WO2006101141A1 - 溶融塩組成物及びその利用 - Google Patents

溶融塩組成物及びその利用 Download PDF

Info

Publication number
WO2006101141A1
WO2006101141A1 PCT/JP2006/305736 JP2006305736W WO2006101141A1 WO 2006101141 A1 WO2006101141 A1 WO 2006101141A1 JP 2006305736 W JP2006305736 W JP 2006305736W WO 2006101141 A1 WO2006101141 A1 WO 2006101141A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
natfsi
salt
litfsi
present
Prior art date
Application number
PCT/JP2006/305736
Other languages
English (en)
French (fr)
Inventor
Rika Hagiwara
Kazuhiko Matsumoto
Kenichiro Tamaki
Toshiyuki Nohira
Takuya Goto
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to EP06729703A priority Critical patent/EP1862452A1/en
Priority to US11/886,781 priority patent/US8257868B2/en
Priority to JP2007509311A priority patent/JPWO2006101141A1/ja
Publication of WO2006101141A1 publication Critical patent/WO2006101141A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/70Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a molten salt composition and use thereof, and in particular, a molten salt composition containing two or more MTFSIs having an alkali metal M as a cation and imido-one (TFSI) as a lion, and It is about its use.
  • a molten salt composition containing two or more MTFSIs having an alkali metal M as a cation and imido-one (TFSI) as a lion, and It is about its use.
  • Molten salt is a salt in a molten state, and slag force melted at high temperature is known to have a wide and temperature range up to room temperature molten salt (also called ionic liquid etc.) that becomes liquid at room temperature. Speak.
  • room temperature molten salt also called ionic liquid etc.
  • molten salts can give different functionality depending on the combination of force thiones and key-ons, a wide variety of salts have been developed for various applications.
  • bistrifluoromethylsulfamideamione (commonly known as imidoone, TFSI _ , N (SO CF)) is known as a key ion that gives a salt having a relatively low melting point.
  • the O group is very negative electrically and the charge on the nitrogen atom in the TFSI
  • EMImTFSI 1-ethyl-3-methylimidazolium trifluoromethylsulfamide
  • Non-patent document 1 detailed studies of these salts as molten salts have never been made
  • LiTFSI has been widely studied for its application as an electrolyte supporting salt for lithium ion secondary batteries.
  • the properties of LiTFSI alone as a molten salt have not been studied.
  • NaTFSI and KTFSI have been studied for polymer composites, but very few have been reported (see Non-Patent Documents 2 and 3).
  • CsTFSI there are no reports of related research or physical properties other than the crystal structure described above. There is no report about RbTFSI.
  • the salt MTFSI whose cation is an alkali metal, is considered to be applied to batteries and the like, and is a very promising material.
  • Detailed examination has not been made, and its application is limited as it is.
  • it is indispensable to lower the melting point of the electrolyte and expand the operating temperature range. No such attempt has been reported!
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to reduce the melting point of the electrolyte or to deposit a specific metal, ceramic or the like with respect to MTFSI. It is an object to provide a technique that can be eluted and that enables a wide range of applications regarding electrolytes and the use thereof.
  • M Li, Na, K, Rb, Cs
  • the binary system states of NaTFSI-LiTFSI, NaT FSI-KTFSI, NaTFSI-CsTFSI, LiTFSI-KTFSI were examined in detail, focusing on NaTFSI.
  • the eutectic temperature power in each eutectic composition of the system has found a new fact that it is significantly lower than the melting point of the single salt, and has completed the present invention.
  • the present invention has been completed based on powerful new findings and includes the following inventions.
  • a substance represented by the following chemical formula (1) A molten salt composition containing two or more kinds of molten salts MTFSI having TFSI as anion and alkali metal M as a cation.
  • the above molten salt MTFSI is LiTFSI, NaTFSI, KTFSI, RbTFSI, and CsTFSI.
  • the molten salt composition according to 1) which is selected from the group consisting of
  • the above molten salt composition is a binary composition in which two types of molten salt MTFSI are mixed, LiTFSI-NaTFSI mixed system, LiTFSI-KTFSI mixed system, LiTFSI-CsTFSI mixed system, NaTFSI- KTFSI mixed system, NaTFSI—CsTFSI mixed system, or KTFSI—CsTF
  • a charging method including a step of charging using the battery according to any one of 5) to 7) above
  • An electrodeposition method including a step of depositing a metal or ceramic using the electrolytic solution described in 4) above.
  • a film forming method comprising:
  • the eutectic temperature is remarkably reduced as compared with the melting point of a single salt containing only one MTFSI.
  • the usable temperature range can be expanded by setting the composition and ratio. Therefore, by using the molten salt composition according to the present invention, the melting point of the electrolyte can be lowered, and there are advantages in terms of energy efficiency and safety.
  • the operating temperature range can be expanded, there is an advantage that the selectivity of the material is improved when applied to a battery.
  • FIG. 1 is a diagram schematically showing the configuration of an experimental apparatus used in an example of the present invention.
  • FIG. 2 is a diagram showing a synthetic procedure of a molten salt performed in an example of the present invention.
  • FIG. 3 is a diagram showing an electrochemical measurement apparatus used in an example of the present invention.
  • FIG. 4 is a view showing a TG curve of LiTFSI in an example of the present invention.
  • FIG. 5 is a diagram showing a TG curve of NaTFSI in an example of the present invention.
  • FIG. 6 is a diagram showing a TG curve of KTFSI in an example of the present invention.
  • FIG. 7 is a diagram showing a CsTFSI TG curve in an example of the present invention.
  • FIG. 8 is a diagram showing a LiTFSI DSC curve in an example of the present invention.
  • FIG. 9 is a diagram showing a DSC curve of NaTFSI in an example of the present invention.
  • FIG. 10 is a diagram showing a KTFSI DSC curve in an example of the present invention.
  • FIG. 11 is a diagram showing a DSC curve of CsTFSI in an example of the present invention.
  • FIG. 12 (a) is a diagram showing the results of cyclic voltammetry of LiTFSI in the example of the present invention, and is a diagram showing the results when Ni is used as an electrode.
  • FIG. 12 (b) is a diagram showing the results of cyclic voltammetry of LiTFSI in the examples of the present invention, and is a diagram showing the results when glassy carbon is used as an electrode.
  • FIG. 13 (a) is a diagram showing the results of cyclic voltammetry of NaTFSI in an example of the present invention, and is a diagram showing results when Ni is used as an electrode.
  • FIG. 13 (b) is a diagram showing the results of cyclic voltammetry of NaTFSI in the example of the present invention, and is a diagram showing the results when glassy carbon is used as an electrode.
  • FIG. 14 (a) is a view showing the results of cyclic voltammetry of KTFSI in the example of the present invention, and showing the results when Ni is used as an electrode.
  • FIG. 14 (b) is a diagram showing the results of cyclic voltammetry of KTFSI in the example of the present invention, and is a diagram showing the results when glassy carbon is used as an electrode.
  • FIG. 15 (a) is a diagram showing the results of cyclic voltammetry of CsTFSI in the example of the present invention, and shows the results when Ni is used as an electrode.
  • FIG. 15 (b) shows the results of cyclic voltammetry of CsTFSI in the example of the present invention. It is a figure which shows the result at the time of using glassy carbon as an electrode.
  • FIG. 17 is a diagram showing a binary phase diagram created by plotting each endothermic peak of a LiTFSI-NaTFSI mixed salt in an example of the present invention.
  • FIG. 19 is a diagram showing a binary phase diagram created by plotting each endothermic peak of a KTFSI-NaTFSI mixed salt in an example of the present invention.
  • FIG. 21 is a diagram showing a binary phase diagram created by plotting each endothermic peak of a NaTFSI-CsTFSI mixed salt in an example of the present invention.
  • FIG. 23 is a diagram showing a binary system phase diagram created by plotting each endothermic peak of a LiTFSI-KTFSI mixed salt in an example of the present invention.
  • FIG. 25 is a diagram showing a binary phase diagram created by plotting each endothermic peak of a LiTFSI-CsTFSI mixed salt in an example of the present invention.
  • FIG. 27 is a diagram showing a binary phase diagram created by plotting each endothermic peak of a KTFSI-CsTFSI mixed salt in an example of the present invention.
  • FIG. 28 is a graph showing the thermal decomposition temperature of each single salt used in the examples of the present invention.
  • FIG. 29 is a diagram showing the melting point of each single salt used in the examples of the present invention.
  • FIG. 30 is a diagram showing a eutectic composition and a eutectic temperature of each mixed salt in an example of the present invention.
  • the present invention is a mixture having a melting point lower than that of a single salt by mixing two or more kinds of alkali metal imide salts (MTFSI). It was obtained based on the research results of the present inventors that a salt composition can be obtained. Therefore, the molten salt composition is first described and then its use is described.
  • MTFSI alkali metal imide salts
  • Imido refers to an amide having an imino group, and it is strictly inappropriate to call a TFSI ion without an imino group as an imide. Therefore, it will be used as a common name in this specification.
  • the molten salt composition according to the present invention may be a molten salt composition containing two or more types of molten salt MTFSI having the substance TFSI represented by the chemical formula (1) as a cation and an alkali metal M as a cation.
  • TFSI substance represented by the chemical formula (1)
  • an alkali metal M as a cation.
  • the molten salt composition according to the present invention has a characteristic that the melting point (eutectic temperature) is remarkably reduced as compared with the melting point of the single salt due to the constitution having two or more types of MTFSI.
  • the electrochemical characteristics and melting temperature can be changed by adjusting the composition and ratio of the molten salt to be mixed. For this reason, there is an advantage that the degree of freedom in selection of the operating temperature and materials in a wide range of applications to batteries and the like is improved.
  • the alkali metal M examples include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). Therefore, the molten salt MTFSI is preferably selected from the group consisting of LiTFSI, NaTFSI, KTFSI, RbTFSI, and CsTFSI.
  • a composition containing two kinds of molten salts selected from the group consisting of LiTFSI, NaTFSI, KTFSI, RbTFSI, and CsTFSI a so-called binary composition is preferred.
  • binary composition examples include the LiTFSI-NaTFSI system, LiTFSI-KTFSI system, LiTFSI-CsTFSI system, NaTFSI-KTFSI system, NaTFSI-CsTFSI system, or KTFSI-CsTFSI system.
  • LiTFSI-KTFSI system and LiTFSI-CsTFSI system which are applicable to lithium batteries
  • NaTFSI-KTFSI mixed system and NaTFSI-CsTFSI mixed system can deposit metallic sodium.
  • electrolytes for lithium batteries, sodium-sulfur batteries, and zebra batteries the range of applications is further expanded and the development of technology is expected if these metals have the property of being easily deposited.
  • the molten salt composition is preferably configured so that two or more of the mixed molten salts are in the vicinity of a composition (eutectic composition) exhibiting a eutectic.
  • a composition eutectic composition
  • the LiTFSI ratio in the Li TFSI-NaTFSI system is preferably 0.1 to 0.6.
  • the ratio of LiTFSI is preferably 0.2 to 0.8.
  • the composition with X 0.43, which is the composition with the lowest eutectic temperature (eutectic composition)
  • the ratio of NaTFSI is preferably 0.05-0.6.
  • the composition having the lowest eutectic temperature (eutectic composition) X 0.
  • a composition of 33 is preferred.
  • the NaTFSI ratio is preferably 0.03 to 0.6.
  • X is the composition with the lowest eutectic temperature (eutectic composition).
  • the eutectic temperature is changed by changing the composition and ratio of the molten salt.
  • the optimum temperature range can be set according to the purpose of use, and there is also an advantage that the range of application is widened.
  • the molten salt composition according to the present invention has a wide range from a low temperature range, which cannot be used with conventional single salt molten salts, to a medium to high temperature range that can be used with conventional single salts. Can be used in a range.
  • the molten salt composition according to the present invention can be used, for example, at 110 ° C to 470 ° C.
  • molten salt used in the present invention a conventionally known molten salt MTFSI having an alkali metal M as a cation and TFSI as a key can be suitably used.
  • the manufacturing method can utilize a conventionally well-known method,
  • the concrete means etc. are not specifically limited. For example, the method shown in the Example mentioned later can be used.
  • the molten salt composition according to the present invention has a specific effect when the melting temperature (eutectic temperature) is lowered. For this reason, it is excellent in safety, corrosion prevention, and energy cost. That is, if the melting temperature is lowered and the molten salt can be used at a low temperature, the use of energy for heating can be reduced. In addition, molten salts generally tend to corrode materials such as metals, and their properties increase in reaction rate with increasing temperature. As a result. Therefore, if molten salt can be used at a low temperature, the progress of corrosion can be expected to decrease. If it can be used at low temperatures, the possibility of accidents such as spilling of high-temperature objects due to rupture of equipment materials due to material corrosion will be reduced.
  • the melting temperature eutectic temperature
  • the molten salt composition according to the present invention has the advantage that the eutectic temperature is lowered while the decomposition temperature does not change from that in the case of a single salt, so that the temperature range between the melting point and the decomposition temperature is widened and the operability is improved. There is.
  • the molten salt composition according to the present invention has various advantages over the conventional molten salt and electrolyte, and can be said to be particularly advantageous in the following points. That is, for example, an ionic liquid or a molten salt that can be applied to an electrolytic solution for a lithium battery, electrodeposition of a base metal at a low temperature, or the like must have a low melting point and a lower reduction potential.
  • an ionic liquid or a molten salt that can be applied to an electrolytic solution for a lithium battery, electrodeposition of a base metal at a low temperature, or the like must have a low melting point and a lower reduction potential.
  • conventional electrolytes in which electrolytes are dissolved in organic solvents and ionic liquids of imide salts with organic cations as counterions are used in organic solvents or at higher potentials before these metals are reduced and precipitated. The organic cation may be decomposed.
  • the alkali metal imide salt is used as a molten salt that does not dissolve in an organic solvent, and by mixing a plurality of types of molten salts, the temperature is lower than that in the case of a single salt.
  • molten salt As an electrolyte, it is possible to cause electrochemical reactions that are difficult in an aqueous solution system, and a wide variety of research and development has been conducted for various applications. For example, some molten salts have various melting points. Salts having a melting point in the middle temperature range are advantageous for applications as electrolytes in electrochemical devices operating at medium to high temperatures.
