WO2006064863A1 - プリント配線板 - Google Patents

プリント配線板 Download PDF

Info

Publication number
WO2006064863A1
WO2006064863A1 PCT/JP2005/023017 JP2005023017W WO2006064863A1 WO 2006064863 A1 WO2006064863 A1 WO 2006064863A1 JP 2005023017 W JP2005023017 W JP 2005023017W WO 2006064863 A1 WO2006064863 A1 WO 2006064863A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
pad
printed wiring
wiring board
stress
Prior art date
Application number
PCT/JP2005/023017
Other languages
English (en)
French (fr)
Inventor
Takahiro Yamashita
Hiroyuki Watanabe
Kiyotaka Tsukada
Michio Ido
Morio Nakao
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2006548893A priority Critical patent/JPWO2006064863A1/ja
Publication of WO2006064863A1 publication Critical patent/WO2006064863A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09436Pads or lands on permanent coating which covers the other conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09627Special connections between adjacent vias, not for grounding vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/098Special shape of the cross-section of conductors, e.g. very thick plated conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion

Definitions

  • the present invention relates to a printed wiring board having a solder pad, a solder bump, and a solder pad on which a solder layer is mounted, and more particularly to a printed wiring board that can be suitably used for an IC chip mounting board on which a semiconductor element is mounted. Is.
  • solder pads a large number of electrodes (hereinafter referred to as solder pads) are arranged on the substrate at a high density, and solder bumps are provided on the solder pads as the mounting surface, and the flip chip is interposed via the solder bumps. Implementation has been done.
  • the IC chip mounting board is provided with solder on the pads and connected to the printed wiring board side to be mounted via solder. Components are mounted from the reflow by forming a solder layer on the solder pads.
  • Patent Document 1 discloses a technique for providing a mounting pad that protrudes from a substrate surface force on the outermost layer of a package substrate.
  • Patent Document 2 discloses a technique in which a part of the electrode pad 120 is exposed to the gap 115 provided in the insulating layer 115 as shown in FIG.
  • Patent Document 3 discloses a technique for providing stress absorption by forming a pad 120 on which a solder ball 130 is mounted into a concave shape as shown in FIG. 19 (B).
  • Patent Document 4 discloses a technique in which the pad shape is a curved surface shape.
  • solder layer is formed on the solder pad.
  • Patent Document 1 JP 2001-143491 A
  • Patent Document 2 JP 2003-198068 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-6872
  • Patent Document 4 US6,400,018 B2
  • Portable electronic devices such as cellular phones, portable computers, and portable terminals (including games) are desired to have higher functionality and improved reliability.
  • a portable electronic device even if it is accidentally dropped, it is desired to improve the so-called drop resistance so that the function of the portable electronic device is not broken.
  • thermal stress stress due to heat
  • it does not cause defects such as cracks at the joint between the substrate and the electronic component.
  • it is desirable not to cause problems such as cracks at the joint between the substrate and the IC chip (flip chip type).
  • drop stress the force generated by falling and colliding with the floor surface
  • conductor circuits and others soldder parts, solder pads
  • the present invention has been made to improve the above-mentioned problems.
  • the purpose of the present invention is to provide a printed wiring board that mainly increases the bonding strength around the solder pad and is excellent in drop resistance. There is.
  • a first invention is a printed wiring board including a solder pad on which solder for mounting an electronic component or an external board is mounted,
  • the solder pad is composed of a surface layer pad portion for mounting solder and a columnar portion that supports the pad portion and protrudes toward the solder side,
  • the surface layer pad portion is configured to have a larger diameter than the columnar portion, or
  • a technical feature is that the surface pad portion is in contact with the solder at the bottom and side surfaces.
  • the solder pad supports the solder ball with a solder pad and solder (solder ball, solder bump, solder layer, etc. (external such as PGA and BGA). Including connection terminals).
  • the pad portion is configured to have a larger diameter than the columnar portion. That is, the outer edge of the pad portion also extends to the side in the columnar portion force, and the outer edge can be pinched.
  • the solder on the solder pad is connected to an electronic component, an ic chip, and an external substrate.
  • the outer edge squeezes to concentrate stress on the outer edge of the surface node where stress tends to concentrate.
  • the stress can be relieved and the bonding strength between the solder pad and the solder can be prevented from being lowered.
  • the surface pad portion is in contact with the solder at the bottom and side surfaces, and the contact area at the conductor portion is larger than that at the bottom surface alone, the unit area of the joint between the surface layer pad portion and the solder is equivalent. It is possible to reduce the stress. As a result, the bonding strength between the solder pad and the solder can be easily ensured as compared with the conventional solder pad structure. By ensuring the bonding strength, it is possible to ensure the drop resistance of the joint between the solder pad and the solder.
  • the solder pad of the present application is formed on the through hole, so the conductor portion in the Z-axis direction of the substrate extends, so the solder pad and the through hole The stress can be relieved by the solder and the bonding strength between the solder pad and the solder ball is less likely to be lowered.
  • the through hole is hollow, but a filled hole may be used. There is no difference in the effect of either structure.
  • the corner portion between the bottom surface and the side surface of the surface layer pad portion is a chamfered shape of the R surface, stress is not concentrated near the corner portion of the pad portion, and the surface layer pad The stress applied to the part tends to be almost equal. Therefore, the bonding strength between the surface layer pad and solder is reduced. This makes it difficult to cause defects such as cracks in the solder pad portion.
  • the side surface of the pad portion has a 90 ° arc shape, so stress does not concentrate near the corner portion of the pad portion, and thereby the surface layer pad portion is applied.
  • the stress is likely to be almost equal. For this reason, it is difficult to reduce the bonding strength between the surface pad and the solder, and it is difficult to cause defects such as cracks in the solder pad portion.
  • the columnar shape is a column, a cylinder, a square, a rectangle, or a polygonal column force greater than a quadrangle.
  • a cylindrical column, a cylinder, or a hexagonal or more polygonal column is desirable. Due to their shape, there are no corners, or the corners become larger (or obtuse), making it difficult for stress to concentrate and buffered stress (thermal stress, drop stress) to diffuse easily. The occurrence of defects such as cracks in the conductor near the solder pad can be suppressed.
  • the metal layer constituting the solder pad can be formed by plating, sputtering, or the like. A single layer of these metal layers or a laminate of two or more layers may be used. As the types of these metals, conductive metals such as copper, nickel, phosphorus, titanium, and noble metals can be used.
  • the metal constituting the columnar shape of the solder pad plating, sputtering, conductive paste, or the like can be used. A single layer of these metals or a laminate of two or more layers may be used.
  • the columnar shape may be filled with metal, or it may be in a hollow state (indicating that the central portion is mainly a cavity).
  • solder pad In order to form a solder pad, a wiring forming method used for a printed wiring board such as an additive method or a sub-tra method can be used. [0023] As the solder used in the present invention, a two-component solder, a three-component solder, or a four-component or more multi-component solder can be used. As the metal contained in these compositions, Sn, Ag, Cu, Pb, Sb, Bi, Zn, In, and the like can be used.
  • Examples of the two-component solder include SnZP Sn / Sb, Sn / Ag, Sn / Cu, and SnZZn.
  • Three-component solder includes SnZAgZCu, Sn / Ag / Sb, Sn / Cu / Pb, Sn / Sb / Cu, Sn / Ag / In, Sn / Sb / In, Sn / Ag / Bi, SnZSbZBi, etc. Can be used.
  • These three-component solders may be those with three components of 10 wt% or more, or solder with 95% wt% or more of the two main components and the remaining one component ( For example, a three-component solder with a total of 97.5 wt% of Sn and Ag and the balance Cu.
  • a three-component solder with a total of 97.5 wt% of Sn and Ag and the balance Cu In addition to this, use multi-component solder that is more powerful than four components! Examples of the multi-component solder include Sn / Ag / Cu / Sb and SnZAgZCuZBi. Solder with adjusted alpha dose may be used.
