WO2006112478A1 - 金属ベース回路基板、led、及びled光源ユニット - Google Patents

金属ベース回路基板、led、及びled光源ユニット Download PDF

Info

Publication number
WO2006112478A1
WO2006112478A1 PCT/JP2006/308221 JP2006308221W WO2006112478A1 WO 2006112478 A1 WO2006112478 A1 WO 2006112478A1 JP 2006308221 W JP2006308221 W JP 2006308221W WO 2006112478 A1 WO2006112478 A1 WO 2006112478A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
metal base
base circuit
insulating layer
metal
Prior art date
Application number
PCT/JP2006/308221
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Okajima
Katsunori Yashima
Keiji Takano
Takuya Okada
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005120891A external-priority patent/JP4672425B2/ja
Priority claimed from JP2006013289A external-priority patent/JP4459910B2/ja
Priority claimed from JP2006030024A external-priority patent/JP4484830B2/ja
Priority claimed from JP2006087688A external-priority patent/JP4913459B2/ja
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to US11/911,914 priority Critical patent/US8071882B2/en
Priority to EP06745453A priority patent/EP1874101A4/en
Priority to CN2006800123857A priority patent/CN101161039B/zh
Priority to CA2605209A priority patent/CA2605209C/en
Publication of WO2006112478A1 publication Critical patent/WO2006112478A1/ja
Priority to HK08107477.9A priority patent/HK1116981A1/xx

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/055Folded back on itself
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/056Folded around rigid support or component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09318Core having one signal plane and one power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/0989Coating free areas, e.g. areas other than pads or lands free of solder resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0191Using tape or non-metallic foil in a process, e.g. during filling of a hole with conductive paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/063Lamination of preperforated insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/302Bending a rigid substrate; Breaking rigid substrates by bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Definitions

