WO2006118306A1 - 糖化ヘモグロビンの分析装置および分析方法 - Google Patents

糖化ヘモグロビンの分析装置および分析方法 Download PDF

Info

Publication number
WO2006118306A1
WO2006118306A1 PCT/JP2006/309172 JP2006309172W WO2006118306A1 WO 2006118306 A1 WO2006118306 A1 WO 2006118306A1 JP 2006309172 W JP2006309172 W JP 2006309172W WO 2006118306 A1 WO2006118306 A1 WO 2006118306A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructosyl
hemoglobin
glucose
immobilized
oxidase
Prior art date
Application number
PCT/JP2006/309172
Other languages
English (en)
French (fr)
Inventor
Yoko Nanjo
Ryuzo Hayashi
Original Assignee
Oji Paper Co., Ltd.
Oji Scientific Instruments Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005134591A external-priority patent/JP2006304742A/ja
Priority claimed from JP2005330338A external-priority patent/JP4622820B2/ja
Priority claimed from JP2005355450A external-priority patent/JP4622836B2/ja
Application filed by Oji Paper Co., Ltd., Oji Scientific Instruments Co., Ltd. filed Critical Oji Paper Co., Ltd.
Priority to US11/913,367 priority Critical patent/US8128802B2/en
Priority to EP06746022A priority patent/EP1889918B1/en
Priority to DE602006021173T priority patent/DE602006021173D1/de
Publication of WO2006118306A1 publication Critical patent/WO2006118306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin

