JPWO2006101141A1 - 溶融塩組成物及びその利用 - Google Patents

溶融塩組成物及びその利用 Download PDF

Info

Publication number
JPWO2006101141A1
JPWO2006101141A1 JP2007509311A JP2007509311A JPWO2006101141A1 JP WO2006101141 A1 JPWO2006101141 A1 JP WO2006101141A1 JP 2007509311 A JP2007509311 A JP 2007509311A JP 2007509311 A JP2007509311 A JP 2007509311A JP WO2006101141 A1 JPWO2006101141 A1 JP WO2006101141A1
Authority
JP
Japan
Prior art keywords
molten salt
salt
litfsi
natfsi
cstfsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007509311A
Other languages
English (en)
Inventor
理加 萩原
理加 萩原
一彦 松本
一彦 松本
健一郎 玉木
健一郎 玉木
野平 俊之
俊之 野平
琢也 後藤
琢也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2006101141A1 publication Critical patent/JPWO2006101141A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/70Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

イミドアニオンTFSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MTFSIを、2種類以上含む溶融塩組成物は、単塩の場合に比べて電解質の融点が低下し、使用温度域が拡大する。このため、電池等への使用に際して材料選択の幅が広がる等の様々な利点がある。

Description

本発明は、溶融塩組成物及びその利用に関するものであり、特に、アルカリ金属Mをカチオン、イミドアニオン(TFSI)をアニオンとするMTFSIを2種類以上含む溶融塩組成物及びその利用に関するものである。
溶融塩とは、溶融状態にある塩であり、高温で融解したスラグから室温で液体となる室温溶融塩(イオン性液体等とも呼ばれる)まで、幅広い温度域のものが知られている。溶融塩を電解液として用いることにより、水溶液系電解液では困難な反応を電気化学的に起こすことが可能であり、各分野で様々な研究が進められている。溶融塩はカチオンとアニオンの組み合わせにより異なった機能性を与えることができるため、様々な応用を目的とした多種多様な塩が開発されている。
その中でも比較的低い融点の塩を与えるアニオンとして知られるものに、ビストリフルオロメチルスルフォニルアミドアニオン(通称イミドアニオン、TFSI,N(SOCF 、後述の化学式(1))がある。TFSIアニオンの歴史は、1990年にArmandらがリチウムビストリフルオロメチルスルフォニルアミド(LiTFSI)を報告したことに端を発する。LiTFSIとポリエチレンオキサイド(PEO)等とのポリマーをコンポジット化した電解質が、リチウムイオン二次電池用電解質として優れた特性を示すため、現在に至るまで電解質支持塩として多くの研究が進められている。また、イミダゾリウム系カチオンとTFSIアニオンを組み合わせた室温溶融塩が報告されたのは1996年である。
一般にイオンのサイズが大きくなると、ストークス半径が大きくなるため、液体中でのイオンの移動度は小さくなる傾向があり、導電率は小さくなる。しかし、TFSI塩はTFSIアニオンが比較的大きいアニオンであるにも拘らず、TFSIアニオンの2つのCFSO基が電気的に極めて陰性であり、TFSIアニオン中の窒素原子上の電荷が非局在化しているため、カチオンとの会合が弱くなり、電荷輸送に有効なイオン濃度が高くなる結果、高い導電率を示す。これは室温溶融塩の対アニオンとして用いた場合も同様であり、例えば1−エチル−3−メチルイミダゾリウムビストリフルオロメチルスルフォニルアミド(EMImTFSI)は、室温で8.8mS cm−1の導電率を示す。さらに、高い電気化学的安定性も合わせ持つため電気化学分野への応用に際して有利であり、電池やキャパシタの電解液としての応用が期待されている。
一方、同じくTFSIアニオンを持つが、カチオンがアルカリ金属である塩MTFSI(M=Li,Na,K,Cs)は室温では固体であるものの、中温域(〜300℃)に融点を持つ。室温溶融塩でTFSIアニオンが持つとされる特性がこの温度域でも失われることが無ければ、これらMTFSI塩は中温域で有用な電解質として用いることが可能であり、様々な電気化学分野への応用が期待できる。しかし、結晶構造に関する報告はあるものの(LiTFSI,KTFSI,CsTFSI,LiTFSI・HO,NaTFSI・HO・MeOH)(非特許文献1参照)、これらの塩の溶融塩としての詳細な研究は全くなされていない。
LiTFSIは、上述のようにリチウムイオン二次電池電解質支持塩としての応用については広く研究されているが、LiTFSI単体の溶融塩としての性質はほとんど検討されていない。また、NaTFSI及びKTFSIは、LiTFSIと同様に、ポリマーとのコンポジットについては検討されているが、その報告例は極めて少ない(非特許文献2,3参照)。また、融点をはじめ詳しい物性についての報告も無い。CsTFSIに関しては、関連する研究や物性の報告は上述の結晶構造以外、全く無い。また、RbTFSIについての報告は全くない。
L.Xue,et al.,Solid State Sciences 4(2002)p1535 C.Roux,H.−Y.Sanchez,Electrochim.Acta 40(1995)p953 A.Ferry,M.M.Doeff,L.C.Jonghe,Jelectro.Chem.145(1998)p1586
上述したように、カチオンがアルカリ金属である塩MTFSIは、電池などへの応用が考えられており、非常に将来性のある材料である。しかしながら、その性質について詳細な検討は為されておらず、現状のままでは、その応用にも限界がある。特に、応用の際の使用性を向上させるために、電解質の融点を低下させ、使用温度域を拡大させることが不可欠であるが、このような試みは一切報告されていない。
このため、MTFSIの応用可能性を高めるために、電解質の融点を低下させ、使用温度域を拡大させる技術の開発が強く求められていた。また、電解質の溶融温度を低下させるだけでなく、どの金属やセラミックス等を析出させられるかという性質も非常に重要となってくる。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、MTFSIに関して、電解質の融点を低下させたり、または特定の金属やセラミックス等を析出・被膜・溶出させたりすることができ、電解質に関して幅広い応用を可能とさせる技術及びその利用を提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アルカリ金属イミド塩MTFSI(M=Li,Na,K,Rb,Cs)を合成し、その熱的、物理的性質を調べ、電解質としての性能を評価するとともに、NaTFSIを中心にNaTFSI−LiTFSI,NaTFSI−KTFSI,NaTFSI−CsTFSI,LiTFSI−KTFSIの二元系状態を詳細に検討したところ、二元系の各共晶組成における共晶温度が、単塩の融点に比べて、著しく低下するという新事実を見出し、本願発明を完成させるに至った。本発明は、かかる新規知見に基づいて完成されたものであり、以下の発明を包含する。
