WO2006109683A1 - 光センサ、固体撮像装置、および固体撮像装置の動作方法 - Google Patents

光センサ、固体撮像装置、および固体撮像装置の動作方法 Download PDF

Info

Publication number
WO2006109683A1
WO2006109683A1 PCT/JP2006/307349 JP2006307349W WO2006109683A1 WO 2006109683 A1 WO2006109683 A1 WO 2006109683A1 JP 2006307349 W JP2006307349 W JP 2006307349W WO 2006109683 A1 WO2006109683 A1 WO 2006109683A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodiode
storage
transistor
storage capacitor
charge
Prior art date
Application number
PCT/JP2006/307349
Other languages
English (en)
French (fr)
Inventor
Shigetoshi Sugawa
Nana Akahane
Original Assignee
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005111071A external-priority patent/JP5066704B2/ja
Application filed by Tohoku University filed Critical Tohoku University
Priority to EP06731297.5A priority Critical patent/EP1868377B1/en
Priority to CN2006800087691A priority patent/CN101164334B/zh
Priority to US11/887,916 priority patent/US7821560B2/en
Priority to KR1020077022808A priority patent/KR101257526B1/ko
Publication of WO2006109683A1 publication Critical patent/WO2006109683A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14654Blooming suppression
    • H01L27/14656Overflow drain structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to an optical device such as an optical sensor and a solid-state imaging device, and an operation method thereof, and in particular, a CMOS-type or CCD-type two-dimensional or one-dimensional solid-state imaging device and an operating method of the solid-state imaging device.
  • an optical device such as an optical sensor and a solid-state imaging device
  • an operation method thereof and in particular, a CMOS-type or CCD-type two-dimensional or one-dimensional solid-state imaging device and an operating method of the solid-state imaging device.
  • CMOS-type or CCD-type two-dimensional or one-dimensional solid-state imaging device and an operating method of the solid-state imaging device.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • CCD Charge Coupled Device
  • the above-mentioned image sensor is desired to be further improved, and one of them is to widen the dynamic range.
  • the dynamic range of image sensors used in the past is limited to, for example, about 3 to 4 digits (60 to 80 dB), and the dynamic range of 5 to 6 digits (100 to 120 dB) or more comparable to the naked eye or silver halide film. Realization of a high-quality image sensor with a high sensitivity is desired.
  • Non-Patent Document 1 noise generated in floating diffusion adjacent to the photodiode of each pixel in order to achieve high sensitivity and high SZN ratio.
  • a technology has been developed that suppresses noise by reading a signal and a signal obtained by adding an optical signal to the noise signal and taking the difference between the two.
  • the dynamic range is about 80 dB or less, and it is desired to have a wider dynamic range.
  • Patent Document 1 As shown in FIG. 19, a photodiode PD is provided with a high-sensitivity low-illuminance small-capacity C1 floating diffusion and a low-sensitivity high-illuminance large-capacity C2 floating diffusion.
  • a technique for widening the dynamic range by connecting and outputting the output OUT1 on the low illuminance side and the output UT2 on the high illuminance side is disclosed.
  • Patent Document 2 discloses a wide dynamic range technique in which the capacity CS of the floating diffusion FD is variable as shown in FIG.
  • wide dynamic range is realized by performing imaging corresponding to the high illuminance side with a short exposure time and imaging corresponding to low illuminance with a long exposure time, and dividing it into two or more different exposure times. Technology is disclosed.
  • Patent Document 3 and Non-Patent Document 2 as shown in FIG. 21, a transistor switch T is provided between the photodiode PD and the capacitor C, and the switch T is turned on in the first exposure period. Light signal charge is accumulated in both the photodiode PD and capacitor C, and in the second exposure time, the switch T is turned off, and in addition to the former accumulated charge, photocharge is accumulated in the photodiode PD, thereby wide dynamic range.
  • a technique for disclosing is disclosed. In this example, if there is more light than saturation, excess charge is drained through the reset transistor R.
  • Patent Document 4 discloses a technology that can cope with high-illuminance imaging by using a photodiode PD having a larger capacitance C than conventional ones. .
  • Non-Patent Document 3 As shown in FIG. 23, the photocurrent signal from the photodiode PD is stored while logarithmic conversion is performed by a logarithmic conversion circuit configured by combining MOS transistors. And, a technique for widening the dynamic range by outputting is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-134396
  • Patent Document 2 JP 2000-165754 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-77737
  • Patent Document 4 Japanese Patent Laid-Open No. 5-90556
  • Non-Patent Literature 1 S. Inoue et al., IEEE Workshop on C and Dsana Advanced image bensor 2001, pp.16-19.
  • Non-Patent Document 2 Y. Muramatsu et al., IEEE Journal of Sold-state Circuits, Vol. 38, No. 1, 2003.
  • Non-Patent Document 3 Journal of the Institute of Image Information and Television Engineers, Vol. 57, 2003.
  • Patent Document 4 and Patent Document 3 described above can achieve a wide dynamic range so as to correspond to imaging on the high illuminance side, the sensitivity on the imaging on the low illuminance side is low. There is a problem that the image quality is impaired due to the low SZN ratio.
  • an image sensor such as a CMOS image sensor
  • the above is not limited to an image sensor in which pixels are arranged in a two-dimensional array. The same applies to a linear sensor in which pixels are arranged one-dimensionally and an optical sensor without a plurality of pixels.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a solid-state imaging device capable of wide dynamic range while maintaining high sensitivity and a high SZN ratio, and an operation method thereof. Is to provide.
  • An optical sensor includes a photodiode that receives light to generate photoelectric charge, a transfer transistor that is connected to the photodiode and transfers the photoelectric charge, and the transfer transistor. And a plurality of storage capacitor elements that store photocharges overflowing from the photodiode during the storage operation.
  • a solid-state imaging device includes a photodiode that receives light to generate photoelectric charge, a transfer transistor that is connected to the photodiode and transfers the photoelectric charge, and the transfer transistor.
  • a plurality of pixels having a plurality of storage capacitor elements for storing photoelectric charges overflowing from the photodiode during storage operation are integrated in a one-dimensional or two-dimensional array.
  • a solid-state imaging device includes a photodiode that receives light to generate photoelectric charge, and a transfer transistor that is connected to the photodiode and transfers the photoelectric charge.
  • a storage capacitor element group including a plurality of storage capacitor elements including at least first and second storage capacitor elements that sequentially store photoelectric charges overflowing from the photodiode during the storage operation via the transfer transistor. It is characterized by being accumulated in a one-dimensional or two-dimensional array.
  • a solid-state imaging device includes a photodiode that receives light to generate photoelectric charge, a transfer gate that is connected to the photodiode and transfers the photoelectric charge, and is connected to the transfer gate.
  • First storage gate a first storage capacitor element that stores photoelectric charges overflowing from the photodiode during storage operation via the transfer gate and the first storage gate, and the first storage capacitor element
  • a plurality of pixels each having a second storage capacitor element connected via a second storage gate are stacked in a one-dimensional or two-dimensional array.
  • the plurality of storage capacitor elements are connected to each other via storage gate means.
  • the pixel further includes a floating region to which the photocharge is transferred through the transfer transistor.
  • the pixel further includes a floating region to which the photocharge is transferred through the transfer gate.
  • the second storage capacitor element has a larger capacity than the first storage capacitor element.
  • the plurality of storage capacitor elements may all have the same capacity.
  • the solid-state imaging device of the present invention is preferably connected to at least one of the floating region or the first and second storage capacitor elements, and the first and second storage capacitor elements and The reset transistor for discharging the signal charge in the floating region and the signal charge in the floating region or the signal charge in the floating region and at least one of the first and second storage capacitor elements are read as voltages. And an amplifying transistor for selecting the pixel connected to the amplifying transistor.
  • the solid-state imaging device of the present invention preferably includes a voltage signal obtained from one or more of the floating region, the first storage capacitor element, and the second storage capacitor element.
  • the photocharge from the photodiode is transferred to the floating region, and at least one of the first storage gate and the second storage gate is turned on, and the floating region, the first storage capacitor
  • the device further includes noise canceling means for taking a difference between the device and a voltage signal obtained from the photocharge transferred to one or more of the second storage capacitor devices.
  • a solid-state imaging device includes a photodiode that receives light to generate a photocharge, a transfer transistor that is connected to the photodiode and transfers the photocharge, and The floating region to which the photocharge is transferred through the transfer transistor, the first accumulation transistor connected to the transfer transistor, and the photocharge overflowing from the photodiode during the accumulation operation are transferred to the transfer transistor and the first transistor.
  • the operation method of the solid-state imaging device is the above-described operation method of the solid-state imaging device, wherein the first and second accumulation transistors are stored before charge accumulation. Turning on, discharging the photocharges in the floating region and the first and second storage capacitor elements, and storing the pre-saturation charge among the photocharges generated in the photodiode in the photodiode, Storing a supersaturated charge overflowing from the photodiode in the floating region and the first storage capacitor element; turning off the first storage transistor; and discharging photocharge in the floating region; The transfer transistor is turned on to transfer the pre-saturation charge to the floating region, and the saturation signal indicating the voltage signal of the pre-saturation charge is transferred.
  • Read out and about E reading the previous signal turns on the first storage transistor, a first supersaturation signal indicative of a voltage signal of the sum of the saturated charge overflowing from the Fotodaio de and the pre-saturation charge
  • a first voltage signal indicating the sum of the pre-saturation charge, the supersaturated charge overflowing from the photodiode, and the oversaturated charge overflowing from the first storage capacitor element, with the second storage transistor turned on. And reading a supersaturation signal of 2.
  • the operation method of the solid-state imaging device of the present invention at least one of the pre-saturation signal, the first oversaturation signal, and the second oversaturation signal is predetermined.
  • the method further includes an output signal selection step of selecting by comparison with the reference voltage.
  • the output signal selection step is performed.
  • the pre-saturation signal is larger than a first reference voltage
  • the first oversaturation signal is used as an output signal.
  • the second oversaturation signal is selected as an output signal.
  • an optical sensor includes a photodiode that receives light to generate a photocharge, a transfer transistor that is connected to the photodiode and transfers the photocharge, and the photosensor.
  • An overflow gate connected to a diode, and a plurality of storage capacitor elements that store photoelectric charges overflowing from the photodiode during the storage operation through the overflow gate.
  • a solid-state imaging device includes a photodiode that receives light to generate photocharge, a transfer transistor that is connected to the photodiode and transfers the photocharge, and A one-dimensional or two-dimensional array of pixels having an overflow gate connected to a photodiode and a plurality of storage capacitor elements that store photoelectric charges overflowing from the photodiode during storage operation via the overflow gate It is characterized by being accumulated in a plurality of shapes.
  • a solid-state imaging device includes a photodiode that receives light to generate photoelectric charge, a transfer transistor that is connected to the photodiode and transfers the photoelectric charge, and the photodiode. And an overflow gate connected to the storage gate, and a plurality of storage capacitor elements including at least first and second storage capacitor elements that sequentially store photoelectric charges overflowing from the photodiode during the storage operation via the overflow gate.
  • a plurality of pixels each having a capacitive element group integrated in a one-dimensional or two-dimensional array. It is characterized by that.
  • a solid-state imaging device includes a photodiode that receives light to generate photocharge, a transfer gate that is connected to the photodiode and transfers the photocharge, and An overflow gate that is connected to a photodiode and transfers a photoelectric charge from the photodiode during an accumulation operation, a first accumulation gate connected to the overflow gate, and the photodiode during an accumulation operation via the overflow gate
  • a first storage capacitor element that stores photoelectric charges overflowing from the first storage capacitor element, a second storage gate connected to the first storage capacitor element, and the first storage capacitor element via the second storage gate.
  • a plurality of pixels each having a second storage capacitor element connected in a one-dimensional or two-dimensional array.
  • the overflow gate has a MOS type transistor or a junction type transistor.
  • the plurality of storage capacitor elements are preferably connected to each other via a storage transistor.
  • the pixel further includes a floating region to which the photocharge is transferred via the transfer transistor.
  • the pixel further includes a floating region to which the photocharge is transferred through the transfer gate.
  • the second storage capacitor element has a larger capacity than the first storage capacitor element.
  • the plurality of storage capacitor elements all have the same capacity.
  • the solid-state imaging device of the present invention is preferably connected to at least one of the floating region or the first and second storage capacitor elements, and the first and second storage capacitor elements and The reset transistor for discharging the signal charge in the floating region and the signal charge in the floating region or the signal charge in the floating region and at least one of the first and second storage capacitor elements are read as voltages.
  • a solid-state imaging device includes a photodiode that receives light to generate photocharge, a transfer transistor that is connected to the photodiode and transfers the photocharge, and the transfer transistor.
  • a second storage transistor connected between the floating region and the first storage capacitor element.
  • a plurality of pixels having at least a two-dimensional array.
  • an operation method of the solid-state imaging device is the above-described operation method of the solid-state imaging device, and before the charge accumulation, the first accumulation transistor and the second accumulation transistor.
  • the method further includes an output signal selection step of selecting by comparison with the reference voltage.
  • the output signal selection step power is output as the output signal when the pre-saturation signal is larger than the first reference voltage. And when the first oversaturation signal is greater than the second reference voltage, the second oversaturation signal is selected as an output signal.
  • the solid-state imaging device of the present invention high sensitivity and a high SZN ratio are maintained in low-illuminance imaging using a photodiode that receives light to generate and store photocharges, and further, a plurality of storage capacitors are provided with photo By accumulating the photocharges overflowing from the diodes, it is possible to take images at high illuminance and achieve a wide dynamic range.
  • FIG. 1 is an equivalent circuit diagram of one pixel of a solid-state imaging device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view of one pixel of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 5 is a main drive timing chart of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 6 is a schematic potential diagram of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of photoelectric conversion characteristics of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 8 is a drive timing chart of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 9 is a schematic potential diagram of a solid-state imaging device according to a second embodiment of the present invention.
  • FIG. 10 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 11 is a schematic sectional view of a solid-state imaging device according to a third embodiment of the present invention.
  • FIG. 12 is a drive timing chart of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 13 is a schematic potential diagram of a solid-state imaging device according to a third embodiment of the present invention.
  • FIG. 14 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 15-1 is a schematic sectional view of a solid-state imaging device according to a fourth embodiment of the present invention.
  • FIG. 15-2 is another schematic cross-sectional view of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 16 is a schematic plan view of one pixel of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 17 is a block diagram of a solid-state imaging device according to a fifth embodiment of the present invention.
  • FIG. 18 is a graph showing photoelectric conversion characteristics of the solid-state imaging device according to Example 1 of the present invention.
  • FIG. 19 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to Patent Document 1 of the present invention.
  • FIG. 20 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to Patent Document 2 of the present invention.
  • FIG. 21 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to Patent Document 3 of the present invention.
  • FIG. 22 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to Patent Document 4 of the present invention.
  • FIG. 23 is an equivalent circuit diagram of one pixel of the solid-state imaging device according to Non-Patent Document 3 of the present invention.
  • FIG. 1 An equivalent circuit diagram of one pixel of the solid-state imaging device according to the present embodiment is shown in FIG. 1, a schematic cross-sectional view is shown in FIG. 2, and a schematic plan view is shown in FIG.
  • Each pixel receives a light through a photodiode PD1 that receives light and generates a photocharge, a transfer transistor T2 that transfers photocharge provided adjacent to the photodiode PD1, and a phototransistor through the transfer transistor T2.
  • the floating diffusion FD3 connected to the diode PD1 and the first storage capacitor CSa4 and the second storage capacitor C Sb5 that store the photocharges overflowing from the photodiode PD1 during the exposure storage operation through the transfer transistor T2.
  • a reset transistor R6 for discharging signal charges in the first storage capacitor CSa4, the second storage capacitor CSb5 and the floating diffusion FD3, and a floating diffusion.
  • First storage transistor Ca7 provided between FD3 and first storage capacitor CSa4, first storage capacitor CSa4 and first storage capacitor CSa4
  • the second storage transistor Cb8 provided between the two storage capacitors CSb5, the signal charge of the floating diffusion FD3 or the floating diffusion FD3 and the signal charge of the first storage capacitor CSa4 or the floating diffusion FD3 and the first
  • the storage capacitor CSa4 and the second storage capacitor CSb5 are composed of an amplification transistor SF9 for reading out the signal charge as a voltage, and a selection transistor X10 that is connected to the amplification transistor and selects the pixel or pixel block. Has been.
  • a plurality of pixels having the above-described configuration are integrated in a two-dimensional or one-dimensional array, and in each pixel, the transfer transistor T2 and the first storage are included.
  • the gate electrodes of the product transistor Ca7, the second storage transistor Cb8, and the reset transistor R6 are connected to the driving line forces of ⁇ ⁇ 11, () Cal2, () Cbl3, and ⁇ R14, and the gate of the selection transistor X10
  • a pixel selection line ⁇ X15 driven from the row shift register is connected to the electrode, and an output line OUT16 is connected to the output side source of the selection transistor X10, which is controlled and output by the column shift register.
  • a p-well 21 is formed on a ⁇ -type silicon semiconductor substrate (n-sub) 20, and further, an n-type semiconductor region in the p-type well 21. 22 is formed, and a P + type semiconductor region 23 is formed on the surface layer.
  • the pn junction forms a charge transfer embedded photodiode PD.
  • N + type semiconductor region 24 is formed, and an n + type semiconductor region 25 and an n + type semiconductor region 26 are further formed at a predetermined distance from this region.
  • the force of polysilicon or the like is obtained through a gate insulating film of force of silicon or the like on the upper surface of the p-type well 21.
  • a transfer transistor T2 having a channel forming region on the surface layer of the p-type well 21 with the n-type semiconductor region 22 and the n + -type semiconductor region 24 as the source and drain is formed.
  • a gate electrode having a force such as polysilicon is provided on the upper surface of the p-type well 21 via a gate insulating film having a force such as silicon oxide.
  • a storage transistor Ca having a channel formation region on the surface layer of the p-type well 21 is formed, with the n + -type semiconductor region 24 and the n + -type semiconductor region 25 serving as the source and drain.
  • a gate electrode made of polysilicon or the like is formed on the upper surface of the p-type well 21 via a gate insulating film such as silicon oxide.
  • N + type semiconductor region 25 and n + type semiconductor region 26 are sourced
  • a storage transistor Cb having a channel formation region on the surface layer of p-type well 21 is formed.
  • the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor.
  • a transfer transistor T2, a first storage capacitor CSa4, a second storage capacitor CSb5, a reset transistor R6, a first storage transistor Ca7, and a second transistor are disposed around a photodiode PD1.
  • the region where the storage transistor Cb8, the amplification transistor SF9, and the selection transistor XI0 are formed is shown.
  • the floating diffusion FD3 is provided in the vicinity of the transfer transistor T2 and the first storage capacitor CSa4.
  • FIG. 4 shows a block diagram of the solid-state imaging device of the present embodiment.
  • a row shift register 34, a column shift register 35, a signal and noise hold unit 36, and an output circuit 37 are provided in the periphery of the two-dimensionally arranged pixel array (30, 31, 32, 33).
  • a pixel array of 2 pixels x 2 pixels is shown, but the number of pixels is not limited to this.
  • Signals read out sequentially from each pixel are the noise signal Nl and the pre-saturated optical signal + noise signal (S1 + N1) that has been charge-voltage converted by the FD, and the charge voltage conversion by the noise signal N2 and FD + CSa.
  • Noise removal by subtracting circuit S1 + N1) — Nl, (S1 + S2 + N2) — N2, (S1 + S2 + S3 + N3) — N3 operation, both random noise component and fixed pattern noise component Remove.
  • the noise signal is temporarily stored in the frame memory, and then the noise is removed by the subtraction circuit. In this manner, noise-removed pre-saturation side signal S1 and supersaturation side signals Sl + S2, S1 + S2 + S3 can be obtained.
  • the subtraction circuit and the frame memory may be formed on the image sensor chip or may be formed as separate chips! /.
  • FIG. 5 shows the main drive timing of the solid-state imaging device of this embodiment
  • Fig. 6 shows the floating diffusion FD from the photodiode diode of the pixel and the second storage through the first storage capacitor. It is a schematic potential diagram of the product capacity! /.
  • the first accumulation transistor Ca and the first accumulation transistor Cb are turned on, and the transfer transistor T and the reset transistor R are set off.
  • the reset transistor R and transfer transistor T are turned on to reset the floating diffusion FD, the first storage capacitor CSa, and the second storage capacitor CSb (time t). Depleted.
  • the signal charge stored in FD + CSa + CSb is distributed to FD + CSa and CSb according to the capacitance ratio.
  • the signal distributed to FD + CS a is read as N2 (time t) 0
  • N2 is also an amplification transistor
  • SF threshold voltage variation is included as a fixed pattern noise component.
  • the photocharge before the photodiode PD is saturated is accumulated in the photodiode PD, and the excess photocharge when the saturation is exceeded is the transfer transistor T and the first transistor It accumulates in the floating diffusion FD and the first storage capacitor CSa, superimposed on N2 via the storage transistor Ca.
  • excess light charge when the light is irradiated and the saturation of the photodiode PD and the first storage capacitor CSa is exceeded also accumulates in the second storage capacitor CSb via the second storage transistor Cb.
