WO2006093058A1 - オレフィン類の製造方法 - Google Patents

オレフィン類の製造方法 Download PDF

Info

Publication number
WO2006093058A1
WO2006093058A1 PCT/JP2006/303493 JP2006303493W WO2006093058A1 WO 2006093058 A1 WO2006093058 A1 WO 2006093058A1 JP 2006303493 W JP2006303493 W JP 2006303493W WO 2006093058 A1 WO2006093058 A1 WO 2006093058A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
reaction
propylene
catalyst
reactor
Prior art date
Application number
PCT/JP2006/303493
Other languages
English (en)
French (fr)
Inventor
Toshihiro Takai
Takeshi Kubota
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP06714632A priority Critical patent/EP1854776A4/en
Priority to US11/883,540 priority patent/US7977522B2/en
Priority to JP2007505905A priority patent/JP4805252B2/ja
Priority to CN2006800069797A priority patent/CN101133007B/zh
Priority to CA002598501A priority patent/CA2598501A1/en
Publication of WO2006093058A1 publication Critical patent/WO2006093058A1/ja
Priority to IL184851A priority patent/IL184851A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing olefins by a metathesis reaction in which the reactivity of a catalyst is improved by coexisting hydrogen gas.
  • the metathesis reaction of olefins was found to proceed without catalyst at a high temperature of 725 ° C in 1931.
  • the industrial value was recognized for metals such as molybdenum, tungsten and rhenium.
  • a catalyst in which an oxide is supported on a high surface area support has been discovered.
  • the first example of a metathesis reaction using a catalyst was developed by Phillips in 1964 using a catalyst in which molybdenum oxide is supported on ⁇ -alumina to obtain ethylene and 2-butene by a metathesis reaction between propylene. It was done.
  • Non-patent document 1 On page 28, page 117 (1985) (Non-patent document 1), the metathesis reaction between ethylene and 2-butene is carried out at 330 ° C using a fixed bed flow apparatus using only a silica-supported acid-tungsten catalyst. The conversion rate of butene and butene is only 31%, whereas it is reported that the conversion rate increases to 67% when magnesium oxide is used in combination as a cocatalyst. [0005] Furthermore, in US Pat. No. 4,754,098 (Patent Document 2), in the same metathesis reaction at 330 ° C., when a catalyst in which magnesium oxide is supported on ⁇ -alumina is used, the conversion rate of butene is improved to 75%. However, in US Pat. No.
  • Patent Document 3 when a co-catalyst with magnesium oxide and lithium hydroxide supported on ⁇ -alumina is used, butene can be converted even at a lower temperature of 270 ° C. It has been reported that the yield rate can be maintained at 74%. In fact, the industrial process requires equipment such as a heating furnace to achieve a reaction temperature of 270 ° C, and a temperature that allows simpler steam heating, for example, a reaction temperature up to about 200 ° C. It is desirable to reduce this.
  • a low-temperature reaction catalyst there can be mentioned a catalyst in which yttrium oxide is supported on ⁇ -alumina by IFP (Anstitue Francais du Petrol).
  • IFP Anstitue Francais du Petrol
  • this catalyst uses a mixture of liquid ethylene and 2-butene as a raw material under a reaction temperature near room temperature, that is, under pressurized conditions. Metathesis reaction can proceed.
  • the liquefied raw materials and reaction products are severely deteriorated in catalytic activity as compared with gas phase reactions in which the diffusibility in the catalyst pores is low.
  • Patent Document 1 US Patent No. 4,575,575
  • Patent Document 2 U.S. Pat.No. 4,754,098
  • Patent Document 3 US Patent 4,884,760
  • Patent Document 4 US Patent 4,795,734
  • Non-Patent Document 1 Journal of Molecular Catalysis 28 ⁇ 117 pages (1985) Disclosure of the Invention
  • the present invention solves the above problems in the conventional method, improves the reactivity of the catalyst by coexisting hydrogen gas, and produces olefins by a metathesis reaction in a practical low temperature range. It aims to provide a method. Means for solving the problem
  • the present invention uses a catalyst containing at least one metal element among tungsten, molybdenum, rhenium, niobium, tantalum, vanadium, ruthenium, rhodium, iridium, osmium, nickel, and the same or different types of olefins.
  • olefins can be produced with high yield and selectivity by a metathesis reaction at a low reaction temperature that does not require special equipment such as a heating furnace, and further contains butadiene.
  • olefins can be produced with significant safety, process and economic advantages.
  • the metathesis catalyst used in the present invention contains at least one known metal element such as tungsten, molybdenum, rhenium, -ob, tantalum, vanadium, ruthenium, rhodium, iridium, osmium, nickel, and the like. Among them, tungsten, molybdenum and rhenium are high, and tungsten is particularly preferable among them.
  • the structure of the catalyst may be a single element in the solid state composed of oxides, sulfides, hydroxides, etc. of each metal, or supports the oxides, sulfides, hydroxides, etc. of these metals.
  • Toyota may be supported on an inorganic compound having a high surface area.
  • the catalyst when used in a fixed bed flow reaction, it is preferably in the form of an oxide because it is regenerated by calcination with air after the activity deterioration.
  • any one having no acidity can be used. More specifically, preferred examples include silica, ⁇ -alumina, titer, and the like, which are preferable for a carrier having a surface area of 10 m 2 / g or more. Since silica has a particularly high surface area, silica is selected as a suitable carrier. In this case, the amount of the metal supported on the carrier is preferably in the range of 0.01% to 50%, more preferably in the range of 0.1% to 20% in terms of oxide.
  • the method of supporting an oxide on a carrier may be any of the known methods.
  • metal nitrates hydroxides, tungsten, molybdenum, rhenium, the polyacid, isopolyacid.
  • Ammonium salts of polyacids and ammonium salts of isopolyacids are used as starting materials, and a carrier is impregnated in these aqueous solutions or evaporated to dryness, followed by firing at a temperature of 300 ° C or higher in an air atmosphere. it can.
  • a hydroxide obtained by neutralizing a corresponding metal salt with a base by a known method may be calcined to obtain a carrier as an oxide. .
  • the carrier is obtained from the corresponding metal salt
  • a coprecipitation method in which the metal salt serving as a catalyst is allowed to coexist and the carrier synthesis and the metal loading are simultaneously performed can be employed.
  • the shape of the carrier is not particularly limited and may be spherical, cylindrical, extruded, or crushed, and the particle size is in the range of 0.01 mm to 100 mm. It may be selected according to the size.
  • organic molecules called ligands were bound. It may be a complex catalyst. Also, in order to facilitate the collection of these, it may be supported on a carrier.
  • the cocatalyst used in the present invention includes la group (alkali metal), Ila group (alkaline earth metal), lib group,
  • the metal compound used as these cocatalysts may be a solid state simple substance having a composition such as oxide, hydroxide, nitrate, acetate, etc., and these metal compounds further contain other metal compounds. It may be a composite oxide such as a hydrated talcite in which aluminum and magnesium are layered as an oxide, or a solid solution of acid aluminum and acid magnesium. Alternatively, these metal oxides, composite oxides, hydroxides, nitrates, acetates, and the like may be supported on an inorganic compound having a high surface area called a carrier.
  • the carrier Since the acid nature of the carrier causes undesirable side reactions such as oligomerization of olefin, it carries metal elements of la group (alkali metal), Ila group (alkaline earth metal), lib group, and Ilia group. Any one can be used as long as it does not have acidity. More specifically, carriers with a surface area of 10 m 2 / g or more are preferred. ⁇ -alumina, zircoure, titania, etc. are preferred! / Examples include high surface area! Therefore, magnesium oxide itself can be used as a carrier. In particular, ⁇ -alumina is a preferred carrier because of its chemical stability.
  • the amount of the metal supported on the carrier is preferably in the range of 0.01% to 50% in terms of oxide, and more preferably in the range of 0.1% to 20%.
  • a commercially available carrier can be used as it is.
  • a carrier obtained by basifying a corresponding metal salt by a known method may be calcined to obtain a carrier as an oxide.
  • the oxide can be supported on the carrier by any of the known methods.
  • the carrier is contained in an aqueous solution of metal nitrate or hydroxide or an aqueous suspension of acid. It can be obtained by pickling or evaporating to dryness and firing at a temperature of 300 ° C or higher in an air atmosphere.
  • the carrier there are no particular restrictions on the shape of the carrier, and it can be spherical, cylindrical, extruded, or crushed, and its particle size is 0. Olmn! It should be selected in the range of ⁇ 100mm according to the size of the reactor.
  • the amount of cocatalyst with respect to the catalyst cannot be increased by any amount between 0.1 and 20, but if the amount is too small, the effect of hydrogenation will not be exhibited, and if the amount is too large, the proportion of the catalyst will decrease. And the activity with respect to the combined amount of the co-catalyst is not preferable.
  • the catalyst and the cocatalyst may be physically mixed and filled as described in Jounal of Molecular Catalysis 28-117 (1985). However, the cocatalyst and the catalyst may be charged in this order from the direction closer to the raw material supply direction. Furthermore, the method which combined these etc. can also be mentioned.
  • Hydrogen to be added to the reaction is usually continuously supplied in a gaseous state, but is not particularly limited to this method. After adding the hydrogen gas at the start of the reaction, the supply during the reaction is stopped for a certain period of time. It may be intermittently supplied again later, or in the case of a liquid phase reaction, hydrogen gas may be dissolved in a solvent and supplied. In the recycling process, hydrogen gas recovered from the top of the column may be supplied together with the light boiling fraction.
  • the pressure of hydrogen to be added is generally the same as the pressure of the reactor. Change according to the supply method! ,.
  • the amount of hydrogen gas to be added is a force that is a ratio of 0.1 to 80 vol%, preferably O.2 to 50 vol% of the total gas when the raw material supplied to the reactor is converted to gas. If the amount is too small, the effect of addition is not manifested. If the amount is too large, the partial pressure of the raw olefin is lowered or the hydrogenation reaction of the olefin is not preferable.
  • the structure of the olefins used in the metathesis reaction shown in the present invention is not particularly limited, but the structure is applied to lower olefins when used for the purpose of improving the olefin fin balance of naphtha crackers.
  • olefins that can be used as raw materials and the resulting olefins are: ethylene and 2-butene to propylene, ethylene and 2-pentene to propylene and 1-butene, ethylene and 2-hexene to propylene and 1 pentene.
  • Ethylene and 2-methyl-2-butene, propylene and isobutene, ethylene and 4-methyl 1-pentene, and force can also include propylene and 3-methyl 1-butene.
  • the reverse reaction of is also effective.
  • reaction raw materials are preferably composed only of olefin. However, it does not matter if they contain alkanes such as methane, ethane, propane, n-butane, isobutane, pentane, and hexane. Terminal olefins such as 1-butene, 1-pentene, 1-hexene and the like are isomerized to internal olefins by a basic cocatalyst, and may be contained in any amount. Isobutene that coexists when propylene is obtained from ethylene and 2-butene reacts with the produced propylene to give 2-methyl-2-butene, which is preferable in terms of yield, but inhibits the reaction itself. So, it can be used with any amount!
  • the metathesis catalyst used in the present invention removes impurities in these raw materials because the activity is remarkably impaired by moisture, carbon dioxide, mercapto compound, alcohol and carbo-louis compound, as in the known art. There is a need. These removal methods may be any known methods such as distillation, adsorption, extraction, and washing.
  • the amount of olefin used is not particularly limited, but when one is ethylene, it is preferably excessive.
  • the amount ratio of ethylene to 2-butene is preferably 0.1 to 50, more preferably 0.5 to 5 Degree. If the amount ratio of ethylene is small, undesirable reactions between butenes occur simultaneously, and if the amount ratio is too high, the energy for recovering unreacted ethylene increases and the reactor itself becomes large.
  • all of the olefins having a large quantity ratio may be collected at the same time, or in addition to the reactor inlet, a feed port may be provided in the middle stage of the reactor, etc. .
  • the reaction temperature is not particularly limited in the present invention, but is preferably in the range of 100 to 500 ° C, more preferably 130 to 350 ° C. If the reaction temperature is too low, the reaction rate decreases and the productivity of the reaction product decreases. On the other hand, if the reaction temperature is too high, unfavorable side reactions will progress, which will increase the number of by-products and promote catalyst deterioration, which is not economical.
  • the reaction can be carried out in a deviated state of reduced pressure, increased pressure and normal pressure. From the viewpoint of reaction efficiency (reaction efficiency per unit volume), it is not preferable to carry out at a very low pressure. Usually, a preferable pressure range is 0.1 to 200 atm, and more preferably 0.5 to 100 atm. Of course, the present invention is not limited to these pressure ranges.
  • the amount of catalyst to be used is not particularly limited.
  • the supply amount (weight) of raw material per hour does not include the cocatalyst.
  • the value divided by the weight of the catalyst containing tungsten alone, ie, WHS V is preferably in the range of 1 to 2000 Zh, more preferably in the range of 2 to: LOOOZh. If the WHSV is too low, the desired olefin produced will cause a sequential metathesis reaction, giving a preferable by-product, and if the WHS V is too high, a sufficient reaction conversion rate cannot be obtained.
  • a solvent or gas inert to the catalyst and the reaction reagent into the reaction system and dilute the reaction system.
  • the aforementioned alkanes such as methane, ethane, propane and butane, and inert gases such as nitrogen and helium can be used as diluents.
  • the method can be carried out in any of batch, semi-batch and continuous flow methods. Further, it can be carried out in any form of a liquid phase, a gas phase, and a gas-liquid mixed phase. Preferably a view of reaction efficiency From the point of view, it is recommended to carry out by gas phase reaction.
  • Various methods such as a fixed bed, a fluidized bed, a suspension bed, and a shelf fixed bed can be adopted as the catalyst filling method, and any method can be used.
  • the reaction product can be separated and recovered from the catalyst or the like by a known separation method.
  • the target product olefin is separated from the reaction mixture by known methods such as distillation, extraction and adsorption. Unreacted raw materials can be recovered and recycled to the reaction system for reuse.
  • the catalyst and cocatalyst it is desirable to dehydrate the catalyst and cocatalyst using a known method.
  • the fixed bed reaction method it may be held at a temperature of 300 ° C or higher for 10 minutes or longer while an inert gas such as nitrogen or helium is circulated through the reactor filled with the catalyst and the cocatalyst.
  • an inert gas such as nitrogen or helium
  • a reduction treatment is performed by flowing a reducing gas such as carbon monoxide or hydrogen at a temperature of 300 ° C or higher for 10 minutes or longer.
  • the inert gas may be circulated again at a temperature of 300 ° C or higher for 10 minutes or longer to set the predetermined reaction temperature. Since this reaction is characterized by the coexistence of hydrogen, if hydrogen is used for the reduction treatment, it may remain.
  • regeneration can be performed to recover the catalyst activity.
  • olefins adsorbed with nitrogen gas are purged and then oxidized with air or nitrogen-diluted air at a temperature of 300 ° C or higher. If the metal is tungsten or molybdenum, hydrogen or monoxide is further added. It can be reused by reducing it with a reducing gas such as carbon.
  • Ammonium metatungstate (Aldrich) 0.83 g was dissolved in 100 ml of distilled water, and silica gel Q-10 (surface area 300 m 2 / g, pore volume lml / g, 150-5 by Fuji Silysia) 00 ⁇ m) 5 g was suspended and stirred at room temperature for 30 minutes, and then water was removed by an evaporator. The resulting white solid was calcined at 550 ° C for 6 hours in an air atmosphere. This catalyst is called WQ-10.
  • a normal pressure nitrogen gas of 50 ml / min was circulated from the upper part of the reactor, and the gas from the lower part was allowed to flow from the lower part to the upper part of the butene purification tower. The temperature was raised and held for 1 hour. Next, a mixed gas in which 50 ml Zmin of normal pressure nitrogen gas was added to 50 ml Zmin of normal pressure was circulated at the same temperature for 30 minutes. The butene purification tower was lowered to 50 ° C and the reactor was lowered to 250 ° C while flowing 50 mlZmin of atmospheric nitrogen gas again.
  • Trans-butene (purity 99%, manufactured by Takachiho Chemical Industry) gas distilled onto ⁇ -alumina (NKHD-32, manufactured by Sumitomo Chemical Co., Ltd.) before use was added at a normal pressure of 2.3 mlZmin.
  • the refined trans-2-butene obtained from the lower part of the purification tower is circulated and united with ethylene supplied at a rate of 6.1 mlZmin at normal pressure and hydrogen supplied at a rate of 20 mlZmin at normal pressure.
  • Reactor upper force was supplied in gaseous form.
  • the mixed gas obtained from the lower part of the reactor was analyzed online by gas chromatography.
  • the dredging rate was 75%.
  • the propylene selectivity based on butene was 97%, and a small amount of pentene was produced.
  • Propane is produced at the same time as propylene.
  • the reaction was carried out in the same manner as in the method described in Example 1, except that the amount of atmospheric hydrogen gas supplied to the reactor was 5 ml.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%.
  • propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • bread was produced at the same time as propylene, and the ratio of propane to propylene was 0.0094. Furthermore, after this, the reaction rate continued for 12 hours.
  • the reaction was performed in the same manner as in Example 1 except that the amount of atmospheric hydrogen gas supplied to the reactor was 2 ml.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%.
  • propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • bread was produced at the same time as propylene, and the ratio of propane to propylene was 0.0063. Furthermore, after this, the reaction rate continued for 12 hours.
  • Example 3 In the method described in Example 3, the reaction was performed in the same manner except that the temperature of the reactor was 200 ° C. The butene conversion obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%. At this time, the propylene selectivity based on butene was 98%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.0032. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • Example 5 In the method described in Example 5, the reaction was performed in the same manner except that the temperature of the reactor was 200 ° C. The butene conversion obtained by analyzing the outlet gas 3 hours after the start of the reaction was 78%. At this time, the propylene selectivity based on butene was 98%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.0069. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • Example 3 In the method described in Example 3, the reaction was carried out in the same manner except that the type of cocatalyst charged in the reactor was changed to calcium oxide (Wako Pure Chemical, classification to 150 to 500 / zm after compression molding). Went. The butene conversion obtained by analyzing the outlet gas 1 hour after the start of the reaction was 78%. The propylene selectivity based on butene at this time is 98%, and a small amount of other Penten was generated. Propane was produced at the same time as propylene, and the propan / propylene ratio was 0.020.
  • the type of cocatalyst charged in the reactor was changed to calcium oxide (Wako Pure Chemical, classification to 150 to 500 / zm after compression molding). Went.
  • the butene conversion obtained by analyzing the outlet gas 1 hour after the start of the reaction was 78%.
  • the propylene selectivity based on butene at this time is 98%, and a small amount of other Penten was generated. Propane was produced
  • Example 7 In the method described in Example 7, the reaction was performed in the same manner except that the temperature of the reactor was 200 ° C. The butene conversion obtained by analyzing the outlet gas 1 hour after the start of the reaction was 76%. At this time, the propylene selectivity based on butene was 98%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.0093.
  • Example 3 According to the method described in Example 3, the type of cocatalyst charged into the reactor was changed to zinc oxide (Wako Pure Chemicals, after compression molding, classified to 150 to 500 / ⁇ ⁇ ), and further reacted The reaction was carried out in the same manner except that the temperature of the vessel was 200 ° C. The butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 32%. At this time, propylene selectivity based on butene was 90%, and a small amount of pentene was produced. In addition, bread was produced at the same time as propylene, and the ratio of propane to propylene was 0.0013.
  • ⁇ -alumina (NKHD-32, manufactured by Sumitomo Chemical Co., Ltd., surface area 250 m 2 / g) was suspended in a solution of 0.40 g of calcium hydroxide (Wako Pure Chemical Industries) dissolved in 100 ml of distilled water. After turbidity and stirring at room temperature for 30 minutes, water was distilled off with an evaporator. The resulting white solid was calcined at 550 ° C. for 6 hours in an air atmosphere. Of the obtained ⁇ -alumina-supported CaO, 0.3 g was physically mixed with O.lg WQ-10 and charged into the center of a SUS reactor with an outer diameter of 10 mm and a length of 30 cm. A reactor filled with balls was used.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 74%.
  • the propylene selectivity based on butene was 97%, and a small amount of pentene was produced.
  • Propane was produced simultaneously with propylene, and the ratio of propane to propylene was 0.0018. In addition, there was no decrease in the force conversion rate that continued the reaction for 12 hours.
  • a cocatalyst was prepared in the same manner as in Example 11 except that the amount of calcium hydroxide supported on ⁇ -alumina was 0.2 g. Otherwise, the reaction was performed in the same manner as described in Example 4. Went. The butene conversion obtained by analyzing the outlet gas 3 hours after the start of the reaction was 77%. The butene-based propylene selectivity at this time was 97%, An amount of pentene was produced. Propane was produced at the same time as propylene, and the bread / propylene ratio was 0.0025. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • a cocatalyst was prepared in the same manner as in Example 11 except that the amount of calcium hydroxide supported on ⁇ -alumina was O.lg. Reaction was performed. The butene conversion obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%. At this time, the propylene selectivity based on butene was 96%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.0022. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • Example 11 a cocatalyst was prepared in the same manner except that the compound supported on ⁇ -alumina was 0.55 g of magnesium nitrate (Wako Pure Chemical Industries). The reaction was carried out in the same manner. The butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 16%. At this time, propylene selectivity based on butene was 87%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0036. Furthermore, after that, the reaction rate continued for 12 hours, and the power conversion rate did not decrease.
  • magnesium nitrate Wako Pure Chemical Industries
  • a cocatalyst was prepared in the same manner as in Example 11 except that the compound supported on ⁇ -alumina was 0.35 g of zinc nitrate (Wako Pure Chemical Industries). Otherwise, the same method as described in Example 4 was used. The reaction was carried out. The butene conversion obtained by analyzing the outlet gas 3 hours after the start of the reaction was 66%. At this time, the propylene selectivity based on butene was 94%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0016. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • a cocatalyst was prepared in the same manner as in Example 11 except that the compound supported on ⁇ -alumina was changed to 0.35 g of zinc nitrate (Wako Pure Chemical) and 0.038 g of sodium hydroxide (Wako Pure Chemical). Otherwise, the reaction was carried out in the same manner as described in Example 4.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 76%.
  • the propylene selectivity based on butene was 95%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0021. Sarasako, who continued to react for 12 hours thereafter, showed no decrease in power conversion rate
  • a cocatalyst was prepared in the same manner as in Example 11 except that the compound supported on ⁇ -alumina was 0.076 g of sodium hydroxide (Wako Pure Chemical Industries). Otherwise, the same procedure as described in Example 4 was performed. The reaction was carried out by the method. The butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 75%. At this time, propylene selectivity based on butene was 98%, and a small amount of pentene was produced. Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0033.
  • a cocatalyst was prepared in the same manner as in Example 11 except that 0.038 g of sodium hydroxide (Wako Pure Chemical Industries, Ltd.) was used as the compound supported on ⁇ -alumina.
  • the reaction was carried out by the method.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 76%.
  • propylene selectivity based on butene was 97%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.001. Furthermore, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • a cocatalyst was prepared in the same manner as in Example 18 except that the reaction temperature was 200 ° C. Otherwise, the reaction was performed in the same manner as described in Example 4.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 78%.
  • the propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00081. Furthermore, the reaction continued for 12 hours after this, but there was no decline in the conversion rate.
  • Example 20
  • Example 18 a cocatalyst was prepared in the same manner except that the reaction temperature was 175 ° C. Otherwise, the reaction was performed in the same manner as described in Example 4. The butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 74%. At this time, the propylene selectivity based on butene was 97%, and a small amount of pentene was produced. Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00053. Further, the reaction was continued for 12 hours thereafter, but no reduction in conversion was observed.
  • Example 21
  • Example 18 The cocatalyst was prepared in the same manner except that the reaction temperature was 150 ° C., and the reaction was performed in the same manner as described in Example 4 except that.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 30%.
  • the propylene selectivity based on butene was 92%, and a small amount of pentene was produced.
  • Propane is produced simultaneously with lopyrene, and the ratio of propane to propylene was 0.0029.
