WO2006099955A1 - Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen - Google Patents

Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen Download PDF

Info

Publication number
WO2006099955A1
WO2006099955A1 PCT/EP2006/002258 EP2006002258W WO2006099955A1 WO 2006099955 A1 WO2006099955 A1 WO 2006099955A1 EP 2006002258 W EP2006002258 W EP 2006002258W WO 2006099955 A1 WO2006099955 A1 WO 2006099955A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
ferrous metal
silicon
container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2006/002258
Other languages
German (de)
English (en)
French (fr)
Inventor
Armin Müller
Michael Ghosh
Jens Seidel
Bert Geyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Sachsen GmbH
Original Assignee
Deutsche Solar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Solar GmbH filed Critical Deutsche Solar GmbH
Priority to AT06723370T priority Critical patent/ATE440804T1/de
Priority to US11/816,943 priority patent/US7981214B2/en
Priority to DE502006004664T priority patent/DE502006004664D1/de
Priority to EP06723370A priority patent/EP1866247B1/de
Priority to JP2008502280A priority patent/JP2008534414A/ja
Publication of WO2006099955A1 publication Critical patent/WO2006099955A1/de
Anticipated expiration legal-status Critical
Priority to NO20075331A priority patent/NO20075331L/no
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • H10F71/1221The active layers comprising only Group IV materials comprising polycrystalline silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an apparatus for melting and / or crystallizing non-ferrous metals, in particular silicon. Furthermore, the invention relates to a method for melting and / or crystallizing non-ferrous metals, in particular of silicon. Furthermore, the invention relates to the use of the crystallized by the novel non-ferrous metal, in particular of silicon, in photovoltaic.
  • the object of the invention is to refine an apparatus and a method for melting and / or crystallizing non-ferrous metals, in particular silicon, in such a way that the quality of the solidified The non-ferrous metal and the resulting photovoltaic efficiency of non-ferrous metal solar cells is increased.
  • control in the sense of this invention means control in the strict sense without feedback of a measurable variable that characterizes the crystallization, but also rules with a feedback of a measurable variable that characterizes the crystallization.
  • at least one controllable cooling element is provided, which serves for the active removal of heat from the non-ferrous metal.
  • the controlled crystallization of the liquid non-ferrous metal reduces thermal stresses, resulting in a reduction of dislocations and contaminants diffused back into the interior of the block non-ferrous metal.
  • Fig. 1 shows a schematic representation of an apparatus for melting and / or crystallizing non-ferrous metals.
  • a device designated as a whole by 1 for melting and / or crystallizing a non-ferrous metal 2, in particular silicon, has a mold designed as a container 3, which is essentially in the form of an upwardly open cuboid and an essentially cuboidal interior 4 limited to five pages.
  • the mold 3 is integrally formed of quartz and has a mold bottom 5 and two opposite Kokillen- side walls 6 and two opposite mold end walls 7. Opposite to the mold bottom 5, a mold opening 8 is provided for filling the mold 3.
  • the interior 4 of the mold 3 is approximately filled to the mold opening 8 with silicon 2.
  • the respective outer walls of the mold bottom 5, the mold side walls 6, the mold end walls 7 and the mold opening 8 are hereinafter also referred to as side surfaces, wherein these substantially parallel to corresponding outer surfaces of the silicon 2 within the interior. 4 are.
  • at least one, in particular at least two, in particular at least four heating elements 9 may be arranged at a distance from a corresponding number of side surfaces.
  • Each heating element 9 extends substantially over the entire associated side surface.
  • the heating elements 9 are, with the exception of the heating element opposite the mold opening 8 Element 9 fixed relative to the mold 3.
  • each heating element 9 is movable either manually or automatically by means of a drive, not shown, along the side surfaces, so that in a deactivated state the heating elements 9 do not face the associated side surfaces.
  • each cooling element 10 is arranged for active removal of heat from the silicon 2.
  • Each cooling element 10 is disposed substantially parallel and spaced from the associated side surface, with the cooling element 10 extending over the entire side surface.
  • the cooling elements 10 are fixed relative to the mold 3, with the exception of the cooling element 10 opposite the mold opening 8.
  • each cooling element 10 can be moved either manually or automatically by means of an unillustrated drive along the side surfaces, so that in a deactivated state, the cooling elements 10 do not face the associated side surfaces.
  • cooling elements 10 between the heating elements 9 and the associated side surfaces can be provided that with respect to a side surface either a heating element 9 or a cooling element 10 is arranged.