  • the molten salt composition according to the present invention has a melting temperature in the medium temperature to high temperature range, and thus can be used particularly in the medium temperature to high temperature range. Therefore, for example, in the above temperature range, an electrolytic solution or an electrode containing the molten salt composition described in the above ⁇ 1> column. It can be used as a solution.
  • the melting point composition (eutectic temperature) of the molten salt composition according to the present invention is lower than that of a single salt, safety, width of material selection, energy Very good in terms of cost. For this reason, such advantages can also be used in the use of a molten salt compound.
  • the use of the electrolytic solution or the electrolyte is not particularly limited, and can be used for a wide variety of products using the electrolyte known in the present application. For example, it can be used as an electrolyte for batteries.
  • molten salt composition according to the present invention as an electrolytic solution or an electrolyte
  • a solvent it is intended to use a molten salt obtained by melting the salt itself as an electrolyte or electrolyte.
  • Such use is very preferable because it is not necessary to use a solvent. This is because the volatile and flammable electrolyte solution due to the presence of the solvent does not cause problems such as ignition and explosion due to the reaction with the alkali metal.
  • the molten salt composition according to the present invention is ( 0 No organic solvent, GO itself melts at a relatively low temperature, (m) Alkali metal imide salt and its eutectic salt as low temperature molten salt, (iv) Melting temperature of these salts Strength It has excellent characteristics in that it is stable even at high temperatures, and (V) it can precipitate alkali metal in molten salt.
  • sodium-sulfur batteries for example, sodium-sulfur batteries, zebra batteries, lithium secondary batteries (stationary type, high output, for load leveling) that operate at lower temperatures, etc. It can be used as an electrolyte for a wide variety of batteries.
  • the advantage as a large-sized battery using an alkali metal imide salt is great. For example, it can be used for charging surplus power at night in a power facility or the like. It can also be used for lithium secondary batteries for electric vehicles and hybrid vehicles.
  • a large Li-ion battery is configured using the molten salt composition according to the present invention, it is preferably used in a temperature range in which generation of dendrites is suppressed. Specifically, 150 ° C ⁇ 20 It is preferable to use at a temperature of about o ° c.
  • the conventional single salt molten salt has been unable to be used sufficiently in this temperature range, but the molten salt composition according to the present invention can be used in such a temperature range.
  • the present invention also includes a charging method using a battery using the molten salt composition.
  • the specific method of the charging method is not particularly limited, and any other known processes, conditions, equipment used, etc. may be used as long as the above battery is used. According to this charging method, it can charge efficiently.
  • the fact that the molten salt composition according to the present invention can be used as an electrolyte is clear from the fact that the molten salt composition has good electrical conductivity.
  • the molten salt composition according to the present invention can be used as an electrolyte for electrodeposition under conditions where an aqueous solution cannot be used and a high-temperature molten salt cannot be used in the LIGA process. Can be used.
  • the molten salt composition of the present invention When the molten salt composition of the present invention is used as an electrolyte for a battery, when one alkali metal functions as a battery, the other alkali metal exhibits a solvent function. . That is, in the molten salt composition of the present invention, at least two kinds of alkali metal salts are mixed, and therefore, when the electrolysis is applied with voltage, the alkali metal that is easily reduced to the negative electrode is precipitated first. come. Therefore, when used as an electrolyte for a battery, the negative electrode of the battery becomes an alkali metal electrode that is more likely to be reduced in this way.
  • the molten salt composition according to the present invention when the molten salt composition according to the present invention was electrochemically measured, it was confirmed that the alkali metal constituting each single salt showed a property of being reduced and precipitated. That is, an electrochemically base metal such as an alkali metal can be deposited. For this reason, by utilizing this characteristic, the molten salt composition according to the present invention can be used as, for example, a plating solution in which a target metal having a lower reducibility than an alkali metal is dissolved as a metal salt. Examples of such target metals include alkaline earth metals, rare earth metals, Group 5 and Group 6 refractory metals, and the like.
  • the molten salt composition according to the present invention has been confirmed by cyclic voltammetry that the force sword limit is precipitation of an alkali metal or an alloy thereof. . Because of this, the reductive decomposition of TFSI, which is a key, does not occur, It can be said that the metal and the various metals described above can be deposited.
  • the electrolytic solution containing the molten salt composition according to the present invention can be used in an electrodeposition method, a film formation method (Metch), a surface treatment method, and the like.
  • the electrodeposition method according to the present invention is not particularly limited as long as the electrolytic solution containing the molten salt composition is used, and other steps, conditions, and specific configurations of equipment used are particularly limited. is not.
  • any method can be used as long as the method includes an electrodeposition step in which the molten salt composition is used as an electrolyte, and electrolysis is performed to deposit the metal or ceramics.
  • this electrodeposition method it can be suitably used for electroplating.
  • the method for forming a film according to the present invention is not particularly limited with respect to the specific configuration of other steps, conditions, equipment used, etc., as long as the electrolytic solution containing the molten salt composition is used. Is not something
  • This film forming method is a method including a wet process in which the above molten salt composition is used as an electrolyte, and this is electrolyzed to deposit a metal or ceramic, and the surface is covered with the metal or ceramic. That is.
  • a method including at least the electrodeposition method and a step of covering the surface of the substance with a metal or ceramics deposited by the electrodeposition method can be given.
  • the present film forming method the surface of the substance can be uniformly coated, and a surface-finished product can be obtained.
  • the surface treatment method according to the present invention is not particularly limited with respect to the specific configuration of other steps, conditions, equipment used, etc., as long as the electrolytic solution containing the molten salt composition is used. Is not something Any method may be used as long as the so-called molten salt composition is used as an electrolyte and the surface of the substance is treated. Examples of such surface treatments include surface treatments such as oxide coating, nitride coating, carbide coating, and silicide coating. For this reason, according to this surface treatment method, the effect of imparting functions such as high hardness, wear resistance, and corrosion resistance to the surface can be obtained.
  • the present invention is not limited, and a material that is a target of a film forming method or a surface treatment method using a conventionally known electrolytic solution / electrolyte can be suitably implemented.
  • a material that is a target of a film forming method or a surface treatment method using a conventionally known electrolytic solution / electrolyte can be suitably implemented.
  • metal or composite A metal film or a ceramic film can be formed on the surface of gold, ceramics or plastic, or the surface of a metal or alloy can be treated.
  • it can be used for surface finishing operations such as jewelry and home appliances.
  • Fig. 1 shows the corrosion resistance reaction line used in the experiment.
  • the main body consists of a SUS316 stainless steel pipe (outer diameter lZ2inch) with excellent corrosion resistance, which is connected to the SUS316 stainless steel vacuum valve (Whitey) using a joint and Kel-F tip using a swage lock. .
  • a pipe with an outer diameter of lZ4 inch was used for the connection part of the reaction tube.
  • An oil rotary vacuum pump is connected to this reaction line.
  • a glass cold trap is installed just before the pump, and this is cooled with liquid nitrogen, so that water and corrosive gases are contained in the pump. Prevented entering. Corrosive gases such as fluorine and fluoride gas can be removed through a chemical trap using soda lime as roughing. When passing through this chemical trap, the pressure loss is large and the degree of vacuum does not increase. Therefore, the NORB can directly exhaust the gas without passing through the chemical trap.
  • the maximum vacuum of this line is about 10 _2 Torr order.
  • MTFSI was synthesized according to the following reaction formula.
  • thermogravimetric analysis was performed.
  • Thermogravimetric analysis was performed using a differential thermal / thermogravimetric simultaneous measurement apparatus (Shimadzu Corporation, DTG-60 / 60H). The aluminum cell used was washed with ethanol and distilled water before measurement and dried sufficiently, and then a sample was put in and measured. The scanning speed was lOKmin- 1 . The measurement was performed in a nitrogen gas atmosphere. Since LiTFSI has deliquescence, the temperature was first measured up to 573K to remove moisture. For NaTFSI, KTFSI, and CsTFSI, Yanagi-j was determined as it was.
  • Differential scanning calorimetry was performed using a differential scanning calorimeter (Shimadzu Corporation, DSC60). SE The aluminum was made of aluminum. A sample was put in a cell in a glove box under an argon atmosphere, and the cell was sealed using a sealer and crimper (Shimadzu Corporation, SSC-30), and used for measurement. The scanning speed was lOKmin- 1 . The measurement was performed in a nitrogen gas atmosphere. Differential scanning calorimetry of mixed salts of NaTFSI and other salts was performed by changing the molar fraction X of NaTFSI from 0.05 to 0.95 every 0.05. Once heated to 533K, the room
  • Electrochemical measurement was performed using an electrochemical measuring device HZ-3000 (Hokuto Denko). Cyclic voltammetry was performed using a glass cell. Nickel wire and glassy carbon rod were used for the working electrode, glassy carbon rod for the counter electrode, and silver wire as the pseudo reference electrode for the reference electrode.
  • Figure 3 shows a schematic diagram of the measuring device. The measurement was performed in a glove box under an argon atmosphere with a heater maintained at a bath temperature about 30K higher than the melting point of the salt.
  • Figures 4 to 7 show the TG curves for each single salt MTFSI.
  • the pyrolysis temperature was determined by taking the contact point between the baseline and the TG curve after weight loss.
  • Figure 22 shows the thermal decomposition temperature of each single salt. It was found that the thermal decomposition temperature tends to increase as the size of the cation increases. This is consistent with the general thermal stability of ionic crystals in which large cations stabilize large ions.
  • Figures 8 to 11 show DSC curves of each single salt MTFSI.
  • the melting point was determined by taking the intersection of the baseline extension and the endothermic peak tangent on the DSC curve.
  • Figure 23 shows the melting point of each single salt. Unlike the trend of pyrolysis temperature, it was found that the melting point of the single salt was higher in the case of NaTFSI.
  • a small endothermic peak was confirmed around 373K. This is a force that is considered to correspond to the evaporation of a very small amount of water that could not be removed by vacuum drying. I can say that. Power that may be considered to correspond to a phase transition I know that! / ⁇ ⁇ .
  • TFSI ion is very strong and has resistance to reduction! It is difficult to think of it as a reduction of TFSI.
  • Impurities may include HTFS I, which is a raw material of salt, alkali metal carbonate, or strong water that is generated during synthesis and cannot be removed by vacuum drying.
  • HTFS I is a raw material of salt, alkali metal carbonate, or strong water that is generated during synthesis and cannot be removed by vacuum drying.
  • the pH of the aqueous salt solution was neutral, it is unlikely that HTFSI and carbonate were mixed.
  • CsTFSI the endothermic peak corresponding to the evaporation of water in the DSC curve was strong.
  • This endothermic peak originates from LiTFSI and is considered to correspond to the phase transition of the mixed salt and so on.
  • FIG. 1 Shown in A binary system phase diagram created by plotting these endothermic peaks is shown in FIG.
  • An endothermic peak was observed around 463 K across the composition range, which was wider on the NaTFSI side than the eutectic composition. This endothermic peak gradually decreases as X increases.
  • the degree was found to be about 383K. In this system, an endothermic peak was observed near 413K on the side where NaTFSI was higher than the eutectic composition, but it gradually decreased as X increased.
  • the endothermic peak near K disappears as X increases, and instead the endothermic peak near 403K.
  • the melting point of the eutectic composition was very close to that of the latter salt, taking a value and not much lowering.
  • Shown in Figure 23 shows a binary phase diagram created by plotting these endothermic peaks.
  • An endothermic peak was observed at around 500K across the composition range, which was wider on the LiTFSI side than the eutectic composition.
  • FIG. 1 Shown in A binary system phase diagram created by plotting these endothermic peaks is shown in FIG.
  • LiTFSI Shown in Figure 27 shows a binary phase diagram created by plotting these endothermic peaks.
  • the eutectic temperature was hardly lowered. For this reason, no eutectic composition is shown.
  • the eutectic point is not shown, for example, it is lower than KTFSI single salt at 50%, and it becomes an electrolyte that moves K + ions at a temperature, so that it can be used as a molten salt composition according to the present invention. Let me add that just in case.
  • FIG. 28 shows the thermal decomposition temperature of each single salt
  • FIG. 29 shows the melting point of each single salt
  • FIG. 30 shows the eutectic composition and eutectic temperature of each mixed salt. From these results, it can be seen that the eutectic temperature of the binary molten salt composition obtained by mixing two types of molten salts used in this Example is significantly lower than that of a single salt.
  • the molten salt composition according to the present invention can lower the melting point as compared with the case of a single salt.
  • the usable temperature range can be expanded by setting the composition and ratio of the molten salt. For this reason, by using the molten salt composition according to the present invention, the melting point of the electrolyte can be lowered, which is advantageous in terms of energy efficiency and safety.
  • the operating temperature range can be expanded, there are also advantages such as improved material selectivity when applied to batteries. Therefore, it can be used in a wide range of industries such as plating, semiconductor, and battery industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

 イミドアニオンTFSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MTFSIを、2種類以上含む溶融塩組成物は、単塩の場合に比べて電解質の融点が低下し、使用温度域が拡大する。このため、電池等への使用に際して材料選択の幅が広がる等の様々な利点がある。

Description

明 細 書
溶融塩組成物及びその利用
技術分野
[0001] 本発明は、溶融塩組成物及びその利用に関するものであり、特に、アルカリ金属 M をカチオン、イミドア-オン (TFSI)をァ-オンとする MTFSIを 2種類以上含む溶融 塩組成物及びその利用に関するものである。
背景技術
[0002] 溶融塩とは、溶融状態にある塩であり、高温で融解したスラグ力 室温で液体となる 室温溶融塩 (イオン性液体等とも呼ばれる)まで、幅広 、温度域のものが知られて ヽる 。溶融塩を電解液として用いることにより、水溶液系電解液では困難な反応を電気化 学的に起こすことが可能であり、各分野で様々な研究が進められている。溶融塩は力 チオンとァ-オンの組み合わせにより異なった機能性を与えることができるため、様 々な応用を目的とした多種多様な塩が開発されている。
[0003] その中でも比較的低 、融点の塩を与えるァ-オンとして知られるものに、ビストリフ ルォロメチルスルフォ-ルアミドア-オン(通称イミドア-オン、 TFSI_, N (SO CF )
2 3 2
―、後述の化学式(1) )がある。 TFSIァ-オンの歴史は、 1990年に Armandらがリチウ ムビストリフルォロメチルスルフォ-ルアミド (LiTFSI)を報告したことに端を発する。 L iTFSIとポリエチレンオキサイド(PEO)等とのポリマーをコンポジットィ匕した電解質が 、リチウムイオン二次電池用電解質として優れた特性を示すため、現在に至るまで電 解質支持塩として多くの研究が進められている。また、イミダゾリゥム系カチオンと TF SIァ-オンを組み合わせた室温溶融塩が報告されたのは 1996年である。
[0004] 一般にイオンのサイズが大きくなると、スト一タス半径が大きくなるため、液体中での イオンの移動度は小さくなる傾向があり、導電率は小さくなる。しかし、 TFSI塩は TF SIァ-オンが比較的大きいァ-オンであるにも拘らず、 TFSIァ-オンの 2つの CF S
3
O基が電気的に極めて陰性であり、 TFSIァ-オン中の窒素原子上の電荷が非局
2
在化しているため、カチオンとの会合が弱くなり、電荷輸送に有効なイオン濃度が高 くなる結果、高い導電率を示す。これは室温溶融塩の対ァ-オンとして用いた場合も 同様であり、例えば 1ーェチルー 3—メチルイミダゾリゥムビストリフルォロメチルスルフ ォ-ルアミド(EMImTFSI)は、室温で 8. 8 mS cm—1の導電率を示す。さらに、高い 電気化学的安定性も合わせ持っため電気化学分野への応用に際して有利であり、 電池やキャパシタの電解液としての応用が期待されて 、る。
[0005] 一方、同じく TFSIァ-オンを持つ力 カチオンがアルカリ金属である塩 MTFSI (M
= Li, Na, K, Cs)は室温では固体であるものの、中温域(〜300°C)に融点を持つ 。室温溶融塩で TFSIァ-オンが持つとされる特性力この温度域でも失われることが 無ければ、これら MTFSI塩は中温域で有用な電解質として用いることが可能であり 、様々な電気化学分野への応用が期待できる。しかし、結晶構造に関する報告はあ るものの(LiTFSI, KTFSI, CsTFSI, LiTFSI-H O, NaTFSI-H O-MeOH) (
2 2
非特許文献 1参照)、これらの塩の溶融塩としての詳細な研究は全くなされていない
[0006] LiTFSIは、上述のようにリチウムイオン二次電池電解質支持塩としての応用につ Vヽては広く研究されて 、るが、 LiTFSI単体の溶融塩としての性質はほとんど検討さ れていない。また、 NaTFSI及び KTFSIは、 LiTFSIと同様に、ポリマーとのコンポジ ットについては検討されているが、その報告例は極めて少ない(非特許文献 2, 3参 照)。また、融点をはじめ詳しい物性についての報告も無い。 CsTFSIに関しては、関 連する研究や物性の報告は上述の結晶構造以外、全く無い。また、 RbTFSIについ ての報告は全くない。
〔非特許文献 1〕
L. Xue, et al, Solid State Sciences 4 (2002) pl535
〔非特許文献 2〕
C. Roux, H. - Y. Sanchez, Electrochim. Acta 40 (1995) p953
〔非特許文献 3〕
A. Ferry, M. M. Doeff, L. C. Jonghe, Jelectro. Chem. 145 (1998) pl586 発明の開示
[0007] 上述したように、カチオンがアルカリ金属である塩 MTFSIは、電池などへの応用が 考えられており、非常に将来性のある材料である。し力しながら、その性質について 詳細な検討は為されておらず、現状のままでは、その応用にも限界がある。特に、応 用の際の使用性を向上させるために、電解質の融点を低下させ、使用温度域を拡大 させることが不可欠である力 このような試みは一切報告されて!ヽな!、。
[0008] このため、 MTFSIの応用可能性を高めるために、電解質の融点を低下させ、使用 温度域を拡大させる技術の開発が強く求められていた。また、電解質の溶融温度を 低下させるだけでなぐどの金属やセラミックス等を析出させられるかという性質も非 常に重要となってくる。
[0009] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、 MTFSIに関 して、電解質の融点を低下させたり、または特定の金属やセラミックス等を析出'被膜 •溶出させたりすることができ、電解質に関して幅広い応用を可能とさせる技術及び その利用を提供することにある。
[0010] 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アルカリ金属イミド 塩 MTFSI (M = Li, Na, K, Rb, Cs)を合成し、その熱的、物理的性質を調べ、電 解質としての性能を評価するとともに、 NaTFSIを中心に NaTFSI— LiTFSI, NaT FSI-KTFSI, NaTFSI -CsTFSI, LiTFSI—KTFSIの二元系状態を詳細に検 討したところ、二元系の各共晶組成における共晶温度力 単塩の融点に比べて、著 しく低下するという新事実を見出し、本願発明を完成させるに至った。本発明は、 力る新規知見に基づいて完成されたものであり、以下の発明を包含する。
[0011] 1)下記化学式(1)で表される物質 TFSIをァニオンとし、アルカリ金属 Mをカチオン とする溶融塩 MTFSIを、 2種類以上含む溶融塩組成物。
[0012] [化 1]
Figure imgf000005_0001
F F
( 1 )
2)上記溶融塩 MTFSIが、 LiTFSI、 NaTFSI, KTFSI、 RbTFSI、及び CsTFSI 力 なる群より選択されるものである 1)に記載の溶融塩組成物。
[0013] 3)上記溶融塩組成物は、溶融塩 MTFSIを 2種類混合した二元系の組成物であつ て、 LiTFSI— NaTFSI混合系, LiTFSI— KTFSI混合系, LiTFSI— CsTFSI混合 系, NaTFSI—KTFSI混合系, NaTFSI— CsTFSI混合系,又は KTFSI— CsTF
SI混合系である 1)又は 2)に記載の溶融塩組成物。
[0014] 4)上記 1)〜3)の ヽずれかに記載の溶融塩組成物を含む電解液。
[0015] 5)上記 4)に記載の電解液を含む電池。
[0016] 6) 110°C〜350°Cで用いられる 4)に記載の電池。
[0017] 7)上記電池は、リチウム電池、ナトリウム 硫黄電池、またはゼブラ電池である 6)に 記載の電池。
[0018] 8)上記 5)〜7)の 、ずれかに記載の電池を用いて充電を行う工程を含む充電方法
[0019] 9)上記 4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程を含 む電析方法。
[0020] 10)上記 4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、 上記工程にて析出した金属またはセラミックスを用いて、物質の表面に被膜を形成 する工程と、を含む被膜形成方法。
[0021] 11)上記 4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、 上記工程にて析出した金属またはセラミックスを用いて、物質の表面を処理する工程 と、を含む表面処理方法。
[0022] 上記の本発明に係る溶融塩組成物は、 MTFSIを 1種類のみ含む単塩の融点に比 ベて、共晶温度が著しく低下する。また、組成や割合を設定することにより、使用可能 な温度領域を広げることができる。このため、本発明に係る溶融塩組成物を用いるこ とにより、電解質の融点が低下させることができ、エネルギー効率の面や安全性の面 で利点がある。また、使用温度域を拡大させることができるため、電池などへの応用 の際に材料の選択性が向上するなどの利点もある。
[0023] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[図 1]本発明の実施例において使用した実験装置の構成を模式的に示す図である。
[図 2]本発明の実施例において行った溶融塩の合成手順を示す図である。
[図 3]本発明の実施例において使用した電気化学測定装置を示す図である。
[図 4]本発明の実施例における LiTFSIの TG曲線を示す図である。
[図 5]本発明の実施例における NaTFSIの TG曲線を示す図である。
[図 6]本発明の実施例における KTFSIの TG曲線を示す図である。
[図 7]本発明の実施例における CsTFSIの TG曲線を示す図である。
[図 8]本発明の実施例における LiTFSIの DSC曲線を示す図である。
[図 9]本発明の実施例における NaTFSIの DSC曲線を示す図である。
[図 10]本発明の実施例における KTFSIの DSC曲線を示す図である。
[図 11]本発明の実施例における CsTFSIの DSC曲線を示す図である。
[図 12(a)]本発明の実施例における LiTFSIのサイクリックボルタンメトリーの結果を示 す図であり、 Niを電極とした場合の結果を示す図である。
[図 12(b)]本発明の実施例における LiTFSIのサイクリックボルタンメトリーの結果を示 す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。
[図 13(a)]本発明の実施例における NaTFSIのサイクリックボルタンメトリーの結果を示 す図であり、 Niを電極とした場合の結果を示す図である。
[図 13(b)]本発明の実施例における NaTFSIのサイクリックボルタンメトリーの結果を示 す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。
[図 14(a)]本発明の実施例における KTFSIのサイクリックボルタンメトリーの結果を示 す図であり、 Niを電極とした場合の結果を示す図である。
[図 14(b)]本発明の実施例における KTFSIのサイクリックボルタンメトリーの結果を示 す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。
[図 15(a)]本発明の実施例における CsTFSIのサイクリックボルタンメトリーの結果を示 す図であり、 Niを電極とした場合の結果を示す図である。
[図 15(b)]本発明の実施例における CsTFSIのサイクリックボルタンメトリーの結果を示 す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。
[図 16(a)]本発明の実施例における、 LiTFSI— NaTFSI系混合塩の DSC曲線の例 として、 X =0. 35の塩の場合を示す図である。
NaTFSI
[図 16(b)]本発明の実施例における、 LiTFSI— NaTFSI系混合塩の DSC曲線の例 として、 X =0. 70の塩の場合を示す図である。
NaTFSI