  • a cocatalyst was prepared in the same manner as in Example 11 except that 0.019 g of sodium hydroxide (Wako Pure Chemical Industries, Ltd.) was used as the compound supported on ⁇ -alumina.
  • the reaction was carried out by the method.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 78%.
  • propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0067. Furthermore, after that, the reaction rate continued for 12 hours, and the power conversion rate did not decrease.
  • Example 19 in place of ⁇ -alumina, the gel hydroxide obtained by adding zirconium nitrate to ammonia water was washed with water and dried at 100 ° C. A cocatalyst was prepared in the same manner except that zirconium was used, and the reaction was carried out in the same manner as described in Example 4 except that the obtained zirconium-supported Na 0 was used as a cocatalyst.
  • a cocatalyst was prepared in the same manner as in Example 23 except that the reaction temperature was 175 ° C. Otherwise, the reaction was performed in the same manner as described in Example 4.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 58%.
  • the propylene selectivity based on butene was 94%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0015.
  • a cocatalyst was prepared in the same manner as in Example 11 except that the compound supported on ⁇ -alumina was 0.064 g of potassium nitrate (Wako Pure Chemical Industries). Otherwise, the same method as described in Example 3 was used. The reaction was carried out. The butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 76%. At this time, the propylene selectivity based on butene was 98%, and a small amount of pentene was produced. Propane was produced simultaneously with propylene, and the ratio of propane to propylene was 0.0020. Furthermore, after that, the reaction rate continued for 12 hours, and the power conversion rate did not decrease.
  • a cocatalyst was prepared in the same manner as in Example 25 except that the amount of the compound supported on ⁇ -alumina was changed to 0.128 g. Otherwise, the reaction was performed in the same manner as described in Example 3. .
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 77%.
  • the propylene selectivity based on butene was 96%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the propane / Z propylene ratio was 0.00057. Furthermore, after this, the reaction rate continued for 12 hours.
  • Example 11 a cocatalyst was prepared in the same manner except that 0.041 g of cesium nitrate (Wako Pure Chemical Industries) was used as the compound supported on ⁇ -alumina.
  • the reaction was performed in the same way. It is obtained by analyzing the outlet gas 3 hours after the start of the reaction.
  • the butene rolling rate was 76%.
  • the propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00095. Furthermore, there was no decrease in the force conversion rate that continued to react for 12 hours.
  • a cocatalyst was prepared in the same manner as in Example 27 except that the amount of the compound supported on ⁇ -alumina was changed to 0.082 g. Otherwise, the reaction was performed in the same manner as described in Example 4. .
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%.
  • the propylene selectivity based on butene was 97%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0013. Furthermore, after this, the reaction rate continued for 12 hours.
  • Example 4 the reaction was performed in the same manner except that the reaction raw material was changed from trans-2-butene to 1-butene (manufactured by Takachiho Chemical Co., Ltd., purity 99.5%). Went.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 76%.
  • the propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • Propane was produced simultaneously with propylene, and the ratio of propane to propylene was 0.0041. In addition, no decrease in the force conversion rate was observed after 12 hours of reaction.
  • [Table 6 Propylene synthesis reaction using various butenes, WQ _ 1 0 at 2 0 0 and hydrolyl site
  • the reaction was carried out by the method shown in Example 3.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 75%.
  • the propylene selectivity based on butene was 98%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the propane / Z propylene ratio was 0.0063.
  • Three hours after the start of the reaction the supply of hydrogen to the reactor was stopped, and the reaction was continued as it was.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the stoppage decreased to 48%.
  • the butene conversion rate obtained by analyzing the outlet gas 5 hours after stopping the supply of hydrogen gas remained at 48%.
  • the supply of hydrogen gas to the reactor was started again and the reaction was continued.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the resumption of hydrogen gas supply improved to 72%. Furthermore, the butene conversion rate obtained by analyzing the outlet gas 8 hours after the resumption of hydrogen gas supply was 74%.
  • Hyde mouth talcite (Kyowa Chemical Co., Kiyoward 500, 500 m) are physically mixed and packed into a SUS reactor with an outer diameter of 12 mm and a length of 40 cm.
  • the butene purification tower was filled with ⁇ -alumina balls at the top and bottom.
  • O.lg's Mo Q—15 with 0.3 g of Hyd mouth talcite and fill it into the center of a Sus reactor with an outer diameter of 10 mm and a length of 30 cm.
  • a reactor filled with alumina balls was used.
  • the reaction was performed in the same manner as in Example 3 except that the temperature of the reactor was changed to 300 ° C.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 47%.
  • the propylene selectivity based on butene was 89%, and a small amount of pentene was produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.015.
  • the reaction was performed in the same manner as in Example 31, except that the reaction temperature was 350 ° C.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 53%.
  • the propylene selectivity based on butene was 90%, and a small amount of other pentene was produced.
  • Propane was produced at the same time as propylene, and the propane-Z propylene ratio was 0.0014.
  • Example 1 0.6 g of WQ-10 and 2.4 g of hydrated talcite are physically mixed, filled in the center of a SUS reactor with an outer diameter of 18 mm and a length of 400 mm, and ⁇ -aluminum on the top and bottom. A reactor filled with nabol was used. While circulating normal pressure nitrogen gas lOOml / min from the upper part of the reactor and raising the lower part of the butene purification tower to the upper part of the butene purification tower, the temperature of the reactor and the butene purification tower was raised to 500 ° C for 1 hour. Retained. Then, 100 mlZmin of atmospheric hydrogen gas was passed for 120 minutes at the same temperature. While flowing normal pressure nitrogen gas 50mlZmin and normal pressure hydrogen gas 50mlZmin, the butene purification tower was cooled to 50 ° C and the reactor was cooled to 200 ° C.
  • On-line analysis was performed by gas chromatography in a state where the mixed gas, which also provides the lower force of the reactor, became normal pressure through the back pressure valve.
  • Butene conversion ratio obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of trans-2-butene supplied from the composition 10 hours after the start of the reaction. was 71%.
  • propylene selectivity based on butene was 90%, and small amounts of pentene and hexene were also produced.
  • Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.01. Furthermore, there was no decrease in the force buten rolling rate that continued the reaction for 12 hours.
  • the reaction was performed in the same manner as in Example 33, except that the temperature of the reactor was changed to 175 ° C.
  • the butene conversion rate obtained by analyzing the outlet gas 10 hours after the start of the reaction was 61%.
  • the propylene selectivity was 92%.
  • Other small amounts of pentene and hexene were produced.
  • Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.01. In addition, the force that continued to react for 12 hours after that was not observed.
  • Example 35 [0081] In Example 33, the reaction was performed in the same manner except that the liquefied trans 2 butene was combined with 1. ethylene pressurized to OMPa and 1. hydrogen pressurized to OMPa. It was. The butene conversion rate obtained by analyzing the outlet gas 10 hours after the start of the reaction was 71%. The propylene selectivity was 91%. Other small amounts of pentene and hexene were produced. Propane was produced at the same time as propylene, and the propan-Z propylene ratio was 0.0026. In addition, the force that continued to react for 12 hours after that was not observed.
  • Example 33 the reaction was performed in the same manner except that the liquefied trans 2 butene was combined with ethylene pressurized to 0.5 MPa and hydrogen pressurized to 0.5 MPa.
  • the butene conversion rate obtained by analyzing the outlet gas 10 hours after the start of the reaction was 72%.
  • the propylene selectivity was 92%.
  • Other small amounts of pentene and hexene were produced.
  • Propane was produced at the same time as propylene, and the ratio of propane to propylene was 0.0012.
  • the force butene conversion continued for 12 hours thereafter, but no decrease in the butene conversion rate was observed.
  • the propylene selectivity was 94%. Other small amounts of pentene and hexene were produced. Propane was produced at the same time as propylene, and the propane / Z propylene ratio was 0.0066. In addition, the force that continued to react for 12 hours after that showed no decline in the butene rolling rate.
  • the catalyst WQ-10 described in Example 1 was physically mixed with 0.1 lg and 0.5 g of hydrated talcite, and charged in the center of a SUS reactor having an outer diameter of 10 mm and a length of 30 cm.
  • the reactor was filled with ⁇ -alumina balls at the top and bottom.
  • 2g of WQ-10 and 3.5g of Hyde mouth talcite are physically mixed to form a SUS reactor with an outer diameter of 12mm and a length of 40cm.
  • the butene purification tower was filled with ⁇ alumina balls at the top and bottom.
  • a normal pressure nitrogen gas of 50 ml / min was circulated from the upper part of the reactor, and the temperature of the reactor and the butene purification tower was raised to 550 ° C while flowing the gas from the lower part to the upper part of the butene purification tower. Hold for 1 hour.
  • a mixed gas in which 50 mlZmin of normal pressure nitrogen gas was added to 50 mlZmin of normal pressure was circulated at the same temperature for 30 minutes.
  • the butene purification tower was cooled to 50 ° C and the reactor was cooled to 200 ° C while flowing atmospheric nitrogen gas again at 50 ml / min.
  • 1-butene (99% purity, 230 ppm of 1,3-butadiene, manufactured by Takachiho Chemical Co., Ltd.) gas distilled onto ⁇ -alumina (NKHD-32, manufactured by Sumitomo Chemical Co., Ltd.) at normal pressure It was circulated from the lower column of the butene purification tower at a rate of 8 mlZmin. The 1,3-butadiene concentration in the purified 1-butene obtained from the top was Oppm. This 1-butene containing no butadiene was combined with ethylene supplied at a rate of 12 mlZmin at normal pressure and hydrogen supplied at a rate of lmlZmin at normal pressure, and was supplied in gaseous form from the top of the reactor.
  • the mixed gas obtained from the part was analyzed online by gas chromatography.
  • the butene conversion rate obtained by subtracting the total amount of trans 2-butene, cis 2-butene and 1 butene in the outlet gas from the amount of 1-butene supplied from the composition 2 hours after the start of the reaction is 17.5%.
  • Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00022.
  • Example 38 the reaction was performed in the same manner except that the reaction temperature was 225 ° C. From the amount of 1-butene supplied from the composition 3 hours after the start of the reaction, the total amount of trans 2 butene, cis 2-butene and 1 butene in the outlet gas was added, and the butene turnover rate calculated from IV was It was 69%. The propylene selectivity was 94%. Other small amounts of pentene and hexene were produced. Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00047. Furthermore, the force that continued the reaction for 12 hours after that was a force that did not show a decline in butene rolling rate.
  • the reaction was performed in the same manner as in Example 38 except that the reaction temperature was 250 ° C. From the amount of 1-butene supplied from the composition 3 hours after the start of the reaction, the total amount of trans 2 butene, cis 2-butene and 1 butene in the outlet gas was added, and the butene turnover rate calculated from IV was It was 69%. The propylene selectivity was 94%. Other small amounts of pentene and hexene were produced. Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00040. Furthermore, the force that continued the reaction for 12 hours after that was a force that did not show a decline in butene rolling rate.
  • Example 42 The reaction was performed in the same manner as in Example 38 except that the adsorbent of the butene purification tower was changed to ⁇ -alumina.
  • the 1-butene fed to the reactor at this time contained 230 ppm of 1,3 butagen. From the composition 3 hours after the start of the reaction, the butene conversion ratio obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied is 21%.
  • Example 42 The butene conversion ratio obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied is 21%.
  • the reaction was performed in the same manner as in Example 41 except that the reaction temperature was 225 ° C. From the composition 3 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 70%. The propylene selectivity was 94%. Other small amounts of pentene and hexene were produced. Propane was produced at the same time as propylene, and the ratio of propylene and Z propylene was 0.00036.
  • the reaction was performed in the same manner as in Example 41 except that the reaction temperature was 250 ° C. From the composition 3 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 70%. The propylene selectivity was 94%. Other small amounts of pentene and hexene were produced.
  • Example 38 The catalyst charged in the reactor in Example 38 was changed to 200 ° C in the same manner except that the catalyst charged in WQ-10, 0.1 lg and ⁇ -alumina-supported Na 0, 0.5 g prepared in Example 18 was used.
  • the catalyst charged in WQ-10, 0.1 lg and ⁇ -alumina-supported Na 0, 0.5 g prepared in Example 18 was used.
  • the butene conversion rate obtained by subtracting the total amount of trans 2-butene, cis 2-butene and 1 butene in the outlet gas from the amount of 1-butene supplied from the composition 3 hours after the start of the reaction was 69 %Met.
  • the propylene selectivity was 93%.
  • small amounts of pentene and hexene were produced.
  • propylene and prop Propane / propylene ratio was 0.00021.
  • Example 44 the reaction was performed in the same manner except that the adsorbent of the butene purification tower was changed to ⁇ -alumina.
  • the 1-butene fed to the reactor at this time contained 230 ppm 1,3 butadiene. From the composition 3 hours after the start of the reaction, the butene conversion rate was calculated by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied. 69%.
  • the propylene selectivity was 93%. Other small amounts of pentene and hexene were produced. Propane was produced simultaneously with propylene, and the propane / Z propylene ratio was 0.00019.
  • the reaction was performed in the same manner as in Example 41 except that the reaction was performed at 250 ° C using a raw material in which 1,3-butadiene was mixed at a ratio of 2 g to 200 g of 1-butene.
  • the 1-butene fed to the reactor at this time contained 1.04% butadiene. From the composition 10 hours after the start of the reaction, the butene conversion rate obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied was 67% Met.
  • Example 48 The reaction was performed in the same manner as in Example 46 except that the reaction was performed at 275 ° C. From the composition 5 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 68%.
  • Example 48 From the composition 5 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 68%.
  • Example 48 The reaction was performed in the same manner as in Example 46 except that the reaction was performed at 275 ° C. From the composition 5 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 68%.
  • the reaction was performed in the same manner as in Example 46, except that the reaction was performed at 300 ° C. From the composition 3 hours after the start of the reaction, the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was calculated from the amount of 1-butene supplied. The dredging rate was 68%.
  • the reaction was performed in the same manner as in Example 44 except that the reaction was performed at 250 ° C using a raw material in which 1,3-butadiene was mixed at a ratio of 2 g to 200 g of 1-butene.
  • 1-butene fed to the reactor contained 1.04% butadiene.
  • the amount of 1-butene supplied was the sum of the transformer 2-butene, cis-2-butene and 1-butene in the outlet gas.
  • the butene turnover rate after subtracting this amount was 58%. At this time, the production of propane was not recognized.
  • the reaction was performed in the same manner as in Example 49, except that the reaction was performed at 275 ° C. Based on the composition of the reactor outlet when the maximum activity was reached in 15 hours from the start of the reaction, the total amount of trans 2-butene, cis 2-butene and 1-butene in the outlet gas from the amount of 1 butene supplied. The butene roll rate after subtracting was 68%. At this time, no generation of propan was observed.
  • the reaction was performed in the same manner as in Example 49, except that the reaction was performed at 300 ° C. From the composition of the reactor outlet when the maximum activity was reached in 2 hours from the start of the reaction, the amount of 1-butene fed was calculated from the amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas. The butene turnover rate after subtracting the total amount was 69%. At this time, the production of propane was not recognized.
  • Example 2 The procedure was the same as in Example 1, except that 2 g of WQ-10 was added in order from the bottom of the butene purification tower, and then 3.5 g of Hydokuchi talcite (Kyowa Chemical Co., Ltd., Kiyoward 500, 500 m) was charged.
  • a butene purification tower was produced in the same manner as in Example 1.
  • the catalyst charged in the reactor is suspended in 200 ml of an aqueous solution of WQ-10, 15 g of magnesium oxide and 80 mg of sodium hydroxide from a mixture of WQ 10 and hydrated talcite, evaporated to dryness, and calcined. (550 ° CX for 8 hours) Packing in the same way except changing to a mixture of Na OZ magnesia obtained
  • a reactor was created. Next, atmospheric nitrogen gas 50ml / min is circulated from the upper part of the reactor, and the gas emitted from the lower part flows to the upper part of the lower part of the butene purification tower, while the reactor and the butene purification tower rise to 550 ° C. Warmed and held for 1 hour. Next, a mixed gas in which atmospheric pressure hydrogen gas 50 mlZmin was added to atmospheric pressure nitrogen gas 50 mlZmin was circulated at the same temperature for 30 minutes. The butene purification tower was cooled to 150 ° C and the reactor was cooled to 175 ° C while flowing atmospheric nitrogen gas 50mlZmin again.
  • 1-butene (purity 99%, manufactured by Takachiho Chemical Industry) gas distilled onto ⁇ -alumina (NKHD-32, manufactured by Sumitomo Chemical Co., Ltd.) before use was passed through the butene purification tower at a rate of 12 mlZmin at normal pressure.
  • Purified 1-butene which was circulated from the bottom and also obtained the top force, was combined with ethylene supplied at a rate of 18 mlZmin at normal pressure and hydrogen supplied at a rate of 1.5 mlZmin at normal pressure. Supplied in gaseous form.
  • the mixed gas obtained from the lower part of the reactor was analyzed on-line by gas chromatography. Supplied from the composition 3 hours after the start of the reaction 1 —Butene conversion rate obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas was 40%.
  • Example 52 the catalyst charged into the reactor was mixed with WQ-10 and Hyde mouth talcite, and 15g of WQ-10 and Hyde mouth talcite (Kyowa Chemical, Kiyoword 500). The same procedure was followed except that 80 mg of sodium hydroxide was suspended in 200 ml of aqueous solution, evaporated to dryness, and calcined (550 ° CX for 8 hours) to obtain a mixture of Na OZ hydrated talcite.
  • the reaction was performed.
  • the mixed gas obtained from the lower part of the reactor was subjected to online analysis by gas chromatography.
  • Butene conversion ratio obtained by subtracting the total amount of trans-2-butene, cis-2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied from the composition 3 hours after the start of the reaction was 52%.
  • Example 52 the catalyst charged into the reactor was prepared from a mixture of WQ-10 and hydrated talcite, WQ-10 and alumina-magnesia solid solution (Kyowa Chemical, Kiyoword 2000) 1 5g And NaOZ alumina / magnesia mixture obtained by suspending 40 mg of sodium hydroxide and sodium hydroxide in 200 ml of aqueous solution, evaporating to dryness and firing (550 ° C x 8 hours).
  • the reaction was performed in the same manner outside.
  • the gas mixture obtained from the lower part of the reactor was analyzed online using a gas chromatograph.
  • the butene conversion rate after subtracting the total amount of trans 2-butene, cis 2-butene and 1-butene in the outlet gas from the amount of 1-butene supplied from the composition 3 hours after the start of the reaction was 58%. there were.
  • Example 52 the catalyst charged into the reactor was prepared from a mixture of WQ-10 and hydrated talcite, 15 g of WQ-10 and alumina 'magnesia solid solution (Kyowa Chemical, Kiyoword 2000) and 40 mg of potassium nitrate. Is suspended in 200 ml of aqueous solution, evaporated to dryness, and calcined (550 ° C x 8 hours).
  • the reaction was conducted in the same manner.
  • the mixed gas obtained from the lower part of the reactor was analyzed online by gas chromatography. From the composition 3 hours after the start of the reaction, the amount of 1-butene fed was combined with the transformer 2-butene, cis-2-butene and 1-butene in the outlet gas. The butene turnover rate after subtracting the total amount was 62%.
  • Example 1 after the same pretreatment, reduction, and nitrogen substitution in both the reactor and the butene purification column, ethylene and trans-2-butene were used in the same ratio as in Example 1 without passing hydrogen through the reactor. Supplied with.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 49%.
  • the propylene selectivity based on butene was 91%, and a small amount of pentene was produced.
  • Example 4 the reactor and butene purification tower were pretreated, reduced, and purged with nitrogen in the same manner, and then ethylene and trans-2-butene were mixed in the same proportion as in Example 1 without passing hydrogen through the reactor. Supplied with.
  • the butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 1%.
  • propylene selectivity based on butene was 89%, and a small amount of pentene was produced.
  • Comparative Example 2 the pretreatment, reduction treatment, and nitrogen replacement were performed in the same manner for the reactor and butene purification tower, and then ethylene and trans-2-butene were mixed in the same proportion as in Example 1 without passing hydrogen through the reactor. The same operation was performed except that the reaction temperature was changed to 300 ° C. The butene conversion rate obtained by analyzing the outlet gas 3 hours after the start of the reaction was 74%. At this time, the propylene selectivity based on butene was 95%, and a small amount of pentene was produced.
  • Example 31 both the reactor and the butene purification tower were pretreated, reduced, and replaced with nitrogen, and then ethylene and trans-2-butene were mixed in the same proportion as in Example 1 without passing hydrogen through the reactor. Supplied with.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 8%.
  • Example 32 both the reactor and the butene purification column were pretreated, reduced, and replaced with nitrogen, and then ethylene and trans-2-butene were mixed in the same proportion as in Example 1 without passing hydrogen through the reactor. Supplied with.
  • the butene conversion rate obtained by analyzing the outlet gas one hour after the start of the reaction was 22%.
  • Example 33 both the reactor and the butene purification column were pretreated, reduced, and replaced with nitrogen.Then, the temperature of the butene purification tower was lowered to 50 ° C and the reactor to 200 ° C with a nitrogen flow rate of lOOmlZmin, and the reaction was performed. Ethylene and trans-2-butene were fed at the same rate as in Example 34 without passing hydrogen through the vessel. The butene conversion obtained by analyzing the outlet gas 10 hours after the start of the reaction was 7.8%.
  • Example 33 the pretreatment and reduction treatment were performed in the same manner for both the reactor and the butene purification column, and then the butene purification column was cooled to 50 ° C and the reactor to 250 ° C with a nitrogen flow rate of lOOmlZmin. Ethylene and trans-2-butene were supplied at the same ratio as in Example 34 without circulating the oil. Butene conversion obtained by analyzing the outlet gas 1 hour after the start of the reaction is 71%.
  • Example 38 the pretreatment and reduction treatment were performed in the same manner for both the reactor and the butene purification tower, and then the temperature of the butene purification tower was lowered to 50 ° C and the reactor to 275 ° C with a nitrogen flow rate of lOOmlZmin.
  • the ethylene and 1-butene were supplied at the same ratio as in Example 38 without circulating the styrene.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 44%.
  • Example 46 the reaction was carried out using butene containing 1.04% butadiene as a raw material, except that the reaction temperature was 300 ° C and hydrogen gas was not supplied to the reactor. It was. The butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 17%.
  • the reaction was carried out in the same manner without supplying hydrogen gas to the reactor except that the reaction temperature was 350 ° C in Comparative Example 12.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 68%. That is, when a raw material containing 1.04% of butadiene was used, the raw material had a conversion rate of 61% at 300 ° C. as shown in Comparative Example 10 without containing butadiene.
  • the reaction temperature is raised to 350 ° C, it is difficult for the conversion rate to exceed 60%.
  • the butene conversion rate obtained by analyzing the outlet gas 1 hour after the start of the reaction was 75%.
  • the butene conversion rate obtained by analyzing the outlet gas 5 hours after the start of the reaction was 48%. Furthermore, the reaction continued for 12 hours after this, but the change in the turnover rate was strong.
  • the metathesis reaction can proceed at a lower temperature than the conventionally known reaction.
  • a high reaction rate can be obtained even at a low pressure without requiring a high pressure as in the prior art.
  • butene containing butadiene is used as a raw material, it has a great feature that it is less deteriorated than a conventional metathesis catalyst.
  • there is responsiveness to the improvement of the reaction activity by supplying hydrogen that is, when the supply of hydrogen is temporarily interrupted and then restarted, the activity improvement effect by adding hydrogen is restored.
  • Such behavior can greatly contribute to operational stability in industrial production.
  • coexistence of olefin and hydrogen gas is usually a concern for the formation of paraffin, but contrary to the expectation, there is little paraffin byproduct, especially when the cocatalyst is alumina-supported sodium oxide. Can be greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 触媒の反応性を改善し、実用的な低温度領域でのメタセシス反応によるオレフィン類の製造法を提供する。  本発明に係るオレフィン類の製造方法は、タングステン、モリブデン、レニウムなどの金属元素を含有する触媒を用いるオレフィンのメタセシス反応において、Ia族(アルカリ金属)、IIa族(アルカリ土類金属)、IIb族、IIIa族の金属のうち少なくとも1種の金属元素を含む化合物を共触媒として用い、さらに反応原料に水素ガスを共存させることにより、実用的な低温度領域にて工業的に充分な反応速度でメタセシス反応を進行させる。                                                                               

