WO2006106566A1 - 軟磁性材料および圧粉成形体の製造方法 - Google Patents

軟磁性材料および圧粉成形体の製造方法 Download PDF

Info

Publication number
WO2006106566A1
WO2006106566A1 PCT/JP2005/005890 JP2005005890W WO2006106566A1 WO 2006106566 A1 WO2006106566 A1 WO 2006106566A1 JP 2005005890 W JP2005005890 W JP 2005005890W WO 2006106566 A1 WO2006106566 A1 WO 2006106566A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron particles
iron
soft magnetic
magnetic material
green compact
Prior art date
Application number
PCT/JP2005/005890
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Hirose
Haruhisa Toyoda
Takao Nishioka
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to PCT/JP2005/005890 priority Critical patent/WO2006106566A1/ja
Priority to CNA2005800493667A priority patent/CN101151686A/zh
Priority to US11/909,962 priority patent/US7641745B2/en
Priority to EP05727280A priority patent/EP1868213A4/en
Publication of WO2006106566A1 publication Critical patent/WO2006106566A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates generally to a method for manufacturing a soft magnetic material and a powder compact, and more specifically to a soft magnetic material including a plurality of iron particles and a method for manufacturing a powder compact. To do.
  • Patent Document 1 discloses such a dust core and a manufacturing method thereof (Patent Document 1).
  • PPS resin polyphenylene sulfide
  • the obtained molded body is heated in air at a temperature of 320 ° C for 1 hour, and further heated at a temperature of 240 ° C for 1 hour. Thereafter, a dust core is produced by cooling.
  • a structural material for manufacturing machine parts and the like there are cases where a compacted body obtained by pressure-forming iron powder is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-246219
  • iron particles purified by various atomization methods and reduction methods are usually used.
  • dissolved iron is sprayed using high-pressure gas or water, and iron particles are obtained by carrying out processes such as pulverization and classification on the obtained powdered iron.
  • iron ore and mill scale are reduced with cortas and then heat treated in a hydrogen atmosphere to obtain iron particles. Therefore, iron particles purified by these methods go through a process of being rapidly cooled in the production process. In this case, extremely large strain and stress are applied inside the iron particles, and the hardness of the iron particles to be refined increases. Therefore, at present, the Vickers hardness H V force Iron particles in the range of 3 ⁇ 400 to 1100 are used!
  • the iron particles are plastically deformed during the press molding process, and the iron particles are entangled with each other, thereby exhibiting strength.
  • the strength is relatively greatly improved by metal bonding and diffusion between particles during sintering.
  • the heat treatment can be performed even if heat treatment is performed. Since the temperature is such a low temperature that sintering hardly occurs between the particles, the bonding force between the particles is not sufficient! For this reason, in order to produce a compacting body with high strength, it is necessary to entangle iron particles in a more complicated manner in the pressure forming step.
  • the hardness of the iron particles used for producing the green compact is high.
  • the plastic deformation of the iron particles is difficult to proceed during pressure molding, and the iron particles become entangled. For this reason, sufficient strength cannot be obtained, and there is a problem that iron particles fall off from the surface of the green compact or that the green compact is damaged when machining such as cutting is performed.
  • an object of the present invention is to solve the above-described problems, and to provide a soft magnetic material and a method for producing a compacted body that realizes a compacted body having high strength.
  • the soft magnetic material according to the present invention is a soft magnetic material used for producing a green compact.
  • the soft magnetic material includes a plurality of iron particles having a Vickers hardness HV of less than 800.
  • the iron particles referred to herein are particles containing iron with a purity of 95% to 100%.
  • the soft magnetic material configured as described above, since the Vickers hardness HV of the iron particles is less than 800, the iron particles are easily plasticized at the time of pressure forming when producing a green compact. Can be deformed. As a result, a plurality of iron particles are intertwined in a complex manner and entangled with each other. Since it is joined in a combined state, it is possible to realize a compacted body having high strength.
  • the specific surface area of the iron particles measured by the gas adsorption method is a
  • the apparent specific surface area of the iron particles calculated by the average particle size force measured by the laser scattering diffraction method is In the case of j8, the iron particles satisfy the relationship of a Z jS ⁇ 2.5.
  • 8 of iron particles is regulated to 2.5 or more, so the surface of the iron particles is large. It is formed in an uneven shape. As a result, a plurality of iron particles can be entangled in a more complicated manner during pressure molding when producing the green compact, and the strength of the green compact can be further improved.
  • the iron particles have a Vickers hardness HV of 700 or less.
  • the iron particles further satisfy the relationship of ⁇ Z j8 ⁇ 3.0. According to the soft magnetic material configured as described above, the above-described effects can be more effectively achieved.
  • the soft magnetic material further includes an insulating coating surrounding the surface of the iron particles.
  • an insulating film is interposed between adjacent iron particles, so that the metal bond between the iron particles is significantly hindered when formed into a green compact.
  • the iron particles cannot be intricately joined together due to the lubricity of the insulating coating during pressure molding when producing a green compact. For these reasons, it becomes difficult to obtain a green compact having high strength. Therefore, the present invention can be effectively used for a soft magnetic material having such an insulating coating.
  • the average thickness of the insulating coating is not less than 5 nm and not more than lOOnm.
  • the soft magnetic material configured as described above, since the average thickness of the insulating film is 5 nm or more, the tunnel current flowing through the film is suppressed, and the increase in eddy current loss due to the tunnel current is suppressed. Can do.
  • the average thickness of the insulating coating is lOOnm or less, the distance between the iron particles does not become too large when a green compact is produced using a soft magnetic material.
  • a method for producing a green compact according to the present invention is a method for producing a green compact using the soft magnetic material described above.
  • the method for manufacturing a green compact includes a step of putting a plurality of iron particles into a mold, and a step of forming a compact by pressing the plurality of iron particles. According to the method for manufacturing a green compact formed in this way, a green compact can be formed in a state where a plurality of iron particles are intertwined in a complicated manner, so that the strength of the green compact can be improved. it can.
  • the step of adding a plurality of iron particles to the mold includes a first organic material containing at least one of thermoplastic and non-thermoplastic resins as a first organic material for the molded body. And a step of adding to a plurality of iron particles so that the ratio is 0.001% by mass or more and 0.2% by mass or less.
  • the first organic material is provided in the compacted body in a state of being interposed between the plurality of iron particles, and the plurality of iron particles are firmly bonded. To do. Thereby, the intensity
  • the ratio of the first organic substance is 0.001% by mass or more, the above-described effects can be sufficiently obtained.
  • the ratio of the first organic substance is 0.2% by mass or less, the volume ratio of the nonmagnetic layer in the green compact can be suppressed, and the saturation magnetic flux density can be prevented from decreasing.
  • the second organic material containing the higher fatty acid-based lubricant is used, and the ratio of the second organic material to the molded body is 0.001% by mass or more.
  • the step of adding to a plurality of iron particles so as to be 2% by mass or less is included.
  • the second organic substance is interposed between adjacent iron particles in the step of pressure-molding a plurality of iron particles, and the iron particles are intensely bonded to each other. Prevent rubbing. Thereby, it is possible to suppress an increase in the hysteresis loss of the green compact by introducing strain into the iron particles.
  • an insulating film is formed on the surface of the iron particles, the insulating film is prevented from being destroyed during pressure molding. As a result, the eddy current loss of the green compact can be reduced.
  • the ratio of the second organic substance is 0.001% by mass or more, the above-described effect can be sufficiently obtained.
  • the ratio of the second organic substance is 0.2% by mass or less, the volume ratio of the nonmagnetic layer in the green compact can be suppressed, and the saturation magnetic flux density can be prevented from decreasing. Caro, Jun It is possible to prevent the strength of the green compact from being reduced due to the second organic substance having a high lubricity.
  • the step of introducing the plurality of iron particles into the mold includes a step of applying a lubricant to the inner wall of the mold.
  • a lubricant to the inner wall of the mold.
  • the step of introducing the plurality of iron particles into the mold includes a step of heating at least one of the inner wall of the mold and the plurality of iron particles to a temperature of 40 ° C or higher.
  • the strain existing in the iron particles can be reduced, and the hysteresis loss of the green compact can be reduced.
  • the first organic substance added to the plurality of iron particles is softened, and the first organic substance can be sufficiently distributed between the plurality of iron particles. Thereby, the density of the green compact can be increased and the strength can be further improved.
  • FIG. 1 is a schematic diagram showing a soft magnetic material in an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a method of measuring the Vickers hardness HV of the iron particles shown in FIG.
  • FIG. 3 is an enlarged schematic view showing a range surrounded by a two-dot chain line III in FIG. 1.
  • FIG. 4 is a schematic view showing the surface of a dust core made using the soft magnetic material shown in FIG. 1.
  • FIG. 5 A cross-sectional view showing an atomizing device for producing the soft magnetic material shown in FIG. 1.
  • ⁇ 6 Shows the first step of pressure forming when producing the dust core shown in FIG. FIG.
  • FIG. 7 A cross-sectional view showing a second step of pressure forming when manufacturing the powder magnetic core shown in FIG. The
  • FIG. 8 is a cross-sectional view showing a third step of pressure forming when manufacturing the dust core shown in FIG. 4.
  • the soft magnetic material includes a plurality of iron particles 10 having a Vickers hardness HV of less than 800.
  • Vickers hardness HV of iron particles 10 is more preferably 700 or less V ,.
  • the Vickers hardness HV of the iron particles 10 is measured by a micro Vickers hardness test method defined in JIS standard Z2244, and is obtained by, for example, the method described below.
  • an aggregate of a plurality of iron particles 10 is called iron powder.
  • FIG. 2 the method for measuring the Vickers hardness HV of the iron particles shown in Fig. 1 will be described.
  • iron powder is mixed with a liquid or powdered resin, and the temperature is raised ( (Or by chemical reaction) dissolve the resin.
  • the resin is hardened and the resin 61 encapsulating the iron powder is produced.
  • the surface 61a of the resin 61 is lapped to form the flat portion 10a used for the hardness test on the iron particles 10.
  • a test square square indenter 63 is applied to the flat surface portion 10a, and an indentation 64 is formed on the iron particle 10 at a test load of 0.5N. Measure the diagonal length of the indentation 64 and calculate the Vickers hardness HV.
  • the iron particles 10 satisfy the relationship of a Z jS ⁇ 2.5. It is preferable that the iron particles 10 further satisfy the relationship of a Z jS ⁇ 3.0.
  • the specific surface area a and the apparent specific surface area ⁇ of the iron particles 10 can be determined by the method described below.
  • the specific surface area at of the iron particles 10 is measured by a gas adsorption method (BET method: specific surface area measurement method using the BET formula derived by Brunauer, Emmett and Teller).
  • BET method specific surface area measurement method using the BET formula derived by Brunauer, Emmett and Teller.
  • a gas with a known molecular size for example, nitrogen gas or krypton gas
