WO2006104148A1 - 磁心ならびにそれを用いた応用品 - Google Patents

磁心ならびにそれを用いた応用品 Download PDF

Info

Publication number
WO2006104148A1
WO2006104148A1 PCT/JP2006/306304 JP2006306304W WO2006104148A1 WO 2006104148 A1 WO2006104148 A1 WO 2006104148A1 JP 2006306304 W JP2006306304 W JP 2006306304W WO 2006104148 A1 WO2006104148 A1 WO 2006104148A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
magnetic
amorphous alloy
based amorphous
alloy ribbon
Prior art date
Application number
PCT/JP2006/306304
Other languages
English (en)
French (fr)
Inventor
Yuichi Ogawa
Masamu Naoe
Katsuhito Yoshizawa
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to US11/909,951 priority Critical patent/US8021498B2/en
Publication of WO2006104148A1 publication Critical patent/WO2006104148A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Definitions

  • the present invention is a magnetic core using an Fe-based amorphous alloy ribbon whose main purpose is to reduce noise, and can be used in applications such as motors, transformers, choke coils, generators, and sensors.
  • Fe-based amorphous alloy ribbons have attracted attention as magnetic core materials for transformers, motors, choke coils, sensors, etc. due to their excellent soft magnetic properties, particularly low iron loss. Has been put to practical use.
  • FeSiB amorphous alloy ribbons with relatively high saturation flux density B and excellent thermal stability among Fe-based amorphous alloy ribbons are widely used.
  • Patent Document 1 JP-A-5-140703 ((0008) to (0010), FIG. 1)
  • Patent Document 2 JP 2002-285304 A ((0010) to (0016), Table 1)
  • the conventional high-B Fe-based amorphous alloy ribbon has a large saturation magnetostriction.
  • an Fe-based amorphous material that simultaneously satisfies the requirements for small size and low noise by high B.
  • the purpose was to provide a magnetic core using a high-quality alloy ribbon and an applied product using the same.
  • the squareness of the Fe-based amorphous alloy ribbon is closely related to the noise when the Fe-based amorphous alloy ribbon is used as a magnetic core, and the alloy and By optimizing the composition near the surface, segregation, etc., and improving the surface condition, the squareness is further enhanced, and a magnetic core using an Fe-based amorphous alloy ribbon that has achieved an unprecedented level of noise reduction is obtained. As a result, the present invention has been found.
  • the magnetic core of the present invention is a magnetic core using a Fe-based amorphous alloy ribbon, the saturation magnetic flux density B of the Fe-based amorphous alloy ribbon is 1.60 T or more, and External magnetic field 80AZm
  • the ratio B / B of the magnetic flux density B to B is set to 0.90 or more.
  • the alloy composition is T Si B C (where T is Fe and a b e d
  • the thickness of the Fe-based amorphous alloy ribbon is 5 m
  • Fe amount a is less than 76%, and sufficient B as an iron core material cannot be obtained and the magnetic core becomes large and favorable.
  • a is preferably 81% or more and 83% or less.
  • 10% or less of the Fe content can be replaced with at least one of Co and Ni.
  • Si amount b is an element that contributes to the amorphous forming ability, and is 12% or less in order to improve B.
  • the B content In order to increase the B content, it is preferably 5% or less.
  • the amount of B c contributes most to the amorphous forming ability, and if it is less than 8%, the thermal stability is lowered, and if it exceeds 18%, no improvement effect such as the amorphous forming ability is observed even if added. High B
  • C improves the squareness and B of the material to reduce the size of the magnetic core, while reducing the noise.
  • % Or more is preferable, and 0.5% or more is preferable.
  • Mn has the effect of slightly improving B by adding a small amount, but more than 0.50at%
  • B decreases, preferably 0.1% or more and 0.3% or less.
  • Figure 1 shows the relationship between T and noise level of a toroidal core with 1.4T, 50 ⁇ , and average core diameter of 30mm. Increase the value of B
  • the magnetic flux density value shifts to the high magnetic flux density side.
  • it is necessary to raise the ribbon B and improve the squareness of the magnetic core.
  • the magnetic core In order to improve the squareness of the magnetic core, it can be controlled by annealing in a magnetic field and controlling the temperature and time.
  • the magnetic field is applied parallel to the longitudinal direction of the ribbon (magnetic core circumferential direction) with a DC or AC magnetic field strength of 200AZm or more.
  • the average heating rate is 0.3-600 ° CZmin
  • the holding temperature is 250–450 ° C
  • the holding time is 0.05 h or more
  • the cooling is performed at the average cooling rate of 0.3–600 ° CZmin.
  • the heating rate is 120 ° CZmin
  • the holding temperature is 270-370 ° C
  • the atmosphere is inactive, such as N or Ar
  • the heat treatment may be performed with a heat treatment pattern that is once lower than the target holding temperature, raised after holding at the temperature, brought to the target temperature, held, and cooled. .
  • the magnetic field to be applied any of direct current, alternating current, and repeated pulse magnetic field may be used.
  • the applied magnetic field should be large enough to magnetically saturate the magnetic core.
  • the effective value is 80 AZm or more.
  • heat treatment is usually performed in an inert gas atmosphere with a dew point of 30 ° C or less.
  • heat treatment is performed in an inert gas atmosphere with a dew point of 60 ° C or less, the variation is even more preferable. Results are obtained.
  • the Fe-based amorphous alloy ribbon has a C segregation layer peak value in the depth direction of 2 to 20 nm in the surface force depth direction of the free surface and the Z or portal surface. It is preferable to use it.
  • the ratio B / B of the magnetic flux density B at an external magnetic field of 80 A Zm in the magnetic core to the saturation flux density B of the Fe-based amorphous alloy ribbon is 0.
  • a magnetic core greater than 95 is obtained.
  • the C segregation layer in order to obtain the effect of the C segregation layer, it is important to keep the C segregation layer within a certain position and the peak value within a certain range. If the surface roughness increases due to air pockets, etc., the thickness of the oxide layer becomes non-uniform, and accordingly, the position and thickness of the c segregation layer also become non-uniform. As a result, the structural relaxation becomes non-uniform and, on the contrary, a partially brittle portion is formed. In addition, the C segregation layer in the vicinity where the cooling capacity is reduced due to surface irregularities promotes surface crystallization and decreases the squareness.
  • the surface roughness and form the peak position of the C segregation layer at a uniform depth of 2 to 20 nm from the surface cover.
  • it is effective to blow CO 2, He, or Ar gas on the roll during fabrication, or to burn and reduce CO gas.
  • the oxygen concentration in the vicinity of the nozzle outlet at the nozzle tip was reduced to about 10% or less, the surface roughness was greatly improved, and the peak position of the C segregation layer could be controlled from 2 to 20 nm.
  • blow gas is applied to roll 2 and blown so as not to affect the paddle. Adjusting the angle between the roll surface and the blowing gas port 6, the distance to the jet outlet, and the gas pressure, the gas pressure near the roll surface at the jet outlet is 0.20 MPa or less and the oxygen concentration at the jet outlet is 10% or less.
