレート 系ポリマー (B)、白色顔料 (C)、及び硬化剤 (D)を必須成分とする榭脂組成物 (E) を、シート状ガラス繊維基材に含浸、乾燥させてなることを特徴とする白色プリプレダ
[2] 前記脂環式エポキシ榭脂 (A1)を含むエポキシ榭脂 (A)力 ビスフエノール類のジ グリシジルエーテル型、フエノール類のノボラック型、グリシジルァミン型、及びグリシ ジルエステル型の中カゝら選ばれる汎用エポキシ榭脂 (A2)を、エポキシ榭脂 (A)中に 5〜60重量%含有することを特徴とする請求項 1に記載の白色プリプレダ。
[3] 前記榭脂組成物(E) 1S (A); 20〜85重量%、(B); 5〜40重量%、 (C); 10-75 重量%、(D) ; (E)に含まれるエポキシ基 1当量当り 0. 5〜2の当量比となる配合量、 の組成比力 なることを特徴とする請求項 1又は請求項 2に記載の白色プリプレダ。
[4] 前記脂環式エポキシ榭脂 (A1)が下記式 (1)で表される構造を有することを特徴と する請求項 1乃至請求項 3のいずれかに記載の白色プリプレダ。
Figure imgf000017_0001
…式 (1)
式(1)中、 Rは、水素または炭素数 1〜5の直鎖若しくは側鎖を有するアルキル基を 表す。また、 nは 1から 30の整数を表す。
[5] 前記グリシジル (メタ)アタリレート系ポリマー(B)が、グリシジル (メタ)アタリレートホ モポリマーであることを特徴とする請求項 1乃至請求項 4のいずれかに記載の白色プ リプレダ。
[6] 前記グリシジル (メタ)アタリレート系ポリマー(B)が、グリシジル (メタ)アタリレートとラ ジカル重合性モノマーとの共重合体であることを特徴とする請求項 1乃至請求項 4の いずれかに記載の白色プリプレダ。
[7] 前記白色顔料 (C)が酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、及び合 成スメクタイトから選ばれる 1種類、又は 2種類以上であることを特徴とする請求項 1乃 至請求項 6のいずれかに記載の白色プリプレダ。
[8] 前記白色顔料 (C)が二酸ィ匕チタンであることを特徴とする請求項 1乃至請求項 6の いずれかに記載の白色プリプレダ。
[9] 前記硬化剤 (D)力 潜在性硬化剤であることを特徴とする請求項 1乃至請求項 8の いずれかに記載の白色プリプレダ。
[10] 請求項 1乃至請求項 9のいずれかに記載の白色プリプレダ 1枚、又は複数枚積層し たものを加熱加圧成形してなることを特徴とする白色積層板。
[11] 請求項 1乃至請求項 9のいずれかに記載の白色プリプレダ 1枚、又は複数枚積層し たものに、更に金属箔を積層配置したものを加熱加圧成形してなることを特徴とする 金属箔張り白色積層板。
[12] 請求項 10記載の白色積層板を使用してなるチップ型発光ダイオードを実装するた めのプリント配線基板。
[13] 請求項 11記載の金属箔張り白色積層板を使用してなるチップ型発光ダイオードを 実装するためのプリント配線基板。
PCT/JP2006/309422 2005-05-12 2006-05-10 白色プリプレグ、白色積層板、及び金属箔張り白色積層板 WO2006121090A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/920,399 US20090194320A1 (en) 2005-05-12 2006-05-10 White Prepreg, White Laminated Plate, and Metal Foil Clad White Laminated Plate
DE602006011456T DE602006011456D1 (de) 2005-05-12 2006-05-10 Weisses prepreg, weisse laminatplatte und mit weisser laminatplatte ummantelte metallfolie
EP06746232A EP1887031B1 (en) 2005-05-12 2006-05-10 White prepreg, white laminated plate, and metal foil clad white laminated plate
CN200680024753XA CN101218285B (zh) 2005-05-12 2006-05-10 白色预浸料、白色层压板和覆金属箔的白色层压板
CA2608179A CA2608179C (en) 2005-05-12 2006-05-10 White prepreg, white laminates, and metal foil-cladded white laminates
HK09100274.8A HK1120283A1 (en) 2005-05-12 2009-01-09 White prepreg, white laminated plate, and metal foil clad white laminated plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-140406 2005-05-12
JP2005140406A JP4634856B2 (ja) 2005-05-12 2005-05-12 白色プリプレグ、白色積層板、及び金属箔張り白色積層板

Publications (1)

Publication Number Publication Date
WO2006121090A1 true WO2006121090A1 (ja) 2006-11-16

Family

ID=37396597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309422 WO2006121090A1 (ja) 2005-05-12 2006-05-10 白色プリプレグ、白色積層板、及び金属箔張り白色積層板