  • the specific surface area a of the iron particles 10 can be measured because the specific surface area is obtained based on the amount of gas adsorbed along the surface of the iron particles 10.
  • the apparent specific surface area ⁇ of the iron particles 10 is calculated using the average particle diameter D of the iron particles 10 measured by a laser scattering diffraction method.
  • a sample of several tens of grams is taken out from an iron powder composed of a plurality of iron particles 10.
  • the particle size distribution of the sample is measured using the laser scattering diffraction method, and the average particle diameter D (m) is obtained from the histogram column of the obtained particle size distribution.
  • the average particle diameter D mentioned here is the particle diameter of the particles whose sum of masses from the smaller particle diameter reaches 50% of the total mass in the histogram, that is, 50% particle diameter D.
  • the specific surface area ex measured in this way is the actual specific surface area value of the iron particles 10 including the distortion of the contour and the surface irregularities, and the apparent specific surface area j8 is the average of the iron particles 10. It is the specific surface area when assuming a true sphere of particle size D. For this reason, in the present embodiment, iron particles 10 satisfying the relationship of ⁇ / ⁇ 2.5, in other words, iron particles 10 having a larger contour distortion and a larger surface irregularity are used.
  • iron particles 10 satisfying the relationship of a Z jS ⁇ 2.5 are formed in an irregular shape having a distorted outline. Further, the surface of the iron particle 10 has a fine V-concave shape, and is formed with a large size and surface roughness.
  • the dust core produced using the soft magnetic material shown in FIG. 1 was composed of iron particles 10 and insulating coating 20 surrounding the surface of iron particles 10.
  • a plurality of composite magnetic particles 30 are provided.
  • An organic substance 40 is interposed between the plurality of composite magnetic particles 30.
  • Each of the plurality of composite magnetic particles 30 is bonded by joining the unevenness of the composite magnetic particle 30 or bonded by the organic material 40.
  • the shape of the iron particles 10 having an irregular contour and a large surface roughness is the surface of the insulating coating 20. Therefore, similarly to the iron particles 10, the composite magnetic particles 30 are formed in a shape with an irregular outline and a large surface roughness. For this reason, each of the plurality of composite magnetic particles 30 is intertwined in a complicated manner and joined in a state of being entangled with each other, so that the strength of the dust core is improved.
  • an iron block as a raw material for iron particles is put into vacuum induction furnace 51, and a high frequency power source is introduced into vacuum induction furnace 51.
  • a high frequency power source is introduced into vacuum induction furnace 51.
  • the iron ingot in the vacuum induction furnace 51 is melted to form a molten metal 56.
  • High pressure water 57 is sprayed toward the injection nozzle 54 and molten metal 56 is supplied to the molten metal introduction pipe 53.
  • the high-pressure water 57 is sprayed, the molten metal 56 is sprayed, and then rapidly cooled in the spray tower 52 to form iron powder composed of a plurality of iron particles 10.
  • the cooling rate in the spray tower 52 is set to be slow, or the elements (particularly nitrogen, carbon, phosphorus, and manganese) that cause the hardness contained in the iron particles 10 to be improved.
  • the ratio iron particles 10 having a Vickers hardness HV of less than 800 can be obtained.
  • the iron powder may be heat-treated at a temperature condition of 500 ° C. or higher in hydrogen or an inert gas atmosphere. In this case, the strain and stress existing in the iron particles 10 can be released, and the hardness of the iron particles 10 can be reduced.
  • the iron particles 10 can be formed in a shape with a contoured shape and a large surface roughness.
  • the water atomization method can increase the uneven shape formed on the surface of the iron particles 10 as compared with the gas atomization method.
  • the obtained iron powder is subjected to phosphoric acid treatment to form an insulating film 20 on the surface of the iron particles 10, thereby producing composite magnetic particles 30.
  • This insulating coating 20 functions as an insulating layer between the iron particles 10.
  • the electrical resistivity P of the dust core can be increased. Thereby, it is possible to suppress the eddy current from flowing between the iron particles 10 and to reduce the iron loss of the dust core caused by the eddy current.
  • the insulating coating 20 may contain an oxide.
  • the insulating film 20 containing this oxide in addition to iron phosphate containing phosphorus and iron, manganese phosphate, zinc phosphate, phosphate phosphate, aluminum phosphate, silicon oxide, titanium oxide, aluminum oxide Alternatively, an oxide insulator such as zirconium oxide can be used.
  • the insulating film 20 may be formed in one layer as shown in the figure, or may be formed in multiple layers.
  • the average thickness of the insulating coating 20 is preferably 5 nm or more and lOOnm or less.
  • the average thickness mentioned here can be obtained by transmission electron microscope energy dispersive X-ray spectroscopy (TEM—EDX)! 1 ⁇ 4 yarn and the combined puffer mass in "(ICP— Ms : Inductively coupled plasma-mass spectrometry) [1] Considering the amount of elements to be protected, the equivalent thickness was derived, and further, the film was directly observed by TEM photography. It is determined by confirming that the order of is correct.
  • thermoplastic resins such as thermoplastic polyimide, thermoplastic polyamide, thermoplastic polyamideimide, polyphenylene sulfide, polyamideimide, polyethersulfone, polyetherimide, or polyetheretherketone.
  • a non-thermoplastic resin such as high molecular weight polyethylene, wholly aromatic polyester, or wholly aromatic polyimide can be used.
  • High molecular weight polyethylene means polyethylene having a molecular weight of 100,000 or more.
  • higher fatty acid systems such as zinc stearate, lithium stearate, calcium stearate, magnesium stearate, lithium palmitate, calcium palmitate, lithium oleate and calcium oleate can be used.
  • the composite magnetic particles 30 and the organic matter 40 are mixed using a V-type mixer. At this time, the mixing ratio is adjusted so that the ratio of the first and second organic substances to the molded body produced in the later step is 0.001% by mass to 0.2% by mass, respectively. .
  • the organic material 40 both the first and second organic materials may be used, or one of them may be used.
  • the mixing method for example, mechanical-caloring method, vibration Dynamic ball mill, planetary ball mill, mechano-fusion, coprecipitation method, chemical vapor deposition method (CVD method), physical vapor deposition method (PVD method), plating method, sputtering method, vapor deposition method or sol-gel method, etc. It is also possible to use it.
  • a pressure forming step is performed on the obtained mixed powder.
  • the band heater 77 of the mold apparatus 71 is energized to heat the inner wall 73 of the die 72 to a temperature of 40 ° C. or higher.
  • the mixed powder obtained in the previous step may be heated, or both may be heated. Furthermore, it is preferable to heat these to a temperature of 80 ° C or higher and 200 ° C or lower.
  • the lubricant supply unit 78 is positioned above the space 74 surrounded by the inner wall 73. Using the air, the injection nozzle force of the lubricant supply part 78 also blows the mold lubricant 91 toward the space 74. As a result, the mold lubricant 91 is adhered to the inner wall 73 and the bottom surface 76 of the mold apparatus 71.
  • the powder mold lubricant 91 is schematically shown. However, the liquid mold lubricant 91 may be either wet or dry. Yes.
  • the mold lubricant 91 for example, metal sarcophagus, polyethylene, amide wax, polyamide, polypropylene, acrylate polymer, methacrylate polymer, fluorine resin, and layered lubricant are used. be able to. It is also possible to use a mixture of two or more of these materials selected appropriately.
  • shoe 79 is positioned above space 74, and mixed powder 15 obtained in the previous step is supplied from shoe 79 toward space 74.
  • the upper punch 80 is positioned above the space 74.
  • the upper punch 80 is moved downward, and for example, the mixed powder 15 is pressure-molded at a pressure of 700 MPa to 1500 MPa.
  • the atmosphere for pressure molding is preferably an inert gas atmosphere or a reduced pressure atmosphere. In this case, the mixed powder can be prevented from being oxidized by oxygen in the atmosphere.
  • the organic substance 40 functions as a lubricant between the adjacent composite magnetic particles 30 mainly by the action of the second organic substance contained therein. Thereby, distortion is introduced into the iron particles 10 at the time of pressure molding, and the insulating coatings 20 are prevented from being rubbed strongly and broken.
  • the molded body 16 obtained by pressure molding is extracted from the space 74.
  • the compact 16 Is subjected to heat treatment at a temperature exceeding the glass transition temperature of the organic matter 40 and not higher than the thermal decomposition temperature of the organic matter 40.
  • the composite magnetic particles 30 are strongly bonded to each other mainly by the action of the first organic substance contained in the organic substance 40, and the strength of the molded body 16 can be improved.
  • by performing heat treatment it is possible to remove distortion and dislocation generated inside the compact 16 during pressure molding.
  • the powder core shown in FIG. 1 is completed by applying an appropriate force such as extrusion force or cutting to the molded body 16.
  • the dust core produced in this way can be used in products such as electronic components such as choke coils, switching power supply elements and magnetic heads, various motor components, automotive solenoids, various magnetic sensors, and various electromagnetic valves. Can be used as In the present embodiment, the dust core is manufactured. However, the present invention is not limited to such a magnetic component, and it is possible to manufacture a general dust compact including a mechanical component and the like.
  • the shape of the molded body was the same as that of a 20 mm span JIS test piece according to the JIS standard bending test.
  • the molded body obtained by the above steps was subjected to a bending test in accordance with JIS standards, and the bending strength was measured. The measured bending strength values are shown in Table 1 together with the data of the iron particles 10 and the insulating coating 20 constituting the molded body of each sample.
  • a plurality of types of insulating coatings 20 were formed on the iron powder used in the molded body of Sample F of Example 1 while changing the thickness thereof, and composite magnetic particles 30 were produced.
  • JIS test piece shaped compacts of Samples 1 to 20 were produced from the composite magnetic particles 30.
  • the same composite magnetic particles 30 were used to produce ring-shaped compacts of Samples 1 to 20.
  • a bending test was performed on the JIS test piece-shaped molded bodies in the same manner as in Example 1, and the bending strength of each molded body was determined.
  • a magnetic field having a maximum value of 1 T (tester) was applied to the ring-shaped compact, and the eddy current loss coefficient at that time was measured.
  • Table 2 shows the values of the bending strength and the eddy current loss coefficient obtained by the measurement, together with the data of the iron particles 10 and the insulating coating 20 constituting the molded body of each sample.
  • the first, second, and third layers of the insulating coating shown in the table mean that the insulating coating 20 was formed with a one-layer structure, a two-layer structure, and a three-layer structure, respectively.
  • a plurality of types of organic substances were mixed with the composite magnetic particles 30 used in the compact of the sample Q of Example 1 while changing the addition amount.
  • JIS test piece-shaped molded bodies and ring-shaped molded bodies of Samples 1 to 26 were produced from the obtained mixed powder. Thereafter, the obtained molded body was heat-treated at a temperature condition higher than the glass transition temperature of the added organic matter.
  • the strength of the molded product can be further improved within a range of 10% or less by applying a lubricant to the inner wall of the mold during pressure molding.
  • the strength of the molded body can be further improved within a range of 10% or less. .
  • the strength of the molded body can be further improved by combining both of these.
  • the present invention is used, for example, for the manufacture of a motor core, an electromagnetic valve, a rear tuttle, or an electromagnetic part in general produced by press-molding soft magnetic powder.