Description

明 細 書
ォレフィン類の製造方法
技術分野
[0001] 本発明は、水素ガスを共存させることにより、触媒の反応性を改善したメタセシス反 応によりォレフィンを製造する方法に関する。
背景技術
[0002] 同種または異種のォレフィン同士が反応し、異なる構造のォレフィンを与えるメタセ シス反応は、ナフサクラッカー力もある一定の割合で生産されるエチレン、プロピレン 、ブテン類を相互に変換し、ォレフィンの需要構造の変化に対応することができるの で大きな利益をもたらす。
ォレフィンのメタセシス反応は、 1931年に 725°Cという高温度にて無触媒で進行す ることが見出された力 工業的な価値が認められたのは、モリブデン、タングステン、 レニウムなどの金属の酸ィ匕物を高表面積担体に担持した触媒が発見されて力 であ る。触媒を用いるメタセシス反応の最初の例として、酸ィ匕モリブデンを γ—アルミナに 担持した触媒を用い、プロピレン同士のメタセシス反応によりエチレンと 2—ブテンと を得る方法が、 Phillips社により 1964年に開発された。
[0003] メタセシス反応は、可逆反応であるため平衡組成が存在する。エチレンと 2—ブテン と力 プロピレンを得る反応の平衡組成は、低温ほどプロピレン生成に有利となるの で、触媒の改良による反応温度の低減が検討された。その中で Phillips社により、酸 ィ匕タングステンをシリカに担持した触媒および酸ィ匕マグネシウムを共触媒として用い る方法が開発され、現在、 Lummus社によりプロピレン製造プロセスとして完成され ている。
[0004] より詳細には、 US4,575,575 (特許文献 1)や Jounal of Molecular Catalysis
28卷 117ページ(1985年)(非特許文献 1)に、シリカ担持酸ィ匕タングステン触媒の みでエチレンと 2—ブテンとのメタセシス反応を固定床流通装置を用 、て 330°Cにて 行うとブテンの転ィ匕率は 31 %に過ぎな、、のに対し、酸ィ匕マグネシウムを共触媒として 組み合わせて用いると転ィ匕率が 67%に向上することが報告されている。 [0005] さらに、 US4,754,098 (特許文献 2)には、同じ 330°Cにおけるメタセシス反応で、 酸化マグネシウムを γ—アルミナに担持した触媒を用いるとブテンの転ィ匕率が 75% まで向上することが、また、 US4,884,760 (特許文献 3)には、共触媒として酸化マグ ネシゥムと水酸化リチウムとを γ—アルミナに担持したものを用いると、さらに低温度 の 270°Cでもブテンの転ィ匕率を 74%に維持できることが報告されている。実際にェ 業ィ匕プロセスでは 270°Cの反応温度を実現するには、加熱炉などの設備が必要であ り、より簡便なスチーム加熱が可能な温度、たとえば 200°C程度までの反応温度の低 減が望まれる。
[0006] さらに低温の反応触媒の例として、 IFP (アンスティテュ 'フランセ ·デュ 'ぺトロール) による、酸ィ匕レニウムを γ—アルミナに担持した触媒を挙げることができる。本触媒は 、 US4,795,734 (特許文献 4)に記載されるように室温付近の反応温度、すなわち 加圧条件にお!ヽては、液ィ匕したエチレンと 2-ブテンとの混合物を原料としてメタセシ ス反応を進行させることができる。しかし、液化した原料および反応生成物は、触媒 細孔内の拡散性が低ぐ気相反応に比べ触媒活性の劣化が激しい。また、劣化した 触媒を再生するために反応器内の液ィ匕ガスを再生毎にパージすることは現実的では ないため、固定床反応装置の下部より触媒を連続的に抜き出し、連続的に再生する ことのできる移動床型反応装置が考案されている。しかし、本方法にしても設備的に 複雑になり、運転安定性にも問題がある。
特許文献 1:米国特許 4,575,575号公報
特許文献 2 :米国特許 4, 754,098号公報
特許文献 3:米国特許 4,884,760号公報
特許文献 4:米国特許 4,795,734号公報
非特許文献 1 :Jounal of Molecular Catalysis 28卷 117ページ(1985年) 発明の開示
発明が解決しょうとする課題
[0007] 本発明は、従来法における上記の問題点を解決し、水素ガスを共存させることによ り触媒の反応性を改善し、実用的な低温度領域でのメタセシス反応によるォレフィン 類の製造方法を提供することを目的とする。 課題を解決するための手段
[0008] 本発明者らは、上記課題を解決するため鋭意検討した結果、従来公知のタンダス テン、モリブデン、レニウムなどの金属元素を含有する触媒を用いるォレフィンのメタ セシス反応において、触媒と共に la族 (アルカリ金属)、 Ila族 (アルカリ土類金属)、 lib 族、 Ilia族の金属のうち少なくとも 1種の金属元素を含む化合物を共触媒として用い、 さらに反応原料に水素ガスを共存させることにより、実用的な低温度領域にて工業的 に充分な反応速度でメタセシス反応が進行することを見出した。
[0009] より具体的には、エチレンと 2—ブテンとの反応においては、 目的とするプロピレン 以外に生成するペンテンやへキセンの副生を低減することが可能であることを見出し 、工業的に価値の高い本発明を完成するに至った。
すなわち、本発明は、タングステン、モリブデン、レニウム、ニオブ、タンタル、バナ ジゥム、ルテニウム、ロジウム、イリジウム、ォスミオム、ニッケルのうち少なくとも 1種の 金属元素を含む触媒を用いて、同種または異種のォレフィン同士が反応し異なる構 造のォレフィンを与えるメタセシス反応を行うに際し、水素ガスと共に la族 (アルカリ金 属)、 Ila族 (アルカリ土類金属)、 lib族、 Ilia族の金属のうち少なくとも 1種の金属元素 を含む化合物を共触媒として用いるォレフィン類の製造方法である。
発明の効果
[0010] 本発明の方法によれば、加熱炉などの特殊設備を必要としない低い反応温度にお いて、メタセシス反応により高い収率および選択率にてォレフイン類を製造でき、さら にブタジエンを含有するブテンを原料として用いることができるため、安全上、プロセ ス上および経済上著しく優位にォレフィン類を生産することができる。
発明を実施するための最良の形態
[0011] 本発明で用いるメタセシス触媒は、公知のタングステン、モリブデン、レニウム、 -ォ ブ、タンタル、バナジウム、ルテニウム、ロジウム、イリジウム、ォスミオム、ニッケルなど の金属元素を少なくとも 1種以上含むもので、活性が高いのはタングステン、モリブデ ン、レニウムであり、その中でも特にタングステンが好ましい。
該触媒の構造は、各々の金属の酸化物、硫化物、水酸化物などを組成とする固体 状態の単体でもよいし、これらの金属の酸化物、硫化物、水酸ィ匕物などを担体とよば れる高い表面積を有する無機化合物に担持したものでもよい。また該触媒は、固定 床流通反応で用いる場合、活性劣化後に空気で焼成して再生することから、酸ィ匕物 の形態であることが好まし 、。
[0012] また、担体の酸性質はォレフインのオリゴマー化など好ましくない副反応を引き起こ すため、酸性を有さないものであればいずれのものでも用いることができる。より詳細 には、表面積が 10m2/g以上の担体が好ましぐシリカ、 γ—アルミナ、チタ-ァなど が好ましい例として挙げられ、特に表面積が高いことからシリカが好適な担体として選 ばれる。この場合、担体に対する金属の担持量は、酸化物換算で、 0. 01%〜50% の範囲であればよぐさらに好ましくは 0. 1%〜20%の範囲である。
[0013] 上記の金属化合物のうち酸化物を担体に担持する方法は、公知の方法のいずれ でもよぐ金属の硝酸塩や水酸化物、タングステン、モリブデン、レニウムの場合はそ のポリ酸、イソポリ酸およびポリ酸のアンモニゥム塩、イソポリ酸のアンモニゥム塩を出 発物質として、それらの水溶液に担体を含漬または蒸発乾固させ、空気雰囲気下で 300°C以上の温度で焼成することにより得ることができる。
[0014] 担体は市販のものをそのまま用いることもできる力 公知の方法により対応する金属 塩を塩基で中和することにより得られる水酸化物を焼成し、酸化物として担体を得て もかまわない。
また、担体を対応する金属塩から得る際に、触媒となる金属塩を共存させて、担体 合成と金属の担持を同時に行う共沈法を採用することもできる。
[0015] 担体の形状には特に制限は無ぐ球状、円柱状、押し出し状、破砕状のいずれでも よぐまた、その粒子の大きさも、 0. 01mm〜100mmの範囲のもので反応器の大き さに応じて選定すればよい。
また、タングステン、モリブデン、レニウム、ニオブ、タンタル、バナジウム、ルテユウ ム、ロジウム、イリジウム、ォスミオムなどの金属元素化合物を有機溶媒に可溶とする ために、配位子とよばれる有機分子を結合させた錯体触媒としてもよい。また、これら の回収を容易にするために、担体へ担持したものでもよ 、。
[0016] 本発明で用いる共触媒は、 la族 (アルカリ金属)、 Ila族 (アルカリ土類金属)、 lib族、
Ilia族の金属のうち少なくとも 1種の金属元素を含むものであり、具体的な金属元素の 種類として、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、スト口 ンチウム、ノ リウム、亜鉛、イットリウムなどが挙げられる。
Phillips社の US4,575, 575、 US4,754,098、 US4,884,760【こ ίま、 ヽずれも酸 化マグネシウムを含む共触媒が記載されて ヽるが、本発明では酸ィ匕マグネシウムは 必ずしも必須ではなぐ活性の点からリチウム、ナトリウム、カリウムがより好ましい例と して挙げられる。
[0017] これらの共触媒として用いる金属化合物は、酸化物、水酸化物、硝酸塩、酢酸塩な どの組成をもつ固体状態の単体でもよいし、これらの金属化合物がさらに他の金属 化合物を含有するもの、すなわちアルミニウムとマグネシウムとが各々の酸化物として 層状ィ匕合物となったハイド口タルサイトや酸ィ匕アルミニウムと酸ィ匕マグネシウムとの固 溶体のような複合酸化物でもよい。または、これらの金属の酸化物、複合酸化物、水 酸化物、硝酸塩、酢酸塩などを、担体とよばれる高い表面積を有する無機化合物に 担持したものでもよ ヽ。
[0018] 担体の酸性質は、ォレフィンのオリゴマー化など好ましくない副反応を引き起こすた め、 la族 (アルカリ金属)、 Ila族 (アルカリ土類金属)、 lib族、 Ilia族の金属元素を担持 した後も酸性を有さないものであれば、いずれのものでも用いることができる。より詳 細には、表面積が 10m2/g以上である担体が好ましぐ γ—アルミナ、ジルコユア、チ タニアなどが好まし!/、例として挙げられ、また表面積が高!、ことから酸ィ匕マグネシウム 自身も担体として用いることができる。特に化学的な安定性から、 γ—アルミナが好ま しい担体である。また、 γ —アルミナと酸ィ匕マグネシウムとを組み合わせて使用するこ と、さらには、アルミニウムとマグネシウムとの複合酸ィ匕物を使用することも好ましい。 この場合、担体に対する金属の担持量は、酸化物換算で、 0. 01%〜50%の範囲で あればよぐさらに好ましくは 0. 1%〜20%の範囲である。
[0019] 担体は市販のものをそのまま用いることもできる力 公知の方法により対応する金属 塩を塩基性にすることにより得られる水酸化物を焼成し、酸化物として担体を得ても かまわない。
上記の金属化合物のうち酸化物を担体に担持する方法は公知の方法のいずれで もよぐ金属の硝酸塩や水酸ィ匕物の水溶液もしくは酸ィ匕物の水懸濁液に、担体を含 漬または蒸発乾固させ、空気雰囲気下で 300°C以上の温度で焼成することにより得 ることがでさる。
[0020] また、担体を対応する金属塩から得る際に、触媒となる金属塩を共存させて、担体 合成と金属の担持を同時に行う共沈法を採用することもできる。
担体の形状には特に制限は無ぐ球状、円柱状、押し出し状、破砕状のいずれでも よぐまたその粒子の大きさも、 0. Olmn!〜 100mmの範囲のもので反応器の大きさ に応じて選定すればよい。
[0021] さらにタングステンなどの金属元素を担体へ担持した触媒と、ナトリウム、マグネシゥ ムなどの金属元素を担体へ担持した共触媒とを組み合わせて用いる場合、 1種類の 担体にタングステンなどの金属元素とナトリウム、マグネシウムなどの金属元素とを同 時に担持しても力まわな ヽ。
触媒に対する共触媒の量は、 0. 1〜20の間の任意の量で力まわないが、少なすぎ ると水素添加の効果が発現せず、また多すぎると触媒の割合が減るために触媒と共 触媒とを併せた量に対する活性が低下するので好ましくない。また、固定床流通装 置で触媒を充填する場合、 Jounal of Molecular Catalysis 28卷 117ページ( 1985年)に記載されるように、触媒と共触媒とを物理的に混合して充填してもよいし 、原料供給方向に近いほうから、共触媒、触媒の順で充填してもよい。さらに、これら を組み合わせた方法などを挙げることもできる。
[0022] 反応に添加する水素は、通常ガス状で連続的に供給するが、この方法に特に限定 されるものではなぐ反応開始時に水素ガスを添加した後、反応中供給を停止しある 一定時間後に再度供給する間欠的な供給でもよいし、液相反応の場合、溶媒に水 素ガスを溶解させて供給してもカゝまわない。また、リサイクルプロセスでは、軽沸点留 分とともに塔頂カゝら回収される水素ガスを供給してもよい。少なくとも、触媒の還元処 理に用いた水素ガスが、窒素置換した際の残留水素として反応器へ導入されたとし ても、ごく初期には水素添加効果はみられるであろうが、新たな水素の供給が無いた めに活性は次第に低下し、遂には水素ガスを添加しない場合の反応成績に等しくな るので、本発明のような持続的効果は得られない。
[0023] 添加する水素の圧力は、反応器の圧力と同等であることが一般的であるが、水素の 供給方法に応じ適宜変更すればよ!、。
添加する水素ガスの量は、反応器に供給される原料をガスに換算した場合、全体 のガスのうち 0. l〜80vol%、好ましくは O.2〜50vol%の割合である力 これよりも少 な 、と添加効果が発現せず、また多すぎると原料ォレフィンの分圧を低下させたりォ レフインの水添反応が併発したりするので好ましくない。
[0024] 本発明で示すメタセシス反応に用いるォレフィンの構造に特に限定は無いが、ナフ サクラッカーのォレフィンバランスを改善する目的で使用する場合には、低級ォレフィ ンに対して適用される。原料として用いることのできるォレフィンと得られるォレフィン の例を挙げると、エチレンと 2—ブテンとからプロピレン、エチレンと 2—ペンテンとから プロピレンと 1ーブテン、エチレンと 2—へキセンとからプロピレンと 1 ペンテン、ェチ レンと 2 メチル 2 ブテンとからプロピレンとイソブテン、エチレンと 4 メチル 1 —ペンテンと力もプロピレンと 3—メチル 1—ブテンなどを挙げることができ、また可 逆反応であるためこれら例示した反応の逆反応も有効である。
[0025] これら反応原料は、ォレフィンのみから構成されるのが好まし 、が、メタン、ェタン、 プロパン、 n—ブタン、イソブタン、ペンタン、へキサンなどのアルカンを含有していて も力まわない。また、 1—ブテン、 1—ペンテン、 1—へキセンなどの末端ォレフィンは 、塩基性の共触媒により内部ォレフィンへ異性ィ匕するため、任意の量含有していても よい。エチレンと 2—ブテンとからプロピレンを得る場合に共存するイソブテンは、生 成したプロピレンと反応し、 2—メチル 2—ブテンを与えるので収率的には好ましく な 、が、反応自身を阻害するものではな 、ので任意の量含有して ヽても力まわな!/、。
[0026] 本発明で使用するメタセシス触媒は、公知技術と同様、水分、炭酸ガス、メルカプト 化合物、アルコール、カルボ-ルイ匕合物によりその活性を著しく損なうので、これら原 料中の不純物を除去する必要がある。これらの除去方法は、公知の蒸留、吸着、抽 出、洗浄などいずれの方法でもかまわない。
2種類以上のォレフィンを原料として本発明を実施する場合、ぉ互 、のォレフインの 使用量 (重量比)は特に限定されないが、片方がエチレンの場合、これを過剰とする ことが好ましい。たとえば、エチレンと 2—ブテンとからプロピレンを得る反応の場合、 2 ブテンに対するエチレンの量比は 0.1〜50が好ましぐさらに好ましくは 0.5から 5 程度である。エチレンの量比が少ないとブテン同士の好ましくない反応が併発し、ま た量比が高すぎると未反応エチレン回収のエネルギーが増大すると共に反応器自身 の大型化を招く。 2種以上のォレフィンを用いる場合、量比が大きいォレフィンを同時 に全量カ卩えてもよいし、反応器の入り口の他に反応器中段などにフィード口を設け、 分割して供給してもよい。
[0027] 反応温度についても本発明では特に限定されることはないが、好ましくは 100〜50 0°C、さらに好ましくは 130〜350°Cの範囲である。反応温度が極端に低すぎると反 応速度が低下し、反応生成物の生産性が低下する。一方、反応温度が極端に高す ぎると好まし力 ざる副反応などが進行し、副成生物の増大や触媒の劣化が促進さ れ経済的でない。
[0028] 反応は減圧、加圧および常圧の 、ずれの状態で実施することも可能である。反応 効率 (単位体積当たりの反応効率)の観点から、余り低い圧力で実施することは好ま しくない。通常、好ましい圧力範囲は、 0. 1〜200気圧であり、さらに好ましくは 0. 5 〜100気圧である。無論、本発明はこれらの圧力範囲に限定されない。
また本発明を実施するに際し、使用する触媒量は特に限定されないが、たとえば、 反応を固定床流通装置を用いて行う場合、原料の時間あたりの供給量 (重量)を、共 触媒を含まな 、タングステンなどを含む触媒のみの重量で割った値、すなわち WHS Vで示すと、 l〜2000Zhの範囲であることが望ましぐより好ましくは 2〜: LOOOZh の範囲が好適である。 WHSVが低すぎると生成した目的とするォレフィンが逐次的 なメタセシス反応を起し好ましくな 、副生物を与え、また WHS Vが高すぎると充分な 反応転ィ匕率を得ることができな 、。
[0029] 本発明を実施するに当たり、反応系内に触媒および反応試剤に対して不活性な溶 媒もしくは気体を添加して、希釈した状態で行うことも可能である。具体的には、前述 のメタン、ェタン、プロパン、ブタンなどのアルカンや、窒素、ヘリウムなどの不活性気 体を希釈剤として使用することができる。
本発明を実施するに際して、その方法はバッチ式、セミバッチ式または連続流通式 のいずれの方法においても実施することが可能である。また液相、気相、気—液混合 相の、いずれの形態においても実施することが可能である。好ましくは反応効率の観 点から、気相反応で実施することが推奨される。触媒の充填方式としては、固定床、 流動床、懸濁床、棚段固定床など種々の方式が採用され、いずれの方式で実施して も差し支えない。