  • a heating element 9 or a cooling element 10 is arranged.
  • two heating elements 9 may be arranged opposite to the mold side walls 6 and two cooling elements 10 opposite to the mold bottom 5 and the mold opening 8.
  • Each cooling element 10 has a meander-shaped cooling tube 11, which is flowed through for the removal of heat from a cooling fluid, in particular a cooling gas 12.
  • the cooling tubes 11 consist of neither of a high-temperature-resistant, non-metallic material, in particular of graphite, or of a high-temperature-resistant, metallic material.
  • a high-temperature resistant material according to this invention has a melting temperature of more than 1600 ° C, in particular of more than 2000 ° C and in particular of more than 2400 ° C.
  • Each cooling element 10 further comprises a flow control element 13 in the form of a controllable valve for controlling the flow rate of the cooling gas 12. Furthermore, to control the pressure of the cooling gas 12, a pressure control element 14 is provided in the form of a controllable pump.
  • Each cooling element 10 is connected to the cooling pipe 11 to a heat exchanger, not shown, and forms a closed circuit for the cooling gas 12, wherein in the heat exchanger, the heat absorbed by the cooling gas 12 is dissipated.
  • the cooling elements 10 may also form an open circuit for the cooling gas 12, so that the cooling gas 12 is constantly replaced.
  • the mold 3 is filled with powdery or granular silicon 2.
  • the heating element 9 and the cooling element 10 lying opposite the mold opening 8 are positioned such that the mold opening 8 is freely accessible for filling.
  • the heating element 9 and the cooling element 10 facing the mold opening 8 for heating and cooling the silicon 2 are arranged parallel and opposite to the mold opening 8.
  • the heating elements 9 are now heated electrically so that the silicon 2 active heat is supplied and this completely melts.
  • the heat flows between the meandering cooling tubes 11 of the Cooling elements 10 through.
  • already molten and liquid silicon 2 can be filled into the mold 3.
  • this liquid After the melting of the silicon 2, this liquid is present within the mold 3. It follows the directional and controlled crystallization and solidification of the silicon 2. Directed in the sense of this invention means from bottom to top, so contrary to gravity.
  • heat is actively removed from the liquid silicon 2 by means of the controllable cooling elements 10.
  • the cooling gas 12 flowing through the cooling tubes 11 absorbs the radiated heat of the silicon 2 and transports it away.
  • any gases or gas mixtures such as, for example, argon, can be used as the cooling gas 12.
  • Cooling gas 12 controlled by the valve 13 and / or the pressure of the cooling gas 12 by means of the pump 14.
  • the cooling elements 10 are operated with a pressure of the cooling gas 12 of 10 mbar to 10 bar, in particular from 500 mbar to 8 bar, and in particular from 1 bar to 5 bar. Furthermore, the cooling elements 10 with a flow rate of the cooling gas 12 from 1 m 3 / h to 10000 m 3 / h, in particular from 50 m 3 / h to 5000 m Ih, and in particular from 100 m / h to 1000 m / h operated.
  • the cooling elements 10 are driven during crystallization in such a way that it is directed.
  • the cooling element 10 opposite the mold bottom 5 is controlled in such a way that it has a cooling effect which is increased in comparison to the other cooling elements 10.
  • the smaller number of dislocations and foreign substances reduces the possible recombination centers and increases the photovoltaic efficiency of solar cells produced from the block-shaped silicon 2.
  • the cycle time in the production of block-shaped solid silicon 2, in particular in the cooling phase of the already solidified silicon 2 is reduced by the active and controllable removal of heat from the silicon 2.
  • a targeted adjustment and adjustment of the quality of the solidified silicon 2 as a function of the cooling rates is possible by the flexible and quickly controllable cooling of the silicon 2.
  • the melting and crystallization of the silicon 2 can also take place in separate devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
PCT/EP2006/002258 2005-03-23 2006-03-11 Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen Ceased WO2006099955A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT06723370T ATE440804T1 (de) 2005-03-23 2006-03-11 Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen
US11/816,943 US7981214B2 (en) 2005-03-23 2006-03-11 Device and process for the crystallizing of non-ferrous metals
DE502006004664T DE502006004664D1 (de) 2005-03-23 2006-03-11 Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen
EP06723370A EP1866247B1 (de) 2005-03-23 2006-03-11 Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen
JP2008502280A JP2008534414A (ja) 2005-03-23 2006-03-11 非鉄金属材料の結晶化の為の装置及び方法
NO20075331A NO20075331L (no) 2005-03-23 2007-10-18 Innretning og fremgangsmate for krystallisering av ikke-jernholdige metaller.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005013410.6 2005-03-23
DE102005013410A DE102005013410B4 (de) 2005-03-23 2005-03-23 Vorrichtung und Verfahren zum Kristallisieren von Nichteisenmetallen