  • the present invention relates to a metal base circuit board that can be bent while ensuring heat dissipation and electrical insulation and having good electromagnetic shielding properties, and a light emitting diode (LED) using the metal base circuit board.
  • LED light source unit relates to an LED light source unit suitable for a knock light of a liquid crystal display device.
  • circuit boards for mounting on semiconductors are required to be smaller in size, higher density mounting and higher performance, and further, in a narrow space due to downsizing of semiconductor elements and higher power.
  • the problem is how to dissipate the heat generated by the power of semiconductor devices.
  • a metal base circuit board in which a metal foil is joined to a metal plate via an insulating layer to form a circuit has been used mainly for the power supply field and the automotive electrical field field because of its excellent heat dissipation.
  • the thickness of the base circuit board is generally 1.0 mm to 3. Omm, it is difficult to reduce the thickness of the metal base circuit board, and the installation locations are limited.
  • the structure has a thin insulating layer on the metal plate, there is a problem that noise is likely to occur and the module is likely to malfunction.
  • the metal plate is thick, it is attached and installed along the shape of a case such as a curved case.
  • the heat dissipation of the insulating layer cannot be fully utilized, and it is not possible to install it by folding it, so a large space is required for installation, and the module cannot be reduced in size. there were.
  • a metal-based circuit board that has an insulating layer that has strength such as epoxy resin filled with an inorganic filler on a metal plate and has a circuit pattern formed on it has excellent heat dissipation and electrical insulation properties. It is used as a communication device for mounting heat-generating electronic components and as a circuit board for electronic devices such as automobiles (see Patent Document 3).
  • the metal base circuit board can be bent arbitrarily, the limitation of the mounting location, which was generally installed on a flat part, is alleviated, and it adheres and adheres to the side surface, bottom surface, step, curved surface, etc. In addition, it is possible to achieve close contact with screws and the like, and it is possible to reduce the size of electronic devices on which highly exothermic electrical components are mounted. In addition, if the metal base circuit board itself can be made thin, it can be inserted or fixed in a narrow space, so that the electronic device on which the highly heat-generating electrical component is mounted can be made thin.
  • a method of heating a metal base circuit board at a high temperature of 120 ° C or higher that is, bending the metal base circuit board while being heated by 10 ° C or higher with respect to the glass transition temperature (Tg) of the insulating layer. It has been proposed to use a metal base circuit board that is flat and has a portion by performing processing or drawing (see Patent Document 4).
  • a light emitting diode (LED) light source unit that uses a light emitting diode (LED) as a light source Force S
  • a CFL cold cathode
  • small fluorescent tubes called “tubes” were used.
  • the light source of the CFL (cold cathode tube) has Hg (mercury) enclosed in a discharge tube, and the ultraviolet rays emitted from the mercury force excited by the discharge are CFL (cold cathode tube) tubes.
  • the wall phosphor is converted to visible light. For this reason, recently, due to environmental considerations, the use of harmful mercury and the use of alternative light sources are required.
  • LED light emitting diode
  • the LED has directivity in light, especially in the surface mount type on a flexible substrate. Since light is extracted in one direction, a structure using a conventional CFL (cold cathode tube) Unlike other light sources, the loss of light is small, so it is used as a planar light source. (See Patent Document 5).
  • the LED light source has low luminous efficiency, most of the input power is released as heat when the LED emits light. An LED generates heat when a current is passed through, and the generated heat becomes high temperature. If this level is significant, the LED is destroyed. Even in a backlight using an LED as a light source, this generated heat is stored in the LED and the board on which it is mounted, and as the LED temperature rises, the LED's own luminous efficiency decreases. However, if the number of LEDs mounted or the input power is increased to brighten the knocklight, the amount of heat generated increases, so it is important to remove this heat.
  • the mounting metal film on which the LED chip is mounted on the LED chip mounting surface of the LED mounting board and the drive current to the LED chip The metal drive wiring to be supplied and the metal film pattern for heat dissipation are formed, and the heat dissipation-like metal film is formed on the surface facing the LED chip mounting surface. It has been proposed to form a metal through hole that connects the metal pattern and the heat dissipation metal film on the other main surface side to dissipate heat from the LED to the metal film on the back side from the metal through hole (patent) (Ref. 6).
  • the metal base circuit board is thinned to reduce the punching dimensions from the electrodes and wiring patterns in the same manner as the flexible board, the metal base circuit board is somewhat stagnant. It is not possible to use it by cracking the insulating layer. Similarly, there was a problem that the LED mounting part could not be bent arbitrarily.
  • a conductor circuit is provided via an insulating layer having a heat dissipation property with good bendability at room temperature filled with a heat conductive filler.
  • a metal base circuit board using a metal foil of a certain degree has been developed because it can be bent at room temperature and can be bent.
  • Patent Document 1 Japanese Patent Laid-Open No. 05-037169
  • Patent Document 2 JP 09-139580 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 62-271442
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-160664
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-293925
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2005-283852
  • the present invention has been made to solve the problems of the prior art, and has good heat dissipation, good bendability, and excellent electromagnetic shielding properties and insulation properties.
  • Metal base circuit board and its manufacturing method, hybrid integrated circuit using the same, LED module reinforced with coverlay, LED light source unit that prevents the LED damage and is bright! is there.
  • the gist of the present invention is as follows.
  • a metal-based circuit board comprising a cured product of a resin composition containing a curable resin, wherein the insulating layer has a thickness of 9 ⁇ m or more and 300 ⁇ m or less.
  • the insulating layer contains 25-60% by volume of thermosetting resin, and the remainder is spherical coarse particles having a maximum particle size of 75 m or less and an average particle size of 5-40 m, and an average particle size of 0.3-3
  • thermosetting resin contains hydrogenated bisphenol F type and Z or A type epoxy resin.
  • thermosetting resin contains a linear epoxy resin having an epoxy equivalent of 800 or more and 4000 or less.
  • thermosetting resin contains a polyoxyalkylene polyamine as a curing agent.
  • a metal base circuit board in which a conductor circuit is provided on a metal foil via an insulating layer and a cover lay having a thickness of at least the above is provided, and at least a part of the cover lay is removed.
  • the layer having magnetic loss is composed of a magnetic material having an aspect ratio of 2 or more and an organic binder, the content of the magnetic material is 30 to 70 vol%, and the layer having magnetic loss
  • the layer having dielectric loss is composed of a carbon powder having a specific surface area of 20 to 110 m 2 / g and an organic binder, and the content of the carbon powder is 5 to 60 vol% and has the magnetic loss.
  • the metal base circuit board according to any one of (1) to (18) is disposed on the surface of the housing via an adhesive tape, and the force is also applied to the conductor circuit of the metal base circuit board.
  • An LED light source unit that is equipped with at least one light emitting diode (LED).
  • the metal base circuit board of the present invention has electromagnetic wave shielding properties, heat dissipation properties, and electrical insulation properties, and can be bent at room temperature. It can be brought into close contact with the bottom surface or the step or curved surface. Furthermore, since it was possible to bend at room temperature easily while mounting electrical components such as semiconductor elements and resistor chips that required heat dissipation, it was possible to mount highly exothermic electronic components that were difficult in the past. Electronic devices can be made smaller or thinner.
  • the heat generated from the LED light source can be dissipated to the back side of the board and released to the outside via the thermally conductive adhesive tape, reducing the heat storage of the LED mounting board and reducing the LED temperature rise. . Therefore, it is possible to provide a bright and long-life LED light source unit that suppresses LED light emission efficiency and prevents LED damage.
  • FIG. 1-1 is a diagram showing an example of a hybrid integrated circuit using a metal base circuit board of the present invention.
  • FIG. 2-1 is a plan view showing an example of a metal base circuit board according to the present invention.
  • FIG. 2-2 is a plan view showing an example of a metal base circuit board according to the present invention (with a cover lay disposed on the surface of FIG. 2-1).
  • [2-3] A plan view showing an example of a metal base circuit board according to the present invention (a layer having a magnetic loss or a layer having a dielectric loss disposed on the surface of FIG. 2-2).
  • FIG. 2-3 A plan view showing an example of a metal base circuit board according to the present invention (with a heat generating component arranged on the surface of FIG. 2-3).
  • FIG. 2-6 is a plan view of another metal base circuit board according to the present invention.
  • FIG. 2-7 is a plan view of another metal base circuit board according to the present invention.
  • Preferred embodiments of the metal base circuit board, the hybrid integrated circuit, the LED module, and the LED light source unit of the present invention are as follows.
  • thermosetting resin contains a linear high molecular weight epoxy resin having an epoxy equivalent of 800 or more and 4000 or less.
  • thermosetting resin 500 ppm or less (1-1) to (1-3)!
  • (1-5) The metal base circuit board according to any one of (1-1) to (1-4), wherein the glass transition temperature of the insulating layer is 0 to 40 ° C.
  • the insulating layer contains 25-50% by volume of thermosetting resin, and the balance is spherical coarse particles having an average particle size of 10 to 40 m with a maximum particle size of 75 ⁇ m or less and an average particle size of 0.4.
  • the insulation layer has a thermal conductivity of l ⁇ 4WZmK, and the withstand voltage between the conductor circuit and the metal foil is 1.5kV or more with a curvature radius of l ⁇ 5mm and bent over 90 °.
  • the metal base circuit board according to any one of (1-1) to (1-6).
  • a circuit board comprising a cured body of a resin composition containing a thermosetting resin and a thickness of the insulating layer of 9 ⁇ m to 300 ⁇ m.
  • the insulating layer contains 25-60% by volume of thermosetting resin, the balance being the maximum particle size 75 (2-1) to (c) which is a cured body of a resin composition comprising spherical coarse particles having an average particle size of 5 to 40 m and inorganic fillers comprising spherical fine particles having an average particle size of 0.3 to 3.
  • the circuit board according to any one of 4).
  • the circuit board according to any one of 5).
  • the insulating layer is made of a thermosetting resin containing an inorganic filler.
  • the thickness of the insulating layer is from 30 ⁇ m to 80 ⁇ m, and the thickness of the metal foil is from 5 ⁇ m to 40 ⁇ m.
  • the insulating layer has a spherical particle force with a maximum particle size of 30 ⁇ m or less, an average particle size of 2 to 15 m, and an inorganic filler with a sodium ion concentration of 500 ppm or less and a residual volume of 50 to 75% by volume.
  • thermosetting resin contains a hydrogenated bisphenol F-type or A-type epoxy resin.
  • Base circuit board The metal according to any one of (3-1) to (3-4), wherein the thermosetting resin contains a hydrogenated bisphenol F-type or A-type epoxy resin.
  • thermosetting resin contains a linear high molecular weight epoxy resin having an epoxy equivalent of 800 or more and 4000 or less, and any one of (3-1) to (3-5) Metal base circuit board as described.
  • thermosetting resin (3-6) The metal base circuit board according to any one of (3-1) to (3-6), wherein the salt ion concentration in the thermosetting resin is 500 ppm or less.
  • the glass transition temperature of the insulating layer is 0 to 40 ° C. (3-1) to (3-7) Metal-based circuit board as described in 1.
  • the layer having magnetic loss is composed of a magnetic material having an aspect ratio of 2 or more and an organic binder, the content of the magnetic material is 30 to 70 vol%, and further has the magnetic loss.
  • the layer having dielectric loss is composed of a carbon powder having a specific surface area of 20 to 110 m 2 / g and an organic binder, and the content of the carbon powder is 5 to 60 vol%, and the magnetic loss is reduced.
  • the thermal conductivity of the insulating layer is 1 to 4 WZmK, and the withstand voltage between the conductor circuit and the metal foil is 1. OkV or more (3-1) to (3-15)! A metal base circuit board according to any one of the preceding claims.
  • the insulating layer contains 25-50% by volume of thermosetting resin, and the balance is spherical coarse particles having a maximum particle size of 75 m or less and an average particle size of 10-40 m and an average particle size of 0.4.
  • thermosetting resin contains hydrogenated bisphenol F-type and Z- or A-type epoxy resin.
  • thermosetting resin contains hydrogenated bisphenol F-type and Z- or A-type epoxy resin.
  • thermosetting resin contains a linear epoxy resin having an epoxy equivalent of 800 or more and 4000 or less. (4-1) to (4-5)! LED light source unit as described.
  • thermosetting resin contains a polyoxyalkylene polyamine
  • the metal base circuit board is bent at 90 ° or more with a radius of curvature of 1 to 5mm on the conductor circuit surface or the opposite side of the conductor circuit surface at one or more parts other than the part where the LED is mounted
  • the withstand voltage between the conductor circuit of the bent metal base circuit board and the metal foil is 1.5 kV or more. LED light source unit.
  • the thermal conductivity of the adhesive tape is 1 to 2 WZmK and the thickness is 50 ⁇ m or more and 150 ⁇ m or less.
  • the adhesive tape contains 40 to 80% by volume of a heat conductive electrical insulating agent.
  • the maximum particle size of the thermal conductive electrical insulation is 45 ⁇ m or less and the average particle size is 0.5-30.
  • the LED light source unit according to any one of (4-1) to (4-15), which is / z m.
  • thermoly conductive electrical insulating agent is at least one selected from the group force consisting of alumina, crystalline silica, and aluminum hydroxide L described in
  • the metal base circuit board configuration shown below and the main components, such as metal foil, organic filler, thermosetting resin, and conductor circuit, can be applied to hybrid integrated circuits, LED modules, and LED light source units. It is possible as appropriate.
  • the circuit board of the present invention is a metal base circuit board in which insulating layers and conductor circuits or metal foils are alternately laminated.
  • the thickness of the conductor circuit or metal foil is 5 m or more and 450 m or less, and the insulating layer is It consists of the hardening body of the resin composition containing an inorganic filler and a thermosetting resin, and the thickness of the said insulating layer is 9 micrometers or more and 300 micrometers or less.
  • the metal base circuit board can be used after being folded at room temperature. Furthermore, since it can be used even after repeated bending, it can be reused because of its high workability.
  • the material of the metal foil aluminum or an aluminum alloy, copper or a copper alloy, iron, stainless steel, or the like is used.
  • the thermal conductivity of the insulating layer is preferably 1 to 4 WZmK, and more preferably 2 to 3 WZmK. If the thermal conductivity is less than lWZmK, the thermal resistance of the circuit board increases and the desired heat dissipation may not be achieved. In addition, in order to obtain a thermal conductivity of 4 WZmK or higher, it is necessary to increase the amount of the inorganic filler. Therefore, flexibility may be lost and good bending performance may not be obtained.
  • the glass transition temperature of the insulating layer is preferably 0 to 40 ° C, more preferably 10 to 30 ° C. If the glass transition temperature is less than 0 ° C, rigidity and electrical insulation are low. If it exceeds 40 ° C, flexibility is lowered.
  • the glass transition temperature is 0 to 40 ° C, it is used at a conventional metal base substrate and is hard at room temperature like an insulating layer. Unlike the insulating layer, it is bent or drawn at room temperature. However, the withstand voltage is not easily lowered due to peeling from the metal foil or cracking of the insulating layer.
  • the thickness of the insulating layer is preferably 9 ⁇ m or more and 300 ⁇ m or less.
  • the insulating layer contains 25-60% by volume of thermosetting resin, the balance being spherical coarse particles having an average particle size of 5-40 ⁇ m and an average particle size of 75 ⁇ m or less.
  • a cured product of a resin composition comprising an inorganic filler composed of spherical fine particles having a particle size of 0.3 to 3.0 ⁇ m.
  • the thermosetting resin constituting the insulating layer includes linear polymer epoxy resin having an epoxy equivalent of 800 to 4000 and hydrogenated bisphenol F type and Z or A.
  • resins of the type epoxy resin phenol resin, polyimide resin, phenoxy resin, acrylic rubber, acrylonitrile-butadiene rubber, etc. may be blended.
  • the blending amount thereof is preferably 30% by mass or less based on the total amount with epoxy resin.
  • thermosetting resin constituting the insulating layer epoxy resin, phenol resin, silicone resin, acrylic resin, and the like can be used.
  • epoxy resin and polyaddition type epoxy curing agent that have excellent bonding strength between the metal foil 1 and the conductor circuit and are excellent in flexibility at room temperature, while containing inorganic filler, are mainly used. What was made into the component is preferable.
  • Polyaddition-type epoxy curing agents include polyoxyalkylene polyamines, which have the effect of improving the flexibility of thermosetting resins after thermosetting. Epoxy equivalents of epoxy resins are preferred. In order to ensure the rigidity, bending workability, insulation, etc. of the insulating layer, it is preferable to add carbon so that the active hydrogen equivalent is 0.8 to 1 times.
  • thermosetting resin constituting the insulating layer it is preferable to use hydrogenated bisphenol F type and Z or A type epoxy resin as the thermosetting resin constituting the insulating layer, and the epoxy equivalent is 180 to 240. It is liquid at room temperature and can be used in a range of 60 to LOO% by mass in thermosetting resin.
  • This hydrogenated bisphenol F-type and Z- or A-type epoxy resin does not have a rigid structure compared to general-purpose bisphenol F-type and A-type, so it is flexible when used as a curable resin composition. Is excellent.
  • a linear high molecular weight epoxy resin having an epoxy equivalent of 800 or more and 4000 or less is 0 to 40% by mass in the thermosetting resin and 50 to 75 inorganic fillers in the insulating layer. Volume% can be added.
  • the epoxy equivalent of the hydrogenated bisphenol F-type and Z- or A-type epoxy resin is less than 180, the amount of low molecular weight impurities having epoxy groups remaining in the purification process of the epoxy resin increases. This is not preferable because the adhesive strength and insulating properties are lowered.
  • the epoxy equivalent exceeds 240, the viscosity of the resin increases, and the addition of a linear high molecular weight epoxy resin having an epoxy equivalent of 800 to 4000 further increases the viscosity of the resin to reduce the high molecular weight epoxy resin. It becomes difficult to add 0 to 40% by mass in the thermosetting resin and 50 to 75% by volume of the inorganic filler in the insulating layer.
  • a linear high molecular weight epoxy resin having an epoxy equivalent of 800 or more and 4000 or less is applied to the insulating layer.
  • the bondability is improved as compared with the case where only a linear epoxy resin having an epoxy equivalent of less than 800 is used for the thermosetting resin.
  • a linear high molecular weight epoxy resin having an epoxy equivalent of 800 or more and 4000 or less is hydrogenated bisphenol F-type, Z-type or A-type epoxy resin, it is bent at room temperature in addition to bondability. This is more preferable because of improved properties.
  • thermosetting resin if a linear epoxy resin having an epoxy equivalent of more than 4000 is included in the thermosetting resin, it becomes difficult to fill with an inorganic filler or compatibility with other epoxy resins becomes difficult. Since the insulating layer is formed in a non-uniform state of the resin, the epoxy curing agent, the inorganic filler and other components, the heat dissipation and electrical insulation properties are reduced. It is preferable to add 40 mass% or less of linear epoxy resin with an epoxy equivalent of 800 or more and 4000 or less in the curable resin. If it exceeds 40 mass%, the amount of epoxy curing agent will be reduced and heat will be reduced.
  • the glass transition temperature (Tg) of the curable resin may increase and the flexibility may decrease.
  • the chloride ion concentration in the thermosetting resin constituting the insulating layer is preferably 500 ppm or less, and more preferably 250 ppm or less.
  • the salt ion concentration in the curable resin composition is not more than lOOOppm, the electrical insulation is good even at high temperature and DC voltage.
  • the curable resin composition constituting the insulating layer used in the metal base circuit board of the present invention has a flexible structure that can be bent even at room temperature, the chloride ion concentration in the curable resin composition is low. If it exceeds 500 ppm, the migration of ionic impurities may occur at high temperatures and under DC voltage, and the electrical insulation properties may tend to decrease.
  • the inorganic filler contained in the insulating layer those which are electrically insulating and have good thermal conductivity are preferred. Examples thereof include silicon oxide, aluminum oxide, aluminum nitride, silicon nitride, and nitride. Boron or the like is used.
  • the particle size of the inorganic filler is preferably one containing spherical coarse particles having a maximum particle size of 75 ⁇ m or less and an average particle size of 5 to 40 m and spherical fine particles having an average particle size of 0.3 to 3.0 m.
  • spherical coarse particles having an average particle size of 10 to 40 / ⁇ ⁇ and spherical fine particles having an average particle size of 0.4 to 1.2 m are more preferable.
  • crushed particles and spherical particles can be used alone. Higher filling is possible than in the case of the case, and the bendability at room temperature is improved.
  • the content of the inorganic filler in the insulating layer is preferably 50 to 75% by volume, more preferably 55 to 65% by volume.
  • the sodium ion concentration in the inorganic filler is preferably 500 ppm or less, more preferably 100 ppm or less. If the concentration of sodium ions in the inorganic filler exceeds 500 ppm, the migration of ionic impurities may occur at high temperatures and under DC voltage, and the electrical isolation may tend to decrease.
  • the force of at least one through hole used for electrical connection between the conductor circuit or the metal foil is 0.0017 mm 2 or more.
  • the through-hole is formed by removing the conductor circuit or metal foil and the insulating layer chemically, physically or mechanically to form a hole for the through-hole. Filling or upper-layer conductor circuit force Wire connection enables electrical connection.
  • the through hole may be formed or may not be formed.
  • the circuit board can be bent at 90 ° or more with a radius of curvature of 1 to 5 mm at an arbitrary location, and the withstand voltage between each of the conductor circuit and the metal foil is 1. OkV or more. Is preferred. If the radius of curvature is less than lmm and it is bent more than 90 °, the dielectric strength between each conductor circuit or metal foil may be 1. OkV or less due to insulation layer cracks. If the curvature radius is set to 5 mm or more, or bending at 90 ° or less, the target module may not be miniaturized.
  • the thickness of the conductor circuit is preferably 9 ⁇ m or more and 140 ⁇ m or less. If the thickness is less than 9 ⁇ m, the function as a conductor circuit is not sufficient. The thickness increases and it becomes difficult to reduce the size and thickness.
  • the hybrid integrated circuit using the metal base circuit board of the present invention is a metal foil, inorganic filler, thermosetting which is a main constituent material in the metal base circuit board. It is possible to appropriately use a conductive resin, a conductor circuit, or the like.
  • Figure 1-1 shows an example of a metal base circuit board according to the present invention and a hybrid integrated circuit using the same.
  • a plurality of semiconductors that is, an output semiconductor 5 and a control semiconductor 6 are formed on the conductor circuit 3 of the metal base circuit board composed of the metal foil 1, the insulating layer 2, and the conductor circuit 3.
  • the chip component 8 is joined and mounted by the solder joint portion 9 or the like, and is in close contact with the housing 11 having heat dissipation via the heat conductive adhesive 10.
  • the output semiconductor 5 is often connected via a heat spreader 4 to the conductor circuit 3 for the purpose of promoting heat dissipation, but this may not be used.
  • control semiconductor 6 since the control semiconductor 6 usually does not generate a large amount of heat, the control semiconductor 6 may be connected to the conductor circuit 3 via a force heat spreader that does not pass through the heat spreader.
  • Examples of the heat conductive adhesive include adhesives filled with high heat conductive fillers such as gold, silver, nickel, aluminum nitride, aluminum, and alumina, such as epoxy resin, urethane resin, and silicone resin. Used. Instead of the heat conductive adhesive, a sheet-like heat conductive adhesive sheet can be used in advance.
  • heat transfer between the metal base circuit board with heat dissipation and the metal base circuit board with good adhesion to the case with heat dissipation, such as adhesion with silicone grease and fixing with screws, is possible. Any fixing method that is satisfactory may be used.
  • the heat conductive adhesive is used for the purpose of promoting the heat dissipation of the output semiconductor 5 and for the purpose of protecting and fixing the hybrid integrated circuit, but it may not be used.
  • a signal from the control semiconductor 6 is electrically joined to the output semiconductor 5 through the conductor circuit 3 and the bonding wire 7.
  • the metal foil 1, the insulating layer 2, and the conductor circuit 3 that constitute the metal base circuit board other than the part where the output semiconductor 5, the control semiconductor 6, and the chip component 8 are mounted are a heat sink or a heat radiating housing. Bending and drawing can be performed at room temperature according to 11 shapes. In addition to being installed on a flat part, it can be closely attached to the side, bottom, step, curved surface, etc. according to the shape of the heat sink or heat radiating housing. For this reason, miniaturization of highly exothermic hybrid integrated circuits that cannot be applied to conventional metal-based circuit boards and flexible wiring boards, or Thinning is possible.
  • a hybrid integrated circuit using the metal base circuit board of the present invention has the above-described configuration, and the thermal conductivity of the insulating layer is 1 to 4 WZmK, and the resistance between the conductor circuit and the metal foil is high. Maintains the same characteristics as a conventional metal base circuit board with a flat metal plate with a voltage of 1.5 kV or more. In addition to being installed on a flat part, it can be brought into close contact with the side, bottom, step or curved surface of the housing. Furthermore, it can be bent easily at room temperature even when mounted with electrical components such as semiconductor elements and resistor chips that require heat dissipation. The restriction can be lifted.
  • the thickness of metal foil 1 that can be used from 5 ⁇ m to 450 ⁇ m is 35 ⁇ m to 70 m, ensuring the rigidity, bending workability, drawing workability, etc. of the metal base circuit board It is more preferable because it can be done.
  • the thickness of the insulating layer 2 is preferably 80 ⁇ m or more and 200 ⁇ m or less. If the thickness is less than 80 ⁇ m, the insulation is low. If the thickness exceeds 200 m, not only the heat dissipation is reduced but also the thickness is increased. Miniaturization and thinning become difficult.
  • an LED module having a cover array on the surface of a metal base circuit board (hereinafter also simply referred to as an LED array) will be described.
  • the LED array using the metal base circuit board of the present invention can appropriately use metal foil, inorganic filler, thermosetting resin, conductor circuit, etc., which are the main constituent materials in the metal base circuit board. is there.
  • FIGS. 2-1 to 2-7 are plan views showing a schematic structure of an example of a metal base circuit board of the present invention and an LED module using the same.
  • the conductor circuit 23 and the electrode 24 are formed by the metal base circuit board including the metal foil 21, the insulating layer 22, the conductor circuit 23, and the electrode 24. However, a part of the metal foil 21 and the insulating layer 22 are removed, and the slit portion 25 is formed.
  • FIG. 2-2 shows the formation surface side of the conductor circuit 23 and the electrode 24 of the metal base circuit board of FIG. 2-1.
  • a coverlay 26 is pasted to reinforce the board.
  • part of the coverlay 26 where the conductor circuit 23 and the electrode 24 are not formed is also removed in the same manner as the metal foil 21 and the insulating layer 22 to form the slit portion 25.
  • the slit portion 25 of the cover lay 26 is preferably covered by 50% or more and 95% or less with respect to the length of the bent portion.
  • the thickness of the force barley is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • a layer 29a having magnetic loss or a layer 29b having dielectric loss is formed on the upper part of the metal base circuit board of FIG. 2-3.
  • Layer 29a with magnetic loss consists of a magnetic material with an aspect ratio of 2 or more and an organic binder, and when the content of the magnetic material is 30 to 70 vol% and the thickness of the layer is 3 ⁇ m or more and 50 ⁇ m or less. Exhibits excellent magnetic loss characteristics.
  • the layer having dielectric loss is composed of carbon powder having a specific surface area of 20 to 110 m 2 / g. It consists of an organic binder, and exhibits excellent dielectric loss characteristics when the carbon powder content is 5 to 60 vol% and the thickness is 3 m or more and 50 ⁇ m or less.
  • the carbon powder of the layer having dielectric loss is preferably boron solid solution carbon black having a volume resistivity of 0.1 ⁇ cm or less according to JIS K 1469, since it exhibits good dielectric loss characteristics.
  • the heat generating component 210 is mounted on the component mounting portion in the metal base circuit board of the present invention.
  • the dotted line shown in FIG. 2-4 indicates the bent portion 211 of the metal base circuit board of the present invention.
  • the slit portion 25 is formed at the bent portion 211, it can be easily bent, and even if it is bent, the conductor circuit at the bent portion is reinforced by the coverlay 26. No cracks.
  • the metal base circuit board of the present invention is formed by reinforcing and bending the board with a coverlay.
  • it has the great merit of preventing breakage of the conductor circuit and cracking of the insulating layer and having good bending property by slit processing.
  • it is a metal base circuit board having good electromagnetic wave absorption characteristics by forming a layer having magnetic loss or a layer having induction loss.
  • a metal base circuit board having a thickness of about 150 m has a defect such as disconnection of a conductor circuit and generation of a crack in an insulating layer when the radius of curvature is not more than 0.5 mm and it is bent more than 90 °. It was necessary to reinforce with a coverlay. However, if it is reinforced with a cover lay, the metal base circuit board becomes stiff and difficult to bend at the desired location.
  • the present invention is an epoch-making metal base circuit board having both the reinforcement of the substrate against bending and the bending property, and also the electromagnetic wave absorption characteristics.
  • FIG. 2-5 shows a schematic structure of an example of a metal base circuit board of the present invention and an LED module using the same.
  • Fig. 5 is a cross-sectional view of the metal base circuit board of Fig. 2-4 when the input circuit is bent 180 ° at the slit.
  • the metal base circuit board of the present invention the metal base circuit board composed of the metal foil 21, the insulating layer 22, the conductor circuit 23, and the electrode 24 is covered with the coverlay 26 through the epoxy adhesive layer 25a, and further has a magnetic loss.
  • a layer 29a or a layer 29b having dielectric loss is formed.
  • the conductor circuit 23 and the electrode 24 are electrically connected, and the heat generating component 210 is electrically connected and mounted on the electrode 24 by soldering or the like. Yes. Further, the back surface of the metal base circuit board is in close contact with a housing 212 having heat dissipation properties through a heat conductive adhesive tape 213. Conductor circuit 23 and lead-out wiring (input circuit) 24 are electrically connected to each other so that power can be input from the outside to heat-generating components such as LEDs.
  • the force bent toward the metal foil 21 can be easily bent toward the layer 29a having magnetic loss or the layer 29b having dielectric loss. If at least the cover lay of the bent portion is covered with the slit force force by 50% or more and 95% or less with respect to the length of the portion where the slit force is bent, the heat-dissipating housing 212 According to the shape, it can be bent in various shapes. [0064]
  • the slit processing described above is performed only by the rectangular addition shown in the metal base circuit board of Figs. 2-1 to 2-4.
  • the shape shown in Fig. 2-6 has a sharp corner or wedge shape, or It may be one with many circles as shown in Figure 2-7. Rather, the bent portion is determined and a round shape is preferable.
  • the LED array using the metal base circuit board of the present invention has the above-described configuration, the thickness of the metal foil 21 is 5 m or more and 40 m or less, and the insulating layer 22 is an inorganic filler. And a thermosetting resin, the thickness is preferably 30 m or more and 80 m or less, and the thickness of the conductor circuit is preferably 9 ⁇ m or more and 40 ⁇ m or less. When these conditions are satisfied, the object of the present invention can be achieved more reliably.
  • the thickness of the metal foil 21 is 5 ⁇ m or more, the rigidity of the metal base circuit board is lowered, and the application is not limited. If the thickness force of the metal foil 21 is 0 m or less, a metal base circuit board bending tool or drawing tool, and processing equipment such as a press machine are required. It does not become difficult to make it adhere to the curved surface. Furthermore, it is not difficult to bend at room temperature in the state where electrical components such as semiconductor elements and resistor chips that require heat dissipation are mounted on the metal base circuit board.
  • the thickness of the metal foil 21 is 12 because the metal base circuit board has excellent bending characteristics such as rigidity, bending workability, drawing workability, etc., especially at a radius of curvature of 0.1 to 0.5 mm and 90 ° or more. More preferably, it is not less than ⁇ m and not more than 35 ⁇ m.
  • the insulating layer 22 contains an organic filler and a thermosetting resin, and has a thickness of 30 m or more and 80 m or less. Is preferred. With respect to the thickness of the insulating layer 22, if it is 30 m or more, insulation can be secured, and if it is 80 / zm or less, the folding cacheability of 90 ° or more at 0.1 to 0.5 mm may decrease. Not preferred.
  • the thickness of the conductor circuit is preferably 9 ⁇ m or more and 40 ⁇ m or less. If it is 9 ⁇ m or more, the function as a conductor circuit can be secured sufficiently, and if it is 40 m or less, sufficient flexibility can be secured, and a sufficient thickness can be secured for miniaturization and thinning.
  • the heat conductive adhesive tape 213 used in the present invention includes acid aluminum, two Metal oxides such as titanium oxide, nitrides such as aluminum nitride, boron nitride and silicon nitride, inorganic materials such as silicon carbide and aluminum hydroxide, and organic materials such as acrylic rubber
  • a material filled in a molecular resin material can be used, but a heat conductive adhesive tape filled in a polymer resin material with a surface treated with a silane coupling agent or the like can also be used.
  • the heat conductive adhesive tape 213 efficiently dissipates the heat generated by the heat-generating component from the back surface of the metal base substrate to the housing through the metal base circuit substrate. Those with improved conductivity are preferred.
  • heat conductive adhesive tape 213 As the heat conductive adhesive tape 213, a material used in the following LED light source unit> and an adhesive tape having characteristics are appropriately used.
  • the LED light source unit using the metal base circuit board of the present invention can appropriately use metal foil, inorganic filler, thermosetting resin, conductor circuit, etc., which are the main constituent materials in the metal base circuit board. It is.
  • FIG. 3-1 is a cross-sectional view showing a schematic structure of an example of the LED light source unit of the present invention.
  • one or more LEDs 36 are bonded to the conductor circuit 33 of the metal base circuit board including the metal foil 31, the insulating layer 32, and the conductor circuit 33 by a solder bonding portion 35 or the like. It is mounted and is in close contact with the case 3 8 having heat dissipation via a heat conductive adhesive tape 37.
  • the conductor circuit 33 and the lead-out wiring (input circuit) 34 are electrically connected so that power can be input to the LED from the outside.
  • the overall shape is a box-shaped force.
  • the metal foil 1 constituting the metal base circuit board other than the portion where the LED 36 is mounted is insulated.
  • the layer 32 and the conductor circuit 33 can take various shapes according to the surface shape of the casing 38 having heat dissipation as long as it is in close contact with the casing 38 having heat dissipation.
  • the LED light source unit of the present invention has the above-described configuration, and the thickness of the metal foil 31 is 18 ⁇ m or more and 300 / zm or less, the insulating layer 32 contains an inorganic filler and a thermosetting resin, the thickness is 80 ⁇ m or more and 200 ⁇ m or less, and the thickness of the conductor circuit 33 is 9 U, preferably between ⁇ m and 140 ⁇ m.
  • the thickness of the metal foil 31 is preferably 18 m or more and 300 m or less.
  • the thickness of the metal foil 31 is less than 18 ⁇ m, the rigidity of the metal base circuit board is lowered and the application is limited. If the thickness exceeds 300 m, the metal base circuit board that is bent with force is required if processing tools such as a bending mold or drawing mold for the metal base circuit board and a press machine are required. It becomes difficult to adhere to a curved surface. Furthermore, it becomes difficult to bend at room temperature in the state where electrical components such as semiconductor elements and resistor chips that require heat dissipation are mounted on a metal base circuit board.
  • the rigidity, bending workability, drawing workability, etc. of the metal base circuit board are particularly strong with a bending radius of 90 ° or more with a curvature radius of 1 to 5 mm, and more than 35 ⁇ m to 70 ⁇ m. I like it.