[図 17]本発明の実施例における、 LiTFSI— NaTFSI系混合塩の各吸熱ピークをプ ロットして作成した二元系状態図を示す図である。
[図 18(a)]本発明の実施例における、 KTFSI— NaTFSI系混合塩の DSC曲線の例と して、 X =0. 35の塩の場合を示す図である。
NaTFSI
[図 18(b)]本発明の実施例における、 KTFSI— NaTFSI系混合塩の DSC曲線の例 として、 X =0. 70の塩の場合を示す図である。
NaTFSI
[図 19]本発明の実施例における、 KTFSI— NaTFSI系混合塩の各吸熱ピークをプ ロットして作成した二元系状態図を示す図である。
[図 20(a)]本発明の実施例における、 NaTFSI— CsTFSI系混合塩の DSC曲線の例 として、 X =0. 05の塩の場合を示す図である。
NaTFSI
[図 20(b)]本発明の実施例における、 NaTFSI— CsTFSI系混合塩の DSC曲線の例 として、 X =0. 70の塩の場合を示す図である。
NaTFSI
[図 21]本発明の実施例における、 NaTFSI— CsTFSI系混合塩の各吸熱ピークをプ ロットして作成した二元系状態図を示す図である。
[図 22(a)]本発明の実施例における、 LiTFSI— KTFSI系混合塩の DSC曲線の例と して、 X =0. 45の塩の場合を示す図である。
LiTFSI
[図 22(b)]本発明の実施例における、 LiTFSI— KTFSI系混合塩の DSC曲線の例と して、 X =0. 95の塩の場合を示す図である。
LiTFSI
[図 23]本発明の実施例における、 LiTFSI— KTFSI系混合塩の各吸熱ピークをプロ ットして作成した二元系状態図を示す図である。
[図 24(a)]本発明の実施例における、 LiTFSI— CsTFSI系混合塩の DSC曲線の例と して、 X =0. 05の塩の場合を示す図である。
LiTFSI
[図 24(b)]本発明の実施例における、 LiTFSI— CsTFSI系混合塩の DSC曲線の例 として、 x =0. 40の塩の場合を示す図である。
LiTFSI
[図 25]本発明の実施例における、 LiTFSI— CsTFSI系混合塩の各吸熱ピークをプ ロットして作成した二元系状態図を示す図である。
[図 26(a)]本発明の実施例における、 KTFSI— CsTFSI系混合塩の DSC曲線の例と して、 X =0. 20の塩の場合を示す図である。
LiTFSI
[図 26(b)]本発明の実施例における、 KTFSI— CsTFSI系混合塩の DSC曲線の例と して、 X =0. 70の塩の場合を示す図である。
LiTFSI
[図 27]本発明の実施例における、 KTFSI— CsTFSI系混合塩の各吸熱ピークをプ ロットして作成した二元系状態図を示す図である。
[図 28]本発明の実施例に使用した各単塩の熱分解温度を示す図である。
[図 29]本発明の実施例に使用した各単塩の融点を示す図である。
[図 30]本発明の実施例における、各混合塩の共晶組成および共晶温度を示す図で ある。
発明を実施するための最良の形態
[0025] 本発明は、より低温での MTFSIの電解質としての応用を可能とするため、 2種類以 上のアルカリ金属イミド塩 (MTFSI)を混合することにより、単塩よりも融点の低い混 合塩組成物を得ることができるという、本発明者らの研究成果に基づき得られたもの である。このため、まず溶融塩組成物について説明した後、その利用について説明 する。
[0026] なお、「イミド」とは、イミノ基を有するアミドのことであり、ィミノ基の無い TFSIイオン をイミドと呼ぶことは厳密には不適切である力 今日既に広くこの呼称が広まっている ので、本明細書にぉ 、ても慣用名として用いることにする。
[0027] < 1.溶融塩組成物 >
本発明に係る溶融塩組成物は、上記化学式(1)で表される物質 TFSIをァ-オンと し、アルカリ金属 Mをカチオンとする溶融塩 MTFSIを、 2種類以上含む溶融塩組成 物であればよぐ本発明の目的の範囲内であれば、その他にどのような物質を含んで いてもよぐその他の具体的な構成等は特に限定されるものではない。含まれる MT FSIの形態(固体、液体)、量 (割合)等については特に限定されるものではない。 [0028] 本発明に係る溶融塩組成物は、上述のように、 MTFSIを 2種類以上有する構成ゆ えに、単塩の融点に比べて著しく融点 (共晶温度)が低下するという特徴的な性質を 有する。このため、安全性、腐食防止、エネルギーコスト等においても優れている。ま た、混合する溶融塩の組成や割合を調整することにより、電気化学的特性や溶融温 度を変化させることもできる。このため、電池等への幅広い応用に際しての使用温度 や材料等の選択の自由度が向上するという利点がある。
[0029] ここで、アルカリ金属 Mとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビ ジゥム (Rb)、セシウム(Cs)を挙げることができる。このため、上記溶融塩 MTFSIは、 LiTFSI、 NaTFSI、 KTFSI、 RbTFSI、及び CsTFSIからなる群より選択されるもの であることが好ましい。
[0030] なかでも、特に、 LiTFSI、 NaTFSI、 KTFSI、 RbTFSI、及び CsTFSIからなる群 より選択される溶融塩のうち、 2種類を含む組成物、いわゆる二元系の組成物が好ま しい。例えば、 LiTFSI— NaTFSI系, LiTFSI—KTFSI系, LiTFSI— CsTFSI系, NaTFSI—KTFSI系, NaTFSI— CsTFSI系,又は KTFSI— CsTFSI系を挙げる ことができる。
[0031] これら二元系の組成物の中でも、例えば、リチウム電池に応用可能な、 LiTFSI— KTFSI系、及び LiTFSI— CsTFSI系が好ましい。また、 NaTFSI—KTFSI混合系 と NaTFSI— CsTFSI混合系は、金属ナトリウムを析出させることが可能である。特に 、応用としてリチウム電池やナトリウム 硫黄電池ゃゼブラ電池用の電解液を考える 場合、これらの金属が析出しやすい性質があれば一段と応用の幅が広がり、技術の 展開が期待される。
[0032] また、上記溶融塩組成物は、混合された 2種以上の溶融塩が共晶を示す組成(共 晶組成)近傍となるように構成されていることが好ましい。例えば、二元系の場合、 Li TFSI— NaTFSI系では LiTFSIの割合が 0. 1〜0. 6であることが好ましい。特に、 共晶温度が最も低くなる組成(共晶組成)である X =0. 33となる組成が好ましい
LiTFSI
。また、 LiTFSI— KTFSI系では LiTFSIの割合が 0. 2〜0. 8であることが好ましい 。特に、共晶温度が最も低くなる組成(共晶組成)である X =0. 43となる組成が
LiTFSI
好ましい。 LiTFSI— CsTFSI系では LiTFSIの割合が 0. 03〜0. 7であることが好ま L ヽ。特に、共晶温度が最も低くなる組成(共晶組成)である X =0. 07となる組
LiTFSI
成が好ましい。また、 NaTFSI—KTFSI系では NaTFSIの割合が 0. 05〜0. 6であ ることが好ま U、。特に、共晶温度が最も低くなる組成(共晶組成)である X =0.
NaTFSI
33となる組成が好ましい。 NaTFSI— CsTFSI系では NaTFSIの割合が 0. 03〜0. 6であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)である X
NaTFSI
=0. 07となる組成が好ましい。
[0033] なお、後述する実施例に示すように、上記二元系の糸且成物の各共晶糸且成における 共晶温度は、 LiTFSI— NaTFSI系(x =0. 33)で 453K, LiTFSI— KTFSI
NaTFSI
系(x =0. 43)で 423K, LiTFSI— CsTFSI系(x =0. 07)で 385K, NaT
LiTFSI LiTFSI
FSI—KTFSI系(x =0. 33) 453K, NaTFSI— CsTFSI系(x =0. 07)
NaTFSI NaTFSI
で 383K,及び KTFSI— CsTFSI系で 394Kであった。
[0034] また、本発明に係る溶融塩組成物では、溶融塩の組成や割合を変更することにより 、共晶温度を変化する。この性質を利用して、組み合わせる溶融塩の組成や割合を 変更することにより、使用目的に合わせた最適な温度範囲を設定することができ、応 用の幅が広がるという利点もある。
[0035] 特に、本発明に係る溶融塩組成物は、従来の単塩の溶融塩では使用できな力つた 低温度領域から、従来の単塩で使用できる中温〜高温領域までの広!、温度範囲で 用いることができる。具体的には、本発明に係る溶融塩組成物は、例えば、 110°C〜 470°Cで用いることができる。
[0036] 本発明に用いられる溶融塩は、アルカリ金属 Mをカチオン、 TFSIをァ-オンとして 有する従来公知の溶融塩 MTFSIを好適に用いることができる。また、その製造方法 も従来公知の方法を利用でき、その具体的な手段等は特に限定されるものではない 。例えば、後述する実施例に示す方法を用いることができる。
[0037] このように、本発明に係る溶融塩組成物は、溶融温度(共晶温度)が低下すると 、う 特有の作用効果を有する。このため、安全性、腐食防止、エネルギーコスト等におい ても優れている。すなわち、溶融温度が低下し、低い温度で溶融塩が利用できれば 、加熱のためのエネルギーの使用が低減できる。また、溶融塩は一般的に金属等の 材料を腐食しやすいものが多ぐその性質は温度の上昇とともに反応速度が増加す る結果、著しくなる。したがって低い温度で溶融塩が利用できれば腐食の進行の低 減が期待できる。低温で利用できれば、材料の腐食に伴う装置材料の破断等に伴う 高温物体の流出事故等の可能性が低減される。
[0038] また、溶融塩は、融点を超えてさらに加熱し分解温度に達すると、その化学構造を 維持できなくなり、所望の性質を発現できなくなる。このため、通常、溶融塩は、融点 〜分解温度の間の温度範囲にて使用することになるが、この融点〜分解温度の温度 範囲が広いほうが、操作性が向上することになる。本願発明に係る溶融塩組成物は、 共晶温度が低下する一方、分解温度は単塩の場合と変化しないため、融点〜分解 温度の間の温度範囲が広くなり、操作性が向上するという利点がある。
[0039] 以上のように、本発明に係る溶融塩組成物は、従来の溶融塩や電解質に比べて、 様々な利点があるが、特に、以下の点で優位性があるといえる。すなわち、例えば、リ チウム電池用電解液や低温での卑金属の電析などへ応用できるイオン性液体あるい は溶融塩は、低融点でかつ還元電位がより卑になければならない。しかし、従来の電 解質を有機溶媒へ溶解させた有機電解質や有機カチオンを対ァ-オンとするイミド 塩のイオン液体は、これらの金属が還元析出する前により高い電位で有機溶媒ある いは有機カチオンは分解してしまう可能性があった。これに対して、本発明では、ァ ルカリ金属イミド塩を有機溶媒へ溶解することなぐ溶融塩として用い、さらに複数種 類の溶融塩を混合することにより、単塩の場合に比べて、より低温での使用を可能と し、上記の問題点を解決している。
[0040] < 2.溶融塩組成物の利用 >
溶融塩は電解液として用いることにより、水溶液系では困難な電気化学的反応を起 こすことが可能であり、様々な応用を目的として多種多様な研究開発が行われている 。例えば、溶融塩には様々な融点を持つものがある力 中温域に融点を持つ塩は中 温〜高温作動型の電気化学デバイスの電解質としての応用に際して有利である。
[0041] 上述したように、本発明では、単塩では得らな 、ような溶融温度の溶融塩組成物を 得ることができる。すなわち、本発明に係る溶融塩組成物は、溶融温度が中温〜高 温域であるため、特に、中温〜高温域での利用が可能となる。したがって、例えば、 上記温度領域において、上記 < 1 >欄に記載の溶融塩組成物を含む電解液又は電 解質として利用することができる。
[0042] また、本発明に係る溶融塩組成物は、その融点(共晶温度)が単塩に比べて低下し ているため、単塩と比較して、安全性、材料選択の幅、エネルギーコスト等の点で非 常に優れている。このため、溶融塩ィ匕合物の利用においても、このような利点を用い ることがでさる。