[0030] 反応後、反応生成物を前記触媒などから公知の分離方法によって、分離回収する ことができる。目的生成物であるォレフィンは、反応混合物より蒸留、抽出、吸着など の公知の方法によって分離され、また、未反応原料は回収して、反応系へリサイクル して再使用することもできる。
本発明を実施する際には、触媒および共触媒を公知の方法にて脱水して用いるこ とが望ましい。固定床反応方式の場合には、触媒および共触媒を充填した反応器へ 窒素、ヘリウムなどの不活性ガスを流通させながら、 300°C以上の温度にて 10分以 上保持すればよい。特に、触媒が含有する金属元素がタングステンやモリブデンの 場合にはこの後、一酸ィ匕炭素や水素のような還元性ガスを 300°C以上の温度におい て 10分以上流通する還元処理を行い、再度不活性ガスを 300°C以上の温度にて 10 分以上流通し、所定の反応温度に設定すればよい。本反応は水素を共存させること を特徴とするので、還元処理に水素を用いた場合、それが残留していても差し支えな い。
[0031] ある経過時間において触媒活性が低下する場合に、再生を行って触媒の活性を回 復することができる。一般的には、窒素ガスで吸着したォレフィンをパージし、その後 300°C以上の温度において空気または窒素希釈空気で酸ィ匕し、金属がタングステン やモリブデンの場合、さらにこの後、水素や一酸化炭素などの還元性ガスで還元処 理を行って再使用することができる。
[0032] ォレフィンの生産量を維持するために、反応器を 2つまたは 3つ並列に並べ、一つ の反応器が再生している間に、残った 1つまたは 2つの反応器でメタセシス反応を実 施するメリーゴーランド方式をとつても力まわない。さらに反応器が 3つある場合、他の 反応器 2つを直列につなぎ、生産量の変動を少なくする方法をとつてもよい。また流 動床流通反応方式や移動床反応方式にて実施する場合には、反応器から連続的ま たは断続的に、一部またはすベての触媒を抜き出し、相当する分を補充することによ り一定の活性を維持することが可能である。 [0033] ノ ツチまたは連続反応において懸濁床方式であれば、同様に触媒を分離、回収し 、必要であるならば再生して使用することができる。
実施例 1
[0034] メタタングステン酸アンモ-ゥム(Aldrich社) 0.83gを蒸留水 100ml〖こ溶解させ、 富士シリシァ社製シリカゲル Q— 10 (表面積 300m2/g、細孔容積 lml/g、 150〜5 00 ^ m) 5gを懸濁させ、室温で 30分攪拌した後、エバポレーターで水を留去した。 得られた白色固体を空気雰囲気下 550°Cで 6時間焼成した。この触媒を WQ— 10と する。 2gの WQ— 10と 3.5gのハイド口タルサイト(協和化学社製、キヨ一ワード 500、 500 m)とを物理的に混合し、外径 12mm、長さ 40cmの SUS製反応器へ充填し、 上下を α アルミナボールで充填したものをブテン精製塔とした。次に、 O.lgの WQ 10と 0.3gのハイド口タルサイトとを物理的に混合し、外径 10mm、長さ 30cmの SU S製反応器の中心へ充填し、上下を α—アルミナボールで充填したものを反応器とし た。
[0035] 反応器上部から常圧窒素ガス 50ml/minを流通し、下部カゝらでたガスを、ブテン精 製塔の下部から上部へ流しながら、反応器、ブテン精製塔ともに 550°Cに昇温し、 1 時間保持した。次いで、常圧窒素ガス 50mlZminに常圧水素ガス 50mlZminをカロ えた混合ガスを同温度で 30分流通させた。再度常圧窒素ガス 50mlZminを流しな がら、ブテン精製塔を 50°Cに、反応器を 250°Cに降温した。
[0036] 使用前に γ アルミナ (住友ィ匕学社製 NKHD— 32)上へ蒸留したトランス 2 ブ テン (純度 99%、高千穂化学工業製)ガスを、常圧で 2. 3mlZminの割合でブテン 精製塔の下部から流通させ、上部から得られた精製トランス— 2 ブテンを、常圧で 6 . lmlZminの割合で供給されるエチレンおよび常圧で 20mlZminの割合で供給さ れる水素と合一し、反応器の上部力 ガス状にて供給した。反応器下部から得られる 混合ガスを、ガスクロマトグラフィーにてオンライン分析を行った。反応開始 3時間後 の組成より、供給したトランス一 2—ブテンの量から、出口ガス中のトランス一 2—ブテ ン、シス一 2 ブテンおよび 1—ブテンを合計した量を差し引いたブテン転ィ匕率は、 7 5%であった。このときのブテン基準のプロピレン選択率は 97%で、他に少量のペン テンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Z プロピレン比は 0.085であった。さらに、この後 12時間反応を «続した力 転化率の 低下は見られなかった。
実施例 2
[0037] 実施例 1に記載の方法にお!、て、反応器へ供給する常圧水素ガスの量を 5mlZmi nとしたこと以外は同様に反応を行った。反応開始 3時間後の出口ガスを分析するこ とにより得られたブテン転ィ匕率は、 75%であった。このときのブテン基準のプロピレン 選択率は 98%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプ 口パンが生成しており、プロパン Zプロピレン比は 0.0094であった。さらに、この後 1 2時間反応を継続した力 転ィ匕率の低下は見られな力つた。
実施例 3
[0038] 実施例 1に記載の方法にお!、て、反応器へ供給する常圧水素ガスの量を 2mlZmi nとしたこと以外は同様に反応を行った。反応開始 3時間後の出口ガスを分析するこ とにより得られたブテン転ィ匕率は、 75%であった。このときのブテン基準のプロピレン 選択率は 98%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプ 口パンが生成しており、プロパン Zプロピレン比は 0.0063であった。さらに、この後 1 2時間反応を継続した力 転ィ匕率の低下は見られな力つた。
実施例 4
[0039] 実施例 3に記載の方法において、反応器の温度を 200°Cとしたこと以外は同様に 反応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブテン転 化率は、 75%であった。このときのブテン基準のプロピレン選択率は 98%で、他に少 量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.0032であった。さらに、この後 12時間反応を継続したが、 転化率の低下は見られなかった。
[0040] [表 1] WQ- 1 0およびハイドロタノレサイトを用いるプロ
Figure imgf000013_0001
Figure imgf000013_0002
実施例 5
[0041] 実施例 3に記載の方法において、反応器へ充填する共触媒の種類を酸化マグネシ ゥム(協和化学 キヨ一ヮマグ 150、圧縮成型後 150〜500 mに分級)へ変えたこと 以外は同様に反応を行った。反応開始 3時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 78%であった。このときのブテン基準のプロピレン選択率は 9 8%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.011であった。さらに、この後 12時間反応を 継続したが、転化率の低下は見られなかった。
実施例 6
[0042] 実施例 5に記載の方法において、反応器の温度を 200°Cとしたこと以外は同様に 反応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブテン転 化率は、 78%であった。このときのブテン基準のプロピレン選択率は 98%で、他に少 量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.0069であった。さらに、この後 12時間反応を継続したが、 転化率の低下は見られなかった。
実施例 7
[0043] 実施例 3に記載の方法において、反応器へ充填する共触媒の種類を酸化カルシゥ ム(和光純薬、圧縮成型後 150〜500/z mに分級)へ変えたこと以外は同様に反応 を行った。反応開始 1時間後の出口ガスを分析することにより得られたブテン転化率 は、 78%であった。このときのブテン基準のプロピレン選択率は 98%で、他に少量の ペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパ ン/プロピレン比は 0.020であった。
実施例 8
[0044] 実施例 7に記載の方法において、反応器の温度を 200°Cとしたこと以外は同様に 反応を行った。反応開始 1時間後の出口ガスを分析することにより得られたブテン転 化率は、 76%であった。このときのブテン基準のプロピレン選択率は 98%で、他に少 量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.0093であった。
実施例 9
[0045] 実施例 3に記載の方法において、反応器へ充填する共触媒の種類を酸化イットリウ ム(硝酸イットリウムをアンモニア水へカ卩え、得られた沈殿を 550°Cにて焼成し、圧縮 成型後、 150〜500 /ζ πιに分級)へ変えたこと以外は同様に反応を行った。反応開 始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 77%であった 。このときのブテン基準のプロピレン選択率は 98%で、他に少量のペンテンが生成し ていた。また、プロピレンと同時にプロパンが生成しており、プロパン Ζプロピレン比 は 0.0024であった。さらに、この後 12時間反応を継続した力 転化率の低下は見ら れなかった。
実施例 10
[0046] 実施例 3に記載の方法にぉ ヽて、反応器へ充填する共触媒の種類を酸化亜鉛 (和 光純薬、圧縮成型後、 150〜500 /ζ πιに分級)へ変え、さらに反応器の温度を 200 °Cとしたこと以外は同様に反応を行った。反応開始 1時間後の出口ガスを分析するこ とにより得られたブテン転ィ匕率は、 32%であった。このときのブテン基準のプロピレン 選択率は 90%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプ 口パンが生成しており、プロパン Zプロピレン比は 0.0013であった。
[0047] [表 2] WQ- 1 0と種々の共 Λ蝶とを用いるプロピレン合
Figure imgf000015_0001
実施例 11
[0048] γ—アルミナ(住友ィ匕学社製 NKHD— 32、表面積 250m2/g) 3gを、水酸化カルシ ゥム(和光純薬) 0. 40gを蒸留水 100mlに溶解させた溶液へ懸濁させ、室温にて 30 分攪拌した後、エバポレーターで水を留去した。得られた白色固体を、空気雰囲気 下 550°Cで 6時間焼成した。得られた γ—アルミナ担持 CaOのうち 0.3gを O. lgの W Q— 10と物理的に混合し、外径 10mm、長さ 30cmの SUS製反応器の中心へ充填 し、上下を α—アルミナボールで充填したものを反応器とした。
[0049] 上記の反応器を用いたこと以外は、実施例 4に記載と同様の方法で反応を行った。
反応開始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 74% であった。このときのブテン基準のプロピレン選択率は 97%で、他に少量のペンテン が生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Ζプロ ピレン比は 0.0018であった。さらに、この後 12時間反応を継続した力 転化率の低 下は見られなかった。
実施例 12
[0050] 実施例 11において γ —アルミナへ担持する水酸化カルシウムの量を 0.2gとしたこ よ以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と同様の方法で 反応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブテン転 化率は、 77%であった。このときのブテン基準のプロピレン選択率は 97%で、他に少 量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン/プロピレン比は 0.0025であった。さらに、この後 12時間反応を継続したが、 転化率の低下は見られなかった。
実施例 13
[0051] 実施例 11において γ —アルミナへ担持する水酸化カルシウムの量を O.lgとしたこ と以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と同様の方法で 反応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブテン転 化率は、 75%であった。このときのブテン基準のプロピレン選択率は 96%で、他に少 量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.0022であった。さらに、この後 12時間反応を継続したが、 転化率の低下は見られなかった。
実施例 14
[0052] 実施例 11にお 、て γ —アルミナへ担持する化合物を硝酸マグネシウム (和光純薬 ) 0.55gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 5に記載と 同様の方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 16%であった。このときのブテン基準のプロピレン選択率は 8 7%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.0036であった。さらに、この後 12時間反応 を継続した力 転化率の低下は見られなかった。
実施例 15
[0053] 実施例 11において γ—アルミナへ担持する化合物を硝酸亜鉛 (和光純薬) 0.35g としたこと以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と同様の 方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブ テン転化率は、 66%であった。このときのブテン基準のプロピレン選択率は 94%で、 他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生成して おり、プロパン Zプロピレン比は 0.0016であった。さらに、この後 12時間反応を継続 したが、転化率の低下は見られなかった。 [0054] 実施例 11において γ —アルミナへ担持する化合物を硝酸亜鉛 (和光純薬) 0.35g および水酸ィ匕ナトリウム (和光純薬) 0.038gとしたこと以外は同様に共触媒の調製を 行い、それ以外は実施例 4に記載と同様の方法で反応を行った。反応開始 3時間後 の出口ガスを分析することにより得られたブテン転ィ匕率は、 76%であった。このときの ブテン基準のプロピレン選択率は 95%で、他に少量のペンテンが生成していた。ま た、プロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.0021 であった。さら〖こ、この後 12時間反応を継続した力 転化率の低下は見られなかった 実施例 17
[0055] 実施例 11において γ —アルミナへ担持する化合物を水酸化ナトリウム (和光純薬) 0.076gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と 同様の方法で反応を行った。反応開始 1時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 75%であった。このときのブテン基準のプロピレン選択率は 9 8%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.0033であった。
実施例 18
[0056] 実施例 11において γ —アルミナへ担持する化合物を水酸化ナトリウム (和光純薬) 0.038gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 3に記載と 同様の方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 76%であった。このときのブテン基準のプロピレン選択率は 9 7%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.001であった。さらに、この後 12時間反応を 継続したが、転化率の低下は見られなかった。
[0057] [表 3] WQ— 1 0と種々のアルミナ担持共角蝶とを用いるプロピレン合
Figure imgf000018_0001
(*) アルミナ 3 gに文 t "る使用量
実施例 19
[0058] 実施例 18において反応温度を 200°Cとしたこと以外は同様に共触媒の調製を行い 、それ以外は実施例 4に記載と同様の方法で反応を行った。反応開始 3時間後の出 口ガスを分析することにより得られたブテン転ィ匕率は、 78%であった。このときのブテ ン基準のプロピレン選択率は 98%で、他に少量のペンテンが生成していた。また、プ ロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.00081であ つた。さらに、この後 12時間反応を継続したが、転ィ匕率の低下は見られな力つた。 実施例 20
[0059] 実施例 18にお 、て反応温度を 175°Cとしたこと以外は同様に共触媒の調製を行!ヽ 、それ以外は実施例 4に記載と同様の方法で反応を行った。反応開始 3時間後の出 口ガスを分析することにより得られたブテン転ィ匕率は、 74%であった。このときのブテ ン基準のプロピレン選択率は 97%で、他に少量のペンテンが生成していた。また、プ ロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.00053であ つた。さらに、この後 12時間反応を継続したが、転化率の低下は見られなかった。 実施例 21
[0060] 実施例 18にお!/、て反応温度を 150°Cとしたこと以外は同様に共触媒の調製を行レヽ 、それ以外は実施例 4に記載と同様の方法で反応を行った。反応開始 1時間後の出 口ガスを分析することにより得られたブテン転ィ匕率は、 30%であった。このときのブテ ン基準のプロピレン選択率は 92%で、他に少量のペンテンが生成していた。また、プ ロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.0029であつ た。