1)下記化学式(1)で表される物質TFSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MTFSIを、2種類以上含む溶融塩組成物。
Figure 2006101141
2)上記溶融塩MTFSIが、LiTFSI、NaTFSI、KTFSI、RbTFSI、及びCsTFSIからなる群より選択されるものである1)に記載の溶融塩組成物。
3)上記溶融塩組成物は、溶融塩MTFSIを2種類混合した二元系の組成物であって、LiTFSI−NaTFSI混合系,LiTFSI−KTFSI混合系,LiTFSI−CsTFSI混合系,NaTFSI−KTFSI混合系,NaTFSI−CsTFSI混合系,又はKTFSI−CsTFSI混合系である1)又は2)に記載の溶融塩組成物。
4)上記1)〜3)のいずれかに記載の溶融塩組成物を含む電解液。
5)上記4)に記載の電解液を含む電池。
6)110℃〜350℃で用いられる4)に記載の電池。
7)上記電池は、リチウム電池、ナトリウム−硫黄電池、またはゼブラ電池である6)に記載の電池。
8)上記5)〜7)のいずれかに記載の電池を用いて充電を行う工程を含む充電方法。
9)上記4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程を含む電析方法。
10)上記4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、上記工程にて析出した金属またはセラミックスを用いて、物質の表面に被膜を形成する工程と、を含む被膜形成方法。
11)上記4)に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、上記工程にて析出した金属またはセラミックスを用いて、物質の表面を処理する工程と、を含む表面処理方法。
上記の本発明に係る溶融塩組成物は、MTFSIを1種類のみ含む単塩の融点に比べて、共晶温度が著しく低下する。また、組成や割合を設定することにより、使用可能な温度領域を広げることができる。このため、本発明に係る溶融塩組成物を用いることにより、電解質の融点が低下させることができ、エネルギー効率の面や安全性の面で利点がある。また、使用温度域を拡大させることができるため、電池などへの応用の際に材料の選択性が向上するなどの利点もある。
本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十分わかるであろう。また、本発明の利益は、添付図面を参照した次の説明で明白になるであろう。
本発明の実施例において使用した実験装置の構成を模式的に示す図である。 本発明の実施例において行った溶融塩の合成手順を示す図である。 本発明の実施例において使用した電気化学測定装置を示す図である。 本発明の実施例におけるLiTFSIのTG曲線を示す図である。 本発明の実施例におけるNaTFSIのTG曲線を示す図である。 本発明の実施例におけるKTFSIのTG曲線を示す図である。 本発明の実施例におけるCsTFSIのTG曲線を示す図である。 本発明の実施例におけるLiTFSIのDSC曲線を示す図である。 本発明の実施例におけるNaTFSIのDSC曲線を示す図である。 本発明の実施例におけるKTFSIのDSC曲線を示す図である。 本発明の実施例におけるCsTFSIのDSC曲線を示す図である。 本発明の実施例におけるLiTFSIのサイクリックボルタンメトリーの結果を示す図であり、Niを電極とした場合の結果を示す図である。 本発明の実施例におけるLiTFSIのサイクリックボルタンメトリーの結果を示す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。 本発明の実施例におけるNaTFSIのサイクリックボルタンメトリーの結果を示す図であり、Niを電極とした場合の結果を示す図である。 本発明の実施例におけるNaTFSIのサイクリックボルタンメトリーの結果を示す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。 本発明の実施例におけるKTFSIのサイクリックボルタンメトリーの結果を示す図であり、Niを電極とした場合の結果を示す図である。 本発明の実施例におけるKTFSIのサイクリックボルタンメトリーの結果を示す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。 本発明の実施例におけるCsTFSIのサイクリックボルタンメトリーの結果を示す図であり、Niを電極とした場合の結果を示す図である。 本発明の実施例におけるCsTFSIのサイクリックボルタンメトリーの結果を示す図であり、ガラス状カーボンを電極とした場合の結果を示す図である。 本発明の実施例における、LiTFSI−NaTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.35の塩の場合を示す図である。 本発明の実施例における、LiTFSI−NaTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.70の塩の場合を示す図である。 本発明の実施例における、LiTFSI−NaTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例における、KTFSI−NaTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.35の塩の場合を示す図である。 本発明の実施例における、KTFSI−NaTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.70の塩の場合を示す図である。 本発明の実施例における、KTFSI−NaTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例における、NaTFSI−CsTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.05の塩の場合を示す図である。 本発明の実施例における、NaTFSI−CsTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.70の塩の場合を示す図である。 本発明の実施例における、NaTFSI−CsTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例における、LiTFSI−KTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.45の塩の場合を示す図である。 本発明の実施例における、LiTFSI−KTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.95の塩の場合を示す図である。 本発明の実施例における、LiTFSI−KTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例における、LiTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.05の塩の場合を示す図である。 本発明の実施例における、LiTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.40の塩の場合を示す図である。 本発明の実施例における、LiTFSI−CsTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例における、KTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.20の塩の場合を示す図である。 本発明の実施例における、KTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.70の塩の場合を示す図である。 本発明の実施例における、KTFSI−CsTFSI系混合塩の各吸熱ピークをプロットして作成した二元系状態図を示す図である。 本発明の実施例に使用した各単塩の熱分解温度を示す図である。 本発明の実施例に使用した各単塩の融点を示す図である。 本発明の実施例における、各混合塩の共晶組成および共晶温度を示す図である。