[0043] 上記電解液又は電解質の用途は特に限定されるものではなぐ本出願時において 知られている、電解質を利用する多種多様な製品'技術に利用することができる。例 えば、電池用の電解液として用いることができる。
[0044] ここで、「本発明に係る溶融塩組成物を、電解液又は電解質として利用する」とは、 本発明に係る溶融塩組成物を溶媒に溶解させて用いることを意図するものではなぐ 塩そのものを融解した溶融塩をそのまま電解液又は電解質として利用する態様を意 図している。このような利用の場合、溶媒を用いる必要がないため、非常に好ましい。 これは、溶媒が存在することによる揮発性や可燃性がなぐ電解液の枯渴ゃアルカリ 金属との反応による発火、爆発等の問題がないためである。
[0045] すなわち、これまでもアルカリ金属イミド塩、特にリチウム塩はリチウムイオン電池用 の有機電解液の支持塩としての利用が検討されて ヽるが、本発明に係る溶融塩組成 物は、(0有機溶媒を含まない点、 GOそれ自身比較的低温で溶融する点、(m)低温溶 融塩としてのアルカリ金属イミド塩とその共晶塩である点、(iv)これらの塩が溶融温度 力 さらに高温でも安定である点、(V)さらに溶融塩中でアルカリ金属を析出させること ができる点で優れた特徴を有する。
[0046] このため、上記の優れた特徴点を生力して、例えば、より低温で作動するナトリウム 硫黄電池、ゼブラ電池、リチウム 2次電池 (据置型、高出力、ロードレべリング用)等 の多種多様な電池用の電解液として用いることができる。特に、アルカリ金属イミド塩 を用いた大型電池としての利点は大きぐ例えば、電力施設等の夜間余剰電力の充 電用として用いることができる。また、電気自動車やハイブリッド自動車用などのリチウ ム 2次電池への利用も可能である。
[0047] 本発明に係る溶融塩組成物を用いて大型 Liイオン電池を構成する場合、デンドラ イトの生成が抑制される温度領域で用いることが好ましい。具体的には、 150°C〜20 o°c程度の温度で用いることが好ましい。従来の単塩の溶融塩では、この温度領域 では十分に使用できな力つたが、本発明に係る溶融塩組成物によれば、かかる温度 範囲での使用が可能となった。
[0048] また、本発明には、上記溶融塩組成物を用いた電池を利用する充電方法も含まれ る。力かる充電方法の具体的な手法については、特に限定されるものではなぐ上記 電池を用いていればよぐそれ以外の工程、条件、使用機器等については従来公知 のものを用いることができる。本充電方法によれば、効率的に充電することができる。
[0049] なお、本発明に係る溶融塩組成物が電解質として使用できることは、溶融塩組成物 が良好な導電率を有することから明らかである。
[0050] さらに、本発明に係る溶融塩組成物は、 LIGAプロセスなどにぉ 、て、水溶液を用 いることができず、かつ高温溶融塩も使用できない条件での電析用などの電解質とし て利用することができる。
[0051] また、本発明の溶融塩組成物を電池用の電解質として使用する使用する場合、一 方のアルカリ金属が電池としてとして機能するとき、他のアルカリ金属は溶媒的な機 能を発現する。つまり、本発明の溶融塩組成物では、少なくとも 2種類のアルカリ金属 塩を混合して ヽるため、電圧をかけて電気分解するときは負極に還元されやす ヽァ ルカリ金属のほうが先に析出してくる。したがって電池用の電解質として利用する場 合、電池の負極は、このように還元されやすいほうのアルカリ金属の電極となる。
[0052] また、本発明に係る溶融塩組成物を電気化学測定したところ、各単塩を構成するァ ルカリ金属が還元されて析出する性質を示すことが確認されている。つまり、アルカリ 金属等電気化学的に卑な金属を析出させることができる。このため、この特性を利用 することにより、本発明に係る溶融塩組成物は、例えば、アルカリ金属よりも還元性の 低い目的金属を金属塩として溶解させたメツキ液として利用することができる。このよ うな目的金属としては、例えば、アルカリ土類金属、希土類金属、 5族、 6族の高融点 金属などを挙げることができる。
[0053] また、後述する実施例に示すように、本発明に係る溶融塩組成物は、サイクリックボ ルタンメトリーにより、力ソード限界がアルカリ金属あるいはその合金の析出であること を確認している。このこと力 、ァ-オンである TFSIの還元分解が起こらず、アルカリ 金属や上述の様々な金属の析出が可能であることを示すものといえる。
[0054] したがって、本発明に係る溶融塩組成物を含む電解液は、電析方法、被膜形成方 法 (メツキ)、表面処理方法等に利用することができる。
[0055] 本発明に係る電析方法は、上記溶融塩組成物を含む電解液を用いて 、ればよぐ その他の工程、条件、使用機器等の具体的な構成については特に限定されるもので はない。例えば、上記溶融塩組成物を電解質として用い、これに対して電気分解を 行 、、金属またはセラミックスなどを析出させる電析工程を含んで 、る方法であれば よいといえる。本電析方法によれば、電気めつきなどに好適に利用することができる。
[0056] また、本発明に係る被膜形成方法は、上記溶融塩組成物を含む電解液を用いて ヽ ればよぐその他の工程、条件、使用機器等の具体的な構成については特に限定さ れるものではない。本被膜形成方法は、上記溶融塩組成物を電解質として用い、こ れを電気分解して金属またはセラミックスを析出させ、表面を金属またはセラミックス で覆うウエットプロセスを含む方法であり、いわゆるメツキを行う方法のことである。例え ば、少なくとも上記電析方法と、上記電析方法によって析出した金属またはセラミック スにて物質の表面を覆う工程とを含んでいる方法を挙げることができる。本被膜形成 方法によれば、物質の表面に対して均一にメツキを施すことができ、表面仕上がりが 良好なメツキ物を得ることができる。
[0057] また、本発明に係る表面処理方法は、上記溶融塩組成物を含む電解液を用いて ヽ ればよぐその他の工程、条件、使用機器等の具体的な構成については特に限定さ れるものではない。いわゆる上記溶融塩組成物を電解質として用い、物質の表面を 処理する方法であればよい。力かる表面処理としては、例えば、酸化物被覆、窒化物 被覆、炭化物被覆、ケィ化物被覆等の表面処理を挙げることができる。このため、本 表面処理方法によれば、高硬度、耐摩耗性、耐食性等の機能を表面に付与するとい う効果を得ることができる。
[0058] 本発明に係る電解液を用いた被膜形成方法や表面処理方法につ!ヽて、被膜を形 成する対象となる物質又は表面を処理する対象となる物質にっ ヽては、特に限定さ れるものではなく、従来公知の電解液 ·電解質を用 ヽた被膜形成方法や表面処理方 法の対象となる物質を好適に対象物として実施することができる。例えば、金属や合 金、セラミックスやプラスチックの表面に金属被膜またはセラミックス被膜を形成したり 、金属や合金の表面を処理したりすることができる。例えば、宝飾品や家電製品等の 表面仕上げ作業に用いることができる。
[0059] 以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん 、本発明は以下の実施例に限定されるものではなぐ細部については様々な態様が 可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるも のではなぐ請求項に示した範囲で種々の変更が可能であり、それぞれ開示された 技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲 に含まれる。
実施例
[0060] (1)実験
(1 1)実験装置
本実施例で用いられたィ匕学薬品の多くは空気中の水分と容易に反応するため、脱 水、脱酸素化したガス精製装置付きのアルゴン雰囲気のグローブボックス内で取り扱 つた。ボックス内の水分を管理するため、雰囲気ガス中に含まれる水分は常時露点 計によってモニターされた。グローブボックス中には電子上皿天秤を設置し、試料の 秤量が行えるようにした。
[0061] 実験に用いた耐食性反応ラインを図 1に示す。本体は耐食性に優れた SUS316ス テンレスのパイプ(外径 lZ2inch)からなり、それらは継ぎ手及び Kel— Fチップを使 用した SUS316ステンレス製の真空バルブ (Whitey)などとスウェージロックを用いて 接続されている。反応管の接続部には外径 lZ4inchのパイプを用いた。この反応ラ インには油回転真空ポンプが接続されており、ポンプの直前にはガラス製のコールド トラップを設置し、これを液体窒素で冷却することによって、水や腐食性ガスなどがポ ンプ内に入るのを防いだ。粗引きとしてソーダ石灰を用いたケミカルトラップを経由し 、フッ素やフッ化物ガスなどの腐食性ガスを除去できるようにした。このケミカルトラッ プを通した場合には圧損が大きぐ真空度が高くならないため、ノ レブによってケミカ ルトラップを通さず直接排気ができるようにした。このラインの最高到達真空度は約 1 0_2Torrオーダーである。 [0062] (1 2)試薬
HTFSI (森田化学工業, 99. 0%以上)、 LiTFSI (森田化学工業, 99. 0%以上)、 N a CO (和光純薬, 99. 5%)、 K CO (和光純薬, 99. 9%)、 Cs CO (Aldrich, 99. 9
2 3 2 3 2 3
%)はそれぞれ市販のものをそのまま使用した。反応溶媒として用いたエタノール (和 光純薬, 99%)も、巿販のものをそのまま使用した。
[0063] (合成)
MTFSl (M = Li, Na, K, Cs)の合成の手順を図 2に示す。 MTFSIの合成は以下 の反応式によって行った。
[0064] [化 2]
M2C03 + 2HTFSI > 2MTFSI
ethanol グローブボックス中で M COと HTFSIを秤量後、ドラフト内で HTFSIに反応溶媒
2 3
としてエタノールをカ卩え、 M COと反応させた。この際、どちらかが過剰になることが
2 3
無い様に pH試験紙を用いて溶液の pHを逐次確認しながら中和を行った。その後、 ロータリーエバポレーターにより、数時間攪拌しながら、粗くエタノールを取り除いた。 これを石英ガラス管に入れ、真空ポンプによって 353Kで 24時間、 373Kで 24時間、 403Kで 24時間それぞれ真空引きし、乾燥した。その結果、白色の粉末を得た。
[0065] (1 3)分析
(1 3— 1)熱分析
熱分析は、熱重量分析および示差走査熱量分析を行った。
[0066] 熱重量分析は示差熱 ·熱重量同時測定装置(島津製作所、 DTG-60/60H)を用い て行った。用いたアルミニウムセルは測定の前にエタノールと蒸留水で洗浄し、十分 乾燥してから、試料を入れ、測定した。走査速度は lOKmin—1で行った。測定は窒 素ガス雰囲気下で行った。 LiTFSIは潮解性を持つので、水分を除去するためにま ず 573Kまで昇温してから測定を行った。 NaTFSI, KTFSI, CsTFSIについてはそ のまま柳 j定を行った。
[0067] 示差走査熱量分析は、示差走査熱量計 (島津製作所、 DSC60)を用いて行った。セ ルはアルミニウム製のものを用いた。アルゴン雰囲気下のグローブボックス内でセル に試料を入れ、シーラアンドクリンパ(島津製作所、 SSC-30)を用いてセルをシールし 、測定に供した。走査速度は lOKmin—1で行った。また測定は窒素ガス雰囲気下で 行った。 NaTFSIと他の塩との混合塩の示差走査熱量分析は NaTFSIのモル分率 X を 0. 05力 0. 95まで 0. 05ごとに変化させて行った。一度 533Kまで昇温し室
NaTFSI
温まで冷却後、更に 533Kまで昇温させて測定を行った。
[0068] (1 3— 2)電気化学測定
電気化学測定は電気化学測定装置 HZ— 3000 (北斗電工)を用いて行った。サイ クリックボルタンメトリーは、ガラス製のセルを用いて行った。作用極にはニッケル線お よびグラッシ一カーボンロッド、対極にはグラッシ一カーボンロッド、参照極には擬似 参照極として銀線を用いた。測定装置の模式図を図 3に示す。測定は、アルゴン雰 囲気下のグローブボックス内で、ヒーターにより浴温を塩の融点より約 30K高い温度 に保持して行った。
[0069] (2)結果及び考察
(2— 1)単塩 MTFSI
(2— 1 1)熱的性質