実施例 22
[0061] 実施例 11において γ —アルミナへ担持する化合物を水酸化ナトリウム (和光純薬) 0.019gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と 同様の方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 78%であった。このときのブテン基準のプロピレン選択率は 9 8%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.0067であった。さらに、この後 12時間反応 を継続した力 転化率の低下は見られなかった。
実施例 23
[0062] 実施例 19において γ —アルミナに変えて、硝酸ジルコニウムをアンモニア水へ加 えて得られたゲル状の水酸ィ匕ジルコニウムを水洗後、 100°Cにて乾燥して得られた 水酸ィ匕ジルコニウムを用いたこと以外は同様に共触媒の調製を行 ヽ、得られたジル コ-ァ担持 Na 0を共触媒として用 、たこと以外は実施例 4に記載と同様の方法で反
2
応を行った。反応開始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕 率は、 78%であった。このときのブテン基準のプロピレン選択率は 98%で、他に少量 のペンテンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロ パン Zプロピレン比は 0.0045であった。さらに、この後 12時間反応を継続した力 転 化率の低下は見られな力つた。
実施例 24
[0063] 実施例 23において反応温度を 175°Cとしたこと以外は同様に共触媒の調製を行い 、それ以外は実施例 4に記載と同様の方法で反応を行った。反応開始 1時間後の出 口ガスを分析することにより得られたブテン転ィ匕率は、 58%であった。このときのブテ ン基準のプロピレン選択率は 94%で、他に少量のペンテンが生成していた。また、プ ロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.0015であつ た。
[0064] [表 4] WQ- 1 0と種々の担体に担持した N a 20共纖とを用いるプロピレン合 fi¾SJS
Figure imgf000020_0001
(*) 担体 3 gに文 t る fiffl量
実施例 25
[0065] 実施例 11において γ —アルミナへ担持する化合物を硝酸カリウム (和光純薬) 0.0 64gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 3に記載と同 様の方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得られ たブテン転ィ匕率は、 76%であった。このときのブテン基準のプロピレン選択率は 98 %で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.0020であった。さらに、この後 12時間反応 を継続した力 転化率の低下は見られなかった。
実施例 26
[0066] 実施例 25において γ—アルミナへ担持する化合物の量を 0.128gとしたこと以外は 同様に共触媒の調製を行い、それ以外は実施例 3に記載と同様の方法で反応を行 つた。反応開始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 7 7%であった。このときのブテン基準のプロピレン選択率は 96%で、他に少量のペン テンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Z プロピレン比は 0.00057であった。さらに、この後 12時間反応を «続した力 転ィ匕率 の低下は見られな力つた。
実施例 27
[0067] 実施例 11にお 、て γ —アルミナへ担持する化合物を硝酸セシウム (和光純薬) 0.0 41gとしたこと以外は同様に共触媒の調製を行い、それ以外は実施例 4に記載と同 様の方法で反応を行った。反応開始 3時間後の出口ガスを分析することにより得られ たブテン転ィ匕率は、 76%であった。このときのブテン基準のプロピレン選択率は 98 %で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロパンが生 成しており、プロパン Zプロピレン比は 0.00095であった。さらに、この後 12時間反 応を継続した力 転化率の低下は見られなかった。
実施例 28
[0068] 実施例 27において γ—アルミナへ担持する化合物の量を 0.082gとしたこと以外は 同様に共触媒の調製を行い、それ以外は実施例 4に記載と同様の方法で反応を行 つた。反応開始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 7 5%であった。このときのブテン基準のプロピレン選択率は 97%で、他に少量のペン テンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Z プロピレン比は 0.0013であった。さらに、この後 12時間反応を継続した力 転ィ匕率 の低下は見られな力つた。
[0069] [表 5]
WQ- 1 0と種々のアルミナ担持共歸某とを用いるプロピレン合)
Figure imgf000021_0001
(*) ァ ミナ 3 gに ¾f る .ffiffl量 実施例 29
[0070] 実施例 4にお 、て用 、る反応原料をトランス - 2-ブテンから 1—ブテン (高千穂化 学工業製、純度 99. 5%)に変えたこと以外は、同様の方法で反応を行った。反応開 始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 76%であった 。このときのブテン基準のプロピレン選択率は 98%で、他に少量のペンテンが生成し ていた。また、プロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比 は 0.0041であった。さらに、この後 12時間反応を継続した力 転化率の低下は見ら れなかった。 [0071] [表 6] 種々 のブテンを用 いる, 2 0 0で における W Q _ 1 0 及びハイ ド ロ夕ルサイ ト を用いる プロ ピレ ン合成反応
Figure imgf000022_0001
実施例 30
[0072] 実施例 3に示す方法で反応を行った。反応開始 3時間後の出口ガスを分析すること により得られたブテン転ィ匕率は、 75%であった。このときのブテン基準のプロピレン選 択率は 98%で、他に少量のペンテンが生成していた。また、プロピレンと同時にプロ パンが生成しており、プロパン Zプロピレン比は 0.0063であった。反応開始 3時間後 に反応器へ水素の供給を停止し、そのまま反応を継続した。停止後 1時間後の出口 ガスを分析することにより得られたブテン転ィ匕率は、 48%に低下した。さらに、水素ガ ス供給停止後 5時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 48 %のままであった。再度反応器への水素ガスの供給を開始し、反応を継続した。水 素ガス供給再開後 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は 、 72%へ向上した。さらに、水素ガス供給再開後 8時間後の出口ガスを分析すること により得られたブテン転ィ匕率は、 74%であった。
[0073] [表 7]
2 5 0 t における水素添加のス ウイ ヅチング実験 (実施例 3 0 J
Figure imgf000022_0002
実施例 31
メタモリブデン酸アンモ-ゥム (Aldrich社) 0.49gを蒸留水 100mlに溶解させ、富 士シリシァ社製シリカゲル Q— 15 (表面積 200m2Zg、細孔容積 lml/g、 150〜500 m) 5gを懸濁させ、室温で 30分攪拌した後、エバポレーターで水を留去した。得ら れた白色固体を空気雰囲気下 550°Cにて 6時間焼成した。この触媒を MoQ— 15と する。 2gの WQ— 10と 3.5gのハイド口タルサイト(協和化学社製、キヨ一ワード 500、 500 m)とを物理的に混合し、外径 12mm、長さ 40cmの SUS製反応器へ充填し、 上下を α—アルミナボールで充填したものをブテン精製塔とした。次に、 O.lgの Mo Q— 15と 0.3gのハイド口タルサイトとを物理的に混合し、外径 10mm、長さ 30cmの S us製反応器の中心へ充填し、上下をひ—アルミナボールで充填したものを反応器 とした。
[0075] 反応器の温度を 300°Cとしたこと以外は、実施例 3と同様に反応を行った。反応開 始 1時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 47%であった 。このときのブテン基準のプロピレン選択率は 89%で、他に少量のペンテンが生成し ていた。また、プロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比 は 0.015であった。
実施例 32
[0076] 実施例 31において反応温度を 350°Cとしたこと以外は、同様の方法で反応を行つ た。反応開始 1時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 53 %であった。このときのブテン基準のプロピレン選択率は 90%で、他に少量のペンテ ンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Zプ ロピレン比は 0.0014であった。
[0077] [表 8]
Mo Q— 1 5とハイドロタノ ィトとを用いるプロピレン合
Figure imgf000023_0001
実施例 33
実施例 1において、 0.6gの WQ—10と 2.4gのハイド口タルサイトとを物理的に混合 し、外径 18mm、長さ 400mmの SUS製反応器の中心に充填し、上下を α—アルミ ナボールで充填したものを反応器とした。反応器上部から常圧窒素ガス lOOml/min を流通し、下部からでたガスを、ブテン精製塔の下部力も上部へ流しながら、反応器 、ブテン精製塔ともに 500°Cへ昇温し、 1時間保持した。ついで、常圧水素ガス 100 mlZminを同温度で 120分流通させた。常圧窒素ガス 50mlZminおよび常圧水素 ガス 50mlZminを流しながら、ブテン精製塔を 50°Cに、反応器を 200°Cに降温した
[0079] 使用前に γ アルミナ (住友ィ匕学社製 NKHD— 32)上へ蒸留した液化トランス 2 ーブテン (純度 99%、高千穂化学工業製)を、プランジャーポンプを用いて 0. 10g/ minの割合でブテン精製塔の下部へ流通させ、上部から得られた液化精製トランス 2 ブテンを、 3. 5MPaにカロ圧され 64. 5mlZminの割合で供給されるエチレン および 3. 5MPaに加圧され 7.0mlZminの割合で供給される水素と合一し、 200°C に加熱した予熱層を通した後に、反応器の上部力もガス状で供給した。反応器下部 力も得られる混合ガスが背圧弁を経て常圧となった状態で、ガスクロマトグラフィーで オンライン分析を行った。反応開始 10時間後の組成より、供給したトランス— 2—ブテ ンの量から、出口ガス中のトランスー2—ブテン、シス 2—ブテンおよび 1ーブテンを 合計した量を差し引いたブテン転ィ匕率は、 71%であった。このときのブテン基準のプ ロピレン選択率は 90%で、他に少量のペンテンおよびへキセンが生成していた。ま た、プロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.01であ つた。さらに、この後 12時間反応を継続した力 ブテン転ィ匕率の低下は見られなかつ た。
実施例 34
[0080] 実施例 33において反応器の温度を 175°Cとしたこと以外は、同様の方法で反応を 行った。反応開始 10時間後の出口ガスを分析することにより得られたブテン転ィ匕率 は、 61%であった。また、プロピレン選択率は 92%であった。他に少量のペンテンお よびへキセンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.01であった。さらに、この後 12時間反応を継続した力 ブ テン転ィ匕率の低下は見られな力つた。
実施例 35 [0081] 実施例 33において、液化トランス 2 ブテンを 1. OMPaに加圧されたエチレンお よび 1. OMPaに加圧された水素に合一させたこと以外は、同様の方法で反応を行つ た。反応開始 10時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 7 1%であった。また、プロピレン選択率は 91%であった。他に少量のペンテンおよび へキセンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパ ン Zプロピレン比は 0.0026であった。さらに、この後 12時間反応を継続した力 ブテ ン転ィ匕率の低下は見られな力つた。
実施例 36
[0082] 実施例 33において、液化トランス 2 ブテンを 0.5MPaに加圧されたエチレンお よび 0.5MPaに加圧された水素に合一させたこと以外は同様の方法で反応を行った 。反応開始 10時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 72 %であった。また、プロピレン選択率は 92%であった。他に少量のペンテンおよびへ キセンが生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Zプロピレン比は 0.0012であった。さらに、この後 12時間反応を継続した力 ブテン 転化率の低下は見られなかった。
[0083] [表 9]
加圧下における W Q — 1 0及びハイ ドロタルサイ トを用いるプロピレ ン合成 反応
Figure imgf000025_0001
実施例 37
[0084] y—アルミナ (住友ィ匕学社製 NKHD— 32、表面積 250m2/g) 15gを、水酸化ナトリ ゥム(和光純薬) 0.08gを蒸留水 500mlに溶解させた溶液に懸濁させ、室温で 30分 攪拌した後、エバポレーターにて水を留去した。得られた白色固体を、空気雰囲気 下 550°Cにて 6時間焼成した。得られた固体 2.4gをノヽイド口タルサイトに代えて用い 、反応温度を 175°Cとしたこと以外は実施例 33と同様の方法で反応を行った。反応 開始 10時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 69%であ つた。また、プロピレン選択率は 94%であった。他に少量のペンテンおよびへキセン が生成していた。また、プロピレンと同時にプロパンが生成しており、プロパン Zプロ ピレン比は 0.0066であった。さらに、この後 12時間反応を継続した力 ブテン転ィ匕 率の低下は見られな力つた。
[0085] [表 10]
加圧下における W Q— 1 0 及びアルミ ナ担持 N a 2 O を用 いる プロ ピ レ ン合 成反応
Figure imgf000026_0001
実施例 38
[0086] 実施例 1に記載の触媒 WQ— 10を 0. lgとハイド口タルサイト 0.5gとを物理的に混 合し、外径 10mm、長さ 30cmの SUS製反応器の中心へ充填し、上下を α—アルミ ナボールで充填したものを反応器とした。一方、 2gの WQ— 10と 3.5gのハイド口タル サイト (協和化学社製、キヨ一ワード 500、 500 m)とを物理的に混合し、外径 12m m、長さ 40cmの SUS製反応器へ充填し、上下を α アルミナボールで充填したも のをブテン精製塔とした。反応器上部から常圧窒素ガス 50ml/minを流通し、下部か らでたガスを、ブテン精製塔の下部から上部へ流しながら、反応器、ブテン精製塔と もに 550°Cに昇温し、 1時間保持した。次いで、常圧窒素ガス 50mlZminに常圧水 素ガス 50mlZminをカ卩えた混合ガスを同温度で 30分流通させた。再度常圧窒素ガ ス 50ml/minを流しながら、ブテン精製塔を 50°Cに、反応器を 200°Cに降温した。
[0087] 使用前に γ アルミナ (住友ィ匕学社製 NKHD— 32)上へ蒸留した 1ーブテン (純 度 99%、 1, 3 ブタジエンを 230ppm含有、高千穂化学工業製)ガスを、常圧で 8m lZminの割合でブテン精製塔の下部カゝら流通させた。上部から得られた精製 1—ブ テン中の 1, 3 ブタジエン濃度は Oppmであった。このブタジエンを含有しない 1 ブテンを、常圧で 12mlZminの割合で供給されるエチレンおよび常圧で lmlZmin の割合で供給される水素と合一し、反応器の上部からガス状で供給した。反応器下 部から得られる混合ガスを、ガスクロマトグラフィーでオンライン分析を行った。反応開 始 2時間後の組成より、供給した 1ーブテンの量から、出口ガス中のトランスー2—ブ テン、シス 2—ブテンおよび 1 ブテンを合計した量を差し引 ヽたブテン転ィ匕率は 、 17.5%であった。また、プロピレンと同時にプロパンが生成しており、プロパン Zプ ロピレン比は 0.00022であった。
実施例 39
[0088] 実施例 38において、反応温度を 225°Cとしたこと以外は同様に反応を行った。反 応開始 3時間後の組成より、供給した 1ーブテンの量から、出口ガス中のトランス 2 ブテン、シス 2—ブテンおよび 1 ブテンを合計した量を差し弓 I Vヽたブテン転ィ匕 率は、 69%であった。また、プロピレン選択率は 94%であった。他に少量のペンテン およびへキセンが生成していた。また、プロピレンと同時にプロパンが生成しており、 プロパン Zプロピレン比は 0.00047であった。さらに、この後 12時間反応を継続した 力 ブテン転ィ匕率の低下は見られな力つた。
実施例 40
[0089] 実施例 38において、反応温度を 250°Cとしたこと以外は同様に反応を行った。反 応開始 3時間後の組成より、供給した 1ーブテンの量から、出口ガス中のトランス 2 ブテン、シス 2—ブテンおよび 1 ブテンを合計した量を差し弓 I Vヽたブテン転ィ匕 率は、 69%であった。また、プロピレン選択率は 94%であった。他に少量のペンテン およびへキセンが生成していた。また、プロピレンと同時にプロパンが生成しており、 プロパン Zプロピレン比は 0.00040であった。さらに、この後 12時間反応を継続した 力 ブテン転ィ匕率の低下は見られな力つた。