Country Status (11)

Country Link
US (1) US20090194320A1 (ja)
EP (1) EP1887031B1 (ja)
JP (1) JP4634856B2 (ja)
KR (1) KR100940232B1 (ja)
CN (1) CN101218285B (ja)
CA (1) CA2608179C (ja)
DE (1) DE602006011456D1 (ja)
HK (1) HK1120283A1 (ja)
MY (1) MY144427A (ja)
TW (1) TWI403545B (ja)
WO (1) WO2006121090A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275561A (ja) * 2007-11-30 2010-12-09 Taiyo Holdings Co Ltd 白色熱硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2011122116A (ja) * 2009-12-14 2011-06-23 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
CN102977336A (zh) * 2008-01-09 2013-03-20 日立化成工业株式会社 热固化性树脂组合物、环氧树脂成形材料及多元羧酸缩合体
JP2014210992A (ja) * 2013-04-18 2014-11-13 株式会社デコリア 壁紙
US9067906B2 (en) 2008-01-09 2015-06-30 Hitachi Chemical Company, Ltd. Thermosetting resin composition, epoxy resin molding material, and polyvalent carboxylic acid condensate

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223167A (ja) * 2007-03-12 2008-09-25 Hideki Ueshiba 発光標識体
JP5421546B2 (ja) * 2007-07-05 2014-02-19 日立化成株式会社 熱硬化性光反射用樹脂組成物、並びにその樹脂組成物を用いた光半導体素子搭載用基板及び光半導体装置
US8042976B2 (en) * 2007-11-30 2011-10-25 Taiyo Holdings Co., Ltd. White hardening resin composition, hardened material, printed-wiring board and reflection board for light emitting device
CA2726173C (en) 2008-05-29 2016-02-23 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board
JP2010100800A (ja) * 2008-09-24 2010-05-06 Hitachi Chem Co Ltd 光学部材のプリント配線板用樹脂組成物及び銅張積層板
KR101372616B1 (ko) 2008-09-30 2014-03-11 히타치가세이가부시끼가이샤 코트제, 이것을 사용한 광반도체 소자 탑재용 기판 및 광반도체 장치
JP2010114427A (ja) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd チップ型ledパッケージ用基板
JP2010155980A (ja) * 2008-12-02 2010-07-15 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物並びにプリプレグ、積層板
CN102300909B (zh) * 2009-01-28 2014-06-18 日立化成工业株式会社 预浸料坯、带有树脂的膜、带有树脂的金属箔、覆金属箔层叠板及印制电路板
WO2010100812A1 (ja) * 2009-03-02 2010-09-10 株式会社ビッズソリューション プリント配線基板,電子機器,及びプリント配線基板の製造方法
TWI477555B (zh) 2009-06-26 2015-03-21 Asahi Rubber Inc White reflective material and its manufacturing method
KR101644047B1 (ko) 2009-07-09 2016-08-01 삼성전자 주식회사 발광체-고분자 복합체용 조성물, 발광체-고분자 복합체 및 상기 발광체-고분자 복합체를 포함하는 발광 소자
JP5463586B2 (ja) * 2009-12-21 2014-04-09 利昌工業株式会社 プリプレグ、積層板、及び金属箔張り積層板
CN106025053B (zh) 2010-03-23 2020-01-10 株式会社朝日橡胶 有机硅树脂制反射基材及其制造方法、以及用于该反射基材的原材料组合物
JP2012004248A (ja) * 2010-06-15 2012-01-05 Toshiba Lighting & Technology Corp 発光モジュールおよび照明装置
JP2012177877A (ja) * 2011-02-04 2012-09-13 Sekisui Chem Co Ltd 白色基板及び表示装置
JP2012167180A (ja) * 2011-02-14 2012-09-06 Daicel Corp 繊維強化複合材料用熱硬化性エポキシ樹脂組成物
US20140093736A1 (en) * 2011-03-31 2014-04-03 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and metal foil-clad laminate
JP2013023554A (ja) * 2011-07-20 2013-02-04 Daicel Corp 繊維強化複合材料用熱硬化性エポキシ樹脂組成物
JP5751085B2 (ja) * 2011-08-12 2015-07-22 Dic株式会社 熱硬化性樹脂組成物、白色プリプレグ、白色積層板及びプリント配線基板
BR112014030494B1 (pt) 2012-06-05 2021-08-10 Arkema France Dispositivo refletor óptico e método de fabricação de uma película ou folha adequadas para utilização como um refletor óptico
AU2013329252B2 (en) 2012-10-09 2017-05-18 Avery Dennison Corporation Adhesives and related methods
JP6277542B2 (ja) * 2013-02-28 2018-02-14 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板
CN104072946B (zh) * 2013-03-28 2017-03-22 太阳油墨(苏州)有限公司 热固性树脂组合物及填充有该树脂组合物的印刷电路板
US9944766B2 (en) * 2014-08-27 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminated board, and printed wiring board
JP2015017271A (ja) * 2014-09-29 2015-01-29 日立化成株式会社 熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
KR101505817B1 (ko) * 2014-11-22 2015-03-26 (주)솔라이트 Led pcb용 잉크 조성물