本発明は、より低温でのMTFSIの電解質としての応用を可能とするため、2種類以上のアルカリ金属イミド塩(MTFSI)を混合することにより、単塩よりも融点の低い混合塩組成物を得ることができるという、本発明者らの研究成果に基づき得られたものである。このため、まず溶融塩組成物について説明した後、その利用について説明する。
なお、「イミド」とは、イミノ基を有するアミドのことであり、イミノ基の無いTFSIイオンをイミドと呼ぶことは厳密には不適切であるが、今日既に広くこの呼称が広まっているので、本明細書においても慣用名として用いることにする。
<1.溶融塩組成物>
本発明に係る溶融塩組成物は、上記化学式(1)で表される物質TFSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MTFSIを、2種類以上含む溶融塩組成物であればよく、本発明の目的の範囲内であれば、その他にどのような物質を含んでいてもよく、その他の具体的な構成等は特に限定されるものではない。含まれるMTFSIの形態(固体、液体)、量(割合)等については特に限定されるものではない。
本発明に係る溶融塩組成物は、上述のように、MTFSIを2種類以上有する構成ゆえに、単塩の融点に比べて著しく融点(共晶温度)が低下するという特徴的な性質を有する。このため、安全性、腐食防止、エネルギーコスト等においても優れている。また、混合する溶融塩の組成や割合を調整することにより、電気化学的特性や溶融温度を変化させることもできる。このため、電池等への幅広い応用に際しての使用温度や材料等の選択の自由度が向上するという利点がある。
ここで、アルカリ金属Mとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)を挙げることができる。このため、上記溶融塩MTFSIは、LiTFSI、NaTFSI、KTFSI、RbTFSI、及びCsTFSIからなる群より選択されるものであることが好ましい。
なかでも、特に、LiTFSI、NaTFSI、KTFSI、RbTFSI、及びCsTFSIからなる群より選択される溶融塩のうち、2種類を含む組成物、いわゆる二元系の組成物が好ましい。例えば、LiTFSI−NaTFSI系,LiTFSI−KTFSI系,LiTFSI−CsTFSI系,NaTFSI−KTFSI系,NaTFSI−CsTFSI系,又はKTFSI−CsTFSI系を挙げることができる。
これら二元系の組成物の中でも、例えば、リチウム電池に応用可能な、LiTFSI−KTFSI系、及びLiTFSI−CsTFSI系が好ましい。また、NaTFSI−KTFSI混合系とNaTFSI−CsTFSI混合系は、金属ナトリウムを析出させることが可能である。特に、応用としてリチウム電池やナトリウム−硫黄電池やゼブラ電池用の電解液を考える場合、これらの金属が析出しやすい性質があれば一段と応用の幅が広がり、技術の展開が期待される。
また、上記溶融塩組成物は、混合された2種以上の溶融塩が共晶を示す組成(共晶組成)近傍となるように構成されていることが好ましい。例えば、二元系の場合、LiTFSI−NaTFSI系ではLiTFSIの割合が0.1〜0.6であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)であるxLiTFSI=0.33となる組成が好ましい。また、LiTFSI−KTFSI系ではLiTFSIの割合が0.2〜0.8であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)であるxLiTFSI=0.43となる組成が好ましい。LiTFSI−CsTFSI系ではLiTFSIの割合が0.03〜0.7であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)であるxLiTFSI=0.07となる組成が好ましい。また、NaTFSI−KTFSI系ではNaTFSIの割合が0.05〜0.6であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)であるxNaTFSI=0.33となる組成が好ましい。NaTFSI−CsTFSI系ではNaTFSIの割合が0.03〜0.6であることが好ましい。特に、共晶温度が最も低くなる組成(共晶組成)であるxNaTFSI=0.07となる組成が好ましい。
なお、後述する実施例に示すように、上記二元系の組成物の各共晶組成における共晶温度は、LiTFSI−NaTFSI系(xNaTFSI=0.33)で453K,LiTFSI−KTFSI系(xLiTFSI=0.43)で423K,LiTFSI−CsTFSI系(xLiTFSI=0.07)で385K,NaTFSI−KTFSI系(xNaTFSI=0.33)453K,NaTFSI−CsTFSI系(xNaTFSI=0.07)で383K,及びKTFSI−CsTFSI系で394Kであった。
また、本発明に係る溶融塩組成物では、溶融塩の組成や割合を変更することにより、共晶温度を変化する。この性質を利用して、組み合わせる溶融塩の組成や割合を変更することにより、使用目的に合わせた最適な温度範囲を設定することができ、応用の幅が広がるという利点もある。
特に、本発明に係る溶融塩組成物は、従来の単塩の溶融塩では使用できなかった低温度領域から、従来の単塩で使用できる中温〜高温領域までの広い温度範囲で用いることができる。具体的には、本発明に係る溶融塩組成物は、例えば、110℃〜470℃で用いることができる。
本発明に用いられる溶融塩は、アルカリ金属Mをカチオン、TFSIをアニオンとして有する従来公知の溶融塩MTFSIを好適に用いることができる。また、その製造方法も従来公知の方法を利用でき、その具体的な手段等は特に限定されるものではない。例えば、後述する実施例に示す方法を用いることができる。
このように、本発明に係る溶融塩組成物は、溶融温度(共晶温度)が低下するという特有の作用効果を有する。このため、安全性、腐食防止、エネルギーコスト等においても優れている。すなわち、溶融温度が低下し、低い温度で溶融塩が利用できれば、加熱のためのエネルギーの使用が低減できる。また、溶融塩は一般的に金属等の材料を腐食しやすいものが多く、その性質は温度の上昇とともに反応速度が増加する結果、著しくなる。したがって低い温度で溶融塩が利用できれば腐食の進行の低減が期待できる。低温で利用できれば、材料の腐食に伴う装置材料の破断等に伴う高温物体の流出事故等の可能性が低減される。
また、溶融塩は、融点を超えてさらに加熱し分解温度に達すると、その化学構造を維持できなくなり、所望の性質を発現できなくなる。このため、通常、溶融塩は、融点〜分解温度の間の温度範囲にて使用することになるが、この融点〜分解温度の温度範囲が広いほうが、操作性が向上することになる。本願発明に係る溶融塩組成物は、共晶温度が低下する一方、分解温度は単塩の場合と変化しないため、融点〜分解温度の間の温度範囲が広くなり、操作性が向上するという利点がある。
以上のように、本発明に係る溶融塩組成物は、従来の溶融塩や電解質に比べて、様々な利点があるが、特に、以下の点で優位性があるといえる。すなわち、例えば、リチウム電池用電解液や低温での卑金属の電析などへ応用できるイオン性液体あるいは溶融塩は、低融点でかつ還元電位がより卑になければならない。しかし、従来の電解質を有機溶媒へ溶解させた有機電解質や有機カチオンを対アニオンとするイミド塩のイオン液体は、これらの金属が還元析出する前により高い電位で有機溶媒あるいは有機カチオンは分解してしまう可能性があった。これに対して、本発明では、アルカリ金属イミド塩を有機溶媒へ溶解することなく、溶融塩として用い、さらに複数種類の溶融塩を混合することにより、単塩の場合に比べて、より低温での使用を可能とし、上記の問題点を解決している。