Definitions

  • the present invention relates to an analyzer and an analysis method for measuring a glycated hemoglobin amount at high speed and with high accuracy, and contributes to health management, clinical diagnosis, and the like.
  • Glycohemoglobin is widely used as an indicator of long-term blood glucose control in diabetic patients.
  • Glycohemoglobin is a type of glycoprotein that is non-enzymatically bound to hemoglobin.
  • the fraction called HbAlc is an aldimine (unstable form) in which glucose forms a Schiff base on the 13-chain N-terminal palin residue of hemoglobin A, and undergoes Amadori rearrangement to give ketoamine.
  • This is a composite product.
  • Those having an aldimine structure are called unstable sugar-hemoglobin, and those having a ketoamine structure are called stable sugar-hemoglobin.
  • the N-terminal of the above 8 chain after Amadori rearrangement is a fructosyl valine residue.
  • HbAlc increases when the blood glucose level in plasma increases on average for a long period of time, and the amount increases according to the glucose concentration in plasma, which does not involve an enzyme in this reaction process. Stable sugar hemoglobin does not disappear until the lifetime of its red blood cells is exhausted. In general, the lifetime of hemoglobin molecules in vivo is about 2 months, and as a result, the value of HbAlc is said to reflect the average blood glucose level over the past 1 to 2 months. Therefore, HbAlc is used as an indicator of the average value of long-term blood glucose level.
  • HbAlc is an average value over a long period of time, so it is suitable for use as a determinant for the diagnosis and treatment of diabetes. It is said that there is.
  • the HPLC method is currently the most frequently used method. Fractionation of hemoglobin by separation column In addition, since the ratio of the peak eluted in the retention volume equivalent to HbAlc and the ratio of the total peak area is calculated as the ratio of HbAlc, the relative area method is used, so the accuracy of the injection volume can be ignored to some extent. There is. There are problems such as large force and complicated equipment and heavy maintenance load. In addition, since unstable HbAlc and stable HbAlc cannot be distinguished, there is a disadvantage that separation analysis must be performed after removing unstable HbAlc (Patent Document 1). At the same time, if there is a congenital hemoglobin mutation, the separation pattern may change and show abnormal values. It may also contain errors due to accidental overlap of other biological components with the HbAl c peak.
  • the glycoprotein is also cleaved by a certain method, and the amount of the resulting glycopeptide or glycoamino acid is converted into the glycopeptide amino acid oxidase. It detects using enzymes, such as. By using the selectivity of the enzyme, it may be possible to perform a more accurate analysis.
  • Patent Document 2 discloses a method for measuring sugar amino acids with an enzyme. However, a method for extracting a sugar amino acid from a sugar protein protein is described.
  • proteolytic enzyme that cleaves a glycopeptide or a glycoamino acid as quickly as possible is required.
  • proteolytic enzymes with high activity may degrade not only hemoglobin but also glycine peptide oxidase and glycine amino acid oxidase, and methods for selectively degrading hemoglobin are being sought. No method has yet been found.
  • the second problem is that the ⁇ -chain and j8 chain of hemoglobin are both N-terminal amino acids, and proteolytic enzymes that release glycated amino acids are ideal for detecting glycated amino acids. It is desirable to act only on the j8 chain. But very much like ⁇ chain and j8 chain Proteolytic enzymes with a high degree of selectivity for similar substrates have not yet been discovered.
  • Patent Document 3 discloses a method for quantifying glycoproteins by measuring a sample treated with a proteolytic enzyme with glycated peptideoxidase or HPLC.
  • a proteolytic enzyme with glycated peptideoxidase or HPLC.
  • no examination has been made on the other specificity that the proteolytic enzyme acts only on the glycoprotein and not on the glycated peptide oxidase. Only an example is shown in which ultrafiltration is performed by heat inactivation.
  • Patent Document 4 discloses a method for measuring the activity of an enzyme with a low molecular weight standard and releasing a glycated peptide from glycoproteins!
  • Patent Document 5 exemplifies a method of quantifying HbAlc by measuring a glycopeptide in sugar hemoglobin using a large excess of a protease derived from Streptomyces. .
  • many glycated peptide oxidases have the property of responding to glycosylation amino acids. Therefore, in the presence of a large excess of proteolytic enzyme, it is not clear which glycoside peptide or glycoside amino acid reacted.
  • Specificity for hemoglobin / 3-chain is a feature of glycoside peptide oxidase. There is no example that fully demonstrates.
  • Patent Document 6 a combination of an enzyme that acts on a glycopeptide or a sugar amino acid to produce peracid hydrogen and a proteolytic enzyme that produces the substrate is examined.
  • the glycosylation amino acid producing activity of a proteolytic enzyme is evaluated as an activity to release a glycosylamino acid from a glycated dipeptide.
  • the production activity of glycine dipeptide has been evaluated as the activity of releasing -troa-lide derivative-troa-phosphorus of glycopeptide. Therefore, it is unclear whether glycopeptides or glycoamino acids are released from actual high molecular weight glycated proteins, particularly glycated hemoglobin.
  • the inventors of the present application were unable to confirm the effectiveness of papain, which is a plant-derived proteolytic enzyme that is actually effective in the present invention.
  • Patent Document 7 there are examples of various protein-degrading enzymes as a method for releasing a glycoside dipeptide. In practice, however, a method for releasing a glycoside peptide from a glycoside hexapeptide is examined. However, it is not a breakdown of the actual sugar hemoglobin. Further, in the follow-up test by the inventors of the present invention, no response was obtained with proteolytic enzymes other than the genus Bacillus, particularly proteolytic enzymes of the genus Papain and Aspergillus, but only with a proteinase derived from Bacillus. As a result, it was impossible to try again. The reason for this is not clear, but in Patent Document 7, it is considered that another product that is co-generated with fructosylvalylhistidine upon protease degradation is detected.
  • Patent Document 1 Japanese Patent Publication No. 5-59380
  • Patent Document 2 Japanese Patent Publication No. 5-33997
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-95598
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-235585
  • Patent Document 5 JP 2004-275013 A
  • Patent Document 6 Japanese Patent Laid-Open No. 2004-340552
  • Patent Document 7 JP-A-2005-110657
  • An object of the present invention is to provide a highly accurate analysis method for the amount of glycated hemoglobin.
  • Another object of the present invention is to provide a fructosyl peptide oxidase-immobilized enzyme specific to a glycodipeptide generated from glycohemoglobin or specific to a glycoamino acid produced by a glycohemoglobin force. It provides a method and apparatus for using a novel fructosyl amino acid oxidase-immobilized enzyme, and enables accurate quantification of hemoglobin
  • Another object of the present invention is to provide an apparatus for easily and accurately calculating a blood glucose level and a glycated hemoglobin ratio contained in a sample.
  • Another object of the present invention is to provide a proteolytic enzyme capable of efficiently degrading sugar hemoglobin.
  • Another object of the present invention is to provide a method and apparatus for detecting the total amount of hemoglobin contained in a sample easily and accurately and calculating the ratio of glycated hemoglobin. Means for solving the problem
  • the present invention relates to fructosyl peptide oxidase acting on fructosy ⁇ L-valylhistidine or fructosyl valine (fr uctosy ⁇ L-valine).
  • An immobilized isomer (17) with one of the amino acid oxidases (fructosyl L-amino acid oxidase) immobilized, and an electrochemical that detects the electrochemically active substances that increase or decrease due to the reaction catalyzed by the immobilized oxidase It has an automatic detection mechanism (18) and is equipped with a mechanism (4, 5, 7) in which a specimen containing sugar hemoglobin is brought into contact with a proteolytic enzyme for an arbitrary period of time and a part thereof is injected.
  • the present invention relates to a hemoglobin analyzer.
  • the present invention also relates to a fixed body (17) in which one of fructosyl peptide oxidase acting on fructosyl norylhistidine or fructosyl amino acid oxidase acting on fructosyl valine is fixed.
  • An electrochemical detection mechanism (18) that detects an electrochemically active substance that increases or decreases due to a reaction catalyzed by the oxidase immobilized body, and a mechanism (4, 5, 7) that injects a specimen containing glycated hemoglobin.
  • This is a sugar-hemoglobin analyzer equipped with a proteinase immobilized on the downstream of the mechanism for injecting the sample.
  • a sugar hemoglobin analyzer characterized by comprising a column reactor.
  • the present invention provides a fixed body (17) in which either one of fructosyl peptide oxidase acting on fructosyl norylhistidine or fructosyl amino acid oxidase acting on fructosyl valine is fixed, and Equipped with an electrochemical detection mechanism (18) that detects electrochemically active substances that increase or decrease due to a reaction catalyzed by the immobilized oxidase, and a mechanism (4, 5, 7) that injects a specimen containing moglobin into glycation
  • An apparatus for analyzing glycated hemoglobin which calculates at least the amount of hemoglobin obtained from the light absorption of the sample downstream of the mechanism (4, 5, 7) for injecting the specimen, or the amount of the hemoglobin and fructosyl peptide.
  • Glycohemoglobin characterized in that it has a mechanism to calculate the sugar content of hemoglobin. The analyzer disclosed.
  • a proteolytic enzyme that is brought into contact with a specimen containing glycated hemoglobin for a certain period of time is neutral or acidic produced by Bacillus subtilis. Desirably, it is a proteolytic enzyme or a variant thereof.
  • Aspergillus oryzae when using fructosyl amino acid oxidase that acts on fructosyl valine, Aspergillus oryzae produces a proteolytic enzyme that is brought into contact with a specimen containing glycated hemoglobin for a certain period of time. Desirably it is an alkaline proteolytic enzyme or a variant thereof.
  • the present invention includes a fixed body in which an enzyme that catalyzes the acid reaction of glucose is immobilized, and a mechanism for detecting an electrochemically active substance that increases or decreases due to the glucose acid reaction.
  • it has a mechanism to detect electrochemically active substances that increase or decrease due to oxidation reaction of fructosylvalylhistidine or fructosylvaline by fructosyl peptide oxidase or fructosyl amino acid oxidase immobilized body, and a mechanism to detect total hemoglobin
  • the first calculation mechanism to obtain the amount of glycohemoglobin based on the detection result of fructosylnorylhistidine or fructosyl valine and the detection result of hemoglobin, and the whole blood glucose based on the detection result of whole blood dalcose and hemoglobin It is characterized by having a second calculation mechanism that corrects blood glucose to plasma glucose Glucose and sugar hemoglobin analyzer
  • the device is characterized by having
  • the present invention relates to a fixed body in which an enzyme that catalyzes an acid reaction of glucose is immobilized, a mechanism for detecting an electrochemically active substance that increases or decreases due to a glucose oxidation reaction,
  • a fructosylamino acid or fructosyl peptide immobilized with a fructosyl amino acid or fructosyl peptide immobilized immobilization of a fructosyl amino acid or fructosyl peptide Specimens based on a mechanism to detect increasing and decreasing electrochemically active substances, a mechanism to detect total hemoglobin, and a detection result of glucose and fructosylnorthyridine in a specimen, or a detection result of dalcose and fructosyl valine in a specimen Fructosyl valyl histidine that eliminates the effects of medium glucose or
  • the present invention collects a whole blood sample, disperses it in a liquid containing a surfactant, hemolyzes it, contacts the proteolytic enzyme with the hemolyzed liquid for an arbitrary time, and measures the absorbance of the proteolytic enzyme reaction liquid
  • a portion of the reaction solution was immobilized with either fructosyl peptide oxidase acting on fructosyl norylhistidine or fructosyl amino acid oxidase acting on fructosyl valine.
  • the present invention relates to a method for analyzing glycated hemoglobin, characterized by electrochemically detecting an electrochemically active substance that is brought into contact with a body and increases or decreases by a reaction catalyzed by the oxidase.
  • the surfactant is a ionic surfactant having a sulfone group.
  • the present invention discloses a method for analyzing glucose and glycated hemoglobin in a specimen, comprising the following steps:
  • An immobilized enzyme in which an enzyme that catalyzes the acid reaction of glucose is immobilized, and glucose acid Electrochemically detecting the concentration of darose in the specimen using a mechanism that detects electrochemically active substances that increase or decrease due to the reaction;
  • Whole blood Z blood cell dull course is corrected to plasma dull course by the second calculation mechanism based on the detection results of whole blood Z blood glucose and hemoglobin.
  • the method comprises fructosyl L-parin or fructosyl, which is obtained by eliminating the influence of darcos in the sample by a third calculation mechanism based on the detection results of glucose and fructosyl L-parin in the sample or glucose and fructosylvalylhistidine in the sample. It is desirable that the method further includes a step of obtaining a measurement value of the silvalyl histidine, and obtaining HbAlc by the first calculation mechanism based on the obtained measurement value and the detection result of hemoglobin.
  • stable glycated hemoglobin in a blood sample can be quantified simply and with high accuracy.
  • blood glucose levels and sugar hemoglobin levels can be quickly quantified
  • the plasma glucose concentration in the blood sample and the sugar-hemoglobin ratio are identical to the plasma glucose concentration in the blood sample and the sugar-hemoglobin ratio
  • glucose and HbAlc can be calculated simultaneously using the first and second arithmetic mechanisms. Furthermore, the glucose concentration in the sample is converted into the plasma glucose concentration by the second calculation mechanism based on the hemoglobin concentration that is essential for the calculation of HbAlc. The concentration of fructosyl L-parin or fructosyl valylhistidine in the body is converted to HbAlc by the second calculation mechanism after the influence of glucose is eliminated by the third calculation mechanism, so that plasma glucose and HbAlc are totally efficient. And it can measure with high accuracy.
  • FIG. 8 Fructosylvaline calibration curve with glucose electrode and fructosyl amino acid oxidase immobilized
  • the sample is preferably whole blood or blood such as blood cells.
  • the analyte is treated with either a proteolytic enzyme that produces fructosyl valyl histidine or a proteolytic enzyme that produces fructosyl valine.
  • the proteolytic enzyme that can be used when fructosyl peptide oxidase is used in the present invention has a great effect of generating an N-terminal glycopeptide from glycohemoglobin or a fragment thereof. .
  • the proteolytic enzyme that can be used when fructosyl amino acid oxidase is used in the present invention has a large effect of generating an N-terminal sugar amino acid from sugar hemoglobin or a fragment thereof. Good if there is!
  • a proteolytic enzyme derived from the genus Bacillus is found to have a large effect, and when fructosyl amino acid oxidase is used, it is derived from the Aspergillus proteolytic enzyme, in particular from Aspergillus olyzae. This action is observed in the proteases.
  • the proteolytic enzyme having the optimum range of acidity or neutrality produced by the genus Bacillus that produces fructosyl valyl histidine is preferably pH 6.0 to 10.0, more preferably pH 6.0. It has an optimum pH range of ⁇ 7.0. Specific examples include protease N (manufactured by Amano Enzyme), protin PC10F (manufactured by Daiwa Kasei), protamex (manufactured by Novozym), and two utrease (manufactured by Novozym). In addition to these proteolytic enzymes produced by the genus Bacillus, proteolytic enzymes produced by the genus Streptomyces can also be used.
  • Bacillus genus proteolytic enzyme or “Bacillus genus microorganism-derived protease” refers to the protease itself produced by a Bacillus genus microorganism.
  • a variant obtained by substituting, adding, deleting, or inserting one or more amino acids in the sequence, and has a fructosyl valyl histidine concentration as in the wild-type proteolytic enzyme derived from the genus Bacillus. Widely encompass variants that can be enhanced.
  • Aspergillus genus proteolytic enzyme or "Protease derived from Aspergillus genus microorganism” means the protease itself produced by a microorganism of Aspergillus genus, in the amino acid sequence of the protease, A variant obtained by substitution, addition, deletion, or insertion of one or more amino acids, which can increase fructosyl valine concentration like wild-type proteolytic enzymes derived from the genus Aspergillus Widely encompasses variants.
  • a sample containing glycated hemoglobin is first mixed with a surfactant-containing buffer and reacted, and then the reaction solution is mixed with a proteolytic enzyme solution.
  • a method such as contacting with a carrier on which a proteolytic enzyme is immobilized for a predetermined time can be mentioned, and any method can be used.
  • the reaction conditions of the proteolytic enzyme such as the concentration of proteolytic enzyme, reaction pH and reaction temperature are appropriately selected depending on the proteolytic enzyme.
  • the treatment conditions of a sample containing glycated hemoglobin with a surfactant-containing buffer solution are such that the blood cell concentration in the treatment solution is 5 to 20%.
  • the concentration of protin PC10F in the treatment solution is 0.1 to 50 mgZml, and the reaction temperature is 20 to 50.
  • the reaction pH can be exemplified by 6.0 to 9.0.
  • the protease can efficiently degrade hemoglobin in a short time by immobilizing the protease at a high density on an insoluble carrier.
  • the amount of the protease immobilized on the insoluble carrier is 1-50 mgZ column, preferably 1-20 mgZ column, more preferably 1-1 OmgZ column, particularly preferably 5-1 OmgZ column.
  • the surfactant used when processing a specimen containing glycated hemoglobin has two effects of hemolysis and alteration of the molecular structure of hemoglobin. Most of the hemoglobin is present in the red blood cells, and in the presence of an appropriate concentration of surfactant, the hemoglobin is released outside the red blood cells. Although hemoglobin usually exists in a folded state, it becomes in a relaxed state in an appropriate concentration of surfactant, and this action is presumed to facilitate degradation by proteolytic enzymes.
  • surfactant examples include nonionic polyoxyethylene alkyl ethers [eg, polyoxyethylene (10) octyl ether (Triton X-100), polyoxyethylene (23) lauryl ether, etc.] and polyoxyethylene sorbitan.
  • nonionic polyoxyethylene alkyl ethers eg, polyoxyethylene (10) octyl ether (Triton X-100), polyoxyethylene (23) lauryl ether, etc.
  • polyoxyethylene sorbitan examples include polyoxyethylene sorbitan.
  • Fatty acid esters eg polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), etc.
  • anionic polyoxyethylene alkyl ethers and alkyl sulfates sodium dodecyl sulfate] (SDS) etc.
  • SDS sodium dodecyl sulfate
  • cationic and alkylbetaine surfactants cationic and alkylbetaine surfactants, and other amphoteric surfactants, but anionic surfactants are desirable because of the two effects described above.
  • the concentration is 0.05 to 10%, preferably 0.05 to 1%, and the reaction time with the surfactant is about several seconds to 10 minutes.
  • the buffer solution used when processing a sample containing glycated hemoglobin is not particularly limited as long as it is a buffer solution in a pH range in which hemoglobin can be dissolved, and a known buffer solution such as a phosphate buffer solution or a Tris buffer solution. If you use. If necessary, add salt such as sodium chloride or potassium salt to the buffer.
  • fructosyl peptide oxidase acting on a glycopeptide examples include fructosyl peptides described in, for example, JP-A No. 2001-95598, JP-A No. 2003-235585, and JP-A No. 2004-275013. And oxidase.
  • enzymes that specifically act on glycodipeptides and catalyze reactions that generate hydrogen peroxide can also be obtained by searching for natural microorganisms. Enzymes derived from animals or plants Can also be obtained by searching. Also known fructosyls such as Corynebacterium, Aspergillus, Fusarium, Gibberella, Penicillium, Bacillus, etc. It can also be obtained by modifying amino acid oxidase and the like.
  • glycohemoglobin is measured with fructosylvalyl leucine or glycaminoacid, which is a glycopeptide of the N-terminus of glycohemoglobin chain.
  • a fructosyl valine, glycated lysine glycated with ⁇ -amino groups does not substantially act on glycated lysine, and is linked to fructosyl valyl histidine, which is a glycosyl peptide at the 8-hemoglobin j8 chain.
  • a specifically acting enzyme, fructosyl peptide oxidase is preferred.
  • HbAlc is defined as the sugar chain of the hemoglobin ⁇ chain terminus, so that the fructosyl valyl leucine or fructosyl valine derived from the N terminus of hemoglobin a chain and albumin contained in the serum This is because lysine glycated with an ⁇ -amino group released from the digested product and lysine glycated product contained in hemoglobin may cause a positive error in the measurement result.
  • fructosyl peptide oxidases have a characteristic of responding not only to fructosyl peptides but also to fructosyl valine. In such cases, the fructosyl valine produced in the measurement results High accuracy cannot be obtained because of the positive interference derived from.
  • Methods for eliminating interference derived from fructosyl valine include specifically detecting fructosyl valine in glycolytic hemoglobin proteolytic enzyme treatment solution and calculating the difference, and the conditions of proteolytic enzyme treatment. Although the method is used under conditions that do not produce silver valine, the latter method is desirable for obtaining high accuracy.
  • fructosyl valine is not detected in the proteolytic enzyme treatment solution.
  • the detection value is not increased or decreased by providing a fructosyl valine detection mechanism downstream of the sample injection mechanism.
  • the requirement of the fructosyl valine detection mechanism used at this time is to detect fructosyl valine specifically without responding to the fructosyl peptide.
  • a method of detecting the increase or decrease in hydrogen peroxide by placing a stationary body with a fixed body downstream of the specimen injection mechanism.
  • fructosyl peptide oxidase may respond to ⁇ -fructosyl lysine and various amino acids.
  • these components are problematic, it is desirable that the problematic components are not detected in the treated sample liquid, as in the case of the aforementioned fructosyl valine.
  • an oxidase that specifically acts on ⁇ -fructosyl lysine may be used as described above.
  • ⁇ -fructosyl lysine is not a sugar in the proteolytic enzyme treatment solution. May be substituted because lysine is not detected, and the latter is simpler and more desirable.
  • a method of detecting the increase or decrease in hydrogen peroxide by arranging an immobilized body on which an amino acid oxidase having the amino acid as a substrate is immobilized downstream of the specimen injection mechanism is simple in operation and apparatus configuration. Especially preferred from the point of view of sex. For example, use of L-glutamic acid oxidase or L-lysine oxidase is desirable from the viewpoint of heat stability and sensitivity.
  • the processing time of the proteolytic enzyme can be specified. That is, a proteolytic enzyme may be used within a time range in which fructosyl valine and a specific amino acid are not detected and only fructosyl valyl histidine is detected.
  • the fructosyl amino acid oxidase is derived from the genus Corynebacterium (Corynebact erium), Aspergillus, Fusarium, Gibb erella, Penicillium, Bacillus and the like.
  • the enzyme immobilization method used in the present invention methods known as protein immobilization methods such as physical adsorption method, ion binding method, inclusion method, and covalent bond method can be used.
  • the bonding method has excellent long-term stability and is desired.
  • various methods for covalently binding proteins such as using compounds having an aldehyde group such as formaldehyde, glyoxal, and glutaraldehyde, using a polyfunctional acylating agent, and crosslinking sulfhydryl groups.
  • the shape of the enzyme-immobilized body can be fixed in a film and placed on a powerful electrode such as platinum, gold, or carbon, or it can be immobilized on an insoluble carrier and packed in a column reactor. It can also be used.
  • Glucose peptides and glycosylation amino acids generated from glucose and hemoglobin by the action of glucose and proteolytic enzymes in the sample were glucose oxidase, fructosyl peptide oxidase and fructosyl amino acid oxidase (in order).
  • the concentration of each substance can be measured by electrochemically detecting the peroxyhydrogen generated by each oxidase by converting it to peroxyhydrogen in any question.
  • the sugar content of naturally occurring hemoglobin saccharides is as low as about 5%. It is necessary to detect hydrogen peroxide with high sensitivity because it is expected to be small.
  • hemoglobin itself has an absorption band in the vicinity of 400 to 600 nm
  • the detection of absorbance of hydrogen peroxide and hydrogen peroxide in these wavelength regions is an actual sugar that is greatly disturbed by the absorption of hemoglobin. It is likely not applicable to hemoglobin measurement.
  • electrometry such as amperometry is necessary for highly sensitive measurement of hydrogen peroxide. It ’s better to use a scientific approach.
  • glucose and glucose in a specimen can be measured with a single device.
  • an enzyme that catalyzes the oxidation reaction of glucose is immobilized and used.
  • Applicable enzymes include glucose oxidase (EC1. 1. 3. 4), vinanosoxidase (EC 1. 1. 3. 10), glucose dehydrogenase (EC 1. 1. 99. 1 0), etc. is there.
  • glucose oxidase is preferable because of its high durability and excellent substrate selectivity.
  • the glucose level in the field of clinical examination is usually evaluated by glucose in plasma.
  • the whole blood glucose concentration value is different from the plasma glucose concentration value because the whole blood contains a component such as hemoglobin that cannot be a solvent.
  • the specimen containing hemoglobin is the target, and the specimen used is whole blood or blood cells.
  • the glucose value detected when the sugar-hemoglobin ratio and glucose are measured simultaneously is the whole blood glucose value.
  • whole blood glucose and blood cell (erythrocyte) glucose are almost equivalent in fresh blood, in this specification, whole blood glucose and blood cell (erythrocyte) glucose are collectively referred to as "whole blood glucose”. May be expressed.
  • hematocrit correction As a method of calculating the plasma glucose value from the whole blood glucose value, there is a method of measuring the hematocrit value by some method and correcting the whole blood glucose value (hematocrit correction). Since a measuring device is required, the analyzer becomes large and complicated, which is undesirable. In this embodiment of the present invention, since the hemoglobin concentration is always measured when measuring the sugar-hemoglobin ratio, the correction factor for the blood cell is calculated from the hemoglobin concentration to correct the whole blood glucose value. By providing a two-operation mechanism, the plasma glucose level can be calculated without increasing the size of the apparatus.
  • fructosyl amino acid oxidase may act on glucose, although it is only sugar amino acid. Since there is about 100 times the concentration of glucose in the blood as in hemoglobin, if fructosyl amino acid oxidase also acts on glucose, the detected fructosyl valine The value includes a positive error due to blood glucose, and an accurate fructosyl valine concentration cannot be obtained. Therefore, in order to eliminate the interference of glucose in the sample with the detected value of fructosyl valine, a glucose oxidase immobilized body is placed together with a fructosyl amino acid oxidase immobilized body, and fructosyl valine is measured simultaneously with glucose. , Fructosylparin detection value power The third arithmetic unit calculates a difference between the interferences caused by glucose in the sample.
  • a fructosyl peptide oxidase that generates peracid hydrogen by acidifying the glycopeptide is immobilized and used.
  • Glucose hemoglobin N-terminal glycopeptide is characterized by fructosyl peptide oxidase, which is required for the detection of fructosyl peptide oxidase.
  • fructosylvalyl leucine or ⁇ -fructosyl lysine glycated with ⁇ -amino groups does not act on fructosylvalyl leucine or ⁇ -fructosyl lysine glycated with ⁇ -amino groups, and is specific for glycosyl hemoglobin j8 chain ⁇ -terminal glycosydipeptide fructosyl valyl histidine Enzymatic acting enzymes are preferred.
  • fructosyl amino acid oxidase when fructosyl peptide oxidase also acts on glucose, it is used simultaneously with immobilized darcose oxidase to simultaneously measure glycopeptide and glucose, The detection power of glycopeptide is also calculated as a difference by the third calculation mechanism for the interference of glucose in the sample.
  • glycosylamino acid or glycosylpeptide detection system using fructosyl amino acid oxidase or fructosyl peptide oxidase, dalcose in the sample interferes with the detection value of glycosylamino acid or glycosylpeptide. If given, explain the calculation method to eliminate these interferences. Specifically, when a sugar amino acid or sugar peptide responds in the glucose detection system and glucose responds in the sugar amino acid or sugar peptide detection system, the glucose and sugar are first detected in each detection system. Create a calibration curve for amino acids or glycopeptides. After that, the response value for the sample obtained in each detection system is calculated by using each calibration curve.
  • a glucose calibration curve obtained with a dalucose detection system that combines a glucose oxidase immobilized enzyme and a first peracid-hydrogen electrode.
  • a calibration curve of dulose obtained with a sugar amino acid or glycopeptide detection system combining a fructosyl amino acid oxidase or fructosyl peptide oxidase immobilized body with a peracid-hydrogen electrode.
  • V a X x + b + a X x + b
  • the concentration X of fructosyl valine or fructosyl valyl histidine is
  • fructosyl valine or fructosyl noryl histidine in the glucose detection system responds to glucose with fructosyl amino acid oxidase or fructosyl peptide oxidase immobilized, glucose and fructosyl valine or fructosyl valyl histidine Concentration can be calculated and fractional quantification is possible.
  • the concentration X of fructosyl valine or fructosyl noryl histidine is
  • a calibration curve for darcosose and fructosyl valine or fructosyl noryl histidine was prepared using the dulcose detection system and the glyco-amino acid or glyco-peptide detection system. Using the equation, the glucose concentration and fructosyl valine or fructosyl valyl histidine concentration in the sample can be accurately calculated.
  • HbAlc which is the sugar-hemoglobin ratio
  • HbAlc which is the sugar-hemoglobin ratio
  • a specimen containing glycated hemoglobin is mixed with a surfactant-containing buffer, and then a proteolytic enzyme is added and reacted for a predetermined time.
  • a method in which a sample containing a glycated hemoglobin mixed with a surfactant-containing buffer is brought into contact with a carrier on which a proteolytic enzyme is immobilized for a predetermined time may be used.
  • HbAlc which is a measurement target of the hemoglobin ratio of hemoglobin as a clinical diagnostic index, is expressed as the ratio of the fraction in which a specific site is glycosylated in all hemoglobin. Therefore, once the hemoglobin concentration in the sample used for analysis is known, the ratio of the amount of fructosylvalylhistidine or the amount of fructosylvaline that can detect the sample force can be taken.
  • a known method such as cyan methemoglobin method, methemoglobin method, azaid hemoglobin method, SLS-hemoglobin method or the like may be used.
  • the SLS-hemoglobin method is preferred because it has a small impact on the environment and has a low environmental impact when the reagent is discarded.
  • the SLS-hemoglobin method calculates the absorbance change power of a sample at 540 nm after treating a blood sample with an alkyl sulfate solution (hereinafter referred to as a hemoglobin measuring reagent) that is an anionic surfactant. is there.
  • the alkyl sulfate sodium lauryl sulfate (SLS), polyoxyethylene sodium lauryl sulfate, or the like is appropriately selected and used, and the hemoglobin measurement reagent may contain a buffer or various salts.
  • the concentration of the alkyl sulfate is 0.05 to 10%, preferably 0.05 to 1% with respect to the blood cell concentration of 0.25 to 20% by volume in the reaction solution.
  • the reaction of the reagent for measuring hemoglobin with a blood sample is completed in several seconds to several minutes.
  • a surfactant-containing buffer solution for proteolytic enzyme treatment may be added after the reaction of the sample with the hemoglobin measurement reagent.
  • the surfactant in the hemoglobin measurement reagent and the surfactant for proteolytic enzyme treatment may be different or the same as long as the above conditions are satisfied.
  • the hemoglobin concentration can be measured at any time within the time range in which the absorbance of the reaction solution is stable after the reaction between the sample and the hemoglobin concentration measuring reagent is completed. Before and after the treatment, and before and after the detection of glucose, fructosyl valine and fructosyl noryl histidine!
  • a method for measuring the absorbance of the hemoglobin measurement reagent treatment solution a batch method in which the sample is dispensed into a cuvette and the absorbance at a specific wavelength is measured, or a sample is prepared using a Teflon (registered trademark) tube as a cell.
  • the flow method is more preferable because the flow method that measures the change in absorbance at a specific wavelength passing through a Teflon (registered trademark) tube is easy because the operation is simple.
