WO2006103837A1 - シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法 - Google Patents

シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法 Download PDF

Info

Publication number
WO2006103837A1
WO2006103837A1 PCT/JP2006/302517 JP2006302517W WO2006103837A1 WO 2006103837 A1 WO2006103837 A1 WO 2006103837A1 JP 2006302517 W JP2006302517 W JP 2006302517W WO 2006103837 A1 WO2006103837 A1 WO 2006103837A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon single
single crystal
cooling rate
ssd
oxygen concentration
Prior art date
Application number
PCT/JP2006/302517
Other languages
English (en)
French (fr)
Inventor
Shinya Sadohara
Ryota Suewaka
Shiro Yoshino
Kozo Nakamura
Yutaka Shiraishi
Syunji Nonaka
Original Assignee
Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Denshi Kinzoku Kabushiki Kaisha filed Critical Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority to US11/887,244 priority Critical patent/US7875116B2/en
Priority to DE112006000816T priority patent/DE112006000816T5/de
Publication of WO2006103837A1 publication Critical patent/WO2006103837A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention provides a method for producing a silicon single crystal which can reduce the density (or number) of SSD (surface shallow defect on the surface; surface shallow defect) on the surface of plastic substrate or The method of manufacturing the ainil uehha or the density (or number) of the same SSD is reduced!
  • Silicon single crystals are manufactured by being pulled and grown by CZ (Chyokralski method). The pulled single crystal silicon ingot is sliced into silicon wafers. Semiconductor devices are fabricated through the device process of forming a device layer on the surface of silicon wafer.
  • a crystal defect called a Grown-in defect introduction defect at the time of crystal growth
  • crystal defects contained in silicon single crystals and degrading the characteristics of the device are the following three types of defects.
  • Dislocation loop clusters (interstitial silicon type dislocation defects, I-defect) that occur due to aggregation of interstitial silicon.
  • the defect-free silicon single crystal does not contain any of the above three types of defects, or substantially contains it as a crystal that is not recognized as a crystal.
  • the generation behavior of the above three types of defects is known to change as follows depending on the growth conditions. Description will be made with reference to FIG. In FIG. 1, the horizontal axis is the growth condition V / G (V: growth rate, G: axial temperature gradient near the melting point of silicon single crystal), and if G is fixed, it can be considered as a function of growth rate V .
  • the vertical axis in FIG. 1 is the point defect concentration.
  • the silicon single crystal has an excess of vacancy-type point defects, and only void defects occur.
  • the phenomenon described above is considered to occur because the silicon single crystal changes to an excess state force of vacancy-type point defects, an interstitial-type point defect, as the growth rate V decreases. It is understood that the change also starts the peripheral force of silicon single crystal.
  • V-rich region vacancy-type point defect dominant region
  • I-rich region interstitial-type point defect dominant region
  • void defects in particular are required to be particularly reduced because they cause element isolation failure and the like in a miniaturized device.
  • Void defects are caused by the aggregation of atomic vacancies (point defects) taken from the silicon melt during crystal growth by reaching a critical degree of supersaturation during crystal cooling, and the defect detection method It is called LPD (laser particle diffuser), COP (crystal patterned particle), FPD (flow pattern diffuser), LSTD (laser scanning tomography diffuser), etc.
  • LPD laser particle diffuser
  • COP crystal patterned particle
  • FPD flow pattern diffuser
  • LSTD laser scanning tomography diffuser
  • the defect-free silicon single crystal does not contain any of the above three types of defects, but substantially does not contain any of the above three types of defects, and is recognized as a crystal.
  • the above-mentioned method of “erasing void defects in the vicinity of the surface of the wafer by high temperature annealing” has already been known technology. This is obtained by collecting silicon wafer from silicon single crystals containing void defects grown under normal growth conditions, and obtaining the collected wafer by heat treatment at high temperature for a long time (hereinafter referred to as “this specification”). And “vanille ha”) to eliminate void defects near the surface.
  • BMD bulk micro defects
  • the BMD generated in the silicon wafer balta functions effectively as a gettering (intrinsic gettering) source for capturing heavy metals.
  • FIG. 2 schematically shows the structure of the cross section of the puncher.
  • an intrinsic getter having a high density of BMD of approximately 10 8 pieces / cm 3 or more in the interior of the light weight 100.
  • a ring site is formed, and a defect-free layer which does not contain BMD in the device creation layer (depth of 10 microns or more) of the surface and does not contain the above-mentioned COP and other groin defects, that is, a DZ layer is formed. It will be necessary. And there is a strong demand for industrially easily achieving the production of such ale uiha.
  • the density of COP and BMD is affected by the oxygen concentration in the silicon single crystal. Therefore, the oxygen concentration in the silicon single crystal is important for producing an ideal product. Further, in order to easily annihilate COP by an annealing treatment, a method is employed in which the silicon single crystal is doped with nitrogen to reduce the size of the initial COP. This is described in Patent Document 2 listed below. Moreover, many BMD can be made by performing nitrogen doping.
  • the size of COP and the number of BMDs are influenced by the nitrogen concentration.
  • a silicon single crystal with a diameter of 300 mm can often be pulled under crystal growth conditions such that it enters a low V / G region overlapping the R-OSF region.
  • this low V / G region since the number of holes taken into the silicon single crystal is reduced, the size and density of the COP can be reduced, and it becomes easy to annihilate the COP by the anil. However, it becomes slow-cooling type silicon single crystal that is cooled slowly.
  • the DNN defect is a defect on the surface of a U-ha detected by DNN (dark field normal narrow) mode measurement of a commercially available particle counter SP1 (measuring device manufactured by KLA TENCOR).
  • the DNN mode is a mode in which the laser is irradiated perpendicularly to the Whaha, and the state of diffuse reflection due to defects is focused and observed near a regular reflection.
  • the DNN mode is an effective mode for detecting dust and pits on the surface of the wafer.
  • Patent Document 1 listed below reduces the DNN defects by dissolving the oxygen precipitates that become nuclei of the DNN defects generated after the annealing by performing hydrofluoric acid cleaning before the annealing. And, the invention is described.
  • Patent Document 1 also describes the following findings regarding the relationship between DNN defects and oxygen concentration, nitrogen concentration, and crystal growth conditions.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-119446
  • Patent Document 2 Patent No. 3479001
  • Patent Document 1 even if pulling up and growing are performed under crystal growth conditions that enter into the “region where the occurrence of OSF is low” while avoiding the “region where the OSF tends to occur”, the above a) , B), c) The idea is that you can definitely reduce the SSD.
  • the present invention has been made in view of these circumstances, and it is necessary to reduce void defects other than SSDs on the surface of the wafer which is indispensable for a light beam and to generate BMD as a gettering source in balta.
  • the goal is to stabilize the quality of the facility by ensuring that the SSD is reduced while guaranteeing it.
  • the first invention is a first invention.
  • a method of producing a silicon single crystal for reducing SSD very wide shallow shallow defect on the surface; Surface Shallow Defect) generated on the surface of a finish-treated wafer.
  • the second invention is a first invention
  • the density or number of the SSD, the oxygen concentration in the silicon single crystal, the nitrogen concentration in the silicon single crystal, and the cooling rate in a predetermined temperature range when pulling up the silicon single crystal Predict using relational expressions
  • the method is a method for producing a silicon single crystal that pulls up a silicon single crystal under the crystal growth conditions in which oxygen concentration, nitrogen concentration, and cooling rate in a predetermined temperature range are obtained such that the predicted SSD density or number is obtained. .
  • a third aspect of the invention relates to the first or second aspect of the invention
  • the oxygen concentration is Oi
  • the nitrogen concentration is N
  • the cooling rate in a predetermined temperature range is CR
  • A is a constant
  • the fourth invention is a
  • the nitrogen doping amount is in the range of 1E13 to 2.5E14 atoms / cm 3
  • the solid solution oxygen concentration is in the range of 11E1 7 to 14E17 atoms / cm 3
  • the cooling rate in the temperature range of 900 ° C. to 1000 ° C. is 2
  • the method is characterized in that the method is a method for producing a silicon single crystal in which a silicon single crystal having a diameter of 300 mm or more is pulled at a temperature of 5 ° C./min or more.
  • the nitrogen doping amount is in the range of 1E13 to 2.5E14 atoms / cm 3
  • the solid solution oxygen concentration is in the range of 11E1 7 to 14E17 atoms / cm 3
  • the cooling rate in the temperature range of 900 ° C. to 1000 ° C. is 1
  • the method is characterized in that the method is a method for producing a silicon single crystal in which a silicon single crystal having a diameter of 300 mm or more is pulled at a temperature of 5 ° C./min or more.
  • the cooling rate in the temperature range of 900 ° C. to 1000 ° C. is 4.2 ° C./min or more.
  • the method is characterized in that the method is a method of producing a silicon single crystal in which a cooling rate is controlled to pull up a silicon single crystal having a diameter of 300 mm or more.
  • the seventh invention is
  • the nitrogen concentration is 5E14 atoms / cm 3 or less
  • the oxygen concentration Oi is 14E17 atoms / cm 3 or less
  • the cooling rate is controlled so that the cooling rate in the temperature range of 900 ° C to 1000 ° C is 2.8 ° C / min or more, and the silicon single crystal with a diameter of 300 mm or more is pulled up. And a method of manufacturing a silicon single crystal.
  • the eighth invention is the third invention.
  • the method is characterized in that the method is a method for producing a silicon single crystal, in which the silicon single crystal is pulled up by controlling the cooling rate so as to obtain the obtained cooling rate CR.
  • a ninth aspect of the invention relates to the first to eighth aspects of the invention.
  • a cooling means for cooling the silicon single crystal is provided in a furnace in which the process of pulling up the silicon single crystal from the melt is performed, and the cooling rate is controlled using this cooling means.
  • a tenth invention is an airuiaha obtained by subjecting a silicone aha obtained from a silicon single crystal produced by the method of the 9th invention to an anial treatment
  • the detected density of SSDs with a diameter of 140 nm or more is less than 0.15 pcs / cm 2 , It is characterized by being an ail-u-ha.
  • the Uaha surface is detected by DN N mode measurement using a KLA TENCOR particle counter SP1 detector, and a size of 140 nm or more in diameter detected (Surface-shaped shallow concave defect on the surface; Surface Shallow Defect) ) Density force is less than 0.15 pieces / cm 2 !
  • the density force of a defect with a diameter of 140 mm or more detected as detected by DNN mode measurement using the above-mentioned SP1 measuring instrument is characterized by being an aircraft that is reduced to less than 1 / cm 2 .
  • the twelfth invention is It is nitrogen-doped, and it is Rua Neiruaha,
  • the Uaha surface is detected by DN N mode measurement using a KLA TENCOR particle counter SP1 detector, and a size of 140 nm or more in diameter detected (Surface-shaped shallow concave defect on the surface; Surface Shallow Defect)
  • the density of) is less than 0. 04 pcs / cm 2 !
  • the thirteenth invention is a first invention.
  • the present inventors obtained the following findings from the results of experiments and simulations.
  • Nssc ⁇ ACodN ⁇ CCR 11 for oxygen concentration Oi and nitrogen concentration N required to reduce Nssd (where, 1, m> 0, n 0 0) 9) b) b) Specific other parameters other than oxygen concentration Oi and nitrogen concentration N which cause SSD generation (cooling rate CR in a predetermined temperature range)
  • DNN defects detected on the nitrogen-doped surface are very shallow and wide, defects that are concave to the surface (SSD).
  • G) SSD is a defect localized on the very surface layer of the surface of the surface that disappears by polishing the surface of the surface 1 ⁇ m by 1 ⁇ m.
  • the silicon single crystal 6 is pulled up with different cooling rates CR depending on the required specifications of the SSD density (or number), solid solution oxygen concentration, and nitrogen doping amount. There is a way.
  • the cooling rate CR is controlled to be different for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount, it is necessary to change the control contents each time. Therefore, in order to avoid this, if the required specification of the SSD number, the range of the solid solution oxygen concentration required as the required specification, and the range of the nitrogen doping amount are known, such a required specification can always be obtained.
  • the cooling rate can be fixed after being fixed to the CR value (fourth invention to eighth invention).
  • the cooling rate (for example, the cooling cylinder 14) can be used to control the cooling rate CR (see
  • the cooling rate CR of the silicon single crystal 6 can be increased by using a cooling means (for example, the cooling cylinder 14).
  • the random silicon (the tenth invention and the eleventh invention) manufactured by the silicon single crystal manufacturing method (the first invention to the ninth invention) of the present invention has an extremely small SSD density on its surface (0.15 pieces). It has a characteristic feature of less than 2 cm 2 ).
  • silicon single crystal 6 can be pulled and grown under growth conditions that fall within the desirable low V / G region (FIG. 1) for the plasma.
  • the silicon single crystal 6 (but nitrogen-doped) is manufactured without performing the control of the first to ninth inventions, and then By carrying out a method of producing an anial aha, including the steps of: allowing the nitrogen-doped silicon aha obtained from the silicon single crystal 6; and a step of polishing the aa surface strength to a depth of at least.
  • the SSD density (number) Nssd on the surface can be reliably reduced (the 13th invention).
  • This opportunity An ail 'aeh (the 12th invention) manufactured by a ah manufacturing method has a very small SSD density on its surface! /, (0.04 pieces / cm 2 or less), and a distinctive ah.
  • FIG. 3 is a side view of an example of the configuration of a silicon single crystal production apparatus used in the embodiment.
  • the single crystal pulling apparatus 1 includes a CZ furnace (chamber) 2 as a single crystal pulling container.
  • a quartz crucible 3 for melting a raw material of polycrystalline silicon and containing it as a melt 5 is provided.
  • the outside of the quartz crucible 3 is covered by a graphite crucible 11.
  • a heater 9 for heating and melting the polycrystalline silicon material in the quartz crucible 3 is provided on the side of the quartz crucible 3 outside the quartz crucible 3.
  • the power (power; kW) of the heater 9 is controlled, and the amount of heating of the melt 5 is adjusted.
  • the temperature of the melt 5 is detected, and the output of the heater 9 is controlled such that the detected temperature is a feedback amount and the temperature of the melt 5 becomes the target temperature.
  • a heat insulating cylinder 13 is provided between the heater 9 and the inner wall of the CZ furnace 2.
  • the pulling mechanism 4 includes a pulling shaft 4a and a seed chuck 4c at the tip of the pulling shaft 4a.
  • the seed crystal 14 is held by the seed chuck 4c.
  • the polycrystalline silicon (Si) is heated and melted in the quartz crucible 3.
  • the pulling mechanism 4 operates to pull the silicon single crystal (silicon single crystal ingot) 6 from the melt 5. That is, the pulling shaft 4 a is lowered and the seed crystal 14 held by the seed chuck 4 c at the tip of the pulling shaft 4 a is immersed in the melt 5. After the seed crystal 14 is mixed with the melt 5, the bow I raising shaft 4a is raised. As the seed crystal 14 held by the seed chuck 4c rises, silicon single crystal 6 (hereinafter referred to as silicon single crystal 6) is grown.
  • the quartz crucible 3 is rotated by the rotating shaft 10 at the rotational speed ⁇ ⁇ ⁇ .
  • the pulling shaft 4a of the pulling mechanism 4 rotates in the opposite direction or in the same direction as the rotating shaft 10 at the rotational speed ⁇ 2.
  • silicon wafer with a nitride film for example, is previously introduced into melt 5 in quartz crucible 3. You are welcomed.
  • the rotation shaft 10 can be driven in the vertical direction, and the quartz crucible 3 can be moved up and down to move it to any position.
  • the interior of the furnace 2 is maintained at a vacuum (for example, about 20 Torr) by shutting off the inside of the CZ furnace 2 and the outside air. That is, argon gas 7 as an inert gas is supplied to the CZ furnace 2, and the exhaust air of the CZ furnace 2 is also exhausted by the pump. As a result, the pressure in the furnace 2 is reduced to a predetermined pressure.
  • a vacuum for example, about 20 Torr
  • the argon gas 7 is supplied to the CZ furnace 2 and exhausted together with the evaporant to the outside of the CZ furnace 2 to remove the evaporant from the inside of the CZ furnace 2 to make it clean.
  • the supply flow rate of argon gas 7 is set for each process in one batch.
  • the melt 5 decreases.