  • the surface roughness is 0.60 / z or less, and the peak position of the C segregation layer from the surface of the alloy ribbon can be controlled to 2 to 20 nm. If the gas pressure near the surface of the jet roll becomes higher than 0.20 MPa, the paddle will be affected, and the peak position of the C segregation layer will be shifted to the inside from 20 nm.
  • the width of the amorphous alloy ribbon becomes wider, the oxygen concentration is distributed in the width direction and the surface roughness can vary. Adjust so that the oxygen concentration in the vicinity of the prone edge becomes 10% or less.
  • the effect can be further improved by controlling the surface state and setting the Si content below a certain value relative to the C content.
  • the place that depends on the amount of C increases the effect by reducing bZd for a certain amount of C.
  • Figure 3 shows the relationship between the degree of stress relaxation and maximum strain with respect to the C and Si contents. Fe82at% (Fe Si BC) result b ⁇ 5 X d 1/3 and stress relaxation is 90% or more
  • the reason for this is thought to be that the peak value of the C segregation layer increases when the Si content is reduced at the same C content. In other words, the stress relaxation degree can be changed by controlling the peak value with the Si content relative to the C content. Also, if the C content d is greater than 3%, the maximum strain will be 0.020 or less (region “ ⁇ ”), which will cause thermal stability problems. When the C content d is 3% or less, the composition has a high stress relaxation degree and a high saturation magnetic flux density, and has a high squareness and can reduce noise. In addition, brittleness, surface crystallinity, and thermal stability degradation at the time of high C content addition are suppressed.
  • the Fe-based amorphous alloy ribbon can be impregnated or coated as necessary.
  • Epoxy resin can be used as a magnetic core cut core or laminated core by impregnating with resin such as acrylic resin or polyimide resin, or by bonding an alloy.
  • resin such as acrylic resin or polyimide resin
  • the magnetic core is used in a resin case or coated.
  • B ZB was reduced to 0.93 or more by identifying an alloy composition that would effectively improve B ZB.
  • the molten metal was sprayed onto a Cu-Be alloy roll rotating at 25-30 m / s to produce an amorphous alloy ribbon with a thickness of 23-25 m and a width of 5 mm.
  • the forging was performed so that the gas pressure near the outlet roll was 0 (no gas spraying), 0.1, and 0.3 MPa. It was found that the oxygen concentration in the vicinity of the spout (within 3 cm from the place where the molten metal and roll contact) was 20. 5, 8. 5, and 7.5%, respectively.
  • Amorphous alloy ribbons manufactured with a gas pressure near the jet roll of 0. IMPa (8.5% oxygen near the jet) have a peak position of the C segregation layer 2 to 20 nm from the surface. was confirmed as a result of the measurement.
  • Amorphous alloy ribbon is 5mm wide, thickness is 23-25 / zm, and annealing of magnetic core is 5 ° CZmin, 300-370 ° C. After 1 hour, furnace cooling, magnetic field in the circumferential direction in argon atmosphere A comparison was made with the characteristics at the annealing temperature where iron loss was the smallest at 1500 AZm. The characteristics are shown in Table 1. B applies a single plate sample to a vibrating sample magnetometer (VSM) with a magnetic field of 5 kOe.
  • VSM vibrating sample magnetometer
  • the iron loss W at 50 Hz was measured with a toroidal core.
  • Noise level is toroidal magnetic core
  • a microphone was installed at a position of 10cm, and the magnetic flux density was measured in an anechoic room with a background noise of 12-14dB under the condition of 1.4 T frequency 50Hz.
  • the initial diameter when a single plate sample is wound around a quartz ring is defined as (diameter of the sample when wound around a quartz ring) R, and the post-anneal stone
  • the diameter of the sample after removing it from the British ring was set as R and calculated from R ZR X 100.
  • the surface roughness was 0 ⁇ 30-0.50 m.
  • B / B indicating squareness is all 0 ⁇ 95 or higher
  • the annealing condition is 320 ° C no magnetic field, 250 ° C no magnetic field, 320 ° C circumferential magnetic field perpendicular direction (core axis direction), and B / B is changed. Less than 90
  • Table 2 shows the characteristics. The noise level increased from the low magnetic flux density region, and at 4T, it increased to 24dB, 28dB, and 35dB as B / B decreased. B showing squareness
  • Example 3 200 g of the master alloy having the composition shown in Table 3 was prepared, and an amorphous alloy ribbon having a width of 5 mm was prepared in the same manner as in Example 1.
  • the characteristics were measured with a toroidal core having an inner diameter Z outer diameter of 25 Z35 mm.
  • Table 3 shows the characteristics.
  • the position of the C segregation layer was quantitatively measured by elemental analysis in the surface depth direction of the roll surface using a GD-OES (Glow Discharge Emission Surface Analyzer) manufactured by Horiba Seisakusho. Also, regarding the C segregation layer position and C peak value, the portion where the C concentration was larger than the internal uniform concentration was regarded as a partial prayer, and the position and value of the highest concentration portion were read. Noise level is B
  • An amorphous alloy ribbon having the composition shown in Table 4 was prepared in the same manner as in Example 1, and the characteristics were measured with a toroidal core having an inner diameter Z outer diameter of 25/35 mm. Table 4 shows the characteristics.
  • 4% of C the iron loss of the amorphous alloy ribbon increases as the coercive force increases.
  • B decreases, the squareness decreases, the coercive force increases, and the iron loss increases.
  • Toroidal core of sample 2 and inner diameter Z outer diameter, 90Zl20mm core, primary and secondary windings were evaluated.
  • the B / B force was improved and the noise level was 3-5dB lower.
  • the present invention increases the squareness of the magnetic core by controlling the heat treatment, the surface roughness, the amount of C added, and the ratio of the Si amount and the C amount, and a magnetic core having a high magnetic flux density, low noise, and low iron loss.
  • it can be used as a magnetic core for transformers, motors, and choke coils.
  • FIG.1 Magnetic flux density B and magnetic flux density when the external magnetic field of the magnetic core is 80AZm 1.4T, 50Hz, magnetic core
  • FIG. 2 is a schematic view of the gas spray position during fabrication.
  • 2 is a roll
  • 6 is a spraying gas port
  • 4 is a molten metal
  • 8 is an oxygen concentration
  • a gas pressure measurement point is a schematic view of the gas spray position during fabrication.
  • 2 is a roll
  • 6 is a spraying gas port
  • 4 is a molten metal
  • 8 is an oxygen concentration
  • a gas pressure measurement point is a gas pressure measurement point.
  • region I shows a composition with a stress relaxation of 90% or more
  • region II shows a composition with a fracture strain of 0.020 or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明は、高BS化による小型低騒音化を同時に満足するFe基非晶質合金薄帯を用いた磁心ならびにそれを用いた応用品を提供する。本発明によるFe基非晶質合金薄帯を用いた磁心は、Fe基非晶質合金薄帯の飽和磁束密度BSを1.60T以上とし、かつ磁心での外部磁場80A/mのときの磁束密度B80とFe基非晶質合金薄帯のBSの比B80/BSを0.90以上としたものである。