  • the insulating layer 32 contains an inorganic filler and a thermosetting resin, and preferably has a thickness force of 0 m or more and 200 m or less. With respect to the thickness of the insulating layer 32, the insulation is low when the thickness is less than 80 m. When the thickness exceeds 200 m, the heat dissipation is reduced and the thickness is increased, making it difficult to reduce the size and thickness.
  • the thickness of the conductor circuit is preferably 9 ⁇ m or more and 140 ⁇ m or less. If it is less than 9 m, the function as a conductor circuit is not sufficient. If it exceeds 140 m, not only the flexibility is lowered but also the thickness is increased, making it difficult to reduce the size and thickness.
  • the LED light source unit of the present invention can be used even when it is repeatedly bent, it can be reused with high workability. It is also possible to produce an LED light source unit with a curved housing by mounting the LED on a metal base circuit board, then bonding it to a housing with a flat surface, and then processing and deforming it together with the housing. Since it can be easily realized, a large amount of LED light source units can be provided at low cost.
  • the heat conductive adhesive tape 37 used in the present invention includes, as will be described later, a metal oxide such as aluminum oxide and titanium dioxide, a nitride such as aluminum nitride, boron nitride, and silicon nitride, A polymer resin material filled with a heat conductive electrical insulating material made of an inorganic substance such as silicon carbide or aluminum hydroxide or an organic substance such as acrylic rubber can be used.
  • a heat conductive adhesive tape in which a polymer resin material filled with a surface treated with a silane coupling agent or the like can be used.
  • Adhesive tapes that do not have thermal conductivity cannot be used because the heat associated with LED light emission is insufficiently transferred to the housing, causing the LED temperature to rise. According to the results of the study by the present inventor, it is preferable to use a thermal conductive adhesive tape having a thermal conductivity of l 2 WZmK and a thickness of 50 150 ⁇ m.
  • the heat conductive adhesive tape 37 efficiently dissipates the heat generated when the LED emits light from the back surface of the metal base substrate through the metal base circuit board to the housing. Is also characterized by improved thermal conductivity.
  • the polymer material used for the heat-conductive adhesive tape 37 is not particularly limited, but for the purpose of improving the adhesion to metal, a high content containing acrylic acid and Z or methacrylic acid is used. A child is preferably selected. In other words, it is preferable to use atylate or metatalylate having an alkyl group having 212 carbon atoms, or an acrylic acid alkyl ester or methacrylic acid alkyl ester having 212 carbon atoms! /.
  • monomers include ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethyl hexyl acrylate, octyl acrylate, isooctyl acrylate, decyl acrylate, and decyl ( It is preferable to use one or a mixture of two or more selected from (meth) talylate or dodecyl (meth) acrylate. Of these, 2-ethylhexyl acrylate is even more preferable as the monomer.
  • the heat conductive adhesive tape 37 preferably contains a heat conductive electrical insulating agent.
  • the heat-conducting electrical insulating agent may be any inorganic or organic material that is good in terms of electrical insulation and thermal conductivity, but examples of organic materials include natural rubber and NBR EPDM. In particular, it is preferable to contain acrylic rubber.
  • the heat conductive electrical insulating agent is preferably contained in the adhesive tape 7 in an amount of 4080% by volume since good heat dissipation can be secured. 50 70% by volume is an even more preferred range.
  • Examples of the monomer for the acrylic rubber include ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, isoamyl acrylate, n xyl acrylate.
  • acrylic rubber preferably the number 0/0 of cure site monomers are copolymerized.
  • the rubber content is preferably 0.1 to 30 parts by mass in the heat conductive adhesive tape 37.
  • the filler settles when the high thermal conductive filler is filled in the polymer resin material, and when it exceeds 30 parts by mass, the viscosity increases and a problem occurs during processing. If the rubber content is 0.1 to 30 parts by mass, the processability is good while preventing settling of the filler.
  • acrylates or methacrylates having an alkyl group having 2 to 12 carbon atoms alkyl acrylate esters or alkyl methacrylate esters having 2 to 12 carbon atoms are preferable.
  • Masaki Preferable from the viewpoint of flexibility and processability ⁇ Monomers include ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethyl hexyl acrylate, octyl acrylate, isooctyl acrylate, decyl acrylate , A blend of one or more selected from decyl metatalylate and dodecyl metatalylate. A more preferred monomer is 2-ethylhexyl acrylate.
  • Inorganic substances used as heat conductive electrical insulating agents include, for example, metal oxides such as aluminum oxide and titanium dioxide, nitrides such as aluminum nitride, boron nitride and silicon nitride, and carbonization. Silicon, hydroxyaluminum, etc. are mentioned. Among these, it is preferable to use at least one selected from the group force of alumina, crystalline silica, and hydroxyaluminum hydroxide. It is also possible to select those that have been surface treated with a silane coupling agent or the like.
  • the maximum particle size is 45 ⁇ m or less and the average particle size is 0.5 to 30 m from the viewpoint of the thickness and filling property of the adhesive tape.
  • the heat conductive pressure-sensitive adhesive tape 37 can contain a known polymer compound within a range that does not impair the intended characteristics of the present invention. In addition, it has an effect on the curing of the heat conductive adhesive tape 37. In the range where there is no known additive, known additives can be added as necessary. Examples of additives include various additives for controlling viscosity and viscosity, other modifiers, anti-aging agents, heat stabilizers, and coloring agents.
  • the heat conductive pressure-sensitive adhesive tape 37 can be cured by a general method. For example, it can be cured by a method such as thermal polymerization using a thermal polymerization initiator, photopolymerization using a photopolymerization initiator, or polymerization using a thermal polymerization initiator and a curing accelerator. Photopolymerization with an initiator is preferred.
  • a 35 m thick electrolytic copper foil was laminated and heated to thermally cure the insulating layer to obtain a metal base substrate. Further, the obtained metal base substrate was masked at a predetermined position with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate.
  • the following methods were used: (1) Flexibility at room temperature, (2) Thermal conductivity of insulating layer, (3) Adhesive strength between conductor circuit and insulating layer, (4) Insulation Glass transition temperature of the layer, (5) 260 ° C, insulation layer breakdown voltage after 10 minutes of heat treatment, (6) Insulation layer withstand voltage when bent 90 ° at room temperature, (7) 125 ° C, insulation layer breakdown time when a DC voltage of 1000 V (pattern side +) was applied, and (8) the presence or absence of insulation layer cracks when bent 90 ° at room temperature.
  • the results are shown in Table 1-2.
  • the resulting metal-based circuit board has all the physical properties It was good.
  • Flexibility at room temperature is the opposite of the conductor circuit forming surface side and the conductor circuit forming surface with both hands in a 25 ° C 1 ° C temperature atmosphere after processing a metal base circuit board to 10mm x 100mm
  • the one that can be bent more than 90 ° with a radius of curvature of 5mm is considered good, and the case where it is necessary to use a bending die and a press machine when performing bending is regarded as defective.
  • the adhesive strength between the conductor circuit and the insulating layer was determined by a method defined in JIS C 6481 by processing the conductor circuit of the metal base circuit board into a 10 mm wide strip.
  • Tg glass transition temperature
  • Insulation layer withstand voltage measurement at 90 ° bent at room temperature should include a circular pattern of ⁇ 20mm on a metal base circuit board in which a circular pattern of ⁇ 20mm is formed on the conductor circuit.
  • the withstand voltage between the circular pattern and the aluminum foil was measured by the step-up method defined in JIS C 2110 with the curvature radius lmm bent at 90 °.
  • a metal base circuit board was prepared in the same manner as in Example 1-1, except that 35 m thick electrolytic copper foil was laminated and heated to obtain a metal base board by thermosetting the insulating layer. Physical properties were measured.
  • a metal base circuit board was formed in the same manner as in Example 1-1 except that a 35 ⁇ m thick electrolytic copper foil was laminated and heated to thermally cure the insulating layer to obtain a metal base board. It was fabricated and various physical properties were measured.
  • the metal base circuit board obtained had a markedly improved flexibility at room temperature due to a decrease in the glass transition temperature (Tg). Other physical properties were also good.
  • a metal base circuit board was prepared in the same manner as in Example 1-1 except that 35 m thick electrolytic copper foil was laminated and heated to obtain a metal base board by thermosetting the insulating layer. Various physical properties were measured.
  • a metal base circuit board was produced in the same manner as in Example 1-1 except that 35 m thick electrolytic copper foil was laminated and heated to obtain a metal base board by thermosetting the insulating layer. Various physical properties were measured.
  • the metal base circuit board obtained had a markedly improved flexibility at room temperature due to a decrease in the glass transition temperature (Tg). Furthermore, the insulation layer breakdown time was extended when a DC voltage of 1000V (pattern side +) was applied at 125 ° C. Other physical properties were also good.
  • Spherical coarse particles of acid-aluminum (Showa Denko Co., Ltd .: CB-A20) with a particle diameter of 21 ⁇ m and sodium ion concentration of lOppm and an average particle diameter of 0.7 ⁇ m and sodium ion concentration of 8 ppm
  • a certain spherical fine particle of acid aluminum (Sumitomo Gakaku: AKP 15) 50% by volume in the insulating layer (spherical coarse particles and spherical fine particles are The mixture was formulated so that the quantity ratio was 7: 3), and an insulating layer was formed so that the thickness after curing was 100 m.
  • a metal base circuit board was prepared in the same manner as in Example 1-1 except that a metal base board having a sodium ion concentration of 50 ppm or less was obtained for the entire inorganic filler, and various physical properties were measured.
  • the results are shown in Table IV-2.
  • the obtained metal base circuit board had a significantly extended insulation layer breakdown time when applied at 125 ° C and DC 100V (pattern side +), and other physical properties were also good.
  • a metal base circuit board was prepared in the same manner as in Example 1-1 except that a metal base board having a sodium ion concentration of 60 ppm or less was obtained for the entire inorganic filler, and various physical properties were measured.
  • Table 1-1 As shown, 400 / zm thick anoleum foil, bisphenol A type epoxy resin with an epoxy equivalent of 187 (Dainippon Ink & Chemicals: EPICLON850—S) 100 parts by mass of polyoxypropylene diamine as a hardener (Nortzmann: D-400 and D-2000 mass it force 6: 4) 2. Crushed acid-aluminum (made by Showa Denko KK: AL-173) with a maximum particle size of 20 ⁇ m was blended so that the volume of the insulating layer would be 80% by volume, and the thickness after curing was 100 m. An insulating layer was formed so that Next, a metal base circuit board was produced in the same manner as in Example 1-1 except that a 210 m thick copper foil was laminated and heated to obtain a metal base board by thermosetting the insulating layer. Was measured.
  • the results are shown in Table IV-2.
  • the obtained metal base circuit board was hardly bent at room temperature and could not be bent manually, and was bent at 90 ° using a bending die and a press.
  • the withstand voltage value of the insulating layer was extremely low when bent 90 ° at room temperature, where the adhesive strength between the conductor circuit and the insulating layer was weak.
  • the insulation layer breakdown time when applying a DC voltage of 1000V (pattern side +) at 125 ° C was extremely short.
  • the thermal conductivity was partially different, and the variation was significant.
  • the results are shown in Table IV-2.
  • the resulting metal base circuit board has almost no flexibility, and cannot be bent manually at room temperature.It was bent at 90 ° using a bending die and a press, but the glass transition temperature (Tg) As a result, the bendability at room temperature was insufficient, and the dielectric strength voltage of the insulation layer was significantly lowered when bent 90 ° at room temperature.
  • Tg glass transition temperature
  • Example 2 42 parts by mass is added, and crushed acid aluminum (made by Showa Denko: AL-173) with an average particle size of 2. and a maximum particle size of 20 ⁇ m is the insulating layer.
  • An insulating layer was formed so that the concentration of salt ions in the entire thermosetting resin was lOOOppm and the thickness after curing was 100 m.
  • a metal base circuit board was produced in the same manner as in Example 1 except that 35 / zm thick electrolytic copper foil was laminated and heated to obtain a metal base board by thermosetting the insulating layer. Various physical properties were measured. The results are shown in Table IV-2.
  • the obtained metal base circuit board had an extremely short insulating layer breakdown time when applied at 125 ° C and a DC voltage of 1000 V (pattern side +).
  • a spherical coarse particle acid-aluminum (Micron: AX-25) with a maximum particle size of 75 ⁇ m or less, an average particle size of 25 ⁇ m, and a sodium ion concentration of 530 ppm
  • a sphere with an average particle size of 1.2 ⁇ m and a sodium ion concentration of 396 ppm Combine the fine aluminum oxide (Micron: AW15-25) and mix it so that the volume of the insulating layer is 50% by volume (spherical coarse particles and spherical fine particles are in a mass ratio of 7: 3). An insulating layer was formed so that the thickness was 100 / zm.
  • thermosetting resin in the insulating layer is lOOOppm
  • a metal base circuit board was prepared in the same manner as in Example 1 except that a metal base board having a sodium ion concentration of 500 ppm was obtained for the entire inorganic filler, and various physical properties were measured.
  • the results are shown in Table IV-2.
  • the obtained metal base circuit board had a significantly shorter insulation layer breakdown time when applied at 125 ° C and DC 100V.
  • Thickness of each layer of metal base circuit board, type and blending amount of thermosetting resin, salt contained Table 1-1 shows the fluoride ion concentration, inorganic filler type and sodium ion concentration contained in [Table 1-1].
  • Bisphenol A type epoxy resin (“YX-8000” manufactured by Japan Epoxy Resin Co., Ltd.) hydrogenated with an epoxy equivalent of 201 on 35 ⁇ m thick copper foil is 70% by mass in total. epoxy equivalent is hydrogenated in 1200 and the bisphenol ⁇ epoxy ⁇ to (Japan epoxy Resins Co., Ltd.
  • the obtained substrate was masked at a predetermined position with a dry film and etched with copper foil, and then the dry film was removed to form a circuit to obtain an inner circuit board.
  • the above insulating layer and a 35 ⁇ m thick copper foil were laminated and heat-cured to prepare a multilayer board.
  • a disk-shaped hardened body having a diameter of 10 mm and a thickness of 2 mm was separately prepared for the insulating layer of the circuit board and obtained by a laser flash method.
  • Multi-layer circuit board (uses inner and outer layers with no circuit patterns formed on the entire surface of conductor foil) is processed to 10mm x 100mm, and the conductor circuit forming surface is used with both hands in a temperature atmosphere of 25 ⁇ 1 ° C. It is necessary to use a mold that can be bent at 90 ° or more with a radius of curvature of 5 mm on the side and the side opposite to the conductor circuit forming surface, and to use a bending die and press machine when performing the bending. The case was considered bad.
  • a module in which three p-mos-FETs (2SK2174S) manufactured by Hitachi, Ltd. were incorporated at intervals of 2 mm was manufactured and operated continuously for 96 hours so that the power consumption was 10 W per element in a 100 ° C environment. Then, the presence or absence of malfunction was evaluated. If no malfunction occurred, add 10W to the power consumption and re-evaluate it, and evaluated the operational stability of the power element based on the power consumption when malfunction occurred.
  • the composition of the insulating layer, an epoxy equivalent of 201 bisphenol A type Epoki sheet resin is hydrogenated in (Japan Epoxy Resins Co., Ltd. "YX- 8000") of 70 mass 0/0 and an epoxy equivalent of 12 00 hydrogen ⁇ Ka ⁇ Bisphenol-type epoxy resin (“YL-7170” manufactured by Japan Epoxy Resin) 30 parts by mass of epoxy resin 100 parts by mass of polyoxypropylenediamine (manufactured by Nortzmann) The mass ratio of “D-400” and “D-2000” is 6: 4). 48 parts by mass is added, and the acidity of spherical coarse particles with a maximum particle size of 75 ⁇ m or less and an average particle size of 21 ⁇ m is obtained.
  • Example 2-1 65 volumes in the insulating layer together with aluminum (“CB-A20J” manufactured by Showa Denko KK) and spherical aluminum oxide (“AO-802” manufactured by Admatechs) with an average particle size of 0.6 ⁇ m. % (Spherical coarse particles and spherical fine particles were blended so that the mass ratio was 6: 4) Outside, to produce a multilayer circuit board in the same manner as in Example 2-1 was evaluated in the same manner as in Example 2-1. The evaluation results are shown in Table 2-1.
  • Bisphenol A type epoxy resin with an epoxy equivalent of 187 (“EPICLON850-S” manufactured by Otsukamoto Ink Chemical Co., Ltd.) per 100 parts by mass of polyoxypropylene diamine (“D-” manufactured by Nortzmann) 400 ”and“ D-2000 ”have a mass ratio of 6: 4) 63 parts by mass, spherical coarse particles with a maximum particle size of 75 IX m or less and an average particle size of 21 IX m. (manufactured by Showa Denko KK "CB-A20”) and the average particle size of 0. 6 mu m in which spherical fine particles Sani ⁇ aluminum (Admatechs Co.
  • a multilayer circuit board was produced in the same manner as in Example 2-1, except that the spherical coarse particles and spherical fine particles were blended so that the mass ratio was 6: 4). evaluated. The evaluation results are shown in Table 2-1.
  • Hydrogenated bisphenol A type epoxy resin with an epoxy equivalent of 201 (Japan Epoxy Resin “YX-8000”) per 100 parts by mass of polyoxypropylene amine (Nortzmann “D—400” as hardener) ”And“ D-2000 ”in a mass ratio of 6: 4) 60 parts by mass of spherical coarse particles of aluminum oxide with a maximum particle size of 75 ⁇ m or less and an average particle size of 21 ⁇ m (Showa Denko 50% by volume (spherical coarse particles) in the insulating layer by combining spherical fine particles of acid ⁇ aluminum (Admatex ⁇ -802) with an average particle size of 0.6 ⁇ m. And spherical fine particles were prepared in the same manner as in Example 2-1, except that they were blended so that the mass ratio was 6: 4), and evaluated in the same way as in Example 2-1. It was. The evaluation results are shown in Table 2-1.
  • Bisphenol A type epoxy resin with an epoxy equivalent of 187 (“EPICLON850-S” manufactured by Dainippon Ink & Chemicals, Inc.) Polyoxypropylene diamine (D-400 manufactured by Nortzmann) as a curing agent for 100 parts by mass ”And“ D-2000 ”have a mass ratio of 6: 4) Add 63 parts by mass, and make spherical aluminum particles with a maximum particle size of 75 ⁇ m or less and an average particle size of 21 ⁇ m. DENKO Co. "CB-A20”) and the average particle size of 0. 6 mu m in which spherical fine particles Sani ⁇ aluminum (Admatechs Co.
  • a multilayer circuit board was produced in the same manner as in Example 2-1, except that the spherical coarse particles and spherical fine particles were blended so that the mass ratio was 6: 4). evaluated. The evaluation results are shown in Table 2-1.
  • the obtained multilayer circuit board could not be bent manually at room temperature with little flexibility, and was bent at 90 ° using a bending die and a press. Also, the withstand voltage became low.
  • a multilayer circuit board was produced in the same manner as in Example 2-1, except that an insulating layer was formed on a 111-thick 81 plate, and evaluated in the same manner as in Example 2-1. Those evaluation results It is shown in Table 2-1.
  • the obtained multilayer circuit board was hardly bent at room temperature and hardly bent, and it was bent at 90 ° using a bending die and a press.
  • Various characteristics of the multilayer circuit board are shown in Table 2-1.
  • Bisphenol A type epoxy resin with hydrogen equivalent of 207 epoxy equivalent on 18 ⁇ m thick copper foil ⁇ -7015 by Dainippon Ink & Chemicals, Inc.
  • hydrogenated bisphenol A type epoxy resin having an epoxy equivalent of 1200 (“YL-7170” manufactured by Japan Epoxy Resin Co., Ltd.)
  • Add 48 parts by mass of polyoxypropylene diamine as a glaze Nortzmann's “D—400” and “D-2000” mass ratio of 6: 4
  • the maximum particle size is 30 ⁇ m or less.
  • Spherical coarse particles of acid-aluminum (DAW-10, manufactured by Denki Kagaku Kogyo Co., Ltd.) with an average particle size of 10 m and sodium ion concentration of 90 ppm, and sodium ions with an average particle size of 0.7 m Spherical fine particle acid-aluminum with a concentration of 8 ppm (manufactured by Sumitomo Chemical Co., Ltd. Combine AKP-15J) and mix so that the volume of the insulating layer is 50% by volume (mass ratio of spherical coarse particles and spherical fine particles is 7: 3).
  • the metal base substrate a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate. After that, the board was reinforced by attaching a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.) except for the parts on the metal base circuit board and the input terminal.
  • a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.
  • cream solder (“M705" manufactured by Senju Metal Co., Ltd.) is applied to the electrodes on the parts mounting part of the metal base circuit board by screen printing, and the LED (“NFSA036B” manufactured by Nichia Steel Corporation) is applied by solder reflow. ) was implemented.
  • the metal base circuit board is mounted using a stainless steel bending jig with a width of S200mm, thickness of 0.6mm and one side with a radius of curvature of 0.3mm so that the slit part is included in the metal base circuit board.
  • the LED module was obtained by bending at a radius of curvature of 0.3 mm and fixing to a lmm-thick aluminum casing with heat conductive adhesive tape.
  • the metal base circuit board was processed to 10mm x 100mm, and the strength when the metal base circuit board was ruptured was measured with a Tensilon tensile strength tester in a temperature atmosphere of 25 ⁇ 1 ° C. .
  • a stable power supply was connected to the LED module obtained in a temperature atmosphere of 25 ⁇ 1 ° C, and the LED was turned on for 1 hour or more with a voltage of 10 V and a current of 150 mA. At that time, the case where the LED was lit for more than 1 hour was considered good, and the case where the LED was not lit or turned on for more than 1 hour was judged as bad.
  • the obtained substrate was measured for electromagnetic wave absorption characteristics at frequencies of 300MHz and 1GHz.
  • the absorption ratio PlossZPin
  • Bisphenol A type epoxy resin with hydrogen equivalent of 207 epoxy equivalent on 18 ⁇ m thick copper foil ⁇ -7015 by Dainippon Ink & Chemicals, Inc.
  • hydrogenated bisphenol A type epoxy resin having an epoxy equivalent of 1200 (“YL-7170” manufactured by Japan Epoxy Resin Co., Ltd.)
  • Add 48 parts by mass of polyoxypropylene diamine as a glaze Nortzmann's “D—400” and “D-2000” mass ratio of 6: 4
  • the maximum particle size is 30 ⁇ m or less.
  • Spherical coarse particles of acid-aluminum (DAW-10, manufactured by Denki Kagaku Kogyo Co., Ltd.) with an average particle size of 10 m and sodium ion concentration of 90 ppm, and sodium ions with an average particle size of 0.7 m Spherical fine particle acid-aluminum with a concentration of 8 ppm (manufactured by Sumitomo Chemical Co., Ltd. Combine AKP-15J) and mix so that the volume of the insulating layer is 50% by volume (mass ratio of spherical coarse particles and spherical fine particles is 7: 3). A layer was formed.
  • the metal base substrate a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate. After that, the board was reinforced by attaching a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.) except for the parts on the metal base circuit board and the input terminal.
  • a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.
  • the layer having magnetic loss is composed of a magnetic material having an aspect ratio of 4 and an organic binder, and the magnetic material content is 50 vol%, and the layer having magnetic loss of 30 m in thickness Was formed on the upper surface of the coverlay.
  • a conductive circuit and electrodes were formed using a stainless steel bending jig in which a width force S200mm, thickness 0.6mm, and one side was processed with a radius of curvature 0.3mm.
  • Metal base circuit board that can be easily folded including the slits that are processed by removing 80% of the length of the part to be bent after removing the metal foil, insulating layer, coverlay and magnetic loss layer.
  • Spherical coarse particles of acid aluminum (DAW-10, manufactured by Denki Kagaku Kogyo Co., Ltd.) and spherical fine particles of acid aluminum with an average particle size of 0.7 m and a sodium ion concentration of 8 ppm (Sumitomo Chemical Co., Ltd.) “AKP-15J” manufactured by AKP-15J is combined so that the volume ratio in the insulating layer is 50% by volume (spherical coarse particles and spherical fine particles have a mass ratio of 7: 3), and the thickness after curing is 50 m.
  • 18 m thick copper foil was laminated and heated to heat cure the insulating layer, and the salt ion concentration of the entire thermosetting resin in the insulation layer was 300 ppm or less.
  • a metal base substrate having a sodium ion concentration of 50 ppm or less in the entire inorganic filler in the insulating layer was obtained.
  • the metal base substrate a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate. After that, the board was reinforced by attaching a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.) except for the parts on the metal base circuit board and the input terminal.
  • a 12.2 thick coverlay (“Nikaflex CKSE” manufactured by Futtsukan Kogyo Co., Ltd.
  • the carbon powder comprising a carbon powder, which is a solid carbon of boron solid having a specific surface area of 100 m 2 Zg and an electrical resistivity of 0.1 l Q cm or less according to JIS K 1469, and an organic binder.
  • a layer having a dielectric loss of 50 vol% and a thickness of 30 ⁇ m was formed on the top surface of the coverlay.
  • a conductive circuit and electrodes were formed using a stainless steel bending jig with a width force S200mm, thickness 0.6mm, and a side with a radius of curvature 0.3mm.
  • a metal base circuit board was obtained in the same manner as in Example 3-1, except that the substrate was not reinforced and bent by attaching a coverlay to the slit.
  • Example 3-1 Except for not performing the slit force of the part to be bent, the same process as in Example 3-1 was performed to obtain a metal base circuit board.
  • the layer having magnetic loss is composed of a magnetic material having an aspect ratio of 1 and an organic binder, and the magnetic loss layer having a thickness of 2 m is covered with the layer having the magnetic loss of 20 vol%.
  • a metal-based circuit board was obtained in the same manner as in Example 3-2 except that the metal-based circuit board was formed on the upper surface.
  • Specific surface area is 10m 2 Zg, JIS
  • Bisphenol A type epoxy resin ( ⁇ -7015 manufactured by Dainippon Ink & Chemicals, Inc.) with a hydrogen equivalent of 207 epoxy equivalent on a copper foil of 35 ⁇ m thickness is 70% by mass of the total epoxy resin
  • hydrogenated bisphenol A type epoxy resin having an epoxy equivalent of 1200 (“YL-7170” manufactured by Japan Epoxy Resin Co., Ltd.)
  • Add 48 parts by mass of polyoxypropylene diamine as a glaze Nortzmann's “D-400” and “D-2000” mass ratio of 6: 4
  • the maximum particle size is 75 ⁇ m or less
  • a spherical coarse particle acid-aluminum (“CB-A20” manufactured by Showa Denko KK) with an average particle size of 21 ⁇ m and a sodium ion concentration of lOppm and an average particle size of 0.7 ⁇ m Spherical fine particles of aluminum oxide (Sumitomo Chemical Co., Ltd.
  • the volume ratio of the insulating layer is 50% by volume (spherical coarse particles and spherical fine particles have a mass ratio of 7: 3), and the insulation thickness is 100 m after curing.
  • a layer was formed.
  • a 35 ⁇ m thick copper foil is laminated and heated to thermally cure the insulating layer, and the salt ion concentration of the entire thermosetting resin in the insulating layer is 300 ppm or less.
  • a metal base substrate having a sodium ion concentration of 50 ppm or less in the entire inorganic filler was obtained.
  • a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate.
  • heat conductive adhesive tape 10 mass% of acrylic rubber (Nippon Zeon Co., Ltd. "AR- 53L”) is dissolve been 2- Echiru hexyl Atari rate (Toagosei Co., Ltd. "2EHA”) 90 Weight 0 / 0, ⁇ acrylic acid (manufactured by Toagosei Co., Ltd.
  • AA AA
  • photoinitiator 2 2-dimethoxy - 1, 2-Jifue - Ruetan one 1-one 0.5 mass 0/0 (Chinoku 'Specialty' Chemicals Inc.), triethylene glycol dimercaptan 0.2 mass 0/0 (Maruzen Chemical Co.), 2-Bed Chiru 2 Echiru 1, 3-propanediol di Atari rate 0.2 mass 0/0 (Kyoeisha chemical Co., Ltd.) were further added and mixed to obtain a ⁇ composition.
  • the resin composition was filled with 300 parts by mass of acid aluminum ("DAW-10" manufactured by Denki Kagaku Kogyo), mixed and dispersed to obtain a heat conductive resin composition.
  • DWAW-10 acid aluminum
  • the thermally conductive resin composition was defoamed and coated on a 75 ⁇ m thick polyester film with a release treatment on the surface to a thickness of 100 ⁇ m.
  • a polyester film with a mold treatment on the surface was covered, and ultraviolet rays at 365 nm were irradiated from the front and back to 3000 mjZcm 2 to obtain a heat conductive adhesive tape.
  • Cream solder (“M705J” manufactured by Senju Metal Co., Ltd.) is applied to a predetermined position of the conductor circuit of the metal base circuit board by screen printing, and the LED (“NF SW036AT” manufactured by Nichia Steel Corporation) is applied by solder reflow. ) was implemented. After that, fix the LED light source unit to the U-shaped housing with a thermal conductivity of lWZmK and a thickness of 100 ⁇ m on the side where the LED is not mounted on the metal base circuit board. Obtained.
  • the metal foil and the conductor circuit of the metal base circuit board were removed, and the insulating layer was caloeed to a diameter of 10 mm x a thickness of 100 m, and obtained by a laser flash method.
  • the measurement sample was laminated to a thickness of 10 mm, processed to 50 mm ⁇ 120 mm, and obtained by a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the LED was turned on by applying a rated current of 450 mA to the LED, and the temperature of the LED solder joint after 15 minutes was measured.
  • the thermal conductivity of the outer layer of the contact layer is the thermal conductivity of the adhesive layer.
  • Hydrogenated bisphenol A type epoxy resin (Dai Nippon Ink Chemical Co., Ltd. ⁇ -7015 ”) having an epoxy equivalent of 170 ppm and an epoxy equivalent of 207 on a copper foil of 35 ⁇ m thickness, 70% by mass and epoxy equivalent Polyoxypropylene as a hardener for 100 parts by mass of epoxy resin consisting of 30% by mass of hydrogenated bisphenol A type epoxy resin (Japan Epoxy Resin “YL-7170”) The mass ratio of “D-400” and “D-2000” made by Jimin Lutzmann is 6 4) 48 parts by mass is added, the maximum particle size is 75 ⁇ m or less, the average particle size is 21 am, and sodium ion Spherical coarse particles of acid-aluminum with a concentration of lOppm -UM (Showa Denko “CB-A20”) and spherical fine particles of acid-aluminum (Sumitomo Chemical Co., Ltd., ⁇ -15) with an average particle size of 0.7 m
  • the insulating layer was mixed at 66 volume% (spherical coarse particles and spherical fine particles had a mass ratio of 7: 3), and the insulating layer was formed so that the thickness after curing was 100 m.
  • a 35 m thick copper foil is laminated and heated to heat cure the insulating layer.
  • the total thermosetting resin in the insulating layer has a salt ion concentration of 300 ppm or less.
  • a metal base substrate having a sodium ion concentration of 60 ppm or less in the entire filler was obtained.
  • the copper foil was etched by masking a predetermined position with respect to the copper foil surface on one side, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate. .
  • Cream solder (“M 705" manufactured by Senju Metal Co., Ltd.) is applied to a predetermined position of the conductor circuit of the metal base circuit board by screen printing, and LED (NFS) )) was implemented. After that, the side of the metal base circuit board on which the LED is not mounted is fixed to the U-shaped housing with the thermal conductivity obtained in Example 1 of lWZmK and a thickness of 100 ⁇ m of thermal conductive adhesive tape. An LED light source unit was obtained.
  • Bisphenol A type epoxy resin ( ⁇ -7015, manufactured by Dainippon Ink & Chemicals, Inc.) with a hydrogen equivalent of 207 epoxy equivalent on a 35 ⁇ m thick copper foil, 70% by mass of the total epoxy resin
  • hydrogenated bisphenol A type epoxy resin with an epoxy equivalent of 1200 (“YL-7170” manufactured by Japan Epoxy Resin Co., Ltd.)
  • Polyoxypropylene diamine (mass ratio of “D-400” and “D-2000”, 6: 4, manufactured by Nortzmann) is 48 parts by mass, and the average particle size is 75 ⁇ m or less.
  • CB-A20 lOppm Lumi-um
  • the volume of the insulating layer was 50% by volume (mass ratio of spherical coarse particles and spherical fine particles was 7: 3), and the insulating layer was formed so that the thickness after curing was 100 / zm.
  • a 35 m thick copper foil is laminated and heated to thermally cure the insulating layer.
  • thermosetting resin in the insulating layer has a salt ion concentration of 300 ppm or less, and the inorganic layer in the insulating layer.
  • a metal base substrate having a sodium ion concentration of 50 ppm or less in the entire filler was obtained.
  • a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate.
  • Cream solder (“M 705" manufactured by Senju Metal Co., Ltd.) is applied to a predetermined position of the conductor circuit of the metal base circuit board by screen printing, and the LED (“NFS W036AT manufactured by Nichia Steel Corporation” is applied by solder reflow. )) was implemented. After that, fix the LED light source on the side where the LED is not mounted on the metal base circuit board using a thermal conductive adhesive tape with a thermal conductivity of 2WZmK and a thickness of 100m. Got a unit.
  • Example 4-1 The resin composition of the heat conductive adhesive tape was obtained in Example 4-1, except that 400 parts by mass of acid aluminum ("DAW-10" manufactured by Denki Kagaku Kogyo) was filled. Thus, the procedure shown in Example 4-1 was followed.
  • Hydrogenated bisphenol A type epoxy resin (Dai Nippon Ink Chemical Co., Ltd. ⁇ -7015 ”) having an epoxy equivalent of 170 ppm and an epoxy equivalent of 207 on a copper foil of 35 ⁇ m thickness, 70% by mass and epoxy equivalent
  • Add 48 parts by mass, average particle size is less than 75 ⁇ m Spherical coarse particle acid-aluminum (“CB-A20” manufactured by Showa Denko KK) with a diameter of 21 ⁇ m and sodium ion concentration of lOppm, and an average particle size of 0.7 m and sodium ion concentration Combined with 8 ppm spherical fine particles of acid aluminum
  • the total thermosetting resin in the insulating layer has a salt ion concentration of 300 ppm or less, and the insulating layer contains A metal base substrate having a sodium ion concentration of 60 ppm or less in the entire inorganic filler was obtained.
  • a predetermined position with respect to the copper foil surface on one side was masked with an etching resist to etch the copper foil, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate.
  • Cream solder (“M 705" manufactured by Senju Metal Co., Ltd.) is applied to a predetermined position of the conductor circuit of the metal base circuit board by screen printing, and the LED (“NFS W036AT” manufactured by Nichia Steel Corporation) is applied by solder reflow. )) was implemented. After that, the side on which the LED of the metal base circuit board is not mounted is applied to the U-shaped housing with the heat conductivity adhesive tape obtained in Example 4-3 with a thermal conductivity of 2 WZmK and a thickness of 100 m. The LED light source unit was obtained by fixing.
  • Polyimide-based flexible substrate 35- ⁇ m thick copper foil is formed on a 35 ⁇ m-thick copper foil via a 50 ⁇ m-thick polyimide film insulating layer (R-F775, manufactured by Matsushita Electric Works) Therefore, the copper foil was etched by masking a predetermined position with respect to the copper foil surface on one side with an etching resist, and then the etching resist was removed to form a circuit to obtain a metal base circuit board.
  • Cream solder (“M” manufactured by Senju Metal Co., Ltd.) 705 ”) was applied by screen printing, and an LED (“ NFS W036AT ”manufactured by Nichia Gakaku) was mounted by solder reflow. Then, fix the LED light source unit to the U-shaped housing with 125 ⁇ m thick adhesive tape (“F-9469PC” manufactured by Sumitomo 3 ⁇ ) on the side where the LED is not mounted on the metal base circuit board. It was.
  • Bisphenol A type epoxy resin ( ⁇ -7015 manufactured by Dainippon Ink & Chemicals, Inc.) with a hydrogen equivalent of 207 epoxy equivalent on a copper foil of 35 ⁇ m thickness is 70% by mass of the total epoxy resin
  • hydrogenated bisphenol A type epoxy resin with an epoxy equivalent of 1200 (Japan Epoxy Resin “YL-7170”)
  • As a polyoxypropylene diamine (Moldsman's “D-400” and “D-2000” mass ratio is 6: 4) 48 parts by mass is added, and the average particle size is less than 75 ⁇ m.
  • spherical coarse particle acid medium (“CB-A20” manufactured by Showa Denko KK) with a sodium ion concentration of lOppm and an average particle size of 0.7 ⁇ m and a sodium ion concentration of 21 ⁇ m.
  • Spherical fine particle acid-aluminum (Sumitomo Chemical Co., Ltd. ⁇ -15)
  • 50% by volume in the insulating layer (spherical coarse particles and spherical fine particles had a mass ratio of 7: 3) was mixed, and the insulating layer was formed so that the thickness after curing was 100 / zm.
  • a 35 m thick copper foil is laminated and heated to thermally cure the insulating layer.
  • thermosetting resin in the insulating layer has a salt ion concentration of 300 ppm or less, and the inorganic layer in the insulating layer.
  • a metal base substrate having a sodium ion concentration of 50 ppm or less in the entire filler was obtained.
  • a predetermined position was masked with an etching resist and the copper foil was etched, and then the etching resist was removed to form a circuit to obtain a metal base circuit substrate.
  • Cream solder (“M 705" manufactured by Senju Metal Co., Ltd.) is applied to a predetermined position of the conductor circuit of the metal base circuit board by screen printing, and the LED (“NFS W036AT manufactured by Nichia Steel Corporation” is applied by solder reflow. )) was implemented. After that, the metal base circuit board LED is not mounted
  • the LED light source unit was obtained by fixing the side to a U-shaped housing with 125 ⁇ m thick adhesive tape (“F-9469PC” manufactured by Sumitomo 3 ⁇ ).
  • the metal base circuit board of the present invention has a heat dissipation property and an electrical insulation property, and can easily be used at room temperature even in the state where an electrical component such as a semiconductor element or a resistor chip that requires heat dissipation is mounted. Since it can be bent, it is possible to reduce the size or thickness of electronic devices mounted with highly heat-generating electronic components, which was difficult in the past.
  • the metal base circuit board of the present invention has a bendability because a hybrid integrated circuit in contact with a housing having a complicated shape or a heat radiating member or a cover lay is attached and slit processing is performed at a desired position.
  • An LED module with a secured or magnetic loss layer or dielectric loss layer or heat generated from the LED light source is efficiently dissipated to the back side of the substrate to reduce the LED temperature rise, It can be applied to various fields such as V, B, and B, such as application to LED light source units that have a bright and long lifespan with reduced luminous efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