Abstract

 軟磁性材料は、圧粉成形体の作製に用いられ、ビッカース硬さHVが800未満である複数の鉄粒子(10)を備える。好ましくは、その鉄粒子(10)のビッカース硬さHVが700以下である。このような構成により、高い強度を有する圧粉成形体が得られる。

Description

軟磁性材料および圧粉成形体の製造方法
技術分野
[0001] この発明は、一般的には、軟磁性材料および圧粉成形体の製造方法に関し、より 特定的には、複数の鉄粒子を備える軟磁性材料および圧粉成形体の製造方法に関 する。
背景技術
[0002] 近年、電磁弁やモーターなどの製品において、広域な周波数で優れた磁気的特性 を示す圧粉磁心が電磁鋼板材に変わって利用されつつある。このような圧粉磁心お よびその製造方法に関して、たとえば、特開 2002— 246219号公報に開示がされて いる (特許文献 1)。特許文献 1に開示された圧粉磁心の製造方法によれば、まず、リ ン酸被膜処理アトマイズ鉄粉に所定量のポリフエ-レンサルファイド (PPS榭脂)を混 合し、これを加圧成形する。得られた成形体を空気中において温度 320°Cで 1時間 加熱し、さらに温度 240°Cで 1時間加熱する。その後、冷却することによって圧粉磁 心を作製する。また、このような磁性部品のほか、機械部品などを製造するための構 造材料として、鉄粉を加圧成形した圧粉成形体を用いる場合がある。
特許文献 1 :特開 2002— 246219号公報
発明の開示
発明が解決しょうとする課題
[0003] これら圧粉成形体の製造には、通常、各種アトマイズ法や還元法により精製された 鉄粒子が用いられる。アトマイズ法では、溶解された鉄を高圧のガスまたは水を利用 して噴霧し、これにより得られた粉末状の鉄に粉砕や分級などの工程を実施して、鉄 粒子を得る。また、還元法では、鉄鉱石やミルスケールをコータスなどで還元し、その あと水素雰囲気中で熱処理を実施して、鉄粒子を得る。したがって、これらの方法に より精製される鉄粒子は、その製造工程において急速に冷却される過程を経ることと なる。この場合、鉄粒子の内部には極めて大きい歪みや応力が加わり、精製される鉄 粒子の硬度が増加する。このため、現状、圧粉成形体の製造には、ビッカース硬さ H V力 ¾00から 1100ほどの範囲の鉄粒子が用いられて!/、る。
[0004] 一方、圧粉成形体は、加圧成形の工程にお ヽて鉄粒子が塑性変形し、鉄粒子同 士が互いに絡み合うことによって強度を発現する。焼結体の場合、焼結時における 粒子間の金属結合や拡散によってその強度が比較的大きく向上するが、圧粉成形 体 (特に圧粉磁心)の場合、熱処理を実施しても、その熱処理温度が粒子間で焼結 がほとんど起こらな 、程度の低 、温度であるため、粒子同士の結合力が十分でな!、 。このため、強度が大きい圧粉成形体を作製するためには、加圧成形工程において 、鉄粒子同士をより複雑に絡み合わせることが必要となってくる。
[0005] しかし、上述の通り、圧粉成形体の作製に用いられる鉄粒子の硬度は高い。硬度が 高いと、加圧成形時に鉄粒子の塑性変形が進みにくくなり、鉄粒子同士が絡み合い に《なる。このため、十分な強度を得ることができず、圧粉成形体の表面から鉄粒子 が脱落したり、切削加工等の加工を行なうと成形体が破損するという問題が発生する
[0006] そこでこの発明の目的は、上記の課題を解決することであり、高い強度を有する圧 粉成形体を実現する軟磁性材料および圧粉成形体の製造方法を提供することであ る。
課題を解決するための手段
[0007] 鉄粒子が加圧成形された圧粉成形体の強度を向上させた!/ヽ場合、圧粉成形体を 構成する鉄粒子そのものの硬度や強度を向上させるという考え方がある。しかし、発 明者等が鋭意検討した結果、圧粉成形体の強度を向上させるためには、鉄粒子の 硬度を逆に低下させた方が有効であることを見出した。そして、このことから以下に説 明する本発明を完成させるに至った。
[0008] この発明に従った軟磁性材料は、圧粉成形体の作製に用いられる軟磁性材料であ る。軟磁性材料は、ビッカース硬さ HVが 800未満である複数の鉄粒子を備える。な お、ここで言う鉄粒子とは、 95%から 100%の純度で鉄を含む粒子をいう。
[0009] このように構成された軟磁性材料によれば、鉄粒子のビッカース硬さ HVが 800未 満であるため、圧粉成形体を作製する際の加圧成形時に鉄粒子を容易に塑性変形 させることができる。これにより、複数の鉄粒子同士が複雑に絡み合い、互いに嚙み 合った状態で接合されるため、高い強度を有する圧粉成形体を実現することができる
[0010] また好ましくは、ガス吸着法 (BET法)によって測定された鉄粒子の比表面積を aと し、レーザー散乱回折法によって測定された平均粒径力 算出した鉄粒子の見かけ の比表面積を j8とする場合、鉄粒子は、 a Z jS≥2. 5の関係を満たす。このように構 成された軟磁性材料によれば、鉄粒子の見かけの比表面積 |8に対する実際の比表 面積 αの割合が 2. 5以上に規定されているため、鉄粒子の表面は大きい凹凸形状 に形成されている。これにより、圧粉成形体を作製する際の加圧成形時に、複数の鉄 粒子同士をより複雑に絡み合わせることができるため、圧粉成形体の強度をさらに向 上させることができる。
[0011] また好ましくは、鉄粒子のビッカース硬さ HVが 700以下である。鉄粒子は、 α Z j8 ≥3. 0の関係をさらに満たす。このように構成された軟磁性材料によれば、上述の効 果をより効果的に奏することができる。
[0012] また、軟磁性材料は、鉄粒子の表面を取り囲む絶縁被膜をさらに備える。このように 構成された軟磁性材料では、隣り合う鉄粒子間に絶縁被膜が介在するため、圧粉成 形体にされた場合に鉄粒子間の金属結合が著しく阻害される。また、圧粉成形体を 作製する際の加圧成形時に、絶縁被膜が有する潤滑性によって鉄粒子同士を複雑 に嚙み合わせることができない。これらの理由から、高い強度を有する圧粉成形体を 得ることが困難となる。そこで、このような絶縁被膜を備えた軟磁性材料に、本発明を 有効に利用することができる。
[0013] また好ましくは、絶縁被膜の平均厚みは、 5nm以上 lOOnm以下である。このように 構成された軟磁性材料によれば、絶縁被膜の平均厚みが 5nm以上であるため、被 膜中を流れるトンネル電流を抑制し、このトンネル電流に起因する渦電流損の増大を 抑えることができる。また、絶縁被膜の平均厚みが lOOnm以下であるため、軟磁性 材料を用いて圧粉成形体を作製した場合に、鉄粒子間の距離が大きくなりすぎると いうことがない。これにより、鉄粒子間に反磁界が発生することを防止し、反磁界の発 生に起因したヒステリシス損の増大を抑制できる。また、軟磁性材料に占める非磁性 層の体積比率を抑え、飽和磁束密度が低下することを抑制できる。 [0014] この発明に従った圧粉成形体の製造方法は、上述の 、ずれかに記載の軟磁性材 料を用いた圧粉成形体の製造方法である。圧粉成形体の製造方法は、複数の鉄粒 子を金型に投入する工程と、複数の鉄粒子を加圧成形して成形体を形成する工程と を備える。このように構成された圧粉成形体の製造方法によれば、複数の鉄粒子同 士を複雑に絡み合わせた状態で成形体を形成できるため、圧粉成形体の強度を向 上させることができる。
[0015] また好ましくは、複数の鉄粒子を金型に投入する工程は、熱可塑性榭脂および非 熱可塑性榭脂の少なくともいずれか一方を含む第 1の有機物を、成形体に対する第 1の有機物の割合が 0. 001質量%以上 0. 2質量%以下となるように複数の鉄粒子 に添加する工程を含む。このように構成された圧粉成形体の製造方法によれば、第 1 の有機物は、複数の鉄粒子間に介在した状態で圧粉成形体に設けられ、複数の鉄 粒子間を強固に接合する。これにより、圧粉成形体の強度をさらに向上させることが できる。
[0016] この際、第 1の有機物の割合が 0. 001質量%以上で、上述の効果を十分に得るこ とができる。また、第 1の有機物の割合が 0. 2質量%以下で、圧粉成形体に占める非 磁性層の体積比率を抑え、飽和磁束密度が低下することを抑制できる。