Publications (1)

Publication Number Publication Date
WO2006099955A1 true WO2006099955A1 (de) 2006-09-28

Family

ID=36190440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002258 Ceased WO2006099955A1 (de) 2005-03-23 2006-03-11 Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen

Country Status (7)

Country Link
US (1) US7981214B2 (enExample)
EP (1) EP1866247B1 (enExample)
JP (1) JP2008534414A (enExample)
AT (1) ATE440804T1 (enExample)
DE (2) DE102005013410B4 (enExample)
NO (1) NO20075331L (enExample)
WO (1) WO2006099955A1 (enExample)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008051492A1 (de) 2008-10-13 2010-04-15 Pva Tepla Ag Vorrichtung zum Kristallisieren von Nicht-Eisen-Metallen
DE102009039070B4 (de) 2009-08-27 2016-05-04 Solarworld Innovations Gmbh Verfahren ung Vorrichtung zur Entfernung von Verunreinigungen aus einer Schmelze
DE102009044893B4 (de) * 2009-12-14 2014-10-30 Hanwha Q.CELLS GmbH Herstellungsverfahren zur Herstellung eines Kristallkörpers aus einem Halbleitermaterial
DE102010014724B4 (de) * 2010-04-01 2012-12-06 Deutsche Solar Gmbh Vorrichtung und Verfahren zur Herstellung von Silizium-Blöcken
DE102010029741B4 (de) 2010-06-07 2013-02-28 Solarworld Innovations Gmbh Verfahren zum Herstellen von Silizium-Wafern, Silizium Wafer und Verwendung eines Silizium-Wafer als Silizium-Solarzelle
DE102010030124B4 (de) 2010-06-15 2016-07-28 Solarworld Innovations Gmbh Vorrichtung und Verfahren zur Herstellung von Silizium-Blöcken sowie nach dem Verfahren hergestellter Silizium-Block
DE102011002598B4 (de) * 2011-01-12 2016-10-06 Solarworld Innovations Gmbh Verfahren zur Herstellung eines Silizium-Ingots
DE102011002599B4 (de) 2011-01-12 2016-06-23 Solarworld Innovations Gmbh Verfahren zur Herstellung eines Silizium-Ingots und Silizium-Ingot
DE102011005503B4 (de) 2011-03-14 2018-11-15 Solarworld Industries Gmbh Vorrichtung und Verfahren zur Herstellung von Silizium-Blöcken
ITVI20110076A1 (it) * 2011-04-01 2012-10-02 Ieco Keeps On Improving S R L Macchina per la formatura di barre metalliche
DE102011082628B4 (de) 2011-09-13 2018-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Herstellung von Silizium-Blöcken
DE102011086669B4 (de) 2011-11-18 2016-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Blöcken sowie Silizium-Block
DE102011087759B4 (de) 2011-12-05 2018-11-08 Solarworld Industries Gmbh Verfahren zur Herstellung von Silizium-Ingots und Silizium-Ingot
DE102012203706B4 (de) 2012-02-06 2016-08-11 Solarworld Innovations Gmbh Verfahren zur Herstellung von Silizium-Ingots, Verfahren zur Herstellung von Keimvorlagen, Keimkristall und dessen Verwendung sowie Schmelztiegel
DE102012203524B4 (de) 2012-03-06 2016-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Ingots
DE102012203527B4 (de) 2012-03-06 2016-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Ingots
DE102012209005B4 (de) 2012-05-29 2016-11-17 Solarworld Innovations Gmbh Keimvorlage und Verfahren zur Herstellung derselben sowie Vorrichtung und Verfahren zur Herstellung eines Silizium-Ingots
US8936652B2 (en) 2012-12-20 2015-01-20 Solarworld Industries America Inc. Method for manufacturing silicon blocks
DE102013203740B4 (de) 2013-03-05 2020-06-18 Solarworld Industries Gmbh Vorrichtung und Vefahren zur Herstellung von Silizium-Blöcken
ITTO20130258A1 (it) * 2013-03-28 2014-09-29 Saet Spa Dispositivo e metodo per produrre un blocco di materiale multicristallino, in particolare silicio, mediante solidificazione direzionale
EP2982780B1 (de) 2014-08-04 2019-12-11 Heraeus Quarzglas GmbH & Co. KG Verfahren zur herstellung eines siliziumblocks, zur verfahrensdurchführung geeignete kokille aus quarzglas oder quarzgut sowie verfahren für deren herstellung
CN108441939A (zh) * 2018-03-23 2018-08-24 孟静 稳态晶体生长方法
ES2940919A1 (es) * 2023-02-24 2023-05-12 Univ Madrid Politecnica Cámara de enfriamiento de lingotes metálicos y procedimiento de obtención de un lingote metálico