  • the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T, when the floating diffusion FD and the first storage capacitor CSa are saturated, excess charge returns to the photodiode PD side. It is efficiently transferred to the second storage capacitor CSb. This operation makes effective use of the photodiode PD power in a supersaturated state without throwing away the charge. In this way, the accumulation operation is performed by receiving light within the same period with the same photodiode PD for each pixel before and after saturation.
  • the signal charge stored in FD + CSa are distributed according to the capacity ratio. Of these, the signal distributed to the floating diffusion FD is read as N1. At this time, the threshold voltage variation of the amplification transistor SF is also included in N1 as a fixed pattern noise component.
  • the transfer transistor T is turned on, and the optical signal charge accumulated in the photodiode PD is completely transferred to the floating diffusion FD, superimposed on the signal N1, and read out as S1 + N1 (time t) 0 first storage transistor Ca is also turned on next (time t), the charge and CSa of FD
  • the second storage transistor Cb is also turned on (time t), and the charge of FD + CSa and the charge stored in CSb are mixed.
  • the reset transistor R is turned on to reset the floating diffusion FD, the first storage capacitor CSa, and the second storage capacitor CSb (time t). Repeat the above operation
  • the solid-state imaging device of this embodiment operates.
  • the expansion rate of the dynamic range is expressed as follows.
  • the capacity of the FD is C
  • the capacity of the first storage capacity CSa is C.
  • the capacity of the second storage capacitor CSb is C
  • (C + C + C) ZC and a CSb FD CSa CSb FD can be expressed simply.
  • the effect of the clock feedthrough of the reset transistor R is received in the order of resetting FD, FD + CSa, FD + CSa + CSb, and the saturation signal S1 + is higher than the saturation voltage of the signal S1 before saturation. Since the saturation voltage of S2 becomes higher and the saturation signal of the oversaturated signal S1 + S2 + S3 becomes higher, the dynamic range expands at a higher ratio. In order to effectively expand the dynamic range without increasing the pixel size while maintaining a high photodiode aperture ratio, it is necessary to form a large storage capacitor with good area efficiency.
  • the synthesis of the wide dynamic range signal consists of the noise-removed pre-saturation signal Sl, the first supersaturation signal (S 1 + S2), and the second supersaturation signal (S 1 + S2 + S3). This is achieved by selecting one of the signals.
  • Figure 7 is a schematic photoelectric conversion characteristic diagram showing the signal selection for Sl, Sl + S2, and S1 + S2 + S3.
  • Sl, Sl + S2, S1 + S2 + S3 are selected by comparing the preset reference voltage of S1 and (S1 + S2) with the signal output voltage of S1, and (S1 + S2) and (S1 + S2 + S3) switching reference voltage and (S1 + S2) signal output voltage are compared, and S1 or S1 + S2 or S1 + S2 + S3! Realize by selecting.
  • the switching reference voltage of S1 and (S1 + S2) and the switching reference voltage of (S1 + S2) and (S1 + S2 + S3) may be the same voltage.
  • the switching reference voltage of S1 and (S1 + S2) and the switching reference voltage of (S1 + S2) and (S1 + S2 + S3) are shown as the same.
  • This switching reference voltage is lower than the S1 saturation voltage and S1 + S2 saturation voltage so as not to be affected by variations in the saturation voltage of S1 and S1 + S2, and the oversaturation side signal S 1 + S at the switching point 2 (point A in Fig. 7) and S 1 + S 2 + S 3 (point B in Fig. 7) and the noise signal remaining after noise removal (point C in Fig.
  • This S / N ratio is preferably 40 dB or more, more preferably 43 dB so that variations in luminance are not observed when the image obtained by the solid-state imaging device is viewed with the human eye. More preferably, it should be set to 46 dB or more.
  • the first supersaturated signal S1 + S2 multiplies its gain by the (C + C) / C ratio.
  • FD CSa FD can be adjusted to the gain of the pre-saturation side signal SI, and the second over-saturation side signal S1 + S2 + S3 is multiplied by (C + C + C) / C ratio before the saturation side Signal
  • the signal charges on the pre-saturation side and the first supersaturation side are mixed to form the first supersaturation signal S1 + S2, so S1 + S2
  • S1 + S2 At least the signal charge close to saturation of the pre-saturation side optical signal S1 exists, and the tolerance for noise components such as reset noise and dark current on the first supersaturation side is high.
  • the signal S 1 + S2 + S3 on the second supersaturation side has a signal charge that is at least close to the saturation of the signal SI + S2 on the first supersaturation side, and reset noise on the second supersaturation side, The tolerance for noise components such as dark current increases.
  • the signals N3 and N2 in the next field shown in Fig. 5 are The difference between S1 + S2 + S3 + N3 and N3 ((S1 + S2 + S3 + N3) —N3,) and the difference between S1 + S2 + N2 and N2 ((S1 + S2 + N 2) N2 ') and the fixed pattern noise component is also removed. It is possible to secure a sufficient SZN ratio even in the vicinity of the selection switching point. Therefore, a frame memory is not always necessary.
  • the obtained signals (S 1 + S2) and (S 1 + S2 + S 3) can maintain a high SZN ratio and realize a sufficiently wide dynamic range on the high illuminance side.
  • the solid-state imaging device normally uses a power supply voltage in addition to increasing the sensitivity on the high illuminance side without reducing the sensitivity on the low illuminance side to achieve a wide dynamic range. Since it is not raised from the range, it can cope with future miniaturization of image sensors. Element tracking is kept to a minimum and does not lead to an increase in pixel size.
  • the accumulation time is not divided between the high illuminance side and the low illuminance side, that is, it is accumulated in the same accumulation time without straddling frames. Therefore, even when shooting a movie, the image quality will not deteriorate.
  • the minimum signal of C + C is a signal from the supersaturated charge + photodiode PD.
  • the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T.
  • the threshold voltage of the second storage transistor Cb is set to the threshold voltage of the transfer transistor T.
  • the above embodiment is a force using two storage capacitors Three or more storage capacitors Even if is used, it can be similarly configured and operated. Even when using three or more storage capacitors, the switching reference voltage is lower than the saturation voltage so as not to be affected by variations in the saturation voltage, and the signal-to-noise ratio SZN ratio at the switching point is kept high. It is sufficient to set a voltage that enables this. By using three or more storage capacities, it is possible to maintain a high SZN ratio and realize a sufficiently wide dynamic range expansion on the high illuminance side.
  • the plurality of storage capacitors may all have the same capacity value or may be different. It is preferable that the storage capacity located farther away from the floating diffusion FD has a larger capacity value.
  • the present embodiment is an embodiment based on another operation method of the solid-state imaging device according to the present embodiment according to the first embodiment.
  • the configuration of the solid-state imaging device of this embodiment is the same as that of the solid-state imaging device of the first embodiment described with reference to FIGS.
  • the threshold voltage of the first storage transistor Ca and the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T.
  • FIG. 8 is a main drive timing diagram of the solid-state imaging device of this embodiment
  • FIG. 9 is a pixel in which the photodiode is connected to the floating diffusion FD, the first storage capacitor is changed to the second storage capacitor! It is a schematic potential diagram of a part.
  • the first accumulation transistor Ca and the second accumulation transistor Cb are turned on, and the transfer transistor T and the reset transistor R are set off.
  • the reset transistor scale and transfer transistor ⁇ ⁇ are turned on to reset the floating diffusion FD, the first storage capacitor CSa, and the second storage capacitor CSb (time t. At this time, the photo diode)
  • the reset noise of FD + CSa + CSb captured immediately after the reset transistor R is turned off is read as N3 (time t ').
  • the amplification signal SF is applied to the noise signal N3.
  • Threshold voltage variation is included as a fixed pattern noise component.
  • the second accumulation transistor Cb is turned off, the signal charge accumulated in FD + CSa + CSb is distributed to FD + CSa and CSb according to the capacitance ratio.
  • the signal distributed to FD + CSa is read as N 2 (time t ').
  • the threshold voltage variation of the amplification transistor SF is also applied to N2. Is included as a fixed pattern noise component.
  • the signal charge stored in FD + CSa is distributed to FD and CSa according to the capacitance ratio.
  • the signal distributed to the FD is read as N1 (time t ').
  • the threshold voltage variation of the amplification transistor SF also varies at N1.
  • the photocharge before the photodiode PD is saturated is accumulated in the photodiode PD and exceeds the saturation
  • the excess photocharge at that time is superimposed on N1 via the transfer transistor T and accumulated in the floating diffusion FD.
  • Excess charge when the photodiode PD and floating diffusion FD exceed saturation due to stronger light irradiation is superimposed on N2 via the first storage transistor Ca and stored in the first storage capacitor C Sa To do.
  • the photodiode PD force is effectively utilized without throwing away the excess charge in the oversaturated state.
  • the accumulation operation is performed by receiving light within the same period with the same photodiode PD for each pixel both before and after saturation.
  • the selection transistor X and the transfer transistor T are turned on, and the optical signal charge accumulated in the photodiode PD is completely transferred to the floating diffusion FD and superimposed on the signal N1, and the signal is read as S1 + N1 ( Time t, then the first accumulation transistor
  • the charge of D + CSa and the charge stored in CSb are mixed, and it is transmitted as S1 + S2 + S3 + N3 Read the number.
  • the reset transistor R is turned on to reset the floating diffusion FD, the first storage capacitor CSa, and the second storage capacitor CSb (time t ′). The above movement
  • the solid-state imaging device of this embodiment operates.
  • the first storage transistor Ca and the second storage transistor Ca and the second storage transistor Cb have a threshold voltage lower than the threshold voltage of the transfer transistor.
  • the threshold voltage of the first storage transistor Ca and the second storage transistor Cb is made positive during the storage period so that the threshold voltage of the first storage transistor Cb is approximately the same as the threshold voltage of the transfer transistor T, and the floating diffusion FD and the first If the storage capacity of CSa is saturated, it can be efficiently transferred to the second storage capacity CSb where excess charge does not return to the photodiode PD.
  • the same effect as that shown in the first embodiment can be obtained, and the dynamic range can be widened sufficiently on the high illuminance side while maintaining a high SZN ratio.
  • FIG. 10 shows an equivalent circuit diagram of one pixel of the solid-state imaging device according to the present embodiment
  • FIG. 11 shows a schematic cross-sectional view thereof.
  • the schematic plan view is the same as FIG. 3 of the first embodiment.
  • Each pixel receives a photo diode PD1 that generates light charges by receiving light, a transfer transistor T2 that transfers photo charges provided adjacent to the photodiode PD1, and a photo transistor via the transfer transistor T2.
  • a floating diffusion FD3 connected to the diode PD1, and a first storage capacitor CSa4 and a second storage capacitor CSb 5 that store photocharges overflowing from the photodiode PD1 through the transfer transistor T2 during the exposure storage operation.
  • Second storage transistor Cb8 floating diffusion FD3 signal charge or floating diffusion FD3 and first storage capacitor CSa4 signal charge or floating diffusion FD3
  • the pixel includes a width transistor SF9 and a selection transistor X10 that is connected to the amplification transistor and selects the pixel or the pixel block.
  • a plurality of pixels having the above-described configuration are integrated in a two-dimensional or one-dimensional array, and in each pixel, a transfer transistor T2 and a first accumulation transistor Ca7.
  • the drive lines ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 14 are connected to the gate electrodes of the second storage transistor Cb8 and the reset transistor R6, and the selected transistors
  • the pixel selection line ⁇ 15 which also drives the row shift register force, is in contact with the gate electrode of X10.
  • the output line OUT16 is connected to the output side source of the selection transistor X10, and is controlled and output by the column shift register.
  • the reset transistor R6 is the same as FIG. 2 of the first embodiment, except that the reset transistor R6 is connected to the n + semiconductor region serving as a floating diffusion instead of the first storage capacitor CSa4.
  • the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T.
  • the block diagram of the solid-state imaging device of the present embodiment is the same as that of FIG. 4 of the first embodiment.
  • FIG. 12 shows the main drive timing diagram of the solid-state imaging device of this embodiment
  • Fig. 13 shows the potential of the photodiode in the floating diffusion FD, the schematic potential diagram of the part from the first storage capacitor to the second storage capacitor. It is.
  • the first accumulation transistor Ca and the second accumulation transistor Cb are turned on, and the transfer transistor T and the reset transistor R are set off.
  • the reset transistor scale and transfer transistor ⁇ are turned on to reset the floating diffusion FD, the first storage capacitor CSa, and the second storage capacitor CSb (time t ′′).
  • the signal N3 includes the threshold voltage variation of the amplification transistor SF as a fixed pattern noise component.
  • F threshold voltage variation is included as a fixed pattern noise component.
  • the photocharge before the photodiode PD is saturated is accumulated in the photodiode PD, and the excess photocharge when the saturation is exceeded is the transfer transistor T and the first accumulation transistor Ca. Is stored in the floating diffusion FD and the first storage capacitor CSa. In addition, excess photocharge when there is intense light irradiation and the saturation of the photodiode PD and the first storage capacitor CSa is accumulated in the second storage capacitor CSb via the second storage transistor Cb. Since the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T, when the floating diffusion FD and the first storage capacitor CSa are saturated, excess charge is generated on the photodiode PD side.
  • This operation makes effective use of the overflowing charge from the photodiode PD in a supersaturated state without throwing it away. In this way, the accumulation operation is performed by receiving light within the same period with the same photodiode PD for each pixel before and after saturation.
  • the signal to be read is read as N1 (time t "). At this time, the threshold value of the amplification transistor SF is also applied to N1.
  • Voltage variation is included as a fixed pattern noise component.
  • the transfer transistor ⁇ is turned on, and the optical signal charge accumulated in the photodiode PD is completely transferred to the floating diffusion FD and superimposed on the signal N1 (time t "), and the signal is read as S1 + N1 .
  • the first storage transistor Ca is also turned on (time t ") and stored in the FD charge and CSa.
  • the signal is read as S1 + S2 + N2.
  • the second storage transistor Cb is also turned on (time t "), and the charge of FD + CSa and the charge stored in CSb are mixed.
  • the solid-state image sensor Make.
  • the dynamic range expansion ratio, the method of synthesizing the wide dynamic range signal, and the like are the same as in the first embodiment.
  • the same effect as that shown in the first embodiment can be obtained, and the dynamic range can be widened sufficiently on the high illuminance side while maintaining a high SZN ratio.
  • FIG. 14 shows an equivalent circuit diagram of one pixel of the solid-state imaging device according to this embodiment
  • FIG. 15-1 and FIG. 15-2 show schematic sectional views
  • FIG. 16 shows a schematic plan view.
  • Each pixel has a photodiode PD1 that receives light to generate photocharges, a transfer transistor T2 that transfers photocharges provided adjacent to the photodiode PD1, and a phototransistor via the transfer transistor T2.
  • a floating diffusion FD3 connected to the diode PD1, an overflow gate LOl 7 provided between the photodiode PD1 and the first storage capacitor CSa4, and overflowing from the photodiode PD1 during exposure storage operation Formed by connecting the first storage capacitor CSa4 and second storage capacitor CSb5 that store photocharges through the overflow gate L017 and the floating diffusion FD3.
  • the floating diffusion FD3, the first storage capacitor CSa4, and the second storage capacitor C Floating reset transistor R6 for discharging signal charge in Sb5
  • An amplification transistor SF9 for reading, and a selection transistor X10 provided to connect to the amplification transistor and for selecting the pixel block or the pixel block.
  • the p + semiconductor region 18 is formed on the upper surface of the p-type wall 21.
  • a junction transistor type overflow gate LO having the n + type semiconductor region 25 as the source and drain and the p + type semiconductor region 18 as the gate.
  • the p + semiconductor region 18 is electrically connected to the p + type semiconductor region 23 and the p type well region 21.
  • a plurality of pixels having the above-described configuration are integrated in a two-dimensional or one-dimensional array, and in each pixel, a transfer transistor T2 and a first accumulation transistor Ca7.
  • the drive lines ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 14 are connected to the gate electrodes of the second storage transistor Cb8 and the reset transistor R6, and the selected transistors
  • the pixel selection line ⁇ 15 which also drives the row shift register force, is in contact with the gate electrode of X10.
  • the output line OUT16 is connected to the output side source of the selection transistor X10, and is controlled and output by the column shift register.
  • the threshold voltage of the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T as in the first embodiment, and at the same time, the threshold voltage of the overflow gate LO. Is set lower than the threshold voltage of the transfer transistor T.
  • the block diagram of the solid-state imaging device of the present embodiment is the same as that of FIG. 4 of the first embodiment.
  • the second storage transistor Cb, the reset transistor R, and the selection transistor X are turned off, the photocharge before the photodiode PD is saturated is accumulated in the photodiode PD, and when the saturation is exceeded. Excess photocharge is stored in the first storage capacitor CSa via the overflow gate LO. In addition, excess photocharge when there is intense light irradiation and the saturation of the photodiode PD and the first storage capacitor CSa is accumulated in the second storage capacitor CSb via the second storage transistor Cb.
  • the threshold voltage of the overflow gate LO and the second storage transistor Cb is set lower than the threshold voltage of the transfer transistor T, when the first storage capacitor CSa is saturated, excess charge is generated on the photodiode PD side. Efficiently transferred to the second storage capacity CSb without returning.
  • This operation makes effective use of the overcharged state without throwing away the charge that overflows the photodiode PD power. In this way, the accumulation operation is performed by receiving light within the same period with the same photodiode PD for each pixel before and after saturation.
  • the expansion ratio of the dynamic range, the synthesis method of the wide dynamic range signal, and the like are the same as in the first embodiment. In this embodiment, the same effect as that shown in the first embodiment can be obtained, and the dynamic range can be widened sufficiently on the high illuminance side while maintaining a high SZN ratio.
  • the present embodiment is an embodiment based on another block diagram and an operation method of the solid-state imaging device according to the first to fourth embodiments.
  • the configuration of the pixels of the solid-state imaging device of this embodiment is the same as that of the solid-state imaging device described in the fourth embodiment by the first force.
  • FIG. 17 shows a block diagram of the solid-state imaging device of the present embodiment.
  • a row shift register 34, a column shift register 35, vertical signal lines 38 and 38 ', a horizontal signal line 39, and an output circuit 37 are provided at the periphery of the two-dimensionally arranged pixel array (30, 31, 32, 33). Yes.
  • a pixel array of 2 pixels x 2 pixels is shown! /, But the number of pixels is not limited to this! ,.
  • Each pixel power The signal that is sequentially read out is the noise signal Nl, and the pre-saturated light signal + noise signal S1 + N1 and the charge signal converted by the FD, and the charge voltage conversion by the noise signal N2, FD + CSa Pre-saturation and post-saturation summed optical signal + noise signal Sl + S2 + N2, noise signal N3, FD + CSa + CSb charge-voltage converted pre-saturation and post-saturation summed optical signal + noise signal S1 + S2 + S3 + N3.
  • These output signals are read out by selecting the vertical signal lines 38 and 38 ′, the horizontal signal line 39 and the output circuit 39 in dot order from each pixel by the row shift register 34 and the column shift register 35.
  • the noise signal is temporarily stored in the frame memory in response to the case where one or more of the noise signals Nl, N2, and N3 are read out immediately after accumulation starts, and then the noise is removed by the subtractor circuit.
  • noise-removed pre-saturation side signal S1 and supersaturation side signals Sl + S2, S1 + S2 + S3 can be obtained.
  • the subtraction circuit and the frame memory may be formed on the image sensor chip or may be formed as separate chips. In the solid-state imaging device of this embodiment, the readout circuit system is simplified.
  • the pixel size is 20 um square
  • the floating diffusion capacitor C 3.4 fF
  • the first storage capacitor CSa 73 fF
  • the second storage capacitor CSb 370
  • a solid-state image sensor with OfF was created, and its photoelectric conversion characteristics and dynamic range characteristics were obtained.
  • Each storage capacitor consists of a MOS capacitor and a polysilicon capacitor.
  • FIG. 18 shows the photoelectric conversion characteristics of this example.
  • the saturation signal voltages of signals Sl, Sl + S2, S1 + S2 + S3 are 500mV, 1000mV and 1200mV, respectively.
  • the residual noise voltage remaining in Sl, Sl + S2, S1 + S2 + S3 after noise removal is equal to 0.09 mV.
  • the switching voltage to S1 force and S1 + S2, and the switching voltage to S1 + S2 force and S1 + S2 + S3 were set lower than their respective saturation voltages, and were 400mV and 900mV.
  • the SZN ratio between the SI + S2 signal, S1 + S2 + S3 signal and residual noise at each switching point is 46 dB, and a solid-state image sensor with high-quality performance can be realized. Yes.
  • a trench type storage capacitor element is applied, the pixel size is 10 ⁇ m square, the floating diffusion capacitor C is 3.4 fF, and the first storage capacitor CSa
  • a solid-state image sensor with 148 fF and a second storage capacity of CSb 15 pF was created, and its photoelectric conversion characteristics and dynamic range characteristics were determined.
  • the saturation signal voltages of the signals Sl, Sl + S2, S1 + S2 + S3 are 500mV, lOOOmV and 1200mV, respectively.
  • the remaining residual noise voltages are all equal to 0.09 mV.
  • the switching voltage from 31 to 31 + 32 and the switching voltage from S1 + S2 to S1 + S2 + S3 were set lower than their respective saturation voltages and were set to 400 mV and 900 mV.
  • the SZN ratio between SI + S2 signal, S1 + S2 + S3 signal and residual noise at each switching point is 40dB, and a solid-state image sensor with high image quality performance can be realized. Yes.
  • the dynamic ranges of Sl, Sl + S2, S1 + S2 + S3 are 75dB and 114dB, respectively. 175dB can be realized.
  • a sufficiently wide dynamic range can be realized on the high illuminance side while maintaining a high SZN ratio.
  • the present invention is not limited to the above description.
  • the solid-state imaging device is described.
  • the present invention is not limited to this, and a line sensor in which the pixels of each solid-state imaging device are arranged in a straight line, or the pixels of each solid-state imaging device are left alone.
  • the optical sensor obtained by configuring can achieve a wide dynamic range, high sensitivity, and a high S ZN ratio that have not been obtained in the past.
  • the shape of the storage capacitor such as the MOS capacitor, the polysilicon-polysilicon capacitor, and the DRAM memory storage capacitor.
  • This method can be adopted.
  • As a solid-state imaging device it can be applied to a CCD as well as a CMOS image sensor.
  • various modifications can be made without departing from the scope of the present invention. For example, in the embodiment, the case where signal charges are stored in the first and second storage capacitors has been described, but the present invention can also be applied to a configuration in which signal charges are stored in multistage storage capacitors.
  • the solid-state imaging device of the present invention can be applied to an image sensor in which a wide dynamic range is desired, such as a digital camera, a mobile phone with a camera, a surveillance camera, and an in-vehicle camera.
  • the operation method of the solid-state imaging device of the present invention can be applied to the operation method of an image sensor for which a wide dynamic range is desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 光を受光して光電荷を生成するフォトダイオード、及び、光電荷を転送する転送トランジスタ(又は、オーバーフローゲート)を備えた光センサ、固体撮像装置等の光デバイスにおいて、前記転送トランジスタまたはオーバーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれる光電荷を複数の蓄積容量素子に蓄積する構成を有し、これによって、高感度、高S/N比を維持すると共に、ダイナミックレンジの広い光デバイスが得られる。