[0017] また好ましくは、複数の鉄粒子を金型に投入する工程は、高級脂肪酸系潤滑剤を 含む第 2の有機物を、成形体に対する第 2の有機物の割合が 0. 001質量%以上 0. 2質量%以下となるように複数の鉄粒子に添加する工程を含む。このように構成され た圧粉成形体の製造方法によれば、第 2の有機物は、複数の鉄粒子を加圧成形す る工程において、隣り合う鉄粒子間に介在し、鉄粒子同士が激しく擦れ合うことを防 止する。これにより、鉄粒子の内部に歪みが導入されて圧粉成形体のヒステリシス損 が増大することを抑制できる。また、鉄粒子の表面に絶縁被膜が形成されている場合 は、加圧成形時にその絶縁被膜が破壊されることを防止する。これにより、圧粉成形 体の渦電流損の低減を図ることができる。
[0018] この際、第 2の有機物の割合が 0. 001質量%以上で、上述の効果を十分に得るこ とができる。また、第 2の有機物の割合が 0. 2質量%以下で、圧粉成形体に占める非 磁性層の体積比率を抑え、飽和磁束密度が低下することを抑制できる。カロえて、潤 滑性の大きい第 2の有機物に起因して、圧粉成形体の強度が低下することを防止で きる。
[0019] また好ましくは、複数の鉄粒子を金型に投入する工程は、金型の内壁に潤滑剤を 塗布する工程を含む。このように構成された圧粉成形体の製造方法によれば、加圧 成形時に、鉄粒子と金型との間において良好な潤滑性を得ることができる。これによ り、圧粉成形体の密度を大きくするとともに、強度をさらに向上させることができる。
[0020] また好ましくは、複数の鉄粒子を金型に投入する工程は、金型の内壁および複数 の鉄粒子の少なくともいずれか一方を 40°C以上の温度に加熱する工程を含む。この ように構成された圧粉成形体の製造方法によれば、鉄粒子の内部に存在する歪みを 低減させ、圧粉成形体のヒステリシス損を低減させることができる。また、複数の鉄粒 子に添加する第 1の有機物が軟化され、第 1の有機物を複数の鉄粒子間に十分に行 き渡らせることができる。これにより、圧粉成形体の密度を大きくするとともに、強度を さらに向上させることができる。
発明の効果
[0021] 以上説明したように、この発明に従えば、高い強度を有する圧粉成形体を実現する 軟磁性材料および圧粉成形体の製造方法を提供することができる。
図面の簡単な説明
[0022] [図 1]この発明の実施の形態における軟磁性材料を示す模式図である。
[図 2]図 1中に示す鉄粒子のビッカース硬さ HVの測定方法を説明するための説明図 である。
[図 3]図 1中の 2点鎖線 IIIに囲まれた範囲を拡大して示す模式図である。
[図 4]図 1中に示す軟磁性材料を用いて作製された圧粉磁心の表面を示す模式図で ある。
[図 5]図 1中に示す軟磁性材料を製造するためのアトマイズ装置を示す断面図である 圆 6]図 4中に示す圧粉磁心を製造する際の加圧成形の第 1工程を示す断面図であ る。
圆 7]図 4中に示す圧粉磁心を製造する際の加圧成形の第 2工程を示す断面図であ る。
[図 8]図 4中に示す圧粉磁心を製造する際の加圧成形の第 3工程を示す断面図であ る。
符号の説明
[0023] 10 鉄粒子、 16 成形体、 20 絶縁被膜、 30 複合磁性粒子、 40 有機物、 71 金型装置、 73 内壁、 91 金型潤滑剤。
発明を実施するための最良の形態
[0024] この発明の実施の形態について、図面を参照して説明する。
[0025] 図 1を参照して、軟磁性材料は、ビッカース硬さ HVが 800未満である複数の鉄粒 子 10を備える。鉄粒子 10のビッカース硬さ HVは、 700以下であることがさらに好まし V、。鉄粒子 10のビッカース硬さ HVは、 JIS規格 Z2244に規定された微小ビッカース 硬さ試験法により測定され、たとえば以下に説明する方法によって求められる。なお 、本明細書において、複数の鉄粒子 10の集合体を鉄粉末と呼ぶ。
[0026] 図 2を参照して、図 1中に示す鉄粒子のビッカース硬さ HVの測定方法を説明する と、まず、液状または粉末状の樹脂に鉄粉末を混合し、温度を上げて (または化学反 応により)榭脂を溶かす。その後、榭脂を固め、鉄粉末を封入した榭脂 61を作製する 。次に、榭脂 61の表面 61aをラッピング処理し、鉄粒子 10に硬さ試験に用いる平面 部分 10aを形成する。平面部分 10aに試験用の正四角すい圧子 63をあて、試験荷 重 0. 5Nで鉄粒子 10に圧痕 64を形成する。その圧痕 64の対角線の長さを測定し、 ビッカース硬さ HVを算出する。
[0027] また、鉄粒子 10の比表面積を aとし、鉄粒子 10の見かけの比表面積を /3とする場 合、鉄粒子 10は、 a Z jS≥2. 5の関係を満たす。鉄粒子 10は、 a Z jS≥3. 0の関 係をさらに満たすことが好ましい。鉄粒子 10の比表面積 aおよび見かけの比表面積 βは、以下に説明する方法によって求めることができる。
[0028] 鉄粒子 10の比表面積 atは、ガス吸着法(BET法: Brunauer, Emmettおよび Teller により導かれた BET式を用いる比表面積測定方法)により測定する。つまり、鉄粒子 10の表面に分子の大きさの判っているガス(たとえば、窒素ガスやクリプトンガス)を 吸着させ、そのガスが吸着した量力も鉄粒子 10の比表面積 a (m2Zg)を求める。こ の方法によれば、鉄粒子 10の表面に沿って吸着したガス量に基き比表面積を求め るため、鉄粒子 10の実際の比表面積 aを測定することができる。
[0029] 鉄粒子 10の見かけの比表面積 βは、レーザー散乱回折法によって測定された鉄 粒子 10の平均粒径 Dを用いて算出する。まず、複数の鉄粒子 10からなる鉄粉末か ら数十 gの試料を取り出す。レーザー散乱回折法を用いてその試料の粒度分布を測 定し、得られた粒度分布のヒストグラムカゝら平均粒径 D (m)を求める。ここで言う平均 粒径 Dは、ヒストグラム中、粒径の小さいほうからの質量の和が総質量の 50%に達す る粒子の粒径、つまり 50%粒径 Dである。
[0030] 鉄粒子 10の真密度が k (g)である場合、
鉄粒子 10の 1個当たりの表面積: 4 X π X (D/2) 2
鉄粒子 10の 1個当たりの体積: 4Ζ3 Χ π X (D/2) 3
鉄粒子 10の lg当たりの見かけの表面積 j8:
(4 X π X (D/2) 2) / (4/3 X π X (D/2) 3 X k)
が成り立ち、上式から鉄粒子 10の見かけの比表面積 |8 (m2/g)を算出する。
[0031] このようにして測定された比表面積 exは、輪郭のゆがみや表面の凹凸形状を含ん だ鉄粒子 10の実際の比表面積値であり、見かけの比表面積 j8は、鉄粒子 10を平均 粒径 Dの真球と仮定した場合の比表面積値である。このため、本実施の形態では、 α / β≥2. 5の関係を満たす鉄粒子 10、言い換えれば、輪郭のゆがみや表面の凹 凸形状がより大きい鉄粒子 10が用いられる。
[0032] 図 1および図 3を参照して、 a Z jS≥2. 5の関係を満たす鉄粒子 10は、ゆがんだ 輪郭を有するいびつな形状に形成されている。さらに、鉄粒子 10の表面には、細か Vヽ凹凸形状が存在し、大き 、表面粗さで形成されて!、る。
[0033] 図 4を参照して、図 1中に示す軟磁性材料を用いて作製された圧粉磁心は、鉄粒 子 10と、鉄粒子 10の表面を取り囲む絶縁被膜 20とから構成された複数の複合磁性 粒子 30を備える。複数の複合磁性粒子 30の間には、有機物 40が介在している。複 数の複合磁性粒子 30の各々は、複合磁性粒子 30が有する凹凸の嚙み合わせによ つて接合されて 、たり、有機物 40によって接合されて 、る。
[0034] 鉄粒子 10が有する輪郭がいびつで表面粗さの大きい形状は、絶縁被膜 20の表面 の転写されるため、複合磁性粒子 30も鉄粒子 10と同様に、輪郭がいびつで表面粗 さの大きい形状に形成される。このため、複数の複合磁性粒子 30の各々は、複雑に 絡み合い、互いに嚙み合った状態で接合されており、圧粉磁心の強度の向上が図ら れている。