  • lead-free solder for example, When 5 / 2.5
  • lead-free solder it is difficult to buffer the stress in the solder compared to when using lead-containing solder. This is because the metal itself used for solder is difficult to buffer the stress.
  • the stress can be buffered by the solder pads, and as a result, the bonding strength at the solder pads is hardly lowered, and cracks, etc. It is hard to cause.
  • the bonding strength between the solder pad and the solder is ensured, and the solder pad can be buffered against a drop stress or a thermal stress. This can be improved over the structure of the door. This makes it difficult for the electrical connectivity and connection reliability to decrease. As a result, the function as an electronic device in which the printed wiring board is accommodated can be maintained for a long time.
  • the electronic device is preferably used mainly for portable electronic devices.
  • portable electronic devices include mobile phones, portable computers, and portable terminals (including game machines). These are desired to have high functionality and to ensure reliability. Originally, portable electronic devices are supposed to be accidentally dropped. For this reason, it is desirable to make the structure easy to ensure reliability.
  • FIG. 1 is a cross-sectional view of a semiconductor device using the knock substrate of Embodiment 1
  • FIG. 2 is a cross-sectional view showing a state in which the semiconductor device shown in FIG. 1 is mounted on a printed wiring board to be mounted.
  • a semiconductor device (IC) 50 includes a semiconductor / cage substrate 10 and a mold resin 32 for sealing an IC chip (not shown).
  • the IC chip mounting substrate 10 includes a glass substrate 12 made of glass epoxy or the like impregnated with epoxy resin and cured, a through-hole 16 connecting the upper and lower surfaces of the resin substrate 12, and the resin substrate 12 And a solder pad 20 provided on the lower surface side of the through hole 16 and a solder ball 30 connected to the solder pad 20.
  • a land 16U is formed on the upper surface of the through hole 16, and a land 16D is formed on the lower surface. From the top land 16U, the IC chip is not shown! / Bonded with wires! RU
  • Double-sided copper-clad laminate (Company name: Matsushita Electric, product number: Norogen-free epoxy multi R1566, etc.) formed by laminating copper foil 11 shown in Fig. 3 (A) on substrate 12 (Fig. 3 (B)). After passing through the plating (electrolytic plating or electroless plating) into this through-hole 13, through pattern formation with resist, through-hole 13 enabling electrical connection and conductor circuit (land) 16U, 16C on the surface layer (Fig. 3 (C)).
  • plating electrolytic plating or electroless plating
  • a resin layer such as a solder resist layer is formed on the surface on which the conductor layer 16D is formed. exposure
  • Opening 14a is made in the resin layer 14 by development or laser (Fig. 4 (B)). Fill the opening 14a with conductive paste containing conductive particles such as metal plating or copper. As a result, the columnar portion 22 of the solder pad is formed (FIG. 4C).
  • the semiconductor device 50 is mounted on the mounted printed wiring board 60 by connecting the solder balls 30 to the pads 62 provided on the mounted printed wiring board 60 side.
  • the force shown in FIGS. 1 and 2 is a force with two layers.
  • a method of stacking three or more layers may be used for a printed wiring board.
  • Use commonly used printed wiring board methods such as
  • the substrate of the printed wiring board to be used is formed by impregnating glass cloth with epoxy resin, but besides this, thermosetting resin, thermoplastic resin, photosensitive resin, or these You may use what mixed 2 or more types of rosin. Specific examples include FR-4, FR 5, and so on.
  • FIG. 5A is an enlarged sectional view showing the solder pad 20 of the IC chip mounting board
  • FIG. 5B is a perspective view.
  • the solder pad 20 also has a force with a surface layer pad portion 24 on which a solder ball 30 mainly having a soldering force is mounted, and a columnar portion 22 (cylinder) that supports the pad portion 24 and protrudes toward the solder ball side.
  • the surface layer pad portion 24 is configured to have a larger diameter than the columnar portion 22, that is, the outer edge 24e of the surface layer pad portion 24 extends laterally from the columnar portion 22, and the outer edge 24e may stagnate. it can.
  • stress thermal stress, drop stress
  • the surface layer pad portion 24 is in contact with the solder ball at the bottom surface 24b and the side surface 24s of the surface layer pad portion 24. That is, the contact area is larger than the contact with only the bottom surface as in the pad of the prior art (Comparative Example 1-1) described later. Therefore, the stress per unit area applied to the joint between the surface layer nod 24 and the solder ball 30 is reduced, and the joint strength between the solder nod 20 and the solder ball 30 is compared with the conventional solder pad structure. Can be enhanced. By increasing the bonding strength, it is possible to ensure the drop resistance of the bonded portion between the electrode pad 20 and the solder ball 30.
  • Embodiment 1-1 since the solder pad 20 is formed on the through hole 16, the conductor portion in the Z-axis direction extends, so that the solder pad 20 In addition, the stress can be relieved at the through hole 16 and the bonding strength between the solder pad 20 and the solder ball 30 can be further reduced. In addition, since the drop stress can be buffered even in the conductor portion of the through hole portion, it is possible to ensure the drop resistance of the joint portion between the solder pad 20 and the solder ball 30.
  • the corners between the bottom surface 24b and the side surface 24s of the surface layer pad portion have a chamfered shape of the R surface, that is, the side surface 24s of the surface layer pad portion is 90 °. Since it has an arc shape, the stress in the vicinity of the corner of the pad is not concentrated, and the stress applied to the surface pad portion becomes uniform. For this reason, the bonding strength between the solder on the side surface 24s and the bottom surface 24b of the surface layer pad is difficult to decrease, and as a result, it is difficult to cause cracks around the solder pad.
  • FIG. 6A shows a modified example of Embodiment 1-1!
  • the solder pad 20 is provided so as to be offset from the through hole 16.
  • the through hole 16 is disposed within the vertical line of the outer edge 24e of the solder pad 20.
  • the stress can be relieved by the solder pad 20 and the through hole 16 as in the embodiment 1-1, and the solder pad 20 and the solder board can be relaxed. This makes it difficult to reduce the strength of the joint with Lu 30.
  • FIG. 6B is an enlarged view showing the solder pad 20 of the IC chip mounting board according to the embodiment 1-2.
  • the through-hole 16 is not disposed immediately below the solder pad 20, but the rest is the same as the embodiment 1-1. That is, in this solder pad structure, the surface layer pad portion 24 is configured to have a larger diameter than the columnar portion 22, and the corner portion between the bottom surface 24b and the side surface 24s has a chamfered shape with an R surface. Has become,
  • FIG. 7A is an enlarged view showing the solder pads 20 of the IC chip mounting board of Embodiment 1-3.
  • the corners of the surface layer pad 24 have a right angle, and the rest is the same as Embodiment 1-1.
  • the surface layer pad portion 24 is configured to have a larger diameter than the columnar portion 22, and the corner portion between the bottom surface 24 b and the side surface 24 s is rectangular in the surface layer pad 24, and the solder pad 20 A through-hole 16 is arranged directly below.
  • FIG. 7B is an enlarged view showing the solder pad 20 of the IC chip mounting board of Embodiment 1-4.
  • the corner portion of the surface layer pad 24 is a right angle, and the rest is the same as Embodiment 1-2.
  • the surface layer pad portion 24 is configured to have a larger diameter than the columnar portion 22, and the corner portion between the bottom surface 24 b and the side surface 24 s is rectangular in the surface layer pad 24, and the solder pad 20 There is no through hole 16 directly underneath.
  • FIG. 8A is an enlarged view showing the solder pad 20 of the IC chip mounting substrate of Embodiment 1-5.
  • the corner portion of the surface layer pad 24 is chamfered.
  • the embodiment is the same as the embodiment 1-1.
  • the surface layer nod portion 24 is configured to have a larger diameter than the columnar portion 22, and the corners between the bottom surface 24b and the side surface 24s of the surface layer pad 24 are chamfered, and immediately below the solder pad 20.
  • a through hole 16 is arranged in the center.
  • FIG. 8 (B) shows an enlarged view of the solder pad 20 of the IC chip mounting substrate of Embodiment 1-6.
  • the corner portion of the surface layer pad 24 has a chamfered force.
  • the embodiment is the same as the embodiment 1-2.