Description

明 細 書
光センサ、固体撮像装置、および固体撮像装置の動作方法
技術分野
[0001] 本発明は、光センサ、固体撮像装置等の光デバイス、および、その動作方法に関し 、特に、 CMOS型あるいは CCD型の二次元ないしは一次元固体撮像装置と当該固 体撮像装置の動作方法に関する。
背景技術
[0002] CMOS (Complementary Metal-Oxide-Semiconductor)イメージセンサある 、は CC D (Charge Coupled Device)イメージセンサなどのイメージセンサは、その特性向上と ともに、デジタルカメラ、カメラ付き携帯電話、スキャナなどの用途に幅広く使用されて きている。
[0003] 上記のイメージセンサはさらなる特¾向上が望まれており、そのひとつがダイナミツ クレンジ広くすることである。従来用いられて 、るイメージセンサのダイナミックレンジ は、例えば 3〜4桁(60〜80dB)程度にとどまっており、肉眼や銀塩フィルムに匹敵 する 5〜6桁( 100〜 120dB)以上のダイナミックレンジをもつ高画質イメージセンサ の実現が望まれている。
[0004] 上記のイメージセンサの画質特性を向上させる技術として、例えば非特許文献 1な どに、高感度および高 SZN比化するために、各画素のフォトダイオードに隣接した フローティングディフュージョンで発生するノイズ信号と当該ノイズ信号に光信号が加 算された信号とをそれぞれ読み出し、両者の差分をとることでノイズを抑圧する技術 が開発されている。
[0005] し力しこの方法でもダイナミックレンジは 80dB程度以下であり、これより広いダイナミ ックレンジィ匕をすることが望まれて 、る。
[0006] 例えば、特許文献 1には、図 19に示すように、フォトダイオード PDに高感度低照度 側の小容量 C1のフローティングディフュージョンと低感度高照度側の大容量 C2のフ ローテイングディフュージョンを接続して、低照度側の出力 OUT1と高照度側出力 O UT2をそれぞれ出力することで広ダイナミックレンジ化する技術が開示されている。 [0007] また、特許文献 2には、図 20に示すように、フローティングディフュージョン FDの容 量 CSを可変とした広ダイナミックレンジィ匕技術が開示されている。他には、短い露光 時間による高照度側に対応した撮像と長い露光時間により低照度に対応した撮像と を行い、互いに異なる 2回以上の露光時間に分割することによって広ダイナミックレン ジを実現する技術が開示されている。
[0008] また、特許文献 3および非特許文献 2には、図 21に示すように、フォトダイオード PD と容量 Cの間にトランジスタスィッチ Tを設け、 1回目の露光期間でスィッチ Tをオンし て光信号電荷をフォトダイオード PDと容量 Cの両方に蓄積し、 2回目の露光時間でス イッチ Tをオフして前者の蓄積電荷に加えてフォトダイオード PDで光電荷を蓄積する ことで広ダイナミックレンジィ匕する技術が開示されている。この例では、飽和を上回る 光照射があった場合、過剰電荷はリセットトランジスタ Rを介して排出されて 、る。
[0009] また、特許文献 4には、図 22に示すように、フォトダイオード PDとして容量 Cを従来 よりも大きなものを使用することで高照度撮像に対応できるようにする技術が開示され ている。
[0010] また、非特許文献 3には、図 23に示すように、フォトダイオード PDからの光電流信 号を、 MOSトランジスタを組み合わせて構成されている対数変換回路により、対数変 換しながら蓄積および出力することで、広ダイナミックレンジ化する技術が開示されて いる。
[0011] 特許文献 1 :特開 2003— 134396号公報
特許文献 2 :特開 2000— 165754号公報
特許文献 3:特開 2002— 77737号公報
特許文献 4:特開平 5— 90556号公報
非特干文献 1 : S. Inoue et al., IEEE Workshop on Cし Ds ana Advanced image bensor 2001, pp.16- 19.
非特許文献 2 : Y. Muramatsu et al., IEEE Journal of Sold- state Circuits, Vol.38, No. 1, 2003.
非特許文献 3 :映像情報メディア学会誌, Vol. 57, 2003.
発明の開示 発明が解決しょうとする課題
[0012] し力しながら、上記の特許文献 1、 2、 3および非特許文献 2に記載の方法あるいは 異なる 2回以上の露光時間で撮像する方法では、低照度の撮像と高照度側の撮像 を異なる時刻にお ヽて行って ヽるので、撮像時間にずれが生じ動画撮像の画質を損 なうという問題がある。
[0013] また、上記の特許文献 4および特許文献 3に記載の方法では、高照度側の撮像に 対応するようにして広ダイナミックレンジを達成できるものの、低照度側の撮像に関し ては低感度、低 SZN比となってしまい、画質を損なうという問題がある。
[0014] 上記のように、 CMOSイメージセンサなどのイメージセンサにおいて、高感度、高 S ZN比を維持したままで広ダイナミックレンジィ匕を達成することが困難になっていた。 また、上記のことは二次元アレイに画素を配置したイメージセンサに限ったことではな ぐ画素を一次元に配置したリニアセンサや複数の画素を持たない光センサでも同様 であった。
[0015] 本発明は、上記の状況に鑑みてなされたものであり、本発明の目的は、高感度、高 SZN比を維持したままで広ダイナミックレンジィ匕できる固体撮像素子とその動作方 法を提供することである。
課題を解決するための手段
[0016] 本発明の態様に係る光センサは、光を受光して光電荷を生成するフォトダイォー ドと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、前 記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電荷 を蓄積する複数の蓄積容量素子と、を備えたことを特徴とする。
[0017] 本発明の態様に係る固体撮像装置は、光を受光して光電荷を生成するフォトダイ オードと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと 、前記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電 荷を蓄積する複数の蓄積容量素子と、を有する画素が一次元または二次元のアレイ 状に複数個集積されて 、ることを特徴とする。
[0018] 本発明の態様に係る固体撮像装置は、光を受光して光電荷を生成するフォトダイ オードと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと 、前記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電 荷を順次蓄積する第 1および第 2の蓄積容量素子を少なくとも含む複数の蓄積容量 素子からなる蓄積容量素子群と、を有する画素が一次元または二次元のアレイ状に 複数個集積されて ヽることを特徴とする。
[0019] 本発明の態様に係る固体撮像装置は、光を受光して光電荷を生成するフォトダイ オードと、前記フォトダイオードに接続され前記光電荷を転送する転送ゲートと、前記 転送ゲートに接続された第 1の蓄積ゲートと、前記転送ゲートおよび前記第 1の蓄積 ゲートを介して蓄積動作時に前記フォトダイオードからあふれる光電荷を蓄積する第 1の蓄積容量素子と、前記第 1の蓄積容量素子に第 2の蓄積ゲートを介して接続され る第 2の蓄積容量素子とを有する画素が一次元または二次元のアレイ状に複数個集 積されて!ヽることを特徴とする。
[0020] 上記の本発明の固体撮像装置は、好適には、前記複数の蓄積容量素子が互いに 蓄積ゲート手段を介して接続されて 、る。
[0021] 上記の本発明の固体撮像装置は、好適には、前記画素が、前記転送トランジスタ を介して前記光電荷が転送されるフローティング領域をさらに有する。
[0022] 上記の本発明の固体撮像装置は、好適には、前記画素が、前記転送ゲートを介し て前記光電荷が転送されるフローティング領域をさらに有する。
[0023] 上記の本発明の固体撮像装置は、好適には、前記第 2の蓄積容量素子が、前記第 1の蓄積容量素子よりも大きな容量を有する。
[0024] 上記の本発明の固体撮像装置は、前記複数の蓄積容量素子がすべて同じ容量を 有していても良い。
[0025] 上記の本発明の固体撮像装置は、好適には、前記フローティング領域または前記 第 1および第 2の蓄積容量素子の少なくとも 1つに接続され前記第 1および第 2の蓄 積容量素子および前記フローティング領域内の信号電荷を排出するためのリセットト ランジスタと、前記フローティング領域の信号電荷、または前記フローティング領域と 前記第 1および第 2の蓄積容量素子の少なくとも一方との信号電荷を電圧として読み 出すための増幅トランジスタと、前記増幅トランジスタに接続され前記画素を選択する ための選択トランジスタと、をさらに有する。 [0026] 上記の本発明の固体撮像装置は、好適には、前記フローティング領域、前記第 1の 蓄積容量素子、および前記第 2の蓄積容量素子の 1つまたは複数から得られた電圧 信号と、前記フローティング領域に前記フォトダイオードからの前記光電荷を転送す るとともに前記第 1の蓄積ゲートおよび前記第 2の蓄積ゲートのうちの少なくとも 1つを オンとして、前記フローティング領域、前記第 1の蓄積容量素子、および前記第 2の 蓄積容量素子の 1つまたは複数に転送された光電荷から得られた電圧信号と、の差 分を取るノイズキャンセル手段を、さらに有する。
[0027] また、本発明の別の態様に係る固体撮像装置は、光を受光して光電荷を生成する フォトダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送トラ ンジスタと、前記転送トランジスタを介して前記光電荷が転送されるフローティング領 域と、前記転送トランジスタに接続される第 1の蓄積トランジスタと、蓄積動作時に前 記フォトダイオードからあふれる光電荷を前記転送トランジスタおよび前記第 1の蓄積 トランジスタを通じて蓄積する第 1の蓄積容量素子と、前記第 1の蓄積容量素子から あふれる光電荷を転送する第 2の蓄積トランジスタと、前記第 1の蓄積容量素子から あふれる光電荷を前記第 2の蓄積トランジスタを通じて蓄積する第 2の蓄積容量素子 と、を少なくとも有する画素が一次元または二次元のアレイ状に複数個集積されてい ることを特徴とする。
[0028] また、本発明の更に別の態様に係る固体撮像装置の動作方法は、上記した固体撮 像装置の動作方法であって、電荷蓄積前において、前記第 1および第 2の蓄積トラン ジスタをオンとして、前記フローティング領域および前記第 1および第 2の蓄積容量素 子内の光電荷を排出する工程と、前記フォトダイオードで発生する光電荷のうち飽和 前電荷を前記フォトダイオードに蓄積し、前記フォトダイオードからあふれる過飽和電 荷を前記フローティング領域および前記第 1の蓄積容量素子において蓄積する工程 と、前記第 1の蓄積トランジスタをオフとして、前記フローティング領域内の光電荷を 排出する工程と、前記転送トランジスタをオンとして前記飽和前電荷を前記フローテ イング領域に転送し、前記飽和前電荷の電圧信号を示す飽和前信号を読み出すェ 程と、前記第 1の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダイォー ドからあふれる前記過飽和電荷との和の電圧信号を示す第 1の過飽和信号を読み出 す工程と、前記第 2の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダ ィオードからあふれる前記過飽和電荷と前記第 1の蓄積容量素子からあふれる過飽 和電荷との和の電圧信号を示す第 2の過飽和信号を読み出す工程とを有することを 特徴とする。
[0029] 上記の本発明の固体撮像装置の動作方法は、好適には、前記飽和前信号と、前 記第 1の過飽和信号と、前記第 2の過飽和信号との少なくともいずれか一つを所定の 基準電圧との比較によって選択する出力信号選択工程をさらに有する。
[0030] 上記の本発明の固体撮像装置の動作方法は、好適には、前記出力信号選択工程 力 前記飽和前信号が第 1の基準電圧より大きい場合に出力信号として前記第 1の 過飽和信号を選択し、前記第 1の過飽和信号が第 2の基準電圧より大きい場合に出 力信号として前記第 2の過飽和信号を選択する。
[0031] また、本発明の他の態様に係る光センサは、光を受光して光電荷を生成するフォト ダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジス タと、前記フォトダイオードに接続されるオーバーフローゲートと、前記オーバーフロ 一ゲートを介して蓄積動作時に前記フォトダイオードからあふれる光電荷を蓄積する 複数の蓄積容量素子と、を備えたことを特徴とする。
[0032] 更に、本発明の更に他の態様に係る固体撮像装置は、光を受光して光電荷を生成 するフォトダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送 トランジスタと、前記フォトダイオードに接続されるオーバーフローゲートと、前記ォー バーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれる光電荷を 蓄積する複数の蓄積容量素子と、を有する画素が一次元または二次元のアレイ状に 複数個集積されたことを特徴とする。
[0033] 本発明の別の態様に係る固体撮像装置は、光を受光して光電荷を生成するフォト ダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジス タと、前記フォトダイオードに接続されるオーバーフローゲートと、前記オーバーフロ 一ゲートを介して蓄積動作時に前記フォトダイオードからあふれる光電荷を順次蓄積 する第 1および第 2の蓄積容量素子を少なくとも含む複数の蓄積容量素子からなる 蓄積容量素子群と、を有する画素が一次元または二次元のアレイ状に複数個集積さ れたことを特徴とする。
[0034] また、本発明の更に別の態様に係る固体撮像装置は、光を受光して光電荷を生成 するフォトダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送 ゲートと、前記フォトダイオードに接続され蓄積動作時に前記フォトダイオードからあ ふれる光電荷を転送するオーバーフローゲートと、前記オーバーフローゲートに接続 された第 1の蓄積ゲートと、前記オーバーフローゲートを介して蓄積動作時に前記フ オトダイオードからあふれる光電荷を蓄積する第 1の蓄積容量素子と、前記第 1の蓄 積容量素子に接続される第 2の蓄積ゲートと、前記第 1の蓄積容量素子に前記第 2 の蓄積ゲートを介して接続される第 2の蓄積容量素子とを有する画素が一次元また は二次元のアレイ状に複数個集積されていることを特徴とする。
[0035] 上記の本発明の固体撮像装置は、好適には、前記オーバーフローゲートが MOS 型トランジスタまたは接合型トランジスタ力もなる。
[0036] 上記の本発明の固体撮像装置は、好適には、前記複数の蓄積容量素子が互いに 蓄積トランジスタを介して接続されて 、る。
[0037] 上記の本発明の固体撮像装置は、好適には、前記画素が、前記転送トランジスタ を介して前記光電荷が転送されるフローティング領域をさらに有する。
[0038] 上記の本発明の固体撮像装置は、好適には、前記画素が、前記転送ゲートを介し て前記光電荷が転送されるフローティング領域をさらに有する。
[0039] 上記の本発明の固体撮像装置は、好適には、前記第 2の蓄積容量素子が、前記第 1の蓄積容量素子よりも大きな容量を有する。
[0040] 上記の本発明の固体撮像装置は、好適には、前記複数の蓄積容量素子がすべて 同じ容量を有する。
[0041] 上記の本発明の固体撮像装置は、好適には、前記フローティング領域または前記 第 1および第 2の蓄積容量素子の少なくとも 1つに接続され前記第 1および第 2の蓄 積容量素子および前記フローティング領域内の信号電荷を排出するためのリセットト ランジスタと、前記フローティング領域の信号電荷、または前記フローティング領域と 前記第 1および第 2の蓄積容量素子の少なくとも一方との信号電荷を電圧として読み 出すための増幅トランジスタと、前記増幅トランジスタに接続され前記画素を選択する ための選択トランジスタと、をさらに有する。