図 4〜図 7に各単塩 MTFSIの TG曲線を示す。熱分解温度は、ベースラインと重量 減少後の TG曲線との接点を取ることにより決定した。図 22に各単塩の熱分解温度を 示す。カチオンのサイズが大きくなると、熱分解温度が高くなる傾向があることが分か つた。このことは、大きいカチオンが大きいァ-オンを安定ィ匕するという一般的なィォ ン結晶の熱的安定性と一致する。
[0070] 図 8〜図 11に各単塩 MTFSIの DSC曲線を示す。融点は、 DSC曲線上でベース ラインの延長線と吸熱ピークの接線の交点をとることにより決定した。図 23に各単塩 の融点を示す。熱分解温度の傾向とは異なり、単塩の融点は NaTFSIの場合に高い ということが分かった。 CsTFSIの DSC曲線上において、 373K付近に小さな吸熱ピ ークが確認された。これは真空乾燥では除去することができな力つた微量の水の蒸 発に対応するものであると考えられる力 塩は 3日間真空乾燥した後であることを考え るとその可能性は薄いと言える。相転移に対応するものであることも考えられる力 詳 し ヽことは分かって!/ヽな ヽ。
[0071] (2- 1 - 2)電気化学的性質
各単塩 MTFSIのサイクリックボルタンメトリーの結果を、図 12 (a)〜図 15 (b)に示 す。電位を卑な方向にスイープするときは作用極にニッケル線を用いた。—1. 2V付 近力 還元電流が流れ始め、その後定常的に還元電流が流れた。その後、アルカリ 金属の析出、溶解に対応すると考えられるピークを確認した。 LiTFSI, NaTFSIの 場合、電位を折り返した後一 1. 5V付近で酸化電流を確認した。また測定後、 -ッケ ル線の表面に黒い物質が付着していた力 測定を繰り返してもボルタモグラムは同じ ような形を示した。
[0072] このアルカリ金属析出より貴な電位での還元電流の原因についてはまだ詳しく分か つて 、な 、が、常温では TFSIァ-オンは非常に強 、還元耐性を持って!/、ることから TFSIァ-オンの還元であるとは考えにくい。不純物として、塩の原材料である HTFS I、アルカリ金属炭酸塩、または合成の際に生じ真空乾燥では除去することができな 力つた水などが混入していることも考えられる。し力し、塩の水溶液の pHはいずれも 中性であつたので HTFSIおよび炭酸塩が混入しているとは考えにくい。 CsTFSI以 外では DSC曲線状で水の蒸発に対応する吸熱ピークは確認できな力つた。さらに、 塩を測定前にアルゴンを用いて 24時間パブリングしても結果は変わらなかったので 水が原因である可能性も薄いと言える。電極表面の汚れや酸化物層の影響も考えら れるが、巿販のものをそのまま用いた LiTFSIのこの還元電流ピークが最も小さ 、こと を考えると、電極よりは浴に問題があると考えられる。また、 DSC曲線上では確認で きな 、ほど微量の水が浴中に存在することにより TFSIァ-オンの分解が促進される ということも考えられる。以上のように様々な原因が考えられる力 この点については より詳細な検討が必要である。この還元電流の原因が、塩の特性ではなく不純物な どの影響であれば、 MTFSIは卑な方向に非常に広い電位窓を持つと言える。
[0073] 電位を貴な方向にスイープするときは作用極にグラッシ一カーボンロッドを用いた。
いずれも 1. 8V付近に酸化電流のピークを確認した。これは、 TFSIァ-オンの酸化 に対応するものであると考えられ、常温の TFSI系溶融塩の TFSIァニオンの酸化電 1i/. (H. Matsumoto, Molten bait XII, edited by P.し. Trulove et al., Electrochem. Soc ., Penningon, NJ, (2000) pl86.参照)とほぼ一致する。し力し、ピーク前の電位領域で も電流が徐々に流れて 、くこと力もやはり浴中に何力しらの不純物が混入して 、る可 能性が示唆された。
[0074] (2— 2)二元系混合塩
(2— 2— 1)二元系状態図
塩の融点の低温化を目指して、 NaTFSIを中心に LiTFSI— NaTFSI系、 KTFSI NaTFSI系、 NaTFSI— CsTFSI系の二元系混合塩について状態図を作成した。 まず LiTFSI— NaTFSI系につ!/ヽて示す。 LiTFSI NaTFSI系混合塩の DSC曲 線の例として、 X =0. 35, 0. 70の塩の場合をそれぞれ図 16 (a) ,図 16 (b)に
NaTFSI
示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 17に示す。共 晶糸且成は X =0. 33、共晶温度は約 453Kであることが分かった。
NaTFSI
[0075] また融解に対応すると考えられる吸熱ピークの他に、 423K付近にもう 1つ吸熱ピー クを確認した。この吸熱ピークは、 X が大きくなるにつれ徐々に小さくなり、 X
NaTFSI NaTFS 0· 90, 0· 95の塩の DSC曲線上では確認することができなかった。このことから、
I
この吸熱ピークは LiTFSIに由来するものであり、混合塩の相転移などに対応するも のであると考えられる力 その詳細にっ 、ては分かって 、な 、。
[0076] 次に、 NaTFSI— KTFSI系について示す。 NaTFSI— KTFSI系混合塩の DSC 曲線の例として、 X =0. 35, 0. 70の塩の場合をそれぞれ図 18 (a) ,図 18 (b)
NaTFSI
に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 19に示す。 共晶組成は xNaTFSI = 0. 33、共晶温度は LiTFSI— NaTFSI系とほぼ同じく約 4 53Kであることが分力つた。共晶組成より NaTFSI側で広 、組成域にわたって約 46 3K付近に吸熱ピークを確認した。この吸熱ピークは X が大きくなると徐々に小さ
NaTFSI
くなり、 X =0. 80以上の塩の DSC曲線上では確認することができなかった。ま
NaTFSI
た、温度が最も低い吸熱ピークの温度力 X =0. 50あたりから 5Kほどではある
NaTFSI
が低くなることを確認した。これは測定の誤差の可能性もある力 X =0. 50に N
NaTFSI
aK (TFSI) などの化合物が存在することも考えられる。
2
[0077] 次いで、 NaTFSI— CsTFSI系について示す。 NaTFSI— CsTFSI系混合塩の D SC曲線の例として、 X 0· 05, 0. 70の塩の場合をそれぞれ図 20 (a),図 20 (
NaTFSI b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 21に示 す。この場合、共晶組成はかなり CsTFSIが多い側にあり、 X =0. 07、共晶温
NaTFSI
度は約 383Kであることが分かった。この系では、共晶組成より NaTFSIが多い側で 413K付近に吸熱ピークを確認したが X が大きくなるにつれ徐々に小さくなり、 X
NaTFSI
=0. 80以上の塩の DSC曲線上では確認することができなかった。また、 383
NaTFSI
K付近の吸熱ピークも X が大きくなると消失し、かわりに 403K付近に吸熱ピーク
NaTFSI
を確認した。
[0078] KTFSI, CsTFSIの融点がそれぞれ 469K, 395Kであることを考えると、 NaTFSI
KTFSI系、 NaTFSI— CsTFSI系では共晶組成においても融点は後者の塩に非 常に近 、値を取り、あまり低下しな 、ことが分力つた。
[0079] 続いて、 LiTFSI—KTFSI系について示す。 LiTFSI—KTFSI系混合塩の DSC 曲線の例として、 X =0. 45, 0. 95の塩の場合をそれぞれ図 22 (a) ,図 22 (b)
LiTFSI
に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 23に示す。 共晶組成は xLiTFSI = 0. 43、共晶温度は約 423Kであることが分力つた。共晶組 成より LiTFSI側で広 、組成域にわたって約 500K付近に吸熱ピークを確認した。ま た、温度が最も低い吸熱ピークの温度力 X =0. 75あたりから 5Kほどではある
LiTFSI
が低くなることを確認した。これは測定の誤差の可能性もある力 X =0. 75
NaTFSI に Li
K(TFSI)などの化合物が存在することも考えられる。
3 4
[0080] 次に、 LiTFSI— CsTFSI系について示す。 LiTFSI— CsTFSI系混合塩の DSC 曲線の例として、 X 0· 05, 0. 40の塩の場合をそれぞれ図 24 (a),図 24 (b)
LiTFSI
に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 25に示す。 共晶組成は xLiTFSI = 0. 07、共晶温度は約 385Kであることが分かった。共晶組 成より LiTFSI側で約 445K付近に吸熱ピークを確認した。また、温度が最も低い吸 熱ピークの温度が、 X =0. 55あたりから 50Kほどではあるが高くなることを確認
LiTFSI
した。これは測定の誤差の可能性もある力 xLiTFSI = 0. 5に、 LiCs (TFSI)など
2 の化合物が存在することも考えられる。
[0081] 最後に、 KTFSI— CsTFSI系について示す。 KTFSI— CsTFSI系混合塩の DSC 曲線の例として、 X =0. 20, 0. 70の塩の場合をそれぞれ図 26 (a) ,図 26 (b)
LiTFSI に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図 27に示す。 この二元系の混合塩では、共晶温度の低下はほとんど認められな力つた。このため、 共晶組成は示さない。なお、共晶点は示さないが、例えば、 50%では KTFSI単塩よ りも低 、温度で K+イオン移動する電解質になって ヽるため、本発明に係る溶融塩組 成物として利用できることを念のため付言しておく。
[0082] 図 28に各単塩の熱分解温度を示し、図 29には各単塩の融点を示す。また、各混 合塩の共晶組成および共晶温度を図 30に示す。これらの結果から、本実施例で用 V、た溶融塩を 2種類混合した二元系の溶融塩組成物では、単塩の場合にくらべて、 大きく共晶温度が低下することがわかる。
[0083] (3)まとめ
本実施例では、中温域で用いられる電解液などとしての応用が期待されるアルカリ 金属をカチオンとする TFSI系溶融塩に関する研究を行った。熱分析の結果、単塩 の熱分解温度はカチオンのサイズが大きくなるにつれて高くなつた力 融点はそれと 異なり、 NaTFSIの場合に最も高くなることが分力つた。また、 NaTFSIと他の塩との 混合塩については、 LiTFSI— NaTFSI及び LiTFSI— KTFSIの共晶点における融 点の低下の度合いが最も著しぐ今回検討した二元系混合塩のうちでは NaTFSI— CsTFSIが最も低 、共晶温度(383K)を示すことが分力つた。
[0084] また、融点より低い温度域で相転移に対応すると考えられる吸熱ピークが確認され た。電気化学測定の結果、各単塩について力ソード側でアルカリ金属の析出が可能 であることが分力 た。つまり、サイクリックボルタンメトリーにより、力ソード限界がアル カリ金属あるいはその合金の析出であることを確認している。しかし、それより貴な電 位で不明な還元電流を確認した。この点については、更なる検討が必要である。
[0085] なお、発明を実施するための最良の形態の項においてなした具体的な実施態様ま たは実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのよう な具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に 記載する特許請求の範囲内で、いろいろと変更して実施することができるものである 産業上の利用の可能性 以上のように、本発明に係る溶融塩組成物は、単塩の場合に比べて融点を低下さ せることができる。また、溶融塩の組成や割合を設定することにより、使用可能な温度 領域を広げることができる。このため、本発明に係る溶融塩組成物を用いることにより 、電解質の融点が低下させることができ、エネルギー効率の面や安全性の面で利点 がある。また、使用温度域を拡大させることができるため、電池などへの応用の際に 材料の選択性が向上するなどの利点もある。したがって、鍍金、半導体、電池工業等 の広範な産業上の利用が可能である。