[0035] 続いて、この発明の実施の形態における軟磁性材料を用いて、図 4中に示す圧粉 磁心を製造する方法について説明を行なう。
[0036] 図 5を参照して、まず、鉄粒子の原料となる鉄塊を真空誘導炉 51内に投入し、その 真空誘導炉 51に高周波電源を導入する。これにより、真空誘導炉 51内の鉄塊を溶 解して溶湯 56とする。噴射ノズル 54に向けて高圧水 57を吹き付けるとともに、溶湯 5 6を溶湯導入管 53に供給する。高圧水 57が吹き付けられることによって、溶湯 56は 噴霧され、その後、噴霧塔 52内で急冷されることによって、複数の鉄粒子 10からなる 鉄粉末が形成される。
[0037] この際、噴霧塔 52内での冷却速度を遅めに設定したり、鉄粒子 10中に含まれる硬 度を向上させる原因となる元素 (特に、窒素、炭素、リンおよびマンガン)の割合を低 減させることによって、ビッカース硬さ HVが 800未満の鉄粒子 10を得ることができる 。また、上述のアトマイズ工程の後に、水素中または不活性ガス雰囲気中で、 500°C 以上の温度条件の熱処理を鉄粉末に実施しても良い。この場合、鉄粒子 10の内部 に存在する歪みや応力を開放し、鉄粒子 10の硬度を低減させることができる。
[0038] また、上述のアトマイズ工程時に、水噴出圧力や水温等の条件を適当に設定する ことによって、鉄粒子 10を輪郭がいびつで表面粗さの大きい形状に形成することが できる。また、鉄粒子 10の粒径を大きくするほど、鉄粒子 10の表面に形成される凹 凸形状を大きくすることができる。また、ガスアトマイズ法と比較して、水アトマイズ法 の方が、鉄粒子 10の表面に形成される凹凸形状を大きくすることができる。
[0039] 次に、得られた鉄粉末にリン酸処理を施すことによって、鉄粒子 10の表面に絶縁被 膜 20を形成し、複合磁性粒子 30を作製する。この絶縁被膜 20は、鉄粒子 10間の絶 縁層として機能する。鉄粒子 10を絶縁被膜 20で覆うことによって、圧粉磁心の電気 抵抗率 Pを大きくすることができる。これにより、鉄粒子 10間に渦電流が流れるのを 抑制して、渦電流に起因する圧粉磁心の鉄損を低減させることができる。 [0040] なお、絶縁被膜 20は、酸ィ匕物を含んで ヽても良!ヽ。この酸化物を含有する絶縁被 膜 20としては、リンと鉄とを含むリン酸鉄の他、リン酸マンガン、リン酸亜鉛、リン酸力 ルシゥム、リン酸アルミニウム、酸化シリコン、酸化チタン、酸化アルミニウムまたは酸 化ジルコニウムなどの酸ィ匕物絶縁体を使用することができる。絶縁被膜 20は、図中 に示すように 1層に形成しても良 、し、多層に形成しても良 、。
[0041] また、絶縁被膜 20の平均厚みは、 5nm以上 lOOnm以下とすることが好ましい。こ こで言う平均厚みとは、糸且成分析(TEM— EDX: transmission electron microscope energy dispersive X-ray spectroscopy)によって得りれる! ¼糸且成と、 結合プフス マ質量分 in" (ICP— Ms : inductively coupled plasma-mass spectrometry)【こ って 1守 られる元素量とを鑑みて相当厚さを導出し、さら〖こ、 TEM写真により直接、被膜を観 察し、先に導出された相当厚さのオーダーが適正な値であることを確認して決定され るものをいう。
[0042] 次に、有機物 40として、熱可塑性榭脂および非熱可塑性榭脂からなる強度発現用 の第 1の有機物と、高級脂肪酸系潤滑剤からなる潤滑用の第 2の有機物とを準備す る。第 1の有機物としては、たとえば、熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑 性ポリアミドイミド、ポリフエ-レンサルファイド、ポリアミドイミド、ポリエーテルスルホン 、ポリエーテルイミドまたはポリエーテルエーテルケトンなどの熱可塑性榭脂や、高分 子量ポリエチレン、全芳香族ポリエステルまたは全芳香族ポリイミドなどの非熱可塑 性榭脂を用いることができる。なお、高分子量ポリエチレンとは、分子量が 10万以上 のポリエチレンをいう。第 2の有機物としては、ステアリン酸亜鉛、ステアリン酸リチウム 、ステアリン酸カルシウム、ステアリン酸マグネシウム、パルミチン酸リチウム、パルミチ ン酸カルシウム、ォレイン酸リチウムおよびォレイン酸カルシウムなどの高級脂肪酸系 を用いることができる。
[0043] V型混合機を用いて、複合磁性粒子 30と有機物 40とを混合する。この際、後のェ 程で作製される成形体に対する上記の第 1および第 2の有機物の割合が、それぞれ 0. 001質量%以上 0. 2質量%以下となるように混合する割合を調整する。なお、有 機物 40として、第 1および第 2の有機物の両方を用いても良いし、いずれか一方を用 いても良い。また、混合方法に特に制限はなぐたとえばメカ-カルァロイング法、振 動ボールミル、遊星ボールミル、メカノフュージョン、共沈法、化学気相蒸着法 (CVD 法)、物理気相蒸着法 (PVD法)、めっき法、スパッタリング法、蒸着法またはゾルー ゲル法などの 、ずれを使用することも可能である。
[0044] 次に、得られた混合粉末に対して加圧成形工程を実施する。図 6を参照して、まず 、金型装置 71のバンドヒータ 77に通電し、ダイ 72の内壁 73を 40°C以上の温度まで 加熱する。また、内壁 73の加熱に変えて、先の工程で得られた混合粉末を加熱して も良いし、両方を加熱しても良い。さらに、これらを 80°C以上 200°C以下の温度まで 加熱することが好ましい。
[0045] 次に、内壁 73に囲まれた空間 74の上方に潤滑剤供給部 78を位置決めする。エア 一を用いて、潤滑剤供給部 78の噴射ノズル力も空間 74に向けて金型潤滑剤 91を吹 き付ける。これにより、金型装置 71の内壁 73および底面 76に金型潤滑剤 91を付着 させる。図中には、粉末状の金型潤滑剤 91を模式的に示したが、液体状の金型潤 滑剤 91であっても良ぐ付着させる方法は、湿式および乾式のいずれであっても良 い。金型潤滑剤 91としては、たとえば、金属石鹼、ポリエチレン、アミド系ワックス、ポ リアミド、ポリプロピレン、アクリル酸エステル重合体、メタクリル酸エステル重合体、フ ッ素系榭脂および層状潤滑剤などを用いることができる。また、これらの材料カゝら 2以 上の材料を適当に選択し、混合したものを用いても良 、。
[0046] 図 7を参照して、空間 74の上方にシユー 79を位置決めし、シユー 79から空間 74に 向けて、先の工程で得られた混合粉末 15を供給する。図 8を参照して、空間 74の上 方に上パンチ 80を位置決めする。上パンチ 80を下方に移動させ、たとえば、 700M Paから 1500MPaまでの圧力で混合粉末 15を加圧成形する。この際、加圧成形す る雰囲気は、不活性ガス雰囲気または減圧雰囲気とすることが好ましい。この場合、 大気中の酸素によって混合粉末が酸化されるのを抑制できる。
[0047] この加圧成形の際、有機物 40は、主にその中に含まれる第 2の有機物の働きにより 、隣り合う複合磁性粒子 30間の潤滑剤として機能する。これにより、加圧成形時に鉄 粒子 10に歪みが導入されたり、絶縁被膜 20同士が強く擦れ合って破壊されることを 抑制する。
[0048] その後、加圧成形により得られた成形体 16を空間 74から抜き出す。次に成形体 16 を、有機物 40のガラス転移温度を超え、有機物 40の熱分解温度以下の温度で熱処 理する。これにより、有機物 40が熱分解されるのを抑制しつつ、有機物 40を複合磁 性粒子 30間に入り込ませることができる。これにより、主に有機物 40に含まれる第 1 の有機物の働きによって、複合磁性粒子 30同士が強固に接合され、成形体 16の強 度を向上させることができる。また別に、熱処理の実施により、加圧成形時に成形体 1 6の内部に発生した歪みや転位を取り除くことができる。
[0049] 最後に、成形体 16に押出し力卩ェゃ切削加工など適当な力卩ェを施すことによって、 図 1中に示す圧粉磁心が完成する。