Description

磁心ならびにそれを用いた応用品
技術分野
[0001] 本発明は低騒音化を主目的とした Fe基非晶質合金薄帯を用いた磁心であり、モー タ、トランス、チョークコイル、発電機、センサなど応用品に利用できる。
背景技術
[0002] Fe基非晶質合金薄帯はその優れた軟磁気特性その中でも特に鉄損が低いことより トランス、モータ、チョークコイル、センサなどの磁心材料として着目され、さまざまな 磁心や部品、装置として実用化されている。特に Fe基非晶質合金薄帯のなかで比 較的飽和磁束密度 Bが高ぐ熱安定性が優れる FeSiB系非晶質合金薄帯が広く用
S
いられている。しかし珪素鋼板に比べ Bが低いため磁心が大きくなることや磁心から
S
発生する騒音が大きいことが問題となっている。 Fe基非晶質合金薄帯において Bを
S
上げる方法としては磁ィヒの担い手である Feの量を増やすこと、 Fe量を増やすことに よって生じる熱安定性の低下を Sn、 Sなどの添加物により抑制すること、 Cを添加する ことおよび C、 Pを添加することなどが行なわれてきた。特開平 5— 140703号公報で は FeSiBCSnなる組成で Snを添加することで高 Fe量領域での非晶質形成能を高め 高 Bィ匕している。また特開 2002— 285304号公報では FeSiBCPなる組成で Fe、 Si s
、 B、 Cの限られた組成範囲において Pを添加することで Fe含有量を大幅に向上させ 高 B化している。一方騒音を低減させるための低磁歪化は Fe基非晶質合金薄帯の
S
飽和磁歪が Bのほぼ 2乗と比例関係にあるため高 Bかつ低磁歪な Fe基非晶質合金
S S
薄帯は実現されて 、な 、。そのため騒音で問題になる磁心ならびにそれを用いた応 用品には Bが小さ ヽ低磁歪非晶質合金薄帯やナノ結晶合金薄帯が用いられて!/ヽる
S 特許文献 1:特開平 5— 140703号公報((0008)〜(0010)、図 1)
特許文献 2:特開 2002— 285304号公報 ( (0010)〜(0016)、表 1)
発明の開示
発明が解決しょうとする課題 [0003] 上述のように従来の高 Bの Fe基非晶質合金薄帯力 なる磁心は飽和磁歪が大き
S
くなり、騒音が増加する。そのため高 B、低騒音を同時に満たす磁心は実現されて
S
いない。そこで本発明では高 B化による小型低騒音化を同時に満足する Fe基非晶
S
質合金薄帯を用いた磁心ならびにそれを用いた応用品を提供することを目的とした。 課題を解決するための手段
[0004] 本発明では高 B化による磁心の小型化と低騒音化を実現するため、騒音に影響を
S
及ぼす原因について検討をおこない、 Fe基非晶質合金薄帯の角形性が、その Fe基 非晶質合金薄帯を磁心にした時の騒音と密接な関係があることおよび、また、合金 および、表面近傍の組成ゃ偏析などの最適化、表面状態の改善を行うことでさらに 角形性が高まり、従来にないレベルの低騒音化を果たした Fe基非晶質合金薄帯を 用いた磁心を得られることを知見し本発明に至った。
[0005] 本発明の磁心は、 Fe基非晶質合金薄帯を用いた磁心であって、前記 Fe基非晶質 合金薄帯の飽和磁束密度 Bを 1. 60T以上とし、かつ磁心での外部磁場 80AZm
S
のときの磁束密度 B と Bの比 B /Bを 0. 90以上としたことを特徴とする。
80 S 80 S
この角形性の良好な Fe基非晶質合金薄帯を磁心に用いることにより、磁束密度が 1. 4T、周波数 50Hzでの鉄損 W が 0. 28WZkg以下の磁心が得られ、さらに
14/50
は磁束密度 1. 4T、周波数 50Ηζ、平均磁路長が Lmmでの騒音レベルが 20 X log [ (L2 X 10"9+ 2 X 10"5) / (2 X 10"6) ] dB以下と 、う従来にな 、低騒音の製品を製 造できる。ここで平均磁路長 Lmmは磁心の厚さの中心部の周長を指すものとする。 例えば、磁心が真円形状で平均直径((外径 +内径) ÷ 2)が Rなら、 L= となる。 この騒音レベルの式は、本願発明と比較例との平均磁路長と騒音レベルの関係を測 定し、その境界を近似式で示したものである。
磁心の Fe基非晶質合金薄帯として、合金組成が T Si B C (ただし、 Tは Fe、また a b e d
は Feと Feに対し 10%以下の Co、 Niの少なくとも一種を含む元素)で表され、原子% で 76≤a< 84%、 0<b≤12%, 8≤c≤18%, 0. 01≤d≤3%,および不可避不純 物からなる高 B材を使用することが好ましい。 Fe基非晶質合金薄帯の厚さは 5 m
S
力も 100 mのものを使用する。厚さが 5 m以下では製造が困難であり、また、表 面の影響が大きくなり特性を均一にできない。厚さが 100 mを超えると表面結晶化 が生じ特性が劣化しやす ヽ。
より高 B材であり、角形性の高い合金組成として、 Fe量力 l≤a≤83、 Si量が 0く
S
b≤5、 B量が 10≤c≤18、 C量が 0. 2≤d≤3,である Fe基非晶質合金薄帯を用い ることが好ましい。この合金組成範囲は、上記組成範囲の中でも特に角形性が高い。 これにより Fe基非晶質合金薄帯の Bと磁心の外部磁場 80AZmでの磁束密度 B
S 80 の比 B /Bが 0. 93以上のものが得られる。
80 S
組成を限定する理由を以下に示す。以下、単に%と記載のものは原子%を表す。 Fe量 aは 76%より少な 、と鉄心材料として十分な Bが得られず磁心が大型化し好
S
ましくない。また 84%以上では熱安定性が低下し、安定した非晶質合金薄帯が製造 できなくなるためである。高 Bを得るためには aは 81%以上 83%以下が好ましい。求