Claims

請求の範囲 [1] 下記化学式(1)で表される物質 TFSIをァ-オンとし、アルカリ金属 Mをカチオンと する溶融塩 MTFSIを、 2種類以上含むことを特徴とする溶融塩組成物。 [化 1]
( 1 )
[2] 上記溶融塩 MTFSIが、 LiTFSI、 NaTFSI、 KTFSI、 RbTFSI、及び CsTFSIか らなる群より選択されるものであることを特徴とする請求項 1に記載の溶融塩組成物。
[3] 上記溶融塩組成物は、溶融塩 MTFSIを 2種類混合した二元系の組成物であって
LiTFSI— NaTFSI混合系, LiTFSI— KTFSI混合系, LiTFSI— CsTFSI混合 系, NaTFSI—KTFSI混合系, NaTFSI— CsTFSI混合系,又は KTFSI— CsTF SI混合系であることを特徴とする請求項 1又は 2に記載の溶融塩組成物。
[4] 請求項 1〜3のいずれか 1項に記載の溶融塩組成物を含むことを特徴とする電解液
[5] 請求項 4に記載の電解液を含むことを特徴とする電池。
[6] 110°C〜350°Cで用いられることを特徴とする請求項 4に記載の電池。
[7] 上記電池は、リチウム電池、ナトリウム 硫黄電池、またはゼブラ電池であることを 特徴とする請求項 6に記載の電池。
[8] 請求項 5〜7のいずれか 1項に記載の電池を用いて充電を行う工程を含むことを特 徴とする充電方法。
[9] 請求項 4に記載の電解液を用いて、金属またはセラミックスを析出させる工程を含 むことを特徴とする電析方法。
[10] 請求項 4に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、 上記工程にて析出した金属またはセラミックスを用いて、物質の表面に被膜を形成 する工程と、
を含むことを特徴とする被膜形成方法。
請求項 4に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、 上記工程にて析出した金属またはセラミックスを用いて、物質の表面を処理するェ 程と、
を含むことを特徴とする表面処理方法。
PCT/JP2006/305736 2005-03-23 2006-03-22 溶融塩組成物及びその利用 WO2006101141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06729703A EP1862452A1 (en) 2005-03-23 2006-03-22 Molten salt composition and use thereof
US11/886,781 US8257868B2 (en) 2005-03-23 2006-03-22 Molten salt composition and use thereof
JP2007509311A JPWO2006101141A1 (ja) 2005-03-23 2006-03-22 溶融塩組成物及びその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005084801 2005-03-23
JP2005-084801 2005-03-23

Publications (1)

Publication Number Publication Date
WO2006101141A1 true WO2006101141A1 (ja) 2006-09-28

Family

ID=37023801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305736 WO2006101141A1 (ja) 2005-03-23 2006-03-22 溶融塩組成物及びその利用

Country Status (5)