  • the surface layer nod portion 24 is configured to have a larger diameter than the columnar portion 22, and the corners between the bottom surface 24 b and the side surface 24 s of the surface layer pad 24 are chamfered, and directly below the solder pad 20. There is no through hole 16 on the side.
  • the columnar portion 22 has a cylindrical shape as shown in FIG. 9 (A).
  • the truncated cone It is also possible to form the columnar portion 22 in the shape.
  • Embodiment 1-7 is the same as Embodiment 1-1 except that the shape of the columnar section 22 is a square as shown in FIG. 9C. Note that the columnar portion 22 of Embodiment 1-7 can also be formed in a truncated pyramid shape as shown in FIG. 9 (D).
  • Embodiment 18 is the same as Embodiment 1-1 except that the shape of the columnar section 22 is rectangular as shown in FIG. 9 (E).
  • Embodiment 19 is the same as Embodiment 1-1 except that the shape of the columnar portion 22 is a polygonal column (hexagon) as shown in FIG. 9 (F).
  • Embodiment 110 is the same as Embodiment 1-1 except that the shape of the columnar portion 22 is a polygonal column (octagon) as shown in FIG. 9 (G).
  • solder pad 20 of Embodiment 1 land 16D of conventional through-hole 16 is used as a pad as shown in FIG. 18 (A), and solder ball 30 is directly on land 16D. A structure to be connected was formed.
  • solder in the above-described embodiment refers to various low-melting-point alloys that are lead-free and include only tin-lead solder.
  • the point with the highest stress is the central position of the bottom of the pad portion 24 and is 727 MPa.
  • the point with the highest stress (peak point PP) in Comparative Example 1-2 was the outermost edge portion where land 16D and solder ball 30 are in contact, and was 856 MPa.
  • the electrode pad 20 of the first embodiment has the comparative example 1 1 (conventional technology, Fig. 10B) and the comparative example 1-2 (Fig. 10) even at the portion where the stress is highest. In contrast to (C)), it was found that the joint strength with a low stress value is difficult to decrease.
  • the point with the highest stress is the central position of the bottom of the pad 20, which is 640 MPa, the lowest point is 320 MPa, and the average is 392 MPa.
  • the point with the highest stress is the force 780MPa, which is the center position of the bottom of the pad 20, and the lowest point. It was 359 MPa, and the average was 414 MPa.
  • FIG. 11 (B) and FIG. 11 (C) the highest stress value is much lower in FIG. 11 (B).
  • the outer edge 20e of the pad 20 is displaced downward by 0.25 m as shown in the figure to relieve the stress at that portion.
  • the pad 20 is difficult to deform (the outer edge contact portion 20c), and the stress becomes maximum, and the outer edge contact portion 20c is displaced by only 0.12 / zm. it is conceivable that. That is, in the conventional structure shown in FIG. 11 (B), it is estimated that the maximum stress value is increased because it is difficult to deform at the portion where the stress of the pad is maximum.
  • FIG. 11 (A) shows the structure of Fig. 11 (A) in order to investigate the relationship between the bending and stress at the outer edge of the node.
  • Figure 13 (A) shows the results of simulating the stagnation at the outer edge, the stress value at the center, and the stress value at the outer edge by changing the ratio with the part from 82 to 78.
  • 82 restraint represents a state in which 82% of the center side is restrained and 18% can be squeezed.
  • the pad diameter of the electrode pad (the diameter of the land 16D of the through hole), the opening diameter of the solder resist, the pad portion diameter, and the pad portion thickness (R) are as shown in Fig. 13 (B).
  • the simulation was performed as No. 1, No. 2, No. 3, No. 4, and No. 5.
  • the boards 10 of Embodiments 1-1 to 1-10, Comparative Form 1-1, and Comparative Form 1-2 are mounted on the daughter board 60, and each is housed in the housing 98, and screws, etc. Secure with.
  • the fixed casing 98 is naturally dropped from the height of lm with the vertical side (head wall TP on the upper side and bottom wall BT on the lower side). After the drop test, the electrical connection was checked for each embodiment.
  • Embodiments 1 to 1 10 and Comparative Form 1 1 and Comparative Form 1 2 3 sheets of substrates made under heat cycle conditions (135 ° CZ3min. —55 ° CZ3min. 1 cycle, 1000 cycles, 2000 cycles, 3000 cycles After conducting the cycle, the presence or absence of electrical continuity was evaluated.
  • the reliability test is cleared for 1000 cycles or more, the product will be used for normal use. At that time, it was a force that caused problems. Clearing a reliability test of 3000 cycles or more is proven to ensure long-term reliability. In Comparative Form 1 1 and Comparative Form 1-2, the reliability test of 1000 cycles may not be cleared, whereas in the embodiment, 2000 cycles could be cleared. Furthermore, in Embodiment 1-1, Embodiment 1-8, Embodiment 1-9, and Embodiment 1-10, 3000 cycles can be cleared, and reliability is ensured by providing a through hole directly under the solder pad. It became clear that it became easy.
  • FIG. 17A shows the configuration of the electrode pad 20 according to the second embodiment.
  • the end portion of the pad portion 24 has a semicircular shape. Even in such a configuration, the bonding strength between the electrode pad 20 and the solder ball 30 can be increased as in the first embodiment.
  • FIG. 17B shows the configuration of the electrode pad 20 according to the third embodiment.
  • the pad portion 24 has a smaller diameter than the columnar portion 22. Even in such a configuration, the bonding strength between the electrode pad 20 and the solder ball 30 can be increased.
  • FIG. 17D shows a configuration of the electrode pad 20 according to the fourth embodiment.
  • the solder ball 30 is mounted on the bottom surface 24 b of the pad portion 24. Even in such a configuration, the bonding strength between the electrode node 20 and the solder ball 30 can be increased.
  • FIG. 1 is a cross-sectional view showing a configuration of a package substrate according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a state where the package substrate shown in FIG. 1 is mounted on a mounted printed wiring board.
  • FIG. 3 is a process diagram showing a manufacturing method of the package substrate shown in FIG. 1.
  • FIG. 4 is a process diagram showing a manufacturing method of the package substrate shown in FIG. 1.
  • FIG. 5 (A) is an enlarged sectional view showing the electrode pad of Embodiment 1-1
  • FIG. 5 (B) is a perspective view of the electrode pad.
  • FIG. 6 is an enlarged sectional view showing the electrode pad according to the modified example of Embodiment 1-1
  • FIG. 6 (B) is an enlarged view of the electrode pad of Embodiment 1-2. It is sectional drawing shown.
  • FIG. 7 (A) is an enlarged cross-sectional view showing the electrode pad according to Embodiment 1-3
  • (B) is an enlarged sectional view showing the electrode pad of Embodiment 1-4.
  • FIG. 8 (A) is an enlarged sectional view showing the electrode pad according to Embodiment 1-5, and FIG.
  • FIG. 5B is an enlarged sectional view showing the electrode pad according to the embodiment 1-6.
  • FIG. 9 (A) is a perspective view of an electrode pad according to Embodiment 1-1
  • FIG. 9 (B) is a perspective view of an electrode pad according to another example of Embodiment 1-1
  • FIG. 9 (C) is a perspective view of an electrode pad according to Embodiment 1-7
  • FIG. 9 (D) is a perspective view of an electrode pad according to another example of Embodiment 1-7.
  • FIG. 9 (F) is a perspective view of the electrode pad according to Embodiment 1-9
  • FIG. 9 (A) is a perspective view of Embodiment 1-10. It is a perspective view of the electrode pad concerning.
  • FIG. 10 is a schematic diagram showing the stress maximum point of the electrode pad of Embodiment 1-1, and FIG. 10 (B) shows the electrode pad of the prior art (Comparative Embodiment 1-1).
  • FIG. 10C is a schematic diagram showing the maximum stress point, and FIG. 10C is a schematic diagram showing the maximum stress point of the electrode pad of Comparative Example 1-2.
  • FIGS. 11 (A), 11 (B), and 11 (C) are schematic diagrams showing a simulation model subjected to stress analysis.
  • FIG. 12 is a schematic diagram showing a simulation model subjected to stress analysis.
  • FIG. 13 (A) is a chart showing simulation results
  • FIG. 13 (B) is a chart showing dimensions of each part of the electrode pad.
  • FIG. 14 is a schematic diagram showing a simulation model subjected to stress analysis.
  • FIG. 15 is a schematic diagram illustrating a drop test method.
  • FIG. 16 is a chart showing the results of a drop test and a reliability test.
  • FIG. 17 (A) is an enlarged sectional view showing the electrode pad of the second embodiment
  • FIG. 17 (B) is an enlarged sectional view showing the electrode pad of the third embodiment
  • FIG. 17 (C) is an enlarged sectional view showing the electrode pad of the fourth embodiment.
  • FIG. 18 (A) is an enlarged cross-sectional view of the electrode pad according to Comparative Example 1-1
  • FIG. 18 (B) is an enlarged view of the electrode pad according to Comparative Example 1-2. It is sectional drawing.
  • FIG. 19A is an explanatory diagram of a solder pad structure of related technology
  • FIG. 19B is an explanatory diagram of a solder pad structure of related technology.