<2.溶融塩組成物の利用>
溶融塩は電解液として用いることにより、水溶液系では困難な電気化学的反応を起こすことが可能であり、様々な応用を目的として多種多様な研究開発が行われている。例えば、溶融塩には様々な融点を持つものがあるが、中温域に融点を持つ塩は中温〜高温作動型の電気化学デバイスの電解質としての応用に際して有利である。
上述したように、本発明では、単塩では得らないような溶融温度の溶融塩組成物を得ることができる。すなわち、本発明に係る溶融塩組成物は、溶融温度が中温〜高温域であるため、特に、中温〜高温域での利用が可能となる。したがって、例えば、上記温度領域において、上記<1>欄に記載の溶融塩組成物を含む電解液又は電解質として利用することができる。
また、本発明に係る溶融塩組成物は、その融点(共晶温度)が単塩に比べて低下しているため、単塩と比較して、安全性、材料選択の幅、エネルギーコスト等の点で非常に優れている。このため、溶融塩化合物の利用においても、このような利点を用いることができる。
上記電解液又は電解質の用途は特に限定されるものではなく、本出願時において知られている、電解質を利用する多種多様な製品・技術に利用することができる。例えば、電池用の電解液として用いることができる。
ここで、「本発明に係る溶融塩組成物を、電解液又は電解質として利用する」とは、本発明に係る溶融塩組成物を溶媒に溶解させて用いることを意図するものではなく、塩そのものを融解した溶融塩をそのまま電解液又は電解質として利用する態様を意図している。このような利用の場合、溶媒を用いる必要がないため、非常に好ましい。これは、溶媒が存在することによる揮発性や可燃性がなく、電解液の枯渇やアルカリ金属との反応による発火、爆発等の問題がないためである。
すなわち、これまでもアルカリ金属イミド塩、特にリチウム塩はリチウムイオン電池用の有機電解液の支持塩としての利用が検討されているが、本発明に係る溶融塩組成物は、(i)有機溶媒を含まない点、(ii)それ自身比較的低温で溶融する点、(iii)低温溶融塩としてのアルカリ金属イミド塩とその共晶塩である点、(iv)これらの塩が溶融温度からさらに高温でも安定である点、(v)さらに溶融塩中でアルカリ金属を析出させることができる点で優れた特徴を有する。
このため、上記の優れた特徴点を生かして、例えば、より低温で作動するナトリウム−硫黄電池、ゼブラ電池、リチウム2次電池(据置型、高出力、ロードレベリング用)等の多種多様な電池用の電解液として用いることができる。特に、アルカリ金属イミド塩を用いた大型電池としての利点は大きく、例えば、電力施設等の夜間余剰電力の充電用として用いることができる。また、電気自動車やハイブリッド自動車用などのリチウム2次電池への利用も可能である。
本発明に係る溶融塩組成物を用いて大型Liイオン電池を構成する場合、デンドライトの生成が抑制される温度領域で用いることが好ましい。具体的には、150℃〜200℃程度の温度で用いることが好ましい。従来の単塩の溶融塩では、この温度領域では十分に使用できなかったが、本発明に係る溶融塩組成物によれば、かかる温度範囲での使用が可能となった。
また、本発明には、上記溶融塩組成物を用いた電池を利用する充電方法も含まれる。かかる充電方法の具体的な手法については、特に限定されるものではなく、上記電池を用いていればよく、それ以外の工程、条件、使用機器等については従来公知のものを用いることができる。本充電方法によれば、効率的に充電することができる。
なお、本発明に係る溶融塩組成物が電解質として使用できることは、溶融塩組成物が良好な導電率を有することから明らかである。
さらに、本発明に係る溶融塩組成物は、LIGAプロセスなどにおいて、水溶液を用いることができず、かつ高温溶融塩も使用できない条件での電析用などの電解質として利用することができる。
また、本発明の溶融塩組成物を電池用の電解質として使用する使用する場合、一方のアルカリ金属が電池としてとして機能するとき、他のアルカリ金属は溶媒的な機能を発現する。つまり、本発明の溶融塩組成物では、少なくとも2種類のアルカリ金属塩を混合しているため、電圧をかけて電気分解するときは負極に還元されやすいアルカリ金属のほうが先に析出してくる。したがって電池用の電解質として利用する場合、電池の負極は、このように還元されやすいほうのアルカリ金属の電極となる。
また、本発明に係る溶融塩組成物を電気化学測定したところ、各単塩を構成するアルカリ金属が還元されて析出する性質を示すことが確認されている。つまり、アルカリ金属等電気化学的に卑な金属を析出させることができる。このため、この特性を利用することにより、本発明に係る溶融塩組成物は、例えば、アルカリ金属よりも還元性の低い目的金属を金属塩として溶解させたメッキ液として利用することができる。このような目的金属としては、例えば、アルカリ土類金属、希土類金属、5族、6族の高融点金属などを挙げることができる。
また、後述する実施例に示すように、本発明に係る溶融塩組成物は、サイクリックボルタンメトリーにより、カソード限界がアルカリ金属あるいはその合金の析出であることを確認している。このことから、アニオンであるTFSIの還元分解が起こらず、アルカリ金属や上述の様々な金属の析出が可能であることを示すものといえる。
したがって、本発明に係る溶融塩組成物を含む電解液は、電析方法、被膜形成方法(メッキ)、表面処理方法等に利用することができる。
本発明に係る電析方法は、上記溶融塩組成物を含む電解液を用いていればよく、その他の工程、条件、使用機器等の具体的な構成については特に限定されるものではない。例えば、上記溶融塩組成物を電解質として用い、これに対して電気分解を行い、金属またはセラミックスなどを析出させる電析工程を含んでいる方法であればよいといえる。本電析方法によれば、電気めっきなどに好適に利用することができる。
また、本発明に係る被膜形成方法は、上記溶融塩組成物を含む電解液を用いていればよく、その他の工程、条件、使用機器等の具体的な構成については特に限定されるものではない。本被膜形成方法は、上記溶融塩組成物を電解質として用い、これを電気分解して金属またはセラミックスを析出させ、表面を金属またはセラミックスで覆うウェットプロセスを含む方法であり、いわゆるメッキを行う方法のことである。例えば、少なくとも上記電析方法と、上記電析方法によって析出した金属またはセラミックスにて物質の表面を覆う工程とを含んでいる方法を挙げることができる。本被膜形成方法によれば、物質の表面に対して均一にメッキを施すことができ、表面仕上がりが良好なメッキ物を得ることができる。
また、本発明に係る表面処理方法は、上記溶融塩組成物を含む電解液を用いていればよく、その他の工程、条件、使用機器等の具体的な構成については特に限定されるものではない。いわゆる上記溶融塩組成物を電解質として用い、物質の表面を処理する方法であればよい。かかる表面処理としては、例えば、酸化物被覆、窒化物被覆、炭化物被覆、ケイ化物被覆等の表面処理を挙げることができる。このため、本表面処理方法によれば、高硬度、耐摩耗性、耐食性等の機能を表面に付与するという効果を得ることができる。
本発明に係る電解液を用いた被膜形成方法や表面処理方法について、被膜を形成する対象となる物質又は表面を処理する対象となる物質については、特に限定されるものではなく、従来公知の電解液・電解質を用いた被膜形成方法や表面処理方法の対象となる物質を好適に対象物として実施することができる。例えば、金属や合金、セラミックスやプラスチックの表面に金属被膜またはセラミックス被膜を形成したり、金属や合金の表面を処理したりすることができる。例えば、宝飾品や家電製品等の表面仕上げ作業に用いることができる。