  • the measurement of the hemoglobin concentration may be performed within the time range in which the absorbance of the reaction solution is stable after the reaction between the specimen and the hemoglobin concentration measuring reagent is completed.
  • FIG. 1 shows one preferred embodiment of the present invention using a protein-degrading enzyme that produces fructosyl nor- histidine as a protease for treating a specimen.
  • a mechanism for forming a buffer flow (1, 2), a mechanism for injecting a specimen (4, 5, 7), and a downstream of the proteolytic enzyme-immobilized rod (14) and a flow type ratio for hemoglobin concentration detection A color meter (16) and electrodes (18, 20) capable of detecting the concentration of electrochemically active substances are arranged, and the fructosyl peptide detection electrode system (17, 18) and amino acid detection electrode system or fructosyl amino acid detection electrode system( 19, 20). (3) is a damper, and (15) is a mixing pipe.
  • the buffer solution is sent from the buffer solution tank (1) by the pump (2). Insert the needle (7) into the sample (6), close the valve (10), open the valve (11) and pull the syringe pump (12) to draw the sample into the metering loop (5) of the metering valve (4). ). Next, switch the weighing valve (4) and push out the sample accumulated in the loop (5) with buffer solution. Excess sample should be opened and the valve (10) is opened and the valve (11) is closed. After the cleaning liquid (9) is drawn into the syringe pump (12), the nozzle (10) is closed and the valve (11) is opened. By pushing out the cleaning liquid, it is pushed out to the waste pot (8) and stored in the waste liquid bottle (23).
  • the injected sample follows the flow of the buffer solution and passes through the protease column (14) installed in the thermostatic chamber (13), and the glycoprotein in the sample also produces fructosyl peptide. To do.
  • the sample on which the proteolytic enzyme has acted passes through a flow-type colorimeter (16) installed further downstream according to the flow of the buffer solution, and after the hemoglobin concentration in the sample is detected, the fructosyl peptide oxidase is immobilized.
  • the hydrogen peroxide generated through the column (17) is detected by the hydrogen peroxide electrode (18).
  • Waste liquid passes through the back pressure coil (21) and accumulates in the waste liquid bottle (22).
  • Blood sample (6) may be supplied directly into the analyzer Force sample (6) is pretreated with a reagent for measuring the concentration of hemoglobin and treated with Z or proteolytic enzyme and then supplied into the device May be.
  • the analyzer When supplying a blood sample directly into the analyzer, for example, supply it together with a reagent for measuring hemoglobin concentration and a protein-degrading enzyme, and reacting with the reagent for measuring hemoglobin concentration in the buffer flow path and proteolytic enzyme May be processed.
  • the substance concentration is quantified by detecting changes in absorbance of the flow-type colorimeter (16) and changes in the current values of the hydrogen peroxide electrodes (18) and (20).
  • fructosyl is used instead of the fructosyl peptide detection electrode system (17, 18) and the amino acid detection electrode system or the fructosyl amino acid detection electrode system (19, 20).
  • the amino acid detection electrode system (17, 18) and amino acid detection electrode system (19, 20) are used, and the glycosylation protein in the sample is also fully expressed by the proteolytic enzyme immobilization enzyme column (14).
  • the sugar hemoglobin analyzer of another embodiment can be configured.
  • the apparatus of FIG. 1 can also be used as one preferred embodiment of the present invention for simultaneously measuring glucose and sugar hemoglobin. That is, instead of the fructosyl peptide detection electrode system (17, 18) and amino acid detection electrode system or fructosylamino acid detection electrode system (19, 20) of the apparatus of FIG. 18) and an electrode system (19, 20) for detecting glycoamino acids or glycopeptides, glucose and glucose can be measured simultaneously.
  • the sample passes through the glucose oxidase fixed body (17), and the hydrogen peroxide generated there is detected by the hydrogen peroxide electrode (18). Subsequently, the peroxyhydrogen generated through the fructosyl amino acid oxidase-immobilized body or fructosyl peptide oxidase-immobilized body (19) is detected at the downstream peracid-hydrogen electrode (20).
  • the Waste liquid passes through the back pressure coil (21) and accumulates in the waste liquid bottle (22).
  • FIG. 2 is an example of a flow type glucose and saccharide amino acid or saccharide peptide simultaneous measurement apparatus incorporating a dialysis module capable of continuously removing contamination of the measurement system by a blood sample.
  • Buffer B is pumped from the buffer tank (24) by the pump (25), and the sample (6) is injected into the buffer B flow by the sample injection mechanism (4, 5, 7).
  • the injected sample passes through the flow-type colorimeter (16) installed in the thermostatic chamber (13) along the flow of buffer B, and after the absorbance change power hemoglobin concentration at a certain wavelength is detected, Furthermore, it passes through the proteolytic enzyme immobilization column (14) arranged downstream, and the glycoprotein strength in the sample also produces glycoamino acids or glycopeptides.
  • the sample on which the proteolytic enzyme acts is transported to a dialysis module (27) installed further downstream, where only low molecular components in the sample are regenerated cellulose membrane with a film thickness of 20 m and a molecular weight fraction of 12000-1400000.
  • the membrane (27) used in the low molecular component separation mechanism in the sample after protease degradation contains pentapeptides, hexapeptides, and larger peptides that are considered to coexist in the process of degradation by protein degrading enzymes. It is acceptable if it is difficult to permeate or does not permeate and allows fructosyl valine and fructosyl valyl histidine to penetrate.
  • membranes to be used include dialysis membranes made of regenerated cellulose, acetyl cellulose, polyvinylidene fluoride and the like. The molecular weight fraction of the dialysis membrane is displayed as the minimum molecular weight that permeates when equilibrium dialysis is performed.
  • the molecular weight for which fractionation is desired does not necessarily match the performance display of the dialysis membrane.
  • those having a fractional molecular weight of 300 to 500,000 can be used. More preferred is 1000 or more and 100,000 or less, and more desirably 10,000 or more and 20,000 or less.
  • the blood sample (6) may be directly supplied into the analyzer after being treated with the hemoglobin measuring reagent, but after being treated with the hemoglobin measuring reagent and further treated with proteolytic enzyme, it is supplied into the apparatus. May be.
  • a blood sample that has been treated with a hemoglobin measurement reagent and further processed with a proteolytic enzyme for example, a sample treated with a proteolytic enzyme and a hemoglobin measurement reagent is supplied together, and the buffer solution It may be treated with proteolytic enzymes in the flow path.
  • the hemoglobin concentration is quantified from the change in absorbance at a constant wavelength of the flow-type colorimeter (16), and the change in the current value of the hydrogen peroxide electrodes (18) and (20) is detected. Amino acid or sugar peptide concentration can be quantified.
  • the buffer solution to be passed through these devices is not particularly limited, but may be selected so that the immobilized enzyme (14, 17, 19) has a high activity (for example, pH 7 to 9).
  • antibacterial agents and surfactants that do not negatively affect the immobilized enzymes (14, 17, 19) and hydrogen peroxide electrodes (18, 20) may be included.
  • An activator of the immobilized enzyme (14, 17, 19) that does not interfere with the hydrogen oxide electrode (18, 20) may be included.
  • glucose oxidase immobilized body (17), fructosyl chloride instead of the mino acid oxidase immobilized column or fructosyl peptide oxidase immobilized column (19), the fructosyl peptide oxidase immobilized column (17) and the amino acid oxidase immobilized column or fructosyl amino acid oxidase immobilized It is also possible to use a combination of a column (19) or a combination of a fructosyl amino acid oxidase-immobilized column (17) and an amino acid oxidase-immobilized column (19).
  • the carrier treated with aminosilane was soaked in 5% dartalaldehyde for 1 hour, washed thoroughly with distilled water, and finally replaced with ⁇ 7.0, lOOmM sodium phosphate buffer, removing this buffer as much as possible. deep.
  • This formylated refractory brick is brought into contact with a solution 200 1 in which fructosyl peptide oxidase (Kikkoman Co., Ltd., Kikkoman Co.) is dissolved at a concentration of 140 units Zml in pH 7.0, 10 OmM sodium phosphate buffer. , Leave at 0-4 ° C for 1 day to fix.
  • the enzyme-immobilized carrier is packed in a column having an inner diameter of 3.5 mm and a length of 30 mm to obtain a fructosyl peptide oxidase-immobilized column.
  • an AgZAgCl reference electrode was used as the reference electrode, and a conductive pipe was used as the counter electrode.
  • Fig. 1 shows a fructosyl peptide measuring apparatus.
  • the buffer solution is fed from the buffer solution tank (1) by the pump (2), and the sample 51 is injected using the measuring valve (4).
  • the proteolytic enzyme fixation column (14), flow-type colorimeter (16), the second fixed enzyme column (19) and the second hydrogen peroxide electrode (20) are not arranged. Place the fructosyl peptidooxidase immobilized column on the immobilized column of enzyme (17) and the hydrogen peroxide electrode (18) downstream of it.
  • the injected sample follows the flow of the buffer solution, passes through the mixing pipe (15) installed in the thermostatic chamber (13), is temperature-adjusted and mixed with the buffer solution, and the fructosyl peptide oxidase solid phase is mixed.
  • Fructosylvalyl histidine in the sample passes through the stabilizing column (17) and hydrogen peroxide electrode (18), and generates hydrogen peroxide and detects changes in the current value.
  • the composition of the buffer used in this measuring apparatus includes lOOmM phosphoric acid, 50mM sodium chloride and ImM sodium azide, and has a pH of 7.0.
  • the flow rate of the buffer solution was 1. OmlZ minutes, and the temperature of the thermostatic bath was 30 ° C.
  • fructosyl peptide oxidase column The characteristics of the fructosyl peptide oxidase column were examined by injecting 5 ⁇ l of fructosylglycine, fructosyl valine, and fructosyl valyl histidine using the measuring device in (3).
  • fructosylglycine decreased when the pH was acidic, the activity against other sugar amino acids is expected to decrease. Also fructosyl valyl Since the activity against histidine and fructosyl valine was highest at pH 7.0, pH 7.0 was judged to be optimal for the measurement of fructosyl valyl histidine.
  • Table 1 shows the substrate specificity of the fructosyl peptide oxidase immobilized column. Table 1 shows the relative response values when the response to fructosyl valine at each pH is 100.
  • fructosylnorylhistidine and fructosyl valine at any pH hardly responding to at, ⁇ fructosyl lysine, and not to various amino acids and sugars.
  • the fructosyl peptide oxidase-immobilized column is 10 days against fructosyl valine. Activity decreased to about 50% of the initial level.
  • the fructosyl peptide oxidase-immobilized column used does not substantially act on ⁇ , ⁇ -fructosyl lysine, but acts specifically on fructosyl valylhistidine and fructosyl valine.
  • the proteolytic enzyme that produces glycoprotein is active in the neutral or acidic range. Higher one is desirable.
  • Blood cells were obtained by washing human whole blood with physiological saline and centrifuging at 2000 g. 200 ⁇ L of the blood cells obtained in this way were added to 0.5% polyoxyethylene lauryl sodium sulfate aqueous solution ( ⁇ 6.8) 750 1 which is an anionic surfactant, and then hemolyzed, and then Bacillus proteolytic enzyme. 320 mg Zml Protin PC10F (manufactured by Daiwa Kasei Co., Ltd.) 50 ⁇ l was added and reacted at 37 ° C.
  • fructosyl valyl histidine is not detected at all, so that the fructosyl valyl histidine is released in a short time by the action of the protease used. It is powerful. This protease effectively acts to release human hemoglobin, fructosyl valyl histidine
  • HbAlc standard was prepared according to the package insert. Prepared HbAlc standard solution 60 1 in 0.5% polyoxyethylene sodium lauryl sulfate aqueous solution (pH 6 8) After hemolysis at 225 / zl, 320 mg Zml protin PC10F (manufactured by Daiwa Kasei Co., Ltd.) 151 was added and reacted at 37 ° C for 8.5 and 30 minutes. After completion of the reaction, inject 5 ⁇ 1 of the protease treatment solution into the measuring device in (3) and measure the fructosyl valyl histidine concentration in the sample.
  • hemoglobin concentration in the protease-treated solution was measured using a hemoglobin ⁇ -test coco (Wako Pure Chemical Industries, Ltd., manufactured by Wako Pure Chemical Industries, Ltd.) according to the package insert. .
  • HbAlc regular reference material 3 levels (HbAlc value: 5.08 ⁇ 0.12%, 5.80 ⁇ 0.13%, 1
  • Fig. 5 shows the results of calculating the ratio of the measured fructosylnorylhistidine concentration to the hemoglobin concentration (FVZHb) at 0.665 ⁇ 0.25%).
  • proteolytic enzymes used were Amamizyme G, Protease A “Amano” G, Protease M “Amano” G, Protease N “Amano” G, Peptidase R ⁇ Nylase F3G ⁇ Flavorzymes, neutrases, and protamex made by Novozymes.
  • Example 1 In the same manner as in Example 1 (5), hemolyzed blood was added so that the concentration of the above various proteolytic enzymes in the reaction solution was equivalent to about lmgZml, and then reacted at 37 ° C for 40 minutes. It was. After completion of the reaction, 5 ⁇ l of protease treatment solution was injected into the measuring apparatus of Example 1 (3). The results are shown in Table 2. In the table, “ ⁇ ” indicates that the detection value of fructosyl noryl histidine of 20 cm or more was obtained, and “ ⁇ ” indicates that the detection value of fructosyl noryl histidine of 20 cm or more was obtained.
  • the hemoglobin concentration in whole blood is usually in the range of 120 to 160 gZL, and is diluted about 5 times under the present experimental conditions, so the hemoglobin concentration in the reaction solution is 24 to 32 gZL. Furthermore, since the normal human HbAlc value is about 5%, the fructosyl valyl histidine in the reaction solution is estimated to be about 19 to 25 ⁇ . Therefore, it can be said that the degradation rate is high when fructosyl valylhistidine of 20 ⁇ ⁇ ⁇ ⁇ or more is detected.
  • fructosyl norl histidine can be produced from human blood cells by using a proteolytic enzyme derived from the genus Bacillus.
  • the fructosyl peptide oxidase used to detect fructosyl noryl histidine does not respond to various amino acids and saccharides at all, but also to fructosyl valine.
  • fructosyl varieties in the proteolytic enzyme treatment solution And ⁇ -fructosyl lysine, ie, proteolytic enzyme that does not produce L-lysine are shown below.
  • Example 1 In the same manner as in (1), 150 mg of refractory brick (30-60 mesh) is formylated.
  • This enzyme-immobilized carrier is packed in a column with an inner diameter of 3.5 mm and a length of 30 mm to obtain a fructosyl amino acid oxidase-immobilized column.
  • Example 1 In the same manner as in (1), 150 mg of refractory brick (30-60 mesh) is formylated. A formylated refractory brick is brought into contact with 50 / z L of a solution prepared by dissolving L-lysine oxidase (Yamasa Co., Yamasa Co.) at a concentration of 50 units / ml in a pH 7.0, lOOmM sodium phosphate buffer. Leave at 0-4 ° C for 1 day and fix. This enzyme-immobilized carrier is packed in a column with an inner diameter of 3.5 mm and a length of 30 mm to prepare an L-lysoxidase-immobilized column.
  • L-lysine oxidase Yamasa Co.
  • a hydrogen peroxide electrode was prepared in the same manner as in Example 1.
  • the fructosyl peptide measuring apparatus shown in FIG. 1 was used. Pump the buffer solution from the buffer tank (1) using the pump (2), and inject 5 ⁇ 1 of the sample using the measuring valve (4).
  • the proteolytic enzyme-immobilized column (14) and the flow-type colorimeter (16) are not arranged.
  • the first immobilized enzyme column (17) has a fructosyl peptide oxidase-immobilized column and its downstream.
  • a peracid-hydrogen electrode (18) On a peracid-hydrogen electrode (18), a second immobilized enzyme column (19) on an L-lysine oxidase immobilized column or fructosyl amino acid oxidase immobilized column and a second peracid column. Place the hydrogen electrode (20).
  • the injected sample follows the flow of the buffer solution, passes through the mixing pipe (15) installed in the thermostatic chamber (13), is temperature-adjusted and mixed with the buffer solution, and fructosyl peptide oxidase Through the fixed column (17) and hydrogen peroxide electrode (18), the fructosyl valyl histidine force in the sample also generates hydrogen peroxide and detects changes in the current value.
  • the sample passes through the downstream L-lysine oxidase immobilized column or fructosyl amino acid oxidase immobilized column (19) and the peracid-hydrogen electrode (20), and the L lysine or fructosyl valine in the sample is removed. It is converted into hydrogen peroxide and changes in current value are detected.
  • the composition of the buffer used in this measuring apparatus includes lOOmM phosphoric acid, 50mM sodium chloride and ImM sodium azide, and has a pH of 7.0.
  • the flow rate of the buffer solution was 1. OmlZ minutes, and the temperature of the thermostatic bath was 30 ° C.
  • Protein PC10 F (manufactured by Daiwa Kasei Co., Ltd.) solution dissolved in blood pH 7.0 and lOOmM sodium phosphate buffer was added to the hemolyzed blood, and the protein-degrading enzyme treatment solution reacted at 37 ° C for a predetermined time 5 ⁇ 1 was injected into the measuring device in 5), and the fructosyl valyl histidine concentration, fructosyl valine concentration, and L-lysine concentration in the sample at each reaction time were measured simultaneously.
  • Fructosylvalylhistidine reaches a certain level after 20 minutes of proteolytic enzyme treatment time Fructosylvaline and L-lysine are detected after 30 minutes of treatment, and the detection value increases with increasing time did. Therefore, under these conditions, protin PC10F Fructosyl valyl histidine that does not receive positive interference with fructosyl valine or ⁇ -fructosyl lysine can be measured in a treatment time of less than 30 minutes. When the protin PC10F treatment time was 20 minutes, the hemoglobin concentration was measured and the ratio to the detected fructosylvalylhistidine concentration was 4.80%, and the HbAlc value measured by the immunization method 4. Agreed with 3%.
  • This formylated refractory brick is brought into contact with 400 1 solution of fructosyl amino acid oxidase (Kikkoman Co., Ltd.) dissolved in pH 7.0, 10 OmM sodium phosphate buffer at a concentration of 18 units Zml, and 0-4 ° C Leave it for a day and fix it.
  • This enzyme-immobilized carrier is packed into a column having an inner diameter of 3.5 mm and a length of 30 mm to obtain a fructosyl amino acid oxidase-immobilized column.
  • Example 1 A hydrogen peroxide electrode is prepared in the same manner as in (2).
  • Glucose oxidase (Sigma, Typell) is dissolved in lOOmM phosphate buffer pH 6.0 to make lOOmgZml.
  • Mix solution pH 6.0 to make glucose oxidase immobilized enzyme solution. This glucose oxidase-fixing enzyme solution is quickly placed on a peracid-hydrogen electrode prepared earlier and cured at 40 ° C for 15 minutes. This is a glucose oxidase electrode.
  • AgZAgCl reference electrode is used as the reference electrode, and conductive piping is used as the counter electrode. It was.
  • the flow-type colorimeter (16), the protease degrading enzyme column (14) and the first immobilized enzyme column (17) are not arranged, but the hydrogen peroxide electrode (18) A darcose electrode, a fructosyl amino acid oxidase immobilized column on the second immobilized enzyme column (19), and a hydrogen peroxide electrode on the hydrogen peroxide electrode (20) are arranged.
  • Transfer buffer B from the buffer tank (24) using the pump (25), and inject 100 ⁇ l of sample using the metering valve (4).
  • the injected sample was dialysis module (27) installed in a thermostatic chamber (13) along the flow of the buffer solution (27), with a film thickness of 20 ⁇ m and a molecular weight fraction of 12000-14000. Only the low-molecular components in the sample are introduced into the glucose detection system (18) and the glycated amino acid detection system (19, 20) in the regenerated senorose film. Since buffer A is pumped from the buffer tank (1) by the pump (2), the low molecular components in the sample dialyzed by the dialysis module (27) are the glucose electrode (18) and the fructosyl amino acid oxidase. Through the fixed column (19) and the hydrogen peroxide electrode (20), the peroxyhydrogen that also produced glucose and sugar amino acids in the sample is detected.
  • buffer A contains lOO mM phosphate, 50 mM potassium chloride, ImM sodium azide, pH 8.0 and flow rate 0.8 mlZ.
  • Buffer B contains 50 mM phosphoric acid, 0.1% sodium dodecyl sulfate, has a pH of 8.0 and a flow rate of 1. OmlZ.
  • the temperature of the thermostatic chamber was 37 ° C.
  • fructosylglycine and fructosylvaline There was a large response to fructosylglycine and fructosylvaline. In addition, there was almost no response to fructosyl lysine and the glycopeptide, fructosyl valyl histidine. Other amino acids and sugars responded very little to glutamine, methionine, and glucose.
  • This fructosyl amino acid oxidase-immobilized column does not substantially act on a glycopeptide and a fructosyl lysine in which the ⁇ -position is glycosylated.
  • the detected values of the glucose electrode and sugar amino acid electrode for glucose are shown in Fig. 7, and the detected values of the glucose electrode and sugar amino acid electrode for fructosyl valine are shown in Fig. 8.
  • the calibration curve shown in Fig. 1 was obtained. Where Y is the detected value, X is the concentration in the sample, and r is the correlation coefficient.
  • Example 3 (6) a sample containing glucose and fructosyl valine was measured using only a saccharified amino acid electrode.
  • Example 1 A hydrogen peroxide electrode was prepared in the same manner as in (2).
  • Example 3 (4) the measurement was performed using the measurement apparatus shown in FIG. Flow-type colorimeter (1 6), the proteolytic enzyme immobilized column (14), the first immobilized enzyme column (17) and the hydrogen peroxide electrode (18) are not arranged, and the second immobilized enzyme column (19) was a fructosyl amino acid oxidase immobilized column, and a hydrogen peroxide electrode was placed on the hydrogen peroxide electrode (20).
  • the sample is injected with 100 ⁇ l by a metering valve.
  • Example 1 As in (1), 150 mg of refractory brick (30-60 mesh) is formylated. This formylated metabrick was brought into contact with a solution 200 1 in which fructosyl peptide oxidase (manufactured by Kikkoman Co., Ltd.) was dissolved in a pH 7.0, lOOmM sodium phosphate buffer solution at a concentration of 140 units Zml, and 0 to 4 ° C. Leave it for a day and fix it.
  • This enzyme-immobilized support is packed in a column with an inner diameter of 3.5 mm and a length of 30 mm to prepare a fructosyl peptide oxidase-immobilized column.
  • Example 1 A hydrogen peroxide electrode was prepared in the same manner as in (2).
  • Example 3 A glucose electrode was produced in the same manner as in (3).
  • the injected sample follows the flow of the buffer solution, passes through the mixing pipe (15) installed in the thermostatic chamber (13), is temperature-adjusted and mixed with the buffer solution, and the glucose Hydrogen peroxide is generated from glucose and fructosylvalylhistidine in the sample through the electrode (18), fructosyl peptide oxidase immobilized column (19), and hydrogen peroxide electrode (20). Detect changes.
  • the composition of buffer A used in this measuring apparatus includes lOOmM phosphoric acid, 50mM potassium chloride and ImM sodium azide, and has a pH of 7.0.
  • the flow rate of the buffer solution was 1. OmlZ minutes, and the temperature of the thermostatic bath was 30 ° C.
  • fructosylnorylhistidine and fructosyl valine hardly responded to ⁇ , ⁇ -fructosyl lysine, and did not respond to various amino acids and saccharides at all. Therefore, there is no possibility that a positive error derived from amino acids or a blood dulcose will occur when the degradation of glycated hemoglobin by proteases is sufficiently advanced in the measurement of glycated hemoglobin. , So there is no need to correct these.
  • fructosyl peptide oxidase-immobilized enzyme When a fructosyl peptide oxidase-immobilized enzyme is used, it does not respond to glucose, so that fructosyl amino acids or fructosyl peptides in a sample can be accurately measured without performing a difference calculation.
  • Example 3 A fructosyl amino acid oxidase-fixed column was prepared in the same manner as in (1).
  • Example 1 and Example 3 the measurement apparatus in FIGS. 1 and 2 was used.
  • Fig. 1 shows a flow type single-channel measuring device.
  • Buffer A is pumped from the buffer tank (1) using the pump (2), and the sample 51 is injected using the metering valve (4).
  • 1st immobilized enzyme The column (17) has a fructosyl amino acid oxidase immobilized column, and a hydrogen peroxide electrode (18) is placed downstream of the column.
  • the second immobilized column (19) and the second peracid-hydrogen electrode (20) Do not place a protein-degrading enzyme-immobilized column (14) or flow-type colorimeter (16).
  • the injected sample follows the flow of the buffer solution, passes through the mixing pipe (15) installed in the thermostatic chamber (13), mixes the temperature with the buffer solution, and immobilizes the fructosyl amino acid oxidase.
  • the fructosyl valiner in the sample passes through the water column (17) and the hydrogen peroxide electrode (18), and the change in the current value is detected by producing hydrogen peroxide.
  • the composition of buffer A used in this measuring apparatus includes lOOmM phosphoric acid, 50mM potassium chloride, and ImM sodium azide, and has a pH of 8.0.
  • the flow rate of the buffer solution was 1. OmlZ minutes, and the temperature of the thermostatic bath was 37 ° C.
  • Example 3 As in Example 3, a measuring device incorporating the dialysis module of FIG. 2 was used.
  • Fig. 2 shows a flow type fructosyl amino acid measuring apparatus incorporating a dialysis module.
  • Buffer B is pumped from the buffer tank (24) by the pump (25), and sample 1001 is injected using the metering valve (4).
  • Protease immobilization enzyme column (14), second immobilization enzyme column (19), peracid-hydrogen electrode (20), flow-type colorimeter (16) are not arranged and the first immobilization A fructosyl amino acid oxidase-immobilized column is placed on the oxidase column (17).
  • the injected sample follows the flow of buffer B, and the dialysis module (27) is placed in the thermostatic chamber (13).
  • the film thickness is 20 ⁇ m and the molecular weight fraction is 12000 to 14000.
  • the low molecular components in the sample are guided to the fructosyl amino acid detection mechanism (17, 18). Since buffer A is pumped from the buffer tank (1) by the pump (2), the low molecular components in the sample dialyzed by the dialysis module (27) are the fructosyl amino acid oxidase-immobilized column (17). And the hydrogen peroxide electrode (18), and the hydrogen peroxide produced by the fructosyl amino acid force in the sample is detected.
  • the composition of the buffer solution to be passed through this apparatus is that buffer A contains lOOmM phosphoric acid, 50mM potassium chloride, ImM sodium azide, pH 8.0 and flow rate 0.8mlZ. .
  • Buffer B contains 50 mM phosphoric acid, 0.1% sodium dodecyl sulfate, has a pH of 8.0 and a flow rate of 0.8 mlZ.
  • the temperature of the thermostatic bath was 37 ° C.
  • the following shows the results of investigating the characteristics of a fructosyl amino acid oxidase column by injecting 5 ⁇ l of fructosylglycine using the measuring device 1 of (3).
  • FIG. 9 shows the measurement results of the activity of the oxidation reaction of funolectoinoreglycine when the pH of the buffer solution was 7.0, 7.5, 8.0, 8.5, 9.0. High activity was exhibited at pH 8.0 to 9.0. Substrate specificity
  • Table 5 shows the substrate specificity of the fructosyl amino acid oxidase immobilized column.
  • the fructosyl amino acid-fixed column used was substantially made of ⁇ -fructosyl lysine. It works selectively on fructosylglycine and fructosylvaline, which are glycated at the sacral position.
  • a proteolytic enzyme that is highly active in the alkaline region.
  • proteolytic enzymes When measuring amino acids and sugar amino acids produced by proteolytic degradation of human hemoglobin using amino acid electrodes or fructosyl amino acid oxidase immobilized enzyme columns and peracid hydrogen electrodes, proteolytic enzymes By separating only low molecular weight components with a semi-permeable membrane after degradation with, the amino acids and sugar amino acids in human hemoglobin can be measured with good reproducibility.
  • a fructosyl amino acid oxidase-fixed column that is optimal in the alkaline region is used to measure fructosyl amino acids produced by proteolytic degradation of human hemoglobin, resulting in the production of highly active Aspergillus olise in the alkaline region.
  • Use alkaline tannolysis enzyme Ummamizym G (manufactured by Amano Enzym Co., Ltd.).
  • Protease treatment solution is prepared by weighing human hemoglobin (Sigma), dissolving in 20 mM phosphate buffer pH 8.0 containing 2% sodium dodecyl sulfate, and adding lmgZml Ummamizyme G.
  • concentration of human hemoglobin in the protease treatment solution is 30 mg / ml.
  • a protease-treated solution prepared in this manner is 37. After reacting with C for 8, 17, 25, 33, 42, 51 minutes, inject 100 ⁇ l of protease treatment solution into measuring device 2 in (4) and measure fructosyl valine in the sample.
  • the proteolytic enzymes used were Ummamizyme G (Aspergillus oryzae), Protease A "Amano” G (Aspergillus oryzae), Protease N “Amano” G (Bacillus subtilis), Promelain F (Ananas comosus M.), Peptase R (Rhizopus oryzae, Protea 1 ⁇ “Amano” 3G (Aspergillus melleus) (all from Amano Enzym Co., Ltd.), proteinase K (Tritirachium album, Sigma, Sigma-Aldrich Co.), protease XIV (S treptomyces griseus, manufactured by Sigma), Sumiteam MP (Aspergillus sp., Shin-Nihon Chemical Co., Ltd.).
  • human hemoglobin can be degraded by using a proteolytic enzyme derived from Aspergillus lysii, and amino acids and sugars generated from human hemoglobin with a measuring device through a semipermeable membrane. ⁇ Amino acids can be detected. Furthermore, in order to simplify the processing and shorten the analysis time, analysis was performed using a column in which the present proteolytic enzyme was immobilized on a carrier at a high density. Details are shown below.
  • Toyonite 200 (average particle size 170 ⁇ m, Toyo Denka Kogyo Co., Ltd.) 300 mg was immersed in a 20% ethanol solution of 10% y-aminopropyltriethoxysilane for 1 hour, Wash thoroughly with distilled water and dry. The carrier treated with aminosilane was soaked in 5% dartalaldehyde for 1 hour, washed thoroughly with distilled water, and finally replaced with sodium phosphate buffer at pH 7.0 and lOOmM to remove this buffer as much as possible. Keep it.
  • a hydrogen peroxide electrode was prepared in the same manner as in Example 5.
  • the protease immobilization enzyme column (14) in Fig. 2 is equipped with the hammazym G immobilization column, the first immobilization enzyme column (17) with the fructosyl amino acid oxidase immobilization column, and the second immobilization enzyme column.
  • (Is) is equipped with a lysine oxidase-fixed column, and a flow type fructosyl amino acid and L-lysine can be measured simultaneously.
  • Looser than buffer tank (24) Pump the impulse B with the pump (25) and inject 100 ⁇ l of the sample using the measuring valve (4).
  • the injected sample is transported to the Hammazym G fixed column placed in the constant temperature bath (13) along the flow of the buffer solution, and the Gummy amino acids and amino acids are generated by the action of the Humamizyme G. .
  • the sample on which the hammazym G acted is transported to the dialysis module (27) installed further downstream by the flow of the buffer solution, and the regenerated cellulose membrane with a film thickness of 20 m and a molecular weight fraction of 12000 to 14000 is reduced in the sample. Only the molecular components are directed to the fructosyl amino acid and amino acid detection mechanism.
  • the buffer A is sent from the buffer tank (1) by the pump (2) to V
  • the low molecular component in the sample dialyzed by the dialysis module (27) is the fructosylamino acid oxidase immobilized column ( The hydrogen peroxide generated from the fructosyl amino acid in the sample is detected after passing through 17) and the hydrogen peroxide electrode (18).
  • the buffer solution containing the sample that passed through the fructosyl amino acid detection mechanism (17, 18) passes through the lysine oxidase-immobilized column (19) and the peracid-hydrogen electrode (20), and the lysine contained in the sample. Force Detects hydrogen peroxide generated.
  • the buffer solution to be passed through this apparatus contains buffer A containing lOOmM phosphoric acid, 50mM potassium chloride, ImM sodium azide, pH 8.0, and flow rate 0.8 mlZ.
  • Buffer B contains 50 mM phosphate, 0.1% sodium dodecyl sulfate, has a pH of 8.0 and a flow rate of 0.8 m 1Z.
  • the temperature of the thermostatic bath was 37 ° C.
  • the human hemoglobin solution was prepared by weighing a predetermined amount of human hemoglobin (manufactured by Sigma) so that the hemoglobin concentration would be 30 mgZ ml, and fully dissolving in 20 mM phosphate buffer pH 8.0 containing 2% sodium dodecyl sulfate. Prepare.
  • fructosyl valine concentration and lysine concentration in the 30 mgZml human hemoglobin solution were measured with the measuring device in (5), fructosyl valine was 15.1 M and lysine was 12.6 ⁇ .
  • Example 1 In Example 1 reacted with a solution enzyme, about 15 kg of fructosyl valine is produced. The force that required about 20 minutes of reaction time for this measurement device produced fructosyl valine of about 15 ⁇ ⁇ with the contact time of the hammazym G fixed column and the sample (about 10 seconds). Human hemoglobin could be efficiently degraded by fixing the hammazyme G to a high density. Industrial applicability
  • stable glycated hemoglobin in a blood sample can be quantified easily and accurately, and the force can also avoid contamination of the measuring device.
  • Moglobin and glucose can be quantified easily and accurately simultaneously. Therefore, it is possible to easily test for diabetes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本発明は、検体中のフルクトシルバリン濃度またはフルクトシルバリルヒスチジン濃度を電気化学的に検知し、高精度で糖化ヘモグロビン量を算出する方法に関する。また、本発明は、グルコースと糖化ヘモグロビンを同時に分析するための分析装置に関する。さらに本発明は、試料中の過酸化水素を除去する方法と装置に関する。