[0042] 本発明の他の態様に係る固体撮像装置は、光を受光して光電荷を生成するフォト ダイオードと、前記フォトダイオードに接続され前記光電荷を転送する転送トランジス タと、前記転送トランジスタを介して前記光電荷が転送されるフローティング領域と、 前記フォトダイオードに接続されるオーバーフローゲートと、蓄積動作時に前記フォト ダイオードからあふれる光電荷を前記オーバーフローゲートを通じて蓄積する第 1の 蓄積容量素子と、前記第 1の蓄積容量素子からあふれる光電荷を転送する第 1の蓄 積トランジスタと、前記第 1の蓄積容量素子からあふれる光電荷を前記第 1の蓄積トラ ンジスタを通じて蓄積する第 2の蓄積容量素子と、前記フローティング領域と前記第 1 の蓄積容量素子の間に接続された第 2の蓄積トランジスタと、を少なくとも有する画素 がー次元または二次元のアレイ状に複数個集積されていることを特徴とする。
[0043] また、本発明の別の態様に係る固体撮像装置の動作方法は、上記した固体撮像 装置の動作方法であって、電荷蓄積前において、前記第 1の蓄積トランジスタおよび 前記第 2の蓄積トランジスタをオンとして、前記フローティング領域および前記第 1お よび第 2の蓄積容量素子内の光電荷を排出する工程と、前記フォトダイオードで発生 する光電荷のうち飽和前電荷を前記フォトダイオードに蓄積し、前記フォトダイオード 力 あふれる過飽和電荷を前記オーバーフローゲートを介して前記第 1の蓄積容量 素子にお 、て蓄積する工程と、前記転送トランジスタをオンとして前記飽和前電荷を 前記フローティング領域に転送し、前記飽和前電荷の電圧信号を示す飽和前信号 を読み出す工程と、前記第 2の蓄積トランジスタをオンとして、前記飽和前電荷と前記 フォトダイオード力 あふれた前記過飽和電荷との和の電圧信号を示す第 1の過飽 和信号を読み出す工程と、前記第 1の蓄積トランジスタをオンとして、前記飽和前電 荷と前記フォトダイオードからあふれた前記過飽和電荷と前記第 1の蓄積容量素子 力 あふれた過飽和電荷との和の電圧信号を示す第 2の過飽和信号を読み出すェ 程と、を有することを特徴とする。
[0044] 上記の本発明の固体撮像装置の動作方法は、好適には、前記飽和前信号と、前 記第 1の過飽和信号と、前記第 2の過飽和信号との少なくともいずれか一つを所定の 基準電圧との比較によって選択する出力信号選択工程をさらに有する。 [0045] 上記の本発明の固体撮像装置の動作方法は、好適には、前記出力信号選択工程 力 前記飽和前信号が第 1の基準電圧より大きい場合に出力信号として前記第 1の 過飽和信号を選択し、前記第 1の過飽和信号が第 2の基準電圧より大きい場合に出 力信号として前記第 2の過飽和信号を選択する。
発明の効果
[0046] 本発明の固体撮像装置によれば、光を受光して光電荷を生成および蓄積するフォ トダイオードによる低照度撮像において高感度、高 SZN比を維持し、さらに複数の 蓄積容量にフォトダイオードからあふれる光電荷を蓄積することで高照度における撮 像を行って広ダイナミックレンジィ匕することができる。
図面の簡単な説明
[0047] [図 1]本発明の第 1実施形態に係る固体撮像装置の一画素の等価回路図である。
[図 2]本発明の第 1実施形態に係る固体撮像装置の概略断面図である。
[図 3]本発明の第 1実施形態に係る固体撮像装置の一画素の概略平面図である。
[図 4]本発明の第 1実施形態に係る固体撮像装置のブロック図である。
[図 5]本発明の第 1実施形態に係る固体撮像装置の主要な駆動タイミング図である。
[図 6]本発明の第 1実施形態に係る固体撮像装置の概略ポテンシャル図である。
[図 7]本発明の第 1実施形態に係る固体撮像装置の光電変換特性の概略図である。
[図 8]本発明の第 2実施形態に係る固体撮像装置の駆動タイミング図である。
[図 9]本発明の第 2実施形態に係る固体撮像装置の概略ポテンシャル図である。
[図 10]本発明の第 3実施形態に係る固体撮像装置の一画素の等価回路図である。
[図 11]本発明の第 3実施形態に係る固体撮像装置の概略断面図である。
[図 12]本発明の第 3実施形態に係る固体撮像装置の駆動タイミング図である。
[図 13]本発明の第 3実施形態に係る固体撮像装置の概略ポテンシャル図である。
[図 14]本発明の第 4実施形態に係る固体撮像装置の一画素の等価回路図である。
[図 15-1]本発明の第 4実施形態に係る固体撮像装置の概略断面図である。
[図 15-2]本発明の第 4実施形態に係る固体撮像装置の他の概略断面図である。
[図 16]本発明の第 4実施形態に係る固体撮像装置の一画素の概略平面図である。
[図 17]本発明の第 5実施形態に係る固体撮像装置のブロック図である。 [図 18]本発明の実施例 1に係る固体撮像装置の光電変換特性を示す図である。
[図 19]本発明の特許文献 1に係る固体撮像装置の一画素の等価回路図である。
[図 20]本発明の特許文献 2に係る固体撮像装置の一画素の等価回路図である。
[図 21]本発明の特許文献 3に係る固体撮像装置の一画素の等価回路図である。
[図 22]本発明の特許文献 4に係る固体撮像装置の一画素の等価回路図である。
[図 23]本発明の非特許文献 3に係る固体撮像装置の一画素の等価回路図である。 発明を実施するための最良の形態
[0048] 以下に本発明の固体撮像装置の実施の形態について、図面を参照して説明する。
[0049] 第 1実施形態
本実施例に係る固体撮像装置の一画素の等価回路図を図 1に、概略断面図を図 2 に、概略平面図を図 3に示す。
[0050] 各画素は、光を受光して光電荷を生成するフォトダイオード PD1と、フォトダイォー ド PD1に隣接して設けられた光電荷を転送する転送トランジスタ T2と、転送トランジ スタ T2を介してフォトダイオード PD1に接続して設けられたフローティングディフュー ジョン FD3と、露光蓄積動作時に前記フォトダイオード PD1からあふれる光電荷を、 転送トランジスタ T2を通じて蓄積する第 1の蓄積容量 CSa4および第 2の蓄積容量 C Sb5と、第 1の蓄積容量 CSa4に接続して形成され、第 1の蓄積容量 CSa4、第 2の蓄 積容量 CSb5およびフローティングディフュージョン FD3内の信号電荷を排出するた めのリセットトランジスタ R6と、フローティングディフュージョン FD3と第 1の蓄積容量 CSa4の間に設けられた第 1の蓄積トランジスタ Ca7と、第 1の蓄積容量 CSa4と第 2 の蓄積容量 CSb5の間に設けられた第 2の蓄積トランジスタ Cb8と、フローティングデ ィフュージョン FD3の信号電荷またはフローティングディフュージョン FD3と第 1の蓄 積容量 CSa4の信号電荷またはフローティングディフュージョン FD3と第 1の蓄積容 量 CSa4と第 2の蓄積容量 CSb5の信号電荷を電圧として読み出すための増幅トラン ジスタ SF9と、増幅トランジスタに接続して設けられ前記画素ないしは画素ブロックを 選択するための選択トランジスタ X10とから構成されている。
[0051] 本実施形態に係る固体撮像装置は、上記の構成の画素が二次元または一次元の アレイ状に複数個集積されており、各画素において、転送トランジスタ T2、第 1の蓄 積トランジスタ Ca7、第 2の蓄積トランジスタ Cb8、リセットトランジスタ R6のゲート電極 に、 φ Τ11、 () Cal2、 () Cbl3、 φ R14の各,駆動ライン力 ^接続され、また、選択トラン ジスタ X10のゲート電極には行シフトレジスタから駆動される画素選択ライン φ X15 が接続され、さらに、選択トランジスタ X10の出力側ソースに出力ライン OUT16が接 続され、列シフトレジスタにより制御されて出力される。
[0052] 図 2において、例えば、 η型シリコン半導体基板 (n— sub) 20に p型ゥエル (p— well ) 21が形成されており、さら〖こ、 p型ゥエル 21中に n型半導体領域 22が形成され、そ の表層に P+型半導体領域 23が形成され、この pn接合により電荷転送埋め込み型 のフォトダイオード PDが構成されている。 pn接合に適当なバイアスを印加して発生さ せた空乏層中に光 LTが入射すると、光電効果により光電荷が生じる。
[0053] n型半導体領域 22の端部において p+型半導体領域 23よりはみ出して形成された 領域があり、この領域力も所定の距離を離間して P型ゥエル 21の表層にフローテイン グディフュージョン FDとなる n+型半導体領域 24が形成され、この領域から所定の 距離を離間して n+型半導体領域 25とさらに n+型半導体領域 26が形成されている
[0054] ここで、 n型半導体領域 22と n+型半導体領域 24に係る領域にぉ ヽて、 p型ゥエル 21上面に酸ィ匕シリコンなど力もなるゲート絶縁膜を介してポリシリコンなど力もなるゲ ート電極が形成され、 n型半導体領域 22と n+型半導体領域 24をソース'ドレインとし 、 p型ゥエル 21の表層にチャネル形成領域を有する転送トランジスタ T2が構成されて いる。
[0055] また、 n+型半導体領域 24と n+型半導体領域 25に係る領域において、 p型ゥエル 21上面に酸ィ匕シリコンなど力もなるゲート絶縁膜を介してポリシリコンなど力もなるゲ ート電極が形成され、 n+型半導体領域 24と n+型半導体領域 25をソース'ドレイン とし、 p型ゥエル 21の表層にチャネル形成領域を有する蓄積トランジスタ Caが構成さ れている。
[0056] さらにまた、 n+型半導体領域 25と n+型半導体領域 26に係る領域において、 p型 ゥエル 21上面に酸ィ匕シリコンなど力もなるゲート絶縁膜を介してポリシリコンなどから なるゲート電極が形成され、 n+型半導体領域 25と n+型半導体領域 26をソース'ド レインとし、 p型ゥエル 21の表層にチャネル形成領域を有する蓄積トランジスタ Cbが 構成されている。ここで第 2の蓄積トランジスタ Cbの閾値電圧は転送トランジスタ丁の 閾値電圧よりも低くしておく。
[0057] 図 3において、フォトダイオード PD1の周囲に、転送トランジスタ T2と、第 1の蓄積 容量 CSa4、第 2の蓄積容量 CSb5と、リセットトランジスタ R6と、第 1の蓄積トランジス タ Ca7と、第 2の蓄積トランジスタ Cb8と、増幅トランジスタ SF9と、選択トランジスタ XI 0が形成される領域が示されている。フローティングディフュージョン FD3は不図示で あるが転送トランジスタ T2と第 1の蓄積容量 CSa4の近傍に設けられている。
[0058] 図 4に本実施形態の固体撮像装置のブロック図を示す。 2次元に配置された画素 アレイ(30、 31、 32、 33)の周辺部に行シフトレジスタ 34、列シフトレジスタ 35、信号 およびノイズホールド部 36、出力回路 37を設けている。ここでは簡単のため 2画素 X 2画素の画素アレイを示して 、るが、画素の数はこれに限定されな 、。
[0059] 各画素から順次読み出される信号は、雑音信号 Nl、および FDで電荷電圧変換さ れた飽和前の光信号 +雑音信号 (S1 +N1)、雑音信号 N2、 FD + CSaで電荷電圧 変換された飽和前と飽和後の加算された光信号 +雑音信号 (Sl + S2+N2)、雑音 信号 N3、 FD + CSa + CSbで電荷電圧変換された飽和前と飽和後の加算された光 信号 +雑音信号 (S1 + S2 + S3+N3)となる。減算回路によりノイズ除去 (S1 +N1) — Nl、(S1 + S2+N2)— N2、(S1 + S2 + S3 +N3)— N3の動作を行い、ランダ ムノイズ成分および固定パターンノイズ成分の両方を除去する。後述するように蓄積 開始直後ノイズ信号 Nl、 N2、 N3のひとつないしは複数が読み出される場合に対応 して、ノイズ信号をフレームメモリに一旦保存した後、減算回路によりノイズ除去を行う 。このようにして、ノイズ除去された飽和前側信号 S1および過飽和側信号 Sl + S2、 S1 + S2 + S3を得られる。
[0060] 減算回路、フレームメモリは、イメージセンサチップ上に形成しても、また別チップと して形成してもどちらでも構わな!/、。
[0061] 図 1から図 4で説明される本実施形態の固体撮像装置の動作方法について説明す る。図 5は本実施形態の固体撮像装置の主要な駆動タイミング図、図 6は画素のフォ トダイオードカゝらフローティングディフュージョン FD、第 1の蓄積容量をへて第 2の蓄 積容量に!/、たる部分の概略ポテンシャル図である。
[0062] 図 5及び図 6を参照すると、まず、露光蓄積前に、第 1の蓄積トランジスタ Caおよび 第 1の蓄積トランジスタ Cbをオン、転送トランジスタ T、リセットトランジスタ Rをオフにセ ットされる。次に、リセットトランジスタ R、転送トランジスタ Tをオンしてフローティングデ ィフュージョン FDと第 1の蓄積容量 CSa、第 2の蓄積容量 CSbのリセットを行う(時刻 t ) oこのとき、フォトダイオード PDは完全空乏化している。次に、リセットトランジスタ R
0
をオフした直後に取り込まれる FD + CSa + CSbのリセットノイズを N3として読み出す (時刻 t ) 0この際ノイズ信号 N3には増幅トランジスタ SFの閾値電圧ばらつきが固定
1
パターンノイズ成分として含まれる。
[0063] 次に、第 2の蓄積トランジスタ Cbをオフすると、 FD + CSa + CSbに蓄積されていた 信号電荷は FD + CSaと CSbにその容量比に応じて分配される。このうち、 FD + CS aに分配された信号を N2として読み出す(時刻 t ) 0この際、 N2にも増幅トランジスタ
2
SFの閾値電圧ばらつきが固定パターンノイズ成分として含まれる。蓄積期間中(時 刻 t )においては、第 1の蓄積トランジスタ Caをオン、第 2の蓄積トランジスタ Cb、リセ
3
ットトランジスタ R、選択トランジスタ Xをオフした状態で、フォトダイオード PDが飽和前 の光電荷はフォトダイオード PDで蓄積し、また飽和を超えた際の過剰光電荷は、転 送トランジスタ Tおよび第 1の蓄積トランジスタ Caを介して、 N2に重畳して、フローティ ングディフュージョン FDおよび第 1の蓄積容量 CSaに蓄積する。さらに、強い光の照 射がありフォトダイオード PDおよび第 1の蓄積容量 CSaの飽和を超えた際の過剰光 電荷は第 2の蓄積トランジスタ Cbを介して第 2の蓄積容量 CSbにも蓄積する。第 2の 蓄積トランジスタ Cbの閾値電圧が転送トランジスタ Tの閾値電圧よりも低く設定されて いるので、フローティングディフュージョン FDおよび第 1の蓄積容量 CSaが飽和した 際にはフォトダイオード PD側に過剰電荷が戻ることなぐ第 2の蓄積容量 CSbに効率 的に転送される。この動作により、過飽和状態においてフォトダイオード PD力 あふ れた電荷を捨てずに有効活用する。このようにして、飽和前および過飽和後とも画素 毎に同一のフォトダイオード PDで同一期間内に受光することで蓄積動作を行なう。
[0064] 蓄積終了後(時刻 t )に選択トランジスタ Xをオンした後、第 1の蓄積トランジスタ Ca
4
をオフすると、 FD + CSaに蓄積されていた信号電荷はフローティングディフュージョ ン FDと蓄積容量 CSaにその容量比に応じて分配される。このうちフローティングディ フュージョン FDに分配された信号を N1として読み出す。この際 N1にも増幅トランジ スタ SFの閾値電圧ばらつきが固定パターンノイズ成分として含まれる。次に、転送ト ランジスタ Tをオンしてフォトダイオード PDに蓄積された光信号電荷をフローティング ディフュージョン FDへ完全転送し信号 N 1に重畳して S 1 +N1として信号を読み出 す(時刻 t ) 0次に第 1の蓄積トランジスタ Caもオンして(時刻 t )、 FDの電荷と CSaに
5 6
蓄積された電荷を混合して、 S1 + S2+N2として信号を読み出す。次に第 2の蓄積ト ランジスタ Cbもオンして(時刻 t )、 FD + CSaの電荷と CSbに蓄積された電荷を混合
7
して、 S1 + S2 + S3+N3として信号を読み出す。