以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
(1)実験
(1−1)実験装置
本実施例で用いられた化学薬品の多くは空気中の水分と容易に反応するため、脱水、脱酸素化したガス精製装置付きのアルゴン雰囲気のグローブボックス内で取り扱った。ボックス内の水分を管理するため、雰囲気ガス中に含まれる水分は常時露点計によってモニターされた。グローブボックス中には電子上皿天秤を設置し、試料の秤量が行えるようにした。
実験に用いた耐食性反応ラインを図1に示す。本体は耐食性に優れたSUS316ステンレスのパイプ(外径1/2inch)からなり、それらは継ぎ手及びKel−Fチップを使用したSUS316ステンレス製の真空バルブ(Whitey)などとスウェージロックを用いて接続されている。反応管の接続部には外径1/4inchのパイプを用いた。この反応ラインには油回転真空ポンプが接続されており、ポンプの直前にはガラス製のコールドトラップを設置し、これを液体窒素で冷却することによって、水や腐食性ガスなどがポンプ内に入るのを防いだ。粗引きとしてソーダ石灰を用いたケミカルトラップを経由し、フッ素やフッ化物ガスなどの腐食性ガスを除去できるようにした。このケミカルトラップを通した場合には圧損が大きく、真空度が高くならないため、バルブによってケミカルトラップを通さず直接排気ができるようにした。このラインの最高到達真空度は約10−2Torrオーダーである。
(1−2)試薬
HTFSI(森田化学工業,99.0%以上)、LiTFSI(森田化学工業,99.0%以上)、NaCO(和光純薬,99.5%)、KCO(和光純薬,99.9%)、CsCO(Aldrich,99.9%)はそれぞれ市販のものをそのまま使用した。反応溶媒として用いたエタノール(和光純薬,99%)も、市販のものをそのまま使用した。
(合成)
MTFSI(M=Li,Na,K,Cs)の合成の手順を図2に示す。MTFSIの合成は以下の反応式によって行った。
Figure 2006101141
グローブボックス中でMCOとHTFSIを秤量後、ドラフト内でHTFSIに反応溶媒としてエタノールを加え、MCOと反応させた。この際、どちらかが過剰になることが無い様にpH試験紙を用いて溶液のpHを逐次確認しながら中和を行った。その後、ロータリーエバポレーターにより、数時間攪拌しながら、粗くエタノールを取り除いた。これを石英ガラス管に入れ、真空ポンプによって353Kで24時間、373Kで24時間、403Kで24時間それぞれ真空引きし、乾燥した。その結果、白色の粉末を得た。
(1−3)分析
(1−3−1)熱分析
熱分析は、熱重量分析および示差走査熱量分析を行った。
熱重量分析は示差熱・熱重量同時測定装置(島津製作所、DTG−60/60H)を用いて行った。用いたアルミニウムセルは測定の前にエタノールと蒸留水で洗浄し、十分乾燥してから、試料を入れ、測定した。走査速度は10Kmin−1で行った。測定は窒素ガス雰囲気下で行った。LiTFSIは潮解性を持つので、水分を除去するためにまず573Kまで昇温してから測定を行った。NaTFSI,KTFSI,CsTFSIについてはそのまま測定を行った。
示差走査熱量分析は、示差走査熱量計(島津製作所、DSC60)を用いて行った。セルはアルミニウム製のものを用いた。アルゴン雰囲気下のグローブボックス内でセルに試料を入れ、シーラアンドクリンパ(島津製作所、SSC−30)を用いてセルをシールし、測定に供した。走査速度は10Kmin−1で行った。また測定は窒素ガス雰囲気下で行った。NaTFSIと他の塩との混合塩の示差走査熱量分析はNaTFSIのモル分率xNaTFSIを0.05から0.95まで0.05ごとに変化させて行った。一度533Kまで昇温し室温まで冷却後、更に533Kまで昇温させて測定を行った。
(1−3−2)電気化学測定
電気化学測定は電気化学測定装置HZ−3000(北斗電工)を用いて行った。サイクリックボルタンメトリーは、ガラス製のセルを用いて行った。作用極にはニッケル線およびグラッシーカーボンロッド、対極にはグラッシーカーボンロッド、参照極には擬似参照極として銀線を用いた。測定装置の模式図を図3に示す。測定は、アルゴン雰囲気下のグローブボックス内で、ヒーターにより浴温を塩の融点より約30K高い温度に保持して行った。
(2)結果及び考察
(2−1)単塩MTFSI
(2−1−1)熱的性質
図4〜図7に各単塩MTFSIのTG曲線を示す。熱分解温度は、ベースラインと重量減少後のTG曲線との接点を取ることにより決定した。図22に各単塩の熱分解温度を示す。カチオンのサイズが大きくなると、熱分解温度が高くなる傾向があることが分かった。このことは、大きいカチオンが大きいアニオンを安定化するという一般的なイオン結晶の熱的安定性と一致する。
図8〜図11に各単塩MTFSIのDSC曲線を示す。融点は、DSC曲線上でベースラインの延長線と吸熱ピークの接線の交点をとることにより決定した。図23に各単塩の融点を示す。熱分解温度の傾向とは異なり、単塩の融点はNaTFSIの場合に高いということが分かった。CsTFSIのDSC曲線上において、373K付近に小さな吸熱ピークが確認された。これは真空乾燥では除去することができなかった微量の水の蒸発に対応するものであると考えられるが、塩は3日間真空乾燥した後であることを考えるとその可能性は薄いと言える。相転移に対応するものであることも考えられるが、詳しいことは分かっていない。
(2−1−2)電気化学的性質
各単塩MTFSIのサイクリックボルタンメトリーの結果を、図12(a)〜図15(b)に示す。電位を卑な方向にスイープするときは作用極にニッケル線を用いた。−1.2V付近から還元電流が流れ始め、その後定常的に還元電流が流れた。その後、アルカリ金属の析出、溶解に対応すると考えられるピークを確認した。LiTFSI,NaTFSIの場合、電位を折り返した後−1.5V付近で酸化電流を確認した。また測定後、ニッケル線の表面に黒い物質が付着していたが、測定を繰り返してもボルタモグラムは同じような形を示した。
このアルカリ金属析出より貴な電位での還元電流の原因についてはまだ詳しく分かっていないが、常温ではTFSIアニオンは非常に強い還元耐性を持っていることからTFSIアニオンの還元であるとは考えにくい。不純物として、塩の原材料であるHTFSI、アルカリ金属炭酸塩、または合成の際に生じ真空乾燥では除去することができなかった水などが混入していることも考えられる。しかし、塩の水溶液のpHはいずれも中性であったのでHTFSIおよび炭酸塩が混入しているとは考えにくい。CsTFSI以外ではDSC曲線状で水の蒸発に対応する吸熱ピークは確認できなかった。さらに、塩を測定前にアルゴンを用いて24時間バブリングしても結果は変わらなかったので水が原因である可能性も薄いと言える。電極表面の汚れや酸化物層の影響も考えられるが、市販のものをそのまま用いたLiTFSIのこの還元電流ピークが最も小さいことを考えると、電極よりは浴に問題があると考えられる。また、DSC曲線上では確認できないほど微量の水が浴中に存在することによりTFSIアニオンの分解が促進されるということも考えられる。以上のように様々な原因が考えられるが、この点についてはより詳細な検討が必要である。この還元電流の原因が、塩の特性ではなく不純物などの影響であれば、MTFSIは卑な方向に非常に広い電位窓を持つと言える。
電位を貴な方向にスイープするときは作用極にグラッシーカーボンロッドを用いた。いずれも1.8V付近に酸化電流のピークを確認した。これは、TFSIアニオンの酸化に対応するものであると考えられ、常温のTFSI系溶融塩のTFSIアニオンの酸化電位(H.Matsumoto,Molten Salt XII,edited by P.C.Trulove et al.,Electrochem.Soc.,Penningon,NJ,(2000)p186.参照)とほぼ一致する。しかし、ピーク前の電位領域でも電流が徐々に流れていくことからやはり浴中に何かしらの不純物が混入している可能性が示唆された。