Description

糖ィ匕ヘモグロビンの分析装置および分析方法
技術分野
[0001] 本発明は、高速かつ高精度に糖化ヘモグロビン量を測定する分析装置および分析 方法に関し、健康管理、臨床診断等に資するものである。
背景技術
[0002] 糖尿病患者の長期間の血糖コントロールの指標に糖化ヘモグロビン (glycohemoglo bin)が広く用いられている。糖ィ匕ヘモグロビンとはヘモグロビンに糖が非酵素的に結 合した糖ィ匕タンパク質の一種である。糖ィ匕ヘモグロビンの中でも特に、 HbAlcと呼ば れる画分はヘモグロビン Aの 13鎖 N末端のパリン残基にグルコースがシッフ塩基を形 成してアルジミン (不安定型)となり、さらにアマドリ転位を受けてケトァミンィ匕合物を生 成したものである。なおアルジミン構造をとるものを不安定糖ィ匕ヘモグロビン、ケトアミ ン構造をとる場合を安定糖ィ匕ヘモグロビンと呼ぶ。なお、アマドリ転位後の前記 )8鎖 の N末端はフルクトシルバリン残基となる。
[0003] この反応過程に酵素の関与はなぐ血漿中のグルコース濃度に応じてその量が増 加し、いわゆる血漿中の血糖値が平均的に長期間高い値を示すと HbAlcは高値と なる。安定型糖ィ匕ヘモグロビンはその赤血球の寿命が尽きるまで消滅しない。一般 にヘモグロビン分子の生体内での寿命は 2ヶ月程度とされており、その結果、 HbAl cの値は過去 1〜2ヶ月間の平均血糖値を反映するとされている。そのため HbAlcは 長期間の血糖値の平均値の指標として用いられる。一般に血糖値は、検査前の生活 態度、食事等により変動しやすい特性を有するが、 HbAlcは長期間の平均値である ため、糖尿病の確定診断、治療のための判断材料として用いるのに適しているとされ ている。
[0004] そのため、すでに糖ィ匕ヘモグロビンにつ 、て多種多様の測定方法が提案されて!ヽ る。その代表的なものとして、高速液体クロマトグラフ法 (HPLC)、免疫法、酵素法が 挙げられる。
[0005] HPLC法は、現在最も多用される方法である。分離カラムによりヘモグロビンを分画 し、 HbAlcに相当する保持容量に溶出したピークと、全ピーク面積の比率力も HbA lcの存在比率を算出する、いわば相対面積法をとるため、注入容量の精度をある程 度無視できるなどの利点がある。し力 装置が大型かつ複雑であり、メンテナンス負 荷が大きい等の問題がある。また、不安定型 HbAlcと安定型 HbAlcが区別できな いため、あら力じめ不安定型 HbAlcを除去後に分離分析を行わなければならないと いう欠点を有する(特許文献 1)。同時に先天的なヘモグロビンの変異がある場合は、 分離パターンが変化して異常値を示す場合がある。また他の生体成分が偶然 HbAl cのピークと重複することによる誤差を含む可能性がある。
[0006] 免疫法は HbAlcの /3鎖の N末端付近の構造に対応した抗体を利用することにより 、より高精度な分析を、より簡単な機構で達成できる可能性を有する。しかし一般的 な免疫分析のように血清を対象とするのではなぐ全血を溶血させた検体を対象とす るため、非特異反応が起きやすぐまた反応を検知するために用いる比色計が汚染 されやす 、ため、必ずしも満足できる精度が得られな!/ヽことが指摘されて ヽる。
[0007] 一方で酵素法は、糖ィ匕タンパク質力も糖ィ匕ペプチドまたは糖ィ匕アミノ酸を何らかの 手法で切り出した後、生じた糖ィヒペプチドまたは糖ィヒアミノ酸量を糖ィヒペプチドォキ シダーゼゃ糖ィ匕アミノ酸ォキシダーゼ等の酵素を用いて検出するものである。酵素の 選択性を利用することにより、より高精度の分析を実施できる可能性がある。
[0008] まず、糖ィ匕アミノ酸を酵素により測定する方法は特許文献 2に記載されている。しか し、糖ィ匕タンパク質カゝら糖ィ匕アミノ酸を切り出す方法は記載されて ヽな ヽ。
[0009] のみならず、いまだ未解決の問題点は多い。
[0010] まず第 1の問題点としては、できる限り迅速に糖ィ匕ペプチドまたは糖ィ匕アミノ酸を切 り出すタンパク質分解酵素が必要となる。同時に活性の高いタンパク質分解酵素は、 ヘモグロビンのみならず糖ィ匕ペプチドォキシダーゼや糖ィ匕アミノ酸ォキシダーゼすら 分解する可能性があり、ヘモグロビンを選択的に分解する方法が模索されているが、 有効な方法は、いまだ見出されていない。
[0011] 第 2の問題点は、ヘモグロビンの α鎖と j8鎖は N末端アミノ酸がいずれもノ《リンであ り、糖化アミノ酸を検知する場合には、糖化アミノ酸を遊離するタンパク質分解酵素が 理想的には j8鎖のみに作用することが望ましい。しかし、 α鎖と j8鎖のように非常に 類似した基質に対して、高度の選択性を有するタンパク質分解酵素は!ヽまだ発見さ れていない。
[0012] この問題点に関しては、別の観点からの解決策が提示されている。つまり、タンパク 質分解酵素で遊離された糖ィ匕アミノ酸を検知するのではなぐ糖ィ匕ジペプチドもしく は糖ィ匕ペプチドを検知することにより α鎖と j8鎖の糖ィ匕を区別するものである。特に 糖ィ匕ジペプチドの中で選択的にフルクトシルバリルヒスチジンに作用する酸ィ匕酵素が 提案されている (特許文献 3、 4、 5)。このフルクトシルバリルヒスチジンに作用するフル クトシルペプチドォキシダーゼを利用すれば、タンパク質分解酵素の基質特異性に 対する要求事項を減らすことができる。
[0013] しかし、特許文献 3において、タンパク質分解酵素により処理された試料を糖化べ プチドォキシダーゼもしくは HPLCで測定することにより糖ィ匕タンパク質を定量する方 法が開示されている。しかしタンパク質分解酵素が糖ィ匕タンパク質のみに作用し、糖 化ペプチドォキシダーゼに作用しな 、と 、う別の特異性に関しては何らの検討がなさ れておらず、実施例においてもタンパク質分解酵素を熱失活し限外ろ過を行う例が 示されているのみである。
[0014] 特許文献 4においては、酵素の活性を低分子標準物で測定しており、糖ィ匕タンパク 質から糖化ペプチドを遊離する方法は開示されて!、な 、。
[0015] 特許文献 5においては、ストレブトマイセス属由来のタンパク質分解酵素を大過剰 に用いて糖ィ匕ヘモグロビン中の糖ィ匕ペプチドを計ることにより HbAlcを定量する方 法が例示されている。しかし、特許文献 5に記載されるように、多くの糖化ペプチドォ キシダーゼは糖ィ匕アミノ酸にも応答する特性がある。従って大過剰のタンパク質分解 酵素が存在する場合に、糖ィ匕ペプチドと糖ィ匕アミノ酸のいずれが反応したかは明瞭 ではなぐ糖ィ匕ペプチドォキシダーゼの特長である、ヘモグロビン /3鎖に対する特異 性を完全に発揮させた例はな 、。
[0016] 特許文献 6においては、糖ィ匕ペプチドもしくは糖ィ匕アミノ酸に作用して過酸ィ匕水素 を生成する酵素と、その基質を生成するタンパク質分解酵素の組み合わせを検討し たものである。本特許において、タンパク質分解酵素の糖ィ匕アミノ酸生成活性は、糖 化ジペプチドから糖ィ匕アミノ酸を遊離する活性として評価され、また、糖ィ匕ジペプチド の生成活性は糖ィ匕ジペプチドの-トロア-リド誘導体力 -トロア-リンを遊離する活 性として評価されている。従って、実際の高分子量の糖化タンパク質、特に糖化へモ グロビンから、糖ィ匕ペプチドもしくは糖ィ匕アミノ酸が遊離するかどうかは不明である。 実際に本発明で有効とされる植物由来のタンパク質分解酵素であるパパインについ て、本願発明者らは有効性を確認することができな力つた。
[0017] 特許文献 7においては、糖ィ匕ジペプチドを遊離する方法として、各種タンパク質分 解酵素の例示があるが、実際には糖ィ匕へキサペプチドから糖ィ匕ジペプチドを遊離す る方法を検討しており、実際の糖ィ匕ヘモグロビンを分解したものではない。また本願 発明者らの追試では、バチルス属を除くタンパク質分解酵素、特にパパインやァスぺ ルギルス属のタンパク質分解酵素では応答が全く得られず、バチルス属由来のタン ノ ク質分解酵素でのみ応答するという結果となり、追試することはできな力つた。この 理由は明らかでな 、が、特許文献 7ではプロテアーゼ分解した際にフルクトシルバリ ルヒスチジンと同時生成する別の生成物が検出されていると考えられる。
[0018] あくまで糖ィ匕ヘモグロビンを測定する場合には、タンパク質分解酵素の検討に使用 する基質は糖ィ匕ヘモグロビン自体であることが必要である。また、タンパク質分解酵 素を利用する際には、糖ィ匕ペプチドのみを検知することが望ましいが、従来、糖ィ匕へ モグロビンを効率的に分解し、かつ必要とされる糖ィ匕ペプチドのみを検知する方法は 開示されていない。
[0019] さらに、検体中に含まれるヘモグロビン総量を検知し、糖ィ匕ヘモグロビンの比率を 簡便かつ正確に算出する方法および装置は従来開示されていない。
特許文献 1:特公平 5— 59380号
特許文献 2:特公平 5— 33997号
特許文献 3:特開 2001— 95598号
特許文献 4:特開 2003— 235585号
特許文献 5 :特開 2004— 275013号
特許文献 6:特開 2004— 344052号
特許文献 7:特開 2005 - 110657号
発明の開示 発明が解決しょうとする課題
[0020] 本発明の目的は、糖ィ匕ヘモグロビン量の高精度な分析方法を提供することである。
[0021] 本発明の他の目的は、糖ィ匕ヘモグロビンから生成した糖ィ匕ジペプチドに特異的な フルクトシルペプチドォキシダーゼ固定ィ匕体もしくは糖ィ匕ヘモグロビン力 生成した 糖ィ匕アミノ酸に特異的なフルクトシルアミノ酸ォキシダーゼ固定ィ匕体の使用方法およ び装置を提供し、 HbAlcの定義であるヘモグロビン |8鎖の糖ィヒ物の正確な定量を 可能とすることである。
[0022] 本発明のもう 1つの目的は、検体中に含まれる血糖値と糖化ヘモグロビン比率を簡 便かつ高精度で算出する装置を提供することである。
[0023] 本発明のもう 1つの目的は、糖ィ匕ヘモグロビンを効率的に分解し得るタンパク分解 酵素を提供することである。
[0024] 本発明のもう 1つの目的は、検体中に含まれるヘモグロビン総量を簡便かつ正確に 検知し、糖ィ匕ヘモグロビンの比率を算出する方法および装置を提供することである。 課題を解決するための手段
[0025] 本発明は、フルクトシルバリルヒスチジン (fructosy卜 L-valylhistidine)に作用するフル クトシルペプチドォキシダーゼ (fructosylpeptide oxidase)もしくはフルクトシルバリン(fr uctosy卜 L- valine)に作用するフルクトシルアミノ酸ォキシダーゼ (fructosyl L- amino ac id oxidase)のいずれかを固定ィ匕した固定ィ匕体(17)と、前記ォキシダーゼ固定化体の 触媒する反応により増減する電気化学的活性物質を検知する電気化学的検出機構 (18)を有し、糖ィ匕ヘモグロビンを含む検体とタンパク質分解酵素とを任意の時間接 触させ、その一部を注入する機構 (4、 5、 7)を備えたことを特徴とする糖ィ匕へモグロ ビンの分析装置に関するものである。
[0026] また本発明は、フルクトシルノリルヒスチジンに作用するフルクトシルペプチドォキ シダーゼもしくはフルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼの ヽ ずれかを固定ィヒした固定ィヒ体(17)と、前記ォキシダーゼ固定化体の触媒する反応 により増減する電気化学的活性物質を検知する電気化学的検出機構 (18)と、糖ィ匕 ヘモグロビンを含む検体を注入する機構 (4、 5、 7)を備えた糖ィ匕ヘモグロビンの分析 装置であって、検体を注入する機構の下流にタンパク質分解酵素を固定ィ匕したカラ ム状リアクタ (column reactor)を備えることを特徴とする糖ィ匕ヘモグロビンの分析装置 を開示する。
[0027] さらに本発明は、フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキ シダーゼもしくはフルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼの ヽ ずれかを固定ィヒした固定ィヒ体(17)と、前記ォキシダーゼ固定化体の触媒する反応 により増減する電気化学的活性物質を検知する電気化学検出機構 (18)と、糖化へ モグロビンを含有する検体を注入する機構 (4、 5、 7)を備えた糖ィヒヘモグロビンの分 析装置であって、検体を注入する機構 (4、 5、 7)もしくはその下流に少なくとも、試料 の光吸収から求めたヘモグロビン量を算出し、該ヘモグロビン量とフルクトシルぺプ チド量もしくはフルクトシルアミノ酸量力 ヘモグロビンの糖ィ匕割合を算出する機構を 備えたことを特徴とする糖ィ匕ヘモグロビンの分析装置を開示する。
[0028] フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼを用い る際に、糖ィ匕ヘモグロビンを含む検体と一定時間接触させるタンパク質分解酵素が、 バチルス サチルス (Bacillus subtilis)が生産する中性もしくは酸性タンパク質分解酵 素またはその改変体であることが望ま 、。
[0029] また、フルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼを用いる際に 、糖ィ匕ヘモグロビンを含む検体と一定時間接触させるタンパク質分解酵素が、ァスぺ ルギルス ォリゼ(Aspergillus oryzae)が生産するアルカリ性タンパク質分解酵素また はその改変体であることが望まし 、。
[0030] さらに本発明は、グルコースの酸ィ匕反応を触媒する酵素を固定ィ匕した固定ィ匕体とグ ルコース酸ィ匕反応により増減する電気化学的活性物質を検知する機構を備え、さら にフルクトシルペプチドォキシダーゼもしくはフルクトシルアミノ酸ォキシダーゼ固定 化体によるフルクトシルバリルヒスチジンもしくはフルクトシルバリンの酸化反応により 増減する電気化学的活性物質を検知する機構と、全ヘモグロビンを検知する機構を 備え、フルクトシルノ リルヒスチジンまたはフルクトシルバリンの検知結果とへモグロビ ンの検知結果に基づき糖ィ匕ヘモグロビン量を得るための第一演算機構と、全血ダル コースとヘモグロビンの検知結果に基づき全血グルコースを血漿グルコースに補正 する第二演算機構を備えたことを特徴とするグルコースと糖ィ匕ヘモグロビンの分析装 置を開示する。
[0031] さらに本発明は、グルコースの酸ィ匕反応を触媒する酵素を固定ィ匕した固定ィ匕体とグ ルコース酸化反応により増減する電気化学的活性物質を検知する機構と、フル外シ ルバリンに作用するフルクトシルアミノ酸ォキシダーゼを固定ィ匕した固定ィ匕体または フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼを固定化 した固定ィ匕体とフルクトシルアミノ酸またはフルクトシルペプチドの酸ィ匕反応により増 減する電気化学的活性物質を検知する機構と、全ヘモグロビンを検知する機構と、 検体中グルコースとフルクトシルノ リルヒスチジンの検知結果、もしくは検体中ダルコ ースとフルクトシルバリンの検知結果に基づき検体中グルコースの影響を排除したフ ルクトシルバリルヒスチジンまたはフルクトシルバリンの測定値を得る第三演算機構と 、フルクトシルバリルヒスチジンとヘモグロビン、またはフルクトシルバリンとへモグロビ ンの前記測定値とヘモグロビンの検知結果に基づき糖ィ匕ヘモグロビン量を得るため の第一演算機構と、全血グルコースとヘモグロビンの検知結果に基づき全血ダルコ ースを血漿グルコースに補正する第二演算機構を備えたことを特徴とするグルコース と糖ィ匕ヘモグロビンの分析装置も開示する。
[0032] また本発明は全血試料を採取し界面活性剤を含む液に分散させて溶血し、該溶血 液にタンパク質分解酵素を任意の時間接触させ、前記タンパク質分解酵素反応液の 吸光度を測定することによりヘモグロビン濃度を測定するとともに、該反応液の一部 をフルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼもしくは フルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼのいずれかを固定化 した固定ィ匕体に接触させ、前記ォキシダーゼの触媒する反応により増減する電気化 学的活性物質を電気化学的に検知することを特徴とする糖化ヘモグロビンの分析方 法に関するものである。
[0033] 特に界面活性剤がスルホン基を有するァ-オン性界面活性剤であることが望ま ヽ
[0034] さらに本発明は、以下の工程を含む、検体中のグルコースと糖ィ匕ヘモグロビンの分 析方法を開示する:
グルコースの酸ィ匕反応を触媒する酵素を固定ィ匕した固定ィ匕体と、グルコース酸ィ匕 反応により増減する電気化学的活性物質を検知する機構を用いて検体中のダルコ ース濃度を電気化学的に検知する工程;
フルクトシル L パリンに作用するフルクトシルアミノ酸ォキシダーゼを固定ィ匕した固 定化体またはフルクトシルバリルヒスチジンに作用するフルクトシルペプチドォキシダ ーゼを固定化した固定化体と、フルクトシルアミノ酸またはフルクトシルペプチドの酸 化反応により増減する電気化学的活性物質を検知する機構を用いて検体中のフル クトシル L パリンまたはフルクトシルバリルヒスチジンを電気化学的に検知する工程; 全ヘモグロビンを検知する機構を用いて、検体中の全ヘモグロビンを検知する工程 フルクトシル Lーノ リンとヘモグロビンまたはフルクトシルノ リルヒスチジンの検知結 果とヘモグロビンの検知結果に基づき第一演算機構により HbAlcを得る工程;およ び
全血 Z血球グルコースとヘモグロビンの検知結果に基づき第二演算機構により全 血 Z血球ダルコースを血漿ダルコースに補正する工程。
[0035] 該方法は、検体中グルコースとフルクトシル L パリンまたは検体中グルコースとフ ルクトシルバリルヒスチジンの検知結果に基づき第三演算機構により検体中ダルコ一 スの影響を排除したフルクトシル L パリンまたはフルクトシルバリルヒスチジンの測定 値を得る工程をさらに含み、得られた測定値とヘモグロビンの検知結果に基づき第 一演算機構により HbAlcを得ることが望ま 、。
発明の効果
[0036] 本発明によれば、血液検体中の安定糖化ヘモグロビンを簡便かつ高精度に定量 することができる。さらに血糖値と糖ィ匕ヘモグロビン量を迅速に定量することができる
[0037] また、本発明によれば、血液検体中の血漿グルコース濃度と糖ィ匕ヘモグロビン比率
(すなわち HbAlc)を簡便且つ高精度で定量することができる。
[0038] 本発明の装置によれば、第一および第二の演算機構を用いてグルコースと HbAl cを同時に算出できる。さらに検体中グルコース濃度は、 HbAlcの算出に必須のへ モグロビン濃度に基づき第二演算機構により血漿中グルコース濃度に変換され、検 体中フルクトシル L—パリンまたはフルクトシルバリルヒスチジンの濃度はグルコース の影響を第三演算機構により排除された後、第二演算機構により HbAlcに変換され るため、全体として血漿中グルコースと HbAlcを効率および精度よく測定することが できる。
図面の簡単な説明
[0039] [図 1]測定装置の概略図
[図 2]測定装置の概略図
[図 3]固定ィ匕酵素の pH特性
[図 4]溶液タンパク分解反応のタイムコース
[図 5]HbAlc常用標準との相関
[図 6]血球溶血液のタンパク質分解酵素溶液のタイムコース
[図 7]グルコース電極とフルクトシルアミノ酸ォキシダーゼ固定化体のグルコースの検 量線
[図 8]グルコース電極とフルクトシルアミノ酸ォキシダーゼ固定化体のフルクトシルバリ ンの検量線
[図 9]固定ィ匕酵素の pH特性
[図 10]溶液タンパク分解反応のタイムコース
符号の説明
[0040] 1 緩衝液槽
2 緩衝液送液ポンプ
3 ダンパー
4 計量バルブ
5 計量ループ
6 試料管
7 試料吸引ニードル
8 廃棄ポット
9 洗浄液槽 11 バルブ
12 シリンジポンプ
13 恒温槽
14 タンパク質分解酵素固定ィ匕カラム
15 混合用配管
16 フロー型比色計
17 第 1の固定ィ匕酵素カラム
18 過酸化水素電極
19 第 2の固定ィ匕酵素カラム
20 過酸化水素電極
21 背圧コイル
22 廃液ボトル
23 廃液ボトル
24 緩衝液槽
25 緩衝液送液ポンプ
26 恒温化用配管
27 透析モジュール
発明を実施するための最良の形態
[0041] 本明細書において、検体としては全血もしくは血球が挙げられる力 全血が好まし い。本発明の好ましい 1つの実施形態では、フルクトシルバリルヒスチジンを生成する タンパク質分解酵素もしくはフルクトシルバリンを生成するタンパク質分解酵素のいず れかのタンパク質分解酵素を用いて検体を処理する。
[0042] 本発明でフルクトシルペプチドォキシダーゼを用いる際に利用しうるタンパク質分解 酵素は、糖ィ匕ヘモグロビンまたはそのフラグメントから N末端の糖ィ匕ペプチドを生じる 作用が大き 、ものであれば良 、。
[0043] 同様に、本発明でフルクトシルアミノ酸ォキシダーゼを用いる際に利用しうるタンパ ク質分解酵素は、糖ィ匕ヘモグロビンまたはそのフラグメントから N末端の糖ィ匕アミノ酸 を生じる作用が大き 、ものであれば良!、。 [0044] フルクトシルペプチドォキシダーゼを用いる場合には、バチルス属由来のタンパク 質分解酵素にその大きな作用が認められ、フルクトシルアミノ酸ォキシダーゼを用い る場合にはァスペルギルス属タンパク質分解酵素、特にァスペルギルス ォリゼ由来 のプロテアーゼにおいてその作用が認められる。
[0045] また、ヒトヘモグロビンは pH5. 0以下では沈殿するので、タンパク質分解酵素が効 果的に作用するにはヘモグロビンが十分に溶解できる pH範囲に至適を持つタンパ ク質分解酵素がより好ましい。
[0046] フルクトシルバリルヒスチジンを生成するバチルス属の生産する酸性もしくは中性に 至適範囲を有するタンパク質分解酵素としては、好ましくは pH6. 0〜10. 0、より好 ましくは pH6. 0〜7. 0の pH範囲に至適を持つ。具体的には、プロテアーゼ N (天野 ェンザィム製)、プロチン PC10F (大和化成製)、プロタメックス (ノボザィム社製)、二 ユートラーゼ (ノボザィム社製)を例示することができる。なお、これらのバチルス属の 生産するタンパク質分解酵素以外に、ストレブトマイセス属などの生産するタンパク質 分解酵素も利用することができる。
[0047] 本明細書において、「バチルス属由来タンパク質分解酵素」あるいは「バチルス属 由来微生物由来のプロテアーゼ」とは、バチルス属由来の微生物が産生するプロテ ァーゼ自体であってもよぐ該プロテアーゼのアミノ酸配列において、 1またはそれ以 上のアミノ酸を置換、付加、欠失、挿入させることで得られる改変体であって、バチル ス属由来野生型タンパク質分解酵素のように、フルクトシルバリルヒスチジン濃度を高 めることができる改変体を広く包含する。
[0048] 同様に、「ァスペルギルス属タンパク質分解酵素」あるいは「ァスペルギルス属微生 物由来のプロテアーゼ」とは、ァスペルギルス属の微生物が産生するプロテアーゼ自 体であってもよぐ該プロテアーゼのアミノ酸配列において、 1またはそれ以上のァミノ 酸を置換、付加、欠失、挿入させることで得られる改変体であって、ァスペルギルス 属由来野生型タンパク質分解酵素のように、フルクトシルバリン濃度を高めることがで きる改変体を広く包含する。
[0049] さらに、他の由来のタンパク質分解酵素においても、フルクトシルノ リルヒスチジン 濃度もしくはフルクトシルバリン濃度を高めることができる微生物由来の野生型プロテ ァーゼもしくはその改変体は広く包含される。
[0050] 糖ィ匕ヘモグロビンにタンパク質分解酵素を作用させる方法としては、まず糖化へモ グロビンを含む検体を界面活性剤含有緩衝液と混合して反応させた後、その反応液 をタンパク質分解酵素溶液またはタンパク質分解酵素が固定化された担体と所定時 間接触させる等の方法が挙げられ、何れの方法を用いてもょ 、。
[0051] タンパク質分解酵素の濃度、反応 pH及び反応温度等のタンパク質分解酵素の反 応条件は、タンパク質分解酵素に応じて適宜選択される。一例として、プロチン PC1 OF (大和化成株式会社製)を溶液で使用する際には、糖化ヘモグロビンを含む検体 の界面活性剤含有緩衝液での処理条件は、処理液中の血球濃度が 5〜20体積% のとき、処理液中のプロチン PC10Fの濃度が 0. l〜50mgZml、反応温度が 20〜 50。C、反応 pHは 6. 0〜9. 0を例示できる。
[0052] さらに、プロテアーゼは不溶性担体に高密度に固定ィ匕することによって、わずかな 時間で効率的にヘモグロビンを分解できることがわかった。プロテアーゼの不溶性担 体への固定化量は l〜50mgZカラム、好ましく l〜20mgZカラム、より好ましく 1〜 1 OmgZカラム、特に好ましく 5〜 1 OmgZカラムである。
[0053] 糖ィ匕ヘモグロビンを含む検体を処理する際に使用する界面活性剤には、溶血作用 とヘモグロビンの分子構造を変化させる 2つの作用を有することが望ましい。へモグロ ビンは赤血球内に大部分が存在し、適切な濃度の界面活性剤存在下ではへモグロ ビンが赤血球外に放出される。ヘモグロビンは通常折りたたまれた状態で存在するが 、適切な濃度の界面活性剤中では緩んだ状態となり、この作用によりタンパク質分解 酵素による分解が容易になると推測される。界面活性剤としては、非イオン系のポリ ォキシエチレンアルキルエーテル類 [例えばポリオキシエチレン(10)ォクチルフエ- ルエーテル (Triton X-100)、ポリオキシエチレン(23)ラウリルエーテル等]やポリオキ シエチレンソルビタン脂肪酸エステル類 [例えばポリオキシエチレンソルビタンモノラウ レート(Tween 20)、ポリオキシエチレンソルビタンモノパルミテート(Tween 40)等]、 陰イオン系のポリオキシエチレンアルキルエーテル類やアルキル硫酸塩 [ドデシル硫 酸ナトリウム(SDS)等]、陽イオン系、アルキルべタイン系界面活性剤などの両性ィ オン系があるが、陰イオン系界面活性剤が先に述べた 2つの効果が高ぐ望ましい。 その濃度は 0. 05〜10%、好ましくは 0. 05〜1%で、界面活性剤との反応時間は数 秒〜 10分程度である。