実施例 41
[0090] 実施例 38にお ヽてブテン精製塔の吸着剤を γ アルミナへ変更したこと以外は同 様に反応を行った。このとき反応器へ供給される 1—ブテンは、 230ppmの 1, 3 ブ タジェンを含有していた。反応開始 3時間後の組成より、供給した 1ーブテンの量から 、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1—ブテンを合計した 量を差し引いたブテン転ィ匕率は、 21%であった。 実施例 42
[0091] 実施例 41において反応温度を 225°Cとしたこと以外は同様に反応を行った。反応 開始 3時間後の組成より、供給した 1—ブテンの量から、出口ガス中のトランス— 2— ブテン、シス一 2—ブテンおよび 1 -ブテンを合計した量を差し弓 I V、たブテン転ィ匕率 は、 70%であった。また、プロピレン選択率は 94%であった。他に少量のペンテンお よびへキセンが生成していた。また、プロピレンと同時にプロパンが生成しており、プ 口パン Zプロピレン比は 0.00036であった。
実施例 43
[0092] 実施例 41において反応温度を 250°Cとしたこと以外は同様に反応を行った。反応 開始 3時間後の組成より、供給した 1—ブテンの量から、出口ガス中のトランス— 2— ブテン、シス一 2—ブテンおよび 1 -ブテンを合計した量を差し弓 I V、たブテン転ィ匕率 は、 70%であった。また、プロピレン選択率は 94%であった。他に少量のペンテンお よびへキセンが生成して ヽた。
[0093] [表 11]
プ夕 ェンを 2 3 0 p p m含有する 原料を用いる W Q 1 0 及びハイ ド ロ タ ルサイ ト を用いるプロ ピレン合成反応
Figure imgf000028_0001
実施例 44
[0094] 実施例 38において反応器へ充填する触媒を WQ— 10、 0. lgおよび実施例 18で 調製した γ アルミナ担持 Na 0、 0. 5gに変えたこと以外は同様にして 200°Cにて
2
反応を行った。反応開始 3時間後の組成より、供給した 1ーブテンの量から、出口ガ ス中のトランス 2—ブテン、シス 2—ブテンおよび 1 ブテンを合計した量を差し 引いたブテン転ィ匕率は、 69%であった。また、プロピレン選択率は 93%であった。他 に少量のペンテンおよびへキセンが生成していた。また、プロピレンと同時にプロパ ンが生成しており、プロパン Zプロピレン比は 0.00021であった。
実施例 45
[0095] 実施例 44にお 、てブテン精製塔の吸着剤を γ アルミナに変更したこと以外は同 様にして反応を行った。このとき反応器へ供給される 1—ブテンは、 230ppmの 1, 3 ブタジエンを含有していた。反応開始 3時間後の組成より、供給した 1ーブテンの 量から、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1—ブテンを合 計した量を差し引いたブテン転ィ匕率は、 69%であった。また、プロピレン選択率は 93 %であった。他に少量のペンテンおよびへキセンが生成していた。また、プロピレンと 同時にプロパンが生成しており、プロパン Zプロピレン比は 0.00019であった。
[0096] [表 12]
ブタジエンを 2 3 0 p 111含有する原斗を用ぃる^¥(3— 1 0および γ—アルミナ担持
N a zOを用いるプロピレン合成 HIS
Figure imgf000029_0001
実施例 46
[0097] 実施例 41において、 200gの 1—ブテンに 2gの割合で 1,3-ブタジエンを混合した 原料を用いて、 250°Cにて反応を行ったこと以外は同様に反応を行った。このとき反 応器へ供給される 1ーブテンは、 1.04%のブタジエンを含有していた。反応開始 10 時間後の組成より、供給した 1—ブテンの量から、出口ガス中のトランス— 2—ブテン 、シス 2 ブテンおよび 1ーブテンを合計した量を差し引いたブテン転ィ匕率は、 67 %であった。
実施例 47
[0098] 実施例 46において、 275°Cで反応を行ったこと以外は同様に反応を行った。反応 開始 5時間後の組成より、供給した 1—ブテンの量から、出口ガス中のトランス— 2— ブテン、シス一 2—ブテンおよび 1 -ブテンを合計した量を差し弓 I V、たブテン転ィ匕率 は、 68%であった。 実施例 48
[0099] 実施例 46において、 300°Cで反応を行ったこと以外は同様に反応を行った。反応 開始 3時間後の組成より、供給した 1—ブテンの量から、出口ガス中のトランス— 2— ブテン、シス一 2—ブテンおよび 1 -ブテンを合計した量を差し弓 I V、たブテン転ィ匕率 は、 68%であった。
実施例 49
[0100] 実施例 44において、 200gの 1—ブテンに 2gの割合で 1,3-ブタジエンを混合した 原料を用いて、 250°Cで反応を行ったこと以外は同様に反応を行った。このとき反応 器へ供給される 1—ブテンは、 1.04%のブタジエンを含有していた。反応開始 20時 間かけて最高活性へ到達したときの反応器出口の組成より、供給した 1ーブテンの量 から、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1—ブテンを合計し た量を差し引いたブテン転ィ匕率は、 58%であった。このとき、またプロパンの生成は 認められなかった。
実施例 50
[0101] 実施例 49において、 275°Cで反応を行ったこと以外は同様に反応を行った。反応 開始 15時間かけて最高活性へ到達したときの反応器出口の組成より、供給した 1 ブテンの量から、出口ガス中のトランスー2—ブテン、シス 2—ブテンおよび 1ーブ テンを合計した量を差し引いたブテン転ィ匕率は、 68%であった。このとき、またプロパ ンの生成は認められなかった。
実施例 51
[0102] 実施例 49において、 300°Cで反応を行ったこと以外は同様に反応を行った。反応 開始 2時間かけて最高活性へ到達したときの反応器出口の組成より、供給した 1ーブ テンの量から、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1—ブテ ンを合計した量を差し引いたブテン転ィ匕率は、 69%であった。このとき、またプロパン の生成は認められなかつた。
[0103] [表 13] 1, 3—ブタジエンを 1 . 0 4 %含有するプテンを用いたプロピレン合成反応
Figure imgf000031_0001
実施例 52
[0104] 実施例 1においてブテン精製塔の下から順に 2gの WQ-10、次いで 3.5gのハイド口 タルサイト(協和化学社製、キヨ一ワード 500、 500 m)を充填したこと以外は、実施 例 1と同様にしてブテン精製塔を製作した。次いで、反応器へ充填する触媒を、 WQ 10とハイド口タルサイトとの混合物から、 WQ— 10と酸化マグネシウム 15gと水酸化 ナトリウム 80mgとを 200mlの水溶液に懸濁させたのち蒸発乾固、焼成(550°C X 8 時間)して得られる Na OZマグネシアの混合物へ変えたこと以外は同様に充填し、
2
反応器を作成した。次いで、反応器上部から常圧窒素ガス 50ml/minを流通し、下 部からでたガスを、ブテン精製塔の下部カゝら上部へ流しながら、反応器、ブテン精製 塔ともに 550°Cへ昇温し、 1時間保持した。次いで、常圧窒素ガス 50mlZminに常 圧水素ガス 50mlZminをカ卩えた混合ガスを同温度で 30分流通させた。再度常圧窒 素ガス 50mlZminを流しながら、ブテン精製塔を 150°Cに、反応器を 175°Cに降温 した。
[0105] 使用前に γ アルミナ (住友ィ匕学社製 NKHD— 32)上へ蒸留した 1ーブテン (純 度 99%、高千穂化学工業製)ガスを、常圧で 12mlZminの割合でブテン精製塔の 下部から流通させ、上部力も得られた精製 1—ブテンを、常圧で 18mlZminの割合 で供給されるエチレンおよび常圧で 1. 5mlZminの割合で供給される水素と合一し 、反応器の上部カゝらガス状で供給した。反応器下部から得られる混合ガスを、ガスク 口マトグラフィ一でオンライン分析を行った。反応開始 3時間後の組成より、供給した 1 —ブテンの量から、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1— ブテンを合計した量を差し引いたブテン転ィ匕率は、 40%であった。
実施例 53
[0106] 実施例 52において、反応器へ充填する触媒を、 WQ— 10とハイド口タルサイトとの混 合物から、 WQ— 10とハイド口タルサイト(協和化学、キヨ一ワード 500) 15gと水酸ィ匕 ナトリウム 80mgとを 200mlの水溶液に懸濁させたのち蒸発乾固、焼成(550°C X 8 時間)して得られる Na OZハイド口タルサイトの混合物へ変えたこと以外は同様にし
2
て反応を行った。反応器下部から得られる混合ガスを、ガスクロマトグラフィーでオン ライン分析を行った。反応開始 3時間後の組成より、供給した 1—ブテンの量から、出 口ガス中のトランス -2-ブテン、シス一 2—ブテンおよび 1 -ブテンを合計した量を 差し引いたブテン転ィ匕率は、 52%であった。
実施例 54
[0107] 実施例 52において、反応器へ充填する触媒を、 WQ— 10とハイド口タルサイトとの混 合物から、 WQ— 10とアルミナ ·マグネシア固溶体(協和化学、キヨ一ワード 2000) 1 5gと水酸ィ匕ナトリウム 40mgとを 200mlの水溶液に懸濁させたのち蒸発乾固、焼成( 550°C X 8時間)して得られる Na OZアルミナ ·マグネシアの混合物へ変えたこと以
2
外は同様にして反応を行った。反応器下部から得られる混合ガスを、ガスクロマトダラ フィ一でオンライン分析を行った。反応開始 3時間後の組成より、供給した 1ーブテン の量から、出口ガス中のトランス 2—ブテン、シス 2—ブテンおよび 1ーブテンを 合計した量を差し引いたブテン転ィ匕率は、 58%であった。
実施例 55
[0108] 実施例 52において、反応器へ充填する触媒を、 WQ— 10とハイド口タルサイトとの 混合物から、 WQ— 10とアルミナ 'マグネシア固溶体(協和化学、キヨ一ワード 2000) 15gと硝酸カリウム 40mgとを 200mlの水溶液に懸濁させたのち蒸発乾固、焼成(55 0°C X 8時間)して得られる K OZアルミナ ·マグネシアの混合物へ変えたこと以外は
2
同様にして反応を行った。反応器下部から得られる混合ガスを、ガスクロマトグラフィ 一でオンライン分析を行った。反応開始 3時間後の組成より、供給した 1ーブテンの 量から、出口ガス中のトランス一 2—ブテン、シス一 2—ブテンおよび 1—ブテンを合 計した量を差し引いたブテン転ィ匕率は、 62%であった。
[0109] [表 14]
1 7 5。Cにおける WQ_ 1 0と種々の共角蝶とを用いるプロピレン合
Figure imgf000033_0001
[0110] [比較例 1]
実施例 1において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 1 と同じ割合で供給した。反応開始 3時間後の出口ガスを分析することにより得られた ブテン転ィ匕率は、 49%であった。このときのブテン基準のプロピレン選択率は 91% で、他に少量のペンテンが生成していた。
[0111] [比較例 2]
実施例 4において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 1 と同じ割合で供給した。反応開始 3時間後の出口ガスを分析することにより得られた ブテン転ィ匕率は、 1%であった。このときのブテン基準のプロピレン選択率は 89%で 、他に少量のペンテンが生成していた。 [0112] [比較例 3]
比較例 2において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 1 と同じ割合で供給し、反応温度を 300°Cとしたこと以外は、同様な操作を行った。反 応開始 3時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 74%であ つた。このときのブテン基準のプロピレン選択率は 95%で、他に少量のペンテンが生 成していた。
[0113] [比較例 4]
実施例 31において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 1 と同じ割合で供給した。反応開始 1時間後の出口ガスを分析することにより得られた ブテン転ィ匕率は、 8%であった。
[0114] [比較例 5]
実施例 32において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 1 と同じ割合で供給した。反応開始 1時間後の出口ガスを分析することにより得られた ブテン転ィ匕率は、 22%であった。
[0115] [比較例 6]
実施例 33において反応器、ブテン精製塔とも同様に前処理、還元処理、窒素置換 を行った後、窒素流量 lOOmlZminにてブテン精製塔を 50°C、反応器を 200°Cに 降温し、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 34と 同じ割合で供給した。反応開始 10時間後の出口ガスを分析することにより得られたブ テン転化率は、 7.8%であった。
[0116] [比較例 7]
実施例 33において反応器、ブテン精製塔とも同様に前処理、還元処理を行った後 、窒素流量 lOOmlZminにてブテン精製塔を 50°C、反応器を 250°Cに降温し,反応 器に水素を流通させずにエチレンとトランス- 2-ブテンとを実施例 34と同じ割合で供 給した。反応開始 1時間後の出口ガスを分析することにより得られたブテン転ィ匕率は 、 71%であった。
[0117] [表 15]
原料に水素ガスを雜させな 、プロピレン合
Figure imgf000035_0001
[0118] [比較例 8]
実施例 38において反応器、ブテン精製塔とも同様に前処理、還元処理を行った後 、窒素流量 lOOmlZminにてブテン精製塔を 50°C、反応器を 275°Cに降温し、反応 器に水素を流通させずにエチレンと 1—ブテンとを実施例 38と同じ割合で供給した。 反応開始 1時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 44% であった。
[0119] [比較例 9]
比較例 8においてブテン精製塔内の吸着剤を γ—アルミナに変えたこと以外は、同 様に反応器へ水素を共存させること無く反応を行った。このとき反応器へ供給される 1—ブテンは、 230ppmのブタジエンを含有していた。反応開始 1時間後の出口ガス を分析することにより得られたブテン転ィ匕率は、 38%であった。また、反応開始 5時 間から顕著な触媒劣化が見られた。
[0120] [比較例 10]
比較例 8において,反応温度を 300°Cとしたこと以外は、同様に反応器へ水素を共 存させること無く反応を行った。反応開始 1時間後の出口ガスを分析することにより得 られたブテン転ィ匕率は、 61%であった。 [比較例 11]
比較例 9において,反応温度を 300°Cとしたこと以外は、同様に反応器へ水素を共 存させること無く反応を行った。反応開始 1時間後の出口ガスを分析することにより得 られたブテン転ィ匕率は、 47%であった。また、反応開始 5時間から顕著な触媒劣化 が見られた。
[0121] [比較例 12]
実施例 46にお 、て反応温度を 300°Cとし、反応器へ水素ガスを供給しな力つたこ と以外は、同様にしてブタジエンを 1. 04%含有するブテンを原料として反応を行つ た。反応開始 1時間後の出口ガスを分析することにより得られたブテン転ィ匕率は、 17 %であった。
[0122] [比較例 13]
比較例 12において反応温度を 350°Cとしたこと以外は、同様に反応器へ水素ガス を供給せずに反応を行った。反応開始 1時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 68%であった。すなわち、 1. 04%のブタジエンを含有する原 料を用いた場合には、ブタジエンを含有しな 、原料では比較例 10に示したように 30 0°Cにて転ィ匕率が 61%であるのに対し、本例で示すように 350°Cまで反応温度上げ ないと、転ィ匕率が 60%を超えることが困難である。
[0123] [表 16]
ブタジエンを含有する原料を用いる WQ— 1 0およびハイドロタ /1 ^ィトを用いる プロピレン合成
比棚 供給する 1—ブテン中のブタジエン濃度 プテン転化率
8 2 7 5 C 0 4 4 %
9 2 7 5 C 2 3 0 p p m 3 8 %
1 0 3 0 0°C 0 6 1 %
1 1 3 0 0°C 2 3 0 p p m 4 7 %
1 2 3 0 0 C 1 . 0 4 % 1 7 %
1 3 3 5 0°C 1 . 0 4 % 6 8 % [0124] [参考例 1]
実施例 1において反応器、ブテン精製塔とも同様に前処理、還元処理を行い、窒 素置換を行う際に、窒素ガスに代えて窒素 Z水素 = 1Z1の混合ガスを用い、所定の 温度まで降温した、反応器へ水素を流通させずにエチレンとトランス- 2-ブテンとを実 施例 1と同じ割合で供給した。反応開始 1時間後の出口ガスを分析することにより得ら れたブテン転ィ匕率は、 75%であった。反応開始 5時間後出口ガスを分析することによ り得られたブテン転ィ匕率は、 48%であった。さらに、この後 12時間反応を継続したが 、転ィ匕率の変化は見られな力つた。
[0125] このように、反応原料に水素ガスを共存させることにより、従来知られている反応より も低温でメタセシス反応を進行させることができる。また、従来のような高圧を特に必 要とせず低圧でも充分な反応速度を得ることができる。さらには、ブタジエンを含有す るブテンを原料として用いた場合でも、従来のメタセシス触媒と比べ劣化が少な 、と いう大きな特長を有する。特徴的であるのは、水素の供給による反応活性の向上に は応答性がある、すなわち水素供給を一時遮断し再度供給を開始すると、水素添加 による活性向上効果が復活することである。このような挙動は、工業的生産において 、運転安定性に大きく寄与できるものである。また通例ォレフィンと水素ガスを共存さ せるとパラフィンの副生が懸念されるが、予想に反しパラフィンの副生が少なぐ特に 共触媒をアルミナ担持酸ィ匕ナトリウムとした場合、ノ ラフィンの副生は大幅に低減す ることがでさる。