[0050] このように構成された軟磁性材料および圧粉磁心の製造方法によれば、鉄粒子 10 としてビッカース硬さ HVが 800未満の硬度の小さいものを使用しているため、加圧 成形時に鉄粒子 10が容易に塑性変形する。このため、複合磁性粒子 30同士が、複 雑に絡み合った状態に接合され、互いの結合力が大きくなる。これにより、加圧成形 によって作製される成形体 16の強度を向上させることができ、たとえば成形体 16に 切削加工を実施した場合にも欠損等を生じさせることなく加工を行なうことができる。
[0051] なお、このように作製した圧粉磁心を、たとえば、チョークコイル、スイッチング電源 素子および磁気ヘッドなどの電子部品、各種モーター部品、自動車用ソレノイド、各 種磁気センサならびに各種電磁弁などの製品として利用することができる。また、本 実施の形態では、圧粉磁心を作製したが、このような磁性部品に限定されず、機械 部品などを含んだ一般的な圧粉成形体を作製することが可能である。
実施例
[0052] 以下に説明する実施例によって、本発明による軟磁性材料および圧粉成形体の製 造方法の評価を行なった。
[0053] (実施例 1)
ビッカース硬さ HVを測定した複数種の鉄粉末を準備し、さらに、実施の形態に記 載の方法に従って、それぞれの鉄粉末を構成する鉄粒子 10の比表面積 ocおよび見 かけの比表面積 j8を測定した。この際、ビッカース硬さの測定には、マイクロピッカー ス硬度計を用い、試験荷重を 0. 5Nとした。また、ガス吸着法による比表面積 αの測 定には、クリプトンガスを用いた。 [0054] 次に、リン酸鉄溶液を用いて、一部の鉄粉末にボンデ処理と呼ばれる湿式被覆法 を実施し、鉄粒子 10の表面に絶縁被膜 20としてのリン酸鉄被膜を形成した複合磁 性粒子 30を作製した。この際、溶液の濃度を変化させることによって、絶縁被膜 20 の厚みを調整した。
[0055] 次に、得られた複合磁性粒子 30および絶縁被膜 20を設けなカゝつた鉄粉末を、そ れぞれ圧力 1275MPa ( = 13tonZcm2)の圧力で加圧成形し、サンプル Aから Vの 成形体を形成した。この際、成形体の密度を 7. 5gZcm3に設定した。また、成形体 の形状は、 JIS規格の抗折試験に準じた 20mmスパンの JIS試験片と同一のものとし た。以上の工程により得られた成形体に対して、 JIS規格に準じた抗折試験を実施し 、抗折強度を測定した。測定された抗折強度の値を、各サンプルの成形体を構成す る鉄粒子 10および絶縁被膜 20のデータとともに表 1に示す。
[0056] [表 1]
サンフ'ル 鉄粒子のピツカ-ス 絶緣被膜 絶縁被膜 抗折強度 名 硬さ HV の種類 の厚み(run) (MPa)
A 1030 2.82 無し 56
B 940 2.95 無し 65 比較例 C 880 4.53 無し 114
D 850 3.82 無し 105
E 830 2.57 無し 86
F 780 2.92 無し 149
G 730 4.28 無し 159
H 740 3.08 無し 150 実施例
I 760 2.43 無し 132
J 730 2.25 無し 130 κ 680 2.83 % Itし 164 し 1000 2.82 リン酸鉄 25 38
Μ 960 2.95 リン酸鉄 27 44 比較例 Ν 850 4.53 リン酸鉄 21 76
0 830 3.82 'Jン酸鉄 30 72
Ρ 840 2.57 【Jン酸鉄 26 57
0 770 2.81 リン酸鉄 26 98
R 750 4.28 リン酸鉄 20 113
S 740 3.12 リン酸鉄 22 107 実施例
τ 750 2.43 リン酸鉄 28 90 υ 720 2.25 リン酸鉄 32 86
V 670 2.83 リン酸鉄 28 118
[0057] 表 1を参照して分力るように、絶縁被膜 20の有無にかかわらず、鉄粒子 10のピツカ ース硬さ HVを 800未満としたサンプルにお 、て、高 、抗折強度を得ることができた。 また、ビッカース硬さ HVの値が同じであっても、さらに aZjSの値を 2.5以上とした サンプルでは、より高 、抗折強度を得ることができた。
[0058] (実施例 2)
実施例 1のサンプル Fの成形体に用いた鉄粉末に、複数種の絶縁被膜 20をその厚 みを変化させながら形成し、複合磁性粒子 30を作製した。次に、実施例 1と同様の 方法により、その複合磁性粒子 30からサンプル 1から 20の JIS試験片状の成形体を 作製した。また別に、同じ複合磁性粒子 30を用いて、サンプル 1から 20のリング状の 成形体も作製した。 [0059] JIS試験片状の成形体に対しては、実施例 1と同様に抗折試験を実施し、それぞれ の成形体の抗折強度を求めた。また、リング状の成形体に対しては、最大値 1T (テス ラ)となる磁場を印加し、そのときの渦電流損係数を測定した。測定により得られた抗 折強度および渦電流損係数の値を、各サンプルの成形体を構成する鉄粒子 10およ び絶縁被膜 20のデータとともに表 2に示す。なお、表中に示す絶縁被膜第 1層、第 2 層および第 3層は、それぞれ絶縁被膜 20が 1層構造、 2層構造および 3層構造で形 成されたことを意味して 、る。
[0060] [表 2]
Figure imgf000017_0001
[0061] 表 2を参照して、絶縁被膜 20の厚みが 5nmより小さい場合、絶縁被膜 20を設ける ことによる渦電流損係数の低減の効果を十分に得ることができな力つた。また、絶縁 被膜 20の厚みが lOOnmを超える場合、渦電流損係数は低減したものの、抗折強度 が若干低下した。これは、絶縁被膜 20の厚みが大きすぎて鉄粒子 10の有する凹凸 形状が絶縁被膜 20の表面に転写されず、複合磁性粒子 30同士が十分に嚙み合わ な力つたためと考えられる。これに対して、厚みが 5nm以上 lOOnm以下の絶縁被膜 20を設けたサンプルでは、優れた強度と小さい渦電流損係数との両立を図ることが できた。
[0062] (実施例 3)
実施例 1のサンプル Qの成形体に用いた複合磁性粒子 30に、複数種の有機物を その添加量を変化させながら混合した。実施例 1と同様の方法により、得られた混合 粉末からサンプル 1から 26の JIS試験片状の成形体とリング状の成形体とを作製した 。その後、得られた成形体に対して、添加した有機物のガラス転位温度以上の温度 条件の熱処理を実施した。
[0063] 実施例 2と同様に、 JIS試験片状の成形体から抗折強度を測定し、リング状の成形 体力も渦電流損係数を測定した。測定により得られた抗折強度および渦電流損係数 の値を、各サンプルの成形体に添カ卩した有機物のデータとともに表 3に示す。なお、 表中に示す添加榭脂は、実施の形態に記載の強度発現用の第 1の有機物に相当し 、表中に示す潤滑剤は、実施の形態に記載の潤滑用の第 2の有機物に相当する。
[0064] [表 3]
Figure imgf000019_0001
[0065] 表 3を参照して分力るように、適当な量の添加榭脂を混合することによって、抗折強 度が向上し、適当な量の潤滑剤を混合することによって、渦電流損係数が低下した。 このことから、添加榭脂および潤滑剤を適宜組み合わせて混合することによって、高 強度と優れた磁気的特性との両方を達成できることを確認できた。
[0066] なお、加圧成形時において、金型の内壁に潤滑剤を塗布することにより、成形体の 強度をさらに 10%以下の範囲で向上させることが可能である。また、金型の内壁や 金型に供給する粉末を 80°C以上 200°C以下の温度にまで加熱すると、同様に成形 体の強度をさらに 10%以下の範囲で向上させることが可能である。また、これら双方 を組み合わせて実施することにより、成形体の強度をさらに向上させることができる。
[0067] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。
産業上の利用可能性
[0068] この発明は、たとえば、軟磁性粉末が加圧成形されて作製されるモーターコア、電 磁弁、リアタトルもしくは電磁部品一般の製造に利用される。