Country Link
US (1) US8257868B2 (ja)
EP (1) EP1862452A1 (ja)
JP (1) JPWO2006101141A1 (ja)
KR (1) KR20070114323A (ja)
WO (1) WO2006101141A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
WO2011036907A1 (ja) * 2009-09-28 2011-03-31 住友電気工業株式会社 電池およびエネルギーシステム
WO2011111566A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 電池用負極材料、電池用負極前駆体材料、及び電池
WO2011129391A1 (ja) * 2010-04-16 2011-10-20 住友電気工業 株式会社 溶融塩電池のケースおよび溶融塩電池
JP2012015057A (ja) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd 溶融塩電池
JP2012015056A (ja) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd 溶融塩電池
WO2012073653A1 (ja) * 2010-11-30 2012-06-07 住友電気工業株式会社 溶融塩電池
WO2012114951A1 (ja) * 2011-02-21 2012-08-30 住友電気工業株式会社 溶融塩電池及びその製造方法
WO2013002359A1 (ja) * 2011-06-29 2013-01-03 住友電気工業株式会社 溶融塩電池の製造方法および溶融塩電池
JP2013084548A (ja) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology リチウム二次電池
JP2019096541A (ja) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 全固体電池

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297434B (zh) * 2005-10-27 2010-05-26 株式会社Lg化学 包含低共熔混合物的二次电池及其制备方法
US10320033B2 (en) 2008-01-30 2019-06-11 Enlighten Innovations Inc. Alkali metal ion battery using alkali metal conductive ceramic separator
ES2712058T3 (es) * 2009-11-05 2019-05-09 Field Upgrading Usa Inc Celda secundaria a base de sodio en estado sólido que tiene un separador de cerámica conductor de ion de sodio
JP2011187226A (ja) * 2010-03-05 2011-09-22 Sumitomo Electric Ind Ltd 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池
KR20130040781A (ko) 2010-04-06 2013-04-24 스미토모덴키고교가부시키가이샤 세퍼레이터 제조 방법, 용융염 전지의 제조 방법, 세퍼레이터 및 용융염 전지
JP2012082483A (ja) * 2010-10-13 2012-04-26 Sumitomo Electric Ind Ltd 金属多孔体とその製造方法、および溶融塩電池
JP5664114B2 (ja) * 2010-10-20 2015-02-04 住友電気工業株式会社 溶融塩電池
JP5614234B2 (ja) * 2010-10-21 2014-10-29 住友電気工業株式会社 溶融塩電池
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
JP5775330B2 (ja) * 2011-03-02 2015-09-09 住友電気工業株式会社 溶融塩電池
WO2012137618A1 (ja) * 2011-04-01 2012-10-11 住友電気工業株式会社 溶融塩電池
WO2013058079A1 (ja) * 2011-10-17 2013-04-25 住友電気工業株式会社 溶融塩電池の稼働方法
DE102011086799A1 (de) * 2011-11-22 2013-05-23 Robert Bosch Gmbh System mit einem Handwerkzeugkoffer und einem Handwerkzeugakku
EP3326485A1 (en) 2012-08-20 2018-05-30 Forever Mount, LLC A brazed joint for attachment of gemstones to a metallic mount
EP2893590B1 (en) 2012-09-06 2019-05-01 Field Upgrading USA, Inc. Sodium-halogen secondary cell
US10854929B2 (en) 2012-09-06 2020-12-01 Field Upgrading Usa, Inc. Sodium-halogen secondary cell
CN104620437B (zh) * 2012-09-10 2017-11-24 住友电气工业株式会社 钠二次电池
CA2888463C (en) 2012-10-16 2021-01-26 Ambri Inc. Electrochemical energy storage devices and housings
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
CA2894266C (en) 2012-12-19 2021-05-18 Ceramatec, Inc. Degradation protection of solid alkali ion conductive electrolyte membrane
CN103130691B (zh) * 2013-03-07 2014-09-17 武汉大学 一种铬雾抑制剂及其制备方法
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
US20150056488A1 (en) * 2013-07-22 2015-02-26 Battelle Memorial Institute Polymer electrolytes for dendrite-free energy storage devices having high coulombic efficiency
JP6685898B2 (ja) * 2013-10-16 2020-04-22 アンブリ・インコーポレイテッド 高温反応性材料デバイスのためのシール
CN104282942A (zh) * 2013-11-14 2015-01-14 上海图尔实业发展有限公司 一种高性能电解液及其在二次电池中的应用
US10608284B2 (en) * 2013-11-15 2020-03-31 The Regents Of The University Of California Electrochemical devices comprising compressed gas solvent electrolytes
US10367189B2 (en) * 2014-09-10 2019-07-30 Battelle Memorial Institute Anode-free rechargeable battery
US10170795B2 (en) 2014-09-10 2019-01-01 Battelle Memorial Institute Electrolyte for high efficiency cycling of sodium metal and rechargeable sodium-based batteries comprising the electrolyte
US10547088B2 (en) 2014-09-10 2020-01-28 Battelle Memorial Institute High Coulombic efficiency cycling of metal batteries
US20160118685A1 (en) * 2014-10-24 2016-04-28 Battelle Memorial Institute Methods and compositions for lithium ion batteries
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
US10566659B1 (en) 2018-12-14 2020-02-18 Ses Holdings Pte. Ltd. Eutectic mixtures containing alkali-metal sulfonimide salts, and electrochemical devices utilizing same
WO2021003411A1 (en) * 2019-07-03 2021-01-07 The Board Of Trustees Of The Leland Stanford Junior University Safe and non-flammable sodium metal batteries based on chloroaluminate electrolytes with additives

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225045A (ja) * 1982-06-01 1983-12-27 アジエンス・ナチオナレ・ドウ・バロリザチオン・ドウ・ラ・レシエルシエ(アンバ−ル) イオン性化合物
JP2003282059A (ja) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd 非水電解質二次電池
JP2003331918A (ja) * 2002-05-16 2003-11-21 National Institute Of Advanced Industrial & Technology 常温溶融塩及び常温溶融塩を用いたリチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442512A1 (fr) * 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
CA2199446A1 (fr) * 1997-03-07 1998-09-07 Yves Choquette Generateurs a electrolyte polymere possedant un sel de potassium permettant de stabiliser les performances et la vie utile de la batterie
USRE37805E1 (en) * 1997-03-12 2002-07-23 Hydro-Quebec Polymer electrolyte lithium battery containing a potassium salt
JP3623452B2 (ja) * 2000-01-31 2005-02-23 森田化学工業株式会社 スルホニルイミド化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225045A (ja) * 1982-06-01 1983-12-27 アジエンス・ナチオナレ・ドウ・バロリザチオン・ドウ・ラ・レシエルシエ(アンバ−ル) イオン性化合物
JP2003282059A (ja) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd 非水電解質二次電池
JP2003331918A (ja) * 2002-05-16 2003-11-21 National Institute Of Advanced Industrial & Technology 常温溶融塩及び常温溶融塩を用いたリチウム二次電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067644A (ja) * 2007-09-14 2009-04-02 Kyoto Univ 溶融塩組成物及びその利用
WO2011036907A1 (ja) * 2009-09-28 2011-03-31 住友電気工業株式会社 電池およびエネルギーシステム
JP5670339B2 (ja) * 2009-09-28 2015-02-18 住友電気工業株式会社 電池およびエネルギーシステム
WO2011111566A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 電池用負極材料、電池用負極前駆体材料、及び電池
JP2011192474A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Ind Ltd 電池用負極材料、電池用負極前駆体材料、及び電池
US20120100416A1 (en) * 2010-04-16 2012-04-26 Sumitomo Electric Industries, Ltd. Molten salt battery case, and molten salt battery
WO2011129391A1 (ja) * 2010-04-16 2011-10-20 住友電気工業 株式会社 溶融塩電池のケースおよび溶融塩電池
JP2011228046A (ja) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd 溶融塩電池のケースおよび溶融塩電池
US9276241B2 (en) 2010-04-16 2016-03-01 Sumitomo Electric Industries, Ltd. Molten salt battery case, and molten salt battery
JP2012015056A (ja) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd 溶融塩電池
JP2012015057A (ja) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd 溶融塩電池
WO2012073653A1 (ja) * 2010-11-30 2012-06-07 住友電気工業株式会社 溶融塩電池
JP2012134126A (ja) * 2010-11-30 2012-07-12 Sumitomo Electric Ind Ltd 溶融塩電池
WO2012114951A1 (ja) * 2011-02-21 2012-08-30 住友電気工業株式会社 溶融塩電池及びその製造方法
WO2013002359A1 (ja) * 2011-06-29 2013-01-03 住友電気工業株式会社 溶融塩電池の製造方法および溶融塩電池
JPWO2013002359A1 (ja) * 2011-06-29 2015-02-23 住友電気工業株式会社 溶融塩電池の製造方法および溶融塩電池
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery
JP2013084548A (ja) * 2011-09-30 2013-05-09 National Institute Of Advanced Industrial & Technology リチウム二次電池
JP2019096541A (ja) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 全固体電池

Also Published As

Publication number Publication date
US20090212743A1 (en) 2009-08-27
US8257868B2 (en) 2012-09-04
EP1862452A1 (en) 2007-12-05
JPWO2006101141A1 (ja) 2008-09-04
KR20070114323A (ko) 2007-11-30

Similar Documents

Publication Publication Date Title
WO2006101141A1 (ja) 溶融塩組成物及びその利用
JP5273765B2 (ja) 溶融塩組成物及びその利用
Liu et al. Constructing Li‐rich artificial SEI layer in alloy–polymer composite electrolyte to achieve high ionic conductivity for all‐solid‐state lithium metal batteries
Muldoon et al. Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed
Zhang et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune
Wang et al. Energy storing bricks for stationary PEDOT supercapacitors
Hu et al. A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte
Dokko et al. Solvate ionic liquid electrolyte for Li–S batteries
Nguyen et al. Material design strategies to improve the performance of rechargeable magnesium–sulfur batteries
CN103038924B (zh) 用于制备锂电池或钠电池的方法
Zhao et al. High-performance antimony–bismuth–tin positive electrode for liquid metal battery
JP3165003B2 (ja) 電気化学ゼネレータ
Park et al. Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects
Zhan et al. A Low‐Cost Durable Na‐FeCl2 Battery with Ultrahigh Rate Capability
Leung et al. Progress in electrolytes for rechargeable aluminium batteries
US20160099474A1 (en) Electrochemical Devices For Use In Extreme Conditions
Nie et al. A surfactant-thermal method to prepare crystalline thioantimonate for high-performance lithium-ion batteries
Wang et al. Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries
Nguyen et al. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage
Xue et al. Boosting the Performance of Solid‐State Lithium Battery Based on Hybridizing Micron‐Sized LATP in a PEO/PVDF‐HFP Heterogeneous Polymer Matrix
Diao et al. Low-valence bicomponent (FeO) x (MnO) 1− x nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage
Huang et al. Electrode nanomaterials for room temperature sodium-ion batteries: a review
Weng et al. High ionic conductivity and stable phase Na11. 5Sn2Sb0. 5Ti0. 5S12 for all-solid-state sodium batteries
Tang et al. Advances in Rechargeable Li-S Full Cells
Lee et al. Optimally arranged TiO2@ MoS2 heterostructures with effectively induced built-in electric field for high-performance lithium–sulfur batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509311

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024067

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886781

Country of ref document: US