S
められる磁気特性から、 Fe量の 10%以下を Co、 Niの少なくとも一種で置換すること ができる。
Si量 bは非晶質形成能に寄与する元素で Bを向上させるためには 12%以下とする
S
。高 B化するためには 5%以下であることが好ましい。
S
B量 cは非晶質形成能に最も寄与し、 8%未満では熱安定性が低下してしまい、 18 %より多いと添加しても非晶質形成能などの改善効果が見られない。高 B
Sな非晶質 の熱安定性を保つには 10%以上であることが好ましい。
Cは材料の角形性および Bを向上し磁心を小型化できると共に、低騒音化する効
S
果がある。 C量 dは 0. 01%未満ではほとんど効果がなく 3%より多くすると脆ィ匕と熱安 定性が低下し、磁心製造が困難となり好ましくない。高 B、高角形性を得るには 0. 2
S
%以上が好ましぐさらには 0. 5%以上が好ましい。
Fe量の 10%以下を Ni、 Coの一種または二種で置換すると Bが向上し、磁心の小 s
型化に寄与するがコストが高い原料であるため 10%より多く含有させるのは現実的 ではない。また Mnは微量添加で若干 Bを向上させる効果があるが 0. 50at%以上 s
添加すると逆に Bが低下し、好ましくは 0. 1%以上 0. 3%以下がよい。
s
また Cr, Mo, Zr, Hf, Nbの 1種以上の元素を 0. 01〜5%含んでもよぐ不可避な 不純物として S, P, Sn, Cu, Al, Ti力も少なくとも 1種以上の元素を 0. 50%以下含 有してちょい。 [0007] 角形性を向上させる手段について具体的に示す。図 1に 1. 4T、 50Ηζ、磁心平均 直径 30mmのトロイダル磁心の Β と騒音レベルの関係を示す。 B の値を大きくする
80 80
と騒音が発生しはじめる(暗騒音レベル以上になる)磁束密度の値が高磁束密度側 へシフトする。磁心の B を上げるためには薄帯の Bの上昇と磁心の角形性向上が
80 S
重要となる。磁心の角形性を向上させるには磁場中でァニールをおこない温度、時 間を制御することで制御可能である。磁場は直流または交流磁場強度 200AZm以 上でリボン長手方向に平行 (磁心周方向)に印加する。平均昇温速度は 0. 3-600 °CZminで保持温度 250— 450°C、保持時間 0. 05h以上でおこない、平均冷却速 度 0. 3— 600°CZmin程度で冷却を行う。好ましくは昇温速度 1 20°CZmin、保 持温度 270— 370°C、 0. 5h以上でおこなうのがよい。雰囲気は N , Arなどの不活
2
性ガスが好ましいが大気中でも構わない。また 2段熱処理、 250°C以下の低温で長 時間熱処理するなどでも同様の効果が得られる。磁心のサイズが大きく熱容量が大 き 、場合は、一旦目標とする保持温度よりも低 、温度で保持後昇温し目標温度まで 持って行き保持し冷却する熱処理パターンで熱処理を行っても良 、。印加する磁界 は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。印加する磁界は、 磁心が磁気的に飽和するのに十分な大きさであれば良ぐ通常は実効値が 80AZ m以上である。より望ましくは、 400AZm以上、特に望ましくは 800AZm以上であ る。このような熱処理を行うことにより騒音の小さい磁心を実現することができる。熱処 理は、通常露点が 30°C以下の不活性ガス雰囲気中で行うことが望ましぐ露点が 60°C以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが更に小さくより好ま しい結果が得られる。
[0008] さらに角形性を向上させるため、 Fe基非晶質合金薄帯は、フリー面及び Z又は口 ール面の表面力 深さ方向 2〜20nmに C偏析層のピーク値があるものを用いること が好ましい。この Fe基非晶質合金薄帯を用いることにより、磁心での外部磁場 80A Zmでの磁束密度 B と Fe基非晶質合金薄帯の飽和磁束密度 Bの比 B /Bが 0.
80 S 80 S
95以上である磁心が得られる。
[0009] 一般的には、 Cを添加すると C偏析層が薄帯表面に生じ、脆化および熱的に不安 定になり高磁束密度での鉄損が増加するため、 C添加が積極的に用いられることは ない。本発明で添力卩量ゃ表面での C分布の挙動などを調査し、 C量と Si量の比と表 面状態を制御し c偏析層の位置と偏析層のピーク位置を一定範囲内にすることで、 角形性が高くかつ脆ィ匕および熱安定性低下の抑制を可能とした。 c偏析層ができる ことにより表面近傍の構造緩和が低温でおこり応力緩和に非常に効果がある。応力 緩和度が高いと角形性も高くなり高磁束密度領域での騒音および鉄損が低減できる
。ただし C偏析層による効果を得るためには C偏析層を一定の位置内およびピーク値 を一定範囲内にすることが重要である。エアポケットなどにより表面粗さが大きくなると 酸ィ匕層の厚みが不均一になり、それにともない c偏析層も深さ方向の位置および厚 さが不均一になる。それにより構造緩和が不均一になり逆に部分的に脆い部分がで きる。また表面の凹凸により冷却能の低下した付近の C偏析層は表面結晶化が促進 され角形性が低下する。よって表面粗さを制御し C偏析層のピーク位置を表面カゝら 2 から 20nmの均一な深さ位置に形成させることが重要である。その方法として铸造中 にロールに CO 2、 He、または Arガスを吹きつける力、もしくは COガスを吹き付け燃 焼還元させることが有効である。