[0054] 糖化ヘモグロビンを含む検体を処理する際に使用する緩衝液は、ヘモグロビンが 溶解できる pH範囲の緩衝液であれば特に限定されず、リン酸緩衝液ゃトリス緩衝液 等の公知の緩衝液を使用すればょ 、。緩衝液には塩ィ匕ナトリウムや塩ィ匕カリウム等 の塩を適宜添カ卩してもょ 、。
[0055] 糖ィ匕ペプチドに作用するフルクトシルペプチドォキシダーゼとしては、例えば特開 2 001— 95598号、特開 2003— 235585号、特開 2004— 275013号公報に記載さ れているフルクトシルペプチドォキシダーゼが挙げられる。
[0056] これらの他にも糖ィ匕ジペプチドに特異的に作用し、過酸化水素を生成する反応を 触媒する酵素は、自然界の微生物を探索して得ることもでき、動物あるいは植物由来 の酵素を探索しても得ることができる。また、コリネバタテリゥム属(Corynebacterium) 、ァスペルギルス属(Aspergillus)、フサリウム属(Fusarium)、ギべレラ属(Gibberella) 、ぺ-シリウム属(Penicillium)、バチルス属(Bacillus)等の既知のフルクトシルアミノ酸 ォキシダーゼ等を改変することにより得ることもできる。
[0057] 本発明の 1つの好ましい実施形態において、糖ィ匕ヘモグロビンの測定には、糖ィ匕へ モグロビンひ鎖 N末端の糖ィ匕ペプチドであるフルクトシルバリルロイシンや糖ィ匕ァミノ 酸であるフルクトシルバリン、 ε -ァミノ基が糖ィ匕された糖化リジンには実質的に作用 せず、糖ィ匕ヘモグロビン j8鎖 Ν末端の糖ィ匕ペプチドであるフルクトシルバリルヒスチジ ンに特異的に作用する酵素、フルクトシルペプチドォキシダーゼが好ましい。これは HbAlcがヘモグロビン β鎖 Ν末端の糖ィ匕物と定義されているためで、ヘモグロビン a鎖 N末端に由来するフルクトシルバリルロイシンまたはフルクトシルバリン、血清中 に含まれるアルブミンが糖ィ匕されたものから遊離する ε -ァミノ基が糖ィ匕されたリジン 、ヘモグロビンに含まれるリジン糖ィ匕物が測定結果に正の誤差を生じる可能性がある ためである。
[0058] しかしながら、特開 2004— 275013号に記載されているように多くのフルクトシル ペプチドォキシダーゼは、フルクトシルペプチドのみならず、フルクトシルバリンにも 応答する特性を有している。このような場合、測定結果に生成したフルクトシルバリン に由来する正の妨害を生じるため、高精度は得られない。フルクトシルバリンに由来 する妨害を除く方法としては、糖ィ匕ヘモグロビンのタンパク質分解酵素処理液中のフ ルクトシルバリンを特異的に検知して差演算する方法、タンパク質分解酵素処理の条 件をフルクトシルバリンが生成しない条件で使用する方法が挙げられるが、高精度を 得るには後者の方法が望ましい。後者の場合、タンパク質分解酵素処理液中でフル クトシルバリンが検知されないことが重要であり、具体的には、検体注入機構の下流 にフルクトシルバリン検知機構を設けて検出値の増減がな 、ことを確認すればよ!、。 このときに使用するフルクトシルバリン検知機構に要求される要件は、フルクトシルぺ プチドに応答せず、フルクトシルバリンを特異的に検出することであり、このような特性 を有するフルクトシルアミノ酸ォキシダーゼを固定ィ匕した固定ィ匕体を検体注入機構の 下流に配置して、過酸化水素の増減を検知する方法が特に好まし 、。
[0059] さらにフルクトシルペプチドォキシダーゼは、 ε フルクトシルリジンや各種アミノ酸 に応答する可能性が指摘されている。これらの成分が問題となる場合には、前述のフ ルクトシルバリンと同様に、問題となる成分が前記処理検体液中で検知されな!ヽこと が望ましい。 ε フルクトシルリジンの場合には、前述と同様に ε フルクトシルリジ ンに特異的に作用するォキシダーゼを使用してもよいが、タンパク質分解酵素の処 理液中に ε フルクトシルリジンの非糖ィ匕物であるリジンが検知されないことで置換 してもよく、後者の方が簡便でより望ましい。該アミノ酸の検出には、該アミノ酸を基質 とするアミノ酸ォキシダーゼを固定ィ匕した固定化体を検体注入機構の下流に配置し て、過酸化水素の増減を検出する方法が操作や装置構成の簡便性の点から特に好 ましい。例として、 L—グルタミン酸ォキシダーゼや L-リジンォキシダーゼなどの利用 が耐熱安定性、感度の点から望ましい。
[0060] 糖化タンパク質を含む検体のタンパク質分解酵素処理液中のフルクトシルバリルヒ スチジンを測定すると同時に、フルクトシルバリン及び特定のアミノ酸を測定すること で、タンパク分解酵素の処理時間を規定できる。すなわち、フルクトシルバリン及び特 定のアミノ酸が検出されず、フルクトシルバリルヒスチジンのみが検出される時間の範 囲内でタンパク質分解酵素を使用すればよい。
[0061] フルクトシルアミノ酸ォキシダーゼの由来としては、コリネバタテリゥム属(Corynebact erium)、ァスペルギルス属(Aspergillus)、フサリウム属 (Fusarium)、ギべレラ属 (Gibb erella)、ぺ-シリウム属(Penicillium)、バチルス属(Bacillus)などが挙げられる。
[0062] 本発明で使用する酵素の固定ィ匕方法としては、物理吸着法、イオン結合法、包括 法、共有結合法などタンパク質の固定ィ匕方法として公知の方法を利用できるが、中 でも共有結合法が長期安定性に優れ望まし 、。タンパク質を共有結合させる方法と しては、ホルムアルデヒド、グリオキザール、グルタルアルデヒドなどのアルデヒド基を 有する化合物を用いるか、多官能基性ァシル化剤を利用する方法、スルフヒドリル基 を架橋させる方法など各種の方法を利用できる。酵素固定ィ匕体の形状としては、膜 状に固定ィ匕し白金、金、カーボンなど力もなる電極上にのせることもできるし、不溶性 担体に固定ィ匕し担体をカラムリアクターに充填して用いることもできる。
[0063] さらに固定ィ匕の際に他種の酵素ある ヽはゼラチンや血清アルブミンなどのタンパク 質、ポリアリルアミンゃポリリジンなどの合成高分子を共存させ、酵素固定化体の特性 、すなわち膜強度、基質透過特性などを変更することもできる。酵素を不溶性担体に 固定ィ匕する場合の担体としては、ケイソゥ土、活性炭、アルミナ、酸化チタン、架橋処 理デンプン粒子、セルロール系高分子、キチンおよびキトサン誘導体などの公知の 担体を利用できる。
[0064] 検体中のグルコース、タンパク質分解酵素の作用によって糖ィ匕ヘモグロビンから生 成した糖ィ匕ペプチド及び糖ィ匕アミノ酸は、順次グルコースォキシダーゼ、フルクトシル ペプチドォキシダーゼ及びフルクトシルアミノ酸ォキシダーゼ (順序は問わな ヽ)で過 酸ィ匕水素に変換し、各々のォキシダーゼにより生成した過酸ィ匕水素を電気化学的に 検出することで、各物質濃度が測定できる。しかし、天然に存在するヘモグロビン糖 化物の糖ィ匕率は約 5%と低いので、タンパク質分解酵素による分解によって生じたフ ルクトシルノ リルヒスチジン、あるいはフルクトシルバリン由来の過酸化水素量が通常 よりも少ないことが十分に予想されるため、過酸ィ匕水素を高感度で検出する必要があ る。また、ヘモグロビン自身が 400〜600nm付近に吸収帯を有しているため、公知 の方法の中でもこれらの波長領域での過酸ィ匕水素の吸光度検出はヘモグロビンの 吸収による妨害が大きぐ実際の糖ィ匕ヘモグロビン測定には適用できない可能性が 高い。これらのことから過酸ィ匕水素の高感度計測には、アンべロメトリー等の電気化 学的な手法を用いるのがより好ま 、。
[0065] 本発明の 1つの好ましい実施形態においては、検体中のグルコースと糖ィ匕へモグロ ビンを 1つの装置で測定することができる。
[0066] 本発明におけるグルコースの測定は、グルコースの酸化反応を触媒する酵素を固 定ィ匕して用いる。該当する酵素としては、グルコースォキシダーゼ (EC1. 1. 3. 4)、 ビラノースォキシダーゼ(EC 1. 1. 3. 10)、グルコース脱水素酵素(EC1. 1. 99. 1 0)などがある。中でもグルコースォキシダーゼは耐久性が高ぐ基質選択性に優れる ため望ましい。
[0067] また、臨床検査の分野におけるグルコース値は、通常血漿中のグルコースで評価さ れている。全血中にはヘモグロビン等の溶媒となりえない成分を含んでいるため、全 血グルコース濃度値は血漿グルコース濃度値とは異なる。糖ィ匕ヘモグロビン比率の 測定では、ヘモグロビンを含む検体が対象となり、使用する検体は全血もしくは血球 である。全血を対象とし、糖ィ匕ヘモグロビン比率とグルコースを同時測定した際に検 出されるグルコース値は、全血グルコース値である。
[0068] なお、全血グルコースと血球 (赤血球)グルコースは、新鮮血ではほぼ等価であるの で、本明細書では、全血グルコースと血球 (赤血球)グルコースを合わせて「全血グル コース」と表現する場合がある。
[0069] 全血グルコース値から血漿グルコース値を算出する方法としては、へマトクリット値 を何らかの方法で測定して全血グルコース値を補正する方法 (へマトクリット補正)が あるが、別途へマトクリット値を測定する装置が必要であるため、分析装置が大型で 複雑になり、望ましくない。本発明の当該実施形態においては、糖ィ匕ヘモグロビン比 率を測定する際に、必ずヘモグロビン濃度を測定するので、ヘモグロビン濃度から血 球分の補正係数を算出して全血グルコース値を補正する第二演算機構を備えること で、装置を大型化することなく血漿グルコース値を算出できる。
[0070] し力しながら、フルクトシルアミノ酸ォキシダーゼは、糖ィ匕アミノ酸だけでなぐわず かではあるがグルコースにも作用する場合があることを本発明者らは発見した。血中 には、糖ィ匕ヘモグロビンの約 100倍濃度のグルコースが存在するので、フルクトシル アミノ酸ォキシダーゼがグルコースにも作用する場合、検出されたフルクトシルバリン 値は血中のグルコースによる正の誤差を含んでおり、正確なフルクトシルバリン濃度 が得られない。従って、検体中のグルコースのフルクトシルバリン検出値への妨害を 除くため、フルクトシルアミノ酸ォキシダーゼ固定化体とともにグルコースォキシダー ゼ固定化体を配置し、グルコースと同時にフルクトシルバリンを測定し、フルクトシル パリン検出値力 検体中のグルコースによる妨害を第三演算装置により差演算する。
[0071] 糖ィ匕ペプチドの測定は、糖ィ匕ペプチドを酸ィ匕して過酸ィ匕水素を生成するフルクトシ ルペプチドォキシダーゼを固定ィ匕して使用する。糖ィ匕ヘモグロビン N末端の糖ィ匕ジ ペプチドであるフルクトシルノ リルヒスチジンの検出の際に、フルクトシルペプチドォ キシダーゼに要求される特性は、糖ィ匕ヘモグロビン a鎖 N末端の糖ィ匕ジペプチドで あるフルクトシルバリルロイシンや ε -ァミノ基が糖ィ匕された ε フルクトシルリジンに は実質的に作用せず、糖ィ匕ヘモグロビン j8鎖 Ν末端の糖ィ匕ジペプチドであるフルク トシルバリルヒスチジンに特異的に作用する酵素が好ましい。
[0072] フルクトシルアミノ酸ォキシダーゼと同様に、フルクトシルペプチドォキシダーゼがグ ルコースにも作用する場合には、ダルコースォキシダーゼ固定化体と同時に使用し て糖ィ匕ペプチドとグルコースを同時に測定し、糖ィ匕ペプチドの検出値力も検体中の グルコースによる妨害を第三演算機構により差演算する。
[0073] フルクトシルアミノ酸ォキシダーゼまたはフルクトシルペプチドォキシダーゼを用い た糖ィ匕アミノ酸または糖ィ匕ペプチド検出系で、検体中のダルコースが糖ィ匕アミノ酸ま たは糖ィ匕ペプチド検出値に妨害を与える場合、これらの妨害を除くための、演算方 法について説明する。具体的には、グルコース検出系で糖ィ匕アミノ酸または糖ィ匕ぺ プチドが応答し、糖ィ匕アミノ酸または糖ィ匕ペプチド検出系でグルコースが応答する場 合、まず各検出系でグルコースと糖ィ匕アミノ酸または糖ィ匕ペプチドの検量線を作成す る。その後各検出系で得られた試料に対する応答値を、各検量線を用いて差演算す るものである。
[0074] グルコースォキシダーゼ固定ィ匕体と第 1の過酸ィ匕水素電極を組み合わせたダルコ ース検出系で得られたグルコースの検量線を
v=a X x+b
11 11
フルクトシルバリンもしくはフルクトシルノ リルヒスチジンの検量線を y=a X x+b
12 12
とし、フルクトシルアミノ酸ォキシダーゼまたはフルクトシルペプチドォキシダーゼ固定 化体と過酸ィ匕水素電極を組み合わせた糖ィ匕アミノ酸または糖ィ匕ペプチド検出系で得 られたダルコースの検量線を
v=a X x+b
21 21
フルクトシルバリンもしくはフルクトシルノ リルヒスチジンの検量線を
v=a X x+b
22 22
とすると、 Xの濃度のグルコースと Xの濃度のフルクトシルバリンによる応答値は、第
1 2
1の過酸ィ匕水素電極では、
V =a X x +b +a X x +b
1 11 1 11 12 2 12
第 2の過酸化水素電極では、
y =a X x +b +a X x +b
2 21 1 21 22 2 22
となる。
[0075] これらの値を元にグルコース、フルクトシルバリンもしくはフルクトシルバリルヒスチジ ンの濃度をそれぞれ求めると、グルコースの濃度 Xは
X =、a X、y— b — b )— a X (y— b — b ))/、a X a — a X a )
1 12 2 21 22 22 1 11 12 12 21 11 22
フルクトシルバリンもしくはフルクトシルバリルヒスチジンの濃度 Xは
2
X =、a X、y— b — b )— a X (y— b — b ))/、a X a — a X a )
2 11 2 21 22 21 1 11 12 11 22 12 21
となる。
[0076] グルコース検出系でフルクトシルバリンもしくはフルクトシルノ リルヒスチジンが、フル クトシルアミノ酸ォキシダーゼまたはフルクトシルペプチドォキシダーゼ固定化体でグ ルコースが応答する場合でも、グルコースとフルクトシルバリンもしくはフルクトシルバ リルヒスチジンの濃度が算出でき、分別定量が可能である。
[0077] グルコース検出系でフルクトシルバリンもしくはフルクトシルノ リルヒスチジンが応答 しない場合、上式の a , b は 0となり、グルコースの濃度 Xは
12 12 1
=(y b )ι a
1 1 11 11
フルクトシルバリンもしくはフルクトシルノ リルヒスチジンの濃度 Xは
2
X =>,a X、y— b — b )— a X (y— b ))/ (a X aノ となり、ダルコース検出系と糖ィ匕アミノ酸または糖ィ匕ペプチド検出系でダルコ一スとフ ルクトシルバリンまたはフルクトシルノ リルヒスチジンの検量線を作製し、試料のフルク トシルバリンまたはフルクトシルバリルヒスチジン検出値から、上式により試料中のグ ルコース濃度とフルクトシルバリンもしくはフルクトシルバリルヒスチジン濃度が正確に 算出できる。
[0078] さらに、糖ィ匕ヘモグロビン比率である HbAlcの算出は、検体中のグルコースに由 来する妨害を差演算して求められたフルクトシルバリン濃度またはフルクトシルバリル ヒスチジン濃度と、検体中のヘモグロビン濃度との比率を第一演算機構により算出す ることで求められる。
[0079] 糖ィ匕ヘモグロビンをタンパク質分解酵素で処理する方法は、まず糖ィ匕ヘモグロビン を含む検体を界面活性剤含有緩衝液と混合し、次にタンパク質分解酵素を添加して 所定時間反応させる、または糖化ヘモグロビンを含む検体を界面活性剤含有緩衝液 と混合した試料をタンパク質分解酵素が固定化された担体と所定時間接触させる等 の方法が挙げられ、何れの方法を用いてもよい。
固定化された酵素に試料を一定時間接触させて反応を進行させるには、試料液を一 定時間撹拌しながら反応を起こさせるバッチ方式でも可能であるが、より高精度の測 定を実施するためにフロー方式の測定を用いることが望ましい。本発明ではより高精 度の測定を行えるフロー方式の装置を開示する。
[0080] 臨床診断指標としてのヘモグロビンの糖ィ匕割合の測定対象である HbAlcは、全へ モグロビン中で特定部位が糖ィ匕された画分の比率で表現される。そのため、分析に 用いる試料中のヘモグロビン濃度が判明すれば、その試料力も検出されるフルクトシ ルバリルヒスチジン量もしくはフルクトシルバリン量との比率をとればよいことになる。
[0081] ヘモグロビン濃度を測定する方法としては、シアンメトヘモグロビン法、メトへモグロ ビン法、ァザイドヘモグロビン法、 SLS—ヘモグロビン法等の公知の方法を用いれば よいが、中でも種々の酵素に阻害ゃ失活等の影響が少なぐ試薬廃棄時に環境に対 する負荷が小さい SLS—ヘモグロビン法が好ましい。 SLS—ヘモグロビン法は、血 液試料を陰イオン系界面活性剤であるアルキル硫酸塩溶液 (以後ヘモグロビン測定 試薬と表記する)で処理した後、 540nmでの試料の吸光度変化力も算出するもので ある。アルキル硫酸塩はラウリル硫酸ナトリウム(SLS)やポリオキシエチレンラウリル 硫酸ナトリウム等を適宜選択して使用し、ヘモグロビン測定試薬中には緩衝液や各 種塩類を含んでいてもよい。アルキル硫酸塩の濃度は、反応用液中の血球濃度 0. 2 5〜20体積%に対して 0. 05〜10%、好ましくは 0. 05〜1%である。血液試料とへ モグロビン測定試薬の反応は数秒〜数分程度で完了する。
[0082] また、アルキル硫酸塩を含むヘモグロビン測定試薬中に、タンパク質分解酵素を作 用させる際に使用する界面活性剤含有緩衝液を同時に共存させて、溶血、へモグロ ビンの変性、 SLS—ヘモグロビンの形成反応を同時に行ってもよぐ検体のへモグロ ビン測定試薬との反応後にタンパク質分解酵素処理用の界面活性剤含有緩衝液を 加えてもよぐ逆の順序でもよい。
[0083] ヘモグロビン測定試薬中の界面活性剤とタンパク質分解酵素処理用の界面活性剤 は、上記の条件を満たすものであれば、異なっていてもよく、同一であってもよい。
[0084] ヘモグロビン濃度の測定は、検体とヘモグロビン濃度測定試薬の反応終了後で反 応液の吸光度が安定である時間の範囲内であれば如何なる時間に測定してもよぐ 検体のタンパク質分解酵素の処理前後、グルコース及びフルクトシルバリン及びフル クトシルノ リルヒスチジンの検出の前後の!/、ずれでもよ!/、。
[0085] ヘモグロビン測定試薬処理液の吸光度を測定する方法としては、キュベットに該試 料を分注して特定の波長の吸光度を測定するバッチ法、またはテフロン (登録商標) 管をセルとして試料がテフロン (登録商標)管を通過する特定の波長の吸光度変化を 測定するフロー法を用いればよぐ操作が簡単であることからフロー法がより望ましい 。ヘモグロビン濃度の測定は、検体とヘモグロビン濃度測定試薬の反応終了後、反 応液の吸光度が安定である時間の範囲内で行えばよい。
[0086] 検体を処理するプロテアーゼとしてフルクトシルノ リルヒスチジンを生成するタンパ ク質分解酵素を用いた本発明の 1つの好まし ヽ実施形態を図 1に示す。緩衝液の流 れを形成する機構(1, 2)と、検体を注入する機構 (4, 5, 7)、その下流にタンパク質 分解酵素固定ィ匕体( 14)とヘモグロビン濃度検出用フロー型比色計( 16)と電気化学 的活性物質濃度を検知できる電極(18, 20)を配置し、フルクトシルペプチド検出用 電極系(17, 18)とアミノ酸検出用電極系またはフルクトシルアミノ酸検出用電極系( 19, 20)を構成する。なお、(3)はダンパー、(15)は混合用配管である。
[0087] 具体的には、まず緩衝液槽(1)より緩衝液をポンプ(2)により送液する。試料 (6)に ニードル(7)を挿入し、バルブ(10)を閉じ、バルブ(11)を開けて、シリンジポンプ(1 2)を引くことにより試料を計量バルブ (4)の計量ループ(5)に引き込む。次に計量バ ルブ (4)を切り替え、緩衝液によりループ(5)内に溜まった試料を押し出す。過剰の 試料はー且バルブ(10)を開けてバルブ(11)を閉じ、洗浄液 (9)をシリンジポンプ(1 2)に引き込んだ後、ノ レブ(10)を閉じバルブ(11)を開けて洗浄液を押し出すこと により、廃棄ポット(8)に押し出され、廃液ボトル(23)に貯留される。注入された試料 は緩衝液の流れにのって恒温槽(13)内に設置されたタンパク質分解酵素固定化酵 素カラム(14)を通り、試料中の糖ィ匕タンパク質力もフルクトシルペプチドを生成する。 タンパク質分解酵素の作用した試料は、緩衝液の流れに従ってさらに下流に設置さ れたフロー型比色計(16)を通り、試料中のヘモグロビン濃度が検出された後、フル クトシルペプチドォキシダーゼ固定ィ匕カラム(17)を通り、そこで生成した過酸化水素 が過酸化水素電極(18)で検知される。続いてアミノ酸ォキシダーゼ固定ィ匕カラムま たはフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラム(19)を通り、そこで生成した過酸 化水素が下流の過酸化水素電極(20)により検知される。廃液は背圧コイル(21)を 通り廃液ボトル (22)に溜まる。血液試料 (6)は、直接分析装置内に供給されてもよい 力 試料 (6)は予めヘモグロビン濃度測定用試薬で処理された後、および Zまたは タンパク質分解酵素で処理された後装置内に供給されてもよい。分析装置内に血液 試料を直接供給する場合には、例えばヘモグロビン濃度測定用試薬とタンパク質分 解酵素と一緒に供給し、緩衝液の流路内においてヘモグロビン濃度測定試薬との反 応及びタンパク質分解酵素処理されてもよい。フロー型比色計(16)の吸光度変化と 過酸化水素電極(18)および(20)の電流値の変化を検知することにより物質濃度を 定量する。
[0088] なお、図 1の装置において、フルクトシルペプチド検出用電極系(17, 18)とァミノ 酸検出用電極系またはフルクトシルアミノ酸検出用電極系(19, 20)に代えて、フル クトシルアミノ酸検出用電極系(17, 18)とアミノ酸検出用電極系(19, 20)を使用し、 タンパク質分解酵素固定ィ匕酵素カラム(14)により試料中の糖ィ匕タンパク質力もフル クトシルバリンを生成することで、他の実施形態の糖ィ匕ヘモグロビンの分析装置を構 成することができる。
[0089] また図 1の装置は、グルコースと糖ィ匕ヘモグロビンを同時に測定する本発明の 1つ の好ましい実施形態として使用することもできる。すなわち、図 1の装置のフルクトシ ルペプチド検出用電極系(17, 18)とアミノ酸検出用電極系またはフルクトシルァミノ 酸検出用電極系(19, 20)に代えて、グルコース検出用電極系(17、 18)と糖ィ匕アミ ノ酸または糖ィ匕ペプチド検出用電極系(19、 20)を使用すれば、グルコースと糖ィ匕へ モグロビンを同時に測定することができる。
[0090] 具体的には、試料は、グルコースォキシダーゼ固定ィ匕体(17)を通り、そこで生成し た過酸化水素が過酸化水素電極(18)で検知される。続いてフルクトシルアミノ酸ォ キシダーゼ固定ィ匕体またはフルクトシルペプチドォキシダーゼ固定ィ匕体(19)を通り 、そこで生成した過酸ィ匕水素が下流の過酸ィ匕水素電極(20)で検知される。廃液は 背圧コイル(21)を通り、廃液ボトル(22)に溜まる。
[0091] 図 2は、血液試料による測定系の汚染を連続的に除去可能な透析モジュールを組 み込んだ、フロー型のグルコースと糖ィヒアミノ酸または糖ィヒペプチド同時測定装置の 例である。緩衝液槽(24)より緩衝液 Bをポンプ(25)により送液し、試料注入機構 (4 、 5、 7)により試料(6)を緩衝液 Bの流れに注入する。注入された試料は、緩衝液 Bの 流れにのって恒温槽(13)内に設置されたフロー型比色計(16)を通り、一定波長の 吸光度変化力 ヘモグロビン濃度が検知された後、さらに下流に配置されたタンパク 質分解酵素固定ィ匕カラム(14)を通り、試料中の糖ィ匕タンパク質力も糖ィ匕アミノ酸また は糖ィ匕ペプチドを生成する。タンパク質分解酵素の作用した試料はさらに下流に設 置された透析モジュール(27)に運ばれ、膜厚さ 20 m、分子量分画 12000〜140 00の再生セルロース膜で試料中の低分子成分のみがグルコースと糖ィ匕アミノ酸また は糖ィ匕ペプチド検出機構(17、 18、 19、 20)に導かれる。緩衝液槽(1)より緩衝液 A がポンプ(2)により送液されているので、透析モジュール(27)で透析された試料中 の低分子成分はグルコースォキシダーゼ固定ィ匕体(17)と過酸化水素電極(18)を 通過し、グルコースォキシダーゼ固定ィ匕体(17)で生成した過酸ィ匕水素が検知される 。続 、てフルクトシルアミノ酸ォキシダーゼ固定化カラムまたはフルクトシルペプチド ォキシダーゼ固定ィ匕カラム(19)と過酸ィ匕水素電極(20)を通過し、生成した過酸ィ匕 水素を検知する。透析モジュール (27)の透析膜を通過しなカゝつた試料中の高分子 成分は廃液ボトル(22)に溜まる。なお、(26)は恒温ィ匕用配管である。
[0092] プロテアーゼ分解後の試料中の低分子成分分離機構で用いる膜 (27)は、タンパ ク質分解酵素による分解の過程で共存すると考えられるペンタペプチドやへキサぺ プチドやさらに大きなペプチド類が透過し難いもしくは透過せず、フルクトシルバリン 及びフルクトシルバリルヒスチジンが透過できるものであれば良!、。用いる膜としては 、再生セルロース製、ァセチルセルロース製、ポリフッ化ビ-リデン製などの透析膜が 例示できる。透析膜の分子量分画は平衡透析を行った際に透過する最小分子量で 表示される。一方分析用途に利用する場合は、透析の初速度の差で分離する場合 が多ぐ必ずしも分画を希望する分子量と透析膜の性能表示が一致するとは限らな い。本発明の目的には分画分子量 300以上 50万以下のものが利用できる。より好ま しくは 1000以上 10万以下、さらに望ましくは 1万以上 2万以下のものが良い。