  • the contact area between the melt 5 and the quartz crucible 3 changes, and the amount of oxygen dissolved from the quartz crucible 3 changes. This change affects the oxygen concentration distribution in the silicon single crystal 6 to be pulled up. Therefore, in order to prevent this, the polycrystalline silicon raw material or silicon single crystal raw material may be additionally supplied after pulling up or during pulling up in the quartz crucible 3 where the melt 5 has decreased! /.
  • a heat shield plate 8 (gas flow straightening cylinder) having a substantially inverted truncated conical shape is provided around the silicon single crystal 6 above the quartz crucible 3.
  • the heat shield plate 8 is supported by the heat insulating cylinder 13.
  • the heat shield plate 8 guides the argon gas 7 as a carrier gas supplied from above into the CZ furnace 2 to the center of the melt surface 5a, and further passes through the melt surface 5a to the peripheral portion of the melt surface 5a. Lead to Then, the argon gas 7 is exhausted together with the gas evaporated from the melt 5 at an exhaust port provided in the lower part of the CZ furnace 2. Therefore, the gas flow rate on the liquid surface can be stabilized, and oxygen evaporating from the melt 5 can be maintained in a stable state.
  • the heat shield plate 8 thermally insulates and shields the seed crystal 14 and the silicon single crystal 6 grown by the seed crystal 14 from radiation heat generated in high temperature parts such as the quartz crucible 3, the melt 5 and the heater 9. It will Further, the heat shield plate 8 prevents an impurity (for example, silicon oxide) or the like generated in the furnace from adhering to the silicon single crystal 6 to inhibit single crystal growth.
  • an impurity for example, silicon oxide
  • the size of the gap H between the melt surface 5 a and the melt surface 5 a can be adjusted by raising and lowering the rotary shaft 10 and changing the vertical position of the quartz crucible 3. Alternatively, the gap H may be adjusted by moving the heat shield plate 8 in the vertical direction by means of a lifting device.
  • the growth condition V / G (V: growth rate, G: axial temperature gradient of crystal) of the silicon single crystal 6 is controlled by adjusting the gap H, the rising speed of the pulling shaft 4 a and the like.
  • the concentration of nitrogen in the silicon single crystal 6 (amount of added nitrogen; atoms / cm 3 ) is controlled.
  • the oxygen concentration (atoms / cm 3 ) in the silicon single crystal 6 is controlled by adjusting the crucible rotational speed ⁇ 1, the pulling shaft rotational speed ⁇ 2, the anoregone gas flow rate, the furnace internal pressure and the like. Ru.
  • a magnet 15 is provided around the CZ furnace 2 to apply a horizontal magnetic field (transverse magnetic field) to the melt 5 in the quartz crucible 3.
  • a horizontal magnetic field transverse magnetic field
  • the control of the oxygen concentration is good by adjusting the number of rotations of the crucible.
  • a cooling cylinder 14 for cooling the silicon single crystal 6 being pulled is provided at a position inside the heat shield plate 8 and surrounding the silicon single crystal 6 being pulled.
  • the cooling rate of the silicon single crystal 6 can be controlled by adjusting the flow rate and the like of the cooling water passing through the inside of the cooling cylinder 14.
  • any cooling means can be used to cool the silicon single crystal 6. For example, by providing a heat shielding plate around the silicon single crystal 8 separately from the heat shielding plate 8, the cooling rate of the silicon single crystal 6 may be controlled.
  • the ingot of silicon single crystal 6 manufactured by the apparatus of FIG. 3 is cut by a cutting apparatus to collect silicon wafer.
  • the silicon wafer is machined as shown in FIG. 2 after each process such as chamfering, lapping, etching, poling and cleaning before heat treatment.
  • the silicon wafer is sanitized according to the recipe shown in FIG. That is, the lamp is ramped up to a maximum temperature at a predetermined temperature rise rate T ° C./min, and 1150 ° C. to 1250 ° C. The temperature is maintained at a moderate temperature (for example, 1200 ° C.) for t time (one hour or more, for example, 12 hours), and the silicon wafer is subjected to annealing. Next, ramp down is performed at a predetermined temperature reduction rate T ° C / min, and the silicon wafer is unloaded at the furnace furnace. Also, the annealing is performed, for example, in an atmosphere of argon gas. The annealing may be performed in an atmosphere of hydrogen gas or a mixed gas of hydrogen and argon gas.
  • the present inventors conducted experiments and simulations on SSDs in order to obtain the following findings.
  • the SSD is a defect on the surface of the wafer detected in the DNN (Darkfield / Norona Narrow) mode of the commercially available particle counter SP1.
  • the DNN mode is a mode in which the laser is irradiated perpendicularly to the wafer, and the state of diffuse reflection due to defects is collected and observed at a portion near regular reflection.
  • the DNN mode is an effective mode for detecting dust and pits on the surface.
  • FIG. 5 shows the SSD distribution and the number of SSDs on the surface of each machine.
  • Fig. 5 (a) e) (upper side in the figure) is a notch that has been drained in a hydrogen gas atmosphere
  • Fig. 5 (f) (j) (lower side in the figure) is an amino acid that has been annealed in an argon gas atmosphere.
  • the number of SSDs indicates the number of SSDs with a diameter of 0.1 / z m or more and the number of SSDs with a diameter of 0.14 m or more.
  • FIG. 5 (a) (f) is a sample of a comparative example, and is a sample that obtained a silicon single crystal force having a diameter of 200 mm.
  • the samples except for Fig. 5 (a) and (f) are the ones with 300 mm diameter silicon single crystal force also obtained. In order to compare the number of SSDs with the same diameter, samples with a diameter of 300 mm were machined after being processed to a diameter of 200 mm.
  • the samples of the comparative examples in FIGS. 5 (a) and 5 (f) were obtained from a silicon single crystal pulled in a V-rich region on the higher speed side than the low V / G region shown in FIG. It is Funiruaha.
  • the samples except for the comparative examples shown in FIGS. 5 (a) and 5 (f) are samples obtained from the silicon single crystal force pulled up in the low V / G region shown in FIG.
  • FIG. 6 (a) shows a graph in which the abscissa represents oxygen concentration and the ordinate represents the number of SSDs. Each silicon single crystal was pulled up while changing the oxygen concentration, nitrogen concentration, and crystal pulling rate, and the number of SSDs was measured for each wafer. Furthermore, we counted SSDs with a diameter of 0.14 / z m or more.
  • FIG. 6 (b) shows the cooling rates, oxygen concentration and nitrogen concentration of each group A, B, C, D in FIG. 6 (b) in the form of a table.
  • the group indicated by A in FIG. 6 is a measurement result of each of the wafers obtained from the silicon single crystal which is nitrogen-doped, enters the low V / G region, and is pulled under the crystal growth condition which causes a low cooling rate. Is shown.
  • the cooling rate (° C./min) of this group A is 0.27-0.33
  • the oxygen concentration (X E17 atoms / cc) is 11.2 to 13.4
  • the nitrogen concentration (X E14 atoms / cc). ) Is from 0.7 to 1.2.
  • each of the respective plasmas obtained from the silicon single crystal which is nitrogen-doped enters the V-rich region, and is pulled under the crystal growth conditions for high cooling rate.
  • the measurement results are shown.
  • the cooling rate (° C./min) of this group C is 0.73-0.77
  • the oxygen concentration (X E17 atoms / cc) is 9.3-11
  • the nitrogen concentration (X E14 atoms / cc) Is 1. 1 to 1. 3
  • the number of SSDs in the nitrogen doped group B is greater than that in the nitrogen-undoped group D. From this, it can be understood that the higher the nitrogen concentration, the more SSDs tend to be.
  • the number of SSDs in the group B with medium cooling rate is larger than that in the group C with high cooling rate, and the medium cooling rate
  • the number of SSDs is greater in group A, which has a lower cooling rate than group B. This indicates that the lower the cooling rate, the more SSDs tend to be.
  • the cooling rate is larger than that of the other portions in order to form the tail portion. Therefore, we further investigated the relationship between the cooling rate and the SSD.
  • FIG. 7 shows a graph in which the horizontal axis is the position of the silicon single crystal 6, the left vertical axis is the oxygen concentration Oi, and the right vertical axis is the number of SSDs.
  • the ingot of silicon single crystal 6 is schematically shown on the horizontal axis of FIG.
  • the left side of the horizontal axis in FIG. 7 is the top side of the straight barrel portion of the silicon single crystal 6 ingot, and the right side of the figure is the straight body bottom side of the silicon single crystal 6 ingot.
  • SSDs with a diameter of 0.14 ⁇ m or more were counted.
  • the portion where the cooling rate is low E in Fig. 7 and "the portion where the cooling rate is high” F means that the higher the cooling rate, the smaller the number of SSDs will be. is there.
  • the SSD density Nssd on the surface of the light gauge is the oxygen concentration Oi (at oms / cm 3 ), the nitrogen concentration N (atoms / cm 3 ), and the cooling rate CR (° C./min) in the predetermined temperature range. We thought that it might be calculated as a parameter.
  • SSD density estimation equation an equation for estimating the SSD density Nssd (hereinafter referred to as “SSD density estimation equation”) was determined as follows by multiple regression analysis based on the previous experimental results.
  • A, 1, m and n are constants that vary depending on the threshold of defect diameter judged to be SSD, the diameter of the nozzle, and the temperature range of the cooling rate.
  • each value when judging a defect having a diameter of 0.14 m or more as an SSD was as follows.
  • the abscissa represents the actual number of SSDs obtained by measuring the surface of a 300 mm diameter wafer using the above-mentioned measuring instrument SP1 in DNN mode
  • the ordinate represents the SSD density estimation formula (( 1)
  • the SSD density of 300 mm in diameter determined by equation (3) is converted to the number of SSDs on the surface of 300 mm in diameter on the surface of the aileal ha surface It shows the relationship.
  • Ptl is an individual corresponding point
  • L1 is a corresponding line obtained from each corresponding point Ptl.
  • the estimated number of SSDs almost agrees with the actual measurement.
  • FIG. 9 shows the corresponding lines L21, L22, L23, L24 obtained from the SSD density estimation formula (Formula (1)).
  • the horizontal axis in FIG. 9 is the oxygen concentration Oi (X E17 atoms / cm 3 ), and the vertical axis is the cooling rate (° C./min) at a temperature of 900 ° C. to 1000 ° C. (eg 950 ° C.).
  • Corresponding lines L21, L22, L23, L24 have an oxygen concentration Oi (X E17 atoms / cm 3 ) and a diameter of 300 mm, when the nitrogen concentration N (atoms / cm 3 ) is 5E13, 1E14, 2.5E14, 5E14 respectively.
  • the SSD density in Fig. 9 is the density of SSDs with a diameter of 0.14 m or more.
  • Cooling rate CR can be determined.
  • the silicon single crystal has a nitrogen concentration N of about 2.5E 14 (atoms / cm 3 ) or less, and an oxygen concentration Oi of about 14 (X E17 at 0 m S / C m 3 ) or less
  • N the nitrogen concentration
  • Oi the oxygen concentration
  • pulling up is made under the crystal growth conditions, which is the value of. 9 that the nitrogen concentration N is 2. 5E14 (atoms / cm 3)
  • the cooling rate CR when the oxygen concentration Oi is 14 (X E17atoms / cm 3) is, 2. 5 (° C / min ) It is. Therefore, if the silicon single crystal is pulled by controlling the cooling rate CR at a temperature of 900 ° C. to 1000 ° C.
  • the nitrogen concentration N is 2 5E 14 (atoms / cm 3 ) or less, as long as the oxygen concentration Oi is adjusted to 14 (XE 17 atoms / cm 3 ) or less, the surface of the 300 m diameter surface
  • the SSD density can be reliably reduced to less than 0.15 / cm 2 (less than 100 defects on a 300 mm diameter surface).
  • FIG. 10 shows the corresponding lines L31, L32, L33, and L34 obtained from the SSD density estimation formula (Formula (1)).
  • the horizontal axis in FIG. 10 is the oxygen concentration Oi (X E17 atoms / cm 3 ), and the vertical axis is the cooling rate (° C./min) at a temperature of 900 ° C. to 1000 ° C. (eg 950 ° C.).
  • Corresponding lines L31, L32, L33 and L34 have oxygen concentration Oi (X E17 atoms / cm 3 ) and nitrogen diameter 300 mm when nitrogen concentration N (atoms / cm 3 ) is 5E13, 1E14, 2.5E14, 5E14 respectively.
  • the SSD density in Fig. 10 is the density of SSD with a diameter of 0.14 m or more.
  • Cooling rate CR can be determined.
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is 1.5 Control to more than ° C / min) Raising the silicon single crystal, the nitrogen concentration N is adjusted to 2.5E 14 (atoms / cm 3) about or less, the oxygen concentration Oi 14 (XE17atoms / cm 3) about or adjusted to a lower? / As long as it is possible, the SSD density of the surface of the 300 mm diameter AA can be reliably reduced to 0.3 / cm 2 or less (less than 200 defects on the 300 mm diameter surface). I understand.
  • FIG. 11 shows equal cooling rate lines L41... Obtained from the SSD density estimation formula (Formula (1)).
  • the horizontal axis in FIG. 11 is the oxygen concentration Oi (X 10 17 at O m S / cm 3 ), and the vertical axis is the nitrogen concentration N (X 10 14 atoms / cm 3 ).
  • the maximum value is 14 (X 10 17 atoms / cm 3 ) in the range of the oxygen concentration Oi on the horizontal axis.
  • the maximum value of the range of nitrogen concentration N on the vertical axis is 5 (X 10 14 atoms / cm 3 ).
  • the cooling rate CR (° C./min) required to make the SSD density 0.15 or less / cm 2 or less (the number of defects 100 or less on the surface of 300 mm diameter) is shown on the surface.
  • the silicon single crystal generally has a nitrogen concentration N as a value of 5 (X 10 14 atoms / cm 3 ; the maximum value in the range of nitrogen concentration N on the vertical axis) or less, and an oxygen concentration Oi of 14 (X 10 17 ).
  • N nitrogen concentration
  • Oi oxygen concentration
  • the silicon single crystal is pulled by controlling the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. (for example, 950 ° C.) to 4.2 (° C./min) or more, normal nitrogen concentration and oxygen concentration range That is, the nitrogen concentration N is adjusted within the range of 5 (X 10 14 atoms / cm 3 ; the maximum value in the range of nitrogen concentration N on the vertical axis) or less, and the oxygen concentration Oi is 14 (X 10 17 a tom S / C m 3 ; As long as adjustment is made within the range below the oxygen concentration Oi in the horizontal axis), a 300 mm diameter
  • the SSD density on the surface of WAH can be reliably reduced to less than 0.15 / cm 2 (less than 100 defects on the surface of 300mm diameter LANEAH).
  • FIG. 12 shows equal cooling rate lines L 51... Obtained from the SSD density estimation formula (Formula (1)).
  • the horizontal axis in FIG. 12 is the oxygen concentration Oi (X 10 17 at O m S / cm 3 ), and the vertical axis is the nitrogen concentration N (X 10 14 atoms / cm 3 ).
  • the maximum value is 14 (X 10 17 atoms / cm 3 ) in the range of the oxygen concentration Oi on the horizontal axis.
  • the maximum value of the range of nitrogen concentration N on the vertical axis is 5 (X 10 14 atoms / cm 3 ).
  • the cooling rate CR (° C./min) required to make the SSD density 0.3 or less / cm 2 or less (the number of defects on the 300 mm diameter wafer surface or less) is 0.3 or less on the surface.
  • the cooling rate CR required to make the SSD density 0.3 or less / cm 2 or less with the oxygen concentration Oi and the nitrogen concentration N as parameters.
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is 2. 8 (°° C.) from the respective equal cooling rate lines L51.
  • the nitrogen concentration N is 5 (X 10 14 atoms / cm 3 ; the nitrogen concentration N range on the vertical axis Adjust the oxygen concentration Oi in the range below the maximum value of 14) (X 10 17 a tom S / C m 3 ; the maximum value in the range of the oxygen concentration Oi on the horizontal axis) below the range! /,
  • the surface density of the 300mm diameter surface of the SSD is less than 0.3 pieces / cm 2 (less than 200 defects on the 300mm diameter surface). I know that I can do it!
  • SSD refers to oxygen and nitrogen related precipitates related to oxygen and nitrogen inside the crystal that are generated when pulling up a silicon single crystal. It is thought that it was grown as a defect having a form that is easily detected in the DN mode of particle counter SP1 at the surface of the wafer with the associated precipitate as a nucleus.
  • the silicon single crystal can be pulled up by controlling the parameters of oxygen concentration, nitrogen concentration, and cooling rate, the precipitates related to oxygen and nitrogen, which become the nucleus of SSD, are removed before annealing. It is thought that it can be reduced at the stage of!, And disappears! /, And that it can be suppressed from appearing as an S SD after the annealing.
  • Figs. 13 (a) and 13 (b) show the results of MAGICS measurement of the surface of the transparent substrate.
  • FIGS. 13 (c) and 13 (d) show the results of AFM measurement of the surface of the mask.
  • the SSD is a defect that is concave with respect to the surface of the wafer.
  • the SSD is a very gentle depression having a width of 0.5 to 2.5 / ⁇ and a depth of about 2 to 5 nm, that is, a concave defect having a very shallow and wide shape.
  • FIG. 14 shows the surface of Wauha (shown as “after“ Animal ”in the figure) immediately after the product using SP1.
  • the result of measurement in the DNN mode is compared with the result of measurement of the surface of the Wauha (“after grinding” in the figure after polishing) to a depth of 1 ⁇ m after the annealing in the DNN mode using SP1.
  • Both “after anil” and “after abrading” were measured and compared for each of the group A shown in FIG. 6, the group A shown in FIG. 6, and the group A shown in FIG.
  • SSDs with a diameter of 0.14 ⁇ m or more detected on the surface of 300 mm in diameter were counted.
  • FIG. 15 shows the results of measurement of each sample # 1 to # 10 in the DNN mode using SP1 on the surface of the wafer immediately after the amino acid (indicated by "after” in the figure) in the sample, and The surface of the wafer after polishing the surface to a depth of 1 ⁇ m (in the figure, “After polishing”) is compared with the results measured for each of the samples # 1 to # 10 in the DNN mode using SP1. Show.