ノズル先端の噴出口付近の酸素濃度を約 10%以下 にすると表面粗さが大幅に改善され、 C偏析層のピーク位置を 2から 20nmに制御す ることができることがわ力つた。大気中雰囲気でノズル先端噴出口の酸素濃度を約 1 0%以下にするには図 2に示すように噴出口後方のロール部にガスを吹き付けるのが 効果的である。ガスが直接出湯中のパドルに当たると、パドル形状に影響を及ぼして 合金薄帯の厚さにばらつきがでたり、ガスの巻き込みにより合金薄帯表面に凹凸が できて表面粗さが大きくなり C偏析層が内部にずれ、さらにエッジ不良などが起きたり する。そのため吹き付けガスをロール 2に当て、パドルに影響しないように吹き付ける 。ロール表面と吹き付けガス口 6の角度、噴出口までの距離、ガス圧力を調整し、噴 出口でのロール表面付近のガス圧力が 0. 20MPa以下かつ噴出口の酸素濃度が 1 0%以下になるように調整し、铸造をおこなうと表面粗さが 0. 60 /z m以下で、かつ合 金薄帯表面からの C偏析層のピーク位置が 2から 20nmに制御できる。噴出口ロール 表面付近のガス圧力が 0. 20MPaより大きくなるとパドルに影響を及ぼし、 C偏析層 のピーク位置が 20nmより内部にずれる。非晶質合金薄帯の幅が広くなると幅方向に 酸素濃度の分布ができ表面粗さにばらつきができるようになるため酸素濃度が大きく なりやすいエッジ部付近の酸素濃度が 10%以下にするように調整する。このように噴 出口の酸素濃度を 10%以下に制御することで表面粗さが飛躍的に低減され、 C偏 析層の位置、厚みもほぼ均一となり、応力緩和度、角形性が向上し、この Fe基非晶 質合金薄帯を用いた磁心及び磁心を用いた部品の騒音および鉄損が低減し、表面 結晶化、脆化も抑制され、 C添カ卩による効果を十分に引き出すことができる。
[0010] また表面状態を制御した上に Si量を C量に対して一定以下にすることでさらに効果 があがる。 C量に依存するところはある力 一定の C量に対して bZdを小さくすること で効果が高くなる。図 3に C量、 Si量に対しての応力緩和度と最大歪の関係を示す。 Fe82at% (Fe Si B C )の結果では b≤5 X d1/3で応力緩和度が 90%以上
82 X 18-X-Y Y
(領域「1」)となった。その要因は、同 C量において Si量を低減すると C偏析層のピー ク値が高くなるためと考えられる。つまり C量に対して Si量にてピーク値を制御するこ とで応力緩和度を変化させることができる。また C量 dが 3%より大きいと最大歪は 0. 020以下 (領域「Π」)となり、熱安定性の問題が生じる。 C量 dを 3%以下とすることで 応力緩和度が高ぐ飽和磁束密度が高い組成となり、角形性が高く騒音を低減でき る。さらに高 C量添加時のような脆ィ匕ゃ表面結晶ィ匕、熱安定性の低下も抑制される。
[0011] Fe基非晶質合金薄帯は、必要に応じて含浸やコーティング等を行うことも可能であ る。エポキシ榭脂ゃアクリル榭脂、ポリイミド榭脂などの榭脂により含浸する、あるいは 合金を接着するなどして卷磁心カットコアや積層コアとして使用することができる。磁 心は、一般的には榭脂ケースなどに入れる、あるいはコーティングして使用される。 発明の効果
[0012] 上述の如ぐ高 B材を適用し、かつ B /Bを高くすることで、低騒音、低鉄損およ
S 80 S
び脆化、熱安定性低下の抑制を可能とした磁心を得ることが可能になった。さらに、 効果的に B ZBが向上しやすい合金組成を見極めたことで、 B ZBが 0. 93以
80 S 80 S
上という低騒音化にさらに好適な磁心を提供することができた。また、組成と表面状 態を制御し C偏析層の位置とピーク値を一定範囲内にした非晶質合金薄帯を用いる ことで、 B / が 0. 95以上という低騒音化にさらに好適な磁心を提供することがで
80 S
きた。これらの磁心を用いることで、低騒音、低鉄損および脆化、熱安定性低下の抑 制を可能とした応用品が提供できる。 発明を実施するための最良の形態
次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が 限されるものではない。
(実施例 1)
Fe Si B C Mn の組成の母合金 200gを作製し、 1300°Cで高周波溶解した
82 2 13. 9 2 0. 1
溶湯を 25 - 30m/sで回転する Cu— Be合金ロールに噴出し、板厚 23— 25 m、 幅 5mmの非晶質合金薄帯を作製した。なお Cuロールの噴出口後方 10cmの位置 に COガス吹き付け口をロール表面と 45° になるように設置し、 COガスの噴出圧を
2 2
調整し、噴出口ロール付近のガス圧力が 0 (ガス吹き付け無し。)、 0. 1、 0. 3MPaと なるようにして铸造をおこなった。噴出口近傍 (溶湯とロールが接触する場所から 3c m以内)での酸素濃度は各々 20. 5, 8. 5, 7. 5%となることが解った。噴出口ロール 付近のガス圧力を 0. IMPa (噴出口近傍の酸素が 8. 5%)として製造した非晶質合 金薄帯は、 C偏析層のピーク位置が表面から 2から 20nmにあることが測定の結果確 認された。この非晶質合金薄帯を 5mm幅にスリット後、内径 Z外径、 20/25, 25/ 35、 70Z75mmの 3つのトロイダル磁心を作製し特性を測定した。非晶質合金薄帯 は幅 5mm、厚さ 23— 25 /z mで磁心のァニールは昇温速度 5°CZmin、 300— 370 °C保持 1時間後炉冷、アルゴン雰囲気中で磁心周方向に磁場 1500AZmをかけて おこない、鉄損が最も小さいァニール温度での特性にて比較をおこなった。特性を 表 1に示す。 Bは単板試料を振動型試料型磁力計 (VSM)で 5kOeの磁場をかけて