 平坦な部分への設置だけでなく筐体の側面や底面または段差や曲面などに密着させることができ、熱放散性、電気絶縁性、屈曲性に優れる薄型化された金属ベース回路基板、およびその製法ならびにそれを用いた混成集積回路、LEDモジュール、明るく超寿命のLED光源ユニットを提供する。  絶縁層と導体回路又は金属箔とが交互に積層されている回路基板であって、導体回路又は金属箔の厚さが5μm以上450μm以下、絶縁層が無機フィラーと熱硬化性樹脂とを含有する樹脂組成物の硬化体からなり、前記絶縁層の厚さが9μm以上300μm以下であることを特徴とする金属ベース回路基板およびそれを用いた混成集積回路。また、カバーレイ、磁性損失を有する層又は誘電損失を有する層を設けてなる金属ベース回路基板。さらに、前記導体回路上に1個以上の発光ダイオード(LED)を搭載してなる金属ベース回路基板。

Description

明 細 書
金属ベース回路基板、 LED,及び LED光源ユニット
技術分野
[0001] 本発明は、熱放散性と電気絶縁性を確保しつつ、かつ電磁波シールド性が良好で 折り曲げることのできる金属ベース回路基板、それを用いた、発光ダイオード (LED: Light Emitting Diode)、及び LED光源ユニットに関するものである。特に、液晶表 示装置のノ ックライトに好適な LED光源ュ-ットに関する。
背景技術
[0002] 近年、半導体搭載用の回路基板は、基板の小型化、高密度実装化および高性能 化が要求され、更には、半導体素子等の小型化、ハイパワー化により、狭いスペース の中で、半導体素子等力も発生した熱を如何に放熱するかといったことが問題となつ ている。特に、電源分野や自動車電装分野を中心に、金属板上に絶縁層を介して金 属箔を接合し回路形成した金属ベース回路基板が、放熱性が優れるという理由から 使用されてきた。
[0003] し力し、金属ベース回路基板は、ベース基板の厚みが一般に 1. 0mm〜3. Omm であるため薄肉化が難しく設置箇所が限られていた。また、金属板上に薄い絶縁層 を介した構造であるため、ノイズが発生しやすくモジュールの誤作動を起こしやす ヽ といった問題があった。
[0004] ノイズシールドと放熱性を高めるため、例えば金属ベース回路基板上の全面あるい は一部に回路を有する上層回路基板を、接着剤を介して、積層した金属ベース多層 基板が公知となって ヽる (特許文献 1参照)。
[0005] このような構成では、金属板と上層基板との間に熱伝導性の悪い接着剤層が存在 するため、上層回路パターン上にハイパワー素子を搭載する場合には、放熱性が不 十分であり、素子の温度が上昇し、ひいては誤動作してしまう問題があった。
[0006] 上記の放熱性の問題を解決するため、高熱伝導の絶縁層を有する金属ベース回 路基板が公知となって 、る (特許文献 2参照)。
[0007] しかし、金属板は厚いため、湾曲したケース等の筐体形状に沿って貼り付け設置す ることができないため絶縁層の放熱性を十分に活かすことができないうえ、折り曲げし ての設置等ができないため設置には大きなスペースを必要となり、モジュールの小型 化ができな 、と 、つた問題があった。
一方で、金属板上に無機フィラーを充填したエポキシ榭脂など力もなる絶縁層を設 け、その上に回路パターンを形成した金属ベース回路基板は、熱放散性と電気絶縁 性に優れることから高発熱性電子部品を実装する通信機及び自動車などの電子機 器用回路基板として用いられて ヽる (特許文献 3参照)。
[0008] 金属ベース回路基板を任意に折り曲げることができれば、平坦な部分への設置が 一般的あった取り付け箇所の限定が緩和され、筐体の側面や底面または段差や曲 面等に粘着、接着およびビス止めなどにより密着させることが可能となり、高発熱性 電気部品を実装する電子機器の小型化ができる。また、金属ベース回路基板自体を 薄くできれば、間隔の狭いスペースへ挿入または固定ができるため、高発熱性電気 部品を実装する電子機器の薄型化ができる。
[0009] 金属ベース回路基板を 120°C以上の高温で加熱する方法、すなわち、絶縁層のガ ラス転移温度 (Tg)に対して 10°C以上高く金属ベース回路基板を加熱した状態で曲 げ加工や絞り加工を行うことで、平坦でな!、部分を有する金属ベース回路基板を筐 体や電子回路パッケージと兼用することが提案されている(特許文献 4参照)。
[0010] また、発光ダイオード (LED)を光源に使用した発光ダイオード (LED)光源ユニット 力 Sいろいろな分野で用いられてきている力 例えば、液晶表示装置のバックライトの 光源においては CFL (冷陰極管)といわれる小型の蛍光管を使用されることが一般 的であった。
[0011] 前記 CFL (冷陰極管)の光源は、放電管の中に Hg (水銀)を封入していて、放電に より励起された水銀力 放出される紫外線が CFL (冷陰極管)の管壁の蛍光体にあ たり可視光に変換される構造が採用されている。このため、最近は環境面の配慮から 、有害な水銀の使用して ヽな 、代替光源の使用が求められて 、る。
[0012] 新たな光源として、発光ダイオード (以下、単に「LED」と記す。)を使用したものが 提案されている力 LEDは光に指向性があり、特にフレキシブル基板等への面実装 タイプでは一方向に光りが取り出されるため、従来の CFL (冷陰極管)を用いた構造 とは異なり、光のロスも少ないことから面状光源方式のノ ックライト光源に使用されて いる。(特許文献 5参照)。
[0013] LEDを光源としたバックライトは、低価格化と発光効率向上および環境規制に伴い 、液晶表示装置のバックライトとして普及し始めている。同時に液晶表示装置の高輝 度化および表示領域の大型化に伴い、発光量を向上させるため LEDのフレキシブ ル基板等への搭載数増加と大出力化がますます進んでいる。
[0014] し力しながら、 LEDの光源は発光効率が低いため、 LEDが発光する際に入力電力 の大半が熱として放出される。 LEDは電流を流すと熱を発生し、発生した熱によって 高温となり、この程度が著しいと LEDが破壊されてしまう。 LEDを光源としたバックラ イトにおいても、この発生熱が LEDとそれを実装した基板とに蓄熱され、 LEDの温度 上昇に伴い、 LED自身の発光効率の低下を招く。し力も、ノ ックライトを明るくするた めに、 LEDの実装数を増加させたり、入力電力を増加させると、その発熱量が増大 することから、この熱を除去することが重要である。
[0015] LED実装基板の蓄熱を低減し、 LEDチップの温度上昇を小さくするために、 LED 実装基板の LEDチップ実装面に LEDチップが実装される実装金属膜と、 LEDチッ プに駆動電流を供給する金属駆動配線と、放熱を目的とした金属膜パターンが形成 され、 LEDチップ実装面と対向する面に放熱様金属膜が形成され、 LEDチップ実装 基板の厚み方向に、一方主面側の金属パターンと他方主面側の放熱用金属膜とを 接続する金属スルーホールを形成して、 LEDからの発熱を金属スルーホールより裏 面の金属膜に放熱することが提案されて ヽる (特許文献 6参照)。
[0016] しかし、実装する LEDの形状が小さい場合には、実装金属膜の面積が限られてし まうこと、 LED直下に形成できる金属スルーホールの数の限られてしまうこと、実装基 板上に金属膜パターンを基板面積の制約から形成できない場合には LEDで発生し た熱を効率良く基板裏面に放熱すること、等ができな 、と 、う問題がある。
[0017] さらに、フレキシブル基板の代わりに厚さ 2mmの金属ベース板を用いた金属べ一 ス回路基板を使用すると、金属スルーホール等を設けること無ぐ良好な放熱性が得 られる力 基板厚みが厚くなること、また、フレキシブル基板よりも電極及び配線バタ ーン等力 打ち抜き寸法を大きくする必要があり、基板面積が大きくなつてしまう問題 力 Sある。更に、 LED搭載部分以外を任意に折り曲げることができない為、入力端子の 形成位置など制約を受ける。
[0018] その上に、前記金属ベース回路基板の金属ベース厚みを薄くしてフレキシブル基 板と同様に電極及び配線パターン等からの打ち抜き寸法を小さくした構造とすると、 金属ベース回路基板が多少橈むだけでも絶縁層にクラックが入り使用できない。同 様に LED搭載部分を任意に折り曲げることができない課題があった。
[0019] また、従来のポリイミド系絶縁層の代わりに、熱伝導性フイラ一を充填した室温での 折り曲げ性が良好な放熱性を有する絶縁層を介して導体回路を設けてなる 9〜40 m程度の金属箔を使用した金属ベース回路基板が、室温で折り曲げて使用すること ができ、折り曲げ加工性できることから開発されてきた。
[0020] し力しながら、導体回路に 0. 5mm以下の非常に小さい曲率半径で 90° 以上折り 曲げられると、折り曲げられた部分の絶縁層にクラックが入り使用できな 、場合があつ た。そこで、ポリイミドフィルムにエポキシ接着層が形成されたカバーレイで補強すると 折り曲げ部分の絶縁層にクラックが発生することを防ぐことができるが、折り曲げ性が 低下するために、 0. 5mm以下の非常に小さい曲率半径で 90° 以上折り曲げること が困難となる問題があった。
[0021] また、半導体搭載用の回路基板や小型精密モーターなどを搭載した場合には、ノ ィズが発生しやすくモジュールの誤操作を起こしやす 、と 、つた問題があった。 特許文献 1:特開平 05— 037169号公報
特許文献 2:特開平 09— 139580号公報
特許文献 3:特開昭 62— 271442号公報
特許文献 4:特開 2001—160664号公報
特許文献 5:特開 2005 - 293925号公報
特許文献 6:特開 2005 - 283852号公報
発明の開示
発明が解決しょうとする課題
[0022] 本発明は、前記従来技術の有する問題を解決することを課題になされたもので、熱 放散性が良好でかつ、良好な折り曲げ性を有し、電磁波シールド性と絶縁性にも優 れた金属ベース回路基板とその製法、ならびにそれを用いた混成集積回路、カバー レイで補強した LEDモジュール、 LEDの損傷が妨げられて明る!/、長寿命の LED光 源ユニットを提供するものである。
課題を解決するための手段
即ち、本発明の要旨は、以下の通りである。
(1)絶縁層と導体回路又は金属箔とが交互に積層されている回路基板であって、導 体回路又は金属箔の厚さが 5 μ m以上 450 m以下、絶縁層が無機フィラーと熱硬 化性榭脂とを含有する榭脂組成物の硬化体からなり、前記絶縁層の厚さが 9 μ m以 上 300 μ m以下であることを特徴とする金属ベース回路基板。
(2)導体回路又は金属箔間を電気的に接続するために使用するスルーホールの少 なくとも 1個力 0. 0078mm2以上である(1)に記載の金属ベース回路基板。
(3)絶縁層の熱伝導率が l〜4WZmKである(1)又は(2)に記載の金属ベース回路 基板。
(4)絶縁層のガラス転移温度が 0〜40°Cである(1)乃至(3)の 、ずれか一項に記載 の金属ベース回路基板。
(5)絶縁層が、熱硬化性榭脂を 25〜60体積%含有し、残部が最大粒子径 75 m 以下で平均粒子径 5〜40 mの球状粗粒子と平均粒子径 0. 3〜3. の球状 微粒子とからなるナトリウムイオン濃度が 500ppm以下の無機フイラ一力もなる榭脂 組成物の硬化体である(1)乃至 (4)の 、ずれか一項に記載の金属ベース回路基板
(6)熱硬化性榭脂が、水素添加されたビスフエノール F型及び Z又は A型のエポキシ 榭脂を含有する(1)乃至(5)の 、ずれか一項に記載の金属ベース回路基板。
(7)熱硬化性榭脂が、エポキシ当量 800以上 4000以下の直鎖状のエポキシ榭脂を 含有する(6)に記載の金属ベース回路基板。
(8)熱硬化性榭脂が、硬化剤としてポリオキシアルキレンポリアミンを含有する(6)又 は(7)に記載の金属ベース回路基板。
(9)熱硬化性榭脂中の塩ィ匕物イオン濃度が 500ppm以下である(6)乃至(8)の 、ず れか一項に記載の金属ベース回路基板。 (10)当該回路基板を、任意の個所で曲率半径 l〜5mmで 90° 以上折り曲げたとき に、導体回路又は金属箔の各々間の耐電圧が 1. OkV以上である(1)乃至(9)のい ずれか一項に記載の金属ベース回路基板。
(11)金属箔上に絶縁層を介して導体回路を設け、更に厚さが 以上 以 下であるカバーレイを設けてなる金属ベース回路基板であって、カバーレイの少なく とも一部が除かれて形成されて 、るスリットが前記導体回路の設けられて 、な 、部分 に形成されて ヽる(1)乃至(10)の 、ずれか一項に記載の金属ベース回路基板。
(12)前記スリットが、折り曲げる部分の長さに対して 50%以上 95%以下に加工され ている(11)に記載の金属ベース回路基板。
(13)前記カバーレイの厚さが 5 μ m以上 25 μ mである(11)又は(12)に記載の金属 ベース回路基板。
(14)前記スリット部で折り曲げられている(11)乃至(13)のいずれか一項に記載の 金属ベース回路基板。
(15)絶縁層表面が、曲率半径 0. 1〜0. 5mmで 90° 以上に折り曲げられている(1 1)乃至(14)の 、ずれか一項に記載の金属ベース回路基板。
(16)カバーレイの表面上に、磁性損失を有する層又は誘電損失を有する層が積層 されている(11)乃至(15)のいずれか一項に記載の金属ベース回路基板。
(17)磁性損失を有する層が、アスペクト比が 2以上である磁性材料と有機結合材と からなり、前記磁性材料の含有量が 30〜70vol%であり、さらに当該磁性損失を有 する層の厚さが 3 μ m以上 50 μ m以下である(11)乃至(16)の!、ずれか一項に記載 の金属ベース回路基板。
(18)誘電損失を有する層が、比表面積が 20〜110m2/gのカーボン粉末と有機結 合材とからなり、前記カーボン粉末の含有量が 5〜60vol%であり、当該磁性損失を 有する層の厚さが 3 μ m以上 50 μ m以下である(11)乃至(16)の!、ずれか一項に記 載の金属ベース回路基板。
( 19) ( 1)乃至( 10)の 、ずれか一項に記載の金属ベース回路基板を使用したことを 特徴とする混成集積回路。
(20) (11)乃至(18)のいずれか一項に記載の金属ベース回路基板の導体回路に、 少なくとも 1個の LEDを電気的に接続してなることを特徴とする LED。
(21) (1)乃至(18)のいずれか一項に記載金属ベース回路基板を、粘着テープを介 して、筐体表面に配置し、し力も前記金属ベース回路基板の導体回路上に 1個以上 の発光ダイオード (LED)を搭載してなることを特徴とする LED光源ユニット。
(22)粘着テープの熱伝導率が l〜2WZmKで、厚さが 50 μ m以上 150 μ m以下 である(21)に記載の LED光源ユニット。
(23)粘着テープが、アクリル酸及び Zまたはメタクリル酸を含む高分子を含有する( 21)又は(22)に記載の LED光源ユニット。
(24)粘着テープが、熱伝導性電気絶縁剤を 40〜80体積%含有して 、る (21)乃至 (23)の!、ずれか一項に記載の LED光源ユニット。
(25)熱伝導性電気絶縁剤の最大粒子径が 45 μ m以下で平均粒子径 0. 5〜30 μ mである(21)乃至(24)の!、ずれか一項に記載の LED光源ユニット。
発明の効果
[0024] 本発明の金属ベース回路基板は、電磁波シールド性、熱放散性、電気絶縁性を有 し、しかも室温で折り曲げが可能であるため、平坦な部分への設置だけでなく筐体の 側面や底面または段差や曲面などに密着させることが可能である。さらに、放熱が必 要な半導体素子や抵抗チップなどの電気部品を実装した状態で、容易に室温で折り 曲げることが可能となったので、従来は困難であった高発熱性電子部品を実装した 電子機器の小型化または薄型化ができる。
さらに、 LED光源から発生する熱を、基板裏面側に放熱し、熱伝導性粘着テープ を介して外部に放出することが可能なので、 LED実装基板の蓄熱を低減し、 LEDの 温度上昇を小さくできる。よって、 LEDの発光効率低下を抑制し、 LEDの損傷を防 ぎ、明るく長寿命の LED光源ユニットを提供できる。
図面の簡単な説明
[0025] [図 1-1]本発明の金属ベース回路基板を用いた混成集積回路の一例を示す図。
[図 2-1]本発明に係る金属ベース回路基板の一例を示す平面図。
[図 2-2]本発明に係る金属ベース回路基板(図 2-1の表面上にカバーレイを配置した もの)の一例を示す平面図。 圆 2- 3]本発明に係る金属ベース回路基板(図 2- 2の表面上に磁性損失を有する層 又は誘電損失を有する層を配置したもの)の一例を示す平面図。
圆 2- 4]本発明に係る金属ベース回路基板(図 2- 3の表面上に発熱部品を配置した もの)の一例を示す平面図。
圆 2- 5]本発明に係る他の金属ベース回路基板の断面図。
[図 2-6]本発明に係る他の金属ベース回路基板の平面図。
[図 2-7]本発明に係る他の金属ベース回路基板の平面図。
圆 3-1]本発明に係る LED光源ユニットの一例を示す断面図。
符号の説明
1 金属箔
2 絶縁層
3 導体回路
4 ヒートスプレッダ一
5 出力用半導体
6 制御用半導体
7 ボンディングワイヤー
8 チップ部品
9 半田接合部
10 熱伝導性接着剤
11 放熱性を有する筐体
21 金属箔
22 絶縁層
23 導体回路
24 電極
25 スリット部
26 カバーレイ
26a エポキシ接着層
27 部品搭載部 28 入力端子
29a 磁性損失を有する層
29b 誘電損失を有する層
210 発熱部品 (LED)
211 折り曲げ箇所
212 筐体
213 熱伝導性粘着テープ
31 金属箔
32 絶縁層
33 導体回路
34 入力回路(引き出し配線)
35 半田接合部
36 LED
37 熱伝導性の粘着テープ
38 筐体
発明を実施するための最良の形態
本発明の金属ベース回路基板、混成集積回路、 LEDモジュール、 LED光源ュ- ットにおける好ましい形態は以下のとおりである。
(1-1)金属箔上に絶縁層を介し導体回路を設けた金属ベース回路基板であって、 前記金属箔の厚さが 5 μ m以上 300 μ m以下、無機フィラーと熱硬化性榭脂を含有 する前記絶縁層の厚さが 80 μ m以上 200 μ m以下、前記導体回路の厚さが 9 μ m 以上 140 μ m以下である金属ベース回路基板。
(1-2)熱硬化性榭脂が水素添加されたビスフエノール F型および Zまたは A型のェ ポキシ榭脂を含有する(1-1)に記載の金属ベース回路基板。
(1-3)熱硬化性榭脂がエポキシ当量 800以上 4000以下の直鎖状の高分子量ェポ キシ榭脂を含有する(1-2)に記載の金属ベース回路基板。
(1-4)熱硬化性榭脂中の塩ィ匕物イオン濃度が 500ppm以下である(1-1)〜(1-3) の!、ずれか一項に記載の金属ベース回路基板。 (1-5)絶縁層のガラス転移温度が 0〜40°Cである(1-1)〜(1-4)のいずれか一項に 記載の金属ベース回路基板。
(1-6)絶縁層が熱硬化性榭脂を 25〜50体積%含有し、残部が最大粒子径 75 μ m 以下で平均粒子径 10〜40 mの球状粗粒子と平均粒子径 0. 4〜1. の球状 微粒子とからなるナトリウムイオン濃度が 500ppm以下の無機フィラーである(ト 1)〜 (1-5)のいずれか一項に記載の金属ベース回路基板。
(1-7)導体回路側または導体回路側と反対側に折り曲げた(1-1)〜(1-6)の 、ず れか一項に記載の金属ベース回路基板。
(1-8)曲率半径 l〜5mmで 90° 以上導体回路側または導体回路側と反対側に折り 曲げた(1-1)〜(1-6)のいずれか一項に記載の金属ベース回路基板。
(1-9)絶縁層の熱伝導率が l〜4WZmKであり、曲率半径 l〜5mmで 90° 以上折 り曲げた状態で導体回路と金属箔との間の耐電圧が 1. 5kV以上である( 1-1)〜( 1- 6)の 、ずれか一項に記載の金属ベース回路基板。
(1-10)室温で折り曲げることを特徴とする(1-7)〜(1-9)のいずれか一項に記載の 金属ベース回路基板の製造方法。
(1-11) (1-1〜1-9)のいずれか一項に記載の金属ベース回路基板を使用した混成 集積回路。
(2-1)絶縁層と導体回路又は金属箔とが交互に積層されている回路基板であって、 導体回路又は金属箔の厚さが 5 μ m以上 450 μ m以下、絶縁層が無機フィラーと熱 硬化性榭脂とを含有する榭脂組成物の硬化体からなり、前記絶縁層の厚さが 9 μ m 以上 300 μ m以下であることを特徴とする回路基板。
(2-2)導体回路又は金属箔間を電気的に接続するために使用するスルーホールの 少なくとも 1個力 0. 0078mm2以上である(2-1)に記載の回路基板。
(2-3)絶縁層の熱伝導率が l〜4WZmKである(2-1)又は(2-2)に記載の回路基 板。
(2-4)絶縁層のガラス転移温度が 0〜40°Cである(2-1)乃至(2-3)の 、ずれか一項 に記載の回路基板。
(2-5)絶縁層が、熱硬化性榭脂を 25〜60体積%含有し、残部が最大粒子径 75 m以下で平均粒子径 5〜40 mの球状粗粒子と平均粒子径 0. 3〜3. の球状 微粒子とからなる無機フィラーとからなる榭脂組成物の硬化体である(2-1)乃至(2-
4)のいずれか一項に記載の回路基板。
(2-6)当該回路基板を、任意の個所で曲率半径 l〜5mmで 90° 以上折り曲げたと きに、導体回路又は金属箔の各々間の耐電圧が 1. OkV以上である(2-1)乃至(2-
5)のいずれか一項に記載の回路基板。
(3-1)金属箔上に絶縁層を介して導体回路を設け、更にカバーレイを設けてなる金 属ベース回路基板であって、少なくともカバーレイの一部が除かれて形成されている スリットが前記導体回路の設けられて 、な 、部分に形成されて 、ることを特徴とする 金属ベース回路基板。
(3-2)前記スリットが、折り曲げる部分の長さに対して 50%以上 95%以下が加工さ れてなる(3-1)に記載の金属ベース回路基板。
(3-3)絶縁層が無機フィラーを含有する熱硬化性榭脂からなり、当該絶縁層の厚み 力 S30 μ m以上 80 μ m以下であり、金属箔の厚さが 5 μ m以上 40 μ m以下であり、し 力も導体回路の厚さが 9 μ m以上 40 μ m以下である(3-1)又は(3-2)に記載の金属 ベース回路基板。
(3-4)絶縁層が、最大粒子径が 30 μ m以下で、平均粒子径が 2〜15 mの球状粒 子力もなり、ナトリウムイオン濃度が 500ppm以下の無機フィラー 50〜75体積%と残 部熱硬化性榭脂とからなる(3-1)乃至(3-3)の 、ずれか一項に記載の金属ベース 回路基板。
(3-5)熱硬化性榭脂が水素添加されたビスフエノール F型または A型のエポキシ榭 脂を含有する(3-1)乃至(3-4)の 、ずれか一項に記載の金属ベース回路基板。
(3-6)熱硬化性榭脂がエポキシ当量 800以上 4000以下の直鎖状の高分子量ェポ キシ榭脂を含有する(3-1)乃至(3-5)の 、ずれか一項に記載の金属ベース回路基 板。
(3-7)熱硬化性榭脂中の塩ィ匕物イオン濃度が 500ppm以下である(3-1)乃至(3-6 )の 、ずれか一項に記載の金属ベース回路基板。
(3-8)絶縁層のガラス転移温度が 0〜40°Cである(3-1)乃至(3-7)の 、ずれか一項 に記載の金属ベース回路基板。
(3-9)カバーレイの厚さが 5 μ m以上 25 μ m以下である(3-1)乃至(3-8)の!、ずれ か一項に記載の金属ベース回路基板。
(3-10)スリット部にて、折り曲げられている(3-1)乃至(3- 9)のいずれか一項に記載 の金属ベース回路基板。
(3-11)絶縁層表面力 曲率半径 0. 1〜0. 5mmで 90° 以上に折り曲げられている (3-1)乃至(3-10)の 、ずれか一項に記載の金属ベース回路基板。
(3-12)カバーレイの表面上に、磁性損失を有する層又は誘電損失を有する層が積 層されて 、る (3-1)乃至(3-11)の 、ずれか一項に記載の金属ベース回路基板。 (3-13)磁性損失を有する層が、アスペクト比が 2以上である磁性材料と有機結合材 とからなり、前記磁性材料の含有量が 30〜70vol%であり、さらに当該磁性損失を有 する層の厚さが 3 μ m以上 50 μ m以下である(3-12)に記載の金属ベース回路基板
(3- 14)誘電損失を有する層が、比表面積が 20〜110m2/gのカーボン粉末と有機 結合材とからなり、前記カーボン粉末の含有量が 5〜60vol%であり、当該磁性損失 を有する層の厚さが 3 μ m以上 50 μ m以下である(3-12)に記載の金属ベース回路 基板。
(3-15)カーボン粉末力 JIS K 1469による体積抵抗率が 0. l Q cm以下であるホ ゥ素固溶のカーボンブラックである(3-14)に記載の金属ベース回路基板。
(3-16)絶縁層の熱伝導率が l〜4WZmKであり、導体回路と金属箔との間の耐電 圧が 1. OkV以上である(3-1)乃至(3-15)の!、ずれか一項に記載の金属ベース回 路基板。
(3-17) (3-1)乃至(3-16)のいずれか一項に記載の金属ベース回路基板の導体 回路に、少なくとも 1個の LEDを電気的に接続してなることを特徴とする LED。 (4-1)金属箔上に絶縁層を介して導体回路を設けてなる金属ベース回路基板を、粘 着テープを介して、筐体表面に配置し、しかも前記金属ベース回路基板の前記導体 回路上に 1個以上の発光ダイオード (LED)を搭載してなる LED光源ユニットであつ て、前記金属箔の厚さが 18 m以上 300 m以下であり、前記絶縁層が無機フイラ 一と熱硬化性榭脂とを含有し、厚さが 80 m以上 200 m以下であり、前記導体回 路の厚さが 9 μ m以上 140 μ m以下であることを特徴とする LED光源ユニット。
(4-2)絶縁層の熱伝導率が l〜4WZmKである(4-1)に記載の LED光源ユニット。 (4-3)絶縁層が、熱硬化性榭脂を 25〜50体積%含有し、残部が最大粒子径 75 m以下で平均粒子径 10〜40 mの球状粗粒子と平均粒子径 0. 4〜1. の球 状微粒子とからなる無機フィラーである(4-1)又は (4-2)に記載の LED光源ユニット
(4-4)絶縁層中の熱硬化性榭脂のガラス転移温度が 0〜40°Cである(4-1)乃至 (4- 3)の!、ずれか一項に記載の LED光源ユニット。
(4-5)熱硬化性榭脂が、水素添加されたビスフエノール F型及び Z又は A型のェポ キシ榭脂を含有してなる (4-1)乃至 (4-4)の 、ずれか一項に記載の LED光源ュ- ッ卜。
(4- 6)熱硬化性榭脂が、エポキシ当量 800以上 4000以下の直鎖状のエポキシ榭脂 を含有してなる(4-1)乃至(4-5)の!、ずれか一項に記載の LED光源ユニット。
(4-7)熱硬化性榭脂が、ポリオキシアルキレンポリアミンを含有してなる (4-1)乃至( 4-6)の!、ずれか一項に記載の LED光源ユニット。
(4-8)熱硬化性榭脂に含まれるエポキシ榭脂のエポキシ当量に対して、活性水素当 量が 0. 8〜1倍となるようにポリオキシアルミレンポリアミンを含有してなる(4-1)乃至 (4-7)の!、ずれか一項に記載の LED光源ユニット。
(4- 9)金属ベース回路基板が、 LEDを実装した部分以外の部分の 1箇所以上の部 分で、導体回路面または導体回路面と反対側に曲率半径 l〜5mmで 90° 以上折り 曲げられ、し力も前記折り曲げた金属ベース回路基板の導体回路と金属箔との間の 耐電圧が 1. 5kV以上である(4-1)乃至(4-8)の!、ずれか一項に記載の LED光源 ユニット。
(4- 10)粘着テープの熱伝導率が l〜2WZmKで、厚さが 50 μ m以上 150 μ m以 下である(4-1)乃至(4-9)の!、ずれか一項に記載の LED光源ユニット。
(4-11)粘着テープが、アクリル酸及び Zまたはメタクリル酸を含む高分子を含有す る(4-1)乃至(4-10)の!、ずれか一項に記載の LED光源ユニット。 (4- 12)粘着テープが、熱伝導性電気絶縁剤を 40〜80体積%含有している(4-1) 乃至(4-11)の!、ずれか一項に記載の LED光源ユニット。
(4-13)熱伝導性電気絶縁剤がアクリルゴムである(4-1)乃至 (4-12)の ヽずれか一 項に記載の LED光源ユニット。
(4-14)前記高分子が (メタ)アクリル酸エステルモノマーを含むモノマーを重合して なるアクリル重合体である(4-1)乃至 (4-13)の 、ずれか一項に記載の LED光源ュ ニット。
(4-15)前記(メタ)アクリル酸エステルモノマーが 2—ェチルへキシルアタリレートを 含む(4-1)乃至(4-14)の!、ずれか一項に記載の LED光源ユニット。
(4-16)熱伝導性電気絶縁剤の最大粒子径が 45 μ m以下で平均粒子径 0. 5〜30
/z mである(4-1)乃至(4-15)のいずれか一項に記載の LED光源ユニット。
(4-17)熱伝導性電気絶縁剤がアルミナ、結晶性シリカ、及び水酸化アルミニウムか らなる群力 選ばれる 1種以上である(4-1)乃至 (4-16)のいずれか一項に記載の L
ED光源ユニット。
[0031] 以下に、本発明を実施するための好ましい態様について詳細に説明する。
下記された金属ベース回路基板の構成、および主要な構成材料である金属箔、無 機フイラ一、熱硬化性榭脂、導体回路等は、混成集積回路、 LEDモジュール、 LED 光源ユニットへの適応が適宜可能である。
[0032] <金属ベース回路基板 >
本発明の基本となる金属ベース回路基板の構成、構成材料の特性等について記 述する。
本発明の回路基板は、絶縁層と導体回路又は金属箔とが交互に積層されている金 属ベース回路基板であり、導体回路又は金属箔の厚さが 5 m以上 450 m以下、 絶縁層が無機フィラーと熱硬化性榭脂とを含有する榭脂組成物の硬化体からなり、 前記絶縁層の厚さが 9 μ m以上 300 μ m以下である。
即ち、導体回路又は金属箔の厚さが 5 μ m以下では取扱等の問題から製造できず 、 450 m以上では折り曲げ性が低下する上、回路基板全体が厚くなつてしまうから である。 [0033] 本発明において、金属ベース回路基板は、室温で折り曲げて使用することができる 1S さらに、繰り返し折り曲げても使用可能であるため加工性が高ぐ再利用などがで きる。
[0034] [金属箔]
金属箔の材質としては、アルミニウム又はアルミニウム合金、銅又は銅合金、鉄、ス テンレスなどが用いられる。また、金属箔の材質によっては、接着性を向上させるた め、金属箔の絶縁層側を電解処理、エッチング処理、プラズマ処理、プライマー処理 又はカップリング処理等の表面処理を施すことが好ましい。
[0035] [絶縁層]
本発明では、絶縁層の熱伝導率が l〜4WZmKであるのが好ましぐ更に好ましい のは、 2〜3WZmKである。熱伝導率が lWZmK未満になると回路基板の熱抵抗 が高くなり、目的とする放熱性が得られないことがある。また、 4WZmK以上の熱伝 導率を得るためには、無機フィラーの量を多くする必要があるため、柔軟性がなくなり 良好な屈曲性能が得られなくなることがある。
[0036] また、絶縁層のガラス転移温度は、 0〜40°Cであることが好ましぐ更に好ましいの は 10〜30°Cである。ガラス転移温度が 0°C未満であると剛性と電気絶縁性が低ぐ 4 0°Cを超えると屈曲性が低下する。ガラス転移温度が 0〜40°Cであると、従来の金属 ベース基板で用いられて 、る絶縁層のように室温で堅!、ものとは異なり、室温で曲げ 加工あるいは絞り加工を実施しても金属箔との剥離や絶縁層クラックなどによる耐電 圧の低下が起きにくい。
絶縁層の厚さは、 9 μ m以上 300 μ m以下が好ましい。
[0037] 本発明では、絶縁層が、熱硬化性榭脂を 25〜60体積%含有し、残部が最大粒子 径 75 μ m以下で平均粒子径が 5〜40 μ mの球状粗粒子と平均粒子径が 0. 3〜3. 0 μ mの球状微粒子とからなる無機フィラーとからなる榭脂組成物の硬化体である。 熱硬化性榭脂を上記体積%以上含有すると放熱性が低下し上記の熱伝導率が得ら れなくなってしまう。
[0038] 絶縁層を構成する熱硬化性榭脂としては、エポキシ当量が 800以上 4000以下の 直鎖状の高分子エポキシ榭脂と水素添加されたビスフエノール F型および Zまたは A 型のエポキシ榭脂を主体とする樹脂に、さらに、フエノール榭脂、ポリイミド榭脂、フエ ノキシ榭脂、アクリルゴム、アクリロニトリル一ブタジエンゴムなどを配合してもよいが、 室温での折り曲げ性、電気絶縁性、耐熱性などを考慮すると、それらの配合量はェ ポキシ榭脂との合計量に対して 30質量%以下であることが好ましい。
[0039] 絶縁層を構成する熱硬化性榭脂としては、エポキシ榭脂、フエノール榭脂、シリコー ン榭脂、アクリル榭脂などが使用できる。中でも、無機フィラーを含みながらも、硬化 状態において、金属箔 1と導体回路との接合力に優れ、かつ、室温にて屈曲性に優 れたエポキシ榭脂と重付加型のエポキシ硬化剤を主成分としたものが好ましい。 重付加型のエポキシ硬化剤としては、熱硬化後に熱硬化性榭脂の屈曲性を向上さ せる効果があるポリオキシアルキレンポリアミンが好ましぐ熱硬化性榭脂に含まれる エポキシ榭脂のエポキシ当量に対して活性水素当量が 0. 8〜1倍となるように添カロ することが絶縁層の剛性、曲げ加工性、絶縁性などを確保するために好ましい。
[0040] さらに、絶縁層を構成する熱硬化性榭脂として、水素添加されたビスフ ノール F型 および Zまたは A型のエポキシ榭脂を用いることが好ましぐエポキシ当量が 180〜2 40であると室温で液状であり、熱硬化性榭脂中 60〜: LOO質量%の範囲で用いること ができる。この水素添加されたビスフエノール F型および Zまたは A型のエポキシ榭 脂は、汎用のビスフエノール F型や A型に比べ、剛直な構造ではないため硬化性榭 脂組成物としたときに屈曲性が優れる。また、榭脂の粘度が低いため、エポキシ当量 800以上 4000以下の直鎖状の高分子量エポキシ榭脂を熱硬化性榭脂中 0〜40質 量%と、絶縁層中に無機フィラー 50〜75体積%添加することが可能となる。
[0041] 水素添加されたビスフエノール F型および Zまたは A型のエポキシ榭脂のエポキシ 当量が 180未満では、エポキシ榭脂の精製過程で残存したエポキシ基を有する低分 子量の不純物が多くなり、接着強度や絶縁性が低下するため好ましくない。また、ェ ポキシ当量が 240を超えると榭脂粘度が高くなり、エポキシ当量 800以上 4000以下 の直鎖状の高分子量エポキシ榭脂の添加により榭脂粘度がさらに上昇し、高分子量 エポキシ榭脂を熱硬化性榭脂中 0〜40質量%と絶縁層中に無機フィラー 50〜75体 積%添加することが難しくなる。
[0042] 絶縁層にエポキシ当量 800以上 4000以下の直鎖状の高分子量エポキシ榭脂を 含有させると、熱硬化性榭脂にエポキシ当量が 800未満の直鎖状のエポキシ榭脂の みを用いた場合よりも接合性が向上する。さらに、エポキシ当量 800以上 4000以下 の直鎖状の高分子量エポキシ榭脂を水素添加されたビスフエノール F型および Zま たは A型のエポキシ榭脂とすると、接合性に加え、室温での屈曲性が向上するのでよ り好ましい。
また、熱硬化性榭脂にエポキシ当量が 4000を超える直鎖状のエポキシ榭脂を含 有させると、無機フィラーの充填が難しくなつたり、その他のエポキシ榭脂との相溶が 難しくなり、エポキシ榭脂、エポキシ硬化剤、無機フィラーやその他の含有成分など が不均一な状態で絶縁層が形成されるために、熱放散性と電気絶縁性が低下する。 エポキシ当量 800以上 4000以下の直鎖状のエポキシ榭脂は、硬化性榭脂中 40質 量%以下添加することが好ましぐ 40質量%を超えるとエポキシ硬化剤の添加量が 少なくなり、熱硬化性榭脂のガラス転移温度 (Tg)が上昇し、屈曲性が低下する場合 がある。
[0043] 絶縁層を構成する熱硬化性榭脂中の塩化物イオン濃度は、 500ppm以下であるこ と力 子ましく、 250ppm以下であることがより好ましい。従来の金属ベース回路基板に おいては、構成する硬化性榭脂組成物中の塩ィ匕物イオン濃度は lOOOppm以下で あれば、高温下、直流電圧下においても電気絶縁性は良好であった。しかしながら、 本発明の金属ベース回路基板に用いる上記絶縁層を構成する硬化性榭脂組成物 は室温でも折り曲げができるほど柔軟な構造であるため、硬化性榭脂組成物中の塩 化物イオン濃度が 500ppmを超えると、高温下、直流電圧下においてイオン性不純 物の移動が起こり、電気絶縁性が低下する傾向を示す場合がある。
[0044] 絶縁層中に含有される無機フイラ一としては、電気絶縁性で熱伝導性の良好なもの が好ましぐ例えば、酸化ケィ素、酸ィ匕アルミニウム、窒化アルミニウム、窒化珪素、窒 化硼素などが用いられる。無機フィラーの粒度は最大粒子径が 75 μ m以下で平均 粒子径が 5〜40 mの球状粗粒子と平均粒子径が 0. 3〜3. 0 mの球状微粒子と を含有するものが好ましい。この範囲内で、平均粒子径が 10〜40 /ζ πιの球状粗粒 子と平均粒子径が 0. 4〜1. 2 mの球状微粒子とを含有するものが更に好ましい。 また、球状粗粒子と球状微粒子を混ぜ合わせると破砕粒子や球状粒子を単独で用 いた場合よりも高充填が可能となり、室温における折り曲げ性が向上する。
[0045] 絶縁層の中の無機フィラーの含有量は、 50〜75体積%が好ましぐ更に好ましく 5 5〜65体積%である。
無機フイラ一中のナトリウムイオン濃度は、 500ppm以下であることが好ましぐ 100 ppm以下であることがより好ましい。無機フイラ一中のナトリウムイオン濃度が 500pp mを超えると、高温下、直流電圧下においてイオン性不純物の移動が起こり、電気絶 縁性が低下する傾向を示す場合がある。
[0046] 本発明では、さらに、導体回路又は金属箔間を電気的に接続するために使用する スルーホールの少なくとも 1個力 0. 0078mm2以上であるのが好ましい。スルーホ ールは、導体回路又は金属箔および絶縁層を化学的、物理的或いは機械的に除去 しスルーホール用の孔を形成させ、その空隙内部にメツキ、印刷法等により導電性物 質等を充填または上層導体回路力 ワイヤーボンディングを施すことにより電気的な 接続することが可能となる。スルーホールは、形成されている場合もあるが、形成され てなくともよい。
[0047] [導体回路]
本発明では、当該回路基板を、任意の個所で曲率半径 l〜5mmで 90° 以上で折 り曲げが可能であり、かつ導体回路又は金属箔の各々間の耐電圧が 1. OkV以上で あるのが好ましい。曲率半径が lmm以下で 90° 以上折り曲げると、絶縁層クラック 等により導体回路又は金属箔の各々間の耐電圧が 1. OkV以下になる場合がある。 曲率半径を 5mm以上にしたり、 90° 以下の折り曲げでは、目的するモジュールの小 型化が達成できなくなる場合がある。
[0048] 導体回路の厚みは、 9 μ m以上 140 μ m以下であることが好ましぐ 9 μ m未満では 導体回路としての機能が十分ではなぐ 140 mを超えると屈曲性が低下するだけで なく厚みが増し小型化や薄型化が難しくなる。
<混成集積回路 >
以下に、本発明の金属ベース回路基板を用いた混成集積回路の好ましい態様に ついて説明する。本発明の金属ベース回路基板を用いた混成集積回路は、上記の 金属ベース回路基板における主要な構成材料である金属箔、無機フィラー、熱硬化 性榭脂、導体回路等を適宜用いることが可能である。
図 1-1は、本発明の金属ベース回路基板とそれを用いた混成集積回路の一例であ る。
本発明の混成集積回路においては、金属箔 1と絶縁層 2と、導体回路 3とからなる 金属ベース回路基板の導体回路 3上に、複数の半導体、すなわち、出力用半導体 5 と制御用半導体 6およびチップ部品 8が半田接合部 9などにより接合搭載され、熱伝 導性接着剤 10を介して放熱性を有する筐体 11と密着されて ヽる。出力用半導体 5 は、熱の放散を助長する目的で導体回路 3との接続にヒートスプレッダ一 4を介するこ とが多いが、これを用いないこともある。
また、制御用半導体 6は、通常大きな発熱を伴わないことから導体回路 3にヒートス プレッダ一を介することなく接合される力 ヒートスプレッダ一を介しても構わな 、。
[0049] 上記熱伝導性接着剤としては、金、銀、ニッケル、窒化アルミニウム、アルミニウム、 アルミナなどの高熱伝導性フィラーをエポキシ榭脂ゃウレタン榭脂、シリコーン榭脂な どを充填した接着剤が用いられる。熱伝導性接着剤の代わりにあらかじめシート状の 熱伝導性接着シートを使用することもできる。
また、シリコーングリースを用いた密着やビス止めによる固定など、金属ベース回路 基板が放熱性を有する筐体 11と良好に密着した金属ベース回路基板と放熱性を有 する筐体 11との熱伝達が良好である固定方法であればよい。また、熱伝導性接着剤 は、出力用半導体 5の熱の放散を助長する目的と混成集積回路の保護、固定などを 目的に用いるが、これを用いないこともある。
[0050] 制御用半導体 6からの信号は、導体回路 3およびボンディングワイヤー 7を通じて出 力用半導体 5に電気的に接合されている。出力用半導体 5と制御用半導体 6および チップ部品 8の実装されている部分以外の金属ベース回路基板を構成する金属箔 1 と絶縁層 2および導体回路 3は、放熱板または放熱性を有する筐体 11の形状に合わ せて曲げ加工や絞り加工を室温で実施できる。し力も平坦な部分への設置だけでな く、放熱板または放熱性を有する筐体の形状に合わせて側面や底面または段差や 曲面などに密着させることができる。そのため、従来の金属ベース回路基板およびフ レキシブル配線板では適用できな力つた、高発熱性混成集積回路の小型化または 薄型化が可能となるものである。
[0051] 本発明の金属ベース回路基板を用いた混成集積回路は、上記の構成からなり、し カゝも絶縁層の熱伝導率が l〜4WZmKで、導体回路と金属箔との間の耐電圧が 1. 5kV以上という、従来の平坦な金属板を有する金属ベース回路基板と同等の特性を 保つ。その上、平坦な部分への設置だけでなく筐体の側面や底面または段差や曲 面などに密着させることが可能である。さらに、放熱が必要な半導体素子や抵抗チッ プなどの電気部品を実装した状態でも容易に室温で折り曲げることができるため、金 属ベース回路基板を平面部分に用いることしかできな力つたという従来の制限を解 除できるものである。
[0052] 金属箔 1の厚みは、 5 μ m以上 450 μ m以下のものが使用できる力 35 μ m以上 7 0 m以下が金属ベース回路基板の剛性、曲げ加工性、絞り加工性などが確保でき ることからより好ましい。
[0053] 絶縁層 2の厚さは、 80 μ m以上 200 μ m以下が好ましぐ 80 μ m未満では絶縁性 が低ぐ 200 mを超えると熱放散性が低下するだけでなく厚みが増し小型化や薄 型化が難しくなる。