  • the SSD is a defect which is unevenly distributed in the surface layer which disappears almost by polishing of the surface layer of the light beam, that is, polishing of at least about 1 ⁇ m.
  • the nitrogen-doped glass has very shallow and wide concave defects (SSD) on the surface of the wafer.
  • SSD concave defects
  • G) SSD is a defect localized on the very surface layer of the surface of the surface that disappears by polishing the surface of the surface at least 1 m.
  • Example 1 when pulling up the silicon single crystal 6 from the melt 5 using the single crystal pulling apparatus 1 shown in FIG. 3, the oxygen concentration Oi, the nitrogen concentration N, and the cooling rate in the predetermined temperature range.
  • Oi oxygen concentration
  • N nitrogen concentration
  • N cooling rate
  • control of the three parameters, oxygen concentration Oi, nitrogen concentration N, and cooling rate CR in a predetermined temperature range is control of the above-described equation (1), Nssc ⁇ ACOG ⁇ N ⁇ CCR] 11 (wherein , 1, m> 0, n ⁇ 0).
  • the nitrogen concentration N (nitrogen addition amount; atoms / cm 3 ) in the silicon single crystal 6 is controlled by adjusting the nitrogen input amount into the quartz crucible 3.
  • the oxygen concentration Oi (atoms / cm 3 ) in the silicon single crystal 6 can be obtained by adjusting the crucible rotation speed ⁇ 1, the pulling shaft rotation speed ⁇ 2, the anoregone gas flow rate, the furnace internal pressure, etc. during pulling. Controlled. Further, while the horizontal magnetic field is applied to the melt 5 by the magnet 15, the oxygen concentration Oi is controlled by adjusting the crucible rotation number.
  • the cooling rate of the silicon single crystal 6 is controlled. As described above, the cooling rate of the silicon single crystal 6 may be controlled using cooling means other than the cooling cylinder 14.
  • the growth conditions V / G (V: growth rate, G: axial temperature gradient of crystal) of the silicon single crystal 6 are controlled by adjusting the gap H, the rising speed of the pulling shaft 4a, etc. Ru.
  • the growth condition V / G is controlled to enter the low V / G region shown in FIG.
  • the pulled silicon single crystal 6 is annealed to produce an anthracite.
  • the SSD density Nssd on the surface of the probe can be reduced by appropriately adjusting the oxygen concentration, the nitrogen concentration, and the cooling rate. That is, according to the first embodiment, conventionally, when a silicon single crystal is pulled up under the conditions of entering the low V / G region, a large number of SSDs are generated. However, according to the conditions of entering the low V / G region, the silicon single crystal 6 is used. If pulled up, the SSD can be reduced by leaps and bounds.
  • the density Nssd of the SSD detected on the surface of the wafer S SD density Nssd, oxygen concentration Oi in silicon single crystal 6, nitrogen concentration in silicon single crystal 6, silicon It predicts using the relationship which is satisfied with the cooling rate CR of the predetermined temperature range at the time of pulling of the single crystal 6.
  • the silicon single crystal 6 is pulled up from the melt 5 under crystal growth conditions such that the oxygen concentration Oi, nitrogen concentration N, and cooling rate CR in a predetermined temperature range are obtained such that the predicted SSD density Nssd can be obtained. .
  • the number of variables in the above equation (1) is four. Therefore, if three parameters are determined, one remaining parameter is determined. For example, the values of SSD density, oxygen precipitate density that determines gettering ability, oxygen concentration Oi as the required specification required to satisfy quality such as thickness of defect-free layer on the surface of wafer, and nitrogen concentration N If you give, the remaining cooling rate CR will be determined.
  • the cooling capacity of the cooling cylinder 14 may be adjusted so as to obtain the cooling rate CR obtained in this manner.
  • Specific control means of the oxygen concentration Oi and the nitrogen concentration N are the same as in Example 1.
  • the pulled silicon single crystal 6 is annealed to produce an anthracite.
  • the SSD density Nssd on the surface of the plastic can be reduced to the predicted desired value.
  • FIG. 16 is a table showing the cooling rate, oxygen concentration, nitrogen concentration, SSD actual density, and SSD estimated density when pulling up the silicon single crystal 6 by changing the desired value of the SSD density Nssd for each test. Is shown.
  • the SSD is targeted for a size of 140 nm or more in diameter.
  • Nssd 0.15 (pieces / cm 2) or less of the desired values (0.54, 0.07, 0.06, and 0.14), Cold exit velocity at 950 ° C. CR (0. 29, 0. 42, 0. 75, 0. 35 ° / 111 ⁇ , oxygen concentration 0 12. 40, 11. 70, 11. 41, 11. 64 X
  • the single crystal 6 of silicon was pulled up by obtaining E17 atoms s / cm 3 ) and an N concentration of N (9.9, 5.0, 10. 80, 6. 8 x: E 13 atoms / cm 3 ).
  • the horizontal axis represents the estimated SSD density
  • the vertical axis represents the SSD actual density
  • the relationship between the estimated SSD density of 1 to 8 and the measured SSD density of each test No. 1 to 8 is shown.
  • Pt2 is an individual corresponding point
  • L6 is a corresponding line obtained from each corresponding point Pt2.
  • the estimated SSD density almost matches the actual density of the SSD, and when the silicon single crystal 6 is pulled up by predicting the SSD density, the SSD on the surface of the ailwaha surface is almost aimed at, as it is It was possible to reduce to the desired value with high accuracy.
  • the cooling rate CR is made to differ depending on the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount, and the silicon single crystal 6 is pulled up.
  • the cooling rate CR is controlled to be different for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount, it is necessary to change the control contents each time. So, this If you know the required specification of the SSD number, the range of solid oxygen concentration required as the required specification, and the range of nitrogen doping amount to avoid this, the cooling rate CR such that this required specification can always be obtained Control may be performed by fixing to a value.
  • the diameter 140 nm using oxygen concentration Oi and nitrogen concentration N as parameters As described above, based on the corresponding lines L21, L22, L23, L24 shown in FIG. 9 or the cooling rate lines L41... Shown in FIG. 11, the diameter 140 nm using oxygen concentration Oi and nitrogen concentration N as parameters. It is possible to determine the cooling rate CR required to make the SSD density of the above size not more than 0.15 / cm 2 .
  • Silicon single crystal 6 has a nitrogen doping amount N of about 2.5E 14 (atoms / cm 3 ) or less (however, the lower limit is lE 13 atoms / cm 3 ), and the solid solution oxygen concentration Oi is 14 (X In many cases, the crystal growth conditions are such that the value is about E17 atoms / cm 3 or less (but the lower limit is 11 ⁇ E 17 atoms / cm 3 ). From FIGS. 9 and 11, the cooling rate CR when the nitrogen concentration N is 2.5E 14 (atom s / cm 3 ) and the oxygen concentration Oi is 14 (X E17 atoms / cm 3 ) is 2.5 ( ° C / min)
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is a value of 2.5 (° C./min) or more (eg, 2.5 ° C./min).
  • the cooling rate CR is controlled by adjusting the cooling capacity of the cooling cylinder 14.
  • the nitrogen doping amount N and the solid solution oxygen concentration Oi are controlled to be values according to the required specifications.
  • the nitrogen doping amount N is adjusted to a range of about 2.5E 14 (atoms / cm 3 ) or less, ie, a range of 1E13 to 2.5E14 atoms / cm 3 , and the solid solution oxygen concentration Oi is adjusted.
  • the SSD density on the surface can be reliably reduced to not more than 0.15 pieces / cm 2 (less than 100 defects per 300 mm diameter surface).
  • the control content of the cooling rate CR is calculated for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount. There is no need to change each time. (Example 4)
  • the diameter 140 nm with the oxygen concentration Oi and the nitrogen concentration N as parameters. It is possible to obtain the cooling rate CR required to make the SSD density of the above size 0.3 or less / cm 2 .
  • Silicon single crystal 6 has a nitrogen doping amount N of about 2.5E 14 (atoms / cm 3 ) or less (however, the lower limit is lE 13 atoms / cm 3 ), and the solid solution oxygen concentration Oi is 14 (X In many cases, the crystal growth conditions are such that the value is about E17 atoms / cm 3 or less (but the lower limit is 11 ⁇ E 17 atoms / cm 3 ). From FIGS. 10 and 12, when the nitrogen concentration N is 2.5E14 (ato ms / cm 3 ) and the oxygen concentration Oi is 14 (X E17 atoms / cm 3 ), the cooling rate CR is 1.5 (° C / min).
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is a value of 1.5 (° C./min) or more (eg, 2.5 ° C./min).
  • the cooling rate CR is controlled by adjusting the cooling capacity of the cooling cylinder 14.
  • the nitrogen doping amount N and the solid solution oxygen concentration Oi are controlled to be values according to the required specifications.
  • the control contents of the cooling rate CR are calculated for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount. There is no need to change each time.
  • the silicon single crystal 6 generally has a nitrogen concentration N as a value of 5 (X 10 14 atoms / cm 3 ; the maximum value in the range of nitrogen concentration N on the vertical axis) or less, and an oxygen concentration Oi of 14 X 10 17 atoms / cm 3 ; the maximum value of the range of oxygen concentration Oi in the horizontal axis) or less. According to FIG.
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is a value of 4.2 (° C./min) or more (eg, 4.2 ° C.).
  • the silicon single crystal 5 is pulled up under control of / min).
  • the cooling rate CR is controlled by adjusting the cooling capacity of the cooling cylinder 14.
  • the nitrogen doping amount N and the solid solution oxygen concentration Oi are controlled to be values according to the required specifications.
  • the normal nitrogen concentration and the oxygen concentration range that is, the nitrogen concentration N is adjusted within the range of 5 (X 10 14 atoms / cm 3 ; the maximum value of the range of the nitrogen concentration N in the vertical axis) And adjust the oxygen concentration Oi within the range of 14 (X 10 17 atoms / cm 3 ; the maximum value of the range of oxygen concentration Oi on the horizontal axis), as long as it is 300 mm in diameter.
  • the surface SSD density can be reliably reduced to less than 0.15 / cm 2 (less than 100 defects on a 300 mm diameter wafer surface).
  • the control contents of the cooling rate CR are calculated for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount. There is no need to change each time.
  • Silicon single crystal 6 generally has a nitrogen concentration N as a value of 5 (X 10 14 atoms / cm 3 ; the maximum value in the range of nitrogen concentration N on the vertical axis) or less, and an oxygen concentration Oi of 14 ( X 10 17 atoms / cm 3 ; the maximum value of the range of oxygen concentration Oi in the horizontal axis) or less. According to FIG.
  • the cooling rate CR at a temperature of 900 ° C. to 1000 ° C. is a value of 2.8 (° C./min) or more (eg, 2.8 ° C.).
  • the silicon single crystal 5 is pulled up under control of / min).
  • the cooling rate CR is controlled by adjusting the cooling capacity of the cooling cylinder 14.
  • the nitrogen doping amount N and the solid solution oxygen concentration Oi are controlled to have values according to the required specifications.
  • the normal nitrogen concentration and oxygen concentration range that is, the nitrogen concentration N is adjusted within the range of 5 (X 10 14 atoms / cm 3 ; maximum value of the range of nitrogen concentration N on the vertical axis) And adjust the oxygen concentration Oi within the range of 14 (X 10 17 atoms / cm 3 ; the maximum value of the range of oxygen concentration Oi on the horizontal axis), as long as it is 300 mm in diameter.
  • the surface SSD density can be reliably reduced to less than 0.3 pieces / cm 2 (less than 200 defects on a 300 mm diameter wafer surface).
  • the control content of the cooling rate CR is calculated for each of the required specifications of the number of SSDs, the solid solution oxygen concentration, and the nitrogen doping amount. There is no need to change each time.
  • Example 5 and Example 6 when the nitrogen concentration N is 5E14 at 0 m S / cm 3 or less and the oxygen concentration Oi is 14E 17 atoms / cm 3 or less, the SSD density Nssd is 0.15 / cm 2.
  • the cooling rate CR which becomes 0.3 pieces / cm 2 or less is obtained by obtaining the SSD density estimation equation (equation (1)), specifically from the equal cooling rate line of FIG. 11 and FIG.
  • the silicon single crystal 6 is pulled up by controlling the cooling rate so as to achieve the rate CR. But this As a matter of fact, values to reduce the SSD density Nssd are not limited to 0.15 pieces / cm 2 or less and 0.3 pieces / cm 2 or less.
  • an isocooling rate line in which the SSD density Nssd is less than or equal to a desired value is prepared in advance, and the nitrogen concentration N There in 5E1 4atoms / cm 3 or less, when the oxygen concentration Oi is 14E17atoms / cm 3 or less, seeking the cooling rate CR of SSD density Nssd is below a desired value, by the cooling rate CR determined urchin By controlling the cooling rate, it is also possible to pull up the silicon single crystal 6.
  • the machine manufactured by the manufacturing method of each of the above-described examples ensures that the density of the SSD detected on the surface of the wafer is desired when measured in the DNN mode using the commercially available particle counter SP1. It has been reduced to the value.
  • silicon single crystal 6 can be pulled and grown under growth conditions that fall within the desired low V / G region (FIG. 1) for the end fabrication.
  • the silicon single crystal manufacturing method of the above-described Examples 1 to 7 pulls and grows the silicon single crystal 6 while controlling three parameters of oxygen concentration Oi, nitrogen concentration N, and cooling rate CR, thereby forming the nucleus of the SSD and It is a manufacturing method that reduces the oxygen and nitrogen related precipitates and reduces the SSD density Nssd on the surface of the diamond.
  • a method for producing a single crystal 6, comprising the steps of: preparing silicon single crystal 6; thereafter, annealing the silicon wafer; and, after completion, polishing the surface to a depth of at least at least m.
  • the implementation also ensures that the SSD density Nssd on the plastic surface can be reduced as well.
  • the disk manufactured thereby is When the surface is measured in DNN mode using a particle counter, the density of SSDs with a diameter of 140 nm or more detected on the surface of the wafer is surely 0.040 pieces / cm 2 or less, and the reduction effect of the SSD is Especially expensive.
  • the method applied to the above-mentioned ainil aeha may be applied to epitaxial aeha. That is, by controlling the three parameters of oxygen concentration, nitrogen concentration, and cooling concentration in the process of pulling growth of silicon single crystal 6 before epitaxial growth, the density (number) of precipitates related to oxygen and nitrogen is controlled. It is also possible to reduce the amount of SSDs that occur after epitaxial growth.
  • the silicon single crystal 6 with a diameter of 300 mm is pulled and grown.
  • the diameter size of the silicon single crystal 6 is arbitrary, and the silicon single crystal 6 having a diameter size smaller than 300 mm (for example, 200 mm) or a diameter size larger than 300 mm is pulled up and grown. The same applies to cases where it is used.
  • Fig. 1 is a graph showing the relationship between growth conditions and point defect density, and is a graph for explaining the low V / G region.
  • Fig. 2 is a cross-sectional view showing an ideal cross-sectional structure of a light chair.
  • FIG. 3 is a cross-sectional view of the manufacturing apparatus of silicon single crystal also viewed from the side force.
  • Fig. 4 is a diagram showing the recipe of guanine.
  • FIGS. 5 (a) to 5 (j) are diagrams illustrating SSDs observed on the surface of the waha.
  • Fig. 6 is a graph showing the relationship between oxygen concentration and the number of SSDs, and Fig. 6 (b) is a table corresponding to Fig. 6 (a).
  • Fig. 7 is a graph showing the relationship between silicon single crystal position, oxygen concentration, and number of SSDs.
  • Fig. 8 is a graph showing the relationship between the actual measurement value of SSD and the estimated value of SSD.
  • FIG. 9 is a graph showing the relationship between the oxygen concentration and the cooling rate for each nitrogen concentration.
  • FIG. 10 is a graph showing the relationship between the oxygen concentration and the cooling rate for each nitrogen concentration.
  • FIG. 11 is a graph showing equal cooling rate lines for reducing the number of SSDs to a predetermined value or less, using oxygen concentration and nitrogen concentration as parameters.
  • Figure 12 is a graph showing isocooling rate lines for reducing the number of SSDs to a predetermined value or less, using the oxygen concentration and nitrogen concentration as parameters.
  • Figures 13 (a) and 13 (b) show the results of MAGICS measurement of the surface of the vanille-cha
  • Figures 13 (c) and (d) show the results of AFM measurement of the surface of the vanille-cha.
  • FIG. 14 is a graph showing the number of SSDs immediately after the annealing and the number of SSDs after the polishing after the annealing.
  • FIG. 15 is a graph showing the number of SSDs immediately after the annealing and the number of SSDs after the polishing after the annealing.
  • FIG. 16 shows each SSD estimated density desired and the corresponding cooling rate, oxygen concentration, The relationship between the nitrogen concentration and the SSD actual density is shown in each test.
  • Fig. 17 is a graph showing the relationship between the estimated SSD density shown in Fig. 16 and the actual SSD density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 アニールウェーハにとって必要不可欠なウェーハ表面におけるSSD以外のボイド欠陥の低減や、バルク内のゲッタリング源としてのBMDの生成を保証しつつ、SSDを確実に低減させるようにして、アニールウェーハの品質を安定させるための方法であり、シリコンウェーハをアニールすると、SSDの核となる酸素と窒素に関連した析出物の密度(数)が増大するものと考え、この酸素と窒素に関連した析出物の密度(数)をアニール前のシリコン単結晶6の引上げ成長の過程で、酸素濃度、窒素濃度、冷却濃度という3つのパラメータを制御することによって減らすという手法で、SSDを減らす。あるいは、アニール後に研磨を施すことで、SSDを減らす。