RU2677155C1 (ru) 2015-02-05 2019-01-15 Авери Деннисон Корпорейшн Этикеточные узлы для неблагоприятной окружающей среды
CN106916414B (zh) * 2015-12-25 2019-01-22 广东生益科技股份有限公司 一种热固性树脂组合物、含有它的预浸料、覆金属箔层压板以及印制电路板
WO2018118767A1 (en) 2016-12-22 2018-06-28 Avery Dennison Corporation Convertible pressure sensitive adhesives comprising urethane (meth) acrylate oligomers
JP2020025034A (ja) * 2018-08-08 2020-02-13 ローム株式会社 Ledパッケージ、led表示装置
JP2020027824A (ja) * 2018-08-09 2020-02-20 ローム株式会社 発光装置および表示装置
CN109504037B (zh) * 2018-11-22 2021-10-22 苏州生益科技有限公司 一种树脂组合物及使用其制备的半固化片和层压板
CN111060530B (zh) * 2019-12-25 2022-05-13 广东生益科技股份有限公司 印制电路板钻孔质量评估方法
CN111907158A (zh) * 2020-08-26 2020-11-10 三鑫笑为电子材料(苏州)有限公司 一种激光打二维码的白色环氧玻纤布层压板及压合工艺
CN115637013B (zh) * 2022-10-31 2024-04-30 深圳伊帕思新材料科技有限公司 双马来酰亚胺组合物、半固化胶片以及铜箔基板
CN116082793B (zh) * 2022-12-28 2024-06-07 东莞联茂电子科技有限公司 耐黄变白色覆铜板用的环氧树脂组合物、半固化片及基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143287A (ja) * 1995-11-24 1997-06-03 Risho Kogyo Co Ltd プリプレグシート及び積層品
JP2000169605A (ja) * 1998-12-04 2000-06-20 Risho Kogyo Co Ltd 積層板用プリプレグシ―トおよびその製造法
JP2003152294A (ja) * 2001-11-19 2003-05-23 Risho Kogyo Co Ltd プリント配線基板用白色積層板
JP2004115746A (ja) * 2002-09-30 2004-04-15 Shin Kobe Electric Mach Co Ltd プリプレグ、絶縁層、金属箔張り積層板ならびにプリント配線板
JP2006152260A (ja) * 2004-10-26 2006-06-15 Hitachi Chem Co Ltd 複合体、これを用いたプリプレグ、金属箔張積層板及び多層印刷配線板並びに多層印刷配線板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939307B2 (ja) * 1980-06-18 1984-09-21 三菱瓦斯化学株式会社 プラスチツク物品
JPH01278523A (ja) * 1988-04-28 1989-11-08 Kanegafuchi Chem Ind Co Ltd 樹脂組成物及びそれからなる繊維強化複合材料
JPH05209040A (ja) * 1990-06-27 1993-08-20 Mitsubishi Kasei Corp 繊維強化樹脂組成物
DE69610771T2 (de) * 1995-06-27 2001-02-22 Hitachi Chemical Co Ltd Epoxidharzzusammensetzung für gedrückte leiterplatten und damit hergestellte schichtstoffplatten
ID19337A (id) * 1996-12-26 1998-07-02 Ajinomoto Kk Film perekat antar-pelapis untuk papan pembuat kabel cetakan berlapis-banyak dan papan kabel cetakan berlapis-banyak memakai film ini
JP2003105061A (ja) * 2001-09-27 2003-04-09 Sanei Kagaku Kk 光・熱硬化性樹脂組成物、並びに穴詰プリント配線(基)板の製造方法及び穴詰プリント配線(基)板
JP4259817B2 (ja) * 2002-06-14 2009-04-30 株式会社Adeka エポキシ樹脂組成物
EP1477534A3 (en) * 2003-05-16 2005-01-19 Rohm And Haas Company Multiple-part fast cure powder coatings
JP2005082798A (ja) * 2003-09-11 2005-03-31 Noritake Co Ltd エポキシ樹脂組成物および白色基板
ES2337598T3 (es) * 2004-11-10 2010-04-27 Dow Global Technologies Inc. Resinas espoxi endurecidas con copolimeros de bloques anfifilicos y estratificados electricos fabricados a partir de ellas.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143287A (ja) * 1995-11-24 1997-06-03 Risho Kogyo Co Ltd プリプレグシート及び積層品
JP2000169605A (ja) * 1998-12-04 2000-06-20 Risho Kogyo Co Ltd 積層板用プリプレグシ―トおよびその製造法
JP2003152294A (ja) * 2001-11-19 2003-05-23 Risho Kogyo Co Ltd プリント配線基板用白色積層板
JP2004115746A (ja) * 2002-09-30 2004-04-15 Shin Kobe Electric Mach Co Ltd プリプレグ、絶縁層、金属箔張り積層板ならびにプリント配線板
JP2006152260A (ja) * 2004-10-26 2006-06-15 Hitachi Chem Co Ltd 複合体、これを用いたプリプレグ、金属箔張積層板及び多層印刷配線板並びに多層印刷配線板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887031A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275561A (ja) * 2007-11-30 2010-12-09 Taiyo Holdings Co Ltd 白色熱硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
CN102977336A (zh) * 2008-01-09 2013-03-20 日立化成工业株式会社 热固化性树脂组合物、环氧树脂成形材料及多元羧酸缩合体
US9067906B2 (en) 2008-01-09 2015-06-30 Hitachi Chemical Company, Ltd. Thermosetting resin composition, epoxy resin molding material, and polyvalent carboxylic acid condensate
JP2011122116A (ja) * 2009-12-14 2011-06-23 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2014210992A (ja) * 2013-04-18 2014-11-13 株式会社デコリア 壁紙