Claims

請求の範囲
[1] 圧粉成形体の作製に用いられる軟磁性材料であって、
ビッカース硬さ HVが 800未満である複数の鉄粒子(10)を備える、軟磁性材料。
[2] 前記鉄粒子(10)のビッカース硬さ HVが 700以下である、請求項 1に記載の軟磁 性材料。
[3] ガス吸着法 (BET法)によって測定された前記鉄粒子(10)の比表面積を ocとし、レ 一ザ一散乱回折法によって測定された平均粒径力 算出した前記鉄粒子(10)の見 かけの比表面積を j8とする場合、前記鉄粒子(10)は、 α Ζ ι8≥2. 5の関係を満た す、請求項 1に記載の軟磁性材料。
[4] 前記鉄粒子(10)は、 a Z jS≥3. 0の関係をさらに満たす、請求項 3に記載の軟磁 性材料。
[5] 前記鉄粒子(10)の表面を取り囲む絶縁被膜 (20)をさらに備える、請求項 1に記載 の軟磁性材料。
[6] 前記絶縁被膜 (20)の平均厚みは、 5nm以上 lOOnm以下である、請求項 5に記載 の軟磁性材料。
[7] 請求項 1に記載の軟磁性材料を用いた圧粉成形体の製造方法であって、
前記複数の鉄粒子(10)を金型(71)に投入する工程と、
前記複数の鉄粒子(10)を加圧成形して成形体(16)を形成する工程とを備える、 圧粉成形体の製造方法。
[8] 前記複数の鉄粒子(10)を金型(71)に投入する工程は、熱可塑性榭脂および非 熱可塑性榭脂の少なくとも ヽずれか一方を含む第 1の有機物 (40)を、前記成形体( 16)に対する前記第 1の有機物 (40)の割合が 0. 001質量%以上 0. 2質量%以下と なるように前記複数の鉄粒子(10)に添加する工程を含む、請求項 7に記載の圧粉 成形体の製造方法。
[9] 前記複数の鉄粒子(10)を金型 (71)に投入する工程は、高級脂肪酸系潤滑剤を 含む第 2の有機物 (40)を、前記成形体(16)に対する前記第 2の有機物 (40)の割 合が 0. 001質量%以上 0. 2質量%以下となるように前記複数の鉄粒子(10)に添カロ する工程を含む、請求項 7に記載の圧粉成形体の製造方法。 前記複数の鉄粒子(10)を金型(71)に投入する工程は、前記金型(71)の内壁(7 3)に潤滑剤(91)を塗布する工程を含む、請求項 7に記載の圧粉成形体の製造方法 前記複数の鉄粒子(10)を金型(71)に投入する工程は、前記金型(71)の内壁(7 3)および前記複数の鉄粒子(10)の少なくともいずれか一方を 40°C以上の温度にカロ 熱する工程を含む、請求項 7に記載の圧粉成形体の製造方法。
PCT/JP2005/005890 2005-03-29 2005-03-29 軟磁性材料および圧粉成形体の製造方法 WO2006106566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/005890 WO2006106566A1 (ja) 2005-03-29 2005-03-29 軟磁性材料および圧粉成形体の製造方法
CNA2005800493667A CN101151686A (zh) 2005-03-29 2005-03-29 软磁性材料和制造压粉体的方法
US11/909,962 US7641745B2 (en) 2005-03-29 2005-03-29 Soft magnetic material and method of producing powder compact
EP05727280A EP1868213A4 (en) 2005-03-29 2005-03-29 SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING A GREEN BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/005890 WO2006106566A1 (ja) 2005-03-29 2005-03-29 軟磁性材料および圧粉成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2006106566A1 true WO2006106566A1 (ja) 2006-10-12