[0054] < LEDモジユーノレ >
次に金属ベース回路基板の表面にカバーアレイを有する LEDモジュール(以下、 単に LEDアレイともいう。)の好ましい態様について説明する。本発明の金属ベース 回路基板を用いた LEDアレイは、上記の金属ベース回路基板における主要な構成 材料である金属箔、無機フィラー、熱硬化性榭脂、導体回路等を適宜用いることが可 能である。
[0055] 図 2-1〜図 2-7は、本発明の金属ベース回路基板とそれを用いた LEDモジュール の一例について、その大略構造を示す平面図である。
本発明の金属ベース回路基板を用いた LEDモジュールにおいては、 金属箔 21 と絶縁層 22と、導体回路 23および電極 24とからなる金属ベース回路基板で、導体 回路 23および電極 24が形成されて ヽな 、箇所の一部金属箔 21と絶縁層 22を取り 除き、スリット部 25を形成する。
[0056] 図 2-2は、図 2-1の金属ベース回路基板の導体回路 23および電極 24の形成面側 に部品搭載部 24および入力端子 28以外にカバーレイ 26を貼り付けることにより、基 板を補強している。ここで、導体回路 23および電極 24が形成されていない箇所の一 部カバーレイ 26も金属箔 21と絶縁層 22と同様に取り除き、スリット部 25を形成する。 前記カバーレイ 26のスリット部 25は折り曲げる部分の長さに対して 50%以上 95%以 下カ卩ェされていることが好ましい。また、折り曲げる部分の長さに対して 50%以上で あれば、曲率半径 0. 5mm以下で 90° 折り曲げることができるし、 95%以下加工し てあれば折り曲げ箇所力カバーレイの補強効果がなく、折り曲げ箇所の導体回路が 断線したり、絶縁層にクラックが入るなどの不良が発生することもない。上記力バーレ ィの厚さは、 5 μ m以上 25 μ m以下が好ましい。
[0057] 図 2-3は、図 2-2の金属ベース回路基板のカバーレイ 26を貼り付けた上部に磁性 損失を有する層 29a又は誘電損失を有する層 29bを形成して ヽる。
磁性損失を有する層 29aはアスペクト比が 2以上である磁性材料と有機結合材から なり、磁性材料の含有量が 30〜70vol%で層の厚みが 3 μ m以上 50 μ m以下の場 合に優れた磁性損失特性を発揮する。
[0058] また、図 2-3の金属ベース回路基板に於いて、誘電損失を有する層 29bを形成し た場合、誘電損失を有する層が、比表面積が 20〜110m2/gのカーボン粉末と有 機結合材とからなり、前記カーボン粉末の含有量が 5〜60vol%で、厚みが 3 m以 上 50 μ m以下であれば優れた誘電損失特性を発揮する。
[0059] 誘電損失を有する層のカーボン粉末は、 JIS K 1469による体積抵抗率が 0. 1 Ω cm以下であるホウ素固溶のカーボンブラックであると良好な誘電損失特性が発揮さ れるため好ましい。
[0060] 図 2-4では、本発明の金属ベース回路基板において、部品搭載部に発熱部品 21 0を搭載して 、る。ここで図 2-4に示した点線は本発明の金属ベース回路基板の折り 曲げ箇所 211を示すものである。
折り曲げ箇所 211にはスリット部 25が形成されているので、簡単に折り曲げられ、折 り曲げても折り曲げ箇所の導体回路はカバーレイ 26により補強されている為、 断線 することもなく、絶縁層にもクラックが生じな 、。
この様に本発明の金属ベース回路基板はカバーレイで基板を補強して折り曲げて も導体回路の断線及び絶縁層のクラック等の不良を防ぎ、且つ、スリット加工により折 り曲げ性を良好である大きなメリットを有している。更に、磁性損失を有する層又は誘 電損失を有する層の形成で良好な電磁波吸収特性を有する金属ベース回路基板で ある。
[0061] 従来、基板厚みが 150 m程度の金属ベース回路基板は、曲率半径が 0. 5mm 以下で 90° 以上折り曲げると導体回路の断線及び絶縁層にクラックが発生するなど 不良が発生してしまいカバーレイで補強することが必要であった。しかしながら、カバ 一レイで補強すると金属ベース回路基板が剛直になり、所望の箇所で折り曲げること が困難となる。
本発明は折り曲げに対する基板の補強と折り曲げ性の両立、加えて電磁波吸収特 性を兼ね備えた画期的な金属ベース回路基板である。
[0062] 図 2-5は、本発明の金属ベース回路基板とそれを用いた LEDモジュールの一例に ついてその大略構造を示す。図 2-4の金属ベース回路基板について、入力回路をス リット部で 180° 折り曲げた場合の断面図である。本発明の金属ベース回路基板に おいては、金属箔 21と絶縁層 22と導体回路 23と電極 24とからなる金属ベース回路 基板にエポキシ接着層 25aを介してカバーレイ 26、更に磁性損失を有する層 29a又 は誘電損失を有する層 29bが形成されている。
[0063] 図 2-5の金属ベース回路基板において、導体回路 23と電極 24は電気的に接続さ れており、電極 24上には半田等により発熱部品 210が電気的に接続され搭載されて いる。また、金属ベース回路基板の裏面は熱伝導性粘着テープ 213を介して放熱性 を有する筐体 212と密着されている。導体回路 23と引き出し配線 (入力回路) 24は 電気的に接合されていて、 LED等の発熱部品に外部より電源入力できる状態になつ ている。
尚、図 2-5においては、金属箔 21側に折り曲げている力 本発明においては、磁 性損失を有する層 29a又は誘電損失を有する層 29b側に折り曲げることも容易に可 能である。折り曲げした 、部分の少なくともカバーレイにっ 、てスリット力卩ェを折り曲 げる部分の長さに対して 50%以上 95%以下カ卩ェされていれば、放熱性を有する筐 体 212の形状に合わせて 、ろ 、ろな形状で折り曲げることができる。 [0064] 上述したスリット加工が図 2-1〜図 2-4の金属ベース回路基板に示す長方形の加 ェだけでなぐ図 2-6に示す角が鋭角状になった形状やくさび型、又は図 2-7に示 す円形を多数施したものなどでもよい。むしろ、折り曲げ部分が決めやすぐ円形が 好ましい。
[0065] 本発明の金属ベース回路基板を用いた LEDアレイは、上記のような構成を有して おり、金属箔 21の厚さが 5 m以上 40 m以下であり、絶縁層 22が無機フィラーと 熱硬化性榭脂とを含有し、厚さが 30 m以上 80 m以下であり、上記導体回路の 厚さが 9 μ m以上 40 μ m以下であることが好ましい。これらの諸条件を満足するとき に、本発明の目的をより確実に達成することができる。
[0066] 金属箔 21の厚みが 5 μ m以上であれば金属ベース回路基板の剛性が低下し、用 途が制限されることもない。金属箔 21の厚み力 0 m以下であれば金属ベース回 路基板の曲げ加工用金型又は絞り加工用金型、更にプレス機などの加工設備を必 要としたり、金属ベース回路基板を筐体の曲面などに密着させることが難しくなるよう なこともない。さらに、金属ベース回路基板に放熱が必要な半導体素子や抵抗チッ プなどの電気部品を実装した状態で、室温で折り曲げすることが難しくなることもない 。金属ベース回路基板の剛性、曲げ加工性、絞り加工性など、特に曲率半径が 0. 1 〜0. 5mmで 90° 以上の折り曲げカ卩ェ性に富むことから、金属箔 21の厚みは、 12 μ m以上 35 μ m以下がより好ましい。
[0067] 本発明の金属ベース回路基板を用いた LEDアレイにおいては、絶縁層 22は、無 機フイラ一と熱硬化性榭脂とを含有し、厚さが 30 m以上 80 m以下であることが好 ましい。絶縁層 22の厚さについては、 30 m以上あれば絶縁性が確保できるし、 80 /z m以下であれば 0. 1〜0. 5mmで 90° 以上の折り曲げカ卩ェ性が低下することもな く好ましい。
[0068] 本発明の金属ベース回路基板を用いた LEDアレイにおいて、導体回路の厚みは、 9 μ m以上 40 μ m以下であることが好ましい。 9 μ m以上であれば導体回路としての 機能が十分に確保できるし、 40 m以下で十分な屈曲性が確保でき、小型化や薄 型化のために十分な厚さが確保される。
[0069] さらに、本発明に使用する熱伝導性の粘着テープ 213には、酸ィ匕アルミニウム、二 酸化チタン等の金属酸化物、窒化アルミニウム、窒化ホウ素、窒化珪素等の窒化物、 炭化珪素、水酸ィ匕アルミニウム等の無機物質やアクリルゴム等の有機物質力 なる 熱伝導性電気絶縁剤を高分子榭脂材料中に充填したものが使用できるが、シラン力 ップリング剤等による表面処理をされたものなどを高分子榭脂材料中に充填した熱 伝導性接着テープも使用できる。
[0070] 熱伝導性の粘着テープ 213は、発熱部品より発生する熱を、金属ベース回路基板 を介して金属ベース基板の裏面より筐体へ効率よく放熱させる為、従来の粘着テー プよりも熱伝導率を向上させたものが好ましい。
[0071] 熱伝導性の粘着テープ 213としては、下記のく LED光源ユニット〉で使用される 素材、および特性を持つ粘着テープが適宜用いられる。
[0072] < LED光源ユニット >
本発明の金属ベース回路基板を用いた LED光源ユニットの好ま 、態様にっ 、て 説明する。
本発明の金属ベース回路基板を用いた LED光源ユニットは、上記の金属ベース回 路基板における主要な構成材料である金属箔、無機フィラー、熱硬化性榭脂、導体 回路等を適宜用いることが可能である。
[0073] 図 3-1は、本発明の LED光源ユニットの一例について、その大略構造を示す断面 図である。
本発明の LED光源ユニットにおいては、金属箔 31と絶縁層 32と、導体回路 33とか らなる金属ベース回路基板の導体回路 33上に、 1個以上の LED36が半田接合部 3 5などにより接合、搭載され、熱伝導性粘着テープ 37を介して放熱性を有する筐体 3 8と密着されている。導体回路 33と引き出し配線 (入力回路) 34は電気的に接合され ていて、 LEDに外部より電源入力できる状態になっている。
尚、図 3-1においては、全体的な形状は箱形を呈している力 本発明に於いては、 LED36の実装されている部分以外の金属ベース回路基板を構成する金属箔 1と絶 縁層 32および導体回路 33は、放熱性を有する筐体 38に密着していればよぐ放熱 性を有する筐体 38の表面形状に合わせて 、ろ 、ろな形状をとることができる。
[0074] 本発明の LED光源ユニットは、上記のような構成を有しており、金属箔 31の厚さが 18 μ m以上 300 /z m以下であり、絶縁層 32が無機フィラーと熱硬化性榭脂とを含有 し、厚さが 80 μ m以上 200 μ m以下であり、導体回路 33の厚さが 9 μ m以上 140 μ m以下であることが好ま U、。
[0075] 金属箔 31の厚みとしては、 18 m以上 300 m以下のものが好ましい。金属箔 31 の厚みが 18 μ m未満の場合には金属ベース回路基板の剛性が低下し用途が制限 される。厚みが 300 mを超えると、金属ベース回路基板の曲げ加工用金型又は絞 り加工用金型、更にプレス機などの加工設備が必要となるば力りでなぐ金属ベース 回路基板を筐体の曲面などに密着させることが難しくなる。さらに、金属ベース回路 基板に放熱が必要な半導体素子や抵抗チップなどの電気部品を実装した状態下で 、室温で折り曲げすることが難しくなる。金属ベース回路基板の剛性、曲げ加工性、 絞り加工性など、特に曲率半径が l〜5mmで 90° 以上の折り曲げカ卩ェ性に富むこ と力ら、 35 μ m以上 70 μ m以下がより好まし ヽ。
[0076] 絶縁層 32は、無機フィラーと熱硬化性榭脂とを含有し、厚さ力 0 m以上 200 m以下が好ましい。絶縁層 32の厚さについては、 80 m未満では絶縁性が低ぐ 20 0 mを超えると熱放散性が低下するだけでなぐ厚みが増し、小型化や薄型化が難 しくなる。
[0077] 本発明の LED光源ユニットにおいて、導体回路の厚みは、 9 μ m以上 140 μ m以 下が好ましい。 9 m未満では導体回路としての機能が十分ではなぐ 140 mを超 えると屈曲性が低下するだけでなく厚みが増し小型化や薄型化が難しくなる。
[0078] 本発明の LED光源ユニットは、繰り返し折り曲げても使用可能であるため、加工性 が高ぐ再利用などができる。また、金属ベース回路基板上に LEDを搭載後、平面 部を有する筐体に接着し、その後、筐体と共に加工、変形することで、曲面を有する 筐体を持つ LED光源ユニットを生産することが容易に実現できるので、安価に多量 の LED光源ユニットが提供可能となる。
[0079] 本発明に使用する熱伝導性の粘着テープ 37には、後述するように、酸化アルミ- ゥム、二酸化チタン等の金属酸化物、窒化アルミニウム、窒化ホウ素、窒化珪素等の 窒化物、炭化珪素、水酸化アルミニウム等の無機物質やアクリルゴム等の有機物質 からなる熱伝導性電気絶縁剤を高分子榭脂材料中に充填したものが使用できる。さ らに、シランカップリング剤等による表面処理をされたものなどを高分子榭脂材料中 に充填した熱伝導性接着テープも使用できる。
熱伝導性を有しな 粘着テープでは、 LEDの発光に伴う熱を筐体へ熱伝達するこ とが不十分となり LEDの温度上昇を招き使用することができない。本発明者の検討 結果によれば、熱伝導率が l 2WZmKで、厚さが 50 150 μ mの熱伝導性の粘 着テープを用いることが好ま
[0080] 熱伝導性の粘着テープ 37は、 LEDを発光させた時に発生する熱を、金属ベース 回路基板を介して金属ベース基板の裏面より筐体へ効率よく放熱させる為、従来の 粘着テープよりも熱伝導率を向上させたことを特徴とするものである。
[0081] 熱伝導性の粘着テープ 37に使用される高分子材料は、特に制限されるものではな いが、金属への密着性向上のために、アクリル酸及び Z又はメタクリル酸を含む高分 子が好ましく選択される。すなわち、炭素数 2 12のアルキル基を有するアタリレート またはメタタリレート、炭素数が 2 12のアクリル酸アルキルエステルまたはメタクリル 酸アルキルエステルが好まし!/、。
柔軟性と加工性の点からモノマーとしては、ェチルアタリレート、プロピルアタリレー ト、ブチルアタリレート、 2—ェチルへキシルアタリレート、ォクチルアタリレート、イソォ クチルアタリレート、デシルアタリレート、デシル (メタ)タリレートまたはドデシル (メタ)ク リレートより選ばれた 1種または 2種類以上を混合して使用するのが好ましい。このうち モノマーとしては、 2—ェチルへキシルアタリレートがより一層好ましい。
[0082] 熱伝導性の粘着テープ 37は熱伝導性電気絶縁剤を含有することが好ましい。熱伝 導性電気絶縁剤としては、電気絶縁性と熱伝導性との面で良好な無機、有機物質で あればどのようなものでも構わないが、有機物質としては天然ゴムや NBR EPDMな どのゴムが好ましぐ特に、アクリルゴムを含有することが好ましい。また、熱伝導性電 気絶縁剤は、粘着テープ 7中に 40 80体積%含有することが、良好な放熱性が確 保できることから、好ましい。 50 70体積%がより一層好ましい範囲である。
[0083] 前記アクリルゴム用のモノマーとしては、ェチルアタリレート、 n—プロピルアタリレー ト、 n—ブチルアタリレート、イソブチルアタリレート、 n—ペンチルアタリレート、イソアミ ルアタリレート、 n キシルアタリレート、 2—メチルペンチルアタリレート、 n—ォクチ ルアタリレート、 2—ェチルへキシルアタリレート、 n—デシルアタリレート、 n—ドデシル アタリレート、 n—ォクタデシルアタリレート、シァノメチルアタリレート、 1ーシァノエチ ルアタリレート、 2—シァノエチルアタリレート、 1 シァノプロピルアタリレート、 2—シ ァノプロピルアタリレートなどが挙げられる。これらの中力も選択した 1種類以上を組 み合わせたものや、数0 /0の架橋点モノマーが共重合されたアクリルゴムが好まし 、。 ゴム含有量としては熱伝導性粘着テープ 37中に 0. 1〜30質量部が好ましい。 0. 1 質量部未満であると高熱伝導性フィラーを高分子榭脂材料中に充填した際にフイラ 一が沈降し、 30質量部を超えると粘度が上昇し加工時に問題が発生する。ゴム含有 量 0. 1〜30質量部ならばフイラ一沈降を防ぎつつ、加工性が良好である。
[0084] 前記モノマーとしては、柔軟性と粘着性の観点力も炭素数 2〜 12のアルキル基を 有するアタリレートまたはメタタリレート、炭素数が 2〜 12のアクリル酸アルキルエステ ルまたはメタクリル酸アルキルエステルが好ましヽ。柔軟性と加工性の点から好まし ヽ モノマーとしては、ェチルアタリレート、プロピルアタリレート、ブチルアタリレート、 2- ェチルへキシルアタリレート、ォクチルアタリレート、イソォクチルアタリレート、デシル アタリレート、デシルメタタリレートおよびドデシルメタタリレートより選ばれた 1種または 2種類以上をブレンドしたものである。より好ましいモノマーは 2—ェチルへキシルァク リレートである。
[0085] 熱伝導性電気絶縁剤として使用される無機物質につ!ヽては、例えば、酸化アルミ ユウム、二酸化チタン等の金属酸化物、窒化アルミニウム、窒化ホウ素、窒化珪素等 の窒化物、炭化珪素、水酸ィ匕アルミニウム等が挙げられる。なかでもアルミナ、結晶 性シリカ、及び水酸ィ匕アルミニウム力 なる群力 選ばれる 1種以上であることが好ま しい。また、シランカップリング剤等による表面処理をされたものを選択する事も可能 である。
[0086] また、熱伝導性電気絶縁剤の大きさについては、最大粒子径が 45 μ m以下で平 均粒子径 0. 5〜30 mであることが粘着テープの厚み、充填性の観点から好ましい
[0087] 熱伝導性の粘着テープ 37は、本発明の目的とする特性を損なわなヽ範囲で公知 の重合ィ匕合物を含むことができる。又、熱伝導性の粘着テープ 37の硬化時に、影響 がない範囲において、必要に応じて公知の添加剤を添加することができる。添加剤と しては例えば粘度、粘性をコントロールするための各種添加剤、その他、改質剤、老 化防止剤、熱安定剤、着色剤などが挙げられる。
[0088] 熱伝導性の粘着テープ 37は、一般的な方法によって硬化させることができる。例え ば、熱重合開始剤による熱重合、光重合開始剤による光重合、熱重合開始剤と硬化 促進剤を利用した重合等の方法で硬化させることができるが、生産性等の観点から 光重合開始剤による光重合が好ましい。
実施例
[0089] 以下、実施例について説明する力 本発明はこれらに限定されるものではない。
<金属ベース回路基板 >
「実施例 1-1」
表 1-1〖こ示すよう〖こ、 40 /z m厚のアルミニウム箔上〖こ、エポキシ当量が 187のビス フエノール A型エポキシ榭脂(大日本インキ化学工業社製: EPICLON830— S) 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製: D— 40 0と D— 2000の質量比が 6 :4) 63質量部を加え、平均粒子径 2. 2 mで最大粒子 径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173)が絶縁層中 50 体積%となるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成した。 つぎに、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ 金属ベース基板を得た。さらに、得られた金属ベース基板について、所定の位置を エッチングレジストでマスクして銅箔をエッチングした後、エッチングレジストを除去し て回路を形成し金属ベース回路基板とした。
得られた金属ベース回路基板について、以下に示す方法で、(1)室温での屈曲性 、(2)絶縁層の熱伝導率、(3)導体回路と絶縁層の接着強度、(4)絶縁層のガラス転 移温度、(5) 260°C、 10分間の加熱処理後の絶縁層破壊電圧、(6)室温下で 90° 折り曲げた状態での絶縁層耐電圧値、(7) 125°C、直流電圧 1000V (パターン側 + )をかけたときの絶縁層破壊時間、(8)室温下で 90° 折り曲げた状態での絶縁層クラ ック発生の有無を観察した。
それらの結果を表 1-2に示す。得られた金属ベース回路基板は、いずれの物性も 良好であった。
[0090] (1)室温での屈曲性は、金属ベース回路基板を 10mm X 100mmに加工して 25士 1°Cの温度雰囲気下において、両手で導体回路形成面側および導体回路形成面と 反対側に曲率半径 5mmで 90° 以上折り曲げることが可能であるものを良好とし、折 り曲げを実施する際に、曲げ加工用の金型とプレス機などを用いる必要がある場合を 不良とした。
[0091] (2)熱伝導率の測定は、金属ベース回路基板のベース材である金属箔と導体回路 を除去し、絶縁層を φ 10mm X 100 m (—部 60 μ m)にカロ工して、レーザーフラッ シュ法により求めた。
[0092] (3)導体回路と絶縁層の接着強度は、金属ベース回路基板の導体回路を 10mm 幅の帯状に加工し、 JIS C 6481に規定された方法により求めた。
[0093] (4)ガラス転移温度 (Tg)の測定は、金属ベース回路基板のベース材である金属箔 と導体回路を除去し、絶縁層を 5mm X 50mm X 100 m (—部 60 μ m)に加工して 、動的弾性測定法により求めた。
[0094] (5) 260°Cで 10分間加熱後の絶縁層耐電圧の測定は、導体回路を φ 20mmの円 形パターンとした金属ベース回路基板を 260°Cに加熱した半田槽に入れ 10分間処 理し、室温に冷却後に JIS C 2110に規定された段階昇圧法により、円形パターン とアルミニウム箔との間の耐電圧を測定した。
[0095] (6)室温下 90° 折り曲げた状態での絶縁層耐電圧の測定は、導体回路を φ 20m mの円形パターンを形成した金属ベース回路基板の φ 20mmの円形パターンが含ま れるように曲率半径 lmmで 90° 折り曲げた状態で JIS C 2110に規定された段階 昇圧法により、円形パターンとアルミニウム箔との間の耐電圧を測定した。
[0096] (7) 125°C、直流電圧 1000V (パターン側 + )をかけたときの絶縁層破壊時間の測 定は、導体回路を φ 20mmの円形パターンを形成した金属ベース回路基板の円形 パターン側を +、金属箔側を—として 125°C、直流電圧 1000Vをかけたときの絶縁 層破壊時間を測定した。
[0097] (8)室温下で 90° 折り曲げた状態での絶縁層クラック発生の有無は、目視で観察 した。 [0098] 「実施例 1-2」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 201の水素 添カ卩(表 1では水添と標記)されたビスフエノール A型エポキシ榭脂(ジャパンェポキ シレジン社製: YX— 8000) 100質量部に対し、硬化剤としてポリオキシプロピレンジ ァミン(ハルツマン社製: D— 400と D— 2000の質量比が 6 :4) 63質量部をカ卩え、平 均粒子径 2. 2 μ mで最大粒子径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工 社製: AL— 173)が絶縁層中 50体積%となるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成した。つぎに、 35 m厚の電解銅箔を張り合わせ、加熱 することにより絶縁層を熱硬化させ金属ベース基板を得たこと以外は実施例卜 1と同 様の方法で金属ベース回路基板を作製し各種物性を測定した。
それらの結果を表 1-2に示す。絶縁層のガラス転移温度 (Tg)の低下により室温で の屈曲'性が格段に向上した。その他の物'性についても良好であった。
[0099] 「実施例 1-3」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 201の水素 添カ卩されたビスフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製: YX-80 00) 70質量%とエポキシ当量が 1900のビスフエノール A型エポキシ榭脂(東都化成 社製: YD— 927H) 30質量%からなるエポキシ榭脂 100質量部に対し、硬化剤とし てポリオキシプロピレンジァミン(ノヽルツマン社製: D - 400と D - 2000の質量比が 6 :4) 48質量部を加え、平均粒子径 2. 2 mで最大粒子径が 20 mの破砕した酸ィ匕 アルミニウム(昭和電工社製: AL— 173)が絶縁層中 50体積0 /0となるように配合し、 硬化後の厚さが 100 mになるように絶縁層を形成した。つぎに、 35 m厚の電解 銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ金属ベース基板を得たこ と以外は実施例 1-1と同様の方法で金属ベース回路基板を作製し各種物性を測定 した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、導体回路と絶縁 層の接着強度が格段に向上した。その他の物性についても良好であった。
[0100] 「実施例 1-4」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 201の水素 添カ卩されたビスフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製: YX- 80 00) 70質量%とエポキシ当量が 1024の水素添カ卩されたビスフエノール A型エポキシ 榭脂 (東都化成社製: ST—4100D) 30質量%からなるエポキシ榭脂 100質量部に 対し、硬化剤としてポリオキシプロピレンジァミン(ノヽルツマン社製: D— 400と D— 20 00の質量比が 6 : 4) 50質量部を加え、平均粒子径 2. 2 mで最大粒子径が 20 m の破砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173)が絶縁層中 50体積%とな るように配合し、硬化後の厚さが 100 /z mになるように絶縁層を形成した。つぎに、 35 μ m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ金属べ一 ス基板を得たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を作製し各 種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、導体回路と絶縁 層の接着強度に加え、ガラス転移温度 (Tg)の低下により室温での屈曲性が格段に 向上した。その他の物'性についても良好であった。
「実施例 1-5」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 181の水素 添カ卩されたビスフエノール F型エポキシ榭脂(ジャパンエポキシレジン社製: YL— 67 53)をエポキシ榭脂全体で 70質量%とエポキシ当量が 1024の水素添加されたビス フエノール A型エポキシ榭脂 (東都化成社製: ST— 4100D) 30質量%とからなるェ ポキシ榭脂 100質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ハルツマ ン社製: D—400と D— 2000の質量比が 6 : 4) 55質量部を加え、平均粒子径 2. 2 μ mで最大粒子径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173) が絶縁層中 50体積%となるように配合し、硬化後の厚さが 100 mになるように絶縁 層を形成した。つぎに、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁 層を熱硬化させ金属ベース基板を得たこと以外は実施例 1-1と同様の方法で金属べ ース回路基板を作製し各種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、導体回路と絶縁 層の接着強度に加え、ガラス転移温度 (Tg)が低下したことによる室温での屈曲性が 格段に向上した。 [0102] 「実施例 1-6」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 207の水素 添加されたビスフエノール A型エポキシ榭脂(大日本インキ化学工業社製: EXA- 7 015)をエポキシ榭脂全体で 70質量%とエポキシ当量が 1200の水素添加されたビ スフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製: YL— 7170) 30質量 %からなるエポキシ榭脂 100質量部に対し、硬化剤としてポリオキシプロピレンジアミ ン(ハルツマン社製: D—400と D - 2000の質量比力 : 4) 48質量部を加え、平均粒 子径 2. 2 μ mで最大粒子径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173)が絶縁層中 50体積%となるように配合し、熱硬化性榭脂全体で塩化物ィ オン濃度が 250ppmで、硬化後の厚さが 100 mになるように絶縁層を形成した。つ ぎに、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ金 属ベース基板を得たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を 作製し各種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、導体回路と絶縁 層の接着強度に加え、ガラス転移温度 (Tg)の低下により室温下の屈曲性が格段に 向上した。さらに、 125°C、直流電圧 1000V (パターン側 + )をかけたときの絶縁層破 壊時間が延びた。その他の物性につ 、ても良好であった。
[0103] 「実施例 1-7」
表 1-1〖こ示すよう〖こ、 40 m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 207の水素 添加されたビスフエノール A型エポキシ榭脂(大日本インキ化学工業社製: EXA- 7 015)をエポキシ榭脂全体で 70質量%とエポキシ当量が 1200の水素添加されたビ スフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製: YL— 7170) 30質量 %からなるエポキシ榭脂 100質量部に対し、硬化剤としてポリオキシプロピレンジアミ ン(ハルツマン社製: D—400と D - 2000の質量比力 : 4) 48質量部を加え、最大粒 子径が 75 μ m以下で平均粒子径が 21 μ mでありナトリウムイオン濃度が lOppmで ある球状粗粒子の酸ィ匕アルミニウム(昭和電工社製: CB—A20)と平均粒子径が 0. 7 μ mでナトリウムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友ィ匕 学社製: AKP 15)を合わせて絶縁層中 50体積% (球状粗粒子と球状微粒子は質 量比が 7: 3)となるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成 した。つぎに、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬 化させ、絶縁層中の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶 縁層中の無機フィラー全体でナトリウムイオン濃度が 50ppm以下である金属ベース 基板を得たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を作製し各 種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、 125°C、直流 10 00V (パターン側 + )かけた時の絶縁層破壊時間が格段に延び、その他の物性につ いても良好であった。
「実施例 1-8」
表 1—1に示すように、 40 /z m厚の ノレミニクム箱上に、エポキシ当量力 207の 170p pmである水素添加されたビスフエノール A型エポキシ榭脂(大日本インキ化学工業 社製: EXA- 7015) 70質量%とエポキシ当量が 1200の水素添カ卩されたビスフエノ ール A型エポキシ榭脂(ジャパンエポキシレジン製: YL— 7170) 30質量%カもなる エポキシ榭脂 100質量部に対して、硬ィ匕剤としてポリオキシプロピレンジァミン (ハル ツマン社製: D— 400と D - 2000の質量比力 : 4) 48質量部を加え、最大粒子径が 75 μ m以下で平均粒子径が 21 μ mでありナトリウムイオン濃度が lOppmである球状 粗粒子の酸ィ匕アルミニウム(昭和電工社製: CB— A20)と平均粒子径が 0. 7 μ mで ナトリウムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友ィ匕学社製: AKP- 15)を合わせて絶縁層中 66体積% (球状粗粒子と球状微粒子は質量比が 7 : 3)となるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成した。つ ぎに、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、 絶縁層中の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の 無機フィラー全体でナトリウムイオン濃度が 60ppm以下である金属ベース基板を得 たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を作製し各種物性を 測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、熱伝導率が更に 向上し、その他の物性についても良好であった。 [0105] 「比較例 1-1」
表 1-1〖こ示すよう〖こ、 400 /z m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 187のビス フエノール A型エポキシ榭脂(大日本インキ化学工業社製: EPICLON850— S) 10 0質量部に対して、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製: D - 400と D— 2000の質量 it力 6 : 4) 63質量咅をカロえ、平均粒子径 2. で最大粒 子径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173)が絶縁層中 80体積%となるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成し た。つぎに、 210 m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化さ せ金属ベース基板を得たこと以外は実施例 1-1と同様に金属ベース回路基板を作 製し各種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、屈曲性がほとん ど無ぐ室温下において手動では折り曲げることができず、折り曲げ用金型とプレス 機を用いて 90° に折り曲げた。また、導体回路と絶縁層の接着強度が弱ぐ室温下 90° 折り曲げた状態での絶縁層耐電圧値が極端に低力つた。さらに、 125°C、直流 電圧 1000V (パターン側 + )をかけたときの絶縁層破壊時間も極めて短力つた。また 、熱伝導率が部分的に異なり、ばらつきが大き力つた。
[0106] 「比較例 1-2」
表 1〖こ示すよう〖こ、 40 /z m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 187のビスフエ ノール A型エポキシ樹脂(大日本インキ化学工業社製: EPICLON850— S) 100質 量部に対して、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製: D— 400 と D— 2000の質量比が 6 :4) 63質量部を加え、平均粒子径 57 mで最大粒子径が 90 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: A— 13— L)が絶縁層中 50体 積%となるように配合し、硬化後の厚さが 60 mとなるように絶縁層を形成した。つぎ に、 35 m厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ金 属ベース基板を得たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を 作製し各種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、導体回路面の絶 縁層露出部分がアルミナフイラ一の突起と思われる凹凸が多く確認され、室温で折り 曲げた時に絶縁層にクラックが発生した。また、導体回路と絶縁層の接着強度が弱く
、室温下 90° 折り曲げた状態での絶縁層耐電圧値が極端に低力つた。さらに、 125 。C、直流電圧 1000V (パターン側 + )をかけたときの絶縁層破壊時間も極めて短か つた o
[0107] 「比較例 1-3」
表 1-1〖こ示すよう〖こ、 400 /z m厚のァノレミ-ゥム箔上〖こ、エポキシ当量が 187のビス フエノール A型エポキシ榭脂(大日本インキ化学工業社製: EPICLON850 - S) 40 質量%とエポキシ当量力 000のビスフエノール A型エポキシ榭脂(ジャパンエポキシ レジン社製:ェピコート 1010) 60質量%カもなるエポキシ榭脂 100質量部に対して、 硬化剤としてポリオキシプロピレンジァミン(ノヽルツマン社製: D - 400と D - 2000の 質量比が 6 :4) 51質量部をカ卩え、平均粒子径 2. 2 mで最大粒子径が 20 mの破 砕した酸ィ匕アルミニウム(昭和電工社製: AL— 173)が絶縁層中 50体積%となるよう に配合し、硬化後の厚さが 100 /z mとなるように絶縁層を形成した。つぎに、 35 m 厚の電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ金属ベース基 板を得たこと以外は実施例 1-1と同様の方法で金属ベース回路基板を作製し各種 物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、屈曲性がほとん ど無ぐ室温下において手動では折り曲げることができず、折り曲げ用金型とプレス 機を用いて 90° に折り曲げたものの、ガラス転移温度 (Tg)が上昇し、室温における 屈曲性が不十分であり、室温下 90° 折り曲げた状態での絶縁層耐電圧値が著しく 低下した。
[0108] 「比較例 1-4」
表 1-1に示すように、 400 m厚のアルミニウム箔上〖こ、エポキシ当量が 238で榭 脂中の塩化物イオン濃度が 1500ppmである水素添加されたビスフエノール A型ェポ キシ榭脂(共栄社ィ匕学社製:エボライト 4000) 70質量%とエポキシ当量が 1200で榭 脂中の塩化物イオン濃度が 920ppmであるビスフエノール F型エポキシ榭脂(ジャパ ンエポキシレジン社製:ェピコート 4004P) 30質量0 /0力もなるエポキシ榭脂 100質量 部に対して、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製: D— 400と D— 2000の質量比が 6 :4) 42質量部を加え、平均粒子径 2. で最大粒子径が 20 μ mの破砕した酸ィ匕アルミニウム(昭和電工社製: AL - 173)が絶縁層中 50体積 %となるように配合し、熱硬化性榭脂全体で塩ィ匕物イオン濃度を lOOOppmとし、硬 化後の厚さが 100 mとなるように絶縁層を形成した。つぎに、 35 /z m厚の電解銅箔 を張り合わせ、加熱することにより絶縁層を熱硬化させ金属ベース基板を得たこと以 外は実施例ト 1と同様の方法で金属ベース回路基板を作製し各種物性を測定した。 それらの結果を表卜 2に示す。得られた金属ベース回路基板は、 125°C、直流電 圧 1000V (パターン側 + )をかけたときの絶縁層破壊時間が極めて短力つた。
[0109] 「比較例 1-5」
表 1-1に示すように、 400 m厚のアルミニウム箔上〖こ、エポキシ当量が 238で榭 脂中の塩化物イオン濃度が 1500ppmである水素添加されたビスフエノール A型ェポ キシ榭脂(共栄社ィ匕学社製:エボライト 4000) 70質量%とエポキシ当量が 1200で榭 脂中の塩化物イオン濃度が 920ppmであるビスフエノール F型エポキシ榭脂(ジャパ ンエポキシレジン社製:ェピコート 4004P) 30質量0 /0力もなるエポキシ榭脂 100質量 部に対して、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製: D— 400と D— 2000の質量比が 6 :4) 63質量部を加え、最大粒子径が 75 μ m以下で平均粒 径が 25 μ mでありナトリウムイオン濃度が 530ppmである球状粗粒子の酸ィ匕アルミ- ゥム(マイクロン社製: AX— 25)と平均粒子径が 1. 2 μ mでナトリウムイオン濃度が 3 96ppmである球状微粒子の酸化アルミニウム(マイクロン社製: AW15- 25)を合わ せて絶縁層中 50体積% (球状粗粒子と球状微粒子が質量比で 7: 3)となるように配 合し、硬化後の厚さが 100 /z mとなるように絶縁層を形成した。つぎに、 35 /z m厚の 電解銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の熱硬化 性榭脂全体で塩ィ匕物イオン濃度が lOOOppmで、絶縁層中の無機フィラー全体でナ トリウムイオン濃度が 500ppmである金属ベース基板を得たこと以外は実施例ト 1と 同様の方法で金属ベース回路基板を作製し各種物性を測定した。
それらの結果を表卜 2に示す。得られた金属ベース回路基板は、 125°C、直流 10 00Vかけた時の絶縁層破壊時間が著しく短くなつた。