Abstract

  【課題】 パッドとはんだとの接合部の落下耐性を高めたプリント配線板を提供する。   【解決手段】 電極パッド20は、はんだボール30を搭載するパッド部24と、該パッド部24を支持してはんだボール側へ突出する円筒部22とから成る。パッド部24の外縁24eが円筒部22から側方へ延在しており、該外縁24eが撓むことができる。はんだボール30に応力が加わった際に、外縁24eが撓むことで、応力の集中するパッド部の外縁20eでの応力が緩和でき、電極パッド20とはんだボール30との接合強度を高めることが可能となる。

Description

明 細 書
プリント配線板
技術分野
[0001] 本発明は、半田ボーノレ、半田バンプ、半田層が搭載される半田パッドを備えるプリ ント配線板に関し、特に、半導体素子を搭載する ICチップ搭載用基板に好適に用い 得るプリント配線板に関するものである。
背景技術
[0002] ICチップ搭載用基板には、一個の ICチップだけでなぐその他の電子部品であるコ ンデンサ、抵抗などの部品や他の機能を有する ICチップを搭載させることも必要とな る。そのために、該基板には、多数の電極 (以下半田パッドと称する)が高密度で配 置され、実装面である半田パッド上に、はんだバンプが設けられ、該はんだバンプを 介して、フリップチップ実装が行われている。 ICチップ搭載用基板は、パッドに半田を 設け、実装されるプリント配線板側に半田を介して接続される。部品は、半田パッドに 半田層を形成し、リフローすること〖こより実装される。
[0003] 特許文献 1には、パッケージ基板の最外層に基板面力 突出した実装パッドを設け る技術が開示されている。特許文献 2には、図 19 (A)に示すように電極パッド 120の 一部を、絶縁層 115に設けた空隙部 115に露出させる技術が開示されている。特許 文献 3には、図 19 (B)に示すように半田ボール 130を搭載するパッド 120を凹面形 状にすることで応力吸収性を備えさせる技術が開示されている。特許文献 4には、パ ッド形状を曲面形状にした技術が開示されている。
これらの技術により、半田パッド上に半田層を形成させている。
特許文献 1 :特開 2001— 143491号公報
特許文献 2 :特開 2003— 198068号公報
特許文献 3 :特開 2004— 6872号公報
特許文献 4:US6,400,018 B2
発明の開示
発明が解決しょうとする課題 [0004] 携帯電話、携帯用コンピュータ、携帯端末 (含むゲーム)等の携帯用電子機器は、 高機能化と共に、信頼性の向上も望まれている。特に、携帯用電子機器では、誤つ て落下した場合にも、該携帯用電子機器の機能が壊れない、いわゆる、耐落下性の 向上を望まれている。
[0005] 信頼性の確保という点では、半田パッド近傍で、熱による応力(熱応力と称する)が 加わった場合に、基板と電子部品との接合部分でクラック等の不具合を引き起こさな いことが望ましい。特に、基板と ICチップ (フリップチップタイプ)との接合部分でクラッ ク等の不具合を引き起こさないことが望ましい。
[0006] 耐落下性の向上という点では、落下し床面に衝突して発生した力(落下応力と称す る)を基板内で緩衝させることができ、導体回路やその他(半田部分、半田パッド部の 表層の耐食層等)に、亀裂や破断等を引き起こさせないことが望まれる。これらにより 、基板および電子部品が搭載された基板が電気接続性や電子機器としての機能を 低下させな ヽことが望まれる。
このように電子部品搭載用基板においては、応力(熱応力、落下応力の双方を意 味する)による影響を抑えるため、半田パッドとはんだとの接合強度を高めることが要 望されている。
[0007] 本願発明は、上述した問題を改善するためになされたものであり、その目的とすると ころは、主として、半田パッド周辺の接合強度を高め、耐落下性に優れるプリント配線 板を提供することにある。
課題を解決するための手段
[0008] 上記目的を達成するため、第 1の発明は、電子部品あるいは外部基板を実装する ための半田が搭載される半田パッドを備えるプリント配線板であって、
前記半田パッドが、半田を搭載する表層パッド部と、該パッド部を支持して半田側 へ突出する柱状部とから成り、
前記表層パッド部が、柱状部よりも大径に構成されているもしくは、
前記表層パッド部が、半田と底面及び側面で接していることを技術的特徴とする。
[0009] 本発明のプリント配線板では、半田パッドが半田ボールを搭載するパッド部と、該パ ッド部を支持して半田(半田ボール、半田バンプ、半田層等(PGA、 BGAなどの外部 接続端子を含む)を意味する。 M則へ突出する柱状部とから成り、パッド部が、柱状部 よりも大径に構成されている。即ち、パッド部の外縁が柱状部力も側方へ延在してお り、該外縁が橈むことができる。
[0010] 半田パッド上の半田は、電子部品、 icチップ、外部基板と接続されるものである。こ れらの接続された側に対して、半田に熱などにより応力が加わった際に、外縁が橈む ことで、応力が集中しやすい表層ノ^ド部の外縁に対する応力を集中させに《なり、 その結果として、応力が緩和でき、半田パッドと半田との接合強度を低下させないこと が可能となる。
[0011] 表層パッド部が半田と底面及び側面で接し、底面のみで接するよりも導体部分での 接触面積が増えているため、表層パッド部と半田との接合部に掛カる単位面積当た りの応力を低下させることが可能となる。その結果として、従来の半田パッド構造であ るものと比べて、半田パッドと半田との接合強度を、確保しやすくすることができる。接 合強度が確保されることで、半田パッドと半田との接合部の耐落下性を確保すること が可能となる。
[0012] 第 2の発明では、本願の半田パッドがスルーホール上に形成されているため、基板 の Z軸方向での導体部分が延在していることとなるために、半田パッド及びスルーホ ールで応力を緩和でき、半田パッドと半田ボールとの接合強度をより低下させにくく なる。また、スルーホール部分の導体部分でも落下応力に対する応力を集中させに くくなり、該応力を緩衝させることができる。そのために、半田パッドと半田との接合部 の耐落下性を確保することが可能となる。
[0013] また、このスルーホールを半田パッドである表層パッドの直下に位置するときに、前 述の効果を有することが確認されている。つまり、スルーホールの外縁が表層パッド の外縁の内部に位置されたときに、前述と同様の効果を奏する。
スルーホールとして、中空状であつたが、充填したものを用いてもよい。そのどちら の構造でも効果には違 ヽはな 、。
[0014] 第 3発明では、表層パッド部の底面と側面との角部が R面の面取り形状となっている ため、該パッド部の角部付近での応力が集中することがなくなり、表層パッド部に掛 力る応力がほぼ均等になり易い。そのために、表層パッドと半田との接合強度を低下 させに《なり、半田パッド部分でのクラック等の不具合を引き起こし難くなる。
[0015] また、角部付近での応力が集中しにくいことから、落下試験などに於ける落下応力 に対しても、局所的な応力の集中がないので、クラック等の不具合を引き起こし難くな る。半田パッドと半田との接合部の耐落下性を低下させ難くなる。
[0016] 第 4発明では、パッド部の側面は、 90° の円弧形状となっているため、該パッド部 の角部付近での応力が集中することがなくなり、それにより、表層パッド部に掛カる応 力がほぼ均等になり易い。そのために、表層パッドと半田との接合強度を低下させに くくなるので、半田パッド部分でのクラック等の不具合を引き起こし難くなる。
[0017] また、角部付近での応力が集中し難いことから、落下試験などに於ける落下応力に 対しても、局所的に応力の集中することがなぐクラック等の不具合を引き起こし難く なる。半田パッドと半田との接合部の耐落下性を低下させ難くなる。
[0018] 第 5発明では、前記柱状には、円柱、円筒、正方形、長方形、四角形以上の多角 形柱力も選ばれる形状であることが望ましい。これらの形状であれば、応力緩衝を行 うことができ、電気特性 (電気抵抗の増加等)を低下させることもな!、。
[0019] 特に、円柱、円筒、六角形以上の多角形柱であることが望ましい。それらの形状に より、角部がない、もしくは角部の角度が大きくなり(あるいは鈍角になり)、応力が集 中し難くなり、緩衝した応力 (熱応力、落下応力)を拡散しやすいので、半田パッド付 近での導体などへのクラックなどの不具合の発生を抑えることができる。
[0020] 半田パッドを構成する金属層は、メツキ、スパッタ等により作成することができる。こ れらの金属層を単層、もしくは 2層以上の複数層に積層したものを用いてもよい。そ れらの金属の種類としては、銅、ニッケル、リン、チタン、貴金属等の導電性を有する 金属などを用いることができる。