Family

ID=37073135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005890 WO2006106566A1 (ja) 2005-03-29 2005-03-29 軟磁性材料および圧粉成形体の製造方法

Country Status (4)

Country Link
US (1) US7641745B2 (ja)
EP (1) EP1868213A4 (ja)
CN (1) CN101151686A (ja)
WO (1) WO2006106566A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1868213A4 (en) * 2005-03-29 2011-01-26 Sumitomo Electric Industries SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING A GREEN BODY
JP5065960B2 (ja) * 2008-03-28 2012-11-07 株式会社東芝 高周波磁性材料およびその製造方法。
WO2013002841A1 (en) * 2011-06-30 2013-01-03 Persimmon Technologies Corporation Structured magnetic material
US10022789B2 (en) 2011-06-30 2018-07-17 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
JP5960476B2 (ja) * 2012-03-30 2016-08-02 株式会社ケーヒン 磁気異方性塑性加工品及びその製造方法と、それを用いた電磁装置
US10476324B2 (en) 2012-07-06 2019-11-12 Persimmon Technologies Corporation Hybrid field electric motor
US10570494B2 (en) 2013-09-30 2020-02-25 Persimmon Technologies Corporation Structures utilizing a structured magnetic material and methods for making
US9719159B2 (en) * 2014-09-24 2017-08-01 Cyntec Co., Ltd. Mixed magnetic powders and the electronic device using the same
KR102105390B1 (ko) * 2015-07-31 2020-04-28 삼성전기주식회사 자성 분말 및 이를 포함하는 코일 전자부품
CN108039275A (zh) * 2017-12-12 2018-05-15 江西中磁科技协同创新有限公司 一种软磁材料的成型模具
CN109979701B (zh) * 2019-05-17 2020-12-22 广东省材料与加工研究所 一种双层无机绝缘包覆软磁粉末及其制备方法
CN114477988B (zh) * 2022-03-28 2023-03-24 天通控股股份有限公司 一种易成型、高强度铁氧体材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245209A (ja) * 1994-03-02 1995-09-19 Tdk Corp 圧粉コアおよびその製造方法
JPH09512388A (ja) * 1994-04-25 1997-12-09 ホガナス アクチボラゲット 磁性鉄粉末の熱処理
JPH10503807A (ja) * 1994-07-18 1998-04-07 ホガナス アクチボラゲット 熱可塑性樹脂を含む鉄粉構成部分及びその製法
JP2001102207A (ja) * 1999-09-30 2001-04-13 Tdk Corp 圧粉磁心の製造方法
JP2003129104A (ja) * 2001-10-24 2003-05-08 Sanyo Special Steel Co Ltd 圧粉コア用粉末
WO2003038843A1 (fr) * 2001-10-29 2003-05-08 Sumitomo Electric Sintered Alloy, Ltd. Procede de production d'un materiau magnetique composite
JP2005129716A (ja) * 2003-10-23 2005-05-19 Sumitomo Electric Ind Ltd 圧粉磁心
JP2005146315A (ja) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc 磁心用粉末、圧粉磁心およびそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999216A (en) * 1970-07-30 1976-12-21 Eastman Kodak Company Material for magnetic transducer heads
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
JP3986043B2 (ja) 2001-02-20 2007-10-03 日立粉末冶金株式会社 圧粉磁心及びその製造方法
EP1868213A4 (en) * 2005-03-29 2011-01-26 Sumitomo Electric Industries SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING A GREEN BODY

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245209A (ja) * 1994-03-02 1995-09-19 Tdk Corp 圧粉コアおよびその製造方法
JPH09512388A (ja) * 1994-04-25 1997-12-09 ホガナス アクチボラゲット 磁性鉄粉末の熱処理
JPH10503807A (ja) * 1994-07-18 1998-04-07 ホガナス アクチボラゲット 熱可塑性樹脂を含む鉄粉構成部分及びその製法
JP2001102207A (ja) * 1999-09-30 2001-04-13 Tdk Corp 圧粉磁心の製造方法
JP2003129104A (ja) * 2001-10-24 2003-05-08 Sanyo Special Steel Co Ltd 圧粉コア用粉末
WO2003038843A1 (fr) * 2001-10-29 2003-05-08 Sumitomo Electric Sintered Alloy, Ltd. Procede de production d'un materiau magnetique composite
JP2005129716A (ja) * 2003-10-23 2005-05-19 Sumitomo Electric Ind Ltd 圧粉磁心
JP2005146315A (ja) * 2003-11-12 2005-06-09 Toyota Central Res & Dev Lab Inc 磁心用粉末、圧粉磁心およびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1868213A4 *

Also Published As

Publication number Publication date
US20080253917A1 (en) 2008-10-16
US7641745B2 (en) 2010-01-05
EP1868213A1 (en) 2007-12-19
EP1868213A4 (en) 2011-01-26
CN101151686A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2006106566A1 (ja) 軟磁性材料および圧粉成形体の製造方法
US11011305B2 (en) Powder magnetic core, and coil component
EP2060344B1 (en) Powder magnetic core and iron-base powder for powder magnetic core
KR101335820B1 (ko) 야금용 분말의 제조 방법, 압분자심의 제조 방법, 압분자심 및 코일 부품
EP1808242B1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP4904159B2 (ja) 圧粉成形体の製造方法および圧粉成形体
EP2189994B1 (en) Core for reactors, its manufacturing method, and reactor
JP4325950B2 (ja) 軟磁性材料および圧粉磁心
KR102016189B1 (ko) 압분 성형체의 성형 방법
EP1870911A1 (en) Soft magnetic material and dust core
JP5470683B2 (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
CN105405568A (zh) 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法
JP2008028162A (ja) 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
JP2014120678A (ja) 圧粉成形体、及び圧粉成形体の製造方法
JP2005286145A (ja) 軟磁性材料の製造方法、軟磁性粉末および圧粉磁心
EP1747829A1 (en) Method for producing soft magnetic material, soft magnetic powder and dust core
JP2007231330A (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
JP4305222B2 (ja) 圧粉成形体の製造方法
JP6523778B2 (ja) 圧粉磁心、及び圧粉磁心の製造方法
JP2007048902A (ja) 圧粉磁心およびその製造方法
JP2009235517A (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
JP2009228108A (ja) 冶金用粉末および冶金用粉末の製造方法
JP2006100292A (ja) 粉末磁性体コアの製造方法及びそれを用いてなる粉末磁性体コア
JP2005248273A (ja) 軟磁性材料および圧粉磁心の製造方法
JP2005015914A (ja) 複合磁性材料およびその製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11909962

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580049366.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005727280

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005727280

Country of ref document: EP