[0065] 次に、リセットトランジスタ Rをオンしてフローティングディフュージョン FDと第 1の蓄 積容量 CSa、第 2の蓄積容量 CSbのリセットを行う(時刻 t )。以上の動作を繰り返す
8
ことで本実施形態の固体撮像素子は動作する。
[0066] ダイナミックレンジの拡大率は、 FDの容量を C 、第 1の蓄積容量 CSaの容量を C
FD CS
、第 2の蓄積容量 CSbの容量を C とすると、簡単には (C +C +C ) ZC と a CSb FD CSa CSb FD 表せる。実際には、リセットトランジスタ Rのクロックフィードスルーの影響は FD、 FD + CSa、 FD + CSa + CSbをリセットする順番で受けに《なり、飽和前側信号 S1の飽 和電圧よりも過飽和側信号 S1 + S2の飽和電圧が高くなり、さらに過飽和側信号 S1 + S2 + S3の飽和信号のほうが高くなるので、ダイナミックレンジはこれ以上の比率で 拡大する。高いフォトダイオード開口率を維持した上で画素サイズを拡大せずダイナ ミックレンジを効果的に拡大するためには、面積効率の良い大きな蓄積容量を形成 できることが求められる。
[0067] 広ダイナミックレンジ信号の合成は、ノイズ除去された飽和前側信号 Sl、第 1の過 飽和側信号 (S 1 + S2)、第 2の過飽和側信号 (S 1 + S2 + S3)の 、ずれかの信号を 選択することで実現する。図 7は Sl、 Sl + S2、 S1 + S2 + S3の信号選択の様子を 表した概略的光電変換特性図である。 Sl、 Sl + S2、 S1 + S2 + S3の選択は、予め 設定した S1と(S1 + S2)の切り替え基準電圧と S1の信号出力電圧を比較すること、 および、(S1 + S2)と(S1 + S2 + S3)の切り替え基準電圧と(S1 + S2)の信号出力 電圧を比較することで、 S 1または S 1 + S2または S 1 + S2 + S3の!、ずれかの信号を 選択することで実現する。
[0068] ここで S1と(S1 + S2)の切り替え基準電圧と、(S1 + S2)と(S1 + S2 + S3)の切り 替え基準電圧は同じ電圧でも構わない。図 7では S1と(S1 + S2)の切り替え基準電 圧と、(S1 + S2)と(S1 + S2 + S3)の切り替え基準電圧が同一のものとして表してい る。この切り替え基準電圧は、 S1および S1 + S2の飽和電圧ばらつきの影響を受け ないように S1飽和電圧および S1 + S2飽和電圧よりも低くし、かつ、切り替え点にお ける過飽和側信号 S 1 + S 2 (図 7中 A点)および S 1 + S 2 + S 3 (図 7中 B点)とノイズ除 去後に残留するノイズ信号(図 7中 C点)との SZN比を高く維持するような電圧に設 定すればよい。この S/N比は、固体撮像装置で得られる画像を人間の目で鑑賞す るような用途に使用する場合には、輝度のばらつきが観測されないように、好ましくは 40dB以上、より好ましくは 43dB以上、さらに好ましくは 46dB以上になるように設定 する。
[0069] ここで、第 1の過飽和側信号 S1 + S2はそのゲインに(C +C )/C 比を乗じる
FD CSa FD ことで飽和前側信号 SIのゲインに合せることができ、また、第 2の過飽和側信号 S1 + S2 + S3はそのゲインに(C +C +C )/C 比を乗じることで飽和前側信号
FD CSa CSb FD
SIのゲインに合せることができる。このようにして低照度力も高照度までリニアな信号 で選択合成された広ダイナミックレンジ拡大された映像信号を得ることができる。
[0070] 上述した動作からも明らかなように、本固体撮像装置では飽和前側と第 1の過飽和 側の信号電荷を混合して第 1の過飽和側の信号 S1 + S2としているので、 S1 + S2に は、最低でも飽和前側光信号 S1の飽和に近い信号電荷が存在し、第 1の過飽和側 におけるリセットノイズ、暗電流などのノイズ成分に対する許容度が高くなる。同様に、 第 2の過飽和側の信号 S 1 + S2 + S3には、最低でも第 1の過飽和側の信号 SI + S2 の飽和に近い信号電荷が存在し、第 2の過飽和側におけるリセットノイズ、暗電流な どのノイズ成分に対する許容度が高くなる。第 1の過飽和側の信号 SI + S2および第 2の過飽和側の信号 S1 + S2 + S3に対するノイズ許容度が高くなることを利用して、 図 5に示す次フィールドの信号 N3,や N2,を利用して、 S1 + S2 + S3+N3と N3,の 差分((S1 + S2 + S3+N3)— N3,)や S1 + S2+N2と N2,の差分((S1 + S2+N 2) N2')を取り固定パターン雑音成分を除去することでも、飽和前側と過飽和側信 号の選択切り替え点付近においても、十分な SZN比を確保することが可能となる。 したがって、必ずしもフレームメモリは必要ではない。
[0071] このように、フォトダイオード PDが飽和して ヽな 、低照度撮像にお!ヽてはノイズをキ ヤンセルして得た飽和前電荷信号 (S1)により高感度、高 SZN比を維持することが でき、さらにフォトダイオード PDが飽和した高照度撮像においては、フォトダイオード 力 あふれる光電荷を第 1および第 2の蓄積容量により蓄積してこれを取り入れ、上 記同様にノイズをキャンセルして得た信号(S 1 + S2)および(S 1 + S2 + S 3)により、 高 SZN比を維持して、高照度側に十分に広 ヽダイナミックレンジ拡大を実現できる。
[0072] 本実施形態の固体撮像装置は、上記のように低照度側の感度を下げずに高照度 側の感度を上げて広ダイナミックレンジィ匕を図るほか、電源電圧を通常用いられてい る範囲から上げないので将来のイメージセンサの微細化に対応することができる。素 子の追カ卩は極小に抑えられており、画素サイズの拡大を招くことはない。
[0073] さらに、従来の広ダイナミックレンジィ匕を実現するイメージセンサのように高照度側と 低照度側で蓄積時間を分割しない、即ち、フレームをまたがずに同一の蓄積時間に 蓄積して 、るので、動画の撮像にぉ 、ても画質を劣化させることがな 、。
[0074] また、フローティングディフュージョン FDのリーク電流についても、本実施形態のィ メージセンサでは C +C の最小信号が過飽和電荷 +フォトダイオード PDからの
FD CSa
飽和電荷となり、また、 C +C +C の最小信号が過飽和電荷 +フォトダイオード
FD CSa CSb
PDからの飽和電荷 +フローティングディフュージョン FDと第 1の蓄積容量 CSaの飽 和電荷となって FDリークの電荷よりも大きな電荷量を取り扱うようになるので、 FDリー クの影響を受け難 、と 、う利点がある。
[0075] 上記の実施形態では、第 2の蓄積トランジスタ Cbの閾値電圧を転送トランジスタ T の閾値電圧よりも低くしているが、第 2の蓄積トランジスタ Cbの閾値電圧を転送トラン ジスタ Tの閾値電圧と同程度にし、蓄積期間中に第 2の蓄積トランジスタ Cbのゲート 電位を正にして、フローティングディフュージョン FDおよび第 1の蓄積容量 CSaが飽 和した際にフォトダイオード PD側に過剰電荷が戻ることなぐ第 2の蓄積容量 CSbに 効率的に転送してもよい。
[0076] 上記の実施形態は 2つの蓄積容量を使用したものである力 3つ以上の蓄積容量 を使用しても同様に構成し動作させることができる。 3つ以上の蓄積容量を使用する 際にも、切り替え基準電圧を、飽和電圧ばらつきの影響を受けないように飽和電圧よ りも低くし、かつ切り替え点における信号とノイズの比 SZN比を高く維持するような電 圧を設定してやればよい。 3つ以上の蓄積容量を使用することで高 SZN比を維持し て、高照度側にさらに十分に広いダイナミックレンジ拡大を実現できる。また、複数の 蓄積容量はすべて同じ容量値を有してもよいし、異なっていてもよい。好ましくは、フ ローテイングディフユジョン FDカゝら離れた位置にある蓄積容量ほど大きな容量値を有 している方がよい。
[0077] 第 2実施形態
本実施形態は、第 1の実施形態に係る本実施例に係る固体撮像装置の他の動作 方法にもとづく実施形態である。本実施形態の固体撮像装置の構成は図 1から図 4 で説明される第 1の実施形態の固体撮像装置と同様である。ただし第 1の蓄積トラン ジスタ Caおよび第 2の蓄積トランジスタ Cbの閾値電圧は転送トランジスタ Tの閾値電 圧よりも低くしておく。
[0078] 図 8は本実施形態の固体撮像装置の主要な駆動タイミング図、図 9は画素のフォト ダイオードからフローティングディフュージョン FD、第 1の蓄積容量をへて第 2の蓄積 容量に!/、たる部分の概略ポテンシャル図である。
[0079] まず、露光蓄積前に、第 1の蓄積トランジスタ Caおよび第 2の蓄積トランジスタ Cbを オン、転送トランジスタ T、リセットトランジスタ Rをオフにセットする。次に、リセットトラン ジスタ尺、転送トランジスタ Τをオンしてフローティングディフュージョン FDと第 1の蓄 積容量 CSa、第 2の蓄積容量 CSbのリセットを行う(時刻 t 。このとき、フォトダイォー
0
ド PDは完全空乏化して 、る。
[0080] 次にリセットトランジスタ Rをオフした直後に取り込まれる FD + CSa + CSbのリセット ノイズを N3として読み出す(時刻 t ')。この際ノイズ信号 N3には増幅トランジスタ SF
1
の閾値電圧ばらつきが固定パターンノイズ成分として含まれる。次に、第 2の蓄積トラ ンジスタ Cbをオフすると、 FD + CSa + CSbに蓄積されて 、た信号電荷は FD + CSa と CSbにその容量比に応じて分配される。このうち FD + CSaに分配された信号を N 2として読み出す(時刻 t ')。この際 N2にも増幅トランジスタ SFの閾値電圧ばらつき が固定パターンノイズ成分として含まれる。
[0081] 次に、第 1の蓄積トランジスタ Caをオフすると、 FD + CSaに蓄積されていた信号電 荷は FDと CSaにその容量比に応じて分配される。このうち、 FDに分配された信号を N1として読み出す(時刻 t ')。この際 N1にも増幅トランジスタ SFの閾値電圧ばらつ
3
きが固定パターンノイズ成分として含まれる。蓄積期間中(時刻 t ')においては、第 1
4
の蓄積トランジスタ Ca、第 2の蓄積トランジスタ Cb、リセットトランジスタ R、選択トラン ジスタ Xをオフした状態で、フォトダイオード PDが飽和する前の光電荷はフォトダイォ ード PDで蓄積し、また飽和を超えた際の過剰光電荷は、転送トランジスタ Tを介して N1に重畳して、フローティングディフュージョン FDに蓄積する。より強い光の照射が あり、フォトダイオード PDおよびフローティングディフュージョン FDの飽和を超えた際 の過剰電荷は第 1の蓄積トランジスタ Caを介して、 N2に重畳して、第 1の蓄積容量 C Saに蓄積する。さらに、強い光の照射がありフォトダイオード PDおよびフローティング ディフュージョン FDおよび第 1の蓄積容量 CSaの飽和を超えた際の過剰光電荷は 第 2の蓄積トランジスタ Cbを介して第 2の蓄積容量 CSbにも蓄積する。第 1の蓄積トラ ンジスタ Caおよび第 2の蓄積トランジスタ Cbの閾値電圧が転送トランジスタ Tの閾値 電圧よりも低く設定されているので、フローティングディフュージョン FDが飽和した際 には PD側に過剰電荷が戻ることなく第 1の蓄積容量 CSaに効率的に転送され、フロ 一ティングディフュージョン FDおよび第 1の蓄積容量 CSaが飽和した際にはフォトダ ィオード PD側に過剰電荷が戻ることなく、第 2の蓄積容量 CSbに効率的に転送され る。この動作により、過飽和状態においてフォトダイオード PD力もあふれた電荷を捨 てずに有効活用する。このようにして、飽和前および過飽和後とも画素毎に同一のフ オトダイオード PDで同一期間内に受光することで蓄積動作を行なう。
[0082] 蓄積終了後に、選択トランジスタ X、転送トランジスタ Tをオンしてフォトダイオード P Dに蓄積された光信号電荷をフローティングディフュージョン FDへ完全転送し信号 N1に重畳して S1 +N1として信号を読み出す(時刻 t 。次に第 1の蓄積トランジス
5
タ Caもオンして(時刻 t ')、 FDの電荷と CSaに蓄積された電荷を混合して、 S1 + S2
6
+N2として信号を読み出す。次に第 2の蓄積トランジスタ Cbもオンして(時刻 t ')、 F
7
D + CSaの電荷と CSbに蓄積された電荷を混合して、 S1 + S2 + S3 + N3として信 号を読み出す。次にリセットトランジスタ Rをオンしてフローティングディフュージョン F Dと第 1の蓄積容量 CSa、第 2の蓄積容量 CSbのリセットを行う(時刻 t ')。以上の動
8
作を繰り返すことで本実施形態の固体撮像素子は動作する。
[0083] 上記の実施形態では、第 1の蓄積トランジスタ Caおよび第 2の蓄積トランジスタ Cb の閾値電圧を転送トランジスタ丁の閾値電圧よりも低くして 、る力 第 1の蓄積トランジ スタ Caおよび第 2の蓄積トランジスタ Cbの閾値電圧を転送トランジスタ Tの閾値電圧 と同程度にし、蓄積期間中に第 1の蓄積トランジスタ Caおよび第 2の蓄積トランジスタ Cbのゲート電位を正にして、フローティングディフュージョン FDおよび第 1の蓄積容 量 CSaが飽和した際にフォトダイオード PD側に過剰電荷が戻ることなぐ第 2の蓄積 容量 CSbに効率的に転送してもよ 、。
[0084] 本実施形態においても、第 1実施形態に示したものと同様な効果が得られ、高 SZ N比を維持して、高照度側に十分に広 、ダイナミックレンジ拡大を実現できる。
[0085] 第 3実施形態
本実施例に係る固体撮像装置の一画素の等価回路図を図 10に、概略断面図を図 11に示す。概略平面図は第 1実施形態の図 3と同様である。
[0086] 各画素は、光を受光して光電荷を生成するフォトダイオード PD1と、フォトダイォー ド PD1に隣接して設けられた光電荷を転送する転送トランジスタ T2と、転送トランジ スタ T2を介してフォトダイオード PD1に接続して設けられたフローティングディフュー ジョン FD3と、露光蓄積動作時に前記フォトダイオード PD1からあふれる光電荷を転 送トランジスタ T2を通じて蓄積する第 1の蓄積容量 CSa4および第 2の蓄積容量 CSb 5と、フローティングディフュージョン FD3に接続して形成され、フローティングディフ ユージョン FD3、第 1の蓄積容量 CSa4および第 2の蓄積容量 CSb5内の信号電荷を 排出するためのリセットトランジスタ R6と、フローティングディフュージョン FD3と第 1の 蓄積容量 CSa4の間に設けられた第 1の蓄積トランジスタ Ca7と、第 1の蓄積容量 CS a4と第 2の蓄積容量 CSb5の間に設けられた第 2の蓄積トランジスタ Cb8と、フローテ イングディフュージョン FD3の信号電荷またはフローティングディフュージョン FD3と 第 1の蓄積容量 CSa4の信号電荷またはフローティングディフュージョン FD3と第 1の 蓄積容量 CSa4と第 2の蓄積容量 CSb5の信号電荷を電圧として読み出すための増 幅トランジスタ SF9と、増幅トランジスタに接続して設けられ前記画素ないしは画素ブ ロックを選択するための選択トランジスタ X10とから構成されている。
[0087] 本実施形態に係る固体撮像装置は、上記の構成の画素が二次元または一次元の アレイ状に複数個集積されており、各画素において、転送トランジスタ T2、第 1の蓄 積トランジスタ Ca7、第 2の蓄積トランジスタ Cb8、リセットトランジスタ R6のゲート電極 に、 φ 11、 φ 12、 φ 13、 φ 14の各駆動ラインが接続され、また、選択トランジス
T Ca Cb R
タ X10のゲート電極には行シフトレジスタ力も駆動される画素選択ライン φ 15が接
X
続され、さらに、選択トランジスタ X10の出力側ソースに出力ライン OUT16が接続さ れ、列シフトレジスタにより制御されて出力される。