Description

明 細 書
シリコン単結晶の製造方法およびァニールゥエーハおよびァニールゥェ ーハの製造方法
技術分野
[0001] 本発明は、ァニールゥ ーハ表面の SSD (表面の非常に幅広ぐ浅い形状の凹状 欠陥; Surface Shallow Defect)の密度(または数)を、低減させることができるシリコン 単結晶の製造方法あるいはァニールゥエーハの製造方法、または、同 SSDの密度( または数)が低減されて!ヽるァニールゥエーハに関する。
背景技術
[0002] シリコン単結晶は CZ (チヨクラルスキー法)によって引上げ成長されることによって製 造される。引上げ成長されたシリコン単結晶のインゴットはシリコンゥエーノ、にスライス される。半導体デバイスはシリコンゥエーハの表面にデバイス層を形成するデバイス 工程を経て作成される。
[0003] しかし、シリコン単結晶の成長の過程でグローイン(Grown-in)欠陥(結晶成長時導 入欠陥)と呼ばれる結晶欠陥が発生する。
[0004] 近年、半導体回路の高集積化、微細化の進展に伴い、シリコンゥエーハのうちデバ イスが作成される表層近くには、こうしたグローイン欠陥が存在することが許されなく なってきて 、る。このため無欠陥結晶の製造の可能性が検討されて 、る。
[0005] 一般にシリコン単結晶に含まれデバイスの特性を劣化させる結晶欠陥は、以下の 3 種類の欠陥である。
[0006] · COP (Crytstal Originated Particle)などと呼ばれる、空孔が凝集して生じるボイド( 空洞)欠陥。
[0007] · OSF (酸化誘起積層欠陥, Oxidation Induced Stacking Fault )
•格子間シリコンが凝集して生じる転位ループクラスタ (格子間シリコン型転位欠陥、 I -defect)。
[0008] 無欠陥のシリコン単結晶とは、上記 3種の欠陥のいずれも含まないか、実質的に含 まな 、結晶として認識な 、しは定義されて 、る。 [0009] 上記 3種の欠陥の発生挙動は成長条件によって以下のように変化することが知られ ている。図 1を併せ参照して説明する。図 1において横軸は、成長条件 V/G (V:成長 速度、 G :シリコン単結晶の融点近傍での軸方向温度勾配)であり、 Gを固定とすれば 成長速度 Vの関数と考えられる。図 1の縦軸は、点欠陥濃度である。
[0010] ·成長速度 Vが速い場合には、シリコン単結晶は空孔型点欠陥が過剰となり、ボイド 欠陥のみが発生する。
[0011] '成長速度 Vを減じると、シリコン単結晶 10の外周付近にリング状に OSF (R— OSF) が発生し、 R—OSF部の内側にボイド欠陥が存在する構造となる。
[0012] '成長速度 Vを更に減じると、リング状の OSF (R— OSF)の半径は減少し、リング状 OSF部の外側に欠陥が存在しない領域が生じ、 R—OSF部の内側にボイド欠陥が 存在する構造となる。
[0013] ·さらに成長速度 Vを減じると、シリコン単結晶全体に転位ループラスタが存在する構 造となる。
[0014] 上述した現象が起こるのは成長速度 Vの減少に伴いシリコン単結晶が空孔型点欠 陥過剰な状態力 格子間型点欠陥過剰な状態へと変化するためであると考えられて おり、その変化はシリコン単結晶の外周部力も始まると理解されている。
[0015] 図 1において、ボイド欠陥が高密度に存在する領域を、 V リッチ領域 (空孔型点欠 陥優勢領域)といい、 I リッチ領域 (格子間型点欠陥優勢領域)という。
[0016] 上記 3種の欠陥のうち特にボイド欠陥は、微細化したデバイスで素子分離不良など の原因となるため、その低減が特に必要とされている。
[0017] ボイド欠陥は、結晶成長時にシリコン融液から取り込まれた原子空孔 (点欠陥)が、 結晶冷却中に臨界過飽和度に達することによって凝集して生じるものであり、その欠 陥検出方法によって LPD (レーザ パーティクル ディフエタト)、 COP (クリスタル ォ リジネィテイド パーティクル)、 FPD (フロー パターン ディフエタト)、 LSTD (レーザ スキヤッタリング トモグラフィ ディフエタト)などと呼ばれる。
[0018] 無欠陥のシリコン単結晶とは、上記 3種の欠陥のいずれも含まないか、実質的に含 まな 、結晶として認識な 、しは定義されて 、る。
[0019] デバイス回路が作成される表層付近においてグローイン欠陥を含まないシリコンゥ エーハを得るために次のような方法が考案されて 、る。
[0020] ·結晶の成長条件を制御して、無欠陥の単結晶インゴットを製造する。
[0021] ·高温ァニールにより、ゥエーハ表層付近のボイド欠陥を消滅させる。
[0022] ·ェピタキシャル成長によりゥ ーハ表面に無欠陥層を成長させる。
[0023] このうち、「高温ァニールにより、ゥエーハ表層付近のボイド欠陥を消滅させる」とい う上記方法は、既に公知の技術になっている。これは通常の成長条件で育成したボ イド欠陥を含むシリコン単結晶からシリコンゥエーハを採取し、採取したゥエーハを高 温で長時間の熱処理により得られたゥ ーハ(以下、本明細書では、「ァニールゥ ーハ」 )の表層付近のボイド欠陥を消滅させるものである。
[0024] また、デバイスの製造工程では、熱処理中に BMD (バルタ微細欠陥; Bulk micro d efect)と呼ばれる酸素析出物が発生する。 BMDの発生の制御は、シリコンゥエーハ 製造上の重要な課題となっている。すなわち、 BMDがデバイス回路が作成される表 層付近において形成されるとデバイスの機能を阻害する。
[0025] 一方で、シリコンゥエーハの表層部に、 Fe、 Cuなどの重金属不純物が存在すると、 デバイス作成時にデバイス特性を劣化させる。このためシリコンゥエーハのバルタ内 に重金属を捕獲するゲッタリングサイトを形成する必要がある。ここでシリコンゥエーハ のバルタ内に生じた BMDは、重金属を捕獲するゲッタリング (イントリンシックゲッタリ ング)源として有効に作用する。
[0026] 図 2は、ァニールゥ ーハの断面の構造を模式的に示している。
[0027] 以上のことから、同図 2に示すようにァニールゥヱーハ 100を製造するにあたり、ゥェ ーハ 100の内部には概ね 108個/ cm3以上の高密度の BMDを有したイントリンシッ クゲッタリングサイトを形成し、表層のデバイス作成層( 10ミクロン以上の深さ)には 、 BMDを含まず、また前述した COPなどのグローイン欠陥も含まないような無欠陥層 、つまり DZ層を形成することが必要となる。そして、このようなァニールゥエーハの製 造を工業的に容易に達成することが強く望まれている。
[0028] COP、 BMDの密度は、シリコン単結晶中の酸素濃度の影響を受ける。したたがつ て、シリコン単結晶中の酸素濃度は、理想的なァニールゥヱーハを製造する上で重 要となる。 [0029] また、ァニール処理による COPの消滅を容易に行うために、シリコン単結晶に窒素 をドープして、初期の COPのサイズを小さくする方法がとられる。これに関しては後掲 する特許文献 2に記載されている。また、窒素ドープを行うことで BMDも多く作ること ができる。
[0030] このように COPのサイズ、 BMDの数は、窒素濃度の影響を受ける。
[0031] 以上のように理想的なァニールゥエーハを製造するには、その基板となるシリコン単 結晶中の酸素濃度、窒素濃度を制御することが重要となる。
[0032] また、シリコン単結晶を育成する過程で、引上げ成長速度を遅くする、つまり引上げ 速度 Vと融点近傍の温度勾配 Gとの比 V/Gを低くする、ことにより、結晶中に取り込ま れる空孔量を減らし、 COPのサイズを縮小すると 、う方法も知られて 、る。
[0033] 直径 200mmサイズのシリコンゥエーハを製造する場合には、きわめて高速で引き 上げることができる。引上げ速度が上昇するとシリコン単結晶の冷却速度が上がり、 C OPが形成される温度領域の滞在時間が短縮され、 COPのサイズを縮小することが できる。
[0034] ところが、直径 300mmサイズのシリコンゥエーハを製造する場合には、シリコンイン ゴットの熱容量が増大することから、シリコン単結晶の冷却速度を、 COPサイズを縮 小化するに十分な速度まで早めることができない。
[0035] このため直径 300mmサイズのシリコンゥエーハを製造する場合には、逆に引上げ 速度を遅くして、各種条件を設定した上で COPサイズの縮小を図る方法がとられる。
[0036] すなわち、図 1において、 R—OSF領域と重なる低 V/Gの領域に入るような結晶育 成条件で、直径 300mmサイズのシリコン単結晶が引き上げられることが多い。この低 V/G領域では、シリコン単結晶に取り込まれる空孔の数が減るため、 COPのサイズ および密度を低減することができ、ァニールによって COPを消滅し易くなる。ただし、 ゆっくりと冷やされる徐冷タイプのシリコン単結晶となる。
[0037] 以上のような手法をとることにより、図 2に示すような理想的なァニールゥエーハ 100 が工業的に容易に製造されると考えられていた。
[0038] しかし、最近になって、ボイド欠陥(COP)とは起源を異にする DNN欠陥という欠陥 力 ァニールゥヱーハの表層で発見されるに至っている。 [0039] DNN欠陥とは、市販のパーティクルカウンタ SP1 (KLA TENCOR社製の測定器) の DNN (ダークフィールド ノーマル ナロー)モード測定で検出されるゥエーハ表面 の欠陥である。 DNNモードは、ゥエーハに対して垂直にレーザを照射し、欠陥による 乱反射の状況を正反射に近 、部分で集光し観察するモードである。 DNNモードは、 ゥエーハ表面のゴミゃピット(くぼみ)を検出するのに有効なモードである。
[0040] 後掲する特許文献 1には、ァニール前に、フッ酸洗浄を行うことにより、ァニール後 に発生する DNN欠陥の核となる酸素析出物を溶解することで、 DNN欠陥を低減さ せると 、う発明が記載されて 、る。
[0041] また、特許文献 1には、 DNN欠陥と酸素濃度、窒素濃度、結晶育成条件との関係 に関して、以下のような知見が記載されている。
[0042] 1)シリコン単結晶中の酸素濃度を高くすると、 DNN欠陥数が増大すると 、う知見が 示されて!/、る(特許文献 1の段落 (0023) )。
[0043] 2)窒素を含まないァニールゥエーハに比べて、窒素を含むァニールゥエーハの方が 、ゥエーハに発生する DNN欠陥が多 、と 、う知見が示されて 、る(特許文献 1の段 落 (0020) )。
[0044] 3) OSFが発生しやすい領域に入る結晶育成条件でシリコン単結晶を引き上げ成長 させると、 DNN欠陥の発生が多く見られることから、「OSFが発生しやすい領域」を 回避して、 OSFの発生が少ない領域に入る結晶育成条件でシリコン単結晶を引上 げ成長させることで、 DNN欠陥の発生が低減するという知見が示されている (特許文 献 1の段落 (0057) )。
特許文献 1:特開 2004 - 119446号公報
特許文献 2:特許第 3479001号公報
発明の開示
発明が解決しょうとする課題
[0045] 後述するように本発明者は、窒素ドープされたァニールゥヱーハの表面に、非常に 幅広ぐ浅い形状の凹状欠陥が発生していることを発見した。以下、この欠陥を、「表 面の非常に幅広ぐ浅い形状の凹状欠陥」の意味で、 SSD (Surface Shallow Defect) と定義する。また、 SSDは、前述した KLA TENCOR社製パーティクルカウンタ SP1測 定器の DNNモード測定によって、はじめて検出可能となった欠陥である。その意味 で、 SSDは、前述した特許文献 1に開示されている DNN欠陥の範疇に入る。そこで 、以下、特許文献 1に開示されている「DNN欠陥」を、本発明者が発見した欠陥であ る「SSD」に置き換えて、特許文献 1では、未だ解決されていない課題について説明 する。
[0046] すなわち、上記特許文献 1には、つぎのことは記載されて 、な!/、。
[0047] a) SSD数を低減するために必要な酸素濃度、窒素濃度の具体的、定量的な数値 b) SSD発生の原因となる酸素濃度、窒素濃度以外の具体的な他のパラメータ c) SSD発生の原因となる各パラメータの依存度合い、各パラメータの関係
このためァニールゥエーハを製造する上で、発生する SSDの数を正確に予測したり
、正確に制御することができない。この結果、ァニールゥエーハの品質のバラツキ等 の問題を招く。たとえば、上述した特許文献 1の知見ィ)から、酸素濃度のみを単純に 減らすという対策が考えられる。しかし、単純に酸素濃度のみを低下させてしまうと、 今度はァニールゥエーハでスリップが発生し易くなるなどの問題が新たに発生する。 このことは特許文献 1にも記載されて 、るところである(特許文献 1の段落 (0024) )。 ここで、上記 a)、 b)、 c)の知見があれば、 SSD数を所望の数まで減らし、し力もスリツ プの発生等の問題も生じない酸素濃度を予測でき、ァニールゥ ーハの品質を安定 させることが可會となる。
[0048] 同様に、上述した特許文献 1の知見 2)から、シリコン単結晶に窒素を添加しない、 あるいは窒素ドープ量を僅かにとどめるという対策が考えられる。しかし、単純にシリ コン単結晶に窒素を添加しない、あるいは窒素ドープ量を僅かにとどめることにすると 、前述した窒素ドープの利点が損なわれ、 COPサイズの肥大化を招くとともにゲッタリ ングサイトとしての BMDを多量に作れなくなるという問題が新たに発生する。ここで、 上記 a)、 b)、 c)の知見があれば、 SSD数を所望の数まで減らし、し力も COPサイズ の縮小化、ゲッタリングサイトとしての BMDを多く形成できる窒素濃度を予測でき、ァ ニールゥエーハの品質を安定させることが可能となる。
[0049] また、上述したように、直径 300mmサイズのァニールゥエーハを製造するには、「 低 V/G領域」に入る結晶育成条件でシリコン単結晶を引上げ成長させることが望まし いとされている。
[0050] しかし、「低 V/G領域」は、特許文献 1の知見 3)に 、う「OSFが発生しやす 、領域」 と重なり(図 1参照)、回避すべき領域に相当する(「低 V/G」領域の一部は R— OSF 領域である)。このため上述した特許文献 1の知見 3)にしたがうとすると、「低 V/G領 域」を回避した領域で、直径 300mmサイズのシリコン単結晶を引上げ成長しなけれ ばならず、ァニールゥエーハの製造する上で望ま U、とされて 、る「低 V/G領域」を有 効に使用することができない。
[0051] また、特許文献 1に 、う「OSFが発生しやす 、領域」を回避して「OSFの発生が少 ない領域」に入る結晶育成条件で引上げ成長させたにしても、上記 a)、 b)、 c)の知 見がな!、ため、 SSDを確実に低減できると 、う保証はな 、。
[0052] 本発明は、こうした実状に鑑みてなされたものであり、ァニールゥヱーハにとつて必 要不可欠なゥエーハ表面における SSD以外のボイド欠陥の低減や、バルタ内のゲッ タリング源としての BMDの生成を保証しつつ、 SSDを確実に低減させるようにして、 ァニールゥエーハの品質を安定させることを解決課題とするものである。 課題を解決するための手段
[0053] 第 1発明は、
ァニール処理が施されたゥ ーハの表面に発生する SSD (表面の非常に幅広ぐ 浅い形状の凹状欠陥; Surface Shallow Defect)を低減させるためのシリコン単結晶の 製造方法であって、
シリコン単結晶を融液力 引き上げるに際して、酸素濃度、窒素濃度、所定の温度 域の冷却速度の 3つのパラメータを制御することによって、 SSDの核となる酸素と窒 素に関連した析出物を減少させること
を特徴とする。
[0054] 第 2発明は、
ァニール処理が施されたゥ ーハの表面に発生する SSD (表面の非常に幅広ぐ 浅い形状の凹状欠陥; Surface Shallow Defect)の密度または数に関して、
当該 SSDの密度または数と、シリコン単結晶中の酸素濃度と、シリコン単結晶中の 窒素濃度と、シリコン単結晶引上げ時の所定の温度域の冷却速度との間に成立する 関係式を用いて予測し、
予測した SSD密度または数が得られるような酸素濃度、窒素濃度、所定の温度域 の冷却速度となる結晶育成条件で、シリコン単結晶を引き上げるシリコン単結晶の製 造方法であることを特徴とする。
[0055] 第 3発明は、第 1発明または第 2発明において、
酸素濃度、窒素濃度、所定の温度域の冷却速度の間に成立する関係式は、
SSD密度または数を Nssd、酸素濃度を Oi、窒素濃度を N、所定の温度域の冷却 速度を CR、 Aを定数としたとき、
Figure imgf000010_0001
1、 m>0、 n< 0)
で表されること
を特徴とする。
[0056] 第 4発明は、
窒素ドープ量を、 1E13〜2. 5E14atoms/cm3の範囲とし、固溶酸素濃度を、 11E1 7〜14E17atoms/cm3の範囲とし、 900° C〜1000° Cの温度範囲における冷却速度 を、 2. 5° C/min以上として、直径が 300mm以上のシリコン単結晶を引き上げるよう にした、シリコン単結晶の製造方法であることを特徴とする。
[0057] 第 5発明は、
窒素ドープ量を、 1E13〜2. 5E14atoms/cm3の範囲とし、固溶酸素濃度を、 11E1 7〜14E17atoms/cm3の範囲とし、 900° C〜1000° Cの温度範囲における冷却速度 を、 1. 5° C/min以上として、直径が 300mm以上のシリコン単結晶を引き上げるよう にした、シリコン単結晶の製造方法であることを特徴とする。
[0058] 第 6発明は、
窒素濃度が 5E14atoms/cm3以下で、酸素濃度が 14E17atoms/cm3以下であるとき に、 900° C〜1000° Cの温度範囲における冷却速度が 4. 2° C/min以上となるよう に、冷却速度を制御して、直径が 300mm以上のシリコン単結晶を引き上げるように した、シリコン単結晶の製造方法であることを特徴とする。
[0059] 第 7発明は、
窒素濃度が 5E14atoms/cm3以下で、酸素濃度 Oiが 14E17atoms/cm3以下である ときに、 900° C〜1000° Cの温度範囲における冷却速度が 2. 8° C/min以上となる ように、冷却速度を制御して、直径が 300mm以上のシリコン単結晶を引き上げるよう にした、シリコン単結晶の製造方法であることを特徴とする。
[0060] 第 8発明は、第 3発明において、
窒素濃度 Nが 5E 14atoms/cm3以下で、酸素濃度 Oiが 14E 17atoms/cm3以下であ るときに、 SSD密度または数 Nssdが所望の値以下となる冷却速度 CRを第 3発明の 式から求めて、
求められた冷却速度 CRとなるように、冷却速度を制御することによって、シリコン単 結晶を引き上げるようにした、シリコン単結晶の製造方法であることを特徴とする。
[0061] 第 9発明は、第 1発明〜第 8発明において、
シリコン単結晶を融液から引き上げる処理が行われる炉内に、シリコン単結晶を冷 却する冷却手段が設けられ、この冷却手段を用いて冷却速度が制御されること を特徴とする。
[0062] 第 10発明は、第 9発明の方法によって製造されたシリコン単結晶から得られたシリ コンゥエーハにァニール処理が施されたァニールゥエーハであって、
ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSDの密 度力 0. 15個/ cm2以下になっている、ァニールゥヱーハであることを特徴とする。
[0063] 第 11発明は、
ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSD (表面 の非常に幅広ぐ浅い形状の凹状欠陥; Surface Shallow Defect)の密度力 0. 15個 /cm2以下になって!/ヽる、ァニールゥヱーハであって、
当該ァニールゥヱーハの表面を少なくとも 1 μ mの深さまで研磨した場合には、前 記 SP1測定器を用いて DNNモード測定によって検出すると、検出される直径 140η m以上のサイズの欠陥の密度力 0. 04個/ cm2以下にまで低減される、ァニールゥェ ーハであることを特徴とする。
[0064] 第 12発明は、 窒素ドープされて 、るァニールゥエーハであって、
ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSD (表面 の非常に幅広ぐ浅い形状の凹状欠陥; Surface Shallow Defect)の密度が 0. 04個/ c m2以下になって!/、る、ァニールゥエーハであることを特徴とする。
[0065] 第 13発明は、
窒素ドープされているシリコンゥエーハをァニールする工程と、
ァニール後に、ゥヱーハ表面力 少なくとも 1 μ mの深さまで研磨する工程と を含むァニールゥエーハの製造方法であることを特徴とする。
[0066] 本発明者は、実験、シミュレーションの結果から、つぎの知見を得た。
[0067] a) SSD数 Nssdを低減するために必要な酸素濃度 Oi、窒素濃度 Nの具体的、定量的 な数値(Nssc^ACodN^CCR]11 (ただし、 1、 m>0、 nく 0)、図 9〜図 12) b) SSD発生の原因となる酸素濃度 Oi、窒素濃度 N以外の具体的な他のパラメータ( 所定温度域における冷却速度 CR)
c) SSD発生の原因となる各パラメータの依存度合い、各パラメータの関係(上記式、 図 9〜図 12)
さらに、本発明者は以下のような知見を得た。
[0068] d)窒素ドープされたァニールゥ ーハ表面で検出される DNN欠陥は、非常に浅くて 幅広 、ゥ ーハ表面に対して凹状の欠陥(SSD)である。
[0069] e) SSDによる酸ィ匕膜耐圧特性の悪影響は無 、。
[0070] f ) SSDは、ァニールの雰囲気如何にかかわらずァニール後に顕在化する。
[0071] g) SSDは、ゥヱーハ表面を 1 μ m研磨することで、ほぼ消滅するような ァニールゥェ ーハの表面の極く表層に偏在して 、る欠陥である。
[0072] 上記知見に鑑みて、シリコンゥエーハをァニールすると、 SSDの核となる酸素と窒素 に関連した析出物の密度 (数)が増大するものと考え、この酸素と窒素に関連した析 出物の密度 (数)をァニール前のシリコン単結晶 6の引上げ成長の過程で、酸素濃度 、窒素濃度、冷却濃度という 3つのパラメータを制御することによって減らすという手 法で、 SSDを減らす (第 1発明〜第 11発明)か、ァニール後にゥエーハ表面を少なく とも の深さまで研磨を施すことで、 SSDを減らすようにした (第 12発明、第 13発 明)。
[0073] SSDを低減させるための手法には、 SSD密度 (ある 、は数)、固溶酸素濃度、窒素 ドープ量の要求スペック毎に、冷却速度 CRを異ならせてシリコン単結晶 6を引き上げ る方法がある。
[0074] しかし、 SSD数、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CR を異ならせて制御すると、制御内容をその都度変更する必要が生じる。そこで、これ を回避するために、 SSD数の要求スペック、要求スペックとしておよそ要求される固 溶酸素濃度の範囲、窒素ドープ量の範囲がわかっていれば、この要求スペックが常 に得られるような冷却速度 CR値に固定した上で制御することことができる(第 4発明 〜第 8発明)。
[0075] 冷却速度 CRの制御には、冷却手段 (たとえば冷却筒 14)を用いることができる(第
9発明)。冷却手段 (たとえば冷却筒 14)を使用することで、シリコン単結晶 6の冷却 速度 CRを高くすることができる。
[0076] 本発明のシリコン単結晶製造方法 (第 1発明〜第 9発明)によって製造されたァニー ルゥヱーハ(第 10発明、第 11発明)は、その表面の SSD密度が極めて小さい(0. 15 個/ cm2以下)という特徴的なゥ ーハである。
[0077] SSD密度が低減されるのみならず、酸素濃度、窒素濃度につ!、ても要求スペック を満足している。また、ァニールゥエーハにとつて望ましい低 V/G領域(図 1)に入る 成長条件で、シリコン単結晶 6を引上げ成長させることができる。
[0078] このため本発明によれば、高品質のァニールゥヱーハを確実に製造することができ る。
[0079] また、シリコン単結晶 6を引上げ成長の過程では、第 1発明〜第 9発明の制御を行う ことなくシリコン単結晶 6 (ただし窒素ドープされている)を製造しておき、その後、その シリコン単結晶 6から得られた窒素ドープされたシリコンゥエーハをァニールする工程 と、ァニール後に、ゥヱーハ表面力も少なくとも Ι πιの深さまで研磨する工程とを含 むァニールゥエーハの製造方法を実施することによつても、同様にァニールゥエーハ 表面の SSD密度 (数) Nssdを確実に減らすことができる(第 13発明)。このァニール ゥエーハ製造方法によって製造されたァニールゥエーハ(第 12発明)は、その表面の SSD密度が極めて小さ!/、 (0. 04個/ cm2以下)と!、う特徴的なゥヱーハである。 発明を実施するための最良の形態
[0080] 以下図面を参照して本発明に係るシリコンゥヱーハ製造方法の実施の形態につい て説明する。
[0081] 図 3は実施形態に用いられるシリコン単結晶製造装置の構成の一例を側面からみ た図である。
[0082] 同図 3に示すように、実施形態の単結晶引上げ装置 1は、単結晶引上げ用容器とし ての CZ炉(チャンバ) 2を備えて 、る。
[0083] CZ炉 2内には、多結晶シリコンの原料を溶融して融液 5として収容する石英るつぼ 3が設けられている。石英るつぼ 3は、その外側が黒鉛るつぼ 11によって覆われてい る。石英るつぼ 3の外側にあって側方には、石英るつぼ 3内の多結晶シリコン原料を 加熱して溶融するヒータ 9が設けられている。ヒータ 9は出力(パワー; kW)が制御さ れ、融液 5に対する加熱量が調整される。たとえば、融液 5の温度が検出され、検出 温度をフィードバック量とし融液 5の温度が目標温度になるように、ヒータ 9の出力が 制御される。
[0084] ヒータ 9と CZ炉 2の内壁との間には、保温筒 13が設けられている。
[0085] 石英るつぼ 3の上方には引上げ機構 4が設けられている。引上げ機構 4は、引上げ 軸 4aと引上げ軸 4aの先端のシードチャック 4cを含む。シードチャック 4cによって種結 晶 14が把持される。
[0086] 石英るつぼ 3内で多結晶シリコン (Si)が加熱され溶融される。融液 5の温度が安定 化すると、引上げ機構 4が動作し融液 5からシリコン単結晶(シリコン単結晶インゴット ) 6が引き上げられる。すなわち引上げ軸 4aが降下され引上げ軸 4aの先端のシード チャック 4cに把持された種結晶 14が融液 5に浸漬される。種結晶 14を融液 5になじ ませた後弓 I上げ軸 4aが上昇する。シードチャック 4cに把持された種結晶 14が上昇 するに応じてシリコン単結晶 6 (以下シリコン単結晶 6という)が成長する。引上げの際 、石英るつぼ 3は回転軸 10によって回転速度 ω ΐで回転する。また引上げ機構 4の引 上げ軸 4aは回転軸 10と逆方向にあるいは同方向に回転速度 ω 2で回転する。 [0087] 本実施形態では、引き上げられるシリコン単結晶 6に窒素を添カ卩(ドープ)するため に、石英るつぼ 3内の融液 5に予め、たとえば窒化膜付きのシリコンゥエーハが投入さ れておかれる。
[0088] また回転軸 10は鉛直方向に駆動することができ、石英るつぼ 3を上下動させ任意 の位置に移動させることができる。
[0089] CZ炉 2内と外気を遮断することで炉 2内は真空 (たとえば 20Torr程度)に維持され る。すなわち CZ炉 2には不活性ガスとしてのアルゴンガス 7が供給され、 CZ炉 2の排 気ロカもポンプによって排気される。これにより炉 2内は所定の圧力に減圧される。
[0090] 単結晶引上げのプロセス(1バッチ)の間で、 CZ炉 2内には種々の蒸発物が発生す る。そこで CZ炉 2にアルゴンガス 7を供給して CZ炉 2外に蒸発物とともに排気して CZ 炉 2内から蒸発物を除去しクリーンにしている。アルゴンガス 7の供給流量は 1バッチ 中の各工程ごとに設定する。
[0091] シリコン単結晶 6の引上げに伴い融液 5が減少する。融液 5の減少に伴い融液 5と 石英るつぼ 3との接触面積が変化し石英るつぼ 3からの酸素溶解量が変化する。この 変化が、引き上げられるシリコン単結晶 6中の酸素濃度分布に影響を与える。そこで 、これを防止するために、融液 5が減少した石英るつぼ 3内に多結晶シリコン原料ま たはシリコン単結晶原料を引上げ後あるいは引上げ中に追加供給してもよ!/、。
[0092] 石英るつぼ 3の上方にあって、シリコン単結晶 6の周囲には、略逆円錐台形状の熱 遮蔽板 8 (ガス整流筒)が設けられている。熱遮蔽板 8は、保温筒 13に支持されてい る。熱遮蔽板 8は、 CZ炉 2内に上方より供給されるキャリアガスとしてのアルゴンガス 7 を、融液表面 5aの中央に導き、さらに融液表面 5aを通過させて融液表面 5aの周縁 部に導く。そして、アルゴンガス 7は、融液 5から蒸発したガスとともに、 CZ炉 2の下部 に設けた排気口力 排出される。このため液面上のガス流速を安定ィ匕することができ 、融液 5から蒸発する酸素を安定な状態に保つことができる。
[0093] また熱遮蔽板 8は、種結晶 14および種結晶 14により成長されるシリコン単結晶 6を 、石英るつぼ 3、融液 5、ヒータ 9などの高温部で発生する輻射熱から、断熱、遮蔽す る。また熱遮蔽板 8は、シリコン単結晶 6に、炉内で発生した不純物(たとえばシリコン 酸化物)等が付着して、単結晶育成を阻害することを防止する。熱遮蔽板 8の下端と 融液表面 5aとの間隙のギャップ Hの大きさは、回転軸 10を上昇下降させ、石英るつ ぼ 3の上下方向位置を変化させることで調整することができる。また熱遮蔽板 8を昇降 装置により上下方向に移動させてギャップ Hを調整してもよい。
[0094] ギャップ H、引上げ軸 4aの上昇速度等を調整することによって、シリコン単結晶 6の 成長条件 V/G (V:成長速度、 G :結晶の軸方向温度勾配)が制御される。
[0095] また石英るつぼ 3内への窒素投入量を調整することによって、シリコン単結晶 6中の 窒素の濃度(窒素添加量; atoms/cm3)が制御される。
[0096] また引上げ中に、るつぼ回転数 ω 1、引上げ軸回転数 ω 2、ァノレゴンガス流量、炉 内圧等を調整することによって、シリコン単結晶 6中の酸素濃度 (atoms/cm3)が制御 される。 CZ炉 2の周囲には、石英るつぼ 3内の融液 5に対して、水平磁場 (横磁場)を 印加する磁石 15が設けられている。融液 5に対して水平磁場を印加することで、石英 るつぼ 3内での融液 5の対流の発生が抑制され、安定した結晶成長が行われる。また 、融液 5に水平磁場を印力!]しながら、るつぼ回転数を調整すると、酸素濃度の制御性 が良い。
[0097] 熱遮蔽板 8の内側にあって、引上げ中のシリコン単結晶 6を取り囲む位置には、引 上げ中のシリコン単結晶 6を冷却する冷却筒 14が設けられている。冷却筒 14の冷却 能力を調整することによって、シリコン単結晶 6の軸方向の温度勾配が変化され、シリ コン単結晶 6の冷却速度が制御される。冷却筒 14の内部を通過する冷却水の流量 等を調整することによって、シリコン単結晶 6の冷却速度を制御することができる。た だし、シリコン単結晶 6を冷却する冷却手段は、任意のものを用いることができる。たと えば熱遮蔽板 8とは別に、シリコン単結晶 8の周囲に、熱遮蔽板を設けることで、シリ コン単結晶 6の冷却速度を制御してもよい。
[0098] 図 3の装置によって製造されたシリコン単結晶 6のインゴットは切断装置によって切 断されて、シリコンゥエーハが採取される。シリコンゥエーハは、面取り、ラッピング、ェ ツチング、ポリツシング、熱処理前洗浄等の各工程を経て、図 2に示すようにァニール される。
[0099] シリコンゥエーハは、図 4に示すレシピにしたがい、ァニールされる。すなわち、所定 の昇温速度 T° C/minで最高温度までランプアップ(昇温)され、 1150° C〜 1250° C 程の温度(たとえば 1200° C)で t時間(1時間以上、たとえば 1 2時間)の間、維持 され、シリコンゥヱーハにァニールが施される。ついで、所定の降温速度 T° C/minで ランプダウン(降温)され、シリコンゥ ハがァニール炉力 アンロードされる。また、 ァニールは、たとえばアルゴンガスの雰囲気で行われる。水素ガスの雰囲気、水素と アルゴンガスとの混合ガスの雰囲気でァニールを行ってもよい。
[0100] つぎに、本発明の知見について説明する。
[0101] 本発明者らは、 SSDについて、つぎの知見を得るために実験、シミュレーションを 行った。
[0102] a) SSD数を低減するために必要な酸素濃度、窒素濃度の具体的、定量的な数値 b) SSD発生の原因となる酸素濃度、窒素濃度以外の具体的な他のパラメータ c) SSD発生の原因となる各パラメータの依存度合い、各パラメータの関係
まず、結晶育成条件、酸素濃度、窒素濃度を変えて各シリコン単結晶を引上げ、そ れぞれのシリコンインゴットから切り出したシリコンゥ ハにァニールを施した各ァ- ールゥヱ (各試料)の表面の SSDの数を測定した。
[0103] ここで、 SSDとは、市販のパーティクルカウンタ SP1の DNN (ダークフィールド ノ マ ナロー)モードで検出されるゥ ハ表面の欠陥である。 DNNモードは、ゥ ハに対して垂直にレーザを照射し、欠陥による乱反射の状況を正反射に近い部 分で集光し観察するモードである。 DNNモードは、ゥ ハ表面のゴミゃピット(くぼ み)を検出するのに有効なモードである。
[0104] 図 5は、各ァニールゥエーハの表面の SSD分布と SSD数を示す。図 5 (a) e) ( 図中上方)は、水素ガス雰囲気で ノレした ゥェ であり、図 5 (f) (j ) (図中下方)は、アルゴンガス雰囲気でァニールしたァニールゥヱ である。 SSD 数は、直径が 0. 12 /z m以上の SSD数と、直径が 0. 14 m以上の SSD数を示して いる。
[0105] 図 5 (a) (f)は、比較例の試料であり、直径 200mmのシリコン単結晶力も得られた ァニールゥ ハである。図 5 (a) (f)を除く試料は、直径 300mmのシリコン単結晶 力も得られたァニールゥヱーハである。 SSD数を、同じ直径で比較すべく直径 300m mの試料につ!、ては、直径を 200mmのサイズに加工した上でァニールした。 [0106] 図 5 (a)、 (f)の比較例の試料は、図 1に示す低 V/Gの領域よりも、より高速側の V リッチ領域で引き上げられたシリコン単結晶から得られたァニールゥエーハである。 これに対して、図 5 (a)、 (f)の比較例を除く試料は、図 1に示す低 V/Gの領域で引き 上げられたシリコン単結晶力も得られたァニールゥヱーハである。
[0107] 図 5から、低 V/G領域に入る結晶育成条件でシリコン単結晶を引き上げた場合に は、低 V/Gよりも高速側の V リッチ領域に入る条件で結晶育成条件でシリコン単結 晶を引き上げた場合よりも、明らかに SSD数が多いことがわかる。
[0108] なお、アルゴンガス雰囲気よりも水素ガス雰囲気の方が僅かながら SSDの低減に 寄与して!/、ると!/、う結果が得られた。
[0109] 図 6 (a)は、横軸を酸素濃度とし、縦軸を SSD数としたグラフを示す。酸素濃度、窒 素濃度、結晶引上げ速度を変えて、各シリコン単結晶を引上げ、各ァニールゥ ー ハ毎に SSD数を測定した。なお、直径が 0. 14 /z m以上の SSDをカウントした。図 6 ( b)は、図 6 (b)の各群 A、 B、 C、 Dの冷却速度、酸素濃度、窒素濃度を表で示してい る。
[0110] 図 6に Aで示す群は、窒素ドープされ、低 V/G領域に入り、低冷却速度となる結晶 育成条件で引き上げられたシリコン単結晶から得られた各ァニールゥ ーハの測定 結果を示している。この A群の冷却速度(° C/min)は 0. 27-0. 33であり、酸素濃 度(X E17atoms/cc)は 11. 2〜13. 4であり、窒素濃度(X E14atoms/cc)は 0. 7〜 1. 2である。
[0111] また、図 6に Bで示す群は、窒素ドープされ、 V—リッチ領域に入り、中冷却速度とな る結晶育成条件で引き上げられたシリコン単結晶から得られた各ァニールゥ ーハ の測定結果を示している。この A群の冷却速度(° C/min)は 0. 40-0. 44であり、 酸素濃度(X E17atoms/cc)は 11. 4〜12. 5であり、窒素濃度(X E14atoms/cc) は 0. 6〜0. 7である。
[0112] また、図 6に Cで示す群は、窒素ドープされ、 V—リッチ領域に入り、高冷却速度とな る結晶育成条件で引き上げられたシリコン単結晶から得られた各ァニールゥ ーハ の測定結果を示している。この C群の冷却速度(° C/min)は 0. 73-0. 77であり、 酸素濃度(X E17atoms/cc)は 9. 3-11. 4であり、窒素濃度(X E14atoms/cc)は 1. 1〜1. 3である。
[0113] また、図 6に Dで示す群は、窒素ドープ無しで、 V—リッチ領域に入り、中冷却速度 となる結晶育成条件で引き上げられたシリコン単結晶から得られた各ァニールゥエー ハの測定結果を示している。この D群の冷却速度(° C/min)は 0. 38〜0. 42であり 、酸素濃度(X E17atoms/cc)は 14. 0〜15. 0である。
[0114] 図 6から、酸素濃度が高い程、 SSD数が多くなる傾向があるということがわかる。
[0115] 同じ中冷却速度である B群、 D群を対比すると、窒素ドープ無しの D群よりも窒素ド ープ有りの B群の方力 SSD数が多い。このことから、窒素濃度が高い程、 SSD数が 多くなる傾向があるということがわかる。
[0116] また、窒素がドープされている A群、 B群、 C群を対比すると、高冷却速度の C群より も、中冷却速度の B群の方力 SSD数が多く、中冷却速度の B群よりも低冷却速度の A群の方が、 SSD数が多い。このことから、冷却速度が低い程、 SSD数が多くなる傾 向があるということがわかる。
[0117] シリコン単結晶の直胴部ボトム側では、テール部を作成するために他の部分よりも 冷却速度が大きくなる。そこで、更に冷却速度と SSDとの関係を調べた。
[0118] 図 7は、横軸をシリコン単結晶 6の位置とし、左縦軸を酸素濃度 Oi、右縦軸を SSD 数としたグラフを示す。図 7の横軸にシリコン単結晶 6のインゴットを模式的に示してい る。図 7の横軸の図中左側がシリコン単結晶 6のインゴットの直胴部トップ側であり、図 中右側がシリコン単結晶 6のインゴットの直胴部ボトム側である。なお、直径が 0. 14 μ m以上の SSDをカウントした。
[0119] 同図 7で〇で示すプロットは、酸素濃度を示し、 Xで示すプロットは SSD数である。
[0120] 図 7から、酸素濃度(〇)の増加に応じて、 SSD数(X )が増力!]しており、酸素濃度( 〇)と SSD数(X )との間に相関があることがわかる。ただし、シリコン単結晶のテール 部を作成する際には、冷却速度を低くしてから、高める操作を行う。このため、冷却速 度が低くなる部分 Eと、冷却速度が高くなる部分 Fでは、他の直胴部分よりも冷却速 度が異なるため、酸素濃度(〇)と、 SSD数(X )とは相関しない傾向がみられた。
[0121] 図 7の「冷却速度が低くなる部分」 E、「冷却速度が高くなる部分」 Fをみてわ力ること は、冷却速度が高くなるほど、 SSD数が少なくなる傾向があるということである。 [0122] 以上のことから、ァニールゥヱーハ表面における SSD密度 Nssdは、酸素濃度 Oi (at oms/cm3 )、窒素濃度 N (atoms/cm3 )、所定温度域の冷却速度 CR (° C/min)をパ ラメータとして算出されるのではないかと考えた。
[0123] そこで、これまでの実験結果に基づいて重回帰分析により、 SSD密度 Nssdを推定 する式 (以下、 SSD密度推定式)を以下のように求めた。
[0124]
Figure imgf000020_0001
1、 m>0、 n< 0)
…ひ)
上記 A、 1、 m、 nの値は、 SSDと判断する欠陥直径のしきい値、ァニールゥエーハの 直径、冷却速度の温度域によって変化する定数である。
[0125] ァニールゥヱーハの直径が 300mmで、冷却速度の温度域が 950° Cのときに、直 径 0. 14 m以上の欠陥を SSDと判断する場合の各値は、以下のとおりであった。
[0126] A=exp (— 420. 0)