S
測定をおこない、 B 、 1. 3T周波数 50Hzでの鉄損 W 、磁束密度 1. 4T周波数
80 13/50
50Hzでの鉄損 W はトロイダル磁心にて測定した。騒音レベルはトロイダル磁心
14/50
力も 10cmの位置にマイクを設置し、暗騒音 12— 14dBの無響室にて磁束密度 1. 4 T周波数 50Hzの条件で測定した。応力緩和度は、石英リングに単板試料を巻きつ けた初期の直径を (石英リングに巻きつけたときの試料の直径) Rとし、ァニール後石
0
英リングより取り外したあとの試料の直径を Rとし、 R ZR X 100より算出した。ロール
0
面の表面粗さは 0· 30-0. 50 mであった。角形性を示す B /Bは全て 0· 95以
80 S
上であり、この角形性の数値が高いほど騒音レベルの数値が下がる結果が得られた
urn [woo]
l70C90C/900Zdf/X3d 8 8^1^01/900^ OAV
Figure imgf000011_0001
[0015] (比較例 1)
実施例 1と同様の条件でァニール条件を 320°C無磁場中、 250°C無磁場中、 320 °C周方向垂直方向(磁心軸方向)に磁場をかけ、 B /Bを変化させ 0. 90未満の
80 S
試料を作製した。特性を表 2に示す。騒音レベルが低磁束密度領域より増加し 1. 4T では B /Bの減少にともない 24dB, 28dB, 35dBまで増加した。角形性を示す B
80 S 8
/Bは全て 0. 90未満となり、この磁心の騒音レベルの数値は本願発明で規定する
0 S
20 X log[ (L2 X 10—9+ 2 X 10"5) / (2 X 10_6) ]dBよりも高くなることが確認された
[0016] [表 2]
Figure imgf000013_0001
[0017] (実施例 2)
表 3に示す組成の母合金 200gを作製し、実施例 1と同様に幅 5mmの非晶質合金 薄帯を作製し、内径 Z外径、 25Z35mmのトロイダル磁心にて特性を測定した。特 性を表 3に示す。 C偏析層位置はロール面表面の表面深さ方向元素分析を堀場製 作所製 GD— OES (グロ一放電発光表面分析装置)にて定量測定した。また、 C偏析 層位置と Cピーク値は、 C濃度が内部の均一濃度より大きい部分を偏祈とみなし、そ の中で濃度が最も高い部分の位置と値を読み取った。騒音レベルは B
80との関連性 が非常に強ぐ Bと角形比を上げることで騒音を低減でき、さらに C添加が角形性と
S
騒音に効果があることがわかる。
[0018] [表 3]
Figure imgf000015_0001
[0019] (実施例 2— 2)
表 4に示す組成の非晶質合金薄帯を実施例 1と同様に作製し、内径 Z外径、 25/ 35mmのトロイダル磁心にて特性を測定した。特性を表 4に示す。 Cを 4%添加すると 保磁力の増加により非晶質合金薄帯の鉄損が大きくなつている。また、非晶質合金 薄帯が脆くなり、磁心を製造する際に問題が生じることが懸念される。また Mnを 0. 7 at%添加すると Bが低下するとともに角形性が低下し保磁力も増加し鉄損が増加し
S
ている。 C, Mnともに多量添加すると、騒音レベルも増加している。
[0020] [表 4]
Figure imgf000017_0001
[0021] (参考例 1)
実施例 1で作製した非晶質合金薄帯の中で噴出口ロール表面付近のガス圧力が 0 , 0. 30MPaで铸造した試料にて内径 Z外径、 25Z35mmのトロイダル磁心を作製 し特性を評価した結果を表 5に示す。サンプル No. 33がガス圧力 OMPa (酸素濃度 20. 5%)で作製した試料、 No. 34がガス圧力 0. 3MPaで作製した試料であり、口 一ノレ面の表面粗さは各々 0. 64-0. 70, 0. 63-0. 82 /z mであった。 C偏析層ピ ーク位置が範囲外になり、角形性、鉄損、騒音レベルがともに劣化した。図 4および 図 5にサンプル 2、 33のロール面の表面深さ方向元素分析結果を示す。
[0022] [表 5]
Figure imgf000019_0001
[0023] (実施例 3)
前記サンプル 2のトロイダル磁心および内径 Z外径、 90Zl20mmの磁心に 1次 2次 巻き線をし、特性を評価した結果、 B /B力 改善し、騒音レベルが 3— 5dB低
80 S
減し、トランス、モータ、リアタトルの磁心として非常に有望であることが確認できた。 産業上の利用可能性
[0024] 本発明は熱処理、表面粗さ、 C添加量および Si量と C量の比を制御することで磁心 の角形性をあげ、高磁束密度かつ低騒音、低鉄損な磁心ならびにそれを用いた応 用品を提供することに関し、トランス、モータ、チョークコイル用磁心として利用できる 図面の簡単な説明
[0025] [図 1]磁心の外部磁場 80AZmの時の磁束密度 B と磁束密度 1. 4T、 50Hz、磁心
80
直径 30mmのトロイダル磁心の騒音レベルの関係を示す図である。
[図 2]铸造時のガス吹き付け位置の模式図である。ここで、 2はロール、 6は吹き付け ガス口、 4は溶湯、 8は酸素濃度、ガス圧力測定ポイントをそれぞれ示す。
[図 3]Fe Si B Cにおける C Si濃度による応力緩和度と破壊歪の関係を示
82 X 18-X-Y Y
す図である。ここで、領域 Iは応力緩和 90%以上の組成、領域 IIは破壊歪 0. 020以 下の組成を示す。
[図 4]サンプル 2ロール面の表面分析結果である。
[図 5]サンプル 33ロール面の表面分析結果である。