(2−2)二元系混合塩
(2−2−1)二元系状態図
塩の融点の低温化を目指して、NaTFSIを中心にLiTFSI−NaTFSI系、KTFSI−NaTFSI系、NaTFSI−CsTFSI系の二元系混合塩について状態図を作成した。まずLiTFSI−NaTFSI系について示す。LiTFSI−NaTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.35,0.70の塩の場合をそれぞれ図16(a),図16(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図17に示す。共晶組成はxNaTFSI=0.33、共晶温度は約453Kであることが分かった。
また融解に対応すると考えられる吸熱ピークの他に、423K付近にもう1つ吸熱ピークを確認した。この吸熱ピークは、xNaTFSIが大きくなるにつれ徐々に小さくなり、xNaTFSI=0.90,0.95の塩のDSC曲線上では確認することができなかった。このことから、この吸熱ピークはLiTFSIに由来するものであり、混合塩の相転移などに対応するものであると考えられるが、その詳細については分かっていない。
次に、NaTFSI−KTFSI系について示す。NaTFSI−KTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.35,0.70の塩の場合をそれぞれ図18(a),図18(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図19に示す。共晶組成はxNaTFSI=0.33、共晶温度はLiTFSI−NaTFSI系とほぼ同じく約453Kであることが分かった。共晶組成よりNaTFSI側で広い組成域にわたって約463K付近に吸熱ピークを確認した。この吸熱ピークはxNaTFSIが大きくなると徐々に小さくなり、xNaTFSI=0.80以上の塩のDSC曲線上では確認することができなかった。また、温度が最も低い吸熱ピークの温度が、xNaTFSI=0.50あたりから5Kほどではあるが低くなることを確認した。これは測定の誤差の可能性もあるが、xNaTFSI=0.50にNaK(TFSI)などの化合物が存在することも考えられる。
次いで、NaTFSI−CsTFSI系について示す。NaTFSI−CsTFSI系混合塩のDSC曲線の例として、xNaTFSI=0.05,0.70の塩の場合をそれぞれ図20(a),図20(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図21に示す。この場合、共晶組成はかなりCsTFSIが多い側にあり、xNaTFSI=0.07、共晶温度は約383Kであることが分かった。この系では、共晶組成よりNaTFSIが多い側で413K付近に吸熱ピークを確認したがxNaTFSIが大きくなるにつれ徐々に小さくなり、xNaTFSI=0.80以上の塩のDSC曲線上では確認することができなかった。また、383K付近の吸熱ピークもxNaTFSIが大きくなると消失し、かわりに403K付近に吸熱ピークを確認した。
KTFSI,CsTFSIの融点がそれぞれ469K,395Kであることを考えると、NaTFSI−KTFSI系、NaTFSI−CsTFSI系では共晶組成においても融点は後者の塩に非常に近い値を取り、あまり低下しないことが分かった。
続いて、LiTFSI−KTFSI系について示す。LiTFSI−KTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.45,0.95の塩の場合をそれぞれ図22(a),図22(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図23に示す。共晶組成はxLiTFSI=0.43、共晶温度は約423Kであることが分かった。共晶組成よりLiTFSI側で広い組成域にわたって約500K付近に吸熱ピークを確認した。また、温度が最も低い吸熱ピークの温度が、xLiTFSI=0.75あたりから5Kほどではあるが低くなることを確認した。これは測定の誤差の可能性もあるが、xNaTFSI=0.75にLiK(TFSI)などの化合物が存在することも考えられる。
次に、LiTFSI−CsTFSI系について示す。LiTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.05,0.40の塩の場合をそれぞれ図24(a),図24(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図25に示す。共晶組成はxLiTFSI=0.07、共晶温度は約385Kであることが分かった。共晶組成よりLiTFSI側で約445K付近に吸熱ピークを確認した。また、温度が最も低い吸熱ピークの温度が、xLiTFSI=0.55あたりから50Kほどではあるが高くなることを確認した。これは測定の誤差の可能性もあるが、xLiTFSI=0.5に、LiCs(TFSI)などの化合物が存在することも考えられる。
最後に、KTFSI−CsTFSI系について示す。KTFSI−CsTFSI系混合塩のDSC曲線の例として、xLiTFSI=0.20,0.70の塩の場合をそれぞれ図26(a),図26(b)に示す。これらの各吸熱ピークをプロットして作成した二元系状態図を図27に示す。この二元系の混合塩では、共晶温度の低下はほとんど認められなかった。このため、共晶組成は示さない。なお、共晶点は示さないが、例えば、50%ではKTFSI単塩よりも低い温度でKイオン移動する電解質になっているため、本発明に係る溶融塩組成物として利用できることを念のため付言しておく。
図28に各単塩の熱分解温度を示し、図29には各単塩の融点を示す。また、各混合塩の共晶組成および共晶温度を図30に示す。これらの結果から、本実施例で用いた溶融塩を2種類混合した二元系の溶融塩組成物では、単塩の場合にくらべて、大きく共晶温度が低下することがわかる。
(3)まとめ
本実施例では、中温域で用いられる電解液などとしての応用が期待されるアルカリ金属をカチオンとするTFSI系溶融塩に関する研究を行った。熱分析の結果、単塩の熱分解温度はカチオンのサイズが大きくなるにつれて高くなったが、融点はそれと異なり、NaTFSIの場合に最も高くなることが分かった。また、NaTFSIと他の塩との混合塩については、LiTFSI−NaTFSI及びLiTFSI−KTFSIの共晶点における融点の低下の度合いが最も著しく、今回検討した二元系混合塩のうちではNaTFSI−CsTFSIが最も低い共晶温度(383K)を示すことが分かった。
また、融点より低い温度域で相転移に対応すると考えられる吸熱ピークが確認された。電気化学測定の結果、各単塩についてカソード側でアルカリ金属の析出が可能であることが分かった。つまり、サイクリックボルタンメトリーにより、カソード限界がアルカリ金属あるいはその合金の析出であることを確認している。しかし、それより貴な電位で不明な還元電流を確認した。この点については、更なる検討が必要である。
なお、発明を実施するための最良の形態の項においてなした具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する特許請求の範囲内で、いろいろと変更して実施することができるものである。
以上のように、本発明に係る溶融塩組成物は、単塩の場合に比べて融点を低下させることができる。また、溶融塩の組成や割合を設定することにより、使用可能な温度領域を広げることができる。このため、本発明に係る溶融塩組成物を用いることにより、電解質の融点が低下させることができ、エネルギー効率の面や安全性の面で利点がある。また、使用温度域を拡大させることができるため、電池などへの応用の際に材料の選択性が向上するなどの利点もある。したがって、鍍金、半導体、電池工業等の広範な産業上の利用が可能である。