[0088] 図 11において、リセットトランジスタ R6が第 1の蓄積容量 CSa4の替わりにフローテ イングディフュージョンとなる n+半導体領域に接続されていることの他は第 1実施形 態の図 2と同様である。また、第 1実施形態と同様に第 2の蓄積トランジスタ Cbの閾値 電圧が転送トランジスタ Tの閾値電圧よりも低く設定されている。また、本実施形態の 固体撮像装置のブロック図も第 1実施形態の図 4と同様である。
[0089] 図 10から図 11で説明される本実施形態の固体撮像装置の動作方法について説 明する。図 12は本実施形態の固体撮像装置の主要な駆動タイミング図、図 13は画 素のフォトダイオード力もフローティングディフュージョン FD、第 1の蓄積容量をへて 第 2の蓄積容量にいたる部分の概略ポテンシャル図である。
[0090] まず、露光蓄積前に、第 1の蓄積トランジスタ Caおよび第 2の蓄積トランジスタ Cbを オン、転送トランジスタ T、リセットトランジスタ Rをオフにセットする。次に、リセットトラン ジスタ尺、転送トランジスタ Τをオンしてフローティングディフュージョン FDと第 1の蓄 積容量 CSa、第 2の蓄積容量 CSbのリセットを行う(時刻 t ")。このとき、フォトダイォ
0
ード PDは完全空乏化している。次にリセットトランジスタ Rをオフした直後に取り込ま れる FD + CSa + CSbのリセットノイズを N3として読み出す(時刻 t ")。この際ノイズ
1
信号 N3には増幅トランジスタ SFの閾値電圧ばらつきが固定パターンノイズ成分とし て含まれる。
[0091] 次に、第 2の蓄積トランジスタ Cbをオフすると、 FD + CSa + CSbに蓄積されていた 信号電荷は FD + CSaと CSbにその容量比に応じて分配される。このうち FD + CSa に分配された信号を N2として読み出す(時刻 t ")。この際 N2にも増幅トランジスタ S
2
Fの閾値電圧ばらつきが固定パターンノイズ成分として含まれる。蓄積期間中(時刻 t ")においては、第 1の蓄積トランジスタ Caをオン、第 2の蓄積トランジスタ Cb、リセット
3
トランジスタ 選択トランジスタ Xをオフした状態で、フォトダイオード PDが飽和する 前の光電荷はフォトダイオード PDで蓄積し、また飽和を超えた際の過剰光電荷は、 転送トランジスタ Tおよび第 1の蓄積トランジスタ Caを介して、 N2に重畳して、フロー ティングディフュージョン FDおよび第 1の蓄積容量 CSaに蓄積する。さらに、強い光 の照射がありフォトダイオード PDおよび第 1の蓄積容量 CSaの飽和を超えた際の過 剰光電荷は第 2の蓄積トランジスタ Cbを介して第 2の蓄積容量 CSbにも蓄積する。第 2の蓄積トランジスタ Cbの閾値電圧が転送トランジスタ Tの閾値電圧よりも低く設定さ れているので、フローティングディフュージョン FDおよび第 1の蓄積容量 CSaが飽和 した際にはフォトダイオード PD側に過剰電荷が戻ることなぐ第 2の蓄積容量 CSbに 効率的に転送される。この動作により、過飽和状態においてフォトダイオード PDから あふれた電荷を捨てずに有効活用する。このようにして、飽和前および過飽和後とも 画素毎に同一のフォトダイオード PDで同一期間内に受光することで蓄積動作を行な
[0092] 蓄積終了後(時刻 t ")に選択トランジスタ Xをオンした後、リセットトランジスタ Rをォ
4
ンし(時刻 t ")、 FDをリセットした後、リセットトランジスタ Rをオフして力も FDに存在
5
する信号を N1として読み出す(時刻 t ")。この際 N1にも増幅トランジスタ SFの閾値
6
電圧ばらつきが固定パターンノイズ成分として含まれる。次に、転送トランジスタ τを オンしてフォトダイオード PDに蓄積された光信号電荷をフローティングディフュージョ ン FDへ完全転送し信号 N1に重畳して(時刻 t ")、 S1 +N1として信号を読み出す。
7
[0093] 次に第 1の蓄積トランジスタ Caもオンして(時刻 t ")、 FDの電荷と CSaに蓄積され
8
た電荷を混合して、 S1 + S2+N2として信号を読み出す。次に第 2の蓄積トランジス タ Cbもオンして(時刻 t ")、 FD + CSaの電荷と CSbに蓄積された電荷を混合して、
9
S1 + S2 + S3+N3として信号を読み出す。次に、リセットトランジスタ Rをオンしてフ ローテイングディフュージョン FDと第 1の蓄積容量 CSa、第 2の蓄積容量 CSbのリセ ットを行う(時刻 t ")。以上の動作を繰り返すことで本実施形態の固体撮像素子は動 作する。ダイナミックレンジの拡大率、広ダイナミックレンジ信号の合成方法などは、 第 1の実施形態と同様である。
[0094] 本実施形態においても、第 1実施形態に示したものと同様な効果が得られ、高 SZ N比を維持して、高照度側に十分に広 、ダイナミックレンジ拡大を実現できる。
[0095] 第 4実施形態
本実施形態に係る固体撮像装置の一画素の等価回路図を図 14に、概略断面図を 図 15— 1,図 15— 2に、概略平面図を図 16に示す。
[0096] 各画素は、光を受光して光電荷を生成するフォトダイオード PD1と、フォトダイォー ド PD1に隣接して設けられた光電荷を転送する転送トランジスタ T2と、転送トランジ スタ T2を介してフォトダイオード PD1に接続して設けられたフローティングディフュー ジョン FD3と、フォトダイオード PD1と第 1の蓄積容量 CSa4の間に設けられたオーバ 一フローゲート LOl 7と、露光蓄積動作時に前記フォトダイオード PD1からあふれる 光電荷をオーバーフローゲート L017を通じて蓄積する第 1の蓄積容量 CSa4および 第 2の蓄積容量 CSb5と、フローティングディフュージョン FD3に接続して形成され、 フローティングディフュージョン FD3、第 1の蓄積容量 CSa4および第 2の蓄積容量 C Sb5内の信号電荷を排出するためのリセットトランジスタ R6と、フローティングディフユ 一ジョン FD3と第 1の蓄積容量 CSa4の間に設けられた第 1の蓄積トランジスタ Ca7と 、第 1の蓄積容量 CSa4と第 2の蓄積容量 CSb5の間に設けられた第 2の蓄積トランジ スタ Cb8と、フローティングディフュージョン FD3の信号電荷またはフローティングディ フュージョン FD3と第 1の蓄積容量 CSa4の信号電荷またはフローティングディフュー ジョン FD3と第 1の蓄積容量 CSa4と第 2の蓄積容量 CSb5の信号電荷を電圧として 読み出すための増幅トランジスタ SF9と、増幅トランジスタに接続して設けられ前記画 素な 、しは画素ブロックを選択するための選択トランジスタ X10とから構成されて 、る
[0097] 図 15— 1および図 15— 2において、 n型半導体領域 22と n+型半導体領域 25に 係る領域において、 p型ゥヱル 21上面に p +半導体領域 18が形成され、 n型半導体 領域 22と n+型半導体領域 25をソース'ドレインとし、 p+型半導体領域 18をゲートと する接合トランジスタ型のオーバーフローゲート LOが構成されて 、る。他の構造は前 記第 3実施形態と同様である。 p +半導体領域 18は p+型半導体領域 23および p型 ゥエル領域 21に電気的に接続されて!ヽる。
[0098] 本実施形態に係る固体撮像装置は、上記の構成の画素が二次元または一次元の アレイ状に複数個集積されており、各画素において、転送トランジスタ T2、第 1の蓄 積トランジスタ Ca7、第 2の蓄積トランジスタ Cb8、リセットトランジスタ R6のゲート電極 に、 φ 11、 φ 12、 φ 13、 φ 14の各駆動ラインが接続され、また、選択トランジス
T Ca Cb R
タ X10のゲート電極には行シフトレジスタ力も駆動される画素選択ライン φ 15が接
X
続され、さらに、選択トランジスタ X10の出力側ソースに出力ライン OUT16が接続さ れ、列シフトレジスタにより制御されて出力される。
[0099] 本実施形態において、第 1実施形態と同様に第 2の蓄積トランジスタ Cbの閾値電 圧が転送トランジスタ Tの閾値電圧よりも低く設定されていると同時に、オーバーフロ 一ゲート LOの閾値電圧が転送トランジスタ Tの閾値電圧よりも低く設定されている。 また、本実施形態の固体撮像装置のブロック図も第 1実施形態の図 4と同様である。
[0100] 図 14から図 16で説明される本実施形態の固体撮像装置の動作方法は第 3の実施 形態の図 12と同様であるが、蓄積期間中(時刻 t ")においては、第 1の蓄積トランジ
3
スタ Caをオフ、第 2の蓄積トランジスタ Cb、リセットトランジスタ R、選択トランジスタ Xを オフした状態で、フォトダイオード PDが飽和前の光電荷はフォトダイオード PDで蓄 積し、また飽和を超えた際の過剰光電荷は、オーバーフローゲート LOを介して、第 1 の蓄積容量 CSaに蓄積する。さらに、強い光の照射がありフォトダイオード PDおよび 第 1の蓄積容量 CSaの飽和を超えた際の過剰光電荷は第 2の蓄積トランジスタ Cbを 介して第 2の蓄積容量 CSbにも蓄積する。オーバーフローゲート LOおよび第 2の蓄 積トランジスタ Cbの閾値電圧が転送トランジスタ Tの閾値電圧よりも低く設定されてい るので、第 1の蓄積容量 CSaが飽和した際にはフォトダイオード PD側に過剰電荷が 戻ることなぐ第 2の蓄積容量 CSbに効率的に転送される。この動作により、過飽和状 態にお 、てフォトダイオード PD力 あふれた電荷を捨てずに有効活用する。このよう にして、飽和前および過飽和後とも画素毎に同一のフォトダイオード PDで同一期間 内に受光することで蓄積動作を行なう。ダイナミックレンジの拡大率、広ダイナミックレ ンジ信号の合成方法などは、第 1の実施形態と同様である。 [0101] 本実施形態においても、第 1実施形態に示したものと同様な効果が得られ、高 SZ N比を維持して、高照度側に十分に広 、ダイナミックレンジ拡大を実現できる。
[0102] 第 5実施形態
本実施形態は、第 1から第 4の実施形態に係る固体撮像装置の他のブロック図と動 作方法にもとづく実施形態である。本実施形態の固体撮像装置の画素の構成は第 1 力ゝら第 4の実施形態で説明される固体撮像装置と同様である。
[0103] 図 17に本実施形態の固体撮像装置のブロック図を示す。 2次元に配置された画素 アレイ(30、 31、 32、 33)の周辺部に行シフトレジスタ 34、列シフトレジスタ 35、垂直 信号線 38、 38 '、水平信号線 39、出力回路 37を設けている。ここでは簡単のため 2 画素 X 2画素の画素アレイを示して!/、るが、画素の数はこれに限定されな!、。
[0104] 各画素力 順次に読み出される信号は、雑音信号 Nl、および FDで電荷電圧変換 された飽和前の光信号 +雑音信号 S1 +N1、雑音信号 N2、 FD + CSaで電荷電圧 変換された飽和前と飽和後の加算された光信号 +雑音信号 Sl + S2+N2、雑音信 号 N3、 FD + CSa + CSbで電荷電圧変換された飽和前と飽和後の加算された光信 号 +雑音信号 S1 + S2 + S3+N3となる。これらの出力信号は、行シフトレジスタ 34 および列シフトレジスタ 35により、各画素から垂直信号線 38、 38 '、水平信号線 39 および出力回路 39を点順次に選択されて読み出される。減算回路によりノイズ除去 ( Sl +Nl)— Nl、(S1 + S2+N2)— N2、(S1 + S2 + S3+N3)— N3の動作を行 い、ランダムノイズ成分および固定パターンノイズ成分の両方を除去する。後述する ように蓄積開始直後ノイズ信号 Nl、 N2、 N3のひとつないしは複数が読み出される 場合に対応して、ノイズ信号をフレームメモリに一旦保存した後、減算回路によりノィ ズ除去を行う。このようにして、ノイズ除去された飽和前側信号 S1および過飽和側信 号 Sl + S2、 S1 + S2 + S3を得られる。減算回路、フレームメモリは、イメージセンサ チップ上に形成しても、また別チップとして形成してもどちらでも構わない。本実施形 態の固体撮像素子は読み出し回路系が簡単になる。
[0105] (実施例 1)
本発明の固体撮像装置において、画素サイズ 20um角、フローティングディフュー ジョン容量 C = 3. 4fF、第 1の蓄積容量 CSa = 73fF、第 2の蓄積容量 CSb = 370 OfFをもつ固体撮像素子を作成し、その光電変換特性とダイナミックレンジ特性を求 めた。各蓄積容量は MOS容量とポリシリコン ポリシリコン容量の並列容量で構成し た。
[0106] 図 18は本実施例の光電変換特性である。信号 Sl、 Sl + S2、 S1 + S2 + S3の飽 和信号電圧はそれぞれ 500mV、 1000mV、 1200mVである。また、ノイズ除去後に Sl、 Sl + S2、 S1 + S2 + S3に残留する残留ノイズ電圧 ίまみな等しく 0. 09mVであ る。
[0107] S1力ら S1 + S2への切り替え電圧、 S1 + S2力ら S1 + S2 + S3への切り替え電圧 はそれぞれの飽和電圧よりも低く設定し 400mV、 900mVとした。
[0108] 各切り替え点での SI + S2信号、 S1 + S2 + S3信号と残留ノイズとの SZN比はど ちらも 46dBが得られており、高画質な性能を持つ固体撮像素子が実現できている。
[0109] また、 Sl、 Sl + S2、 S1 + S2 + S3のダイナミックレンジ ίまそれぞれ、 75dB、 108dB
、 143dBを実現できている。
[0110] 本実施例において、高 SZN比を維持して、高照度側に十分に広いダイナミックレ ンジ拡大を実現できている。
[0111] (実施例 2)
本発明の固体撮像装置において、トレンチ型蓄積容量素子を適用して、画素サイ ズ 10um角、フローティングディフュージョン容量 C = 3. 4fF、第 1の蓄積容量 CSa
FD
= 148fF、第 2の蓄積容量 CSb = 15pFをもつ固体撮像素子を作成し、その光電変 換特性とダイナミックレンジ特性を求めた。
[0112] 信号 Sl、 Sl + S2、 S1 + S2 + S3の飽和信号電圧はそれぞれ 500mV、 lOOOmV 、 1200mVである。またノイズ除去後【こ Sl、 Sl + S2、 S1 + S2 + S3【こ残留する残 留ノイズ電圧はみな等しく 0. 09mVである。また、 31から31 + 32への切り替ぇ電圧 、 S1 + S2から S1 + S2 + S3への切り替え電圧はそれぞれの飽和電圧よりも低く設 定し 400mV、 900mVとした。
[0113] 各切り替え点での SI + S2信号、 S1 + S2 + S3信号と残留ノイズとの SZN比はど ちらも 40dBが得られており、高画質な性能を持つ固体撮像素子が実現できている。 また、 Sl、 Sl + S2、 S1 + S2 + S3のダイナミックレンジはそれぞれ、 75dB、 114dB 、 175dBを実現できている。
[0114] 本実施例において、高 SZN比を維持して、高照度側に十分に広いダイナミックレ ンジ拡大を実現できている。
[0115] 本発明は上記の説明に限定されない。例えば、実施形態においては、固体撮像装 置について説明しているが、これに限らず、各固体撮像装置の画素を直線状に配し たラインセンサや、各固体撮像装置の画素をそのまま単独で構成することで得られる 光センサについても、従来には得られな力つた広ダイナミックレンジィ匕と高感度、高 S ZN比を達成することができる。
[0116] また、蓄積容量の形状などは特に限定はなぐ MOS容量、ポリシリコン ポリシリコ ン間容量、 DRAMのメモリ蓄積容量などで容量を高めるためにこれまでに開発され たトレンチ容量やスタック容量など種々の方法を採用することができる。固体撮像装 置としては、 CMOSイメージセンサの他、 CCDにも適用することができる。その他、 本発明の要旨を逸脱しない範囲で、種々の変更が可能である。例えば、実施例では 、第 1及び第 2の蓄積容量に信号電荷を蓄積する場合について説明したが、本発明 は、更に、多段の蓄積容量に信号電荷を蓄積する構成にも適用できる。
産業上の利用可能性
[0117] 本発明の固体撮像装置は、デジタルカメラ、カメラ付き携帯電話、監視カメラ、車載 カメラなどの広 、ダイナミックレンジが望まれて 、るイメージセンサに適応できる。
[0118] 本発明の固体撮像装置の動作方法は広いダイナミックレンジが望まれているィメー ジセンサの動作方法に適応できる。