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748884A1 (en) * 1995-06-15 1996-12-18 Sharp Kabushiki Kaisha Process and apparatus for producing polycrystalline semiconductors
JP2000001308A (ja) * 1998-06-15 2000-01-07 Sharp Corp 多結晶シリコン鋳塊の製造方法及びその製造装置
DE10234250A1 (de) * 2002-07-27 2004-02-05 Deutsche Solar Ag Vorrichtung sowie Verfahren zur Überwachung der Kristallisation eines Mediums, insbesondere von Silizium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3323896A1 (de) * 1983-07-02 1985-01-17 Leybold-Heraeus GmbH, 5000 Köln Verfahren und vorrichtung zum gerichteten erstarren von schmelzen
US5040773A (en) * 1989-08-29 1991-08-20 Ribbon Technology Corporation Method and apparatus for temperature-controlled skull melting
JP3885452B2 (ja) * 1999-04-30 2007-02-21 三菱マテリアル株式会社 結晶シリコンの製造方法
DE10021585C1 (de) * 2000-05-04 2002-02-28 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille
DE10035097A1 (de) * 2000-07-17 2002-02-07 Didier Werke Ag Heizvorrichtung mit Inneninduktor
JP2002293526A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 多結晶シリコンの製造装置
JP2002308616A (ja) * 2001-04-06 2002-10-23 Kawasaki Steel Corp 多結晶シリコンの製造方法
JP4777880B2 (ja) * 2004-03-29 2011-09-21 京セラ株式会社 シリコン鋳造装置およびシリコンインゴットの製造方法
JP2006273628A (ja) * 2005-03-28 2006-10-12 Kyocera Corp 多結晶シリコンインゴットの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748884A1 (en) * 1995-06-15 1996-12-18 Sharp Kabushiki Kaisha Process and apparatus for producing polycrystalline semiconductors
JP2000001308A (ja) * 1998-06-15 2000-01-07 Sharp Corp 多結晶シリコン鋳塊の製造方法及びその製造装置
DE10234250A1 (de) * 2002-07-27 2004-02-05 Deutsche Solar Ag Vorrichtung sowie Verfahren zur Überwachung der Kristallisation eines Mediums, insbesondere von Silizium

Also Published As

Publication number Publication date
EP1866247A1 (de) 2007-12-19
DE102005013410A1 (de) 2006-09-28
DE102005013410B4 (de) 2008-01-31
JP2008534414A (ja) 2008-08-28
US7981214B2 (en) 2011-07-19
NO20075331L (no) 2007-12-18
DE502006004664D1 (de) 2009-10-08
US20080264207A1 (en) 2008-10-30
EP1866247B1 (de) 2009-08-26
ATE440804T1 (de) 2009-09-15

Similar Documents

Publication Publication Date Title
EP1866247B1 (de) Vorrichtung und verfahren zum kristallisieren von nichteisenmetallen
DE102008026144B4 (de) Kristallzüchtungsofen mit Konvektionskühlungsstruktur
EP3395473B1 (de) Verfahren zum giessen
DE69932760T2 (de) Verfahren und Vorrichtung zur Herstellung eines Siliciumstabes mit einer Struktur hergestellt durch gerichtete Erstarrung
EP2028292A2 (de) Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern
DE102006017622A1 (de) Verfahren und Vorrichtung zur Herstellung von multikristallinem Silizium
DE2242111A1 (de) Verfahren und vorrichtung zum giessen von gegenstaenden mit gerichtet erstarrtem gefuege
DE112019000182B4 (de) Kristallisationsofen für durch gerichtete Erstarrung gezüchtetes kristallines Silizium und dessen Anwendung
DE3046908A1 (de) Gerichtetes erstarrungsverfahren und vorrichtung zu dessen durchfuehrung
EP2354278B1 (de) Verfahren zur Herstellung eines Einkristalls aus Silizium unter Verwendung von geschmolzenem Granulat
EP2582639A1 (de) Verfahren und vorrichtung zum herstellen von polykristallinen siliziumblöcken
DE102012219831B4 (de) Verfahren zum Giessen einer Aluminiumlegierung
DE3323896A1 (de) Verfahren und vorrichtung zum gerichteten erstarren von schmelzen
WO2006082085A2 (de) Verfahren und vorrichtung zum herstellen gerichtet erstarrter blöcke aus halbleitermaterialien
DE102008029951B4 (de) Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien
DE19934940C2 (de) Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür
DE112017003016B4 (de) Verfahren zur Herstellung von Silicium-Einkristall
DE102008051492A1 (de) Vorrichtung zum Kristallisieren von Nicht-Eisen-Metallen
EP1162290B1 (de) Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille
EP0996516B1 (de) Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien
DE102020127337A1 (de) Halbleiterkristallwachstumsvorrichtung
AT526114B1 (de) Vorheizstation zum Vorheizen einer Schmelzetransportvorrichtung
DE102020127336A1 (de) Halbleiterkristallwachstumsvorrichtung
DE102011005503B4 (de) Vorrichtung und Verfahren zur Herstellung von Silizium-Blöcken
DE102008039457A1 (de) Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006723370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008502280

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006723370

Country of ref document: EP