[0021] 半田パッドの柱状を構成する金属は、メツキ、スパッタ、導電性ペースト等を用いる ことができる。これらの金属を単層、もしくは 2層以上の複数層に積層したものを用い てもよい。また、柱状は、金属で充填してもよいし、中空(主として中心となる部分が空 洞となって 、ることを指す)状態にしてもょ 、。
[0022] 半田パッドを形成するために、アディティブ法、サブトラ法等のプリント配線板で用 V、られる配線形成方法を用いることができる。 [0023] 本願発明に用いられる半田としては、二成分系半田、三成分系半田、あるいは四 成分以上多成分系半田を用!、ることができる。これらの組成に含有される金属として は、 Sn、 Ag、 Cu、 Pb、 Sb、 Bi、 Zn、 In等を用いることができる。
[0024] 二成分系半田としては、 SnZP Sn/Sb, Sn/Ag, Sn/Cu, SnZZnなどであ る。また、三成分系半田としては、 SnZAgZCu、 Sn/Ag/Sb, Sn/Cu/Pb, S n/Sb/Cu, Sn/Ag/In, Sn/Sb/In, Sn/Ag/Bi, SnZSbZBi等を用いる ことができる。これら三成分系半田としては、三成分が 10wt%以上となるものでもよ いし、主となる 2つ成分で 95%wt%以上を占めて、残で 1成分力もなる半田であって もよい(例えば、 Sn、 Agの合計が 97. 5wt%、残が Cuとなる三成分系半田)。また、 これ以外にも四成分以上力 なる多成分系半田を用!、てもよ 、。多成分系半田とし ては、例えば、 Sn/Ag/Cu/Sb, SnZAgZCuZBi等がある。 α線量を調整した 半田を用いてもよい。
[0025] 本発明における該半田パッド上に、鉛含有の半田(例えば、 Sn/Pd=6/4)を用 いた場合には、半田内でも鉛により応力を緩衝させることができ、より、応力を緩衝し やすくなるであり、該半田パッドでの接合強度が低下し難くなり、クラック等を引き起こ し難くする。
[0026] 一方、鉛レスの半田(例えば、
Figure imgf000007_0001
5/2. 5)を用いた場合に は、鉛含有半田を用いた場合と比較すると半田内での応力を緩衝し難い。これは、 半田に用いた金属自体が応力を緩衝にくいからである。し力しながら、これら鉛レス 半田を用いても、本発明では、半田パッドで応力を緩衝させることができ、その結果と して、該半田パッドでの接合強度が低下し難くなり、クラック等を引き起こし難くする。
[0027] 本発明では、半田パッドと半田との接合強度が確保され、落下応力や熱応力に対 しても、半田パッド緩衝することができるので、信頼性ゃ耐落下性を従来の半田パッ ド構造よりも向上させることができる。これにより、電気接続性や接続信頼性が低下し 難くなる。その結果して、プリント配線板が収納された電子機器としての機能を長期に 渡り、維持することができる。
[0028] 半田パッド部にスルーホールを配置させる、または、表層パッド部に R面を設けるこ とにより、さらに、信頼性ゃ耐落下性が低下し難くなり、その結果して、電子機器とし ての機能を長期に渡り維持することができる。
[0029] 電子機器としては、主として、携帯用電子機器に用いられることが望ましい。携帯用 電子機器としては、携帯電話、携帯用コンピューター、携帯端末 (含むゲーム機)等 である。これらは、高機能化すると共に、信頼性が確保されることが望ましい。元々、 携帯用電子機器は、誤って落下させることが想定されているのであり、そのために、 信頼性を確保しやす 、構造にすることが望まれて 、る。
発明を実施するための最良の形態
[0030] [実施形態 1]
図 1〜図 2を参照して本発明のプリント配線板をパッケージ基板に応用した実施形 態 1について説明する。
図 1は、実施形態 1のノ ッケージ基板を用いる半導体装置の断面図であり、図 2は、 図 1に示す半導体装置を被実装プリント配線板に実装した状態を示す断面図である
[0031] 図 1に示すように半導体装置 (IC) 50は、ノ¾ /ケージ基板 10と図示しない ICチップ を封止するモールド榭脂 32とから成る。 ICチップ搭載用基板 10は、ガラエポ等から なるガラスクロスにエポキシ榭脂を含浸させ、硬化させた榭脂基板 12と、榭脂基板 12 の上下面を接続するスルーホール 16と、榭脂基板 12の下面側に設けられたソルダ 一レジスト層 14と、スルーホール 16の下面側に設けられた半田パッド 20と、半田パッ ド 20に接続された半田ボール 30とから成る。スルーホール 16の上面にはランド 16U 力 下面にはランド 16Dが形成されている。上面のランド 16Uから、 ICチップは図示 しな!/、ワイヤーでボンディング接続されて!、る。
[0032] これらの実施形態の製造には、以下のような工程を経て行われる。
(1)図 3 (A)に示す銅箔 11を基板 12に積層して成る両面銅張積層板 (社名:松下電 ェ 品番:ノヽロゲンフリーエポキシマルチ R1566など)にドリルなどにより貫通孔 13を 設けた(図 3 (B) )。この貫通孔 13内へのメツキ (電解メツキもしくは無電解メツキ)を経 て、レジストによるパターン形成を経ることにより、電気接続を可能とする貫通孔 13と 表層に導体回路 (ランド) 16U、 16Cを形成する(図 3 (C) )。
[0033] (2)貫通孔 13内に、エポキシ榭脂等の絶縁性を有する榭脂 17を印刷等により充填 する。その後、研磨できるくらいに半硬化する工程 (例えば、 100°C 30分での加熱) を行い、パフや研磨紙による研磨工程、完全硬化工程を経ることにより貫通孔 13内 に、絶縁榭脂 17が充填されたプリント配線基板を得た (図 3 (D) )。貫通孔 13上に、メ ツキなどにより導体層(ランド) 16Dを形成する(図 4 (A) )。
[0034] (3)導体層 16Dを形成した面に、ソルダーレジスト層などの榭脂層を形成する。露光
•現像もしくはレーザにより榭脂層 14に開口 14aを設ける(図 4 (B) )。開口 14a内部 にメツキもしくは銅等の導電性粒子が配合された導電性ペーストを充填する。これに より、半田パッドの柱状部分 22を形成する(図 4 (C) )。
[0035] (4)全面にメツキを行 、、その後パターン形成を行って、エッチング工程を経て、表層 ノ ッド 24を形成することで、半田パッド 20を完成させる(図 4 (D) )。
[0036] 図 2に示すように、半導体装置 50は、被実装プリント配線板 60に、被実装プリント 配線板 60側に設けられたパッド 62へ半田ボール 30を接続させることで搭載されてい る。
[0037] 図 1、図 2に示されたものは、 2層である力 これ以外にも、 3層以上に積層したもの にプリント配線板に用いてもよぐその積層方法もアディティブ法、サブトラ法などの 一般的に用いられるプリント配線板の工法を用いてもょ 、。
また、使用するプリント配線板の基材には、ガラスクロスにエポキシ榭脂を含浸させ て成るが、これ以外にも、熱硬化性榭脂、熱可塑性榭脂、感光性榭脂、或いはこれら の榭脂の 2種類以上混合したものを用いてもよい。その具体例としては、 FR—4, FR 5などが該当する。
[0038] (実施形態 1 1)
図 5 (A)は、 ICチップ搭載用基板の半田パッド 20を拡大して示す断面図であり、図 5 (B)は、斜視図である。
半田パッド 20は、主として半田力もなる半田ボール 30を搭載する表層パッド部 24と 、該パッド部 24を支持して半田ボール側へ突出する柱状部 22 (円筒)と力も成る。表 層パッド部 24は、柱状部 22よりも大径に構成され、即ち、表層パッド部 24の外縁 24 eが柱状部 22から側方へ延在しており、該外縁 24eが橈むことができる。外部から半 田ボール 30に応力(熱応力、落下応力)が加わった際に、外縁 24eが橈むことで、応 力の集中しゃす 、表層パッド部の外縁 20eでの応力が緩和でき、半田パッド 20と半 田ボール 30との接合強度を低下し難くすることが可能となる。
[0039] また、表層パッド部 24が半田ボールと表層パッド部 24の底面 24b及び側面 24sで 接している。即ち、後述する従来技術 (比較形態 1— 1)のパッドのように底面のみで 接するよりも接触面積が増えている。このため、表層ノッド部 24と半田ボール 30との 接合部に掛カる単位面積当たりの応力を低下させ、半田ノ ッド 20と半田ボール 30と の接合強度を、従来の半田パッド構造を比べて、高めることができる。接合強度を高 めることで、電極パッド 20と半田ボール 30との接合部の落下耐性を確保することが 可能となる。
[0040] 更に、実施形態 1—1では、半田パッド 20がスルーホール 16上に形成されているた め、 Z軸方向での導体部分が延在していることとなるために、半田パッド 20及びスル 一ホール 16で応力を緩和でき、半田パッド 20と半田ボール 30との接合強度をより低 下させに《なる。また、スルーホール部分の導体部分でも落下応力を緩衝させること ができるので、半田パッド 20と半田ボール 30との接合部の耐落下性を確保すること が可能となる。