Claims

請求の範囲
[I] 同種または異種のォレフィン同士が反応し、異なる構造のォレフィンを与えるメタセ シス反応にぉ ヽて、反応に水素ガスを共存させて行うォレフィン類の製造方法。
[2] タングステン、モリブデン、レニウム、ニオブ、タンタル、バナジウム、ルテニウム、口 ジゥム、イリジウム、ォスミオム、ニッケルのうち、少なくとも 1種の金属元素を含む触媒 の存在下に行う請求項 1に記載のォレフィン類の製造方法。
[3] 触媒と共に、 la族 (アルカリ金属)、 Ila族 (アルカリ土類金属)、 lib族、 Ilia族の金属 のうち少なくとも 1種の金属元素を含む化合物を共触媒として用いる請求項 2に記載 のォレフイン類の製造方法。
[4] 共触媒である la族 (アルカリ金属)、 Ila族 (アルカリ土類金属)、 lib族、 Ilia族の金属 のうち少なくとも 1種の金属元素を含む化合物が、担体に担持された構造である請求 項 3に記載のォレフィン類の製造方法。
[5] 共触媒に含まれる金属元素の少なくとも 1種がリチウム、ナトリウム、カリウム、マグネ シゥム、カルシウム、イットリウム、亜鉛である請求項 4に記載のォレフィン類の製造方 法。
[6] 共触媒に含まれる金属元素の少なくとも 1種がリチウム、ナトリウムまたはカリウムで ある請求項 5に記載のォレフィン類の製造方法。
[7] 共触媒を担持する担体が、アルミナまたはジルコユアである請求項 4に記載のォレ フィン類の製造方法。
[8] 触媒であるタングステン、モリブデン、レニウム、ニオブ、タンタル、バナジウム、ルテ 二ゥム、ロジウム、イリジウム、ォスミオム、ニッケルのうち少なくとも 1種の金属元素を 含む化合物が、担体に担持された構造である請求項 2に記載のォレフィン類の製造 方法。
[9] 触媒を担持する担体が、シリカ、アルミナ、またはジルコユアである請求項 8に記載 のォレフイン類の製造方法。
[10] 触媒に含まれる金属元素の少なくとも 1種がタングステンである請求項 2に記載のォ レフイン類の製造方法。
[II] エチレンと n—ブテンとを反応させてプロピレンを得る請求項 1に記載のォレフィン 類の製造方法。
反応器に供給される原料をガスに換算した場合、共存させる水素ガスの量が、全体 のガス中の 0. l〜80vol.%である請求項 1ないし 11のいずれか 1項に記載のォレフィ ン類の製造方法。
PCT/JP2006/303493 2005-03-03 2006-02-24 オレフィン類の製造方法 WO2006093058A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06714632A EP1854776A4 (en) 2005-03-03 2006-02-24 PROCESS FOR THE PRODUCTION OF OLEFINES
US11/883,540 US7977522B2 (en) 2005-03-03 2006-02-24 Process of producing olefins
JP2007505905A JP4805252B2 (ja) 2005-03-03 2006-02-24 オレフィン類の製造方法
CN2006800069797A CN101133007B (zh) 2005-03-03 2006-02-24 烯烃类的制造方法
CA002598501A CA2598501A1 (en) 2005-03-03 2006-02-24 Method of producing olefins
IL184851A IL184851A0 (en) 2005-03-03 2007-07-26 Process of producing olefins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005058731 2005-03-03
JP2005-058731 2005-03-03
JP2005-117289 2005-04-14
JP2005117289 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006093058A1 true WO2006093058A1 (ja) 2006-09-08