Claims (11)

  1. 下記化学式(1)で表される物質TFSIをアニオンとし、アルカリ金属Mをカチオンとする溶融塩MTFSIを、2種類以上含むことを特徴とする溶融塩組成物。
    Figure 2006101141
  2. 上記溶融塩MTFSIが、LiTFSI、NaTFSI、KTFSI、RbTFSI、及びCsTFSIからなる群より選択されるものであることを特徴とする請求項1に記載の溶融塩組成物。
  3. 上記溶融塩組成物は、溶融塩MTFSIを2種類混合した二元系の組成物であって、
    LiTFSI−NaTFSI混合系,LiTFSI−KTFSI混合系,LiTFSI−CsTFSI混合系,NaTFSI−KTFSI混合系,NaTFSI−CsTFSI混合系,又はKTFSI−CsTFSI混合系であることを特徴とする請求項1又は2に記載の溶融塩組成物。
  4. 請求項1〜3のいずれか1項に記載の溶融塩組成物を含むことを特徴とする電解液。
  5. 請求項4に記載の電解液を含むことを特徴とする電池。
  6. 110℃〜350℃で用いられることを特徴とする請求項4に記載の電池。
  7. 上記電池は、リチウム電池、ナトリウム−硫黄電池、またはゼブラ電池であることを特徴とする請求項6に記載の電池。
  8. 請求項5〜7のいずれか1項に記載の電池を用いて充電を行う工程を含むことを特徴とする充電方法。
  9. 請求項4に記載の電解液を用いて、金属またはセラミックスを析出させる工程を含むことを特徴とする電析方法。
  10. 請求項4に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、
    上記工程にて析出した金属またはセラミックスを用いて、物質の表面に被膜を形成する工程と、
    を含むことを特徴とする被膜形成方法。
  11. 請求項4に記載の電解液を用いて、金属またはセラミックスを析出させる工程と、
    上記工程にて析出した金属またはセラミックスを用いて、物質の表面を処理する工程と、
    を含むことを特徴とする表面処理方法。
JP2007509311A 2005-03-23 2006-03-22 溶融塩組成物及びその利用 Pending JPWO2006101141A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005084801 2005-03-23
JP2005084801 2005-03-23
PCT/JP2006/305736 WO2006101141A1 (ja) 2005-03-23 2006-03-22 溶融塩組成物及びその利用