[0041] また更に、実施形態 1— 1では、表層パッド部の底面 24bと側面 24sとの角部が R面 の面取り形状となっている、即ち、表層パッド部の側面 24sは、 90° の円弧形状とな つているため、該パッドの角部付近での応力が集中することがなくなり、表層パッド部 に掛力る応力が均等になる。そのために、表層パッドの側面 24sと底面 24bでの半田 との接合強度が低下し難くなり、その結果として、半田パッド周辺でのクラック等を引 き起こしにくくなるのである。
また、角部付近での応力が集中しにくいことから、落下応力に対しても、局所的に 応力が集中することがないので、クラック等の不具合を引き起こし難くなる。半田パッ ドと半田との接合部の耐落下性を低下させ難くなる。
[0042] 図 6 (A)は、実施形態 1— 1の改変例を示して!/、る。この改変例では、半田パッド 20 がスルーホール 16からずれて設けられている。し力し、スルーホール 16は、半田パッ ド 20の外縁 24eの垂線内に配置されている。係る改変例でも、実施形態 1—1と同様 に、半田パッド 20及びスルーホール 16で応力を緩和でき、半田パッド 20と半田ボー ル 30との接合強度をより低下させにくくなる。
[0043] (実施形態 1 2)
図 6 (B)は、実施形態 1—2の ICチップ搭載用基板の半田パッド 20を拡大して示す 図である。実施形態 1—2では、半田パッド 20の直下にはスルーホール 16が配置さ れていないが、それ以外は、実施形態 1—1と同じである。つまり、この半田パッド構 造は、表層パッド部 24は、柱状部 22よりも大径に構成されて、表層パッド 24には、底 面 24bと側面 24sとの角部が R面の面取り形状となっている、
[0044] (実施形態 1 3)
図 7 (A)は、実施形態 1—3の ICチップ搭載用基板の半田パッド 20を拡大して示す 図である。実施形態 1—3では、表層パッド 24の角部が直角であり、それ以外は、実 施形態 1—1と同じである。つまり、この半田パッド構造は、表層パッド部 24は、柱状 部 22よりも大径に構成されて、表層パッド 24には、底面 24bと側面 24sとの角部が直 角であり、半田パッド 20の直下にはスルーホール 16が配置されている。
[0045] (実施形態 1 4)
図 7 (B)は、実施形態 1—4の ICチップ搭載用基板の半田パッド 20を拡大して示す 図である。実施形態 1—4では、表層パッド 24の角部が直角であり、それ以外は、実 施形態 1—2と同じである。つまり、この半田パッド構造は、表層パッド部 24は、柱状 部 22よりも大径に構成されて、表層パッド 24には、底面 24bと側面 24sとの角部が直 角であり、半田パッド 20の直下にスルーホール 16が配置されていない。
[0046] (実施形態 1 5)
図 8 (A)は、実施形態 1—5の ICチップ搭載用基板の半田パッド 20を拡大して示す 図である。実施形態 1—5では、表層パッド 24の角部には、面取り加工がされている 力 それ以外は、実施形態 1—1と同じである。つまり、この半田パッド構造は、表層 ノッド部 24は、柱状部 22よりも大径に構成されて、表層パッド 24の底面 24bと側面 2 4sとの角部が面取り加工され、半田パッド 20の直下にはスルーホール 16が配置され ている。
[0047] (実施形態 1 6)
図 8 (B)は、実施形態 1—6の ICチップ搭載用基板の半田パッド 20を拡大して示す 図である。実施形態 1—6では、表層パッド 24の角部には、面取り加工がされている 力 それ以外は、実施形態 1—2と同じである。つまり、この半田パッド構造は、表層 ノッド部 24は、柱状部 22よりも大径に構成されて、表層パッド 24の底面 24bと側面 2 4sとの角部が面取り加工され、半田パッド 20の直下にスルーホール 16が配置されて いない。
[0048] 上述した実施形態 1—1〜実施形態 1—6では、図 9 (A)に示すように柱状部 22が 円筒形状であるが、図 9 (B)に示すように、裁頭円錐形状に柱状部 22を形成すること も可能である。
[0049] (実施形態 1 7)
実施形態 1—7は、柱状部 22の形状が図 9 (C)に示すように正方形である以外は、 実施形態 1—1と同じである。なお、実施形態 1—7の柱状部 22は、図 9 (D)に示すよ うに裁頭角錐形状に形成することも可能である。
[0050] (実施形態 1 8)
実施形態 1 8は、柱状部 22の形状が図 9 (E)に示すように長方形である以外は、 実施形態 1—1と同じである。
[0051] (実施形態 1 9)
実施形態 1 9は、柱状部 22の形状が図 9 (F)に示すように多角形柱 (六角形)で ある以外は、実施形態 1—1と同じである。
[0052] (実施形態 1 10)
実施形態 1 10は、柱状部 22の形状が図 9 (G)に示すように多角形柱 (八角形) である以外は、実施形態 1—1と同じである。
[0053] (比較形態 1 1)
比較形態 1—1として、実施形態 1の半田パッド 20として、図 18 (A)に示すように従 来技術のスルーホール 16のランド 16Dをパッドとして用い、ランド 16D上に半田ボー ル 30を直接接続させる構造に形成した。
[0054] (比較形態 1 2)
比較形態 1—2として、図 18 (B)に示すようにランド 16D上に半田パッド 28を設けた 構造を形成した。 [0055] 実施形態 1 1と、比較形態 1 1及び比較形態 1 2とをシミュレーションした結果 について説明する。ここでは、実施形態 1—1を示す図 10 (A)、比較形態 1—1を示 す図 10 (B)、比較形態 1 2を示す図 10 (C)のように半田ボール 30に 10Nの荷重 をカロえたものとして計算を行って 、る。
なお、上述した実施形態での半田とは、スズー鉛半田のみでなぐ鉛レスの種々の 低融点合金を指すことは言うまでもな 、。
[0056] 図 10 (A)中で、実施形態 1の電極パッド 20では、最も応力の高い点(ピークポイン ト PP)は、パッド部 24の底部の中央位置になり、 727MPaであった。
[0057] 図 10 (B)中で、比較形態 1—1で最も応力の高い点(ピークポイント PP)は、ランド 1 6Dと半田ボール 30の接する最外縁部になり、 980MPaであった。
[0058] 図 10 (C)中で、比較形態 1—2で最も応力の高い点(ピークポイント PP)は、ランド 1 6Dと半田ボール 30の接する最外縁部になり、 856MPaであった。
[0059] 以上のシミュレーション結果から、実施形態 1の電極パッド 20は、応力が最も高くな る部位でも、比較形態 1 1 (従来技術、図 10 (B) )、比較形態 1 - 2 (図 10 (C) )に対 して、応力値が低ぐ接合強度が低下にしくいことが明らかになった。
[0060] 更に、半田パッドと半田ボールとの接合構造を解析するため、図 11 (A)に示すよう に表層パッド 20の側面 20sが半田ボール 30に接触している場合と、図 11 (B)に示 すように、表層パッド 20の側面 20sが半田ボール 30と接触せず、且つ、半田ボール 30の接触部(上部)の径とパッド 20の径とが等 、場合と、図 11 (C)に示すように、 パッド 20の側面 20sが半田ボール 30と接触せず、且つ、パッド 20の径が半田ボール 30の接触部(上部)よりも大きい場合とをシミュレーションにより計算した。
[0061] 図 11 (A)に示す場合は、最も応力の高い点(ピークポイント PP)はパッド 20の底部 の中央位置になり、 640MPaであり、最も低い点で 320MPa、平均で 392MPaであ つた o
[0062] 図 11 (B)に示す場合には、図 11 (A)と同様に最も応力の高い点(ピークポイント P P)はパッド 20の底部の中央位置である力 780MPaであり、最も低い点で 359MPa 、平均で 414MPaであった。
[0063] 図 11 (C)に示す場合には、最も応力の高い点(ピークポイント PP)はパッド 20と半 田ボール 30の接する外縁接触部 20cになり、 1150MPa、最も低い点で 332MPa、 平均で 396MPaであった。
[0064] ここで、図 11 (B)の場合と、図 11 (C)の場合とで、最も応力の高い値が、図 11 (B) の方がかなり低くなつている。これは、図 11 (B)で示す場合には、パッド 20の外縁 20 eが図示する下方へ 0. 25 m変位して、当該部分での応力を緩和している。これに 対して、図 11 (C)の場合には、パッド 20が変形し難い部位 (外縁接触部 20c)で、応 力最大となり、該外縁接触部 20cが 0. 12 /z mしか変位しないためと考えられる。即ち 、図 11 (B)に示した従来構造では、パッドの応力最大となる部位で変形し難いため、 最大応力値が高くなつているものと推測される。