[0110] 金属ベース回路基板の各層の厚み、熱硬化性榭脂の種類と配合量、含有する塩 化物イオン濃度、無機フィラーの種類と含有するナトリウムイオン濃度を表 1-1に示す [表 1-1]
表 1—1
Figure imgf000040_0001
展 ¾#¾回附ν < 表 1—2
Figure imgf000041_0001
^〔〕 〔〕1201131 οτ ^^瓖一s¾回附12¾ 〔〕 πL0112λ-〜, [0114] (実施例 2-1)
35 μ m厚の銅箔上に、エポキシ当量が 201の水素添カ卩されたビスフエノール A型 エポキシ榭脂(ジャパンエポキシレジン社製「YX— 8000」 )をエポキシ榭脂全体で 7 0質量%とエポキシ当量が 1200の水素添加されたビスフエノール Α型エポキシ榭脂( ジャパンエポキシレジン社製「YL— 7170」) 30質量0 /0力もなるエポキシ榭脂 100質 量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 400」 と「D— 2000」の質量比が 6: 4) 48質量部を加え、最大粒子径が 75 μ m以下で平均 粒子径が 21 μ mである球状粗粒子の酸ィ匕アルミニウム(昭和電工社製「CB— Α20」 )と平均粒子径が 0. 6 μ mである球状微粒子の酸ィ匕アルミニウム (アドマテックス社製 ΓΑΟ— 802」)を合わせて絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比 が 6 :4)となるように配合し、硬化後の厚さが 100 /z mになるように絶縁層を形成した 。つぎに、 35 /z m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、 内層の箔張り基板を得た。
[0115] さらに、得られた基板について、所定の位置をドライフィルムでマスクして銅箔をェ ツチングした後、ドライフィルムを除去して回路を形成し内層回路基板とした。
得られた内層回路基板をベースとして上記絶縁層および 35 μ m厚の銅箔を張り合 わせ、加熱硬化させ、多層基板を作製した。
[0116] 次に、外層回路の所定箇所にドリルにより直径 0. 5mmの穴を空け、内層回路およ び外層回路を貫通させて後、銅メツキを施しスルーホールを形成した。この表面にさ らに上記方法で外層回路をエッチングし、多層回路基板を得た。
[0117] 多層回路基板について、以下に示す方法で、(1)絶縁層の熱伝導率(2)絶縁層の ガラス転移点(3)折り曲げ時の耐電圧 (4)屈曲性 (5)パワー素子の動作安定性を測 定'評価した。
[0118] (1)絶縁層の熱伝導率測定
回路基板の絶縁層を別途直径 10mm X厚さ 2mmの円盤状硬化体を作製し、レー ザ一フラッシュ法により求めた。
[0119] (2)絶縁層のガラス転移点
多層化する前の一層の回路基板を使用し、ベース材である金属箔と導体回路をェ ツチング法により除去し、取り出した絶縁層を 5mm X 50mmにカ卩ェして、動的粘弹 性測定法により求めた。
[0120] (3)折り曲げ時の耐電圧
外層回路を直径 20mmの円形パターンを形成した多層回路基板の直径 20mmの 円形パターンが含まれるように曲率半径 lmmで 90° 折り曲げた状態で JIS C 211 0に規定された段階昇圧法により、内層回路とアルミニウム箔との間の耐電圧を測定 した。
[0121] (4)室温での屈曲性
多層回路基板(内層、外層に回路パターンは形成せず全面導体箔の状態のものを 使用)を 10mm X 100mmに加工して、 25 ± 1°Cの温度雰囲気下において、両手で 導体回路形成面側および導体回路形成面と反対側に曲率半径 5mmで 90° 以上 折り曲げることが可能であるものを良好とし、折り曲げを実施する際に、曲げ加工用の 金型とプレス機などを用いる必要がある場合を不良とした。
[0122] (5)パワー素子の動作安定性
日立製作所社製 p— mos— FET(2SK2174S)を 2mm間隔で 3個組み込んだモ ジュールを作製し、 100°Cの環境下で素子 1個当たり 10Wの消費電力となるように 9 6時間連続運転し、誤作動の有無を評価した。誤作動が発生しない場合は、消費電 力をさらに 10W加えて再度評価し誤作動の発生した時の消費電力量にてパワー素 子の動作安定性を評価した。
[0123] これらの結果を表 2-1に示した。
[0124] [表 2-1]
表 2—1
Figure imgf000044_0001
[0125] (実施例 2-2)
絶縁層の組成を、エポキシ当量が 201の水素添加されたビスフエノール A型ェポキ シ樹脂(ジャパンエポキシレジン社製「YX— 8000」 ) 70質量0 /0とエポキシ当量が 12 00の水素添カ卩されたビスフエノール Α型エポキシ榭脂(ジャパンエポキシレジン製「Y L一 7170」) 30質量%からなるエポキシ榭脂 100質量部に対して、硬化剤としてポリ ォキシプロピレンジァミン(ノヽルツマン社製「D— 400」と「D— 2000」の質量比が 6 :4 )48質量部を加え、最大粒子径が 75 μ m以下で平均粒子径が 21 μ mである球状粗 粒子の酸ィ匕アルミニウム(昭和電工社製「CB— A20J )と平均粒子径が 0. 6 μ mであ る球状微粒子の酸ィ匕アルミニウム (アドマテックス社製「AO - 802」 )を合わせて絶縁 層中 65体積% (球状粗粒子と球状微粒子は質量比が 6: 4)となるように配合した以 外は、実施例 2-1と同様の方法で多層回路基板を作製し、実施例 2-1と同様の方法 で評価した。それらの評価結果を表 2-1に示す。
[0126] (実施例 2-3)
エポキシ当量が 187のビスフエノール A型エポキシ榭脂(大曰本インキ化学工業社 製「EPICLON850— S」) 100質量部に対し、硬化剤としてポリオキシプロピレンジァ ミン (ノヽルツマン社製「D— 400」と「D— 2000」の質量比が 6: 4) 63質量部をカロえ、 最大粒子径が 75 IX m以下で平均粒子径が 21 IX mである球状粗粒子の酸ィ匕アルミ ユウム (昭和電工社製「CB—A20」 )と平均粒子径が 0. 6 μ mである球状微粒子の 酸ィ匕アルミニウム (アドマテックス社製 ΓΑΟ - 802」 )を合わせて絶縁層中 50体積0 /0 ( 球状粗粒子と球状微粒子は質量比が 6 :4)となるように配合した以外は、実施例 2-1 と同様の方法で多層回路基板を作製し、実施例 2-1と同様の方法で評価した。それ らの評価結果を表 2-1に示す。
[0127] (実施例 2-4)
エポキシ当量が 201の水素添加されたビスフエノール A型エポキシ榭脂(ジャパン エポキシレジン社製「YX— 8000」) 100質量部に対し、硬ィ匕剤としてポリオキシプロ ピレンジァミン(ノヽルツマン社製「D— 400」と「D— 2000」の質量比が 6 :4) 60質量部 を加え、最大粒子径が 75 μ m以下で平均粒子径が 21 μ mである球状粗粒子の酸 化アルミニウム(昭和電工社製「CB— A20」)と平均粒子径が 0. 6 μ mである球状微 粒子の酸ィ匕アルミニウム(アドマテックス社製 ΓΑΟ— 802」)を合わせて絶縁層中 50 体積% (球状粗粒子と球状微粒子は質量比が 6: 4)となるように配合した以外は、実 施例 2-1と同様の方法で多層回路基板を作製し、実施例 2-1と同様の方法で評価し た。それらの評価結果を表 2-1に示す。
[0128] (比較例 2-1)
エポキシ当量が 187のビスフエノール A型エポキシ榭脂(大日本インキ化学工業社 製「EPICLON850— S」) 100質量部に対し、硬化剤としてポリオキシプロピレンジァ ミン(ノヽルツマン社製「D— 400」と「D— 2000」の質量比が 6: 4) 63質量部を加え、 最大粒子径が 75 μ m以下で平均粒子径が 21 μ mである球状粗粒子の酸化アルミ -ゥム(昭和電工社製「CB— A20」)と平均粒子径が 0. 6 μ mである球状微粒子の 酸ィ匕アルミニウム (アドマテックス社製 ΓΑΟ - 802」 )を合わせて絶縁層中 80体積0 /0 ( 球状粗粒子と球状微粒子は質量比が 6 :4)となるように配合した以外は、実施例 2-1 と同様の方法で多層回路基板を作製し、実施例 2-1と同様の方法で評価した。それ らの評価結果を表 2-1に示す。得られた多層回路基板は、屈曲性がほとんど無ぐ室 温下にお 、て手動では折り曲げることができず、折り曲げ用金型とプレス機を用いて 90° に折り曲げた。また、耐電圧が低くなつた。
[0129] (比較例 2-2)
1500 111厚の八1板上に、絶縁層を形成した以外は、実施例 2-1と同様の方法で 多層回路基板を作製し、実施例 2-1と同様の方法で評価した。それらの評価結果を 表 2-1に示す。得られた多層回路基板は、屈曲性がほとんど無ぐ室温下において 手動では折り曲げることができず、折り曲げ用金型とプレス機を用いて 90° に折り曲 げた。多層回路基板の各種特性を表 2-1に示す。
< LEDモジユーノレ >
(実施例 3-1)
18 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%と、エポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%と力もなるエポキシ榭脂 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 40 0」と「D— 2000」の質量比が 6: 4のもの) 48質量部を加え、最大粒子径を 30 μ m以 下とした平均粒子径が 10 mで、ナトリウムイオン濃度が 90ppmである球状粗粒子 の酸ィ匕アルミニウム(電気化学工業社製「DAW— 10」)と平均粒子径が 0. 7 mで ナトリウムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友ィ匕学社製「 AKP- 15J )を合わせて、絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比 が 7: 3)となるように配合し、硬化後の厚さが 50 mになるように絶縁層を形成した。 つぎに、 18 /z m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、 絶縁層中の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の 無機フィラー全体でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得 た。
[0130] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした 。その後、金属ベース回路基板の部品搭載部分と入力端子部分以外を 12. 厚 みのカバーレイ (二ツカン工業社製「二カフレックス CKSE」を貼り付けることにより、基 板を補強した。
[0131] 次に、所望のスリット形状と同一形状のトムソン型を取り付けたプレス打ち抜き装置 を用いて、導体回路および電極が形成されていない箇所の一部金属箔、絶縁層およ びカバーレイを取り除き、折り曲げる部分の長さに対して 80%加工し、加工したスリツ ト部を含めて容易に折り曲げることができる金属ベース回路基板を得た。
[0132] さらに、金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社 製「M705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「 NFSW036B」)を実装した。その後、金属ベース回路基板をスリット部が含まれる様 に、幅力 S200mm、厚みが 0. 6mmで一辺を曲率半径 0. 3mmに加工したステンレス 製の折り曲げ治具を用いて、金属ベース回路基板を曲率半径 0. 3mmで折り曲げて 、厚さ lmmのアルミニウム製筐体に熱伝導性粘着テープを用いて固定し、 LEDモジ ユールを得た。
[0133] 次に示す方法で、(1)室温での引っ張り強さ、(2)室温での屈曲性、(3)導体回路 の評価 (4)折り曲げ時の耐電圧、 (5)電磁波吸収特性につ!、て測定した。
[0134] (1)室温での引っ張り強さ
金属ベース回路基板を 10mm X 100mmに加工して、 25± 1°Cの温度雰囲気下 において、テンシロン引っ張り強度試験機にて金属ベース回路基板が破断する時の 強さを測定し、引っ張り強さとした。
[0135] (2)室温での屈曲性
金属ベース回路基板を 10mm X 100mmに加工して、 25± 1°Cの温度雰囲気下 において、両手で導体回路形成面側および導体回路形成面と反対側に曲率半径 0 . 5mmで 90° 以上折り曲げることが可能であるものを良好とし、折り曲げを実施する 際に、曲げ加工用の金型とプレス機などを用いる必要がある場合を不良とした。
[0136] (3)導体回路の評価
25 ± 1°Cの温度雰囲気下において得られた LEDモジュールに安定ィ匕電源を接続 して電圧 10V、電流 150mA流して LEDを 1時間以上点灯させた。その時に LEDが 1時間以上点灯した場合を良好とし、 LEDが未点灯や 1時間以上点灯しな力つた場 合を不良とした。
[0137] (4)折り曲げ時の耐電圧
金属ベース回路基板を曲率半径 0. 3mmで 90° 折り曲げた状態で JIS C 2110 に規定された段階昇圧法により導体回路とベース金属箔 (Cu箔)との間の耐電圧を 測定した。 [0138] (5)電磁波吸収特性
得られた基板に対し、ネットワークアナライザ (8517D、アジレントテクノロジ一社製) を使用して、 300MHz,及び 1GHzの周波数に対し電磁波吸収特性を測定した。吸 収特性は、マイクロストリップライン法を用いて、ライン上の電磁波の反射信号 S 11と 伝送信号 S21の測定結果から、吸収割合 (PlossZPin)を算出した。
[0139] これらの結果を表 3-1に示した。
[表 3-1] 表 3— 1
Figure imgf000048_0001
[0140] (実施例 3- 2)
18 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%と、エポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%と力もなるエポキシ榭脂 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 40 0」と「D— 2000」の質量比が 6: 4のもの) 48質量部を加え、最大粒子径を 30 μ m以 下とした平均粒子径が 10 mで、ナトリウムイオン濃度が 90ppmである球状粗粒子 の酸ィ匕アルミニウム(電気化学工業社製「DAW— 10」)と平均粒子径が 0. 7 mで ナトリウムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友ィ匕学社製「 AKP- 15J )を合わせて、絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比 が 7: 3)となるように配合し、硬化後の厚さが 50 mになるように絶縁層を形成した。 つぎに、 18 /z m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶 縁層中の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無 機フイラ一全体でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得た。
[0141] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした 。その後、金属ベース回路基板の部品搭載部分と入力端子部分以外を 12. 厚 みのカバーレイ (二ツカン工業社製「二カフレックス CKSE」)を貼り付けることにより、 基板を補強した。
[0142] 次に磁性損失を有する層が、アスペクト比が 4である磁性材料と有機結合材とから なる、前記磁性材料の含有量が 50vol%である、厚さ 30 mの磁性損失を有する層 をカバーレイの上面に形成した。
[0143] 次に、幅力 S200mm、厚みが 0. 6mmで一辺を曲率半径 0. 3mmに加工したステン レス製の折り曲げ治具を用いて、導体回路および電極が形成されて ヽな ヽ箇所の一 部金属箔、絶縁層、カバーレイ及び磁性損失を有する層を取り除き、折り曲げる部分 の長さに対して 80%加工し、加工したスリット部を含めて容易に折り曲げることができ る金属ベース回路基板を得た。
[0144] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板をスリット部が含まれる様に金 属ベース回路基板を曲率半径 0. 3mmで折り曲げて厚さ lmmのアルミニウム製筐体 に熱伝導性粘着テープを用いて固定し、 LEDモジュールを得た。実施例 3-1と同様 に評価した結果を表 3-1に示した。
[0145] (実施例 3-3)
18 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%と、エポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%と力もなるエポキシ榭脂 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 40 0」と「D— 2000」の質量比が 6: 4のもの) 48質量部を加え、最大粒子径を 30 μ m以 下とした平均粒子径が 10 mで、ナトリウムイオン濃度が 90ppmである球状粗粒子 の酸ィ匕アルミニウム(電気化学工業社製「DAW— 10」)と平均粒子径が 0. 7 mで ナトリウムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友ィ匕学社製「 AKP- 15J )を合わせて、絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比 が 7: 3)となるように配合し、硬化後の厚さが 50 mになるように絶縁層を形成した。 つぎに、 18 m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶 縁層中の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無 機フイラ一全体でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得た。
[0146] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした 。その後、金属ベース回路基板の部品搭載部分と入力端子部分以外を 12. 厚 みのカバーレイ (二ツカン工業社製「二カフレックス CKSE」を貼り付けることにより、基 板を補強した。
[0147] 次に比表面積が 100m2Zg、JIS K 1469による電気抵抗率が 0. l Q cm以下で あるホウ素固溶のカーボンブラックであるカーボン粉末と有機結合材とからなる、前記 カーボン粉末の含有量が 50vol%で厚さが 30 μ mの誘電損失を有する層をカバー レイの上面に形成した。
[0148] 次に、幅力 S200mm、厚みが 0. 6mmで一辺を曲率半径 0. 3mmに加工したステン レス製の折り曲げ治具を用いて、導体回路および電極が形成されて ヽな ヽ箇所の一 部金属箔、絶縁層、カバーレイ及び誘電損失を有する層を取り除き、折り曲げる部分 の長さに対して 80%加工し、加工したスリット部を含めて容易に折り曲げることができ る金属ベース回路基板を得た。
[0149] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板をスリット部が含まれる様に金 属ベース回路基板を曲率半径 0. 3mmで折り曲げて厚さ lmmのアルミニウム製筐体 に熱伝導性粘着テープを用いて固定し、 LEDモジュールを得た。実施例 3-1と同様 に評価した結果を表 3-1に示した。
[0150] (比較例 3-1)
カバーレイを貼り付けることによる基板を補強と折り曲げる部分のスリット加工を行わ ない以外は全て実施例 3-1と同様の処理を行い、金属ベース回路基板を得た。
[0151] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板を曲率半径 0. 3mmで折り曲 げて厚さ lmmのアルミニウム製筐体に熱伝導性粘着テープを用いて固定し、 LED モジュールを得た。実施例 3-1と同様に評価した結果を表 3-1に示した。
[0152] (比較例 3-2)
折り曲げる部分のスリット力卩ェを行わない以外は全て実施例 3-1と同様の処理を行 い、金属ベース回路基板を得た。
[0153] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板を曲率半径 0. 3mmで折り曲 げて厚さ lmmのアルミニウム製筐体に熱伝導性粘着テープを用いて固定し、 LED モジュールを得た。実施例 3-1と同様に評価した結果を表 3-1に示した。
[0154] (比較例 3-3)
磁性損失を有する層が、アスペクト比が 1である磁性材料と有機結合材とからなる、 厚さ 2 mの磁性損失層を前記磁性材料の含有量が 20vol%の磁性損失を有する 層をカバーレイの上面に形成する以外は実施例 3-2と同様の処理を行い、金属べ一 ス回路基板を得た。
[0155] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板をスリット部が含まれる様に金 属ベース回路基板を曲率半径 0. 3mmで折り曲げて厚さ lmmのアルミニウム製筐体 に熱伝導性粘着テープを用いて固定し、 LEDモジュールを得た。実施例 3-1と同様 に評価した結果を表 3-1に示した。 [0156] (比較例 3-4)
比表面積が 10m2Zg、JIS
K 1469による体積抵抗率が 0. 2 Ω cmであるホウ素固溶のカーボンブラックである カーボン粉末と有機結合材とからなる、前記カーボン粉末の含有量が 4vol%で厚さ ifi2 ix mの誘電損失を有する層をカバーレイの上面に形成した以外は実施例 3-3と 同様の処理を行い、金属ベース回路基板を得た。
[0157] 次に金属ベース回路基板の部品搭載部分の電極にクリーム半田(千住金属社製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036B」)を実装した。その後、金属ベース回路基板をスリット部が含まれる様に金 属ベース回路基板を曲率半径 0. 3mmで折り曲げて厚さ lmmのアルミニウム製筐体 に熱伝導性粘着テープを用いて固定し、 LEDモジュールを得た。実施例 3-1と同様 に評価した結果を表 3-1に示した。
[0158] < LED光源ユニット >
(実施例 4-1)
35 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%と、エポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%と力もなるエポキシ榭脂 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 40 0」と「D— 2000」の質量比が 6: 4のもの) 48質量部を加え、最大粒子径が 75 μ m以 下で平均粒子径が 21 μ mであり、ナトリウムイオン濃度が lOppmである球状粗粒子 の酸ィ匕アルミニウム(昭和電工社製「CB— A20」)と平均粒子径が 0. 7 μ mでナトリウ ムイオン濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友化学社製 ΓΑΚΡ - 15」 )を合わせて、絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比が 7: 3)と なるように配合し、硬化後の厚さが 100 mになるように絶縁層を形成した。つぎに、 35 μ m厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中 の熱硬化性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無機フィ ラー全体でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得た。 [0159] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした
[0160] 熱伝導性粘着テープはアクリルゴム 10質量% (日本ゼオン社製「AR— 53L」 )が溶 解された 2—ェチルへキシルアタリレート(東亞合成社製「2EHA」) 90質量0 /0に、ァ クリル酸 (東亜合成社製「AA」)10質量%を混合し、光重合開始剤 2, 2—ジメトキシ - 1, 2—ジフエ-ルェタン一 1—オン 0. 5質量0 /0 (チノく'スペシャルティ'ケミカルズ 社製)、トリエチレングリコールジメルカプタン 0. 2質量0 /0 (丸善ケミカル社製)、 2—ブ チルー 2—ェチルー 1, 3—プロパンジオールジアタリレート 0. 2質量0 /0 (共栄社化学 社製)をさらに添加し混合、榭脂組成物を得た。
[0161] 前記榭脂組成物に、酸ィ匕アルミニウム (電気化学工業製「DAW— 10」)を 300質量 部充填し、混合、分散して熱伝導榭脂組成物を得た。
[0162] 熱伝導榭脂組成物を脱泡処理し、表面に離型処理を施した厚さ 75 μ mのポリエス テルフィルム上に、厚さ 100 μ mとなるように塗工して、離型処理を表面に施したポリ エステルフィルムを被せ、 365nmの紫外線を表裏から 3000mjZcm2照射して、熱 伝導粘着テープを得た。
[0163] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製製「 M705J )をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NF SW036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていな い側を熱伝導率が lWZmKで、厚さ 100 μ mの熱伝導性粘着テープにて U字型の 筐体に固定し、 LED光源ユニットを得た。
[0164] 温度 23°C、湿度 30%の環境下にて、得られた LED光源ユニットに安定ィ匕電源を 接続して電流 450mA流して LED点灯させた。そのときの電圧は 11. 8Vであった。 点灯させた LEDの温度を熱伝対により測定したところ、 LEDの温度は 45°Cであった
[0165] 次に示す方法で、(1)室温での屈曲性、(2)絶縁層の熱伝導率、(3)熱伝導粘着 テープの熱伝導率、(4)室温下で U字型筐体へ固定した時の絶縁層クラック発生の 有無、(5) LED点灯時の LED温度にっ 、て測定した。 [0166] (1)室温での屈曲性
金属ベース回路基板を 10mm X 100mmに加工して、 25± 1°Cの温度雰囲気下 において、両手で導体回路形成面側および導体回路形成面と反対側に曲率半径 5 mmで 90° 以上折り曲げることが可能であるものを良好とし、折り曲げを実施する際 に、曲げ加工用の金型とプレス機などを用いる必要がある場合を不良とした。
[0167] (2)絶縁層の熱伝導率
金属ベース回路基板の金属箔と導体回路とを除去し、絶縁層を直径 10mm X厚さ 100 mにカロェして、レーザーフラッシュ法により求めた。
[0168] (3)熱伝導性粘着テープの熱伝導率
測定サンプルを、厚さ 10mmになるように積層して、 50mm X 120mmに加工して 迅速熱伝導率計 (QTM— 500、京都電子工業社製)により求めた。
[0169] (4)絶縁層クラック発生の有無
室温下で 90° 折り曲げた状態での絶縁層クラック発生の有無を目視で観察した。
[0170] (5) LED点灯時の LED温度
LEDに 450mAの定格電流を印可して LEDを点灯させ、 15分後の LED半田接合 部の温度を測定した。
[0171] [表 4-1]
字筐体定時型固した Uのへ
点灯時 L E D
発有プ絶層生伝導率縁クク粘着熱絶縁層熱伝導率ラののテののッー度温の L E D
() ()°/ (/)CWKWKmm
実施例14- 実施例24-
J)
施実例34- 疆 m m
施実例 44- 較例比 41- 較例比 42 -
(実施例 4- 2)
35 μ m厚の銅箔上に、エポキシ当量が 207の 170ppmである水素添カ卩されたビス フエノール A型エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」) 70質量 %とエポキシ当量が 1200の水素添加されたビスフエノール A型エポキシ榭脂(ジャ パンエポキシレジン製「YL— 7170」) 30質量%とからなるエポキシ榭脂 100質量部 に対して、硬ィ匕剤としてポリオキシプロピレンジァミン ルツマン社製「D— 400」と「 D— 2000」の質量比が 6 4) 48質量部を加え、最大粒子径が 75 μ m以下で平均粒 子径が 21 a mでありナトリウムイオン濃度が lOppmである球状粗粒子の酸ィ匕アルミ -ゥム(昭和電工社製「CB— A20」)と平均粒子径が 0. 7 mでナトリウムイオン濃度 力 ^ppmである球状微粒子の酸ィ匕アルミニウム (住友化学社製 ΓΑΚΡ—15」)を合わ せて絶縁層中 66体積% (球状粗粒子と球状微粒子は質量比が 7: 3)となるように配 合し、硬化後の厚さが 100 mになるように絶縁層を形成した。つぎに、 35 m厚の 銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の熱硬化性榭 脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無機フィラー全体でナト リウムイオン濃度が 60ppm以下である金属ベース基板を得た。
[0173] 金属ベース基板について、片側の銅箔面に対して所定の位置をエッチングレジスト でマスクして銅箔をエッチングした後、エッチングレジストを除去して回路を形成し金 属ベース回路基板とした。
[0174] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製「M 705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NFS W036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていない 側を実施例 1で得た熱伝導率が lWZmKで厚さ 100 μ mの熱伝導性粘着テープに て U字型の筐体に固定し、 LED光源ユニットを得た。
[0175] 温度 23°C、湿度 30%の環境下にて、 LED光源ユニットに安定ィ匕電源を接続して 電流 450mA流して LEDを点灯させた。そのときの電圧は 11. 7Vであった。点灯さ せた LEDの温度を熱伝対により測定したところ、 LEDの温度は 43°Cであった。それ らの結果を表 4- 1に示す。絶縁層の熱伝導率の向上により点灯させた LEDの温度が 低下した。その他の物性についても良好であった。
[0176] (実施例 4-3)
35 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%とエポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%と力もなるエポキシ榭脂 10 0質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 40 0」と「D— 2000」の質量比が 6: 4) 48質量部を加え、最大粒子径が 75 μ m以下で平 均粒子径が 21 μ mでありナトリウムイオン濃度が lOppmである球状粗粒子の酸ィ匕ァ ルミ-ゥム(昭和電工社製「CB— A20」)と平均粒子径が 0. 7 μ mでナトリウムイオン 濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友化学社製 ΓΑΚΡ— 15」)を 合わせて絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比が 7: 3)となるよう に配合し、硬化後の厚さが 100 /z mになるように絶縁層を形成した。つぎに、 35 m 厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の熱硬化 性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無機フィラー全体 でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得た。
[0177] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした
[0178] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製「M 705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NFS W036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていない 側を、後述する、熱伝導率が 2WZmKで厚さ 100 mの熱伝導性粘着テープにて、 U字型の筐体に固定し、 LED光源ユニットを得た。
[0179] 熱伝導性粘着テープの榭脂組成物は、酸ィ匕アルミニウム (電気化学工業製「DAW —10」)を 400質量部充填したことを除いて、実施例 4-1で得た組成で、実施例 4-1 に示した手順によったものである。
[0180] 温度 23°C、湿度 30%の環境下にて、 LED光源ユニットに安定ィ匕電源を接続して 電流 450mA流して LEDを点灯させた。そのときの電圧は 11. 7Vであった。点灯さ せた LEDの温度を熱伝対により測定したところ、 LEDの温度は 42°Cであった。
[0181] (実施例 4- 4)
35 μ m厚の銅箔上に、エポキシ当量が 207の 170ppmである水素添カ卩されたビス フエノール A型エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」) 70質量 %とエポキシ当量が 1200の水素添加されたビスフエノール A型エポキシ榭脂(ジャ ノ ンエポキシレジン製「YL— 7170」 ) 30質量0 /0力もなるエポキシ榭脂 100質量部に 対して、硬化剤としてポリオキシプロピレンジァミン(ノヽルツマン社製「D— 400」と「D 2000」の質量比が 6: 4) 48質量部を加え、最大粒子径が 75 μ m以下で平均粒子 径が 21 μ mでありナトリウムイオン濃度が lOppmである球状粗粒子の酸ィ匕アルミ-ゥ ム(昭和電工社製「CB— A20」)と平均粒子径が 0. 7 mでナトリウムイオン濃度が 8 ppmである球状微粒子の酸ィ匕アルミニウム (住友化学社製 ΓΑΚΡ—15」)を合わせて 絶縁層中 66体積% (球状粗粒子と球状微粒子は質量比が 7: 3)となるように配合し、 硬化後の厚さが 100 mになるように絶縁層を形成した。つぎに、 35 m厚の銅箔 を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の熱硬化性榭脂全 体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無機フィラー全体でナトリウム イオン濃度が 60ppm以下である金属ベース基板を得た。
[0182] 金属ベース基板について、片側の銅箔面に対して所定の位置をエッチングレジスト でマスクして銅箔をエッチングした後、エッチングレジストを除去して回路を形成し金 属ベース回路基板とした。
[0183] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製「M 705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NFS W036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていない 側を、実施例 4-3で得た熱伝導率が 2WZmKで厚さ 100 mの熱伝導性粘着テー プにて U字型の筐体に固定し、 LED光源ユニットを得た。
[0184] 温度 23°C、湿度 30%の環境下にて、 LED光源ユニットに安定ィ匕電源を接続して 電流 450mA流して LEDを点灯させた。そのときの電圧は 11. 6Vであった。点灯さ せた LEDの温度を熱伝対により測定したところ、 LEDの温度は 38°Cであった。それ らの結果を表 4- 1に示す。絶縁層の熱伝導率の向上により点灯させた LEDの温度が 低下した。その他の物性についても良好であった。
[0185] (比較例 4-1)
35 μ m厚の銅箔に 50 μ m厚のポリイミドフィルム系絶縁層を介して、 35 μ m厚の 銅箔が形成されて ヽるポリイミド系フレキシブル基板 (松下電工社製「R— F775」 )に っ 、て、片側の銅箔面に対して所定の位置をエッチングレジストでマスクして銅箔を エッチングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板と した。
[0186] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製「M 705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NFS W036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていない 側を 125 μ m厚の粘着テープ (住友 3Μ社製「F— 9469PC」)にて U字型の筐体に 固定し、 LED光源ユニットを得た。
[0187] 温度 23°C、湿度 30%の環境下にて、 LED光源ユニットに安定ィ匕電源を接続して 電流 450mA流して LEDを点灯させた。そのときの電圧は 12. 5Vであった。点灯さ せた LEDの温度を熱伝対により測定したところ、 LEDの温度は 65°Cであった。
[0188] (比較例 4-2)
35 μ m厚の銅箔上に、エポキシ当量が 207の水素添カ卩されたビスフエノール A型 エポキシ榭脂(大日本インキ化学工業社製 ΓΕΧΑ- 7015」)をエポキシ榭脂全体で 70質量%とエポキシ当量が 1200の水素添カ卩されたビスフエノール A型エポキシ榭 脂(ジャパンエポキシレジン社製「YL— 7170」) 30質量%カもなるエポキシ榭脂 100 質量部に対し、硬ィ匕剤としてポリオキシプロピレンジァミン (ノヽルツマン社製「D— 400 」と「D— 2000」の質量比が 6: 4) 48質量部を加え、最大粒子径が 75 μ m以下で平 均粒子径が 21 μ mでありナトリウムイオン濃度が lOppmである球状粗粒子の酸ィ匕ァ ルミ-ゥム(昭和電工社製「CB— A20」)と平均粒子径が 0. 7 μ mでナトリウムイオン 濃度が 8ppmである球状微粒子の酸ィ匕アルミニウム (住友化学社製 ΓΑΚΡ— 15」)を 合わせて絶縁層中 50体積% (球状粗粒子と球状微粒子は質量比が 7: 3)となるよう に配合し、硬化後の厚さが 100 /z mになるように絶縁層を形成した。つぎに、 35 m 厚の銅箔を張り合わせ、加熱することにより絶縁層を熱硬化させ、絶縁層中の熱硬化 性榭脂全体で塩ィ匕物イオン濃度が 300ppm以下で、絶縁層中の無機フィラー全体 でナトリウムイオン濃度が 50ppm以下である金属ベース基板を得た。
[0189] 金属ベース基板について、所定の位置をエッチングレジストでマスクして銅箔をエツ チングした後、エッチングレジストを除去して回路を形成し金属ベース回路基板とした
[0190] 金属ベース回路基板の導体回路の所定の位置にクリーム半田(千住金属社製「M 705」)をスクリーン印刷にて塗布し、半田リフローにより LED (日亜ィ匕学社製「NFS W036AT」)を実装した。その後、金属ベース回路基板の LEDが実装されていない 側を 125 μ m厚の粘着テープ (住友 3Μ社製「F— 9469PC」)にて U字型の筐体に 固定し、 LED光源ユニットを得た。
[0191] 温度 23°C、湿度 30%の環境下にて、 LED光源ユニットに安定ィ匕電源を接続して 電流 450mA流して LEDを点灯させた。そのときの電圧は 11. 2Vであった。点灯さ せた LEDの温度を熱伝対により測定したところ、 LEDの温度は 55°Cであった。 産業上の利用可能性
[0192] 本発明の金属ベース回路基板は、熱放散性と電気絶縁性を有し、しカゝも放熱が必 要な半導体素子や抵抗チップなどの電気部品を実装した状態でも容易に室温で折 り曲げることができるので、従来は困難であった高発熱性電子部品を実装した電子 機器の小型化または薄型化が可能となる。
すなわち、本発明の金属ベース回路基板は、複雑形状の筐体や放熱部材に接し た混成集積回路や、カバーレイが貼り付けられ、所望の位置にスリット加工が施され て ヽるので折り曲げ性が確保された、あるいは磁性損失を有する層又は誘電損失を 有する層が形成された LEDモジュールや、 LED光源から発生する熱を効率よく基板 裏面側に放熱して LEDの温度上昇を小さくし、 LEDの発光効率低下を抑制した明る く長寿命と 、う特徴を有する LED光源ユニットへの応用など、 V、ろ 、ろな用途分野に 適用できる。
なお、 2005年 4月 19曰に出願された曰本特許出願 2005— 120891号、 2006年 1月 23日に出願された日本特許出願 2006— 013289号、 2006年 2月 7日に出願さ れた曰本特許出願 2006— 030024号、および 2006年 3月 28曰〖こ出願された曰本 特許出願 2006— 87688号の明細書、特許請求の範囲、図面及び要約書の全内容 をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims

請求の範囲
[I] 絶縁層と導体回路又は金属箔とが交互に積層されている回路基板であって、導体 回路又は金属箔の厚さが 5 μ m以上 450 m以下、絶縁層が無機フィラーと熱硬化 性榭脂とを含有する榭脂組成物の硬化体からなり、前記絶縁層の厚さが 9 μ m以上 300 μ m以下であることを特徴とする金属ベース回路基板。
[2] 導体回路又は金属箔間を電気的に接続するために使用するスルーホールの少な くとも 1個力 0. 0078mm2以上である請求項 1に記載の金属ベース回路基板。
[3] 絶縁層の熱伝導率が l〜4WZmKである請求項 1又は 2に記載の金属ベース回路 基板。
[4] 絶縁層のガラス転移温度が 0〜40°Cである請求項 1乃至 3の 、ずれか一項に記載 の金属ベース回路基板。
[5] 絶縁層が、熱硬化性榭脂を 25〜60体積%含有し、残部が最大粒子径 75 μ m以 下で平均粒子径 5〜40 mの球状粗粒子と平均粒子径 0. 3〜3. の球状微 粒子とからなるナトリウムイオン濃度が 500ppm以下の無機フイラ一力もなる榭脂組 成物の硬化体である請求項 1乃至 4のいずれか一項に記載の金属ベース回路基板。
[6] 熱硬化性榭脂が、水素添加されたビスフエノール F型及び Z又は A型のエポキシ 榭脂を含有する請求項 1乃至 5のいずれか一項に記載の金属ベース回路基板。
[7] 熱硬化性榭脂が、エポキシ当量 800以上 4000以下の直鎖状のエポキシ榭脂を含 有する請求項 6に記載の金属ベース回路基板。
[8] 熱硬化性榭脂が、硬化剤としてポリオキシアルキレンポリアミンを含有する請求項 6 又は 7に記載の金属ベース回路基板。
[9] 熱硬化性榭脂中の塩ィ匕物イオン濃度が 500ppm以下である請求項 6乃至 8のいず れか一項に記載の金属ベース回路基板。
[10] 当該回路基板を、任意の個所で曲率半径 l〜5mmで 90° 以上折り曲げたときに、 導体回路又は金属箔の各々間の耐電圧が 1. OkV以上である請求項 1乃至 9のいず れか一項に記載の金属ベース回路基板。
[II] 金属箔上に絶縁層を介して導体回路を設け、更に厚さが 5 m以上 25 m以下で あるカバーレイを設けてなる金属ベース回路基板であって、カバーレイの少なくとも 一部が除かれて形成されて 、るスリットが前記導体回路の設けられて 、な 、部分に 形成されている請求項 1乃至 10のいずれか一項に記載の金属ベース回路基板。
[12] 前記スリットが、折り曲げる部分の長さに対して 50%以上 95%以下にカ卩ェされてい る請求項 11に記載の金属ベース回路基板。
[13] 前記カバーレイの厚さが 5 m以上 25 mである請求項 11又は 12に記載の金属 ベース回路基板。
[14] 前記スリット部で折り曲げられている請求項 11乃至 13のいずれか一項に記載の金 属ベース回路基板。
[15] 絶縁層表面が、曲率半径 0. 1〜0. 5mmで 90° 以上に折り曲げられている請求 項 11乃至 14の 、ずれか一項に記載の金属ベース回路基板。
[16] カバーレイの表面上に、磁性損失を有する層又は誘電損失を有する層が積層され て 、る請求項 11乃至 15の 、ずれか一項に記載の金属ベース回路基板。
[17] 磁性損失を有する層が、アスペクト比が 2以上である磁性材料と有機結合材とから なり、前記磁性材料の含有量が 30〜70vol%であり、さらに当該磁性損失を有する 層の厚さが 3 μ m以上 50 μ m以下である請求項 11乃至 16のいずれか一項に記載 の金属ベース回路基板。
[18] 磁性損失を有する層が、比表面積が 20〜110m2Zgのカーボン粉末と有機結合 材とからなり、前記カーボン粉末の含有量が 5〜60vol%であり、当該磁性損失を有 する層の厚さが 3 μ m以上 50 μ m以下である請求項 11乃至 16のいずれか一項に記 載の金属ベース回路基板。
[19] 請求項 1乃至 10のいずれか一項に記載の金属ベース回路基板を使用したことを特 徴とする混成集積回路。
[20] 請求項 11乃至 18のいずれか一項に記載の金属ベース回路基板の導体回路に、 少なくとも 1個の LEDを電気的に接続してなることを特徴とする LED。
[21] 請求項 1乃至 18のいずれか一項に記載金属ベース回路基板を、粘着テープを介 して、筐体表面に配置し、し力も前記金属ベース回路基板の導体回路上に 1個以上 の発光ダイオード (LED)を搭載してなることを特徴とする LED光源ユニット。
[22] 粘着テープの熱伝導率が l〜2WZmKで、厚さが 50 μ m以上 150 μ m以下であ る請求項 21に記載の LED光源ユニット。
[23] 粘着テープが、アクリル酸及び Zまたはメタクリル酸を含む高分子を含有する請求 項 21又は 22に記載の LED光源ュ-ット。
[24] 粘着テープが、熱伝導性電気絶縁剤を 40〜80体積%含有している請求項 21乃 至 23の!、ずれか一項に記載の LED光源ユニット。
[25] 熱伝導性電気絶縁剤の最大粒子径が 45 μ m以下で平均粒子径 0. 5〜30 μ mで ある請求項 21乃至 24のいずれか一項に記載の LED光源ユニット。
PCT/JP2006/308221 2005-04-19 2006-04-19 金属ベース回路基板、led、及びled光源ユニット WO2006112478A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/911,914 US8071882B2 (en) 2005-04-19 2006-04-19 Metal base circuit board, LED, and LED light source unit
EP06745453A EP1874101A4 (en) 2005-04-19 2006-04-19 PCB WITH METAL BASE, LED AND LED LIGHT SOURCE UNIT
CN2006800123857A CN101161039B (zh) 2005-04-19 2006-04-19 金属基电路基板、led及led光源单元
CA2605209A CA2605209C (en) 2005-04-19 2006-04-19 Metal base circuit board, light-emitting diode and led light source unit
HK08107477.9A HK1116981A1 (en) 2005-04-19 2008-07-08 Metal base circuit board, led, and led light source unit