[0093] 血液試料 (6)は、ヘモグロビン測定試薬で処理した後、直接分析装置内に供給し てもよいが、ヘモグロビン測定試薬で処理し、さらにタンパク質分解酵素で処理され た後装置内に供給されてもよい。分析装置内にヘモグロビン測定試薬で処理し、さら にタンパク質分解酵素で処理された血液試料を供給する場合には、例えばタンパク 質分解酵素とヘモグロビン測定試薬で処理した試料を一緒に供給し、緩衝液の流路 内にお ヽてタンパク質分解酵素で処理されてもょ ヽ。フロー型比色計(16)の一定波 長での吸光度変化からヘモグロビン濃度を定量し、過酸化水素電極(18)および(2 0)の電流値の変化を検知することによりグルコース及び糖ィ匕アミノ酸または糖ィ匕ぺプ チド濃度を定量することができる。
[0094] これらの装置に流す緩衝液は特に限定されないが、固定化酵素 (14、 17、 19)の活 性が高くなるような pH (例えば pH7〜9)になるように選択すればよい。また固定化酵 素(14、 17、 19)と過酸化水素電極(18、 20)に負の影響を与えない種類や濃度範 囲の制菌剤ゃ界面活性剤を含んでいてもよぐ過酸化水素電極(18、 20)に妨害を 与えない固定ィ匕酵素(14、 17、 19)の賦活剤を含んでいてもよい。
なお、図 2の装置において、グルコースォキシダーゼ固定化体(17)、フルクトシルァ ミノ酸ォキシダーゼ固定ィ匕カラムまたはフルクトシルペプチドォキシダーゼ固定ィ匕カ ラム(19)に代えて、フルクトシルペプチドォキシダーゼ固定ィ匕カラム(17)とアミノ酸 ォキシダーゼ固定ィ匕カラムまたはフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラム(19 )の組み合わせ、あるいは、フルクトシルアミノ酸ォキシダーゼ固定化カラム(17)とァ ミノ酸ォキシダーゼ固定ィ匕カラム(19)の組み合わせ、を使用することも可能である。 実施例
[0095] 以下に実施例を挙げて、本発明の内容をさらに詳細に説明するが、もちろん本発 明はこれらに限定されるものではない。
[0096] 実施例 1
(1)フルクトシルペプチドォキシダーゼ固定ィ匕カラムの製造
耐火レンガ(30〜60メッシュ) 150mgをよく乾燥し、 10% γ —ァミノプロピルトリエト キシシランの無水トルエン溶液に 1時間浸漬した後、よくトルエンで洗浄し、乾燥する 。こうしてアミノシランィ匕処理した担体を 5%ダルタルアルデヒドに 1時間浸漬した後、 よく蒸留水で洗浄し、最後に ρΗ7. 0、 lOOmMのリン酸ナトリウム緩衝液で置き換え 、この緩衝液をできるだけ除いておく。このホルミル化した耐火レンガに pH7. 0、 10 OmMリン酸ナトリウム緩衝液にフルクトシルペプチドォキシダーゼ(キッコーマン株式 会社製、 Kikkoman Co.)を 140ユニット Zmlの濃度で溶解した溶液 200 1を接触さ せ、 0〜4°Cで 1日放置し固定化する。この酵素固定化担体を内径 3. 5mm、長さ 30 mmのカラムに充填しフルクトシルペプチドォキシダーゼ固定化カラムとする。
(2)過酸化水素電極の製造
直径 2mmの白金線の側面を熱収縮テフロン (登録商標)で被覆し、その線の一端を やすりおよび 1500番のエメリー紙で平滑に仕上げる。この白金線を作用極、 1cm角 型白金板を対極、飽和カロメル電極を参照極として、 0. 1M硫酸中、 + 2. OVで 10 分間の電解処理を行う。その後白金線をよく水洗した後、 40°Cで 10分間乾燥し、 10 % γ—ァミノプロピルトリエトキシシランの無水トルエン溶液に 1時間浸漬後、洗浄す る。牛血清アルブミン(シグマ製、 Fraction V、 Sigma- Aldrich Co.) 20mgを蒸留水 1 mlに溶解し、その中にダルタルアルデヒドを 0. 2%になるように加える。この混合液を 手早く先に用意した白金線上に 5 1のせ、 40°Cで 15分間乾燥硬化する。これを過 酸化水素電極とする。
[0097] また参照電極としては AgZAgCl参照電極を用い、対極には導電性の配管を用い た。
(3)測定装置
図 1はフルクトシルペプチド測定装置である。緩衝液槽( 1)より緩衝液をポンプ(2) により送液し、計量バルブ (4)を用いて試料 5 1を注入する。タンパク質分解酵素固 定ィ匕カラム(14)、フロー型比色計(16)、第 2の固定ィ匕酵素カラム(19)と第 2の過酸 化水素電極(20)は配置せず、第 1の固定ィ匕酵素カラム(17)にはフルクトシルぺプ チドォキシダーゼ固定ィ匕カラム、その下流に過酸化水素電極(18)を配置する。注入 された試料は緩衝液の流れにのって恒温槽(13)内に設置された混合用配管(15) を通り、温度調整と緩衝液との混合が行われ、フルクトシルペプチドォキシダーゼ固 定化カラム( 17)と過酸化水素電極( 18)を通り、試料中のフルクトシルバリルヒスチジ ンカも過酸ィ匕水素を生成し電流値の変化を検知する。
[0098] この測定装置に使用する緩衝液の組成は、 lOOmMのリン酸と 50mMの塩化力リウ ムと ImMのアジ化ナトリウムを含み、 pHが 7. 0である。
[0099] 緩衝液の流速は 1. OmlZ分、恒温槽の温度は 30°Cであった。
(4)フルクトシルペプチドォキシダーゼ固定化カラムの特性
(3)の測定装置を用いてフルクトシルグリシン、フルクトシルバリン、フルクトシルバリ ルヒスチジンを 5 μ 1注入し、フルクトシルペプチドォキシダーゼカラムの特性を調べた 結果を以下に示す。
(i)pH特性
緩衝液の ρΗを 6. 0、 7. 0、 8. 0としたときのフルクトシルグリシン(FG)、フルクトシ ルバリン(FV)、フルクトシルバリルヒスチジン(FVH)の酸化反応の活性の測定結果を 図 3に示す。フルクトシルグリシンに対しては pH8. 0で高い活性を示し、 pH6. 0では pH8. 0の約 50%まで活性が低下した。フルクトシルバリンとフルクトシルノ リルヒスチ ジンに対しては pH6. 0、 7. 0で高い活性を示した。
[0100] pHが酸性の場合にフルクトシルグリシンに対する活性が低下したことから、その他 の糖ィ匕アミノ酸に対しても活性が低くなることが予測される。また、フルクトシルバリル ヒスチジンとフルクトシルバリンに対する活性は pH7. 0で最大であることから、フルク トシルバリルヒスチジンの測定では pH7. 0が至適と判断した。
(ii)基質特異性
フルクトシルペプチドォキシダーゼ固定ィ匕カラムの基質特異性を表 1に示す。表 1 は各 pHでのフルクトシルバリンに対する応答を 100とした場合の相対応答値である。
[0101] 何れの pHでもフルクトシルノ リルヒスチジンとフルクトシルバリンに特異的で、 at , ε フルクトシルリジンにはほとんど応答せず、各種アミノ酸と糖類には全く応答しなか つた ο
[0102] [表 1]
相対活性 (%)
No. 試料名
pH6.0 pH7.0 pH8.0
1 Fructosyl glycine 35 56 70
2 Fructosyl valine 100 100 100
3 a, ε -Fructosyl lysine 9 10 1 1
4 Fructosyl valyl histhidine 88 87 66
5 Lys 0 0 0
6 Glu 0 0 0
7 Gin 0 0 0
8 Ala 0 0 0
9 Asp 0 0 0
10 Phe 0 0 0
1 1 Gly 0 0 0
12 His 0 0 0
13 し eu 0 0 0
14 Arg 0 0 0
15 Ser 0 0 0
16 Thr 0 0 0
17 Val 0 0 0
18 Trp 0 0 0
19 Met 0 0 0
20 Asn 0 0 0
21 Pro 0 0 0
22 Mannose 0 0 0
23 Glucose 0 0 0
24 Fructose 0 0 0
25 D - Sorbitol 0 0 0
26 Glycerol 0 0 0
27 Galactose 0 0 0
28 Xylose 0 0 0
(iii)安定性
緩衝液の pHを 7. 0、緩衝液の流速を 1. OmlZ分、恒温槽温度を 30°Cの条件下 で、フルクトシルペプチドォキシダーゼ固定化カラムはフルクトシルバリンに対して 10 日間で初期の約 50%まで活性が低下した。 [0104] 使用したフルクトシルペプチドォキシダーゼ固定化カラムは α , ε —フルクトシルリジ ンには実質的に作用せず、フルクトシルバリルヒスチジンとフルクトシルバリンに特異 的に作用する。また、フルクトシルバリン及びフルクトシルバリルヒスチジンに対する至 適 ρΗが中性または酸性域であるので、糖ィ匕タンパク質力 糖ィ匕ペプチドを生成させ るタンパク質分解酵素は中性または酸性域で活性の高いものが望ましい。
(5)血球のプロテアーゼ分解
ヒトヘモグロビンをタンパク質分解酵素で分解し、生成したフルクトシルペプチド測 定に中性または酸性域に至適を持つフルクトシルペプチドォキシダーゼ固定ィ匕カラ ムを使用するので、中性または酸性域で活性が高ぐフルクトシルバリルヒスチジンを 生成するバチルス属タンパク質分解酵素を使用する。
[0105] 血球はヒト全血を生理食塩水で洗浄後、 2000gで遠心分離して得た。このようにし て得た血球 200 μ Lを陰イオン界面活性剤である 0. 5%ポリオキシエチレンラウリル 硫酸ナトリウム水溶液 (ΡΗ6. 8) 750 1に加えて溶血させた後、バチルス属タンパク 質分解酵素である 320mgZmlプロチン PC10F (大和化成株式会社製) 50 μ 1を添 カロし、 37°Cで反応させた。このプロテアーゼ処理液を 1、 3、 5、 7、 9、 20、 30、 40、 1 00分反応後、 (3)の測定装置にプロテアーゼ処理液 5 μ 1を注入して試料中のフルク トシルバリルヒスチジンを測定した。結果を図 4に示す。
[0106] 同条件下の血球溶血液と血球が存在しない酵素ブランク溶液では、フルクトシルバ リルヒスチジンが全く検出されないことから、使用したプロテアーゼの作用により短時 間でフルクトシルバリルヒスチジンが遊離して 、ることがわ力る。本プロテアーゼはヒト ヘモグロビン力 フルクトシルバリルヒスチジンを遊離するのに効果的に作用している
(6) HbAlc常用標準物質の HbAlc測定
バチルス属プロテア一ゼと本測定装置を用いて糖ィ匕率の異なる HbAlc常用標準 物質 (福祉'医療技術振興会製、 Health Care Technology Foundation) 3点を測定し た。
[0107] HbAlc常用標準物質の調製は添付文書に従って行った。調製した HbAlc常用 標準物質溶液 60 1を 0. 5%ポリオキシエチレンラウリル硫酸ナトリウム水溶液 (pH6 . 8)225 /z lで溶血させた後、 320mgZmlプロチン PC10F (大和化成株式会社製) 15 1を添加し、 37°Cで 8. 5、 30分間反応させた。反応終了後、(3)の測定装置に プロテアーゼ処理液を 5 μ 1注入して試料中のフルクトシルバリルヒスチジン濃度を測 し 7こ。
[0108] また、プロテアーゼ処理液中のヘモグロビン濃度の測定には、ヘモグロビン Β—テ ストヮコー(和光純薬工業株式会社製、 Wako Pure Chemical Industries, Ltd.)を使用 し、添付文書に従って測定を行った。
[0109] HbAlc常用標準物質 3レベル(HbAlc値: 5. 08±0. 12%、 5. 80±0. 13%、 1
0. 65±0. 25%)において、測定されたフルクトシルノ リルヒスチジン濃度とへモグロ ビン濃度の比 (FVZHb)を算出した結果を図 5に示す。
[0110] プロテアーゼ反応 8. 5分で相関係数 0. 9964 (y=0. 887x— 0. 155)、 30分で 相関係数 0. 9991 (y= l. 62x— 1. 17)の良好な直線関係が得られた。
[0111] 比較例 1
起源、至適 ρΗ、メーカー等の異なるプロテアーゼを用いて血球溶血液のプロテア ーゼ分解を検討した。
[0112] 使用したタンパク分解酵素は、天野ェンザィム株式会社製のゥマミザィム G、プロテ ァーゼ A「ァマノ」 G、プロテアーゼ M「ァマノ」 G、プロテアーゼ N「ァマノ」 G、ぺプチ ダーゼ Rゝニューラーゼ F3Gゝノボザィムズ製のフレーバーザィム、ニュートラーゼ、 プロタメックスである。
[0113] 実施例 1 (5)と同様にして血球溶血液を上記の各種タンパク質分解酵素の反応液 中濃度が約 lmgZml相当となるように添加して調製後、 37°Cで 40分反応させた。 反応終了後、実施例 1 (3)の測定装置にプロテアーゼ処理液 5 μ 1注入した。結果を 表 2に示す。表中の" Α"は 20 Μ以上のフルクトシルノ リルヒスチジンの検出値が得 られたもの、 "Β"は 20 Μ以上のフルクトシルノ リルヒスチジンの検出値が得られな 力つたものを表している。
[0114] [表 2] 製品名 起源 メーカー pH 結果
A ゥマミザィム G Aspergillus oryzae 天野ェンザィム 8.0 B プロテア一ゼ A
B Aspergillus oryzae 天野ェンザィム 7.0 B 「ァマノ」 G
プロテアーゼ M
C Aspergillus oryzae 天野ェンザィム 4.5 B 「ァマノ」 G
プロテア一ゼ N
D Bacillus subtilis 天野ェンザィム 7.0 A 「ァマノ」 G
E ぺプチダーゼ R Rhizopus oryzae 天野ェンザィム 7.0 B ニューラーゼ
F Rhizop us niveus 天野ェンザィム 3.0 B F 3 G
G フレーバーザィム Aspergillus oryzae ノボザィムズ 7.0 B
Bacillus
H ニュー卜ラーゼ ノポザィムズ 6.0 A
amyloliquefaciens
I プロタメックス Bacillus属 ノポザィムズ 6.0 A
[0115] 全血中のヘモグロビン濃度は通常 120〜160gZLの範囲で、本実験条件では約 5 倍に希釈されるため、反応溶液中でのヘモグロビン濃度は 24〜32gZLとなる。さら に正常なヒトの HbAlc値が 5%程度であるので、反応溶液のフルクトシルバリルヒス チジンは最大 19〜25 μ Μ程度と推測される。従って、 20 μ Μ以上のフルクトシルバ リルヒスチジンが検出された場合には、分解率が高いと言える。
[0116] タンパク質分解酵素処理液の pHが中性付近の条件下では、バチルス属のタンパク 質分解酵素で大きな検出値が得られたが、その他の酵素では 20 μ Μ以上のフルクト シルバリルヒスチジンが検出されなカゝつた。これは、中性付近でタンパク質分解酵素 の作用により、ヒト血球からフルクトシルノ リルヒスチジンを生成させるのに、バチルス 属タンパク質分解酵素が有効であることを示して ヽる。
[0117] 実施例 2
実施例 1で示したように、バチルス属由来のタンパク質分解酵素を使用すればヒト 血球からフルクトシルノ リルヒスチジンを生成させることができる。し力し、フルクトシル ノ リルヒスチジンの検出に使用するフルクトシルペプチドォキシダーゼは、各種アミノ 酸及び糖類には全く応答せず、フルクトシルバリンにも応答することが示された。高精 度な HbAlc測定を行うためには、タンパク質分解酵素処理液中にフルクトシルバリ ン及び ε—フルクトシルリジンすなわち L リジンが生成しないタンパク質分解酵素 処理時間以内で行わなければならない。この目的のためにプロチン PC10F (大和化 成株式会社製)をタンパク質分解酵素溶液として使用した場合に関するタンパク質分 解酵素の処理時間の検討結果の詳細を以下に示す。
(1)フルクトシルペプチドォキシダーゼ固定ィ匕カラムの製造
実施例 1と同様にフルクトシルペプチドォキシダーゼ (キッコーマン株式会社製)固 定ィ匕カラムを作製した。
(2)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの製造
実施例 1 (1)と同様にして耐火レンガ(30〜60メッシュ) 150mgをホルミル化する。 ホルミル化した而火レンガに pH7. 0、 lOOmMリン酸ナトリウム緩衝液にフルクトシル アミノ酸ォキシダーゼ (キッコーマン株式会社製)を 18ユニット Zmlの濃度で溶解し た溶液 400 1を接触させ、 0〜4°Cで 1日放置し固定ィ匕する。この酵素固定化担体を 内径 3. 5mm、長さ 30mmのカラムに充填しフルクトシルアミノ酸ォキシダーゼ固定 化カラムとする。
(3) L—リジンォキシダーゼ固定ィ匕カラムの製造
実施例 1 (1)と同様にして耐火レンガ(30〜60メッシュ) 150mgをホルミル化する。 ホルミル化した耐火レンガに pH7. 0、 lOOmMリン酸ナトリウム緩衝液に L リジンォ キシダーゼ (ャマサ醤油株式会社製、 Yamasa Co.)を 50ユニット/ mlの濃度で溶解 した溶液 50 /z Lを接触させ、 0〜4°Cで 1日放置し固定ィ匕する。この酵素固定化担体 を内径 3. 5mm,長さ 30mmのカラムに充填し L リジンォキシダーゼ固定化カラムと する。
(4)過酸化水素電極の製造方法
実施例 1と同様に過酸化水素電極を作製した。
(5)測定装置
実施例 1と同様に、図 1のフルクトシルペプチド測定装置を使用した。緩衝液槽(1) より緩衝液をポンプ(2)により送液し、計量バルブ (4)を用いて試料 5 μ 1を注入する。 タンパク質分解酵素固定ィ匕カラム(14)とフロー型比色計(16)は配置せず、第 1の固 定ィ匕酵素カラム(17)にはフルクトシルペプチドォキシダーゼ固定ィ匕カラム、その下流 に過酸ィ匕水素電極(18)、第 2の固定ィ匕酵素カラム(19)に L—リジンォキシダーゼ固 定ィ匕カラムまたはフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムと第 2の過酸ィ匕水素 電極(20)を配置する。注入された試料は緩衝液の流れにのって恒温槽(13)内に設 置された混合用配管(15)を通り、温度調整と緩衝液との混合が行われ、フルクトシ ルペプチドォキシダーゼ固定ィ匕カラム( 17)と過酸化水素電極( 18)を通り、試料中 のフルクトシルバリルヒスチジン力も過酸ィ匕水素を生成し電流値の変化を検知する。 試料はさらに下流の L—リジンォキシダーゼ固定ィ匕カラムまたはフルクトシルアミノ酸 ォキシダーゼ固定ィ匕カラム(19)と過酸ィ匕水素電極(20)を通り、試料中の L リジン またはフルクトシルバリンが過酸化水素に変換されて電流値の変化を検知する。
[0118] この測定装置に使用する緩衝液の組成は、 lOOmMのリン酸と 50mMの塩ィ匕カリウ ムと ImMのアジ化ナトリウムを含み、 pHが 7. 0である。
[0119] 緩衝液の流速は 1. OmlZ分、恒温槽の温度は 30°Cであった。
(6)血球のタンパク質分解酵素処理溶液中の生成物の測定
血球溶血液に pH7. 0、 lOOmMリン酸ナトリウム緩衝液に溶解したプロチン PC10 F (大和化成株式会社製)溶液を添加して、 37°Cで所定時間反応させたタンパク分 解酵素処理液を(5)の測定装置に 5 μ 1注入し、各反応時間での試料中のフルクトシ ルバリルヒスチジン濃度とフルクトシルバリン濃度と L—リジン濃度を同時に測定した。
[0120] 血球はヒト全血を生理食塩水で洗浄後、 2000gで遠心分離して得た。このようにし て得た血球 240 μ Lを陰イオン界面活性剤である 0. 5%ポリオキシエチレンラウリル 硫酸ナトリウム水溶液 (ΡΗ6. 8) 900 1に加えて溶血させた後、バチルス属タンパク 質分解酵素である 320mgZmlプロチン PC10F (大和化成株式会社製) 60 μ 1を添 加し、 37°Cで反応させた。このタンパク質分解酵素処理液を 1、 3、 5、 7、 9、 20、 30 、 60、 120分反応後、その一部を採取して(5)の測定装置に 5 1を注入して、試料 中のフルクトシルバリルヒスチジン(FVH)、フルクトシルバリン(FV)、 L—リジン(Lys )濃度を測定した結果を図 6に示す。
[0121] フルクトシルバリルヒスチジンはタンパク質分解酵素処理時間が 20分以上で一定値 に到達した力 フルクトシルバリンと L リジンは 30分以上の処理で検出され、時間の 増加とともに検出値も増加した。このことから本条件下においては、プロチン PC10F の処理時間が 30分未満においてフルクトシルバリンや ε —フルクトシルリジンによる 正の妨害を受けることなぐフルクトシルバリルヒスチジンを測定することができる。プロ チン PC10Fの処理時間が 20分のときに、ヘモグロビン濃度を測定し、検出されたフ ルクトシルバリルヒスチジン濃度との比率を算出すると 4. 80%となり、免疫法で測定 された HbAlc値 4. 3%と一致した。
[0122] 実施例 3
(1)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの製造
耐火レンガ(30〜60メッシュ) 150mgをよく乾燥し、 10% γ —ァミノプロピルトリエト キシシランの無水トルエン溶液に 1時間浸漬した後、よくトルエンで洗浄し、乾燥する 。こうしてアミノシランィ匕処理した担体を 5%ダルタルアルデヒドに 1時間浸漬した後、 よく蒸留水で洗浄し、最後に ρΗ7. 0、 lOOmMのリン酸ナトリウム緩衝液で置き換え 、この緩衝液をできるだけ除いておく。このホルミル化した耐火レンガに pH7. 0、 10 OmMリン酸ナトリウム緩衝液にフルクトシルアミノ酸ォキシダーゼ(キッコーマン株式 会社製)を 18ユニット Zmlの濃度で溶解した溶液 400 1を接触させ、 0〜4°Cで 1日 放置し固定ィ匕する。この酵素固定ィ匕担体を内径 3. 5mm,長さ 30mmのカラムに充 填しフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムとする。
(2)過酸化水素電極の製造
実施例 1 (2)と同様に調製した。
(3)グルコース電極の製造
実施例 1 (2)と同様の手順で過酸化水素電極を作製する。グルコースォキシダーゼ (シグマ社製、 Typell)を lOOmgZmlとなるように lOOmMリン酸緩衝液 pH6. 0に溶 解する。グルコースォキシダーゼが 20mg/ml、牛血清アルブミンが 5mgZml、グル タルアルデヒドが 0. 2%となるように、 lOOmg/mlグルコースォキシダーゼ溶液と牛 血清アルブミン溶液とダルタルアルデヒド溶液と 1 OOmMリン酸緩衝液 pH6. 0を混合 してグルコースォキシダーゼ固定化酵素溶液とする。このグルコースォキシダーゼ固 定ィ匕酵素溶液を手早く先に用意した過酸ィ匕水素電極上に 5 1のせ、 40°Cで 15分 間乾燥硬化する。これをグルコースォキシダーゼ電極とする。
[0123] また参照電極としては AgZAgCl参照電極を用い、対極には導電性の配管を用い た。
(4)測定装置
図 2の測定装置において、フロー型比色計(16)とタンパク質分解酵素固定ィ匕カラ ム( 14)と第 1の固定化酵素カラム( 17)は配置せず、過酸化水素電極 ( 18)にダルコ ース電極、第 2の固定ィ匕酵素カラム(19)にはフルクトシルアミノ酸ォキシダーゼ固定 化カラム、過酸化水素電極(20)に過酸化水素電極を配置する。緩衝液槽(24)より 緩衝液 Bをポンプ(25)により送液し、計量バルブ (4)を用いて試料 100 μ 1を注入す る。注入された試料は緩衝液 Βの流れにのって恒温槽(13)内に設置された透析モ ジユーノレ(27)【こ運 ί れ、膜厚さ 20 μ m、分子量分画 12000〜14000の再生セノレロ ース膜で試料中の低分子成分のみがグルコース検知系(18)と糖化アミノ酸検知系( 19、 20)に導かれる。緩衝液槽(1)より緩衝液 Aがポンプ(2)により送液されているの で、透析モジュール(27)で透析された試料中の低分子成分はグルコース電極(18) とフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラム(19)と過酸化水素電極(20)を通 過し、試料中のグルコースと糖ィ匕アミノ酸力も生成した過酸ィ匕水素が検知される。
[0124] この装置に流す緩衝液の組成は、緩衝液 Aが lOOmMのリン酸、 50mMの塩化力 リウム、 ImMのアジ化ナトリウムを含み、 pHが 8. 0で流速が 0. 8mlZ分である。緩 衝液 Bは 50mMのリン酸、 0. 1%のドデシル硫酸ナトリウムを含み、 pHが 8. 0で流速 が 1. OmlZ分である。
[0125] 恒温槽の温度は 37°Cであった。
(5)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの基質特異性
(4)の測定装置を使用して、緩衝液の pHが 8. 0の場合の各種糖ィ匕アミノ酸や糖ィ匕 ペプチド、アミノ酸、糖に対するフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの基 質特異性を調べた結果を表 3に示す。表中の値はフルクトシルグリシンに対する応答 を 100とした場合の相対値である。
[0126] フルクトシルグリシンとフルクトシルバリンに対して大きな応答を示した。またフルクト シルリジンと糖ィ匕ペプチドであるフルクトシルバリルヒスチジンにはほとんど応答しな かった。その他のアミノ酸や糖では、グルタミン、メチォニン、グルコースに非常に小さ いが応答した。 [0127] 本フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムは、実質的に糖ィ匕ペプチドと ε位 が糖ィ匕したフルクトシルリジンに作用しない。
[0128] しかし、グルコースに対して応答するため、試料中にグルコースが多量に含まれる 場合には正の誤差を生じる可能性がある。正常人の血中でグルコースは 10mM程 度、糖ィ匕アミノ酸は 0. ImM程度であり、血中で約 100倍の濃度差があるので、血中 グルコースによりフルクトシルバリンと同程度の大きさの妨害を与える可能性がある。 このような妨害は、糖ィ匕アミノ酸と同時にグルコースを測定して差演算することで除く ことができる。