Claims

請求の範囲
[1] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電 荷を蓄積する複数の蓄積容量素子と、
を備えた光センサ。
[2] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電 荷を蓄積する複数の蓄積容量素子と、
を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮像装 置。
[3] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記転送トランジスタを介して蓄積動作時に前記フォトダイオードからあふれる光電 荷を順次蓄積する第 1および第 2の蓄積容量素子を少なくとも含む複数の蓄積容量 素子からなる蓄積容量素子群と、
を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮像装 置。
[4] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送ゲートと、 前記転送ゲートに接続された第 1の蓄積ゲートと、
前記転送ゲートおよび前記第 1の蓄積ゲートを介して蓄積動作時に前記フォトダイ オードからあふれる光電荷を蓄積する第 1の蓄積容量素子と、
前記第 1の蓄積容量素子に第 2の蓄積ゲートを介して接続される第 2の蓄積容量素 子と
を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮像装置
[5] 前記複数の蓄積容量素子は互いに蓄積ゲート手段を介して接続されていることを 特徴とする、請求項 2記載の固体撮像装置。
[6] 前記画素は、前記転送トランジスタを介して前記光電荷が転送されるフローテイン グ領域をさらに有する、請求項 2に記載の固体撮像装置。
[7] 前記画素は、前記転送ゲートを介して前記光電荷が転送されるフローティング領域 をさらに有する、請求項 4に記載の固体撮像装置。
[8] 前記フローティング領域または前記第 1および第 2の蓄積容量素子の少なくとも 1つ に接続され前記第 1および第 2の蓄積容量素子および前記フローティング領域内の 信号電荷を排出するためのリセットトランジスタと、
前記フローティング領域の信号電荷、または前記フローティング領域と前記第 1お よび第 2の蓄積容量素子の少なくとも一方との信号電荷を電圧として読み出すため の増幅トランジスタと、
前記増幅トランジスタに接続され前記画素を選択するための選択トランジスタと、 をさらに有する請求項 6記載の固体撮像装置。
[9] 前記フローティング領域、前記第 1の蓄積容量素子、および前記第 2の蓄積容量素 子の 1つまたは複数から得られた電圧信号と、
前記フローティング領域に前記フォトダイオードからの前記光電荷を転送するととも に前記第 1の蓄積ゲートおよび前記第 2の蓄積ゲートのうちの少なくとも 1つをオンと して、前記フローティング領域、前記第 1の蓄積容量素子、および前記第 2の蓄積容 量素子の 1つまたは複数に転送された光電荷から得られた電圧信号と、の差分を取 るノイズキャンセル手段を、さらに有する請求項 7に記載の固体撮像装置。
[10] 光を受光して光電荷を生成するフォトダイオードと、前記フォトダイオードに接続さ れ前記光電荷を転送する転送トランジスタと、前記転送トランジスタを介して前記光 電荷が転送されるフローティング領域と、前記転送トランジスタに接続される第 1の蓄 積トランジスタと、蓄積動作時に前記フォトダイオードからあふれる光電荷を前記転送 トランジスタおよび前記第 1の蓄積トランジスタを通じて蓄積する第 1の蓄積容量素子 と、前記第 1の蓄積容量素子力 あふれる光電荷を転送する第 2の蓄積トランジスタと 、前記第 1の蓄積容量素子からあふれる光電荷を前記第 2の蓄積トランジスタを通じ て蓄積する第 2の蓄積容量素子と、を少なくとも有する画素が一次元または二次元の アレイ状に複数個集積された固体撮像装置。
[11] 請求項 10の固体撮像装置の動作方法であって、
電荷蓄積前において、前記第 1および第 2の蓄積トランジスタをオンとして、前記フ ローテイング領域および前記第 1および第 2の蓄積容量素子内の光電荷を排出する 工程と、
前記フォトダイオードで発生する光電荷のうち飽和前電荷を前記フォトダイオードに 蓄積し、前記フォトダイオードからあふれる過飽和電荷を前記フローティング領域お よび前記第 1の蓄積容量素子において蓄積する工程と、
前記第 1の蓄積トランジスタをオフとして、前記フローティング領域内の光電荷を排 出する工程と、
前記転送トランジスタをオンとして前記飽和前電荷を前記フローティング領域に転 送し、前記飽和前電荷の電圧信号を示す飽和前信号を読み出す工程と、
前記第 1の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダイオードか らあふれる前記過飽和電荷との和の電圧信号を示す第 1の過飽和信号を読み出す 工程と、
前記第 2の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダイオードか らあふれる前記過飽和電荷と前記第 1の蓄積容量素子からあふれる過飽和電荷との 和の電圧信号を示す第 2の過飽和信号を読み出す工程と、
を有する固体撮像装置の動作方法。
[12] 前記飽和前信号と、前記第 1の過飽和信号と、前記第 2の過飽和信号との少なくと もいずれか一つを所定の基準電圧との比較によって選択する出力信号選択工程を さらに有する請求項 11に記載の固体撮像装置の動作方法。
[13] 前記出力信号選択工程は、前記飽和前信号が第 1の基準電圧より大きい場合に出 力信号として前記第 1の過飽和信号を選択し、前記第 1の過飽和信号が第 2の基準 電圧より大きい場合に出力信号として前記第 2の過飽和信号を選択する、請求項 12 に記載の固体撮像装置の動作方法。
[14] 光を受光して光電荷を生成するフォトダイオードと、 前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記フォトダイオードに接続されるオーバーフローゲートと、
前記オーバーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれ る光電荷を蓄積する複数の蓄積容量素子と、
を備えた光センサ。
[15] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記フォトダイオードに接続されるオーバーフローゲートと、
前記オーバーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれ る光電荷を蓄積する複数の蓄積容量素子と、
を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮像装 置。
[16] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送トランジスタと、 前記フォトダイオードに接続されるオーバーフローゲートと、
前記オーバーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれ る光電荷を順次蓄積する第 1および第 2の蓄積容量素子を少なくとも含む複数の蓄 積容量素子からなる蓄積容量素子群と、
を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮像装 置。
[17] 光を受光して光電荷を生成するフォトダイオードと、
前記フォトダイオードに接続され前記光電荷を転送する転送ゲートと、 前記フォトダイオードに接続され蓄積動作時に前記フォトダイオードからあふれる光 電荷を転送するオーバーフローゲートと、
前記オーバーフローゲートに接続された第 1の蓄積ゲートと、
前記オーバーフローゲートを介して蓄積動作時に前記フォトダイオードからあふれ る光電荷を蓄積する第 1の蓄積容量素子と、
前記第 1の蓄積容量素子に接続される第 2の蓄積ゲートと、 前記第 1の蓄積容量素子に前記第 2の蓄積ゲートを介して接続される第 2の蓄積容 量素子を有する画素が一次元または二次元のアレイ状に複数個集積された固体撮 像装置。
[18] 前記オーバーフローゲートは MOS型トランジスタまたは接合型トランジスタ力 なる 請求項 15記載の固体撮像装置。
[19] 前記複数の蓄積容量素子は互いに蓄積トランジスタを介して接続されていることを 特徴とする、請求項 15記載の固体撮像装置。
[20] 前記画素は、前記転送トランジスタを介して前記光電荷が転送されるフローテイン グ領域をさらに有する、請求項 15記載の固体撮像装置。
[21] 前記画素は、前記転送ゲートを介して前記光電荷が転送されるフローティング領域 をさらに有する、請求項 17に記載の固体撮像装置。
[22] 前記第 2の蓄積容量素子は、前記第 1の蓄積容量素子よりも大きな容量を有する、請 求項 16記載の固体撮像装置。
[23] 前記フローティング領域または前記第 1および第 2の蓄積容量素子の少なくとも 1つ に接続され前記第 1および第 2の蓄積容量素子および前記フローティング領域内の 信号電荷を排出するためのリセットトランジスタと、
前記フローティング領域の信号電荷、または前記フローティング領域と前記第 1お よび第 2の蓄積容量素子の少なくとも一方との信号電荷を電圧として読み出すため の増幅トランジスタと、
前記増幅トランジスタに接続され前記画素を選択するための選択トランジスタと、 をさらに有する請求項 19記載の固体撮像装置。
[24] 光を受光して光電荷を生成するフォトダイオードと、前記フォトダイオードに接続さ れ前記光電荷を転送する転送トランジスタと、前記転送トランジスタを介して前記光 電荷が転送されるフローティング領域と、前記フォトダイオードに接続されるオーバー フローゲートと、蓄積動作時に前記フォトダイオードからあふれる光電荷を前記ォー バーフローゲートを通じて蓄積する第 1の蓄積容量素子と、前記第 1の蓄積容量素子 からあふれる光電荷を転送する第 1の蓄積トランジスタと、前記第 1の蓄積容量素子 力 あふれる光電荷を前記第 1の蓄積トランジスタを通じて蓄積する第 2の蓄積容量 素子と、前記フローティング領域と前記第 1の蓄積容量素子の間に接続された第 2の 蓄積トランジスタと、を少なくとも有する画素が一次元または二次元のアレイ状に複数 個集積された固体撮像装置。
[25] 請求項 24に記載の固体撮像装置の動作方法であって、
電荷蓄積前において、前記第 1の蓄積トランジスタおよび前記第 2の蓄積トランジス タをオンとして、前記フローティング領域および前記第 1および第 2の蓄積容量素子 内の光電荷を排出する工程と、
前記フォトダイオードで発生する光電荷のうち飽和前電荷を前記フォトダイオードに 蓄積し、前記フォトダイオードからあふれる過飽和電荷を前記オーバーフローゲート を介して前記第 1の蓄積容量素子において蓄積する工程と、
前記転送トランジスタをオンとして前記飽和前電荷を前記フローティング領域に転 送し、前記飽和前電荷の電圧信号を示す飽和前信号を読み出す工程と、
前記第 2の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダイオードか らあふれた前記過飽和電荷との和の電圧信号を示す第 1の過飽和信号を読み出す 工程と、
前記第 1の蓄積トランジスタをオンとして、前記飽和前電荷と前記フォトダイオードか らあふれた前記過飽和電荷と前記第 1の蓄積容量素子からあふれた過飽和電荷との 和の電圧信号を示す第 2の過飽和信号を読み出す工程と、
を有する固体撮像装置の動作方法。
[26] 前記飽和前信号と、前記第 1の過飽和信号と、前記第 2の過飽和信号との少なくと もいずれか一つを所定の基準電圧との比較によって選択する出力信号選択工程を さらに有する請求項 25に記載の固体撮像装置の動作方法。
[27] 前記出力信号選択工程は、前記飽和前信号が第 1の基準電圧より大きい場合に出 力信号として前記第 1の過飽和信号を選択し、前記第 1の過飽和信号が第 2の基準 電圧より大きい場合に出力信号として前記第 2の過飽和信号を選択する、請求項 26 に記載の固体撮像装置の動作方法。
PCT/JP2006/307349 2005-04-07 2006-04-06 光センサ、固体撮像装置、および固体撮像装置の動作方法 WO2006109683A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06731297.5A EP1868377B1 (en) 2005-04-07 2006-04-06 Light sensor, solid-state image pickup device and method for operating solid-state image pickup device
CN2006800087691A CN101164334B (zh) 2005-04-07 2006-04-06 光传感器、固体摄像装置和固体摄像装置的动作方法
US11/887,916 US7821560B2 (en) 2005-04-07 2006-04-06 Optical sensor, solid-state imaging device, and operating method of solid-state imaging device
KR1020077022808A KR101257526B1 (ko) 2005-04-07 2006-04-06 광 센서, 고체 촬상 장치, 및 고체 촬상 장치의 동작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005111071A JP5066704B2 (ja) 2005-02-04 2005-04-07 固体撮像装置、および固体撮像装置の動作方法
JP2005-111071 2005-04-07