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-120891 2005-04-19
JP2005120891A JP4672425B2 (ja) 2005-04-19 2005-04-19 金属ベース回路基板およびその製法ならびにそれを用いた混成集積回路
JP2006013289A JP4459910B2 (ja) 2006-01-23 2006-01-23 Led光源ユニット
JP2006-013289 2006-01-23
JP2006030024A JP4484830B2 (ja) 2006-02-07 2006-02-07 回路基板
JP2006-030024 2006-02-07
JP2006-087688 2006-03-28
JP2006087688A JP4913459B2 (ja) 2006-03-28 2006-03-28 金属ベース回路基板およびその製法、ならびにledモジュール

Publications (1)

Publication Number Publication Date
WO2006112478A1 true WO2006112478A1 (ja) 2006-10-26

Family

ID=37115190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308221 WO2006112478A1 (ja) 2005-04-19 2006-04-19 金属ベース回路基板、led、及びled光源ユニット

Country Status (7)

Country Link
US (1) US8071882B2 (ja)
EP (1) EP1874101A4 (ja)
KR (1) KR101073423B1 (ja)
CA (1) CA2605209C (ja)
HK (1) HK1116981A1 (ja)
TW (1) TWI395538B (ja)
WO (1) WO2006112478A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986260A1 (en) * 2007-04-18 2008-10-29 Nitto Denko Corporation Printed circuit board and fuel cell
GB2455489A (en) * 2007-08-22 2009-06-17 Photonstar Led Ltd High thermal performance mounting arrangements for optoelectronic devices
EP2109156A4 (en) * 2007-01-30 2010-02-24 Denki Kagaku Kogyo Kk LED LIGHT SOURCE UNIT
EP2160082A4 (en) * 2007-05-18 2016-08-24 Denka Company Ltd PCB WITH METAL BASE
TWI554149B (zh) * 2007-12-04 2016-10-11 杜邦股份有限公司 用於發光二極體之安裝及互連之可彎曲電路結構

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119608A1 (ja) * 2006-03-31 2007-10-25 Nec Corporation 配線基板、実装基板及び電子装置
DE102009009288A1 (de) * 2009-02-17 2010-08-26 Osram Gesellschaft mit beschränkter Haftung Starrflexible Trägerplatte
WO2011016908A1 (en) * 2009-08-03 2011-02-10 Illinois Tool Works Inc. Optical interruption sensor with opposed light emitting diodes
KR101097811B1 (ko) * 2009-10-08 2011-12-23 엘지이노텍 주식회사 브라켓 일체형 방열 인쇄회로기판과 이를 구비한 샤시구조물
DE202010017532U1 (de) 2010-03-16 2012-01-19 Eppsteinfoils Gmbh & Co.Kg Foliensystem für LED-Anwendungen
RS62746B1 (sr) * 2010-09-02 2022-01-31 Sumitomo Bakelite Co Kompozicija smole za fiksiranje za upotrebu u rotoru
US8449784B2 (en) * 2010-12-21 2013-05-28 United Technologies Corporation Method for securing a sheath to a blade
JP5665184B2 (ja) * 2011-01-14 2015-02-04 株式会社小糸製作所 照明装置
US20130051018A1 (en) * 2011-08-23 2013-02-28 Tyco Electronics Corporation Metal clad circuit board
KR101330770B1 (ko) * 2011-11-16 2013-11-18 엘지이노텍 주식회사 백라이트 유닛용 절곡 인쇄회로기판
US9117991B1 (en) * 2012-02-10 2015-08-25 Flextronics Ap, Llc Use of flexible circuits incorporating a heat spreading layer and the rigidizing specific areas within such a construction by creating stiffening structures within said circuits by either folding, bending, forming or combinations thereof
US9019710B2 (en) * 2012-10-11 2015-04-28 Apple Inc. Devices having flexible printed circuits with bent stiffeners
DE102013201327A1 (de) * 2013-01-28 2014-07-31 Osram Gmbh Leiterplatte, optoelektronisches Bauteil und Anordnung optoelektronischer Bauteile
JP6007851B2 (ja) * 2013-04-08 2016-10-12 日立金属株式会社 絶縁電線、およびそれを用いたコイル、モータ
CN103247233B (zh) 2013-04-28 2015-09-23 京东方科技集团股份有限公司 柔性基板、显示装置及在柔性基板上贴附电子器件的方法
DE102013221644A1 (de) 2013-04-30 2014-10-30 Tridonic Gmbh & Co Kg LED Modul mit konkavem Träger
US20140340873A1 (en) * 2013-05-20 2014-11-20 Ko-Chun Chen Bendable heat readiating composite and backlight unit having the same
US9820376B2 (en) * 2013-05-28 2017-11-14 Tatsuta Electric Wire & Cable Co., Ltd. Shape-retaining film, and shape-retaining-type flexible circuit board provided with same shape-retaining film
KR102040184B1 (ko) * 2013-05-31 2019-11-04 엘지이노텍 주식회사 회로기판, 상기 회로기판을 포함하는 조명장치 및 기판 하우징
KR102087865B1 (ko) * 2013-06-27 2020-03-12 엘지이노텍 주식회사 광원 회로유닛 및 이를 포함하는 조명장치
KR102127341B1 (ko) * 2013-07-02 2020-06-26 엘지이노텍 주식회사 인쇄회로기판
KR102127343B1 (ko) * 2013-07-03 2020-06-26 엘지이노텍 주식회사 인쇄회로기판
KR102109752B1 (ko) * 2013-10-02 2020-05-12 엘지이노텍 주식회사 회로기판 및 상기 회로기판을 포함하는 조명장치
KR102170480B1 (ko) * 2013-12-09 2020-10-28 엘지이노텍 주식회사 인쇄회로기판
KR102148845B1 (ko) * 2013-12-12 2020-08-27 엘지이노텍 주식회사 인쇄회로기판
EP2914071A1 (en) * 2014-02-28 2015-09-02 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Heat spreader in multilayer build ups
JP2016002669A (ja) * 2014-06-13 2016-01-12 住友ベークライト株式会社 金属箔張基板、回路基板および電子部品搭載基板
JP2016004841A (ja) * 2014-06-13 2016-01-12 住友ベークライト株式会社 金属箔張基板、回路基板および発熱体搭載基板
US20150369457A1 (en) * 2014-06-23 2015-12-24 Epistar Corporation Light-Emitting Device
DE102014010329A1 (de) * 2014-07-14 2016-01-14 Carl Freudenberg Kg Laminat zur Herstellung einer IMS-Leiterplatte und IMS-Leiterplatte
KR102198695B1 (ko) 2014-09-03 2021-01-06 삼성전자주식회사 광원 모듈 및 이를 포함하는 백라이트 유닛
CN104486902B (zh) * 2014-11-27 2018-01-16 深圳市华星光电技术有限公司 弯折型印刷电路板
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
CN204573715U (zh) * 2015-04-21 2015-08-19 北京京东方茶谷电子有限公司 一种led灯条、背光源及显示装置
US20160379854A1 (en) * 2015-06-29 2016-12-29 Varian Semiconductor Equipment Associates, Inc. Vacuum Compatible LED Substrate Heater
CN204884440U (zh) * 2015-08-27 2015-12-16 京东方科技集团股份有限公司 柔性显示面板和柔性显示装置
US10257932B2 (en) * 2016-02-16 2019-04-09 Microsoft Technology Licensing, Llc. Laser diode chip on printed circuit board
FR3048153B1 (fr) * 2016-02-22 2019-11-29 Valeo Vision Module lumineux pour un vehicule automobile avec reprise de masse
EP3475608B1 (en) * 2016-06-28 2020-11-04 Signify Holding B.V. Lighting assembly for emitting high intensity light, a light source, a lamp and a luminaire
JP6672108B2 (ja) * 2016-08-12 2020-03-25 株式会社フジクラ 配線基板及び当該配線基板の製造方法
JP2018041803A (ja) * 2016-09-06 2018-03-15 日本メクトロン株式会社 フレキシブルプリント基板およびフレキシブルプリント基板の製造方法
US20190196094A1 (en) * 2016-09-13 2019-06-27 Sharp Kabushiki Kaisha Lighting device and display device
JP7023074B2 (ja) * 2016-09-16 2022-02-21 ソマール株式会社 エポキシ樹脂粉体塗料
US10141215B2 (en) 2016-11-03 2018-11-27 Rohinni, LLC Compliant needle for direct transfer of semiconductor devices
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10471545B2 (en) 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
JP2018105976A (ja) * 2016-12-26 2018-07-05 株式会社ジャパンディスプレイ 表示装置
US10062588B2 (en) 2017-01-18 2018-08-28 Rohinni, LLC Flexible support substrate for transfer of semiconductor devices
CN109757023B (zh) * 2017-11-08 2022-04-26 广东生益科技股份有限公司 印刷线路板及其制作方法
US10410905B1 (en) 2018-05-12 2019-09-10 Rohinni, LLC Method and apparatus for direct transfer of multiple semiconductor devices
WO2019230524A1 (ja) * 2018-05-28 2019-12-05 株式会社村田製作所 樹脂多層基板および電子機器
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
JP7066070B2 (ja) * 2019-03-05 2022-05-12 シグニファイ ホールディング ビー ヴィ フレキシブルプリント回路基板アセンブリ
US11551986B2 (en) * 2020-04-02 2023-01-10 Texas Instruments Incorporated Shape memory polymer for use in semiconductor device fabrication

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295691A (ja) * 1985-06-25 1986-12-26 川崎製鉄株式会社 フレキシブル基板
JPS63205986A (ja) * 1987-02-21 1988-08-25 松下電工株式会社 金属ベ−スプリント配線基板
JPH02260598A (ja) * 1989-03-31 1990-10-23 Nec Corp 立体配線板の製造方法
JPH08323916A (ja) * 1995-05-30 1996-12-10 Tonen Corp 銅張樹脂複合材料
JPH10242607A (ja) * 1997-02-25 1998-09-11 Hitachi Chem Co Ltd 金属ベース基板及びその製造方法
JP2001151862A (ja) * 1999-11-22 2001-06-05 Tosoh Corp エポキシ樹脂組成物
JP2001223450A (ja) * 2000-02-10 2001-08-17 Denki Kagaku Kogyo Kk 金属ベース回路基板
JP2004010859A (ja) * 2002-06-11 2004-01-15 Dainippon Ink & Chem Inc 熱伝導電気絶縁感圧接着剤用組成物、およびこれを用いた粘着シート
JP2005064168A (ja) * 2003-08-11 2005-03-10 Denki Kagaku Kogyo Kk 金属ベース回路基板およびその製造方法
JP2005097393A (ja) * 2003-09-24 2005-04-14 Dainippon Ink & Chem Inc Lcdモジュール用粘着テープ

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113981A (en) * 1974-08-14 1978-09-12 Kabushiki Kaisha Seikosha Electrically conductive adhesive connecting arrays of conductors
JPS60210643A (ja) * 1983-11-30 1985-10-23 Denki Kagaku Kogyo Kk 充填剤及びその組成物
US4533719A (en) * 1984-03-22 1985-08-06 Texaco, Inc. Epoxy resins with increased flexibility
US4617357A (en) * 1984-09-24 1986-10-14 Ciba-Geigy Corporation Process for reducing the content of chlorine in glycidyl compounds
US5098965A (en) 1991-01-31 1992-03-24 Shell Oil Company Process for preparing low-chlorine epoxy resins
WO1992022422A1 (en) * 1991-06-19 1992-12-23 Rogers Corporation Shape retaining flexible electrical circuit
WO1994024704A1 (en) * 1993-04-12 1994-10-27 Bolger Justin C Area bonding conductive adhesive preforms
JPH0722741A (ja) * 1993-07-01 1995-01-24 Japan Gore Tex Inc カバーレイフィルム及びカバーレイフィルム被覆回路基板
US5917157A (en) * 1994-12-12 1999-06-29 Remsburg; Ralph Multilayer wiring board laminate with enhanced thermal dissipation to dielectric substrate laminate
JP3190251B2 (ja) * 1995-06-06 2001-07-23 太陽インキ製造株式会社 アルカリ現像型のフレキシブルプリント配線板用光硬化性・熱硬化性樹脂組成物
US5849396A (en) * 1995-09-13 1998-12-15 Hughes Electronics Corporation Multilayer electronic structure and its preparation
JPH0992937A (ja) * 1995-09-25 1997-04-04 Mitsubishi Electric Corp 印刷配線基板
FR2742763B1 (fr) * 1995-12-22 1998-03-06 Rhone Poulenc Chimie Elastomere silicone a haute conductibilite thermique
JP3611066B2 (ja) * 1996-08-29 2005-01-19 株式会社ルネサステクノロジ 無機質充填剤及びエポキシ樹脂組成物の製造方法
TWI299419B (en) * 2000-05-31 2008-08-01 Nitto Denko Corp Liquid crystal cell substrate and liquid crystal displays
US6697130B2 (en) * 2001-01-16 2004-02-24 Visteon Global Technologies, Inc. Flexible led backlighting circuit
US20020162685A1 (en) * 2001-05-07 2002-11-07 Jeffrey Gotro Thermal dissipating printed circuit board and methods
JP4045781B2 (ja) 2001-08-28 2008-02-13 松下電工株式会社 発光装置
US6921869B2 (en) * 2001-09-26 2005-07-26 Fujikura Ltd. Interlayer connection structure of multilayer wiring board, method of manufacturing method of forming land thereof
KR100627114B1 (ko) * 2001-11-09 2006-09-25 티디케이가부시기가이샤 복합자성체, 전자파 흡수시트, 시트형상 물품의 제조방법,및 전자파 흡수시트의 제조방법
US6824835B2 (en) * 2001-12-14 2004-11-30 Fuji Photo Film Co., Ltd. Flexible magnetic recording medium
TWM244585U (en) * 2003-07-17 2004-09-21 Para Light Electronics Co Ltd Improved LED light source structure
US6967439B2 (en) * 2004-02-24 2005-11-22 Eastman Kodak Company OLED display having thermally conductive backplate
EP1659840A4 (en) * 2004-06-11 2010-03-03 Ibiden Co Ltd STARR BENDED PCB AND MANUFACTURING METHOD THEREFOR
TWI283321B (en) * 2004-06-18 2007-07-01 Au Optronics Corp Supporter and LED light-source module using the same
JP5382995B2 (ja) * 2006-04-11 2014-01-08 日東電工株式会社 配線回路基板用両面粘着テープ又はシートおよび配線回路基板
CA2584950A1 (en) * 2006-04-26 2007-10-26 Kansai Paint Co., Ltd. Powder primer composition and method for forming coating film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295691A (ja) * 1985-06-25 1986-12-26 川崎製鉄株式会社 フレキシブル基板
JPS63205986A (ja) * 1987-02-21 1988-08-25 松下電工株式会社 金属ベ−スプリント配線基板
JPH02260598A (ja) * 1989-03-31 1990-10-23 Nec Corp 立体配線板の製造方法
JPH08323916A (ja) * 1995-05-30 1996-12-10 Tonen Corp 銅張樹脂複合材料
JPH10242607A (ja) * 1997-02-25 1998-09-11 Hitachi Chem Co Ltd 金属ベース基板及びその製造方法
JP2001151862A (ja) * 1999-11-22 2001-06-05 Tosoh Corp エポキシ樹脂組成物
JP2001223450A (ja) * 2000-02-10 2001-08-17 Denki Kagaku Kogyo Kk 金属ベース回路基板
JP2004010859A (ja) * 2002-06-11 2004-01-15 Dainippon Ink & Chem Inc 熱伝導電気絶縁感圧接着剤用組成物、およびこれを用いた粘着シート
JP2005064168A (ja) * 2003-08-11 2005-03-10 Denki Kagaku Kogyo Kk 金属ベース回路基板およびその製造方法
JP2005097393A (ja) * 2003-09-24 2005-04-14 Dainippon Ink & Chem Inc Lcdモジュール用粘着テープ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1874101A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109156A4 (en) * 2007-01-30 2010-02-24 Denki Kagaku Kogyo Kk LED LIGHT SOURCE UNIT
JP5410098B2 (ja) * 2007-01-30 2014-02-05 電気化学工業株式会社 Led光源ユニット
EP1986260A1 (en) * 2007-04-18 2008-10-29 Nitto Denko Corporation Printed circuit board and fuel cell
JP2008270420A (ja) * 2007-04-18 2008-11-06 Nitto Denko Corp 配線回路基板および燃料電池
US7718284B2 (en) 2007-04-18 2010-05-18 Nitto Denko Corporation Printed circuit board and fuel cell
KR101467571B1 (ko) * 2007-04-18 2014-12-01 닛토덴코 가부시키가이샤 배선 회로 기판 및 연료 전지
EP2160082A4 (en) * 2007-05-18 2016-08-24 Denka Company Ltd PCB WITH METAL BASE
GB2455489A (en) * 2007-08-22 2009-06-17 Photonstar Led Ltd High thermal performance mounting arrangements for optoelectronic devices
GB2455489B (en) * 2007-08-22 2012-05-30 Photonstar Led Ltd High thermal performance packaging for optoelectronics devices
US8987769B2 (en) 2007-08-22 2015-03-24 Photonstar Led Limited High thermal performance packaging for optoelectronics devices
TWI554149B (zh) * 2007-12-04 2016-10-11 杜邦股份有限公司 用於發光二極體之安裝及互連之可彎曲電路結構

Also Published As

Publication number Publication date
HK1116981A1 (en) 2009-01-02
CA2605209A1 (en) 2006-10-26
KR20070122450A (ko) 2007-12-31
TWI395538B (zh) 2013-05-01
EP1874101A4 (en) 2009-11-04
US8071882B2 (en) 2011-12-06
US20090032295A1 (en) 2009-02-05
CA2605209C (en) 2013-10-22
EP1874101A1 (en) 2008-01-02
TW200742540A (en) 2007-11-01
KR101073423B1 (ko) 2011-10-17

Similar Documents

Publication Publication Date Title
WO2006112478A1 (ja) 金属ベース回路基板、led、及びled光源ユニット
JP5410098B2 (ja) Led光源ユニット
CN101161039B (zh) 金属基电路基板、led及led光源单元
TWI418062B (zh) LED light source unit
JP5517927B2 (ja) 金属ベース回路基板
JP4913459B2 (ja) 金属ベース回路基板およびその製法、ならびにledモジュール
JP4459910B2 (ja) Led光源ユニット
JP2007150224A (ja) 金属ベース回路基板
JP4484830B2 (ja) 回路基板
JP2009203261A (ja) 熱伝導性材料及びこれを用いた放熱基板とその製造方法
JP5906621B2 (ja) 電子部品の製造方法及び固定治具
JP2008166406A (ja) 半導体の固定方法、半導体モジュール、それに用いるシート
KR101447878B1 (ko) 벌집형 방열시트
JP5042129B2 (ja) 絶縁金属ベース回路基板の製造方法及び混成集積回路モジュールの製造方法
MX2007012974A (es) Tablero de circuitos con base metalica, diodo emisor de luz y unidad de fuente de luz de diodos emisores de luz.
JP2011119289A (ja) 絶縁金属ベース回路基板及びそれを用いた混成集積回路モジュール
JP2011124241A (ja) 絶縁金属ベース回路基板及びそれを用いた混成集積回路モジュール
JP2009302196A (ja) 絶縁金属ベース回路基板及びそれを用いた混成集積回路モジュール
JP2011124244A (ja) 絶縁金属ベース回路基板及びそれを用いた混成集積回路モジュール
JP2009302188A (ja) 絶縁金属ベース回路基板及びそれを用いた混成集積回路モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012385.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077019147

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006745453

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2605209

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012974

Country of ref document: MX

Ref document number: 11911914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745453

Country of ref document: EP