Publications (1)

Publication Number Publication Date
JPWO2006101141A1 true JPWO2006101141A1 (ja) 2008-09-04

Family

ID=37023801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007509311A Pending JPWO2006101141A1 (ja) 2005-03-23 2006-03-22 溶融塩組成物及びその利用

Country Status (5)

Country Link
US (1) US8257868B2 (ja)
EP (1) EP1862452A1 (ja)
JP (1) JPWO2006101141A1 (ja)
KR (1) KR20070114323A (ja)
WO (1) WO2006101141A1 (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI341607B (en) 2005-10-27 2011-05-01 Lg Chemical Ltd Secondary battery comprising eutectic mixture and preparation method thereof
JP5273765B2 (ja) * 2007-09-14 2013-08-28 国立大学法人京都大学 溶融塩組成物及びその利用
US10320033B2 (en) 2008-01-30 2019-06-11 Enlighten Innovations Inc. Alkali metal ion battery using alkali metal conductive ceramic separator
WO2011036907A1 (ja) * 2009-09-28 2011-03-31 住友電気工業株式会社 電池およびエネルギーシステム
JP5753852B2 (ja) * 2009-11-05 2015-07-22 セラマテック・インク ナトリウムイオン伝導性セラミックセパレーターを有する固体ナトリウム系二次電池
JP2011187226A (ja) * 2010-03-05 2011-09-22 Sumitomo Electric Ind Ltd 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池
JP2011192474A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Ind Ltd 電池用負極材料、電池用負極前駆体材料、及び電池
KR20130040781A (ko) 2010-04-06 2013-04-24 스미토모덴키고교가부시키가이샤 세퍼레이터 제조 방법, 용융염 전지의 제조 방법, 세퍼레이터 및 용융염 전지
JP5516002B2 (ja) * 2010-04-16 2014-06-11 住友電気工業株式会社 溶融塩電池のケースおよび溶融塩電池
JP5471905B2 (ja) * 2010-07-05 2014-04-16 住友電気工業株式会社 溶融塩電池
JP2012015056A (ja) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd 溶融塩電池
JP2012082483A (ja) * 2010-10-13 2012-04-26 Sumitomo Electric Ind Ltd 金属多孔体とその製造方法、および溶融塩電池
JP5664114B2 (ja) * 2010-10-20 2015-02-04 住友電気工業株式会社 溶融塩電池
JP5614234B2 (ja) * 2010-10-21 2014-10-29 住友電気工業株式会社 溶融塩電池
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
JP5779050B2 (ja) * 2010-11-30 2015-09-16 住友電気工業株式会社 溶融塩電池
JP2012174442A (ja) * 2011-02-21 2012-09-10 Sumitomo Electric Ind Ltd 溶融塩電池及びその製造方法
JP5775330B2 (ja) * 2011-03-02 2015-09-09 住友電気工業株式会社 溶融塩電池
US20140234685A1 (en) * 2011-04-01 2014-08-21 Sumitomo Electric Industries, Ltd. Molten salt battery
WO2013002359A1 (ja) * 2011-06-29 2013-01-03 住友電気工業株式会社 溶融塩電池の製造方法および溶融塩電池
JP5885199B2 (ja) * 2011-09-30 2016-03-15 国立研究開発法人産業技術総合研究所 リチウム二次電池
KR20140085451A (ko) * 2011-10-17 2014-07-07 스미토모덴키고교가부시키가이샤 용융염 전지 및 그 가동 방법
DE102011086799A1 (de) * 2011-11-22 2013-05-23 Robert Bosch Gmbh System mit einem Handwerkzeugkoffer und einem Handwerkzeugakku
US10165835B2 (en) 2012-08-20 2019-01-01 Forever Mount, LLC Brazed joint for attachment of gemstones to each other and/or a metallic mount
US9413036B2 (en) 2012-09-06 2016-08-09 Ceramatec, Inc. Sodium-halogen secondary cell
US10854929B2 (en) 2012-09-06 2020-12-01 Field Upgrading Usa, Inc. Sodium-halogen secondary cell
US20150249272A1 (en) * 2012-09-10 2015-09-03 Sumitomo Electric Industries, Ltd. Sodium secondary battery
CN104854726B (zh) 2012-10-16 2018-09-21 安布里公司 电化学储能装置和外壳
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9431682B2 (en) 2012-12-19 2016-08-30 Ceramatec, Inc. Degradation protection of solid alkali ion conductive electrolyte membrane
CN103130691B (zh) * 2013-03-07 2014-09-17 武汉大学 一种铬雾抑制剂及其制备方法
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
WO2015013207A1 (en) * 2013-07-22 2015-01-29 Battell Memorial Institute Polymer electrolytes for dendrite-free energy storage devices having high coulombic efficiency
DK3058605T3 (da) 2013-10-16 2024-03-04 Ambri Inc Tætninger til anordninger af reaktivt højtemperaturmateriale
CN104282942A (zh) * 2013-11-14 2015-01-14 上海图尔实业发展有限公司 一种高性能电解液及其在二次电池中的应用
WO2015074006A1 (en) * 2013-11-15 2015-05-21 The Regents Of The University Of California Electrochemical devices comprising compressed gas solvent electrolytes
US10170795B2 (en) 2014-09-10 2019-01-01 Battelle Memorial Institute Electrolyte for high efficiency cycling of sodium metal and rechargeable sodium-based batteries comprising the electrolyte
US10367189B2 (en) * 2014-09-10 2019-07-30 Battelle Memorial Institute Anode-free rechargeable battery
US10547088B2 (en) 2014-09-10 2020-01-28 Battelle Memorial Institute High Coulombic efficiency cycling of metal batteries
US20160118685A1 (en) * 2014-10-24 2016-04-28 Battelle Memorial Institute Methods and compositions for lithium ion batteries
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
JP7201613B2 (ja) 2017-04-07 2023-01-10 アンブリ・インコーポレイテッド 固体金属カソードを備える溶融塩電池
JP6972965B2 (ja) * 2017-11-27 2021-11-24 トヨタ自動車株式会社 全固体電池
US10566659B1 (en) 2018-12-14 2020-02-18 Ses Holdings Pte. Ltd. Eutectic mixtures containing alkali-metal sulfonimide salts, and electrochemical devices utilizing same
WO2021003411A1 (en) * 2019-07-03 2021-01-07 The Board Of Trustees Of The Leland Stanford Junior University Safe and non-flammable sodium metal batteries based on chloroaluminate electrolytes with additives

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442512A1 (fr) * 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
FR2527602A1 (fr) * 1982-06-01 1983-12-02 Anvar Bis perhalogenoacyl- ou sulfonyl- imidures de metaux alcalins, leurs solutions solides avec des matieres plastiques et leur application a la constitution d'elements conducteurs pour des generateurs electrochimiques
CA2199446A1 (fr) * 1997-03-07 1998-09-07 Yves Choquette Generateurs a electrolyte polymere possedant un sel de potassium permettant de stabiliser les performances et la vie utile de la batterie
USRE37805E1 (en) * 1997-03-12 2002-07-23 Hydro-Quebec Polymer electrolyte lithium battery containing a potassium salt
JP3623452B2 (ja) * 2000-01-31 2005-02-23 森田化学工業株式会社 スルホニルイミド化合物の製造方法
JP2003282059A (ja) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd 非水電解質二次電池
JP3962806B2 (ja) * 2002-05-16 2007-08-22 独立行政法人産業技術総合研究所 常温溶融塩及び常温溶融塩を用いたリチウム二次電池

Also Published As

Publication number Publication date
KR20070114323A (ko) 2007-11-30
WO2006101141A1 (ja) 2006-09-28
US20090212743A1 (en) 2009-08-27
US8257868B2 (en) 2012-09-04
EP1862452A1 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JPWO2006101141A1 (ja) 溶融塩組成物及びその利用
JP5273765B2 (ja) 溶融塩組成物及びその利用
Muldoon et al. Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed
Kakibe et al. Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries
Chen et al. “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery
Fukunaga et al. Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries
Ding et al. NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range
Liu et al. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications
Nohira et al. Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery
Park et al. Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects
JP5403053B2 (ja) アルミニウム箔の製造方法
Leung et al. Progress in electrolytes for rechargeable aluminium batteries
Al-Masri et al. The influence of alkyl chain branching on the properties of pyrrolidinium-based ionic electrolytes
Watanabe Design and materialization of ionic liquids based on an understanding of their fundamental properties
Xue et al. Boosting the Performance of Solid‐State Lithium Battery Based on Hybridizing Micron‐Sized LATP in a PEO/PVDF‐HFP Heterogeneous Polymer Matrix
Simons et al. The electrochemical cycling and electrodeposition of lead from 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid
Lee et al. Optimally arranged TiO2@ MoS2 heterostructures with effectively induced built-in electric field for high-performance lithium–sulfur batteries
Liu et al. Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All‐Solid‐State Li Battery
Li et al. Lithium Ferrocyanide Catholyte for High‐Energy and Low‐cost Aqueous Redox Flow Batteries
Deng et al. Inhibition of side reactions and dendrite growth using a low-cost and non-flammable eutectic electrolyte for high-voltage and super-stable zinc hybrid batteries
Shi et al. Bis-quaternary ammonium cation-based organic ionic plastic crystals: plastic crystal behaviour and ionic liquid properties above melting points
Hu et al. Engineering High Voltage Aqueous Aluminum‐Ion Batteries
KR20180107101A (ko) 수성 매질 중 원소의 전기화학적 증착
US4060672A (en) Electrochemical energy cell with solid electrolyte
Zhang et al. Can metallic lithium be electrochemically extracted from water, the universal solvent?