[0129] [表 3]
No. Sample 相対応答値
1 Fructocyl Glycine 100.0
2 Fructocyl Valine 30.9
3 a , ε -Fructocyl Lysine 1.1
4 Fructocyl Valyl Histhidine 1.3
5 Lys 0.0
6 Glu 0.0
7 Gin 0.2
8 Ala 0.0
9 Asp 0.0
10 Phe 0.0
11 Gly 0.0
12 His 0.0
13 Leu 0.0
14 Arg 0.0
15 Ser 0.0
16 Thr 0.0
17 Val 0.0
18 Trp 0.0
19 Met 0.1
20 Asn 0.0
21 Pro 0.0
22 Mannose 0.0
23 Glucose 0.2
24 Fructose 0.0
25 D-sorbitol 0.0
26 Glycerol 0.0
27 Galactose 0.0
28 Xylose 0.0
[0130] (6)グルコースとフルクトシルバリンの同時測定
(4)の測定装置を使用して、 2、 5、 10mMのグルコース及び 20、 50、 100 Mの フルクトシルバリンを各 100 1注入し、検出値を得た。
[0131] グルコースに対するグルコース電極と糖ィ匕アミノ酸電極の検出値は図 7、フルクトシ ルバリンに対するグルコース電極と糖ィ匕アミノ酸電極の検出値は図 8のようになり、次 に示す検量線が得られた。ただし Yは検出値、 Xは試料中の濃度、 rは相関係数であ る。
[0132] グルコース電極
グルコース検量線
Y(nA) = 2. 44X(mM) -0. 25 r=0. 9998
フルクトシルパリン検量線
Y(nA) =0. OOX M)— 0. 00
糖化アミノ酸電極
グルコース検量線
Y(nA) =0. 030X(mM) +0. 029 r=0. 9778
フルクトシルパリン検量線
Y(nA) =0. 014X M) +0. 007 r=0. 9999
この測定装置を用いてグルコース 5mMとフルクトシルバリン 80 μ Μの混合標準液 を測定したところ、グルコース電極では 11. 97ηΑの応答値を、糖化アミノ酸電極で は 1. 29ηΑの応答値を得た。
[0133] グルコースの濃度 Xは、式 X = (y— b ) / a より x = 5. OOmM、またフルクト
1 1 1 11 11 1
シルバリンの濃度 Xは、式 X = (a X (y -b —b )—a X (y—b ) ) / (a X a
2 2 11 2 21 22 21 1 11 11 2
)より x = 80. 0 Mと求めることができた。
2 2
[0134] 比較例 2
実施例 3 (6)と同様にしてグルコースとフルクトシルバリンを含む試料を、糖化アミノ 酸電極のみで測定を行った。
(1)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの製造
実施例 3 (1)と同様にしてフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムを製造し た。
(2)過酸化水素電極の製造
実施例 1 (2)と同様に過酸化水素電極を作製した。
(3)測定装置
実施例 3 (4)と同様に図 2の測定装置を利用して測定を行った。フロー型比色計(1 6)とタンパク質分解酵素固定ィ匕カラム(14)と第 1の固定ィ匕酵素カラム(17)と過酸化 水素電極(18)は配置せず、第 2の固定ィ匕酵素カラム(19)にはフルクトシルアミノ酸 ォキシダーゼ固定ィ匕カラム、過酸化水素電極(20)に過酸化水素電極を配置した。 試料は計量バルブにより 100 μ 1が注入される。
[0135] この装置に流す緩衝液の組成、緩衝液の流速、恒温槽の温度等の条件は、実施 例 3と同様の条件で使用した。
(4)グルコースとフルクトシルバリン混合標準液の測定
(3)の測定装置を使用し、 20、 50、 100 Μのフルクトシルバリンを 100 1注入し 、検出値を得た。フルクトシルバリンの検量線は、
Y(nA) =0. 014X Μ) +0. 007 r=0. 9999
となった。ただし Yは検出値、 Xは試料中の濃度、 rは相関係数である。
[0136] この測定装置を用いてグルコース 5mMとフルクトシルバリン 80 μ Μの混合標準液 を測定したところ、 1. 28ηΑの応答値が得られ、試料中のフルクトシルバリンの濃度 X は、式 x = (y— b ) Z a より x = 92. 3 Mと求めることができた力、ダルコ
2 2 2 22 22 2 一 スによる正の誤差を含んで!/、る。
[0137] 実施例 4
(1)フルクトシルペプチドォキシダーゼ固定ィ匕カラムの製造
実施例 1 (1)と同様に耐火レンガ(30〜60メッシュ) 150mgをホルミル化する。この ホルミル化した而火レンガに pH7. 0、 lOOmMリン酸ナトリウム緩衝液にフルクトシル ペプチドォキシダーゼ (キッコーマン株式会社製)を 140ユニット Zmlの濃度で溶解 した溶液 200 1を接触させ、 0〜4°Cで 1日放置し固定ィ匕する。この酵素固定化担体 を内径 3. 5mm,長さ 30mmのカラムに充填しフルクトシルペプチドォキシダーゼ固 定化カラムとする。
(2)過酸化水素電極の製造
実施例 1 (2)と同様に過酸化水素電極を作製した。
(3)グルコース電極の製造
実施例 3 (3)と同様にしてグルコース電極を作製した。
(4)測定装置 図 1の測定装置において、タンパク質分解酵素固定ィ匕カラム(14)とフロー型比色 計(16)と第 1の固定ィ匕酵素カラム(17)は配置せず、過酸化水素電極(18)にダルコ ース電極、第 2の固定化酵素カラム(19)にはフルクトシルペプチドォキシダーゼ固 定化カラム、第 2の過酸化水素電極 (20)に過酸化水素電極を配置する。緩衝液槽( 1)より緩衝液 Aをポンプ(2)により送液し、計量バルブ (4)を用いて試料 5 μ 1を注入 する。注入された試料は緩衝液 Αの流れにのって恒温槽(13)内に設置された混合 用配管(15)を通り、温度調整と緩衝液との混合が行われ、その下流のグルコース電 極(18)とフルクトシルペプチドォキシダーゼ固定ィ匕カラム(19)と過酸化水素電極(2 0)を通り、試料中のグルコースとフルクトシルバリルヒスチジンから過酸化水素を生成 し、電流値の変化を検知する。
[0138] この測定装置に使用する緩衝液 Aの組成は、 lOOmMのリン酸と 50mMの塩化カリ ゥムと ImMのアジ化ナトリウムを含み、 pHが 7. 0である。
[0139] 緩衝液の流速は 1. OmlZ分、恒温槽の温度は 30°Cであった。
(5)フルクトシルペプチドォキシダーゼ固定ィ匕カラムの基質特異性
(4)の測定装置を使用して、緩衝液 Aの pHが 7. 0の場合の各種糖ィ匕アミノ酸や糖 化ペプチド、アミノ酸、糖に対するフルクトシルペプチドォキシダーゼ固定ィ匕カラムの 基質特異性を調べた結果を表 4に示す。表中の値はフルクトシルバリンに対する応 答を 100とした場合の相対値である。
[0140] フルクトシルノ リルヒスチジンとフルクトシルバリンに特異的で、 α , ε —フルクトシル リジンにはほとんど応答せず、各種アミノ酸と糖類には全く応答しな力つた。従って、 糖ィ匕ヘモグロビン測定にぉ 、て、糖ィ匕ヘモグロビンのプロテアーゼによる分解がかな り進んだ場合にアミノ酸に由来する正の誤差や血中ダルコースに由来する正の誤差 が生じる可能性はな 、ので、これらを補正する必要はな 、。
[0141] [表 4] No. 試料名 相対応答値
1 Fmctosyl Glycine 56.3
2 Fructosyl Valine 100.0
3 a , ε -Fructosyl Lysine 9.9
4 Fructocyl Valyl Histhidine 86.8
5 Lys 0.0
6 Glu 0.0
7 Gin 0.0
8 Ala 0.0
9 Asp 0.0
10 Phe 0.0
1 1 Giy 0.0
12 His 0.0
13 Leu 0.0
14 Arg 0.0
15 Ser 0.0
16 Thr 0.0
17 Val 0.0
18 Trp 0.0
19 Met 0.0
20 Asn 0.0
21 Pro 0.0
22 Mannose 0.0
23 Glucose 0.0
24 Fructose 0.0
25 D-sorbitol 0.0
26 Glycerol 0.0
27 Galactose 0.0
28 Xylose 0.0
[0142] (6)グルコースとフルクトシルバリンの同時測定
(4)の測定装置を禾きして、 2、 5、 10mMのグルコース及び 10、 20、 50、 100
Mのフルクトシルバリンを各 5 μ 1注入し、検出値を得た。
[0143] それぞれの検量線を以下に示す。ただし Υは検出値、 Xは試料中の濃度、 rは相関 係数である。 [0144] グルコース電極
グルコース検量線
Y(nA) =6. 74X(mM) -0. 28 r= l. 0000
フルクトシルパリン検量線
Y(nA) =0. 00X M) +0. 00
糖化ペプチド電極
グルコース検量線
Y(nA) =0. OOX(mM) +0. 00
フルクトシルパリン検量線
Y(nA) =0. 035X M) +0. 087 r=0. 9992
この測定装置を用いてグルコース 5mMとフルクトシルバリン 80 μ Μの混合溶液を 測定したところ、グルコース電極では 34. ΙηΑの応答値を、フルクトシルペプチド電 極では 2. 87nAの応答値を得た。
[0145] グルコースの濃度 Xは、式 X = (y — b ) / a より x = 5. OlmM、またフルクト
1 1 1 11 11 1
シルバリンの濃度 Xは、式 X = (y—b )Z a より x = 80· 0 Mと求めることが
2 2 2 22 22 2
できた。
[0146] フルクトシルペプチドォキシダーゼ固定ィ匕体を用いた場合には、グルコースに対し て応答しないため、差演算を行わずに正確に試料中のフルクトシルアミノ酸またはフ ルクトシルペプチドを測定できる。
[0147] 実施例 5
(1)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの製造
実施例 3 (1)と同様にフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムを製造した。
(2)過酸化水素電極の製造
実施例 1と同様に調製した。
(3)測定装置 1
実施例 1および実施例 3と同様に図 1および図 2の測定装置を用 ヽた。
[0148] 図 1はフロー型の 1流路の測定装置である。緩衝液槽(1)より緩衝液 Aをポンプ(2) により送液し、計量バルブ (4)を用いて試料 5 1を注入する。第 1の固定化酵素カラ ム(17)にはフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラム、その下流に過酸化水素 電極(18)を配置し、第 2の固定ィ匕酵素カラム(19)と第 2の過酸ィ匕水素電極(20)、タ ンパク質分解酵素固定ィ匕カラム(14)、フロー型比色計(16)は配置しない。注入され た試料は緩衝液の流れにのって恒温槽(13)内に設置された混合用配管(15)を通 り、温度調整と緩衝液との混合が行われ、フルクトシルアミノ酸ォキシダーゼ固定ィ匕カ ラム( 17)と過酸化水素電極( 18)を通り、試料中のフルクトシルバリンカも過酸ィ匕水 素を生成し電流値の変化を検知する。
[0149] この測定装置に使用する緩衝液 Aの組成は、 lOOmMのリン酸と 50mMの塩化カリ ゥムと ImMのアジ化ナトリウムを含み、 pHが 8. 0である。
[0150] 緩衝液の流速は 1. OmlZ分、恒温槽の温度は 37°Cであった。
[0151] (4)測定装置 2
実施例 3と同様に図 2の透析モジュールを組み込んだ測定装置を利用した。
[0152] 図 2は透析モジュールを組み込んだフロー型のフルクトシルアミノ酸測定装置であ る。緩衝液槽(24)より緩衝液 Bをポンプ(25)により送液し、計量バルブ (4)を用いて 試料 100 1を注入する。プロテアーゼの固定ィ匕酵素カラム(14)、第 2の固定ィ匕酵素 カラム(19)、過酸ィ匕水素電極 (20)、フロー型比色計(16)は配置せず、第 1の固定 化酵素カラム(17)にはフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムを配置する。 注入された試料は緩衝液 Bの流れにのって恒温槽( 13)内に設置された透析モジュ 一ノレ(27)【こ運 ί れ、膜厚さ 20 μ m、分子量分画 12000〜 14000の再生セノレロー ス膜で試料中の低分子成分のみがフルクトシルアミノ酸検出機構(17, 18)に導かれ る。緩衝液槽(1)より緩衝液 Aがポンプ(2)により送液されているので、透析モジユー ル(27)で透析された試料中の低分子成分はフルクトシルアミノ酸ォキシダーゼ固定 化カラム(17)と過酸化水素電極(18)を通過し、試料中のフルクトシルアミノ酸力 生 成した過酸化水素が検知される。
[0153] この装置に流す緩衝液の組成は、緩衝液 Aが lOOmMのリン酸、 50mMの塩化力 リウム、 ImMのアジ化ナトリウムを含み、 pHが 8. 0で流速が 0. 8mlZ分である。緩 衝液 Bは 50mMのリン酸、 0. 1%のドデシル硫酸ナトリウムを含み、 pHが 8. 0で流速 が 0. 8mlZ分である。 [0154] 恒温槽の温度は 37°Cであった。
(5)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの特性
(3)の測定装置 1を用いてフルクトシルグリシンを 5 μ 1注入し、フルクトシルアミノ酸 ォキシダーゼカラムの特性を調べた結果を以下に示す。
ρΗ特性
緩衝液の pHを 7. 0、 7. 5、 8. 0、 8. 5、 9. 0としたときのフノレクトシノレグリシンの酸 化反応の活性の測定結果を図 9に示す。 pH8. 0〜9. 0で高い活性を示した。 基質特異性
フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの基質特異性を表 5に示す。
[0155] [表 5]
試料名 ;辰): 相対活性 (%)
1 Fructosyl glycine 0.1 mM 100.0
2 Fructosyl valine 0.1 mM 32.0
3 a , ε -Fructosyl lysine 0.1 mM 5.0
4 Ala 10mM 0.0
5 Asp 10mM 0.0
6 Glu 10mM 0.0
7 Phe 10mM 0.0
8 Gly 10mM 0.0
9 His 10mM 0.0
10 Lys 10mM 41.0
1 1 Leu 10mM 0.0
12 Met 10mM 8.0
13 Asn 10mM 0.0
14 Pro 10mM 2.0
15 Gin 10mM 6.0
16 Arg 10mM 1.0
17 Ser 10mM 0.0
18 Thr 10mM 2.0
19 Val 10m 0.0
20 Trp 10mM 13.0
21 Cys 10mM 507.0
22 Glucose l OmM 9.0
23 Fructose 10mM 1.0
24 D - Sorbitol 10m 0.0
25 Glycerol l OmM 0.0
26 Galactose l OmM 0.0
27 Xylose 10mM 0.0
28 Mannose 10mM 0.0
[0156] 安定性
緩衝液の pHを 8. 0、緩衝液の流速を 1. OmlZ分、恒温槽温度を 37°Cの条件下 で、フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムは 1ヶ月以上初期の活性を維持し ており、安定であった。
[0157] 使用したフルクトシルアミノ酸固定ィ匕カラムは ε -フルクトシルリジンには実質的に作 用せず、 ひ位が糖化されたフルクトシルグリシンとフルクトシルバリンに選択的に作用 する。また、至適 pHがアルカリ域であるので、タンパク質の糖ィ匕アミノ酸の測定に用 V、るタンパク質分解酵素はアルカリ域で活性の高 、ものが望ま 、。
[0158] (6)半透膜による低分子成分の分離
ヒトヘモグロビンをタンパク分解酵素で分解して生じたアミノ酸及び糖ィ匕アミノ酸をァ ミノ酸電極またはフルクトシルアミノ酸ォキシダーゼ固定ィ匕酵素カラムと過酸ィ匕水素 電極を用いて測定する際、タンパク分解酵素で分解後に半透膜で低分子成分のみ を分離すると、ヒトヘモグロビン中のアミノ酸及び糖ィ匕アミノ酸を再現性良く測定できる
[0159] (7)ヒトヘモグロビンのプロテアーゼ分解
ヒトヘモグロビンをタンパク質分解酵素で分解して生じたフルクトシルアミノ酸の測定 に、アルカリ域に至適を持つフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムを使用 するので、アルカリ域で活性の高いァスペルギルス ォリゼが産生するアルカリ性タン ノ ク分解酵素ゥマミザィム G (天野ェンザィム株式会社製)を使用する。
[0160] プロテアーゼ処理液は、ヒトヘモグロビン (シグマ製)を秤量し、 2%ドデシル硫酸ナ トリウム入り 20mMリン酸緩衝液 pH8. 0に溶解し、 lmgZmlゥマミザィム Gをカ卩えて 調製する。プロテアーゼ処理液中のヒトヘモグロビン濃度は 30mg/mlである。
[0161] このようにして調製したプロテアーゼ処理液を、 37。Cで 8、 17, 25、 33、 42, 51分 間反応させた後、(4)の測定装置 2にプロテアーゼ処理液を 100 μ 1注入して試料中 のフルクトシルバリンを測定する。
[0162] 各反応時間でのフルクトシルバリン濃度は図 10のように推移する。ヒトヘモグロビン をプロテアーゼ処理しな力つた場合にはフルクトシルバリンは全く検出されなかった 力 プロテアーゼで所定時間処理することでヘモグロビン力 フルクトシルバリンが遊 離していることがわかる。本プロテアーゼはヒトヘモグロビンに効果的に作用している [0163] 比較例 3
起源、至適 pHがゥマミザィムと異なるプロテアーゼを用いてヒトヘモグロビンの分解 を検討した。 [0164] 使用したタンパク分解酵素は、ゥマミザィム G(Aspergillus oryzae)、プロテアーゼ A「 ァマノ」 G(Aspergillus oryzae)、プロテアーゼ N「ァマノ」 G (Bacillus subtilis)、プロメラ イン F (Ananas comosus M.)、ぺプテターゼ R (Rhizopus oryzaeリ、プロテア一 1ΤΡ「 ァマノ」 3G(Aspergillus melleus)で(以上すベて天野ェンザィム株式会社製)、プロテ イナーゼ K (Tritirachium album,シグマ製、 Sigma- Aldrich Co.)、プロテアーゼ XIV (S treptomyces griseus、シグマ製)、スミチーム MP(Aspergillus sp.、新日本化学工業株 式会社製、 Shin-Nihon Chemical Co., Ltd.)である。
[0165] 実施例 5 (6)と同様にしてヒトヘモグロビンを上記の各種タンパク分解酵素 lmgZm
1のプロテアーゼ処理液を調製し、 37°Cで 30分反応後、実施例 5 (4)の測定装置 2に プロテアーゼ処理液を 100 1注入した。結果を表 6に示す。表中の" A"は 40pA以 上のフルクトシルアミノ酸の検出値が得られたもの、 "B"は 25pA程度のフルクトシル アミノ酸が検出されたもの、 "C"は検出値が 20pA未満のものを表している。
[0166] [表 6]
Figure imgf000048_0001
[0167] ァスペルギルス ォリゼ由来のタンパク分解酵素では大きな検出値が得られたが、 その他の酵素ではフルクトシルアミノ酸が検出されなかった。これはヒトヘモグロビン の分解にはァスペルギルス ォリゼ由来のタンパク分解酵素が有効であることを示し ている。さらに、ァスペルギルス ォリゼ由来のタンパク分解酵素の中でも至適 pHが 中性のものよりアルカリ性の方が大きな検出値を与えることから、ヒトヘモグロビンの分 解にはアルカリ性のアルペルギルス ォリゼ由来タンパク分解酵素が最適と言える。 [0168] 実施例 6
実施例 5で示したように、ァスペルギルス ォリゼ由来のタンパク分解酵素を使用す ればヒトヘモグロビンを分解することができ、半透膜を介した測定装置でヒトへモグロ ビンから生じたアミノ酸及び糖ィ匕アミノ酸を検出することができる。さらに、処理を簡略 化し、分析時間を短縮するため、本タンパク分解酵素を高密度に担体上に固定ィ匕し たカラムを用いた分析を行った。詳細を以下に示す。
[0169] (1)フルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムの製造
実施例 2 (2)と同様にフルクトシルアミノ酸ォキシダーゼ (キッコーマン社製)固定ィ匕 カラムを作製した。
[0170] (2)リジンォキシダーゼ固定ィ匕カラムの製造
実施例 2と同様に製造した。
[0171] (3)ゥマミザィム G固定ィ匕カラムの製造
トヨナイト 200 (平均粒径 170 μ m、東洋電化工業株式会社製、 Toyo Denka Kogyo Co., Ltd.) 300mgを 10% y—ァミノプロピルトリエトキシシランの 20%エタノール溶液 に 1時間浸漬した後、よく蒸留水で洗浄し、乾燥する。こうしてアミノシランィ匕処理した 担体を 5%ダルタルアルデヒドに 1時間浸漬した後、よく蒸留水で洗浄し、最後に pH 7. 0、 lOOmMのリン酸ナトリウム緩衝液で置き換え、この緩衝液をできるだけ除いて おく。このホノレミノレイ匕したトヨナイト 200に pH7. 0、 lOOmMリン酸ナトリウム緩衝液に ゥマミザィム G (天野ェンザィム株式会社製)を 100mg/mlの濃度で溶解した溶液 8 00 1を接触させ、 0〜4°Cで 1日放置し固定ィ匕する。この酵素固定ィ匕担体を内径 3. 5mm、長さ 30mmのカラムに充填しゥマミザィム G固定化カラムとする。
[0172] (4)過酸化水素電極の製造方法
実施例 5と同様に過酸化水素電極を作製した。
[0173] (5)測定装置
図 2のプロテアーゼの固定ィ匕酵素カラム(14)にゥマミザィム G固定ィ匕カラムを、第 1 の固定ィ匕酵素カラム(17)にフルクトシルアミノ酸ォキシダーゼ固定ィ匕カラムを、第 2 の固定酵素カラム(is)にリジンォキシダーゼ固定ィ匕カラムを^ aみ込み、フロー型の フルクトシルアミノ酸と L リジンを同時測定可能な装置とする。緩衝液槽(24)より緩 衝液 Bをポンプ(25)により送液し、計量バルブ(4)を用いて試料 100 μ 1を注入する 。注入された試料は緩衝液 Βの流れにのって恒温槽(13)内に配置されたゥマミザィ ム G固定ィ匕カラムに運ばれて、ゥマミザィム Gの作用により糖ィ匕アミノ酸及びアミノ酸 を生成する。ゥマミザィム Gが作用した試料は緩衝液 Βの流れによってさらに下流に 設置された透析モジュール(27)に運ばれ、膜厚さ 20 m、分子量分画 12000〜1 4000の再生セルロース膜で試料中の低分子成分のみがフルクトシルアミノ酸及びァ ミノ酸検出機構に導かれる。緩衝液槽(1)より緩衝液 Aがポンプ(2)により送液されて V、るので、透析モジュール(27)で透析された試料中の低分子成分はフルクトシルァ ミノ酸ォキシダーゼ固定ィ匕カラム(17)と過酸化水素電極(18)を通過し、試料中のフ ルクトシルアミノ酸から生成した過酸化水素を検知する。次にフルクトシルアミノ酸検 出機構(17, 18)を通過した試料を含む緩衝液は、リジンォキシダーゼ固定化カラム (19)と過酸ィ匕水素電極(20)を通過し、試料中のリジン力 生成した過酸ィ匕水素を 検出する。
[0174] この装置に流す緩衝液は、緩衝液 Aが lOOmMのリン酸、 50mMの塩化カリウム、 ImMのアジ化ナトリウムを含み、 pHが 8. 0で流速が 0. 8mlZ分である。緩衝液 Bは 50mMのリン酸、 0. 1%のドデシル硫酸ナトリウムを含み、 pHが 8. 0で流速が 0. 8m 1Z分である。
[0175] 恒温槽の温度は 37°Cであった。
[0176] (6)ヒトヘモグロビン中のフルクトシルアミノ酸とアミノ酸の測定
ヒトヘモグロビン溶液を(5)の測定装置で 100 μ 1を注入し、試料中のフルクトシル ノ リン濃度とリジン濃度を同時に測定する。
[0177] ヒトヘモグロビン溶液は、ヒトヘモグロビン(シグマ製)をヘモグロビン濃度が 30mgZ mlとなるように所定量を秤量し、 2%ドデシル硫酸ナトリウム入り 20mMリン酸緩衝液 pH8. 0に十分に溶解して調製する。
[0178] 30mgZmlのヒトヘモグロビン溶液中のフルクトシルバリン濃度とリジン濃度を(5) の測定装置で測定すると、フルクトシルバリンは 15. 1 M、リジンは 12. 6 μ Μであ つた ο
[0179] 溶液酵素と反応させた実施例 1では 15 Μ程度のフルクトシルバリンを生成するの に約 20分の反応時間が必要であった力 本測定装置ではゥマミザィム G固定ィ匕カラ ムと試料の接触時間(10秒程度)で 15 μ Μ程度のフルクトシルバリンを生成する。高 密度にゥマミザィム Gを固定ィ匕することで、効率よくヒトヘモグロビンを分解できた。 産業上の利用可能性
本発明によれば、血液検体中の安定糖化ヘモグロビンを簡便且つ正確に定量する ことができ、し力も測定装置の汚染を避けることができる。血液検体中の安定糖化へ モグロビンとグルコースを簡便且つ正確に同時に定量することができる。従って、糖 尿病の検査を容易に行うことができる。