1= 9. 0
m= 1. 3
n=— 1. 7
図 8は、横軸を、前述した測定器 SP1を用いて DNNモードで、直径 300mmのァ- ールゥヱーハ表面を測定して得られた SSD数実測値とし、縦軸を、 SSD密度推定式 ( (1)式)により求められた直径 300mmのァニールゥエーハの SSD密度を、直径 30 0mmのァニールゥエーハ表面の SSD数に換算して得られた SSD数推定値として、 これら SSD実測値と SSD推定値との対応関係を示している。 Ptlは、個々の対応点 であり、 L1は、各対応点 Ptlから得られた対応ラインである。同図 8からわかるように、 SSD数の推定値は、実測にほぼ一致した。
[0127] 図 9は、 SSD密度推定式((1)式)から求められた対応ライン L21、 L22、 L23、 L24 を示す。図 9の横軸は酸素濃度 Oi ( X E17atoms/cm3 )であり、縦軸は温度 900° C 〜1000° C (たとえば 950° C)における冷却速度(° C/min)である。対応ライン L21、 L22、 L23、 L24はそれぞれ、窒素濃度 N (atoms/cm3 )を 5E13、 1E14、 2. 5E14、 5E14としたときの酸素濃度 Oi ( X E17atoms/cm3 )と、直径 300mmのァニールゥェ ーハ表面で SSD密度を 0. 15個/ cm2以下(直径 300mmのァニールゥヱーハ表面 で欠陥数 100個以下)にするために必要な冷却速度 CRとの関係を示している。なお 、図 9における SSD密度は、直径 0. 14 m以上の SSDの密度である。
[0128] したがって、図 9に示す対応ライン L21、 L22、 L23、 L24に基づいて、酸素濃度 Oi、 窒素濃度 Nをパラメータとして、 SSD密度を 0. 15個/ cm2以下とするために必要な 冷却速度 CRを求めることができる。
[0129] シリコン単結晶は、窒素濃度 Nを、 2. 5E 14 (atoms/cm3 )程度あるいはそれ以下 の値、酸素濃度 Oiを 14 ( X E17at0mS/Cm3 )程度あるいはそれ以下の値とする結晶 育成条件で引き上げられることが多い。図 9より、窒素濃度 Nが、 2. 5E14 (atoms/c m3 )で、酸素濃度 Oiが 14 ( X E17atoms/cm3 )であるときの冷却速度 CRは、 2. 5 (° C/min )である。よって、温度 900° C〜1000° C (たとえば 950° C)における冷却速 度 CRを、 2. 5 (° C/min )以上に制御してシリコン単結晶を引き上げれば、窒素濃度 Nを 2. 5E 14 (atoms/cm3 )程度あるいはそれ以下に調整し、酸素濃度 Oiを 14 ( X E 17atoms/cm3 )程度あるいはそれ以下に調整している限りにおいては、直径 300m mのァニールゥヱーハの表面の SSD密度を、確実に、 0. 15個/ cm2以下(直径 300 mmのァニールゥエーハ表面で欠陥数 100個以下)に低減することができる。
[0130] 同様に、図 10は、 SSD密度推定式((1)式)から求められた対応ライン L31、 L32、 L33、 L34を示す。図 10の横軸は酸素濃度 Oi ( X E17atoms/cm3 )であり、縦軸は温 度 900° C〜1000° C (たとえば 950° C)における冷却速度(° C/min)である。対応ラ イン L31、 L32、 L33、 L34はそれぞれ、窒素濃度 N (atoms/cm3 )を 5E13、 1E14、 2 . 5E14、 5E14としたときの酸素濃度 Oi ( X E17atoms/cm3 )と、直径 300mmのァ ニールゥヱーハ表面で SSD密度を 0. 3個/ cm2以下(直径 300mmのァニールゥェ ーハ表面で欠陥数 200個以下)にするために必要な冷却速度 CRとの関係を示して いる。なお、図 10における SSD密度は、直径 0. 14 m以上の SSDの密度である。
[0131] したがって、図 10に示す対応ライン L31、 L32、 L33、 L34に基づいて、酸素濃度 Oi 、窒素濃度 Nをパラメータとして、 SSD密度を 0. 3個/ cm2以下とするために必要な 冷却速度 CRを求めることができる。
[0132] 図 9の場合と同様に、図 10の対応ライン L31、 L32、 L33、 L34から、温度 900° C〜l 000° C (たとえば 950° C)における冷却速度 CRを、 1. 5 (° C/min )以上に制御して シリコン単結晶を引き上げれば、窒素濃度 Nを 2.5E 14 (atoms/cm3 )程度あるいは それ以下に調整し、酸素濃度 Oiを 14(XE17atoms/cm3 )程度あるいはそれ以下に 調整して!/、る限りにお 、ては、直径 300mmのァニールゥエーハの表面の SSD密度 を、確実に、 0.3個/ cm2以下(直径 300mmのァニールゥヱーハ表面で欠陥数 200 個以下)に低減することができるということがわかる。
[0133] 図 11は、 SSD密度推定式((1)式)から求められた等冷却速度線 L41…を示す。図 11の横軸は酸素濃度 Oi(X 1017atOmS/cm3 )であり、縦軸は窒素濃度 N(X 1014ato ms/cm3 )である。横軸の酸素濃度 Oiの範囲の最大値 14(X 1017atoms/cm3 )であ る。縦軸の窒素濃度 Nの範囲の最大値は、 5(X 1014atoms/cm3 )である。各等冷却 速度線 L41…はそれぞれ、任意の酸素濃度 Oi(X 1017atoms/cm3 )の値、任意の窒 素濃度 N(X 1014atoms/cm3 )の値において、直径 300mmのァニールゥエーハ表 面で SSD密度を 0.15個/ cm2以下(直径 300mmのァニールゥヱーハ表面で欠陥 数 100個以下)にするために必要な冷却速度 CR (° C/min)を示して 、る。
[0134] したがって、図 11に示す等冷却速度線 L41 · · ·に基づ 、て、酸素濃度 Oi、窒素濃度 Nをパラメータとして、 SSD密度を 0.15個/ cm2以下とするために必要な冷却速度 C Rを求めることができる。
[0135] シリコン単結晶は、通常、窒素濃度 Nを、 5(X1014atoms/cm3;縦軸の窒素濃度 N の範囲の最大値)以下の値とし、酸素濃度 Oiを、 14(X1017atoms/cm3;横軸の酸 素濃度 Oiの範囲の最大値)以下の値とする結晶育成条件で引き上げられる。図 11よ り、窒素濃度 Nが 5(X1014 atomS/Cm3;縦軸の窒素濃度 Nの範囲の最大値)で、酸 素濃度 Oiが 14(X 1017atOmS/cm3;横軸の酸素濃度 Oiの範囲の最大値)であるとき の等冷却速度線 (横軸の最大値、縦軸の最大値に対応する冷却速度)は、 4.2(°C /min)である。よって、
温度 900° C〜1000° C (たとえば 950° C)における冷却速度 CRを、 4.2(° C/min ) 以上に制御してシリコン単結晶を引き上げれば、通常の窒素濃度、酸素濃度の範囲 、つまり窒素濃度 Nを 5(X1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)以 下の範囲で調整し、酸素濃度 Oiを 14(X1017 atomS/Cm3;横軸の酸素濃度 Oiの範 囲の最大値)以下の範囲で調整している限りにおいては、直径 300mmのァニール ゥエーハの表面の SSD密度を、確実に、 0. 15個/ cm2以下(直径 300mmのァニー ルゥエーハ表面で欠陥数 100個以下)に低減することができる。
[0136] 図 12は、 SSD密度推定式((1)式)から求められた等冷却速度線 L51…を示す。図 12の横軸は酸素濃度 Oi ( X 1017atOmS/cm3 )であり、縦軸は窒素濃度 N ( X 1014ato ms/cm3 )である。横軸の酸素濃度 Oiの範囲の最大値 14 ( X 1017atoms/cm3 )であ る。縦軸の窒素濃度 Nの範囲の最大値は、 5 ( X 1014atoms/cm3 )である。各等冷却 速度線 L51…はそれぞれ、任意の酸素濃度 Oi ( X 1017atoms/cm3 )の値、任意の窒 素濃度 N ( X 1014atoms/cm3 )の値において、直径 300mmのァニールゥエーハ表 面で SSD密度を 0. 3個/ cm2以下(直径 300mmのァニールゥ ーハ表面で欠陥数 200個以下)にするために必要な冷却速度 CR (° C/min)を示して 、る。
[0137] したがって、図 12に示す等冷却速度線 L51…に基づいて、酸素濃度 Oi、窒素濃度 Nをパラメータとして、 SSD密度を 0. 3個/ cm2以下とするために必要な冷却速度 CR を求めることができる。
[0138] よって、図 11と同様に、図 12に示す各等冷却速度速度線 L51…から、温度 900° C 〜1000° C (たとえば 950° C)における冷却速度 CRを、 2. 8 (° C/min )以上に制御 してシリコン単結晶を引き上げれば、通常の窒素濃度、酸素濃度の範囲、つまり窒素 濃度 Nを 5 ( X 1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)以下の範囲で 調整し、酸素濃度 Oiを 14 ( X 1017 atomS/Cm3;横軸の酸素濃度 Oiの範囲の最大値 )以下の範囲で調整して!/、る限りにお!/、ては、直径 300mmのァニールゥエーハの表 面の SSD密度を、確実に、 0. 3個/ cm2以下(直径 300mmのァニールゥヱーハ表面 で欠陥数 200個以下)に低減することができると!/、うことがわかる。
[0139] つぎに、 SSD発生のメカニズム、 SSDの形状、大きさについての知見について説 明する。
[0140] 以上のように、実験、シミュレーションの結果から、つぎの知見が得られた。
[0141] a) SSD密度 (あるいは数)を低減するために必要な酸素濃度、窒素濃度の具体的、 定量的な数値((1)式、図 9〜図 12)
b) SSD発生の原因となる酸素濃度、窒素濃度以外の具体的な他のパラメータ (所定 温度域における冷却速度 CR) c) SSD発生の原因となる各パラメータの依存度合い、各パラメータの関係((1)式、 図 9〜図 12)
これら知見 a)、 b)、 c)より、 SSDとは、シリコン単結晶を引き上げるときに発生した結 晶内部の酸素と窒素に関連した析出物が、ァニールされることによって、その酸素と 窒素に関連した析出物を核として、ゥエーハ表層でパーティクルカウンタ SP1の DN Nモードで検出されやすい形態の欠陥に成長されたものであると考えられる。
[0142] よって、前述したように、酸素濃度、窒素濃度、冷却速度の各パラメータを制御して シリコン単結晶を引き上げられば、 SSDの核となる酸素と窒素に関連した析出物をァ ニール前の段階にお!、て消滅な!/、しは縮小させることができ、ァニール後にお 、て S SDとして顕在化することを抑制できるものと考えられる。
[0143] そこで、更に SSDの特徴を調べるために、 MAGICS (Laser Tec製ゥエーハ欠陥検 查レビュー装置 M350H)測定、 AFM (SEIKO Instruments Inc.SPA-460)測定を行った
[0144] 図 13 (a)、 (b)は、ァニールゥ ーハ表面を MAGICS測定した結果を示す。同図 13
(a)、(b)から、 SSDは、ゥヱーハ表面に対して凹状の欠陥であるということがわかる。
[0145] また、図 13 (c)、 (d)は、ァニールゥ ーハ表面を AFM測定した結果を示す。同図 1 3 (c) , (d)からも、 SSDは、ゥヱーハ表面に対して凹の欠陥であるということがわかる 。また、 SSDは、幅 0. 5〜2. 5 /ζ πι、深さ 2〜5nm程度の非常になだらかな窪み、つ まり非常に浅くて幅広い形状を有する凹状の欠陥であるということがわかる。
[0146] また、ァニールの雰囲気を変えて行った力 アルゴンガス雰囲気、水素ガス雰囲気 あるいはこれらアルゴンガス、水素ガスの混合ガスの雰囲気にかかわらず、 SSDが顕 在化するという結果が得られた。特に、ァニールの雰囲気による影響はな力つた (た だし、前述した通り、アルゴンガス雰囲気よりも水素ガス雰囲気の方が僅かながら SS Dの低減がみられた)。
[0147] 上述したように、 SSD力 非常に浅い凹欠陥であるという点に鑑み、研磨によって 消滅されるのではないかと考え、ァニールゥエーハの表面を研磨して、 SP1の DNN モードで測定した。
[0148] 図 14は、ァニール直後のゥエーハの表面(図中、「ァニール後」で示す)を SP1を用 いて DNNモードで測定した結果と、ァニール後に、ゥエーハ表面を 1 μ mの深さまで 研磨したゥエーハの表面(図中、「研磨後」)を SP1を用いて DNNモードで測定した 結果とを対比して示す。図 6に示す D群を構成するァニールゥエーハ、 B群を構成す るァニールゥエーノヽ、 A群を構成するァニールゥェーハそれぞれについて、「ァニー ル後」、「研磨後」の両方を測定して対比した。なお、直径 300mmのァニールゥエー ハ表面で検出される直径 0. 14 μ m以上の SSDをカウントした。
[0149] 図 14からわかるように、 A群を構成するァニールゥエーハについては、ァニール直 後に、ゥエーハ表面に SSDが多数(999個)あったものが、 1 mだけゥエーハ表面を 研磨することによって、飛躍的に低減 (2個)されている。
[0150] さらに研磨による SSDの低減効果を調べるために、酸素濃度、窒素濃度、冷却速 度が異なる各種、多数の試料にっ 、て実験を行った。
[0151] 図 15は、ァニール直後のゥ ーハの表面(図中、「ァニール後」で示す)を SP1を用 いて DNNモードで、各試料 # 1〜10について測定した結果と、ァニール後に、ゥェ ーハ表面を 1 μ mの深さまで研磨したゥエーハの表面(図中、「研磨後」)を SP1を用 いて DNNモードで、各試料 # 1〜# 10について測定した結果とを対比して示す。
[0152] 図 15からわ力るように、ァニール直後に、ゥヱーハ表面に SSDが多数(各試料 # 1 〜10のうち最低でも 250個)あったもの力 1 μ mだけゥエーハ表面を研磨することに よって、飛躍的に低減 (各試料 # 1〜10最大でも 26個)されている。以上のことから、 ァニール後のゥエーハの表面を 1 μ m研磨すれば、直径 300mmサイズのゥエーハ で、高々 30個(面密度換算で 0. 04個 /cm2)以下まで低減されるものと考えられる。
[0153] 以上のことから SSDは、ァニールゥヱーハの極く表層の研磨、つまり少なくとも 1 μ m程度の研磨で、ほぼ消滅する極く表層に偏在して 、る欠陥であると考えられる。
[0154] また、 SSDを多数含んだァニールゥエーハについて、酸化膜耐圧特性の実験を行 つた。この実験によれば、 TZDB試験、 TDDB試験にかかわらず、ほぼ 100%の良 品率であると 、う評価が得られた。
[0155] 以上のように、本発明者は以下のような知見を得た。
[0156] d)窒素ドープされたァニールゥ ーハには、非常に浅くて幅広い、ゥ ーハ表面に対 して凹状の欠陥(SSD)が発生して 、る。 [0157] e) SSDによる酸ィ匕膜耐圧特性の悪影響は無い。
[0158] f ) SSDは、ァニールの雰囲気如何にかかわらずァニール後に顕在化する。
[0159] g) SSDは、ゥエーハ表面を少なくとも 1 m研磨することで、ほぼ消滅するような ァ ニールゥヱーハの表面の極く表層に偏在して 、る欠陥である。
[0160] 以上のような a)〜g)の知見に鑑みて、高品質のァニールゥヱーハを工業的に製造 する上で好適な各実施例につ!ヽて以下説明する。
[0161] (実施例 1)
実施例 1の製造方法では、図 3に示す単結晶引上げ装置 1を用いて、シリコン単結 晶 6を融液 5から引き上げるに際して、酸素濃度 Oi、窒素濃度 N、所定の温度域の冷 却速度 CRの 3つのパラメータを制御することによって、 SSDの核となる酸素と窒素に 関連した析出物の密度または数を減少させる。
[0162] ここで、酸素濃度 Oi、窒素濃度 N、所定の温度域の冷却速度 CRの 3つのパラメ一 タの制御は、前述した(1)式、 Nssc^ACOG^N^CCR]11 (ただし、 1、 m>0、 n< 0) を用いて行う。
[0163] 石英るつぼ 3内への窒素投入量を調整することによって、シリコン単結晶 6中の窒 素濃度 N (窒素添加量; atoms/cm3)が制御される。
[0164] また、引上げ中に、るつぼ回転数 ω 1、引上げ軸回転数 ω 2、ァノレゴンガス流量、炉 内圧等を調整することによって、シリコン単結晶 6中の酸素濃度 Oi (atoms/cm3)が制 御される。また、磁石 15によって融液 5に水平磁場を印加しながら、るつぼ回転数を 調整することで、酸素濃度 Oiの制御する。
[0165] また、冷却筒 14の冷却能力を調整することによって、シリコン単結晶 6の冷却速度 が制御される。なお、前述したように冷却筒 14以外の冷却手段を使用してシリコン単 結晶 6の冷却速度を制御してもよ 、。
[0166] また、ギャップ H、引上げ軸 4aの上昇速度等を調整することによって、シリコン単結 晶 6の成長条件 V/G (V:成長速度、 G :結晶の軸方向温度勾配)が制御される。たと えば、図 1に示す低 V/G領域に入るように成長条件 V/Gが制御される。
[0167] その後、引き上げられたシリコン単結晶 6をァニールしてァニールゥエーハを製造す る。 [0168] このように、酸素濃度、窒素濃度、冷却速度を適宜調整することで、ァニールゥ ー ハ表面の SSD密度 Nssdを減少させることができる。すなわち、本実施例 1によれば、 従来、低 V/G領域に入る条件でシリコン単結晶を引き上げると SSDが多数発生して いたが、低 V/G領域に入る条件でシリコン単結晶 6を引き上げたとして、の SSDを飛 躍的〖こ低減させることができる。
[0169] (実施例 2)
実施例 2の製造方法では、まず、ゥエーハ表面で検出される SSDの密度 Nssdを、 S SD密度 Nssdと、シリコン単結晶 6中の酸素濃度 Oiと、シリコン単結晶 6中の窒素濃度 と、シリコン単結晶 6の引上げ時の所定の温度域の冷却速度 CRとの間に成立する関 係式を用いて予測する。ここで、 SSD密度 Nssdは、前述した(1)式、 Nssd=A[Oi]1[ N]m[CR]n (ただし、 1、 m>0、 nく 0)を用いて予測する。
[0170] つぎに、予測した SSD密度 Nssdが得られるような酸素濃度 Oi、窒素濃度 N、所定 の温度域の冷却速度 CRとなる結晶育成条件で、シリコン単結晶 6を融液 5から引き 上げる。
[0171] 上記(1)式の変数は、 4つあるため 3のパラメータが定まれば、残りの 1つのパラメ一 タが定まる。たとえば、 SSD密度の値と、ゲッタリング能力を決める酸素析出物密度、 ゥエーハ表面の無欠陥層の厚みなどの品質を満足するのに必要な要求スペックとし ての酸素濃度 Oi、窒素濃度 Nの値を与えれば、残りの冷却速度 CRが定まる。
[0172] このように求められた冷却速度 CRが得られるように冷却筒 14の冷却能力を調整す ればよい。酸素濃度 Oi、窒素濃度 Nの具体的な制御手段は、実施例 1と同様である
[0173] その後、引き上げられたシリコン単結晶 6をァニールしてァニールゥエーハを製造す る。この結果、ァニールゥエーハ表面の SSD密度 Nssdを、予測した所望の値まで減 少させることができる。
[0174] 図 16は、試験毎に、 SSD密度 Nssdの所望する値を異ならせてシリコン単結晶 6を 引き上げたときの冷却速度、酸素濃度、窒素濃度、 SSD実測密度、 SSD推定密度 を表にて示している。なお、 SSDは、直径 140nm以上のサイズを対象としている。
[0175] 同図 16に示すように、試験 NO. 1、 NO. 2、 NO. 3、 NO. 4ではそれぞれ、上記( 1)式を用いて、 SSD推定密度 Nssdが、 0. 15 (個/ cm2)以下の所望の各値(0. 54、 0. 07、 0. 06、 0. 14)となるように、 950° Cにおける冷去口速度 CR (0. 29、 0. 42、 0 . 75、 0. 35°。/111^ 、酸素濃度0 12. 40、 11. 70、 11. 41、 11. 64 X E17atom s/cm3)、蜜素濃度 N (9. 9、 5. 0、 10. 80、 6. 8 x:E13atoms/cm3)を求めて、シリ ン単結晶 6を引き上げた。