Claims

請求の範囲
[1] Fe基非晶質合金薄帯を用いた磁心であって、前記 Fe基非晶質合金薄帯の飽和 磁束密度 Bを 1. 60T以上とし、かつ磁心での外部磁場 80AZmのときの磁束密度
S
B と Fe基非晶質合金薄帯の飽和磁束密度 Bの比 B /Bが 0. 90以上である磁
80 S 80 S
心。
[2] 磁束密度 1. 4T,周波数 50Hzでの鉄損 W が 0. 28WZkg以下である請求項
14/50
1に記載の磁心。
[3] 磁束密度 1. 4T、周波数 50Ηζ、平均磁路長が Lmmでの騒音レベルが 20 X log [ ( L2 X 10"9+ 2 X 10"5) Z (2 X 10"6) ] dB以下である請求項 1又は請求項 2に記載の 磁心。
[4] 前記 Fe基非晶質合金薄帯は、合金組成が T Si B C (ただし、 Tは Fe、または Feと a b e d
Feに対し 10%以下の Co、 Niの少なくとも一種を含む元素)で表され、原子%で 76
≤a< 84%, 0< b≤12%, 8≤c≤18%, 0. 01≤d≤ 3%および不可避不純物力も なる請求項 1から請求項 3までのいずれか 1項に記載の磁心。
[5] 前記 Fe基非晶質合金薄帯の合金組成が、原子%で丁量が 81≤a≤83、 Si量が 0
< b≤5、 B量が 10≤c≤18、 C量が 0. 2≤d≤ 3である請求項 1から請求項 4までの いずれか 1項に記載の磁心。
[6] 磁心での外部磁場 80AZmのときの磁束密度 B と Fe基非晶質合金薄帯の飽和
80
磁束密度 Bの比 B / が 0. 93以上である請求項 5に記載の磁心。
S 80 S
[7] 前記 Fe基非晶質合金薄帯には、薄帯表面から 2〜20nmの深さの範囲内に Cの濃 度分布の偏析層のピーク値が存在する請求項 1から請求項 6までのいずれか 1項に 記載の磁心。
[8] 薄帯の表面粗さが 0. 60 μ m以下である請求項 7に記載の磁心。
[9] 磁心での外部磁場 80AZmでの磁束密度 B と Fe基非晶質合金薄帯の飽和磁束
80
密度 Bの比 B / が 0. 95以上である請求項 7又は請求項 8に記載の磁心。
S 80 S
[10] 請求項 1から請求項 9までの 、ずれか 1項に記載の磁心を用いた応用品。
PCT/JP2006/306304 2005-03-29 2006-03-28 磁心ならびにそれを用いた応用品 WO2006104148A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/909,951 US8021498B2 (en) 2005-03-29 2006-03-28 Magnetic core and applied product making use of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-094877 2005-03-29
JP2005094877 2005-03-29
JP2006-063540 2006-03-09
JP2006063540A JP4771215B2 (ja) 2005-03-29 2006-03-09 磁心ならびにそれを用いた応用品

Publications (1)

Publication Number Publication Date
WO2006104148A1 true WO2006104148A1 (ja) 2006-10-05

Family

ID=37053404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306304 WO2006104148A1 (ja) 2005-03-29 2006-03-28 磁心ならびにそれを用いた応用品

Country Status (4)