[0065] ノ¾ /ドの外縁での撓みと応力との関係を調べるため、図 11 (A)に示す構造におい て、図 12に示すように、中央の拘束部分と外縁での橈み可能部分との比率を 82→7 8まで変えて、外縁での橈み、中央部での応力値、外縁部での応力値をシミュレーシ ヨンした結果を図 13 (A)中に示す。ここで、 82拘束とは、中央側 82%が拘束され、 1 8%が橈み可能な状態を表している。
[0066] このシミュレーションの結果から、半田端部(外縁部)での応力は、僅かなたわみ量 の増加で大きく減少する。一方、半田中央部の応力は、橈み量の増加に対して、そ れ程変化しないことが分かる。この結果からも、実施形態 1の構造で応力を減少でき ることが明らかになった。
[0067] 引き続き、実施形態 1の電極パッドの最適な大きさを求めてシミュレーションを行つ た結果について説明する。
図 14に示すように、電極パッドのパッド径(スルーホールのランド 16Dの径)、ソルダ 一レジストの開口径、パッド部径、パッド部の厚み (R)を図 13 (B)に示すよう値に設 定し、 No. 1、 No. 2、 No. 3、 No. 4、 No. 5としてシミュレーションを行った。
[0068] まず、 No. 1、 No. 2、 No. 3でソルダーレジストの開口径を変えた場合に、 No. 1 ( 開口径 120 μ m)ではパッド中央部で 558MPaゝ No. 2 (開口径 130 m)ではパッ ド中央部で 661MPa、 No. 3 (開口径 140 μ m)ではパッド中央部で 727MPaとなつ た。この結果から、ソルダーレジスト開口径を大きくするとパッド部の径が大きくなるこ とで、半田との接触面積が大きくなり、界面での応力が下がることが分力 た。 [0069] ここで、電極パッド 20とスルーホール 16との剥離を防止する観点から、図 14中に示 す柱状部 22の外縁部 22eでの応力をシミュレーションした。この結果、 No. 3 (パッド 咅の厚み 30 μ m) 2247MPa、 No. 4 (ノッド咅の厚み 20 μ m)力 ^2858MPa、 N o. 5 (パッド部の厚み 40 μ m)力 S2779MPaとなった。即ち、パッド部の厚みが 30 μ mの際に、応力値を最小にでき、パッド部の厚みは 20〜40 mの範囲が好適である ことが分力つた。
[0070] 以下、実施形態 1 1〜実施形態 1 9、比較形態 1 1、比較形態 1 2のプリント 配線板にっ 、て落下試験及び信頼性試験を行った結果にっ 、て、この結果を示す 図 16の図表を参照して説明する。
[0071] (落下試験)
図 15 (A)に示すように実施形態 1— 1〜1— 10と比較形態 1— 1、比較形態 1— 2の 基板 10をドータボード 60に搭載し、それぞれ筐体 98に収めて、ネジ等により固定す る。図 15 (B)に示すように、この固定した筐体 98を lmの高さから、垂直 (頭壁 TPを 上側、底壁 BTを下側)側を下にして自然落下させる。落下試験後に、該実施形態ご とに電気接続の有無を行った。
落下試験回数: 10回、 20回、 30回
[0072] 10回の落下試験をクリアすれば、従来品(比較形態 1 1)と比較して落下耐性を 確保することができ、実施形態 1— 1〜実施形態 1— 10の全てでこれをクリアできた。 一方、 30回の落下試験をクリアすることは、高い落下耐性を有することを示し、実施 形態 1—4を除き、実施形態 1— 1〜実施形態 1— 10は 30回をクリアできた。
[0073] (信頼性試験)
実施形態 1 1〜1 10と比較形態 1 1、比較形態 1 2で作成した基板を 3シート をヒートサイクル条件下(135°CZ3min. —55°CZ3min. 1サイクルとして、 1000 サイクル、 2000サイクル、 3000サイクルを行った後に電気導通の有無を行った。 評価 導通に問題なし :〇
1〜2シートで導通不良発生:△
すべてのシートで導通不良発生: X
[0074] 1000サイクル以上信頼性試験をクリアすれば、通常使用する上でば、製品使用上 において、問題を引き起こさな力つた。 3000サイクル以上の信頼性試験をクリアする ことは、長期間の信頼性が確保されることが証明される。比較形態 1 1、比較形態 1 —2では、 1000サイクルの信頼性試験をクリアできないことがあるのに対して、実施 形態では、 2000サイクルをクリアできた。更に、実施形態 1— 1、実施形態 1— 8、実 施形態 1— 9、実施形態 1— 10では、 3000サイクルをクリアでき、半田パッドの直下 にスルーホールを設けることで信頼性を確保し易くなることが明らかになった。
[0075] [第 2実施形態]
図 17 (A)は、第 2実施形態に係る電極パッド 20の構成を示している。第 2実施形態 では、パッド部 24の端部が半円形状になっている。係る構成でも実施形態 1と同様に 、電極パッド 20と半田ボール 30との接合強度を高めることができる。
[0076] [第 3実施形態]
図 17 (B)は、第 3実施形態に係る電極パッド 20の構成を示している。第 4実施形態 では、パッド部 24が柱状部 22より小径になっている。係る構成でも、電極パッド 20と 半田ボール 30との接合強度を高めることができる。
[0077] [第 4実施形態]
図 17 (D)は、第 4実施形態に係る電極パッド 20の構成を示している。第 4実施形態 では、パッド部 24の底面 24bに半田ボール 30を搭載している。係る構成でも、電極 ノッド 20と半田ボール 30との接合強度を高めることができる。
図面の簡単な説明
[0078] [図 1]本発明の一実施形態に係るパッケージ基板の構成を示す断面図である。
[図 2]図 1に示すパッケージ基板を被実装プリント配線板に実装した状態を示す断面 図である。
[図 3]図 1に示すパッケージ基板の製造方法を示す工程図である。
[図 4]図 1に示すパッケージ基板の製造方法を示す工程図である。
[図 5]図 5 (A)は、実施形態 1—1の電極パッドを拡大して示す断面図であり、図 5 (B) は当該電極パッドの斜視図である。
[図 6]図 6 (A)は、実施形態 1— 1の改変例に係る電極パッドを拡大して示す断面図 であり、図 6 (B)は、実施形態 1—2の電極パッドを拡大して示す断面図である。 [図 7]図 7 (A)は、実施形態 1—3に係る電極パッドを拡大して示す断面図であり、図 7
(B)は、実施形態 1—4の電極パッドを拡大して示す断面図である。
[図 8]図 8 (A)は、実施形態 1—5に係る電極パッドを拡大して示す断面図であり、図 8
(B)は、実施形態 1—6の電極パッドを拡大して示す断面図である。
[図 9]図 9 (A)は実施形態 1— 1に係る電極パッドの斜視図であり、図 9 (B)は実施形 態 1—1の別例に係る電極パッドの斜視図であり、図 9 (C)は実施形態 1—7に係る電 極パッドの斜視図であり、図 9 (D)は実施形態 1—7の別例に係る電極パッドの斜視 図であり、図 9 (E)は実施形態 1 8に係る電極パッドの斜視図であり、図 9 (F)は実 施形態 1—9に係る電極パッドの斜視図であり、図 9 (A)は、実施形態 1— 10に係る 電極パッドの斜視図である。
[図 10]図 10 (A)は、実施形態 1—1の電極パッドの応力最大点を示す模式図であり、 図 10 (B)は、従来技術 (比較形態 1— 1)の電極パッドの応力最大点を示す模式図で あり、図 10 (C)は、比較形態 1—2の電極パッドの応力最大点を示す模式図である。
[図 11]図 11 (A)、図 11 (B)、図 11 (C)は応力解析を行ったシミュレーションモデルを 示す模式図である。
[図 12]応力解析を行ったシミュレーションモデルを示す模式図である。
[図 13]図 13 (A)は、シミュレーション結果を示す図表であり、図 13 (B)は、電極パッド の各部のディメンジョンを示す図表である。
[図 14]応力解析を行ったシミュレーションモデルを示す模式図である。
圆 15]落下試験の方法を説明する示す模式図である。
[図 16]落下試験及び信頼性試験の結果を示す図表である。
圆 17]図 17 (A)は第 2実施形態の電極パッドを拡大して示す断面図であり、図 17 (B )は第 3実施形態の電極パッドを拡大して示す断面図であり、図 17 (C)は第 4実施形 態の電極パッドを拡大して示す断面図である。
[図 18]図 18 (A)は、比較形態 1—1に係る電極パッドを拡大して示す断面図であり、 図 18 (B)は、比較形態 1—2の電極パッドを拡大して示す断面図である。
圆 19]図 19 (A)は関連技術の半田パッド構造の説明図であり、図 19 (B)は関連技 術の半田パッド構造の説明図である。