[0176] 表には、各試験 NO. 1、 NO. 2、 NO. 3、 NO. 4で引き上げられたシリコン単結晶 6力 製造されたァニールゥエーハ表面を SP1を用いて DNNモードで測定して得ら れた SSD実測密度(0. 40、 0. 10、 0. 06、 0. 10)をそれぞれ、示している。
[0177] また、本実施例に対する比較例として、試験 NO. 5、 NO. 6、 NO. 7、 NO. 8を行 い、 SSD推定密度 Nssdが、 0. 15 (個/ cm2)を超えるような所望の各値(1. 62、 0. 1 6、 1. 45、 2. 12)となるように、 950° Cにおける冷去口速度 CR (0. 32、 0. 37、 0. 72 、 0. 27° C/min)、酸素濃度 Oi ( 13. 77、 12. 13、 13. 84、 13. 63 X E17atoms/c m3)、蜜素濃度 N ( 12. 6、 6. 2、 32. 3、 13. 3 x:E13atoms/cm3)を求めてシジ ン 単結晶 6を引き上げた。
[0178] 表には、各試験 NO. 5、 NO. 6、 NO. 7、 NO. 8で引き上げられたシリコン単結晶 6力 製造されたァニールゥエーハ表面を SP1を用いて DNNモードで測定して得ら れた SSD実測密度(1. 94、 0. 16、 1. 59、 2. 48)をそれぞれ、示している。
[0179] 図 17は、横軸を、 SSD推定密度とし、縦軸を、 SSD実測密度として、各試験 NO.
1〜ΝΟ. 8の SSD推定密度と各試験 NO. 1〜ΝΟ. 8の SSD実測密度との対応関 係を示している。 Pt2は、個々の対応点であり、 L6は、各対応点 Pt2から得られた対応 ラインである。同図 17からわ力るように、 SSD推定密度は、 SSD実測密度にほぼ一 致しており、 SSD密度を予測してシリコン単結晶 6を引き上げると、ァニールゥエーハ 表面の SSDを、ほぼ狙 、通りに精度よく所望の値まで低減することができた。
[0180] (実施例 3)
図 16では、 SSD数、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CRを異ならせてシリコン単結晶 6を引き上げるようにしている。
[0181] しかし、 SSD数、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CR を異ならせて制御すると、制御内容をその都度変更する必要が生じる。そこで、これ を回避するために、 SSD数の要求スペック、要求スペックとしておよそ要求される固 溶酸素濃度の範囲、窒素ドープ量の範囲がわかっていれば、この要求スペックが常 に得られるような冷却速度 CR値に固定して制御を行うようにしてもよい。
[0182] 前述したように、図 9に示す対応ライン L21、 L22、 L23、 L24あるいは図 11に示す等 冷却速度線 L41…に基づいて、酸素濃度 Oi、窒素濃度 Nをパラメータとして、直径 1 40nm以上のサイズの SSD密度を 0. 15個/ cm2以下とするために必要な冷却速度 C Rを求めることができる。
[0183] シリコン単結晶 6は、窒素ドープ量 Nを、 2. 5E 14 (atoms/cm3 )程度あるいはそれ 以下の値(ただし下限は lE13atoms/cm3)、固溶酸素濃度 Oiを 14 ( X E17atoms/c m3 )程度あるいはそれ以下の値 (ただし下限は 11 X E17atoms/cm3)とする結晶育 成条件で引き上げられることが多い。図 9、図 11より、窒素濃度 Nが、 2. 5E 14 (atom s/cm3 )で、酸素濃度 Oiが 14 ( X E17atoms/cm3 )であるときの冷却速度 CRは、 2. 5 (° C/min )である。
よって、本実施例では、温度 900° C〜1000° C (たとえば 950° C)における冷却速 度 CRを、 2. 5 (° C/min )以上の値(たとえば 2. 5° C/min)に制御してシリコン単結 晶 6を引き上げる。なお、冷却速度 CRの制御は、冷却筒 14の冷却能力を調整するこ とによって行う。
[0184] 一方、窒素ドープ量 N、固溶酸素濃度 Oiについては、要求スペックに応じた値とな るように制御される。
[0185] これにより、窒素ドープ量 Nを 2. 5E 14 (atoms/cm3 )程度あるいはそれ以下の範 囲、つまり 1E13〜2. 5E14atoms/cm3の範囲に調整し、固溶酸素濃度 Oiを 14 ( X E 17atoms/cm3 )程度あるいはそれ以下の範囲、つまり 11 X E17〜14 X E17atoms/ cm3の範囲に調整して!/、る限りにお!/、ては、直径 300mmのァニールゥエーハの表 面の SSD密度を、確実に、 0. 15個/ cm2以下(直径 300mmのァニールゥヱーハ表 面で欠陥数 100個以下)に低減することができる。
[0186] 本実施例によれば、冷却速度 CR値を同じ値に固定することができるので、 SSD数 、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CRの制御内容をそ の都度変更する必要がない。 [0187] (実施例 4)
上記実施例 3と同様に、図 10に示す対応ライン L31、 L32、 L33、 L34あるいは図 12 に示す等冷却速度線 L42…に基づいて、酸素濃度 Oi、窒素濃度 Nをパラメータとし て、直径 140nm以上のサイズの SSD密度を 0. 3個/ cm2以下とするために必要な冷 却速度 CRを求めることができる。
[0188] シリコン単結晶 6は、窒素ドープ量 Nを、 2. 5E 14 (atoms/cm3 )程度あるいはそれ 以下の値(ただし下限は lE13atoms/cm3)、固溶酸素濃度 Oiを 14 ( X E17atoms/c m3 )程度あるいはそれ以下の値 (ただし下限は 11 X E17atoms/cm3)とする結晶育 成条件で引き上げられることが多い。図 10、図 12より、窒素濃度 Nが、 2. 5E14 (ato ms/cm3 )で、酸素濃度 Oiが 14 ( X E17atoms/cm3 )であるときの冷却速度 CRは、 1 . 5 (° C/min )である。
よって、本実施例では、温度 900° C〜1000° C (たとえば 950° C)における冷却速 度 CRを、 1. 5 (° C/min )以上の値(たとえば 2. 5° C/min)に制御してシリコン単結 晶 6を引き上げる。なお、冷却速度 CRの制御は、冷却筒 14の冷却能力を調整するこ とによって行う。
[0189] 一方、窒素ドープ量 N、固溶酸素濃度 Oiについては、要求スペックに応じた値とな るように制御される。
[0190] これにより、窒素ドープ量 Nを 2. 5E 14 (atoms/cm3 )程度あるいはそれ以下の範 囲、つまり 1E13〜2. 5E14atoms/cm3の範囲に調整し、固溶酸素濃度 Oiを 14 ( X E 17atoms/cm3 )程度あるいはそれ以下の範囲、つまり 11 X E17〜14 X E17atoms/ cm3の範囲に調整して!/、る限りにお!/、ては、直径 300mmのァニールゥエーハの表 面の SSD密度を、確実に、 0. 3個/ cm2以下(直径 300mmのァニールゥヱーハ表面 で欠陥数 200個以下)に低減することができる。
[0191] 本実施例によれば、冷却速度 CR値を同じ値に固定することができるので、 SSD数 、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CRの制御内容をそ の都度変更する必要がない。
[0192] (実施例 5)
実施例 3と同様に、図 11に示す等冷却速度線 L41…に基づいて、酸素濃度 Oi、窒 素濃度 Nをパラメータとして、直径 140nm以上のサイズの SSD密度を 0. 15個/ cm2 以下とするために必要な冷却速度 CRを求めることができる。
[0193] シリコン単結晶 6は、通常、窒素濃度 Nを、 5 ( X 1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)以下の値とし、酸素濃度 Oiを、 14 ( X 1017atoms/cm3;横軸の 酸素濃度 Oiの範囲の最大値)以下の値とする結晶育成条件で引き上げられる。図 1 1より、窒素濃度 Nが 5 ( X 1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)で、 酸素濃度 Oiが 14 ( X 1017 atomS/Cm3;横軸の酸素濃度 Oiの範囲の最大値)である ときの等冷却速度線 (横軸の最大値、縦軸の最大値に対応する冷却速度)は、 4. 2 ( 。 C/min)である。
[0194] よって、本実施例では、温度 900° C〜1000° C (たとえば 950° C)における冷却速 度 CRを、 4. 2 (° C/min )以上の値(たとえば 4. 2° C/min)に制御して、シリコン単 結晶 5を引き上げる。なお、冷却速度 CRの制御は、冷却筒 14の冷却能力を調整す ることによって行う。
[0195] 一方、窒素ドープ量 N、固溶酸素濃度 Oiについては、要求スペックに応じた値とな るように制御される。
[0196] これにより、通常の窒素濃度、酸素濃度の範囲、つまり窒素濃度 Nを 5 ( X 1014atom s/cm3;縦軸の窒素濃度 Nの範囲の最大値)以下の範囲内で調整し、酸素濃度 Oiを 14 ( X 1017atoms/cm3;横軸の酸素濃度 Oiの範囲の最大値)以下の範囲内で調整 して 、る限りにお 、ては、直径 300mmのァニールゥエーハの表面の SSD密度を、 確実に、 0. 15個/ cm2以下(直径 300mmのァニールゥ ーハ表面で欠陥数 100個 以下)に低減することができる。
[0197] 本実施例によれば、冷却速度 CR値を同じ値に固定することができるので、 SSD数 、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CRの制御内容をそ の都度変更する必要がない。
[0198] (実施例 6)
実施例 4と同様に、図 12に示す等冷却速度線 L51…に基づいて、酸素濃度 Oi、窒 素濃度 Nをパラメータとして、直径 140nm以上のサイズの SSD密度を 0. 3個/ cm2以 下とするために必要な冷却速度 CRを求めることができる。 [0199] シリコン単結晶 6は、通常、窒素濃度 Nを、 5 ( X 1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)以下の値とし、酸素濃度 Oiを、 14 ( X 1017atoms/cm3;横軸の 酸素濃度 Oiの範囲の最大値)以下の値とする結晶育成条件で引き上げられる。図 1 1より、窒素濃度 Nが 5 ( X 1014atoms/cm3;縦軸の窒素濃度 Nの範囲の最大値)で、 酸素濃度 Oiが 14 ( X 1017 atomS/Cm3;横軸の酸素濃度 Oiの範囲の最大値)である ときの等冷却速度線 (横軸の最大値、縦軸の最大値に対応する冷却速度)は、 2. 8 ( 。 C/min)である。
[0200] よって、本実施例では、温度 900° C〜1000° C (たとえば 950° C)における冷却速 度 CRを、 2. 8 (° C/min )以上の値(たとえば 2. 8° C/min)に制御して、シリコン単 結晶 5を引き上げる。なお、冷却速度 CRの制御は、冷却筒 14の冷却能力を調整す ることによって行う。
[0201] 一方、窒素ドープ量 N、固溶酸素濃度 Oiについては、要求スペックに応じた値とな るように制御される。
[0202] これにより、通常の窒素濃度、酸素濃度の範囲、つまり窒素濃度 Nを 5 ( X 1014atom s/cm3;縦軸の窒素濃度 Nの範囲の最大値)以下の範囲内で調整し、酸素濃度 Oiを 14 ( X 1017atoms/cm3;横軸の酸素濃度 Oiの範囲の最大値)以下の範囲内で調整 して 、る限りにお 、ては、直径 300mmのァニールゥエーハの表面の SSD密度を、 確実に、 0. 3個/ cm2以下(直径 300mmのァニールゥ ーハ表面で欠陥数 200個 以下)に低減することができる。
[0203] 本実施例によれば、冷却速度 CR値を同じ値に固定することができるので、 SSD数 、固溶酸素濃度、窒素ドープ量の要求スペック毎に、冷却速度 CRの制御内容をそ の都度変更する必要がない。
[0204] (実施例 7)
実施例 5、実施例 6ではそれぞれ、窒素濃度 Nが 5E14at0mS/cm3以下で、酸素濃 度 Oiが 14E17atoms/cm3以下であるときに、 SSD密度 Nssdが 0. 15個/ cm2以下、 0 . 3個 /cm2以下となる冷却速度 CRを、 SSD密度推定式((1)式)、具体的には図 11 、図 12の等冷却速度線から求めて、求められた冷却速度 CRとなるように、冷却速度 を制御することによって、シリコン単結晶 6を引き上げるようにしている。しかし、本発 明としては、 SSD密度 Nssdを低減させたい値は、これら 0. 15個/ cm2以下、 0. 3個/ cm2以下に限定されるわけではない。
[0205] よって、同様な考え方により、 SSD密度 Nssdが所望の値以下になるように冷却速度 CRを求める実施も可能である。
[0206] すなわち、図 11、図 12の等冷却速度線と同様に、 SSD密度 Nssdが所望の値以下 になる等冷却速度線を予め用意し、この等冷却速度線を用いて、窒素濃度 Nが 5E1 4atoms/cm3以下で、酸素濃度 Oiが 14E17atoms/cm3以下であるときに、 SSD密度 Nssdが所望の値以下となる冷却速度 CRを求めて、求められた冷却速度 CRとなるよ うに、冷却速度を制御することによって、シリコン単結晶 6を引き上げる実施も可能で ある。
[0207] 上述した各実施例の製造方法によって製造されたァニールゥヱーハは、市販のパ 一ティクルカウンタ SP1を用いて DNNモードで測定したときに、ゥエーハ表面で検出 される SSDの密度が確実に所望の値まで低減されている。特に実施例 2、実施例 3、 実施例 5の製造方法によって製造されたァニールゥエーハについては、市販のパー ティクルカウンタ SP1を用いて DNNモードで測定したときに、ゥエーハ表面で検出さ れる直径 140應以上のサイズの欠陥の密度が 0. 15個/ cm2以下まで確実に低減さ れており、欠陥低減効果がとりわけ高い。
[0208] し力も、酸素濃度、窒素濃度につ!、ても要求スペックを満足して 、る。また、了ニー ルゥヱーハにとつて望ましい低 V/G領域(図 1)に入る成長条件で、シリコン単結晶 6 を引上げ成長させることができる。
[0209] このため本実施例によれば、高品質のァニールゥエーハを確実に製造することがで きる。
[0210] (実施例 8)
上述した実施例 1〜7のシリコン単結晶製造方法は、酸素濃度 Oi、窒素濃度 N、冷 却速度 CRの 3つのパラメータを制御しつつシリコン単結晶 6を引上げ成長することで 、 SSDの核となる酸素と窒素に関連した析出物を減らし、ァニールゥヱーハ表面の S SD密度 Nssdを減らすと 、う製造方法である。
[0211] しかし、シリコン単結晶 6を引上げ成長の過程では、上述した制御を行うことなくシリ コン単結晶 6を製造しておき、その後、シリコンゥエーハをァニールする工程と、了二 ール後に、ゥ ーハ表面力 少なくとも少なくとも: mの深さまで研磨する工程とを 含むァニールゥエーハの製造方法を実施することによつても、同様にァニールゥエー ハ表面の SSD密度 Nssdを確実に減らすことができる。
[0212] 図 15で説明したように、ァニール後のゥ ーハ表面を少なくとも 1 mの深さまで研 磨すると、直径 300mmサイズのゥヱーハで、 SSDが高々 30個(面密度換算で 0. 04 個/ cm2)以下まで低減されることがわ力つて 、る。
[0213] よって、シリコンゥエーハをァニールし、ァニール後にゥエーハ表面から少なくとも 1 μ mの深さまで研磨すると 、う本実施例のァニールゥエーハ製造方法を実施すれば 、それによつて製造されたァニールゥエーハは、その表面を、パーティクルカウンタを 用いて DNNモードで測定すると、ゥエーハ表面で検出される直径 140nm以上のサイ ズの SSDの密度が確実に 0. 04個/ cm2以下になっており、 SSDの低減効果がとり わけ高い。
[0214] もちろん、実施例 1〜7のシリコン単結晶製造方法と、この実施例 8で説明したァ- ールゥエーハの製造方法を組み合わせて実施してもよい。
[0215] 以上、各実施例では、シリコンゥエーハをァニールすると、 SSDの核となる酸素と窒 素に関連した析出物の密度が増大することを前提とし、この酸素と窒素に関連した析 出物の密度をァニール前のシリコン単結晶 6の引上げ成長の過程で、酸素濃度、窒 素濃度、冷却速度という 3つのパラメータを制御することによって減らす力、ァニール 後に研磨を施すことで、 SSDを減らすものとして説明した。
[0216] しかし、ァニールと同様に、シリコンゥエーハ基板上にェピタキシャル成長層を形成 する処理が施された場合についても、 SSDの核となる酸素と窒素に関連した析出物 の密度 (数)が増大すると考えられる。このため、上述したァニールゥエーハに適用さ れる手法をェピタキシャルゥエーハに適用してもよい。すなわち、酸素と窒素に関連 した析出物の密度 (数)をェピタキシャル成長前のシリコン単結晶 6の引上げ成長の 過程で、酸素濃度、窒素濃度、冷却濃度という 3つのパラメータを制御することによつ て減らすことで、ェピタキシャル成長後に発生する SSDを減らす実施も可能である。
[0217] また、本実施形態では、直径 300mmサイズのシリコン単結晶 6を引上げ成長する 場合を想定して説明した力 本発明としては、シリコン単結晶 6の直径サイズは不問 であり、 300mmより小さい直径サイズ(たとえば 200mm)、あるいは 300mmより大き い直径サイズのシリコン単結晶 6を引上げ成長させる場合にも同様にして適用するこ とがでさる。
図面の簡単な説明
[図 1]図 1は成長条件と点欠陥密度の関係を示すグラフで、低 V/G領域を説明する ためのグラフである。
[図 2]図 2はァニールゥ ーハの理想的な断面構造を示した断面図である。
[図 3]図 3はシリコン単結晶の製造装置を側面力もみた断面図である。
[図 4]図 4はァニーノレのレシピを示した図である。
[図 5]図 5 (a)〜 (j)はゥエーハ表面で観察される SSDを例示した図である。
[図 6]図 6 (a)は酸素濃度と SSD数との関係を示したグラフで、図 6 (b)は図 6 (a)に対 応する表である。
[図 7]図 7はシリコン単結晶位置と酸素濃度、 SSD数との関係を示したグラフである。
[図 8]図 8は SSD実測値と SSD推定値との関係を示したグラフである。
[図 9]図 9は酸素濃度と冷却速度との関係を、窒素濃度毎に示したグラフである。
[図 10]図 10は酸素濃度と冷却速度との関係を、窒素濃度毎に示したグラフである。
[図 11]図 11は酸素濃度と窒素濃度をパラメータとして、 SSD数を所定の値以下にす るための等冷却速度線を示したグラフである。
[図 12]図 12は酸素濃度と窒素濃度をパラメータとして、 SSD数を所定の値以下にす るための等冷却速度線を示したグラフである。
[図 13]図 13 (a)、 (b)はァニールゥ ーハの表面を MAGICS測定した結果を示す図で 、図 13 (c)、(d)はァニールゥ ーハの表面を AFM測定した結果を示す図である。
[図 14]図 14は、ァニール直後の SSD数、ァニール後に研磨した後の SSD数を対比 して示すグラフである。
[図 15]図 15は、ァニール直後の SSD数、ァニール後に研磨した後の SSD数を対比 して示すグラフである。
[図 16]図 16は、所望する各 SSD推定密度と、それに対応する冷却速度、酸素濃度、 窒素濃度、 SSD実測密度との関係を、各試験毎に示した表である。
[図 17]図 17は、図 16に示す SSD推定密度と、 SSD実測密度との関係を示したダラ フである。