Publications (1)

Publication Number Publication Date
WO2006109683A1 true WO2006109683A1 (ja) 2006-10-19

Family

ID=37086958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307349 WO2006109683A1 (ja) 2005-04-07 2006-04-06 光センサ、固体撮像装置、および固体撮像装置の動作方法

Country Status (6)

Country Link
US (1) US7821560B2 (ja)
EP (1) EP1868377B1 (ja)
KR (1) KR101257526B1 (ja)
CN (1) CN101164334B (ja)
TW (1) TWI431764B (ja)
WO (1) WO2006109683A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887626A1 (en) * 2006-08-09 2008-02-13 Tohoku University Optical sensor comprising overflow gate and storage capacitor
WO2008057527A2 (en) * 2006-11-07 2008-05-15 Eastman Kodak Company Multi image storage on sensor
WO2008088879A1 (en) * 2007-01-19 2008-07-24 Eastman Kodak Company Image sensor with gain control
EP2192764A1 (en) * 2007-09-05 2010-06-02 Tohoku University Solid state imaging element and imaging device
EP2192615A4 (en) * 2007-09-05 2011-07-27 Univ Tohoku SOLID-BODY IMAGING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
US8184191B2 (en) 2006-08-09 2012-05-22 Tohoku University Optical sensor and solid-state imaging device
CN111755467A (zh) * 2019-03-29 2020-10-09 原相科技股份有限公司 影像传感器以及提高影像传感器信噪比的方法

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744118B1 (ko) * 2005-12-13 2007-08-01 삼성전자주식회사 이미지 센서의 포화 레벨 검출 회로, 이미지 센서의 포화레벨 검출 방법 및 포화 레벨 검출 회로를 구비하는 이미지센서
KR101404074B1 (ko) * 2007-07-31 2014-06-05 삼성전기주식회사 Cmos 영상 센서
CN101904165A (zh) * 2007-12-21 2010-12-01 福通尼斯荷兰公司 图像传感器阵列,增强的图像传感器阵列,电子轰击图像传感器阵列装置以及用于这些图像传感器阵列的像素传感器元件
KR101465667B1 (ko) * 2008-03-25 2014-11-26 삼성전자주식회사 Cmos 영상 센서 및 그 동작 방법
JP5358136B2 (ja) * 2008-07-29 2013-12-04 パナソニック株式会社 固体撮像装置
KR100984698B1 (ko) * 2008-08-04 2010-10-01 주식회사 동부하이텍 이미지 센서 및 그 구동 방법
JP2010124418A (ja) * 2008-11-21 2010-06-03 Toshiba Corp 固体撮像装置
JP5267867B2 (ja) 2009-03-06 2013-08-21 ルネサスエレクトロニクス株式会社 撮像装置
KR101064495B1 (ko) * 2009-04-03 2011-09-16 마루엘에스아이 주식회사 광다이나믹 레인지 이미지 센서 및 그 동작방법
JP2011015219A (ja) * 2009-07-02 2011-01-20 Toshiba Corp 固体撮像装置
JP4444371B1 (ja) * 2009-09-01 2010-03-31 富士フイルム株式会社 撮像素子及び撮像装置
US20110074996A1 (en) * 2009-09-29 2011-03-31 Shen Wang Ccd image sensors with variable output gains in an output circuit
CN102597806A (zh) * 2009-11-03 2012-07-18 皇家飞利浦电子股份有限公司 用于探测电磁辐射的探测器单元
JP5521682B2 (ja) 2010-02-26 2014-06-18 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器
TWI419111B (zh) * 2010-09-06 2013-12-11 Himax Imagimg Inc 感測裝置
KR101251744B1 (ko) * 2011-04-13 2013-04-05 엘지이노텍 주식회사 Wdr 픽셀 어레이, 이를 포함하는 wdr 이미징 장치 및 그 구동방법
TWI505453B (zh) * 2011-07-12 2015-10-21 Sony Corp 固態成像裝置,用於驅動其之方法,用於製造其之方法,及電子裝置
JP2013162148A (ja) * 2012-02-01 2013-08-19 Sony Corp 個体撮像装置および駆動方法、並びに電子機器
CN102945659A (zh) * 2012-12-05 2013-02-27 东南大学 一种硅基液晶微显示器像素点电路
GB2510372B (en) * 2013-01-31 2018-10-03 Res & Innovation Uk Imaging sensor
CN104981906B (zh) * 2013-03-14 2018-01-19 索尼半导体解决方案公司 固态图像传感器、其制造方法和电子设备
CN103259985B (zh) * 2013-05-17 2016-08-17 昆山锐芯微电子有限公司 Cmos图像传感器、像素单元及其控制方法
US10497737B2 (en) 2013-05-30 2019-12-03 Caeleste Cvba Enhanced dynamic range imaging
JP6376785B2 (ja) * 2014-03-14 2018-08-22 キヤノン株式会社 撮像装置、および、撮像システム
CN103873787B (zh) * 2014-04-02 2017-02-15 长春长光辰芯光电技术有限公司 高动态范围图像传感器像素
US9967501B2 (en) 2014-10-08 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JP6452381B2 (ja) * 2014-10-23 2019-01-16 キヤノン株式会社 撮像装置
US9774802B2 (en) * 2014-11-10 2017-09-26 Raytheon Company Method and apparatus for increasing pixel sensitivity and dynamic range
US10154222B2 (en) 2014-11-17 2018-12-11 Tohoku University Optical sensor, signal reading method therefor, solid-state imaging device, and signal reading method therefor
TWI677973B (zh) 2014-11-17 2019-11-21 國立大學法人東北大學 光感測器之訊號讀出方法以及攝像裝置之訊號讀出方法
JP2016111425A (ja) * 2014-12-03 2016-06-20 ルネサスエレクトロニクス株式会社 撮像装置
CN104469195B (zh) * 2014-12-18 2017-11-21 北京思比科微电子技术股份有限公司 高动态范围图像传感器像素结构及其操作方法
JP2016139660A (ja) * 2015-01-26 2016-08-04 株式会社東芝 固体撮像装置
KR20230132615A (ko) * 2015-01-29 2023-09-15 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 전자 기기
US9699398B2 (en) 2015-04-16 2017-07-04 Caeleste Cvba Pixel with increased charge storage
US9819882B2 (en) * 2015-06-05 2017-11-14 Caeleste Cvba Global shutter high dynamic range sensor
TWI701819B (zh) * 2015-06-09 2020-08-11 日商索尼半導體解決方案公司 攝像元件、驅動方法及電子機器
US10341592B2 (en) 2015-06-09 2019-07-02 Sony Semiconductor Solutions Corporation Imaging element, driving method, and electronic device
FR3037440B1 (fr) * 2015-06-12 2019-11-08 Teledyne E2V Semiconductors Sas Capteur d'image a haute dynamique, a nœud de stockage en trois parties
US9900481B2 (en) * 2015-11-25 2018-02-20 Semiconductor Components Industries, Llc Imaging pixels having coupled gate structure
JP2017135693A (ja) * 2016-01-21 2017-08-03 パナソニックIpマネジメント株式会社 撮像装置
JP6782431B2 (ja) * 2016-01-22 2020-11-11 パナソニックIpマネジメント株式会社 撮像装置
CN112788224B (zh) 2016-01-29 2023-04-04 松下知识产权经营株式会社 摄像装置
US10072974B2 (en) * 2016-06-06 2018-09-11 Semiconductor Components Industries, Llc Image sensors with LED flicker mitigaton global shutter pixles
CN106791463B (zh) * 2016-11-30 2019-08-20 上海集成电路研发中心有限公司 一种全局快门cmos像素单元及图像采集方法
US10063797B2 (en) * 2016-12-22 2018-08-28 Raytheon Company Extended high dynamic range direct injection circuit for imaging applications
CA3050847A1 (en) * 2017-01-25 2018-08-02 BAE Systems Imaging Solutions Inc. Imaging array with extended dynamic range
CN111164964B (zh) * 2017-10-27 2022-08-16 索尼半导体解决方案公司 摄像装置和摄像方法
US10536652B2 (en) 2018-01-08 2020-01-14 Semiconductor Components Industries, Llc Image sensors with split photodiodes
US10559614B2 (en) 2018-03-09 2020-02-11 Semiconductor Components Industries, Llc Dual conversion gain circuitry with buried channels
JP2020047734A (ja) 2018-09-18 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2020095544A1 (ja) * 2018-11-07 2020-05-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US11431926B2 (en) * 2018-11-09 2022-08-30 Semiconductor Components Industries, Llc Image sensors having high dynamic range imaging pixels
JP7341659B2 (ja) * 2018-12-25 2023-09-11 ブリルニクス シンガポール プライベート リミテッド 固体撮像装置、固体撮像装置の駆動方法、および電子機器
US11201188B2 (en) 2019-03-07 2021-12-14 Semiconductor Components Industries, Llc Image sensors with high dynamic range and flicker mitigation
WO2020241289A1 (ja) * 2019-05-31 2020-12-03 ヌヴォトンテクノロジージャパン株式会社 固体撮像装置、及びそれを用いる撮像装置
JP2021010075A (ja) 2019-06-28 2021-01-28 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
CN110534534B (zh) * 2019-07-19 2021-08-10 思特威(上海)电子科技股份有限公司 具有不规则设计结构双转换增益晶体管的图像传感器
US11064141B2 (en) 2019-07-24 2021-07-13 Semiconductor Components Industries, Llc Imaging systems and methods for reducing dark signal non-uniformity across pixels
CN114747203B (zh) 2019-11-21 2024-04-16 华为技术有限公司 成像元件、成像传感器、摄像机系统以及包括摄像机系统的设备
KR20220117249A (ko) * 2019-12-26 2022-08-23 하마마츠 포토닉스 가부시키가이샤 측거 장치, 및 측거 센서의 구동 방법
WO2021153370A1 (ja) * 2020-01-29 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、固体撮像装置の駆動方法及び電子機器
CN115066887A (zh) * 2020-02-18 2022-09-16 新唐科技日本株式会社 固体摄像装置以及利用固体摄像装置的摄像装置
KR20220082566A (ko) 2020-12-10 2022-06-17 삼성전자주식회사 이미지 센서
KR20220142737A (ko) * 2021-04-15 2022-10-24 삼성전자주식회사 Dram 커패시터를 포함하는 이미지 센서 및 이미지 센서의 동작 방법
US11627274B2 (en) * 2021-04-16 2023-04-11 Microsoft Technology Licensing, Llc Image sensing pixels with lateral overflow storage
CN113206119B (zh) * 2021-04-29 2023-04-18 武汉新芯集成电路制造有限公司 有源像素电路、图像传感器和电子设备
EP4358142A4 (en) * 2021-06-15 2024-10-02 Sony Semiconductor Solutions Corp IMAGING ELEMENT AND ELECTRONIC DEVICE
US12022221B2 (en) 2021-11-25 2024-06-25 Samsung Electronics Co., Ltd. Image sensor
CN114740522A (zh) * 2022-03-25 2022-07-12 上海品臻影像科技有限公司 一种直接式x射线平板探测器及曝光同步方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270579A (ja) * 1990-03-20 1991-12-02 Fujitsu Ltd 赤外線撮像装置
JPH06244403A (ja) * 1993-02-15 1994-09-02 Fujitsu Ltd 固体撮像素子の入力回路
JP2003101881A (ja) * 2001-09-20 2003-04-04 Sony Corp 固体撮像装置および固体撮像装置の駆動方法
JP2003209242A (ja) * 2002-01-15 2003-07-25 Sony Corp Ccd固体撮像素子
JP2004335802A (ja) * 2003-05-08 2004-11-25 Fuji Photo Film Co Ltd 固体撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682236A (en) * 1985-12-20 1987-07-21 General Electric Company Read and clear readout circuit and method of operation of an IR sensing charge injection device
JPH0590556A (ja) 1990-05-11 1993-04-09 Olympus Optical Co Ltd 固体撮像素子
JP3270579B2 (ja) 1993-07-14 2002-04-02 株式会社ネオス 含フッ素ペリレン誘導体
US6246436B1 (en) * 1997-11-03 2001-06-12 Agilent Technologies, Inc Adjustable gain active pixel sensor
WO2000005874A1 (en) * 1998-07-22 2000-02-03 Foveon, Inc. Multiple storage node active pixel sensors
JP3592106B2 (ja) 1998-11-27 2004-11-24 キヤノン株式会社 固体撮像装置およびカメラ
JP3558589B2 (ja) 2000-06-14 2004-08-25 Necエレクトロニクス株式会社 Mos型イメージセンサ及びその駆動方法
US6504141B1 (en) * 2000-09-29 2003-01-07 Rockwell Science Center, Llc Adaptive amplifier circuit with enhanced dynamic range
EP1231641A1 (en) * 2001-02-09 2002-08-14 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Active pixel with analog storage for an opto-electronic image sensor
JP3827145B2 (ja) * 2001-07-03 2006-09-27 ソニー株式会社 固体撮像装置
JP3984814B2 (ja) 2001-10-29 2007-10-03 キヤノン株式会社 撮像素子、その撮像素子を用いた放射線撮像装置及びそれを用いた放射線撮像システム
US6888122B2 (en) * 2002-08-29 2005-05-03 Micron Technology, Inc. High dynamic range cascaded integration pixel cell and method of operation
US6780666B1 (en) * 2003-08-07 2004-08-24 Micron Technology, Inc. Imager photo diode capacitor structure with reduced process variation sensitivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270579A (ja) * 1990-03-20 1991-12-02 Fujitsu Ltd 赤外線撮像装置
JPH06244403A (ja) * 1993-02-15 1994-09-02 Fujitsu Ltd 固体撮像素子の入力回路
JP2003101881A (ja) * 2001-09-20 2003-04-04 Sony Corp 固体撮像装置および固体撮像装置の駆動方法
JP2003209242A (ja) * 2002-01-15 2003-07-25 Sony Corp Ccd固体撮像素子
JP2004335802A (ja) * 2003-05-08 2004-11-25 Fuji Photo Film Co Ltd 固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1868377A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887626A1 (en) * 2006-08-09 2008-02-13 Tohoku University Optical sensor comprising overflow gate and storage capacitor
US8184191B2 (en) 2006-08-09 2012-05-22 Tohoku University Optical sensor and solid-state imaging device
WO2008057527A2 (en) * 2006-11-07 2008-05-15 Eastman Kodak Company Multi image storage on sensor
WO2008057527A3 (en) * 2006-11-07 2008-10-02 Eastman Kodak Co Multi image storage on sensor
WO2008088879A1 (en) * 2007-01-19 2008-07-24 Eastman Kodak Company Image sensor with gain control
EP2192764A1 (en) * 2007-09-05 2010-06-02 Tohoku University Solid state imaging element and imaging device
EP2192615A4 (en) * 2007-09-05 2011-07-27 Univ Tohoku SOLID-BODY IMAGING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
EP2192764A4 (en) * 2007-09-05 2013-01-02 Univ Tohoku SEMICONDUCTOR IMAGING ELEMENT AND IMAGING DEVICE
CN111755467A (zh) * 2019-03-29 2020-10-09 原相科技股份有限公司 影像传感器以及提高影像传感器信噪比的方法
CN111755467B (zh) * 2019-03-29 2024-03-15 原相科技股份有限公司 影像传感器以及提高影像传感器信噪比的方法

Also Published As

Publication number Publication date
US20090045319A1 (en) 2009-02-19
EP1868377A4 (en) 2010-12-29
KR20070116862A (ko) 2007-12-11
CN101164334B (zh) 2010-12-15
CN101164334A (zh) 2008-04-16
US7821560B2 (en) 2010-10-26
TW200703630A (en) 2007-01-16
EP1868377A1 (en) 2007-12-19
TWI431764B (zh) 2014-03-21
KR101257526B1 (ko) 2013-04-23
EP1868377B1 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2006109683A1 (ja) 光センサ、固体撮像装置、および固体撮像装置の動作方法
JP5066704B2 (ja) 固体撮像装置、および固体撮像装置の動作方法
JP4497366B2 (ja) 光センサおよび固体撮像装置
US10332928B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US8570410B2 (en) Solid state imaging device, driving method of the solid state imaging device, and electronic equipment
JP4499819B2 (ja) 固体撮像装置
TWI412273B (zh) 固態影像裝置及其驅動方法,以及電子裝置
US8866059B2 (en) Solid state imaging device and differential circuit having an expanded dynamic range
TWI539814B (zh) 電子設備及其驅動方法
US9287305B2 (en) Global shutter bulk charge modulated device
JP6126666B2 (ja) 固体撮像装置及び電子機器
JP6709738B2 (ja) 固体撮像素子および電子機器
JP2006217410A5 (ja)
JP2011216530A (ja) 固体撮像素子およびその製造方法、並びに電子機器
JPWO2017043343A1 (ja) 固体撮像装置および電子機器
JP2005198001A (ja) 固体撮像装置
CN104282705B (zh) 固态成像设备、其制造方法以及电子设备
JP2016219589A (ja) 固体撮像装置
KR20080012697A (ko) 광학 센서 및 고체 촬상 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008769.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887916

Country of ref document: US

Ref document number: 1020077022808

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006731297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731297

Country of ref document: EP