Also Published As

Publication number Publication date
EP1887031A4 (en) 2009-05-13
US20090194320A1 (en) 2009-08-06
KR100940232B1 (ko) 2010-02-04
TWI403545B (zh) 2013-08-01
HK1120283A1 (en) 2009-03-27
DE602006011456D1 (de) 2010-02-11
KR20080014830A (ko) 2008-02-14
TW200704688A (en) 2007-02-01
CN101218285B (zh) 2011-03-30
CA2608179C (en) 2010-06-29
JP4634856B2 (ja) 2011-02-16
JP2006316173A (ja) 2006-11-24
MY144427A (en) 2011-09-15
CA2608179A1 (en) 2006-11-16
EP1887031A1 (en) 2008-02-13
EP1887031B1 (en) 2009-12-30
CN101218285A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4634856B2 (ja) 白色プリプレグ、白色積層板、及び金属箔張り白色積層板
JP5463586B2 (ja) プリプレグ、積層板、及び金属箔張り積層板
JP4788457B2 (ja) プリプレグ並びに銅張積層板
CN105408394B (zh) 聚酰胺酰亚胺树脂、固化性树脂组合物及其固化物
JP4905052B2 (ja) プリプレグおよび銅張積層板
JP2007224242A (ja) 熱硬化性樹脂組成物、bステージ化した樹脂フィルムおよび多層ビルドアップ基板
WO2017135751A1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
JP6432814B2 (ja) アルコール変性ポリアミドイミド樹脂およびその製造方法
JP2011241279A (ja) エポキシ樹脂組成物並びにプリプレグ、積層板及び配線板
WO2022255278A1 (ja) プリプレグ、積層板、金属張り積層板、プリント配線板、半導体パッケージ並びにプリプレグの製造方法及び金属張り積層板の製造方法
JP2013023666A (ja) エポキシ樹脂材料、硬化物及びプラズマ粗化処理硬化物
TWI452949B (zh) 積層板、覆金屬箔積層板、印刷配線板及電路基板以及led背光單元、led照明裝置、積層板之製造方法
JP6922162B2 (ja) ポリアミドイミド樹脂およびその製造方法
US20050095434A1 (en) Resin composition, prepreg and laminate using the composition
JP5202775B2 (ja) プリプレグ、金属張り積層板及びその使用
JP5327521B2 (ja) 白色プリプレグ、白色積層板、及び金属箔張り白色積層板
WO2015178393A1 (ja) 金属箔張基板、回路基板および電子部品搭載基板
JP5508342B2 (ja) プリント配線板用bステージフィルム及び多層基板
JP2003152295A (ja) プリント配線基板用白色積層板
JP2012041510A (ja) 樹脂組成物、bステージフィルム、積層フィルム及び多層基板
JP5098432B2 (ja) 接着剤層付き金属箔、これを用いた金属張積層板及びプリント配線板
JP2006328233A (ja) 樹脂組成物、それを用いたプリプレグ、積層板および印刷配線板
JP2008260849A (ja) 樹脂組成物、樹脂組成物付き金属箔及びプリント配線板
JP6323481B2 (ja) プリント配線板及びその製造方法並びに熱硬化性樹脂組成物
KR20170075505A (ko) 절연수지 시트 및 이를 구비한 인쇄회로기판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024753.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2608179

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077028311

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006746232

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920399

Country of ref document: US