Claims

請求の範囲
[1] ァニール処理が施されたゥ ーハの表面に発生する SSD (表面の非常に幅広ぐ浅 い形状の凹状欠陥; Surface Shallow Defect)を低減させるためのシリコン単結晶の製 造方法であって、
シリコン単結晶を融液力 引き上げるに際して、酸素濃度、窒素濃度、所定の温度 域の冷却速度の 3つのパラメータを制御することによって、 SSDの核となる酸素と窒 素に関連した析出物を減少させること
を特徴とするシリコン単結晶の製造方法。
[2] ァニール処理が施されたゥ ーハの表面に発生する SSD (表面の非常に幅広ぐ浅 い形状の凹状欠陥; Surface Shallow Defect)の密度または数に関して、
当該 SSDの密度または数と、シリコン単結晶中の酸素濃度と、シリコン単結晶中の 窒素濃度と、シリコン単結晶引上げ時の所定の温度域の冷却速度との間に成立する 関係式を用いて予測し、
予測した SSD密度または数が得られるような酸素濃度、窒素濃度、所定の温度域 の冷却速度となる結晶育成条件で、シリコン単結晶を引き上げること
を特徴とするシリコン単結晶の製造方法。
[3] 酸素濃度、窒素濃度、所定の温度域の冷却速度の間に成立する関係式は、
SSD密度または数を Nssd、酸素濃度を Oi、窒素濃度を N、所定の温度域の冷却 速度を CR、 Aを定数としたとき、
Figure imgf000037_0001
1、 m>0、 n< 0)
で表されること
を特徴とする請求項 1または 2記載のシリコン単結晶の製造方法。
[4] 窒素ドープ量を、 1E13〜2. 5E14atoms/cm3の範囲とし、固溶酸素濃度を、 11E17
〜14E17atoms/cm3の範囲とし、 900° C〜1000° Cの温度範囲における冷却速度 を、 2. 5° C/min以上として、直径が 300mm以上のシリコン単結晶を引き上げるよう にした、シリコン単結晶の製造方法。
[5] 窒素ドープ量を、 1E13〜2. 5E14atoms/cm3の範囲とし、固溶酸素濃度を、 11E17
〜14E17atoms/cm3の範囲とし、 900° C〜1000° Cの温度範囲における冷却速度 を、 1. 5° C/min以上として、直径が 300mm以上のシリコン単結晶を引き上げるよう にした、シリコン単結晶の製造方法。
[6] 窒素濃度が 5E14atoms/cm3以下で、酸素濃度が 14E17atoms/cm3以下であるとき に、 900° C〜1000° Cの温度範囲における冷却速度が 4. 2° C/min以上となるよう に、冷却速度を制御して、直径が 300mm以上のシリコン単結晶を引き上げるように した、シリコン単結晶の製造方法。
[7] 窒素濃度が 5E14atoms/cm3以下で、酸素濃度 Oiが 14E17atoms/cm3以下であると きに、 900° C〜1000° Cの温度範囲における冷却速度が 2. 8° C/min以上となるよ うに、冷却速度を制御して、直径が 300mm以上のシリコン単結晶を引き上げるように した、シリコン単結晶の製造方法。
[8] 窒素濃度 Nが 5E14atoms/cm3以下で、酸素濃度 Oiが 14E17atoms/cm3以下である ときに、 SSD密度または数 Nssdが所望の値以下となる冷却速度 CRを請求項 3記載 の式から求めて、
求められた冷却速度 CRとなるように、冷却速度を制御することによって、シリコン単 結晶を引き上げるようにした、請求項 3記載のシリコン単結晶の製造方法。
[9] シリコン単結晶を融液から引き上げる処理が行われる炉内に、シリコン単結晶を冷却 する冷却手段が設けられ、この冷却手段を用いて冷却速度が制御されること を特徴とする請求項 1から 8に記載のシリコン単結晶の製造方法。
[10] 請求項 9記載の方法によって製造されたシリコン単結晶から得られたシリコンゥエー ハにァニール処理が施されたァニールゥエーハであって、
ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSDの密 度力 0. 15個/ cm2以下になっている、ァニールゥエーハ。
[11] ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSD (表面 の非常に幅広ぐ浅い形状の凹状欠陥; Surface Shallow Defect)の密度力 0. 15個 /cm2以下になって!/ヽる、ァニールゥヱーハであって、
当該ァニールゥヱーハの表面を少なくとも 1 μ mの深さまで研磨した場合には、前 記 SP1測定器を用いて DNNモード測定によって検出すると、検出される直径 140η m以上のサイズの欠陥の密度力 0. 04個/ cm2以下にまで低減される、
ァ-ーノレゥエーノヽ。
[12] 窒素ドープされて!/、るァニールゥエーハであって、
ゥエーハ表面を、 KLA TENCOR社製パーティクルカウンタ SP1測定器を用いて DN Nモード測定によって検出すると、検出される直径 140nm以上のサイズの SSD (表面 の非常に幅広ぐ浅い形状の凹状欠陥; Surface Shallow Defect)の密度が 0. 04個/ c m2以下になっている、ァニーノレゥエーハ。
[13] 窒素ドープされて!/、るシリコンゥエーハをァニールする工程と、
ァニール後に、ゥヱーハ表面力 少なくとも 1 μ mの深さまで研磨する工程と を含むァニールゥエーハの製造方法。
PCT/JP2006/302517 2005-03-28 2006-02-14 シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法 WO2006103837A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/887,244 US7875116B2 (en) 2005-03-28 2006-02-14 Silicon single crystal producing method, annealed wafer, and method of producing annealed wafer
DE112006000816T DE112006000816T5 (de) 2005-03-28 2006-02-14 Produktionsverfahren für Siliziumeinkristall, getemperter Wafer und Produktionsverfahren für getemperten Wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005092928A JP2006273631A (ja) 2005-03-28 2005-03-28 シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法
JP2005-092928 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006103837A1 true WO2006103837A1 (ja) 2006-10-05

Family

ID=37053106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302517 WO2006103837A1 (ja) 2005-03-28 2006-02-14 シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法

Country Status (5)

Country Link
US (1) US7875116B2 (ja)
JP (1) JP2006273631A (ja)
DE (1) DE112006000816T5 (ja)
TW (1) TW200634185A (ja)
WO (1) WO2006103837A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089783A (ja) * 2011-10-19 2013-05-13 Globalwafers Japan Co Ltd シリコンウェーハの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110155045A1 (en) * 2007-06-14 2011-06-30 Evergreen Solar, Inc. Controlling the Temperature Profile in a Sheet Wafer
JP5276863B2 (ja) * 2008-03-21 2013-08-28 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ
DE102011083041B4 (de) 2010-10-20 2018-06-07 Siltronic Ag Stützring zum Abstützen einer Halbleiterscheibe aus einkristallinem Silizium während einer Wärmebehandlung und Verfahren zur Wärmebehandlung einer solchen Halbleiterscheibe unter Verwendung eines solchen Stützrings
JP2013163598A (ja) * 2012-01-10 2013-08-22 Globalwafers Japan Co Ltd シリコンウェーハの製造方法
JP6052189B2 (ja) * 2014-01-16 2016-12-27 信越半導体株式会社 シリコン単結晶ウェーハの熱処理方法
JP6723219B2 (ja) 2015-03-03 2020-07-15 昭和電工株式会社 SiCエピタキシャルウェハ、SiCエピタキシャルウェハの製造方法
US11313049B2 (en) 2015-10-19 2022-04-26 Globalwafers Co., Ltd. Crystal pulling systems and methods for producing monocrystalline ingots with reduced edge band defects
CN116230498A (zh) * 2023-02-06 2023-06-06 中环领先半导体材料有限公司 一种制造高密度bmd浅dz层12英寸硅片的工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281490A (ja) * 1999-03-26 2000-10-10 Nippon Steel Corp シリコン半導体基板及びその製造方法
JP2000290100A (ja) * 1999-04-08 2000-10-17 Sumitomo Metal Ind Ltd シリコンウェーハの製造方法
JP2002012497A (ja) * 2000-06-22 2002-01-15 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法およびエピタキシャルウェーハの製造方法
JP2002246396A (ja) * 2001-02-19 2002-08-30 Sumitomo Mitsubishi Silicon Corp エピタキシャルウェーハの製造方法
JP2003109961A (ja) * 2001-10-01 2003-04-11 Sumitomo Mitsubishi Silicon Corp エピタキシャルシリコンウェーハおよびその製造方法
JP2004111732A (ja) * 2002-09-19 2004-04-08 Komatsu Electronic Metals Co Ltd シリコンウェーハの製造方法
JP2004119446A (ja) * 2002-09-24 2004-04-15 Shin Etsu Handotai Co Ltd アニールウエーハの製造方法及びアニールウエーハ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637182A1 (de) 1996-09-12 1998-03-19 Wacker Siltronic Halbleitermat Verfahren zur Herstellung von Halbleiterscheiben aus Silicium mit geringer Defektdichte
TW589415B (en) * 1998-03-09 2004-06-01 Shinetsu Handotai Kk Method for producing silicon single crystal wafer and silicon single crystal wafer
JPH11349393A (ja) * 1998-06-03 1999-12-21 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハおよびシリコン単結晶ウエーハの製造方法
DE60144416D1 (de) 2000-01-25 2011-05-26 Shinetsu Handotai Kk Verfahren zur bestimmung unter welchen konditionen der siliziumeinkristall hergestellt wurde und verfahren zur herstellung des siliziumwafers
JP4566478B2 (ja) * 2001-08-09 2010-10-20 シルトロニック・ジャパン株式会社 シリコン半導体基板およびその製造方法
JPWO2004073057A1 (ja) 2003-02-14 2006-06-01 株式会社Sumco シリコンウェーハの製造方法
JP4670224B2 (ja) 2003-04-01 2011-04-13 株式会社Sumco シリコンウェーハの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281490A (ja) * 1999-03-26 2000-10-10 Nippon Steel Corp シリコン半導体基板及びその製造方法
JP2000290100A (ja) * 1999-04-08 2000-10-17 Sumitomo Metal Ind Ltd シリコンウェーハの製造方法
JP2002012497A (ja) * 2000-06-22 2002-01-15 Sumitomo Metal Ind Ltd シリコン単結晶の製造方法およびエピタキシャルウェーハの製造方法
JP2002246396A (ja) * 2001-02-19 2002-08-30 Sumitomo Mitsubishi Silicon Corp エピタキシャルウェーハの製造方法
JP2003109961A (ja) * 2001-10-01 2003-04-11 Sumitomo Mitsubishi Silicon Corp エピタキシャルシリコンウェーハおよびその製造方法
JP2004111732A (ja) * 2002-09-19 2004-04-08 Komatsu Electronic Metals Co Ltd シリコンウェーハの製造方法
JP2004119446A (ja) * 2002-09-24 2004-04-15 Shin Etsu Handotai Co Ltd アニールウエーハの製造方法及びアニールウエーハ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089783A (ja) * 2011-10-19 2013-05-13 Globalwafers Japan Co Ltd シリコンウェーハの製造方法

Also Published As

Publication number Publication date
US20090061140A1 (en) 2009-03-05
DE112006000816T5 (de) 2008-02-07
JP2006273631A (ja) 2006-10-12
US7875116B2 (en) 2011-01-25
TW200634185A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
WO2006103837A1 (ja) シリコン単結晶の製造方法およびアニールウェーハおよびアニールウェーハの製造方法
EP1926134B1 (en) Method for manufacturing silicon epitaxial wafers
US8231852B2 (en) Silicon wafer and method for producing the same
JP2001146498A (ja) シリコン単結晶ウエーハおよびその製造方法並びにsoiウエーハ
JP2000001391A (ja) シリコン単結晶ウエーハ及びその製造方法
US20130323153A1 (en) Silicon single crystal wafer
JP5163459B2 (ja) シリコン単結晶の育成方法及びシリコンウェーハの検査方法
JP2010040587A (ja) シリコンウェーハの製造方法
JP2002187794A (ja) シリコンウェーハおよびこれに用いるシリコン単結晶の製造方法
WO2008029579A1 (fr) Tranche de silicium monocristallin et procédé de fabrication associé
JP3255114B2 (ja) 窒素ドープした低欠陥シリコン単結晶の製造方法
JP2000053497A (ja) 窒素ド―プした低欠陥シリコン単結晶ウエ―ハおよびその製造方法
KR20140001815A (ko) 실리콘 기판의 제조 방법 및 실리콘 기판
KR20180094102A (ko) 균질한 방사형 산소 변화를 갖는 실리콘 웨이퍼
KR20140021543A (ko) 실리콘 기판의 제조방법 및 실리콘 기판
JP5381558B2 (ja) シリコン単結晶の引上げ方法
JP2002145697A (ja) 単結晶シリコンウェーハ、インゴット及びその製造方法
EP1536044B1 (en) Method of manufacturing an epitaxial silicon wafer
EP1650332A1 (en) Method for producing single crystal and single crystal
JP3614019B2 (ja) シリコン単結晶ウエーハの製造方法およびシリコン単結晶ウエーハ
JP4857517B2 (ja) アニールウエーハ及びアニールウエーハの製造方法
EP1127962B1 (en) Method for manufacturing silicon single crystal, silicon single crystal manufactured by the method, and silicon wafer
JP7384264B1 (ja) エピタキシャル成長用シリコンウェーハ及びエピタキシャルウェーハ
US20230243069A1 (en) Method for producing semiconductor wafers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887244

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060008161

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006000816

Country of ref document: DE

Date of ref document: 20080207

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06713658

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607