Family

ID=36941089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303493 WO2006093058A1 (ja) 2005-03-03 2006-02-24 オレフィン類の製造方法

Country Status (11)

Country Link
US (1) US7977522B2 (ja)
EP (1) EP1854776A4 (ja)
JP (1) JP4805252B2 (ja)
KR (1) KR100912882B1 (ja)
CN (1) CN101133007B (ja)
CA (1) CA2598501A1 (ja)
IL (1) IL184851A0 (ja)
MY (1) MY145180A (ja)
RU (1) RU2367644C2 (ja)
TW (1) TWI310030B (ja)
WO (1) WO2006093058A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136280A1 (ja) 2007-04-27 2008-11-13 Mitsui Chemicals, Inc. オレフィンの製造方法
WO2009013964A1 (ja) 2007-07-26 2009-01-29 Mitsui Chemicals, Inc. メタセシス触媒の再活性化方法およびその再活性化工程を含むオレフィン類の製造方法
WO2010024319A1 (ja) 2008-08-28 2010-03-04 三井化学株式会社 オレフィンの製造方法
US20100056839A1 (en) * 2008-09-04 2010-03-04 Lummus Technology Inc. Olefin isomerization and metathesis catalyst
WO2010113993A1 (ja) 2009-04-01 2010-10-07 三井化学株式会社 オレフィンの製造方法
JP2010539225A (ja) * 2007-09-20 2010-12-16 アルケマ フランス 天然脂肪酸の発酵で得られる不飽和二酸のメタセシスによる脂肪二酸の合成方法
US8119852B2 (en) * 2006-12-14 2012-02-21 Bp Oil International Limited Process for manufacturing neohexene
WO2013022095A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 メタクリル酸化合物の製造方法及び触媒
JP2013522271A (ja) * 2010-03-15 2013-06-13 トタル リサーチ アンド テクノロジー フエリユイ 酸触媒上でイソブタノールを同時脱水・骨格異性化し、次いでメタセシス段階を行ってプロピレンを製造する方法
WO2013118832A1 (ja) * 2012-02-09 2013-08-15 三井化学株式会社 オレフィンの製造方法
WO2014054185A1 (ja) 2012-10-06 2014-04-10 クラリアント触媒株式会社 オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
JP2018509284A (ja) * 2015-03-20 2018-04-05 エスエムエイチ カンパニー,リミテッド オレフィンメタセシスのための触媒系
JP2020522558A (ja) * 2017-06-06 2020-07-30 リキッドパワー スペシャルティ プロダクツ インコーポレイテッド アルファ−オレフィン含有量の増加方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090203950A1 (en) * 2008-02-12 2009-08-13 Halsey Richard B Metathesis process using a fluidized bed reactor
CN101265149B (zh) * 2008-04-25 2011-04-20 北京化工大学 一种以合成气为原料两段法制备低碳烯烃的方法
US20090281364A1 (en) * 2008-05-12 2009-11-12 Halsey Richard B Metathesis process using a moving phase reactor
CN102464552B (zh) * 2010-11-17 2015-01-07 中国石油化工股份有限公司 异丁烯歧化制2,3-二甲基-2-丁烯的方法
US8343885B2 (en) 2010-12-21 2013-01-01 Basf Corporation Isomerization catalysts
US9352270B2 (en) 2011-04-11 2016-05-31 ADA-ES, Inc. Fluidized bed and method and system for gas component capture
KR101759802B1 (ko) * 2012-09-14 2017-07-19 루머스 테크놀로지 인코포레이티드 저 에틸렌 또는 에틸렌을 이용하지 않는 복분해를 통한 프로필렌
AU2013317997B2 (en) 2012-09-20 2016-04-07 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
WO2014123972A1 (en) * 2013-02-08 2014-08-14 Lyondell Chemical Technology, L.P. Propylene production process
EP2829317A1 (en) 2013-07-23 2015-01-28 Borealis AG Improved catalyst bed configuration for olefin production
EP2848300A1 (en) 2013-09-13 2015-03-18 Borealis AG Process for olefin production by metathesis and reactor system therefore
EP2862629A1 (en) 2013-10-15 2015-04-22 Borealis AG Catalyst and process for olefin metathesis reaction
CN104549232B (zh) * 2013-10-28 2017-02-15 中国石油化工股份有限公司 铼基歧化催化剂
CN104549226B (zh) * 2013-10-28 2017-05-10 中国石油化工股份有限公司 用于烯烃歧化的催化剂
EP2873459A1 (en) 2013-11-14 2015-05-20 Borealis AG Catalyst bed configuration for olefin conversion and process for obtaining olefins
CN105793215A (zh) * 2013-11-20 2016-07-20 鲁姆斯科技公司 具有高耐毒性的烯烃双键异构化催化剂
EP2886189A1 (en) 2013-12-20 2015-06-24 Borealis AG Process for olefin production by metathesis and reactor system therefor
EP2891643A1 (en) 2014-01-02 2015-07-08 Borealis AG Process for obtaining olefins by metathesis
CN105214643B (zh) * 2014-07-03 2018-02-13 中国石油化工股份有限公司 用于复分解反应的催化剂
CN107107041A (zh) 2014-10-28 2017-08-29 Smh有限公司 混合的金属氧化物‑沸石载体上的复分解催化剂及其使用方法
EP3050621A1 (en) 2015-01-30 2016-08-03 Terramark Markencreation GmbH Metathesis catalyst and process for producing olefin
KR102178406B1 (ko) 2015-07-02 2020-11-16 사우디 아라비안 오일 컴퍼니 프로필렌 제조용의 이중 촉매 시스템
KR102029612B1 (ko) * 2016-01-29 2019-10-07 라이온델 케미칼 테크놀로지, 엘.피. 에틸렌 및 부텐으로부터 프로필렌을 생산하기 위한 촉매 및 방법
US10329225B2 (en) 2017-01-20 2019-06-25 Saudi Arabian Oil Company Dual catalyst processes and systems for propylene production
US10934231B2 (en) 2017-01-20 2021-03-02 Saudi Arabian Oil Company Multiple-stage catalyst systems and processes for propene production
US10550048B2 (en) 2017-01-20 2020-02-04 Saudi Arabian Oil Company Multiple-stage catalyst system for self-metathesis with controlled isomerization and cracking
WO2019240958A1 (en) 2018-06-14 2019-12-19 Basf Corporation Olefin isomerization catalysts
US11242299B2 (en) 2018-10-10 2022-02-08 Saudi Arabian Oil Company Catalyst systems that include metal oxide co-catalysts for the production of propylene
US10961171B2 (en) 2018-10-10 2021-03-30 Saudi Arabian Oil Company Catalysts systems that include metal co-catalysts for the production of propylene
US11311869B2 (en) 2019-12-03 2022-04-26 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11517892B2 (en) 2019-12-03 2022-12-06 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11339332B2 (en) 2020-01-29 2022-05-24 Saudi Arabian Oil Company Systems and processes integrating fluidized catalytic cracking with metathesis for producing olefins
US11572516B2 (en) 2020-03-26 2023-02-07 Saudi Arabian Oil Company Systems and processes integrating steam cracking with dual catalyst metathesis for producing olefins
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11845705B2 (en) 2021-08-17 2023-12-19 Saudi Arabian Oil Company Processes integrating hydrocarbon cracking with metathesis for producing propene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816482B1 (ja) * 1967-04-05 1973-05-22
JPS591430A (ja) * 1982-06-28 1984-01-06 Mitsubishi Petrochem Co Ltd ブロピレン及びブテン含有混合物の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA862816A (en) * 1971-02-02 Van Helden Robert Disproportionation of alkenes
GB1205677A (en) 1968-01-19 1970-09-16 Ici Ltd Disproportionation of olefines
NL7002795A (ja) * 1970-02-27 1971-08-31
NL162350C (nl) * 1970-07-28 1980-05-16 Shell Int Research Werkwijze voor het disproportioneren van acyclische alkenen.
US3786112A (en) * 1971-08-30 1974-01-15 Phillips Petroleum Co Olefin disproportionation catalyst
US4575575A (en) 1984-04-05 1986-03-11 Phillips Petroleum Company Catalysts and process for olefin conversion
US4684760A (en) * 1986-02-24 1987-08-04 Phillips Petroleum Company Catalyst compositions useful for olefin isomerization and disproportionation
US4754098A (en) 1986-02-24 1988-06-28 Phillips Petroleum Company Catalyst compositions useful for olefin isomerization and disproportionation
FR2606669B1 (fr) 1986-11-18 1989-02-17 Inst Francais Du Petrole Procede de preparation d'un catalyseur renfermant du rhenium, catalyseur obtenu et utilisation de ce catalyseur pour la production d'olefines par metathese
IT1210449B (it) 1987-05-15 1989-09-14 Nordica Spa Dispositivo di serraggio e regolazione particolarmente per scarponi da sci.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816482B1 (ja) * 1967-04-05 1973-05-22
JPS591430A (ja) * 1982-06-28 1984-01-06 Mitsubishi Petrochem Co Ltd ブロピレン及びブテン含有混合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1854776A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119852B2 (en) * 2006-12-14 2012-02-21 Bp Oil International Limited Process for manufacturing neohexene
US8013200B2 (en) 2007-04-27 2011-09-06 Mitsui Chemicals, Inc. Process for producing olefins
JP5235873B2 (ja) * 2007-04-27 2013-07-10 三井化学株式会社 オレフィンの製造方法
KR101127676B1 (ko) 2007-04-27 2012-03-22 미쓰이 가가쿠 가부시키가이샤 올레핀의 제조 방법
WO2008136280A1 (ja) 2007-04-27 2008-11-13 Mitsui Chemicals, Inc. オレフィンの製造方法
EP2184106A1 (en) * 2007-07-26 2010-05-12 Mitsui Chemicals, Inc. Process for reactivation of metathesis catalysts and process for production of olefins comprising the reactivation
EP2184106A4 (en) * 2007-07-26 2013-12-11 Mitsui Chemicals Inc PROCESS FOR REACTIVATING METATHESIS CATALYSTS AND PROCESS FOR PRODUCING OLEFINS COMPRISING REACTIVATION
WO2009013964A1 (ja) 2007-07-26 2009-01-29 Mitsui Chemicals, Inc. メタセシス触媒の再活性化方法およびその再活性化工程を含むオレフィン類の製造方法
JP2010539225A (ja) * 2007-09-20 2010-12-16 アルケマ フランス 天然脂肪酸の発酵で得られる不飽和二酸のメタセシスによる脂肪二酸の合成方法
JP5432905B2 (ja) * 2008-08-28 2014-03-05 三井化学株式会社 オレフィンの製造方法
WO2010024319A1 (ja) 2008-08-28 2010-03-04 三井化学株式会社 オレフィンの製造方法
US8299313B2 (en) 2008-08-28 2012-10-30 Mitsui Chemicals, Inc. Olefin production process
JP2012502057A (ja) * 2008-09-04 2012-01-26 ラムス テクノロジー インク オレフィン異性化およびメタセシス触媒
US20100056839A1 (en) * 2008-09-04 2010-03-04 Lummus Technology Inc. Olefin isomerization and metathesis catalyst
US9023753B2 (en) 2008-09-04 2015-05-05 Lummus Technology Inc. Olefin isomerization and metathesis catalyst
US8440874B2 (en) * 2008-09-04 2013-05-14 Lummus Technology Inc. Olefin isomerization and metathesis catalyst
WO2010113993A1 (ja) 2009-04-01 2010-10-07 三井化学株式会社 オレフィンの製造方法
JPWO2010113993A1 (ja) * 2009-04-01 2012-10-11 三井化学株式会社 オレフィンの製造方法
CN102361840A (zh) * 2009-04-01 2012-02-22 三井化学株式会社 烯烃的制造方法
JP5385972B2 (ja) * 2009-04-01 2014-01-08 三井化学株式会社 オレフィンの製造方法
JP2013522271A (ja) * 2010-03-15 2013-06-13 トタル リサーチ アンド テクノロジー フエリユイ 酸触媒上でイソブタノールを同時脱水・骨格異性化し、次いでメタセシス段階を行ってプロピレンを製造する方法
WO2013022095A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 メタクリル酸化合物の製造方法及び触媒
WO2013118832A1 (ja) * 2012-02-09 2013-08-15 三井化学株式会社 オレフィンの製造方法
WO2014054185A1 (ja) 2012-10-06 2014-04-10 クラリアント触媒株式会社 オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
US20150273439A1 (en) * 2012-10-06 2015-10-01 Clariant Catalysts (Japan) K.K. Catalyst Mixture for Olefin Metathesis Reactions, Method of Producing Same, and Method of Producing Propylene Using Same
JP5959658B2 (ja) * 2012-10-06 2016-08-02 クラリアント触媒株式会社 オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
US10328417B2 (en) 2012-10-06 2019-06-25 Clariant Catalysts (Japan) K.K. Catalyst mixture for olefin metathesis reactions, method of producing same, and method of producing propylene using same
JP2018509284A (ja) * 2015-03-20 2018-04-05 エスエムエイチ カンパニー,リミテッド オレフィンメタセシスのための触媒系
JP2020522558A (ja) * 2017-06-06 2020-07-30 リキッドパワー スペシャルティ プロダクツ インコーポレイテッド アルファ−オレフィン含有量の増加方法
JP2022088454A (ja) * 2017-06-06 2022-06-14 リキッドパワー スペシャルティ プロダクツ インコーポレイテッド アルファ-オレフィン含有量の増加方法
JP7094308B2 (ja) 2017-06-06 2022-07-01 リキッドパワー スペシャルティ プロダクツ インコーポレイテッド アルファ-オレフィン含有量の増加方法
US11453627B2 (en) 2017-06-06 2022-09-27 Liquidpower Specialty Products, Inc. Method of increasing alpha-olefin content
JP7575418B2 (ja) 2017-06-06 2024-10-29 リキッドパワー スペシャルティ プロダクツ インコーポレイテッド アルファ-オレフィン含有量の増加方法

Also Published As

Publication number Publication date
KR20070095408A (ko) 2007-09-28
MY145180A (en) 2011-12-30
US20100145126A1 (en) 2010-06-10
RU2007136489A (ru) 2009-04-10
TWI310030B (en) 2009-05-21
US7977522B2 (en) 2011-07-12
KR100912882B1 (ko) 2009-08-20
EP1854776A1 (en) 2007-11-14
JPWO2006093058A1 (ja) 2008-08-07
JP4805252B2 (ja) 2011-11-02
IL184851A0 (en) 2007-12-03
CN101133007B (zh) 2012-08-29
RU2367644C2 (ru) 2009-09-20
CA2598501A1 (en) 2006-09-08
CN101133007A (zh) 2008-02-27
EP1854776A4 (en) 2010-07-28
TW200635891A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
WO2006093058A1 (ja) オレフィン類の製造方法
US8013200B2 (en) Process for producing olefins
CA2733601C (en) Olefin isomerization and metathesis catalyst
KR100967597B1 (ko) 탈수소화 촉매 조성물
JP2016510731A5 (ja)
JP2016510731A (ja) 酸化脱水素化装置を含むコンビナート
US8063261B2 (en) Multi-layered dehydrogenation catalyst system and process of use
TW201538470A (zh) 藉由在先異構化後之正丁烯的氧化脫氫以製備丁二烯
JP2011510918A (ja) アルケンをオリゴマー化する方法
EP0409355A1 (en) Process of oxidizing aliphatic hydrocarbons in the presence of a solid heterogeneous catalyst and catalyst
JP5959658B2 (ja) オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
JP7090471B2 (ja) p-キシレンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006979.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 184851

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 11883540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6101/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077018525

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2598501

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1200702013

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2007136489

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006714632

Country of ref document: EP