Claims

請求の範囲
[1] 電子部品あるいは外部基板を実装するための半田が搭載される半田パッドを備える プリント配線板であって、
前記半田パッドが、半田を搭載する表層パッド部と、該表層パッド部を支持して半田 へ突出する柱状部とから成り、
前記表層パッド部が、柱状部よりも大径に構成され、
前記表層パッド部が、半田と底面及び側面で接していることを特徴とするプリント配線 板。
[2] 電子部品あるいは外部基板を実装するための半田が搭載される半田パッドを備える プリント配線板であって、
前記半田パッドが、半田を搭載する表層パッド部と、該表層パッド部を支持して半田 へ突出する柱状部とから成り、
前記表層パッド部が、半田と底面及び側面で接していることを特徴とするプリント配線 板。
[3] 電子部品あるいは外部基板を実装するための半田が搭載される半田パッドを備える プリント配線板であって、
前記半田パッドが、半田を搭載する表層パッド部と、該表層パッド部を支持して半田 へ突出する柱状部とから成り、
前記表層パッド部が、柱状部よりも大径に構成されていることを特徴とするプリント配 板。
[4] 前記電極パッドがスルーホール上に形成されて 、ることを特徴とする請求項 1に記載 のプリント配線板。
[5] 前記パッド部の底面と側面との角部力 ¾面の面取り形状となっていることを特徴とする 請求項 1に記載のプリント配線板。
[6] 前記パッド部の側面は、 90° の円弧形状となっていることを特徴とする請求項 5に記 載のプリント配線板。
[7] 前記柱状には、円柱、円筒、正方形、長方形、多角形柱である請求項 1に記載のプリ ント配線板。
[8] 電子部品あるいは外部基板を実装するための半田が搭載される半田パッドを備え、 以下の工程が含まれるプリント配線板の製造方法:
導体回路を有するプリント配線板を形成する工程;
前記導体回路上に、柱状部を形成する工程;
表層パッド部を形成する工程。
[9] 前記パッド部に、 R面を構成することを特徴とする請求項 7のプリント配線板の製造方 法。
[10] 前記表層パッド部を、前記柱状部よりも大径に形成することを特徴とする請求項 7の プリント配線板の製造方法。
[11] 前記導体回路を有するプリント配線板上に、榭脂層を形成し、露光'現像もしくはレ 一ザにより開口を形成し、該開口内に前記柱状部を形成することを特徴とする請求 項 7のプリント配線板の製造方法。
[12] スルーホールの直上に、前記柱状部及び前記表層パッド部を形成することを特徴と する請求項 7のプリント配線板の製造方法。
PCT/JP2005/023017 2004-12-17 2005-12-15 プリント配線板 WO2006064863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006548893A JPWO2006064863A1 (ja) 2004-12-17 2005-12-15 プリント配線板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004366287 2004-12-17
JP2004-366287 2004-12-17

Publications (1)

Publication Number Publication Date
WO2006064863A1 true WO2006064863A1 (ja) 2006-06-22

Family

ID=36587917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023017 WO2006064863A1 (ja) 2004-12-17 2005-12-15 プリント配線板

Country Status (4)

Country Link
US (1) US7568922B2 (ja)
JP (1) JPWO2006064863A1 (ja)
TW (1) TW200636958A (ja)
WO (1) WO2006064863A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001915A1 (fr) * 2006-06-30 2008-01-03 Nec Corporation Carte de câblage, dispositif à semi-conducteurs l'utilisant et leurs procédés de fabrication
WO2014171097A1 (ja) * 2013-04-19 2014-10-23 株式会社デンソー 車両用電子機器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW406454B (en) * 1996-10-10 2000-09-21 Berg Tech Inc High density connector and method of manufacture
CN101296570A (zh) * 2007-04-25 2008-10-29 富葵精密组件(深圳)有限公司 电路板及其制作方法
SG148056A1 (en) * 2007-05-17 2008-12-31 Micron Technology Inc Integrated circuit packages, methods of forming integrated circuit packages, and methods of assembling intgrated circuit packages
JP5101169B2 (ja) 2007-05-30 2012-12-19 新光電気工業株式会社 配線基板とその製造方法
US20090127695A1 (en) * 2007-11-19 2009-05-21 Patrick Kim Surface mount package with enhanced strength solder joint
JP5269563B2 (ja) 2008-11-28 2013-08-21 新光電気工業株式会社 配線基板とその製造方法
JP5868658B2 (ja) * 2011-10-28 2016-02-24 シャープ株式会社 構造体
KR101965127B1 (ko) * 2012-10-29 2019-04-04 삼성전자 주식회사 반도체 패키지 및 그 제조 방법
JP6696567B2 (ja) * 2016-05-16 2020-05-20 株式会社村田製作所 セラミック電子部品
TWI595812B (zh) * 2016-11-30 2017-08-11 欣興電子股份有限公司 線路板結構及其製作方法
JP2018174018A (ja) * 2017-03-31 2018-11-08 タイコエレクトロニクスジャパン合同会社 ソケット
US20220312591A1 (en) * 2021-03-26 2022-09-29 Juniper Networks, Inc. Substrate with conductive pads and conductive layers
CN113411953B (zh) * 2021-06-17 2022-06-10 深圳佑驾创新科技有限公司 印制电路板及其封装结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167820A (ja) * 1997-08-08 1999-03-09 Denso Corp 半導体装置及びその製造方法
JP2001223460A (ja) * 2000-02-08 2001-08-17 Fujitsu Ltd 実装回路基板及びその製造方法
JP2002190490A (ja) * 2000-12-20 2002-07-05 Denso Corp バンプを有する電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591941A (en) * 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
US5590460A (en) * 1994-07-19 1997-01-07 Tessera, Inc. Method of making multilayer circuit
JP3905032B2 (ja) * 2002-12-20 2007-04-18 シャープ株式会社 半導体装置、および、その製造方法
US7137826B2 (en) * 2005-03-08 2006-11-21 International Business Machines Corporation Temperature dependent semiconductor module connectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167820A (ja) * 1997-08-08 1999-03-09 Denso Corp 半導体装置及びその製造方法
JP2001223460A (ja) * 2000-02-08 2001-08-17 Fujitsu Ltd 実装回路基板及びその製造方法
JP2002190490A (ja) * 2000-12-20 2002-07-05 Denso Corp バンプを有する電子部品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001915A1 (fr) * 2006-06-30 2008-01-03 Nec Corporation Carte de câblage, dispositif à semi-conducteurs l'utilisant et leurs procédés de fabrication
US7911038B2 (en) 2006-06-30 2011-03-22 Renesas Electronics Corporation Wiring board, semiconductor device using wiring board and their manufacturing methods
US8389414B2 (en) 2006-06-30 2013-03-05 Nec Corporation Method of manufacturing a wiring board
JP5258045B2 (ja) * 2006-06-30 2013-08-07 日本電気株式会社 配線基板、配線基板を用いた半導体装置、及びそれらの製造方法
WO2014171097A1 (ja) * 2013-04-19 2014-10-23 株式会社デンソー 車両用電子機器
JP2014212241A (ja) * 2013-04-19 2014-11-13 株式会社デンソー 車両用電子機器
US9723731B2 (en) 2013-04-19 2017-08-01 Denso Corporation Electronic device for vehicle

Also Published As

Publication number Publication date
US7568922B2 (en) 2009-08-04
TWI327774B (ja) 2010-07-21
US20060169484A1 (en) 2006-08-03
JPWO2006064863A1 (ja) 2008-06-12
TW200636958A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
WO2006064863A1 (ja) プリント配線板
TWI545998B (zh) Built-in parts wiring board
TWI680701B (zh) 配線基板及其製造方法
JP2008085089A (ja) 樹脂配線基板および半導体装置
JP2012064911A (ja) パッケージ基板ユニット及びパッケージ基板ユニットの製造方法
JP2009158593A (ja) バンプ構造およびその製造方法
JP2006339316A (ja) 半導体装置、半導体装置実装基板、および半導体装置の実装方法
JP2004266074A (ja) 配線基板
KR101979078B1 (ko) 솔더 코팅된 금속 도전 입자를 사용한 이방성 전도 필름
JP2014179430A (ja) 半導体素子搭載用多層プリント配線板
US10886211B2 (en) Wiring board and semiconductor package
KR101167453B1 (ko) 전자부품 내장형 인쇄회로기판 및 그 제조방법
JP2008288490A (ja) チップ内蔵基板の製造方法
JP2011146490A (ja) 回路基板及びその製造方法、半導体装置、並びに電子回路装置
JP2008166432A (ja) クラックを生じにくい半田接合部、該半田接続部を備える回路基板などの電子部品、半導体装置、及び電子部品の製造方法
JP2005039241A (ja) 半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体
JP5323395B2 (ja) 電子モジュール、電子モジュールの製造方法
JP2005039240A (ja) 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体
JP5083000B2 (ja) 電子部品装置及び電子部品装置の製造方法
JP2010040891A (ja) 部品内蔵配線板
JP6007956B2 (ja) 部品内蔵配線板
KR20100096910A (ko) 동박적층판 및 이를 이용한 반도체 패키지
CN115472589A (zh) 半导体装置及半导体装置的制造方法
JP2005039239A (ja) 半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体
KR20110073312A (ko) 접적 회로 구성요소를 표면 탑재하는 방법 및 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548893

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816852

Country of ref document: EP

Kind code of ref document: A1