Country Link
US (1) US8021498B2 (ja)
JP (1) JP4771215B2 (ja)
TW (1) TWI307517B (ja)
WO (1) WO2006104148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845307A (zh) * 2016-05-19 2016-08-10 郑州大学 由中合金钢成分开发形成的铁基非晶态软磁合金及其应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218660A (ja) * 2007-03-02 2008-09-18 Hitachi Industrial Equipment Systems Co Ltd リアクトル装置
JP5445891B2 (ja) * 2007-03-22 2014-03-19 日立金属株式会社 軟磁性薄帯、磁心、および磁性部品
JP5333883B2 (ja) * 2007-08-24 2013-11-06 日立金属株式会社 長期熱安定性に優れる非晶質合金薄帯および磁心
JP5445924B2 (ja) * 2009-09-10 2014-03-19 日立金属株式会社 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
US8974609B2 (en) * 2010-08-31 2015-03-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
US8968489B2 (en) * 2010-08-31 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
US8968490B2 (en) * 2010-09-09 2015-03-03 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
KR20170087857A (ko) * 2014-11-25 2017-07-31 히다찌긴조꾸가부시끼가이사 아모퍼스 합금 리본 및 그 제조 방법
JP6601139B2 (ja) * 2015-10-19 2019-11-06 日本製鉄株式会社 軟磁気特性に優れたFe系非晶質合金及びFe系非晶質合金薄帯
US10017851B2 (en) * 2015-12-22 2018-07-10 Texas Instruments Incorporated Magnetic field annealing for integrated fluxgate sensors
CN108701530B (zh) 2016-02-29 2022-07-08 日立金属株式会社 层叠块芯、层叠块和层叠块的制造方法
JP6881249B2 (ja) * 2016-11-15 2021-06-02 日本製鉄株式会社 軟磁気特性に優れたFe系非晶質合金およびFe系非晶質合金薄帯
JP7020119B2 (ja) * 2017-01-31 2022-02-16 日本製鉄株式会社 軟磁気特性に優れたFe系非晶質合金及びFe系非晶質合金薄帯
JP6245394B1 (ja) * 2017-02-27 2017-12-13 Tdk株式会社 軟磁性合金
CN109504924B (zh) * 2018-12-17 2021-02-09 青岛云路先进材料技术股份有限公司 一种铁基非晶合金带材及其制备方法
JP2021080545A (ja) * 2019-11-22 2021-05-27 Tdk株式会社 軟磁性合金薄帯および磁性部品
JP7230967B2 (ja) * 2020-09-30 2023-03-01 Tdk株式会社 軟磁性合金および磁性部品
JP6938743B1 (ja) * 2020-09-30 2021-09-22 Tdk株式会社 軟磁性合金および磁性部品
JP7230968B2 (ja) * 2020-09-30 2023-03-01 Tdk株式会社 軟磁性合金および磁性部品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150415A (ja) * 1983-02-08 1984-08-28 Toshiba Corp チヨ−クコイル
JPH10323742A (ja) * 1997-05-28 1998-12-08 Kawasaki Steel Corp 軟磁性非晶質金属薄帯

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550449B2 (ja) * 1991-07-30 1996-11-06 新日本製鐵株式会社 磁束密度の大きなトランス鉄心用非晶質合金薄帯
JPH09143640A (ja) * 1995-11-21 1997-06-03 Kawasaki Steel Corp 電力トランス鉄心用の広幅非晶質合金薄帯
US6060172A (en) * 1997-04-11 2000-05-09 Nippon Steel Corporation Fe-based rapidly quenched metal strip
JP4205777B2 (ja) * 1997-04-11 2009-01-07 新日本製鐵株式会社 Fe基急冷金属薄帯
JP3709149B2 (ja) * 2001-03-22 2005-10-19 新日本製鐵株式会社 高磁束密度を有するFe基非晶質合金薄帯
JP3634286B2 (ja) * 2000-11-27 2005-03-30 新日本製鐵株式会社 Fe基非晶質合金薄帯とそれを用いて製造した鉄心
US6416879B1 (en) * 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
JP2005256104A (ja) 2004-03-12 2005-09-22 Nippon Steel Corp 動作磁歪が小さなFe基非晶質合金薄帯及びそれを用いて製造した鉄心

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150415A (ja) * 1983-02-08 1984-08-28 Toshiba Corp チヨ−クコイル
JPH10323742A (ja) * 1997-05-28 1998-12-08 Kawasaki Steel Corp 軟磁性非晶質金属薄帯

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845307A (zh) * 2016-05-19 2016-08-10 郑州大学 由中合金钢成分开发形成的铁基非晶态软磁合金及其应用

Also Published As

Publication number Publication date
TW200641924A (en) 2006-12-01
US20090145524A1 (en) 2009-06-11
US8021498B2 (en) 2011-09-20
TWI307517B (en) 2009-03-11
JP4771215B2 (ja) 2011-09-14
JP2006310787A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4771215B2 (ja) 磁心ならびにそれを用いた応用品
JP5182601B2 (ja) 非晶質合金薄帯、ナノ結晶軟磁性合金ならびにナノ結晶軟磁性合金からなる磁心
JP5327074B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
JP5339192B2 (ja) 非晶質合金薄帯、ナノ結晶軟磁性合金、磁心、ならびにナノ結晶軟磁性合金の製造方法
JP5024644B2 (ja) 非晶質合金薄帯
JP5316921B2 (ja) Fe基軟磁性合金、およびこれを用いた磁性部品
JP5327075B2 (ja) 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
JP6669082B2 (ja) Fe基軟磁性合金薄帯およびそれを用いた磁心
JP6191908B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
WO2011122589A1 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
JP5429613B2 (ja) ナノ結晶軟磁性合金ならびに磁心
JP2008231462A (ja) 磁性合金、アモルファス合金薄帯、および磁性部品
JPWO2008133302A1 (ja) 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP2008196006A (ja) Fe基ナノ結晶軟磁性合金、アモルファス合金薄帯およびFe基ナノ結晶軟磁性合金の製造方法並びに磁性部品
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
JP4547671B2 (ja) 高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP2008231534A (ja) 軟磁性薄帯、磁心、および磁性部品
JP2000328206A (ja) 軟磁性合金薄帯ならびにそれを用いた磁心、装置およびその製造方法
JP2007305913A (ja) 磁心
CN109023162A (zh) 一种铁基非晶合金磁芯的制备方法与铁基非晶合金
JP2000119825A (ja) Fe基アモルファス合金薄帯およびそれを用いたFe基ナノ結晶軟磁性合金薄帯ならびに磁心
JP4217038B2 (ja) 軟磁性合金
JP4310738B2 (ja) 軟磁性合金並びに磁性部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010924.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11909951

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06730252

Country of ref document: EP

Kind code of ref document: A1