Claims

請求の範囲
[1] フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼもしくはフ ルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼのいずれかを固定化し た固定化体(17)と、前記ォキシダーゼ固定ィヒ体の触媒する反応により増減する電 気化学的活性物質を検知する電気化学的検出機構 (18)を有し、糖化ヘモグロビン を含む検体とタンパク質分解酵素とを任意の時間接触させ、その一部を注入する機 構 (4、 5、 7)を備えたことを特徴とする糖ィ匕ヘモグロビンの分析装置。
[2] フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼもしくはフ ルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼのいずれかを固定化し た固定化体(17)と、前記ォキシダーゼ固定ィヒ体の触媒する反応により増減する電 気化学的活性物質を検知する電気化学的検出機構 (18)と、糖化ヘモグロビンを含 む検体を注入する機構 (4、 5、 7)を備えた糖ィ匕ヘモグロビンの分析装置であって、 検体を注入する機構の下流にタンパク質分解酵素を固定ィ匕したカラム状リアクタ(14 )を備えることを特徴とする糖ィ匕ヘモグロビンの分析装置。
[3] フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼもしくはフ ルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼのいずれかを固定化し た固定化体(17)と、前記ォキシダーゼ固定ィヒ体の触媒する反応により増減する電 気化学的活性物質を検知する電気化学検出機構 (18)と、糖化ヘモグロビンを含有 する検体を注入する機構 (4、 5、 7)を備えた糖ィ匕ヘモグロビンの分析装置であって、 検体を注入する機構 (4、 5、 7)もしくはその下流に少なくとも、試料の光吸収力 求 めたヘモグロビン量を算出し、該ヘモグロビン量とフルクトシルペプチド量もしくはフ ルクトシルアミノ酸量力 ヘモグロビンの糖ィ匕割合を算出する機構を備えたことを特 徴とする糖ィ匕ヘモグロビンの分析装置。
[4] フルクトシルノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼを固定化 して用いる際に、糖ィ匕ヘモグロビンを含む検体と一定時間接触させるタンパク質分解 酵素が、バチルス サチルスが生産する中性もしくは酸性タンパク質分解酵素または その改変体であることを特徴とする請求項 1または 2記載の糖ィ匕ヘモグロビンの分析 装置。
[5] フルクトシルバリンに作用するフルクトシルアミノ酸ォキシダーゼを固定ィ匕して用いる 際に、糖ィ匕ヘモグロビンを含む検体と一定時間接触させるタンパク質分解酵素が、ァ スペルギルス ォリゼが生産するアルカリ性タンパク質分解酵素またはその改変体で あることを特徴とする請求項 1または 2記載の糖ィ匕ヘモグロビンの分析装置。
[6] グルコースの酸化反応を触媒する酵素を固定化した固定化体とグルコース酸化反応 により増減する電気化学的活性物質を検知する機構を備え、さらにフルクトシルぺプ チドォキシダーゼもしくはフルクトシルアミノ酸ォキシダーゼ固定ィ匕体によるフルクトシ ルバリルヒスチジンもしくはフルクトシルバリンの酸ィ匕反応により増減する電気化学的 活性物質を検知する機構と、全ヘモグロビンを検知する機構を備え、フルクトシルバ リルヒスチジンまたはフルクトシルバリンの検知結果とヘモグロビンの検知結果に基づ き糖ィ匕ヘモグロビン量を得るための第一演算機構と、全血グルコースとヘモグロビン の検知結果に基づき全血グルコースを血漿グルコースに補正する第二演算機構を 備えたことを特徴とするグルコースと糖ィ匕ヘモグロビンの分析装置。
[7] グルコースの酸化反応を触媒する酵素を固定化した固定化体とグルコース酸化反応 により増減する電気化学的活性物質を検知する機構と、フル外シルバリンに作用す るフルクトシルアミノ酸ォキシダーゼを固定化した固定化体またはフルクトシルバリル ヒスチジンに作用するフルクトシルペプチドォキシダーゼを固定ィ匕した固定ィ匕体とフ ルクトシルアミノ酸またはフルクトシルペプチドの酸ィ匕反応により増減する電気化学的 活性物質を検知する機構と、全ヘモグロビンを検知する機構と、検体中グルコースと フルクトシルノ リルヒスチジンの検知結果もしくは検体中グルコースとフルクトシルバリ ンの検知結果に基づき検体中グルコースの影響を排除したフルクトシルバリルヒスチ ジンまたはフルクトシルバリンの測定値を得る第三演算機構と、フルクトシルバリルヒ スチジンとヘモグロビン、またはフルクトシルバリンとヘモグロビンの前記測定値とへ モグロビンの検知結果に基づき糖ィ匕ヘモグロビン量を得るための第一演算機構と、 全血グルコースとヘモグロビンの検知結果に基づき全血グルコースを血漿ダルコ一 スに補正する第二演算機構を備えたことを特徴とするグルコースと糖ィ匕ヘモグロビン の分析装置。
[8] 全血試料を採取し界面活性剤を含む液に分散させて溶血し、該溶血液にタンパク質 分解酵素を任意の時間接触させ、前記タンパク質分解酵素反応液の吸光度を測定 することによりヘモグロビン濃度を測定するとともに、該反応液の一部をフルクトシル ノ リルヒスチジンに作用するフルクトシルペプチドォキシダーゼもしくはフルクトシルバ リンに作用するフルクトシルアミノ酸ォキシダーゼのいずれかを固定ィ匕した固定ィ匕体 に接触させ、前記ォキシダーゼ固定化体の触媒する反応により増減する電気化学的 活性物質を電気化学的に検知することを特徴とする糖化ヘモグロビンの分析方法。
[9] 界面活性剤がスルホン基を有するァ-オン性界面活性剤であることを特徴とする請 求項 8記載の糖ィ匕ヘモグロビンの分析方法。
[10] 以下の工程を含む、検体中のグルコースと糖ィ匕ヘモグロビンの分析方法:
グルコースの酸ィ匕反応を触媒する酵素を固定ィ匕した固定ィ匕体と、グルコース酸ィ匕 反応により増減する電気化学的活性物質を検知する機構を用いて検体中のダルコ ース濃度を電気化学的に検知する工程;
フルクトシル L—パリンに作用するフルクトシルアミノ酸ォキシダーゼを固定ィ匕した固 定化体またはフルクトシルバリルヒスチジンに作用するフルクトシルペプチドォキシダ ーゼを固定化した固定化体と、フルクトシルアミノ酸またはフルクトシルペプチドの酸 化反応により増減する電気化学的活性物質を検知する機構を用いて検体中のフル クトシル L—パリンまたはフルクトシルバリルヒスチジンを電気化学的に検知する工程; 全ヘモグロビンを検知する機構を用いて、検体中の全ヘモグロビンを検知する工程
フルクトシル Lーノ リンとヘモグロビンまたはフルクトシルノ リルヒスチジンの検知結 果とヘモグロビンの検知結果に基づき第一演算機構により HbAlcを得る工程;およ び
全血 Z血球グルコースとヘモグロビンの検知結果に基づき第二演算機構により全 血 Z血球ダルコースを血漿ダルコースに補正する工程。
[11] 検体中グルコースとフルクトシル L—パリンまたは検体中グルコースとフルクトシルバリ ルヒスチジンの検知結果に基づき第三演算機構により検体中グルコースの影響を排 除したフルクトシル L—パリンまたはフルクトシルバリルヒスチジンの測定値を得る工程 をさらに含み、得られた測定値とヘモグロビンの検知結果に基づき第一演算機構に より HbAlcを得ることを特徴とする、請求項 10に記載の方法。
PCT/JP2006/309172 2005-05-02 2006-05-02 糖化ヘモグロビンの分析装置および分析方法 WO2006118306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/913,367 US8128802B2 (en) 2005-05-02 2006-05-02 Analysis apparatus and analysis method for glycosylated hemoglobin
EP06746022A EP1889918B1 (en) 2005-05-02 2006-05-02 Analysis apparatus and analysis method for glycosylated hemoglobin
DE602006021173T DE602006021173D1 (de) 2005-05-02 2006-05-02 Analysevorrichtung und analyseverfahren für glykosyliertes hämoglobin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-134591 2005-05-02
JP2005134591A JP2006304742A (ja) 2005-05-02 2005-05-02 糖化タンパク質の分析装置および方法
JP2005330338A JP4622820B2 (ja) 2005-11-15 2005-11-15 糖化タンパク質の分析方法および装置
JP2005-330338 2005-11-15
JP2005355450A JP4622836B2 (ja) 2005-12-08 2005-12-08 分析装置
JP2005-355450 2005-12-08

Publications (1)

Publication Number Publication Date
WO2006118306A1 true WO2006118306A1 (ja) 2006-11-09

Family

ID=37308094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309172 WO2006118306A1 (ja) 2005-05-02 2006-05-02 糖化ヘモグロビンの分析装置および分析方法

Country Status (4)

Country Link
US (1) US8128802B2 (ja)
EP (1) EP1889918B1 (ja)
DE (1) DE602006021173D1 (ja)
WO (1) WO2006118306A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051464A1 (en) * 2007-04-27 2010-03-04 Arkray Inc. Analysis chip and analysis apparatus
JPWO2011126067A1 (ja) * 2010-04-09 2013-07-11 東洋紡株式会社 糖化ヘモグロビンの測定方法
EP2623975A3 (en) * 2006-12-26 2013-10-23 Sekisui Chemical Co., Ltd. Hemoglobin and glucose measurement method and electrophoresis apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508620B2 (en) * 2007-02-24 2013-08-13 Nec Corporation Portable terminal capable of presenting images based on time
JP7226955B2 (ja) * 2017-10-02 2023-02-21 アークレイ株式会社 糖化蛋白質の測定
EP3887398A4 (en) * 2018-11-29 2022-10-19 Polymer Technology Systems, Inc. SYSTEMS AND METHODS OF ELECTROCHEMICAL POINT OF HEMOGLOBIN DETECTION
US20230341400A1 (en) * 2021-11-28 2023-10-26 Allen Ketcik Murray Method to identify, isolate and quantify a biomarker for the degradation of the lysosomal alpha-glucosidase, GAA, and to detect and isolate related glycosylated proteinsin vitro and in vivo
CN115951072B (zh) * 2022-12-06 2024-05-14 北京鸿宇泰生物科技有限公司 一种糖化血红蛋白-c肽联合检测试剂盒

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
JPH0559380B2 (ja) 1986-07-30 1993-08-30 Tosoh Corp
JPH08154672A (ja) * 1994-10-05 1996-06-18 Kdk Corp フルクトシルアミノ酸オキシダーゼ及びその製造方法
JP2000333696A (ja) * 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2001215229A (ja) * 2000-02-02 2001-08-10 Wako Pure Chem Ind Ltd 糖化蛋白質測定試薬
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2003274976A (ja) * 2002-03-26 2003-09-30 Koji Hayade フルクトシルアミン酸化酵素
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004344052A (ja) 2003-05-21 2004-12-09 Asahi Kasei Pharma Kk ヘモグロビンA1c測定用プロテアーゼ
JP2005110657A (ja) 2003-09-18 2005-04-28 Kikkoman Corp α−糖化ジペプチドの製造法及びα−糖化ジペプチドの測定法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159563A (ja) * 1988-12-12 1990-06-19 Hitachi Ltd 診断システム
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
JPH0559380A (ja) 1991-08-30 1993-03-09 Tonen Corp ブレーキ液
CN101303717B (zh) * 1995-02-13 2015-04-29 英特特拉斯特技术公司 用于安全交易管理和电子权利保护的系统和方法
US6477543B1 (en) * 1998-10-23 2002-11-05 International Business Machines Corporation Method, apparatus and program storage device for a client and adaptive synchronization and transformation server
US6574681B1 (en) * 1999-10-21 2003-06-03 H. Philip White Network platform for field devices
WO2004042364A2 (en) * 2002-11-05 2004-05-21 Therasense, Inc. Assay device, system and method
JP2004275168A (ja) * 2003-03-17 2004-10-07 Koji Hayade フルクトシルアミン酸化酵素
JP4267947B2 (ja) 2003-03-19 2009-05-27 日本碍子株式会社 ハニカム構造体
US20070178547A1 (en) 2004-03-17 2007-08-02 Daiichi Pure Chemicals Co., Ltd. Method of measuring glycated protein
JP2007197403A (ja) * 2006-01-30 2007-08-09 Hitachi Ltd 薬物キャリアー及び超音波装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
JPH0559380B2 (ja) 1986-07-30 1993-08-30 Tosoh Corp
JPH08154672A (ja) * 1994-10-05 1996-06-18 Kdk Corp フルクトシルアミノ酸オキシダーゼ及びその製造方法
JP2000333696A (ja) * 1999-05-26 2000-12-05 Arkray Inc 糖化アミンの測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2001215229A (ja) * 2000-02-02 2001-08-10 Wako Pure Chem Ind Ltd 糖化蛋白質測定試薬
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
JP2003274976A (ja) * 2002-03-26 2003-09-30 Koji Hayade フルクトシルアミン酸化酵素
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004344052A (ja) 2003-05-21 2004-12-09 Asahi Kasei Pharma Kk ヘモグロビンA1c測定用プロテアーゼ
JP2005110657A (ja) 2003-09-18 2005-04-28 Kikkoman Corp α−糖化ジペプチドの製造法及びα−糖化ジペプチドの測定法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HIROKAWA K. ET AL.: "An enzymatic method for the determination of hemoglobinA1c", BIOTECHNOL. LETT., vol. 27, no. 14, July 2005 (2005-07-01), pages 963 - 968, XP002378414 *
HIROKAWA K. ET AL.: "Enzymes used for the determination of HbA1C", FEMS MICROBIOL. LETT., vol. 235, no. 1, 1 June 2004 (2004-06-01), pages 157 - 162, XP002903440 *
HIROKAWA K. ET AL.: "Molecular cloning and expression of novel fructosyl peptide oxidase and their application for the measurement of glycated protein", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 311, no. 1, 7 November 2003 (2003-11-07), pages 104 - 111, XP004465110 *
OGAWA K. ET AL.: "Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring", ANAL. BIOANAL. CHEM., vol. 373, no. 4-5, July 2002 (2002-07-01), pages 211 - 214, XP003006886 *
SAKAGUCHI A. ET AL.: "Development of Highly-sensitive Fructosyl-valine Enzyme Sensor Employing Recombinant Fructosyl Amine Oxidase", ELECTROCHEMISTRY, vol. 71, no. 6, June 2003 (2003-06-01), pages 442 - 445, XP003006887 *
SAKURABAYASHI I. ET AL.: "New enzymatic assay for glycohemoglobin", CLIN. CHEM., vol. 49, no. 2, February 2003 (2003-02-01), pages 269 - 274, XP009008806 *
TSUGAWA W. ET AL.: "Development of an Enzyme Sensor Utilizing a Novel Fructosyl Amine Oxidase from a Marine Yeast", ELECTROCHEMISTRY, vol. 68, no. 11, November 2000 (2000-11-01), pages 869 - 871, XP003006884 *
TSUGAWA W. ET AL.: "Fructosyl Amine Sensing Based on Prussian Blue Modified Enzyme Electrode", ELECTROCHEMISTRY, vol. 69, no. 12, December 2001 (2001-12-01), pages 973 - 975, XP003006885 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623975A3 (en) * 2006-12-26 2013-10-23 Sekisui Chemical Co., Ltd. Hemoglobin and glucose measurement method and electrophoresis apparatus
US9017536B2 (en) 2006-12-26 2015-04-28 Sekisui Chemical Co., Ltd. Hemoglobin measurement method and electrophoresis apparatus
US20100051464A1 (en) * 2007-04-27 2010-03-04 Arkray Inc. Analysis chip and analysis apparatus
US20120125773A1 (en) * 2007-04-27 2012-05-24 Arkray, Inc. Analysis Chip and Analysis Apparatus
JPWO2011126067A1 (ja) * 2010-04-09 2013-07-11 東洋紡株式会社 糖化ヘモグロビンの測定方法
JP5870919B2 (ja) * 2010-04-09 2016-03-01 東洋紡株式会社 糖化ヘモグロビンの測定方法

Also Published As

Publication number Publication date
US20080223733A1 (en) 2008-09-18
EP1889918B1 (en) 2011-04-06
EP1889918A4 (en) 2008-06-04
EP1889918A1 (en) 2008-02-20
EP1889918A8 (en) 2008-07-09
US8128802B2 (en) 2012-03-06
DE602006021173D1 (de) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2006118306A1 (ja) 糖化ヘモグロビンの分析装置および分析方法
WO2007094354A1 (ja) ヘモグロビンA1cセンサ
JP5222331B2 (ja) 糖化アミンを測定するための試料の前処理方法および糖化アミンの測定方法
WO2002006519A1 (fr) Procede pour determiner de maniere selective le taux d'hemoglobine glycosylee
TW200528716A (en) Method for measuring glycosylated protein
JP4861986B2 (ja) タンパク質の切断方法およびその用途
JP2005110657A (ja) α−糖化ジペプチドの製造法及びα−糖化ジペプチドの測定法
JP4622836B2 (ja) 分析装置
JP4622820B2 (ja) 糖化タンパク質の分析方法および装置
US20080193960A1 (en) Method for Determination of Glycosylated Protein and Determination Kit
JP2000333696A (ja) 糖化アミンの測定方法
US7794966B2 (en) Method of measuring glycated amine
JP4756116B2 (ja) 糖化アミンを測定するための試料の前処理方法および糖化アミンの測定方法
JP5742639B2 (ja) 糖化タンパク質の分析装置及び分析方法
Nanjo et al. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer
JP2648361B2 (ja) 選択透過膜およびそれを用いる電極
JP2006304742A (ja) 糖化タンパク質の分析装置および方法
JP4255002B2 (ja) 糖化タンパク質割合の測定方法
JP3910156B2 (ja) 試料の安定化方法
JP2004049063A (ja) プロテアーゼ含有試薬を用いた定量方法および定量試薬
US20240053352A1 (en) Method and apparatus for evaluating degree of glycation of protein
EP3346013A1 (en) Method for measuring glycated protein using comb electrode
JP4352154B2 (ja) 糖化ヘモグロビンの選択的測定方法
JP2004222570A (ja) 糖化タンパク質測定用プロテアーゼ
JP2006314211A (ja) 分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11913367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746022

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746022

Country of ref document: EP